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1 Introduction

The (semi-)symmetric space sine-Gordon models constitute a broad class of generaliza-

tions of the sine-Gordon model. They may be obtained through Pohlmeyer reduction of

(semi-)symmetric space σ-models [1, 2] (see [3] for a review). Their Lagrangian formulation

corresponds to (a fermionic extension of) a gauged WZW model with an integrable poten-

tial [2, 4]. Like the sine-Gordon model itself, all these models are classically integrable.

However, a key difference between them and the sine-Gordon model is that the Poisson

algebra satisfied by their Lax matrix is non-ultralocal. Yet a remarkable feature of this

particular non-ultralocal Poisson algebra, recently computed in [5–7], is that it admits an

integrable lattice discretization. This promising result suggests that one may be able to

define quantum integrable lattice versions of generalized sine-Gordon models.

This hope of being able to construct quantum lattice models for a whole class of non-

ultralocal integrable models is an entirely new prospect in the study of non-ultralocality.

As indicated above, a first step towards this goal came from the determination of the

lattice Poisson algebra for generalized sine-Gordon models. In the present article we take

a further step in this direction by quantizing the lattice Poisson algebra obtained in [5–

7]. More precisely, we determine the quantized function algebra associated with different

examples of generalized sine-Gordon models.
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Before indicating the plan of this article, let us recall that the simplest generalization

of the sine-Gordon model, which is also taken as the first example in the present work,

corresponds to the complex sine-Gordon model [8–10]. In the continuum theory, the Poisson

algebra satisfied by its Lax matrix was computed in [11]. It does not satisfy the criteria

which enable the construction of a corresponding lattice Poisson algebra. However, as

recalled above, the situation is quite different if one views the complex sine-Gordon model

as defined by a SU(2)/U(1) gauged WZW action plus an integrable potential. This is

the standpoint taken in this article. Note that there are also indications [12, 13] within

factorized scattering theory that the proper definition of the quantum complex sine-Gordon

model is at the level of a gauged WZW model.

The content of this article is divided in two parts. The first one, which corresponds

to sections 2 and 3, deals with general results. Examples are then presented in the second

part, comprised of sections 4 and 5.

The first part begins with a brief review of the results obtained in [5–7]. The Poisson

algebra satisfied by the continuum Lax matrix of (semi-)symmetric space sine-Gordon

models is recalled in section 2.1. The corresponding lattice Poisson algebra is then given

in section 2.2. It forms the starting point of the analysis carried out in the rest of the

article. This lattice Poisson algebra is of the quadratic abcd-type [14, 15] and depends

on four matrices a, b, c and d. These satisfy a number of properties which include those

required to ensure antisymmetry of the corresponding Poisson bracket, the Jacobi identity

and finally the existence of infinitely many commuting quantities.

The general analysis for the quantum case is performed in section 3. To quantize the

lattice Poisson algebra from section 2, we search for a quantum lattice algebra of the general

quadratic ABCD-type [14, 15]. As usual, the matrices A, B, C and D should tend to the

identity in the classical limit ~ → 0 and reproduce the matrices a, b, c and d, respectively,

at the next order. We give a list of natural conditions on A, B, C and D which reduce

in the classical limit to those satisfied by a, b, c and d in section 2.2. Among these are

the conditions required in the general construction of [14, 15]. Taken altogether, these

properties lead to the more refined structure of an affine quantum braided group [16, 17],

as explained in section 3.2.

Concerning the second part, section 4 is devoted to examples of symmetric space sine-

Gordon models. The first model considered is the complex sine-Gordon model. We then go

on to consider models related to the affine Lie algebras A
(1)
2 and A

(2)
2 . They correspond to

the Pohlmeyer reduction of the CP 2 and SU(3)/SO(3) σ-models, respectively. In section 5,

we initiate the analysis for the AdS5 × S5 semi-symmetric space sine-Gordon model [2, 18]

by considering the case of the twisted affine loop algebra of gl(4|4).

2 Quadratic Poisson algebra

2.1 Poisson algebra in the continuum

As mentioned in the introduction, symmetric space sine-Gordon models are obtained by

Pohlmeyer reduction of σ-models on symmetric spaces F/G. We start this section by

recalling the classical integrable structure of the resulting gauged WZW models with an
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integrable potential. We then indicate the generalization to semi-symmetric space sine-

Gordon models. This section is based on the results in [5–7], to which the reader is referred

for more details.

Let f = Lie(F ) be a Lie algebra equipped with a Z2-automorphism σ : f → f, namely

such that σ2 = id, and let g = f(0) = {x ∈ f |σ(x) = x} and f(1) denote the eigenspaces of

σ with eigenvalue ±1. The phase space of the theory is parametrized by a pair of fields g

and A taking values in G and g = Lie(G) respectively, with Poisson brackets [5, 19]

{g1(σ), g2(σ′)} = 0, (2.1a)

{g1(σ), A2(σ
′)} = −2g1(σ)C

(00)
12 δσσ′ , (2.1b)

{A1(σ), A2(σ
′)} = −2

[
C

(00)
12 , A2(σ)

]
δσσ′ + 2C

(00)
12 ∂σδσσ′ . (2.1c)

We denote by C(00) +C(11) the decomposition of the tensor Casimir C of f with respect to

the Z2-grading induced by the involution σ. The Lax matrix is given by

L(σ, λ) = A(σ) +
1

2
λ−1µ−g

−1(σ)T−g(σ)−
1

2
λµ+T+, (2.2)

where T± ∈ f(1) and µ± ∈ R are constants. It takes values in the twisted polynomial loop

algebra f̂σ ⊂ f[λ, λ−1] of f. The Lax matrix (2.2) satisfies the non-ultralocal Poisson algebra

{L1(σ, λ),L2(σ
′, µ)} =

[
r12(λ/µ),L1(σ, λ) + L2(σ, µ)

]
δσσ′

+
[
s12,L1(σ, λ)− L2(σ, µ)

]
δσσ′ + 2s12∂σδσσ′ , (2.3)

where the matrices r and s explicitly read

r12(λ) =
1 + λ2

1− λ2
C

(00)
12 +

2λ

1− λ2
C

(11)
12 , s12 = C

(00)
12 . (2.4)

The sum r + s of the matrices in (2.4) is a non-skew-symmetric solution of the modified

classical Yang-Baxter equation (mCYBE) on f̂σ, which underlies the integrable structure

of the model [20].

In the case of a semi-symmetric space sine-Gordon model such as the one associated

with AdS5 × S5 [2, 18], the involutive automorphism σ is replaced by a Z4-automorphism

with respect to which the Casimir decomposes as C = C(00) + C(13) + C(22) + C(31). The

Poisson brackets (2.1) have to be supplemented with the Poisson brackets of the fermionic

fields. The corresponding Lax matrix, whose expression may be found in [6], also satisfies

the algebra (2.3) but where now

r12(λ) =
1 + λ4

1− λ4
C

(00)
12 +

2λ

1− λ4
C

(13)
12 +

2λ2

1− λ4
C

(22)
12 +

2λ3

1− λ4
C

(31)
12 , s12 = C

(00)
12 . (2.5)

The fact that the matrix s12 associated with the (semi-)symmetric space sine-Gordon

models is simply the projection onto the subalgebra g of constant loops in f̂σ is crucial. In-

deed, it enables to define a lattice discretization of the Poisson algebra (2.3). Furthermore,

as we will see, this has important consequences for the quantum case.
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2.2 Lattice Poisson algebra

The lattice Poisson algebra corresponding to (2.3) in the continuum limit is

{Ln
1(λ),Ln

2(µ)} = a12(λ/µ)Ln
1(λ)Ln

2(µ)− Ln
1(λ)Ln

2(µ)d12(λ/µ), (2.6a)

{Ln
1(λ),Ln+1

2 (µ)} = −Ln+1
2 (µ)c12Ln

1(λ), (2.6b)

{Ln+1
1 (λ),Ln

2(µ)} = Ln+1
1 (λ)b12Ln

2(µ), (2.6c)

{Ln
1(λ),Lm

2 (µ)} = 0, |n−m| ≥ 2, (2.6d)

where the lattice Lax matrix Ln encodes the physical degrees of freedom at the nth site

of the lattice. On the lattice, the property of non-ultralocality is encoded in the Poisson

brackets (2.6b) and (2.6c) which express the fact that Lax matrices at adjacent sites n

and n+1 do not Poisson commute. The Poisson algebra (2.6) fits into the general scheme

of quadratic abcd-algebras considered in [14, 15]. However, in the present case, the four

matrices a, b, c and d are expressed in terms of the matrices r and s given in (2.4) or (2.5)

together with [21] a skew-symmetric solution α of the mCYBE on g as follows

a(λ) = r(λ) + α, b = −s− α, c = −s+ α, d(λ) = r(λ)− α. (2.7)

In particular, b and c do not depend on the spectral parameter. By virtue of their explicit

expressions (2.7), the matrices a, b, c and d satisfy the following properties:

• The first set of properties ensures that equations (2.6) define a Poisson bracket.

They are

a12(λ) = −a21(λ
−1), d12(λ) = −d21(λ

−1), b12 = c21 (2.8)

for the antisymmetry and

[a12(λ/µ), a13(λ)] + [a12(λ/µ), a23(µ)] + [a13(λ), a23(µ)] = 0, (2.9a)

[d12(λ/µ), d13(λ)] + [d12(λ/µ), d23(µ)] + [d13(λ), d23(µ)] = 0, (2.9b)

[a12(λ), c13] + [a12(λ), c23] + [c13, c23] = 0, (2.9c)

[d12(λ), b13] + [d12(λ), b23] + [b13, b23] = 0 (2.9d)

for the Jacobi identity.

• An additional property of the matrices b and c, which is not required in the general

formalism of [14, 15], is that they are themselves solutions of the classical Yang-

Baxter equation

[b12, b13] + [b12, b23] + [b13, b23] = 0, (2.10a)

[c12, c13] + [c12, c23] + [c13, c23] = 0. (2.10b)

This is a consequence of the facts that α is a solution of the mCYBE on g and that

s identifies with the Casimir on g.
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• Another important property which ensures that the algebra (2.6) leads to the exis-

tence of an infinite family of commuting integrals of motion reads

a(λ) + b = c+ d(λ). (2.11)

Indeed, introducing the monodromy T = LN . . .L1, its Poisson bracket can be derived

from the local lattice Poisson algebra (2.6) using the relation (2.11) and reads

{T1(λ), T2(µ)} = a12(λ/µ)T1(λ)T2(µ) + T1(λ)b12T2(µ)

− T2(µ)c12T1(λ)− T2(µ)T1(λ)d12(λ/µ).

It then immediately follows using (2.11) once more that the quantities tr
(
T p(λ)

)

Poisson commute.

• Finally, the matrices r and s, in (2.4) as well as (2.5), are related by limλ→0 r(λ) = s

and limλ→∞ r(λ) = −s. An immediate consequence of this is that

lim
λ→0

a(λ) = −b, lim
λ→∞

a(λ) = c, (2.12a)

lim
λ→0

d(λ) = −c, lim
λ→∞

d(λ) = b. (2.12b)

3 Quantum lattice algebra

3.1 Quadratic algebra

On general grounds, the quantum lattice algebra, whose classical limit corresponds to the

Poisson algebra (2.6), should be of the following form [14, 15]

A12(q, λ/µ)L̂n
1(λ)L̂n

2(µ) = L̂n
2(µ)L̂n

1(λ)D12(q, λ/µ), (3.1a)

L̂n
1(λ)L̂n+1

2 (µ) = L̂n+1
2 (µ)C12(q)L̂n

1(λ), (3.1b)

L̂n+1
1 (λ)B12(q)L̂n

2(µ) = L̂n
2(µ)L̂n+1

1 (λ), (3.1c)

L̂n
1(λ)L̂m

2 (µ) = L̂m
2 (µ)L̂n

1(λ), |n−m| ≥ 2, (3.1d)

where L̂n = Ln+O(~) denotes the quantum lattice Lax matrix which encodes the physical

degrees of freedom at the nth site of the lattice. As usual, q = ei~ and the classical limit

corresponds to ~ → 0. In particular, one has in this limit

A12(e
i~, λ) = 1+ i~ a12(λ) +O(~2), B12(e

i~) = 1+ i~ b12 +O(~2), (3.2a)

C12(ei~) = 1+ i~ c12 +O(~2), D12(e
i~, λ) = 1+ i~ d12(λ) +O(~2). (3.2b)

Besides having the correct classical limits, the quantum matrices A, B, C and D satisfy

certain further properties which can be considered as the quantum analogs of those given in

the previous section for a, b, c and d. Most of these properties ensure that the algebra (3.1)

is well defined and leads to the existence of infinitely many commuting integrals of motion.

The remaining conditions are very natural from a mathematical point of view. The full

list of properties satisfied by the matrices A, B, C and D of sections 4 and 5 is as follows:
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• The first set of properties arises from considerations of the consistency of the alge-

bra (3.1). By exchanging the tensor indices 1 ↔ 2 and the spectral parameters λ ↔ µ

in equations (3.1), they may be rewritten as

A21(q, µ/λ)
−1L̂n

1(λ)L̂n
2(µ) = L̂n

2(µ)L̂n
1(λ)D21(q, µ/λ)

−1,

L̂n
1(λ)L̂n+1

2 (µ) = L̂n+1
2 (µ)B21(q)L̂n

1(λ),

L̂n+1
1 (λ)C21(q)L̂n

2(µ) = L̂n
2(µ)L̂n+1

1 (λ),

L̂n
1(λ)L̂m

2 (µ) = L̂m
2 (µ)L̂n

1(λ), |n−m| ≥ 2.

Therefore, to guarantee that these latter equations do not impose any new relations

on the quantum lattice Lax matrix L̂n, we should require that

A12(q, λ)A21(q, λ
−1) = D12(q, λ)D21(q, λ

−1) ∝ 1, (3.3a)

C12(q) = B21(q). (3.3b)

These are the quantum counterparts of the classical properties (2.8).

On the other hand, sufficient conditions for the consistency of the algebra (3.1)

read [14, 15]

A12(q, λ/µ)A13(q, λ)A23(q, µ) = A23(q, µ)A13(q, λ)A12(q, λ/µ), (3.4a)

D12(q, λ/µ)D13(q, λ)D23(q, µ) = D23(q, µ)D13(q, λ)D12(q, λ/µ), (3.4b)

A12(q, λ)C13(q)C23(q) = C23(q)C13(q)A12(q, λ), (3.4c)

D12(q, λ)B13(q)B23(q) = B23(q)B13(q)D12(q, λ), (3.4d)

which constitute the quantum analogs of equations (2.9).

• Since the classical matrices b and c satisfy the CYBE (2.10), it is natural to seek

matrices B(q) and C(q) which are themselves solutions of the quantum Yang-Baxter

equation (QYBE). We shall therefore impose the following further conditions on

these matrices

B12(q)B13(q)B23(q) = B23(q)B13(q)B12(q), (3.5a)

C12(q)C13(q)C23(q) = C23(q)C13(q)C12(q). (3.5b)

Although these properties are not required in the general formalism of [14, 15] for

quadratic quantum lattice algebras of the type (3.1), they will play a very impor-

tant role for us in underpinning the algebraic structure underlying the integrable

models considered.

• Another property which plays a central role in the interpretation of the algebra (3.1),

to be described shortly, and which we shall require our set of four quantum R-matrices

A(q, λ), B(q), C(q) and D(q, λ) to satisfy is

A(q, λ)B(q) = C(q)D(q, λ). (3.6)

– 6 –



J
H
E
P
0
3
(
2
0
1
3
)
0
3
1

Even though the classical limit of this equation is equivalent to the classical prop-

erty (2.11), it is not the appropriate quantum generalization of the latter.

Instead, the correct quantum analog of (2.11) is the existence of a numerical matrix

γ(q) satisfying the following relation

γ2(q)B12(q)γ1(q)A12(q, λ) = D12(q, λ)γ1(q)C12(q)γ2(q). (3.7)

In order for this equation to reduce to (2.11) in the classical limit, the matrix γ(q)

should be such that it tends to the identity matrix as q → 1. The property (3.7)

is essential to ensure the passage from the local commutation relations (3.1) to the

global commutation relation [14, 15]

A12(q, λ/µ)T̂1(λ)B12(q)T̂2(µ) = T̂2(µ)C12(q)T̂1(λ)D12(q, λ/µ) (3.8)

for the quantum monodromy defined as T̂ (λ) = L̂N (λ)γ(q)L̂N−1(λ)γ(q) . . . γ(q)L̂1(λ).

It is in this sense that the relation (3.7) is the quantum analog of the classical prop-

erty (2.11).

With the monodromy matrix so defined and satisfying the quadratic algebra (3.8), the

property which ultimately guarantees the existence of an infinite family of commuting

operators is the existence of another numerical matrix γ̃(q) such that

Ã12(q, λ)γ̃1(q)B̃12(q)γ̃2(q) = γ̃2(q)C̃12(q)γ̃1(q)D̃12(q, λ) (3.9)

where the matrices Ã, B̃, C̃ and D̃ are defined as

Ã = (At1t2)−1, B̃ = [(Bt1)−1]t2 , C̃ = [(Ct2)−1]t1 , D̃ = (Dt1t2)−1.

Here xt denotes the (super-)transpose of x. In every example considered in this

article, γ̃(q) is a diagonal matrix tending to the identity in the limit q → 1 and is

therefore also consistent in the classical limit with the relation (2.11).

The global monodromy algebra (3.8) together with the property (3.9) ensure [14,

15] that the operators tr
(
γ̃(q)t T̂ (λ)

)
commute for different values of the spectral

parameter.

• In each example we also have the following relations

lim
λ→0

A(q, λ) = B(q)−1, lim
λ→∞

A(q, λ) = C(q),

lim
λ→0

D(q, λ) = C(q)−1, lim
λ→∞

D(q, λ) = B(q)

which are natural quantum analogs of (2.12). Using these relations we observe

that (3.4c), (3.4d) and (3.5) can all be obtained as appropriate limits of the

QYBE (3.4a) and (3.4b).

– 7 –
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3.2 Affine quantum braided group

Given a set of four matrices A, B, C and D constructed to satisfy all of the above proper-

ties, it turns out that the algebraic structure underlying the quantum integrability of the

corresponding quantum model is precisely that of an affine quantum braided group [16, 17].

Indeed, using the relation (3.6) together with (3.3b), the four matrices A, B, C and D
may be expressed in terms of just two matrices R and Z as follows

A12(q, λ) = Z21(q)R12(q, λ)Z12(q)
−1, B12(q) = Z12(q),

D12(q, λ) = R12(q, λ), C12(q) = Z21(q),

The relations in (3.3a) then translate into the single unitarity condition

R12(q, λ)R21(q, λ
−1) ∝ 1. (3.10)

Note that there is no unitarity condition on the matrix Z. Moreover, the full set of QYB-

type relations (3.4) and (3.5) is equivalent to

R12(q, λ/µ)R13(q, λ)R23(q, µ) = R23(q, µ)R13(q, λ)R12(q, λ/µ), (3.11a)

Z12(q)Z13(q)Z23(q) = Z23(q)Z13(q)Z12(q), (3.11b)

R12(q, λ)Z13(q)Z23(q) = Z23(q)Z13(q)R12(q, λ), (3.11c)

Z12(q)Z13(q)R23(q, λ) = R23(q, λ)Z13(q)Z12(q). (3.11d)

In terms of the matrices R and Z, the quantum monodromy algebra (3.8) then reads

R12(q, λ/µ)Z12(q)
−1T̂1(λ)Z12(q)T̂2(µ) = Z21(q)

−1T̂2(µ)Z21(q)T̂1(λ)R12(q, λ/µ), (3.12)

which is exactly the relation defining an affine quantum braided group as introduced

in [16, 17].

In the remaining sections we present the quantum R-matrices A(q, λ), B(q), C(q) and
D(q, λ) entering the affine quantum braided group (3.12) for various models.

4 Symmetric space sine-Gordon models

4.1 Complex sine-Gordon model

Automorphism. In the setup of section 2, consider the case of the Lie algebra f =

su(2)⊕ su(2) and define the Z2-automorphism σ : f → f as the flip

σ(x, y) = (y, x),

for any x, y ∈ su(2). The corresponding eigenspaces of σ read

g = f(0) = {(x, x) |x ∈ su(2)}, f(1) = {(x,−x) |x ∈ su(2)}. (4.1)

Now introduce the standard basis for su(2), namely

H =

(
1 0

0 −1

)
, E =

(
0 1

0 0

)
, F =

(
0 0

1 0

)
, (4.2)
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in terms of which a basis of su(2)⊕ su(2) reads

H1 = (H, 0), E1 = (E, 0), F1 = (F, 0), H2 = (0,H), E2 = (0,E), F2 = (0,F).

Let us also introduce the block matrices 11 = (1, 0) and 12 = (0, 1) where 1 is the 2 × 2

identity matrix. In terms of the above we may write down a basis of the subspaces f(0) and

f(1) as

h(0) = H1 + H2, e(0) = E1 + E2, f(0) = F1 + F2,

h(1) = H1 − H2, e(1) = E1 − E2, f(1) = F1 − F2
(4.3)

respectively.

Casimir decomposition. The tensor Casimir is the sum of the tensor Casimirs for each

su(2), namely

C =
1

2
H1 ⊗ H1 + E1 ⊗ F1 + F1 ⊗ E1 +

1

2
H2 ⊗ H2 + E2 ⊗ F2 + F2 ⊗ E2,

which can be decomposed as C = C(00) + C(11) relative to f = f(0) ⊕ f(1), where

C(00) =
1

4
h(0) ⊗ h(0) +

1

2
e(0) ⊗ f(0) +

1

2
f(0) ⊗ e(0),

C(11) =
1

4
h(1) ⊗ h(1) +

1

2
e(1) ⊗ f(1) +

1

2
f(1) ⊗ e(1).

Classical r-matrices. We let the matrix α appearing in (2.7) be the standard skew-

symmetric solution of the mCYBE on g = su(2), namely

α =
1

2

(
e(0) ⊗ f(0) − f(0) ⊗ e(0)

)
.

The corresponding non-skew-symmetric solutions b and c of the CYBE defined by (2.7)

then read

b = −1

4
h(0) ⊗ h(0) − e(0) ⊗ f(0), c = −1

4
h(0) ⊗ h(0) − f(0) ⊗ e(0). (4.4)

In terms of these, the spectral parameter dependent classical r-matrices in (2.7) may

be written as follows

a(λ) = −δ(λ)b+
(
1− δ(λ)

)
c, d(λ) = −δ(λ)c+

(
1− δ(λ)

)
b,

where we have introduced the diagonal matrix

δ(λ) =
1

1− λ

(
11 ⊗ 11 + 12 ⊗ 12

)
+

1

1 + λ

(
11 ⊗ 12 + 12 ⊗ 11

)
.
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Quantum R-matrices. Next we give quantizations of the above classical r-matrices

a(λ), b, c and d(λ). Specifically, these are solutions A(q, λ), B(q), C(q) and D(q, λ) of

the QYBE with classical limits (3.2) for q = ei~. Quantizations of the constant classical

r-matrices b and c read

B(q) = q−
1
4
h
(0)⊗h

(0)
+ q−

1
4 (1− q) e(0) ⊗ f(0), (4.5a)

C(q) = q−
1
4
h
(0)⊗h

(0)
+ q−

1
4 (1− q) f(0) ⊗ e(0). (4.5b)

In terms of these, quantizations of a(λ) and d(λ) are respectively given by

A(q, λ) = δ(q, λ)B(q)−1 +
(
1− δ(q, λ)

)
C(q), (4.6a)

D(q, λ) = δ(q, λ)C(q)−1 +
(
1− δ(q, λ)

)
B(q), (4.6b)

where we have introduced the following q-deformation of the diagonal matrix δ(λ),

δ(q, λ) =

√
q

√
q − λ

(
11 ⊗ 11 + 12 ⊗ 12

)
+

q

q + λ
11 ⊗ 12 +

1

1 + λ
12 ⊗ 11.

Properties. One can check that the quantum matrices in (4.5) and (4.6) satisfy all the

properties listed in section 3. In particular, relations (3.7) and (3.9) hold with diagonal

matrices γ(q) = 1 and γ̃(q) = diag(q, 1, q, 1).

To describe the property (3.3a) of unitarity, consider the diagonal matrix

K(q, λ) = δ(q, λ)δ(q, qλ)δ
(
q, q−

1
2λ
)−1

δ
(
q, q

3
2λ
)−1

.

It commutes with all four R-matrices A(q, λ), B(q), C(q) and D(q, λ) and tends to the

identity in the limits λ → 0 and λ → ∞. Furthermore, in the limit ~ → 0, one has

K(ei~, λ) = 1 + O(~2). Therefore the rescaled matrices Â(q, λ) = K(q, λ)−
1
2A(q, λ) and

D̂(q, λ) = K(q, λ)−
1
2D(q, λ) together with B(q) and C(q) satisfy all properties of section 3

including the unitarity conditions

Â12(q, λ)Â21(q, λ
−1) = D̂12(q, λ)D̂21(q, λ

−1) = 1.

4.2 Models related to affine Lie algebras A
(n)
2

In this section we consider generalized sine-Gordon models associated with both the un-

twisted and twisted affine Lie algebras A
(1)
2 and A

(2)
2 .

4.2.1 CP 2 symmetric space sine-Gordon model

We begin by considering the symmetric space sine-Gordon theory resulting from the

Pohlmeyer reduction of the CP 2 σ-model. This is a coset σ-model on SU(3)/(SU(2)×U(1))

which means that the Lie algebra f is equal to su(3) while f(0) ≃ su(2)⊕ u(1).
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Automorphism. Consider therefore f = su(3) with Chevalley generators Hi,Ei,Fi given

in the fundamental representation by

H1 =




1 0 0

0 −1 0

0 0 0


 , E1 =




0 1 0

0 0 0

0 0 0


 , F1 =




0 0 0

1 0 0

0 0 0


 , (4.7a)

H2 =




0 0 0

0 1 0

0 0 −1


 , E2 =




0 0 0

0 0 1

0 0 0


 , F2 =




0 0 0

0 0 0

0 1 0


 (4.7b)

and let E3 = [E1,E2] and F3 = [F2,F1]. The Z2-automorphism σ of f is defined by

σ(H1) = H1, σ(H2) = H2, σ(E1) = E1, σ(F1) = F1,

σ(E2) = −E2, σ(F2) = −F2, σ(E3) = −E3, σ(F3) = −F3.

Note that this is an inner automorphism since σ(x) = gxg−1 where g = diag(1, 1,−1). We

take the bases for the corresponding eigenspaces f(0), f(1) ⊂ f of eigenvalue ±1 to be

f(0) = 〈H1,E1,F1,H
′
2 = H2 +

1

2
H1〉, f(1) = 〈E2,F2,E3,F3〉.

Notice that H′
2 commutes with H1,E1,F1 ∈ f(0) and hence f(0) ≃ su(2)⊕ u(1) as desired.

Casimir decomposition. The tensor Casimir of su(3) reads

C =
1

6

(
H1 ⊗ H2 + H2 ⊗ H1

)
+

1

3

(
H1 ⊗ H1 + H2 ⊗ H2

)
+

1

2

3∑

i=1

(
Ei ⊗ Fi + Fi ⊗ Ei

)
, (4.8)

and decomposes as C = C(00) + C(11) with respect to the subspaces f = f(0) ⊕ f(1) where

C(00) =
1

3
H′
2 ⊗ H′

2 +
1

4
H1 ⊗ H1 +

1

2

(
E1 ⊗ F1 + F1 ⊗ E1

)
,

C(11) =
1

2

(
E2 ⊗ F2 + F2 ⊗ E2 + E3 ⊗ F3 + F3 ⊗ E3

)
.

Classical r-matrices. For the skew-symmetric solution α of the mCYBE on g = f(0) we

shall take the standard solution on its su(2) part, namely

α =
1

2

(
E1 ⊗ F1 − F1 ⊗ E1

)
.

The corresponding non-skew-symmetric solutions b and c of the CYBE read

b = −1

3
H′
2 ⊗ H′

2 −
1

4
H1 ⊗ H1 − E1 ⊗ F1, (4.9a)

c = −1

3
H′
2 ⊗ H′

2 −
1

4
H1 ⊗ H1 − F1 ⊗ E1. (4.9b)

The spectral parameter dependent r-matrices a(λ) and d(λ) may then be written as

a(λ) = − 1

1− λ2
b− λ2

1− λ2
c+

2λ

1− λ2
C(11), (4.10a)

d(λ) = − 1

1− λ2
c− λ2

1− λ2
b+

2λ

1− λ2
C(11). (4.10b)
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Quantum R-matrices. One can check that solutions of the QYBE with classical lim-

its (4.9) as ~ → 0 with q = ei~, are given respectively by

B(q) = q−
1
3
H
′

2⊗H
′

2−
1
4
H1⊗H1 + q−

1

3 (1− q)E1 ⊗ F1,

C(q) = q−
1
3
H
′

2⊗H
′

2−
1
4
H1⊗H1 + q−

1

3 (1− q)F1 ⊗ E1.

Quantizations of the matrices (4.10) then take the following form

A(q, λ) =
q

1
3

q
1
3 − λ2

B(q)−1 − λ2

q
1
3 − λ2

C(q) + 2q−
1
3 (q − 1)λ

q
1
3 − λ2

C(11), (4.11a)

D(q, λ) =
q

1
3

q
1
3 − λ2

C(q)−1 − λ2

q
1
3 − λ2

B(q) + 2q−
1
3 (q − 1)λ

q
1
3 − λ2

C(11). (4.11b)

Properties. Aside from the general properties listed in section 3, the quantum R-

matrices just defined also satisfy D12(q, λ) = A21(q, λ). The unitarity property (3.3a)

explicitly reads

A12(q, λ)A21(q, λ
−1) =

(q − λ2)(q−1 − λ2)

(q
1
3 − λ2)(q−

1
3 − λ2)

1,

while the relations (3.7) and (3.9) hold for γ(q) = 1 and γ̃(q) = diag(q, 1, 1).

Connection with universal R-matrix. The R-matrix in (4.11a) turns out to be re-

lated to the untwisted affine Lie algebra A
(1)
2 , the R-matrix of which in the fundamental

representation was given in [22]. In order to see this connection explicitly, it is convenient

to use the results of [23], where the universal R-matrix obtained by Khoroshkin and Tol-

stoy in [24–26] for A
(1)
2 was evaluated in the fundamental representation. One can directly

check that the R-matrix (4.11a) obtained here is proportional to R(2,0,1) in the notation

of [23] with the replacement q → q
1
2 . This connection with the untwisted affine Lie alge-

bra A
(1)
2 stems from the automorphism σ being inner. In fact, the twisting by the inner

automorphism σ can be undone at the quantum level by considering

Â12(q, λ/µ) = g1(λ)g2(µ)A12(q, λ/µ)g1(λ)
−1g2(µ)

−1

where g(λ) is the diagonal matrix defined as g(λ) = diag(1, 1, λ). Up to some overall scalar

factor and the replacement q → q
1
2 , this is precisely the R-matrix R(2,0,0) in the notation

of [23].

4.2.2 SU(3)/SO(3) symmetric space sine-Gordon model

Automorphism. We use the same notations (4.7) as in section 4.2.1 for the generators

in the fundamental representation of f = su(3). In the case at hand, the Z2-automorphism

acts on an element x of f as

σ(x) = −ηxtη−1, (4.12)

where the pseudo-metric η is defined by

η =




0 0 1

0 −1 0

1 0 0


 . (4.13)
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The corresponding eigenspaces f(0) and f(1) of σ are generated by

f(0) = 〈h(0), e(0), f(0)〉, f(1) = 〈h(1), e(1), f(1),E3,F3〉,

where we have introduced the following linear combinations of the generators

h(0) = H1 + H2, e(0) = E1 + E2, f(0) = F1 + F2,

h(1) = H1 − H2, e(1) = E1 − E2, f(1) = F1 − F2.

Note in particular that f(0) ≃ so(3).

Casimir decomposition. The tensor Casimir (4.8) of su(3) decomposes with respect to

the above Z2-grading as

C(00) =
1

4
h(0) ⊗ h(0) +

1

4
e(0) ⊗ f(0) +

1

4
f(0) ⊗ e(0),

C(11) =
1

12
h(1) ⊗ h(1) +

1

4
e(1) ⊗ f(1) +

1

4
f(1) ⊗ e(1) +

1

2
(E3 ⊗ F3 + F3 ⊗ E3) .

Classical r-matrices. Our choice for α is again the standard skew-symmetric solution

of the mCYBE on f(0), namely

α =
1

4

(
e(0) ⊗ f(0) − f(0) ⊗ e(0)

)
.

The corresponding non-skew-symmetric solutions b and c of the CYBE take the follow-

ing form

b = −1

4
h(0) ⊗ h(0) − 1

2
e(0) ⊗ f(0), (4.14a)

c = −1

4
h(0) ⊗ h(0) − 1

2
f(0) ⊗ e(0). (4.14b)

In terms of these, the r-matrices a(λ) and d(λ) are given by the same expressions as

in (4.10).

Quantum R-matrices. Quantizations of the classical r-matrices (4.14) are given by

B(q) = q−
1
4
h
(0)⊗h

(0)
(
1−

(
q

1
4 − q−

1
4
)
e(0) ⊗ f(0) +

(
1− q−

1
4
)(
q

1
4 − q−

1
4
)
(e(0))2 ⊗ (f(0))2

)
,

(4.15a)

C(q) = q−
1
4
h
(0)⊗h

(0)
(
1−

(
q

1
4 − q−

1
4
)
f(0) ⊗ e(0) +

(
1− q−

1
4
)(
q

1
4 − q−

1
4
)
(f(0))2 ⊗ (e(0))2

)
.

(4.15b)

As for the R-matrix A(q, λ), based on the established connection of the previous example

with the untwisted affine Lie algebra A
(1)
2 , it is natural to expect a similar relation in the

present case but this time with the twisted affine Lie algebra A
(2)
2 . The R-matrix of the

latter in the fundamental representation was computed in [27]. For our purposes we shall

use the results of [28] in which a family of R-matrices in the fundamental representation of
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su(3) parametrized by two integers s0 and s1 was obtained from the universal R-matrix [24–

26]. Specifically, we will construct A(q, λ) from the particular solution with s0 = 1 and s1 =

0 which can be rewritten as follows. Introduce a q-deformation ηq of the metric (4.13) as

ηq =




0 0 q
1
4

0 −1 0

1 0 0


 .

We use this to define the following q-deformation of the automorphism (4.12)

σq(x) = −ηqx
tη−1

q .

Then, up to some overall factor and the replacement q → q1/4, the R-matrix considered

in [28] may be rewritten as

Â(q, λ) =
q

1
4

q
1
2 − λ

B(q)−1 − q
1
4λ

q
1
2 − λ

C(q)− λ(q
1
2 − 1)

(
1 + q

3
4

)

(q
1
2 − λ)

(
λ+ q

3
4

)
3∑

i=1

3∑

j=1

Eij ⊗ σq(Eji), (4.16)

where Eij denotes the 3× 3 matrix whose only non-zero entry is a 1 in the ith row and jth

column. The desired quantum R-matrix with the correct classical limit a(λ) given in (4.10)

may now be obtained by rescaling (4.16) as

A(q, λ) =
(q

1
2 − λ)

(
q

3
4 + λ

)

q
1
4

(
q

1
6 − λ

)(
q

7
12 + λ

)Â(q, λ). (4.17a)

Finally, the matrix D(q, λ) is defined through the relation (3.6). Such a definition auto-

matically satisfies the classical limit (3.2b) and is given explicitly by

D(q, λ) =
(q

1
2 − λ)

(
q

3
4 + λ

)

q
1
4

(
q

1
6 − λ

)(
q

7
12 + λ

)D̂(q, λ), (4.17b)

where the quantum R-matrix D̂(q, λ) admits a similar expression to (4.16), namely

D̂(q, λ) =
q

1
4

q
1
2 − λ

C(q)−1 − q
1
4λ

q
1
2 − λ

B(q)− λ(q
1
2 − 1)

(
1 + q

3
4

)

(q
1
2 − λ)

(
λ+ q

3
4

)
3∑

i=1

3∑

j=1

σq(Eij)⊗ Eji. (4.18)

Properties. The matrices (4.15) and (4.17) so defined satisfy all the properties discussed

in section 3 as well as the further property D12(q, λ) = A21(q, λ). Furthermore, the rescaled

R-matrices (4.16) and (4.18) are both unitary, namely

Â12(q, λ)Â21(q, λ
−1) = 1, D̂12(q, λ)D̂21(q, λ

−1) = 1.

Finally, the relations (3.7) and (3.9) are satisfied with γ(q) = 1 and γ̃(q) = diag(q
1
4 , 1, q−

1
4 ).

5 Affine quantum braided group for gl(4|4)

Throughout this section we take f = gl(4|4), a basis of which in the fundamental represen-

tation is given by the 8 × 8 matrices Ei,j whose only non-zero entry is a 1 in the ith row

and jth column.
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Automorphism. The Z4-automorphism σ of f with the property σ4 = id is defined by

σ(x) = −KxstK−1,

where xst denotes the usual supertranspose of the matrix x and K = 14 ⊗ iσ2. The

projection p(k) of f onto the corresponding eigenspace f(k) of σ is defined for any x ∈ f by

p(k)(x) =
1

4

(
x+ i3kσ(x) + i2kσ2(x) + ikσ3(x)

)
. (5.1)

The subalgebra f(0) corresponds to two copies of the Lie algebra so(5) and is spanned by

f(0) =
〈
{h(0)i }4i=1, {e

(0)
i }8i=1, {f

(0)
i }8i=1

〉
,

where the basis vectors are given explicitly in terms of the Ei,j as

h
(0)
1 = E1,1 − E2,2, h

(0)
2 = E3,3 − E4,4, h

(0)
3 = E5,5 − E6,6, h

(0)
4 = E7,7 − E8,8,

e
(0)
1 = E3,4, e

(0)
2 =

E4,2 − E1,3√
2

, e
(0)
3 =

E1,4 + E3,2√
2

, e
(0)
4 = E1,2,

e
(0)
5 = E8,7, e

(0)
6 =

E7,5 − E6,8√
2

, e
(0)
7 =

E6,7 + E8,5√
2

, e
(0)
8 = E6,5,

f
(0)
i =

(
e
(0)
i

)t
.

Casimir decomposition. The tensor Casimir C takes the simple form

C =
8∑

i,j=1

Ei,j ⊗WEj,i

where we have introduced the diagonal matrix W = diag(14,−14). The four components

C(00), C(22), C(13) and C(31) of C are obtained by applying the appropriate projections

in (5.1). For C(00) we find

C(00) =
1

2

4∑

i=1

h
(0)
i ⊗Wh

(0)
i +

8∑

i=1

(
e
(0)
i ⊗W f

(0)
i + f

(0)
i ⊗W e

(0)
i

)
. (5.2)

Classical r-matrices. Based on the form (5.2) of the Casimir component C(00), we make

the following choice for the matrix α,

α =
8∑

i=1

(
e
(0)
i ⊗W f

(0)
i − f

(0)
i ⊗W e

(0)
i

)
.

It is straightforward to check that this is a solution of the mCYBE on f(0) and is skew-

symmetric. The corresponding non-skew-symmetric constant solutions of the CYBE read

b = −1

2

4∑

i=1

h
(0)
i ⊗Wh

(0)
i − 2

8∑

i=1

e
(0)
i ⊗W f

(0)
i , (5.3a)

c = −1

2

4∑

i=1

h
(0)
i ⊗Wh

(0)
i − 2

8∑

i=1

f
(0)
i ⊗W e

(0)
i . (5.3b)
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The classical r-matrices a(λ) and d(λ) may then be written in the form

a(q, λ) = − 1

1 + λ2
b+

λ2

1 + λ2
c+

2λ2

1− λ4

(
C(00) + C(22)

)
+

2λ

1− λ4
C(13) +

2λ3

1− λ4
C(31),

(5.4a)

d(q, λ) = − 1

1 + λ2
c+

λ2

1 + λ2
b+

2λ2

1− λ4

(
C(00) + C(22)

)
+

2λ

1− λ4
C(13) +

2λ3

1− λ4
C(31).

(5.4b)

Quantum R-matrices Quantizations of (5.3) can be expressed as

B(q) = qHE1(q)E3(q)E4(q)E2(q)E5(q)E7(q)E8(q)E6(q), (5.5a)

C12(q) = B21(q), (5.5b)

where the first factor in (5.5a) is the q-exponential of the Cartan part of b which reads

H = −1

2

4∑

i=1

h
(0)
i ⊗Wh

(0)
i .

The remaining factors in (5.5a) are given by q-exponentials of the q-analogues of each

non-Cartan term in the expression (5.3a) for b, namely

E1(q) = 1⊗ 1+ (q−1 − q) e
(0)
1 ⊗ f

(0)
1 ,

E2(q) = 1⊗ 1+ 2(q−
1
2 − q

1
2 ) e

(0)
2 ⊗ f

(0)
2 ,

E3(q) = 1⊗ 1− 2(q−
1
2 − q

1
2 ) [e

(0)
1 , e

(0)
2 ]q ⊗ [f

(0)
1 , f

(0)
2 ]q,

E4(q) = 1⊗ 1+ (q−1 − q)
[
[e
(0)
1 , e

(0)
2 ]q, e

(0)
2

]
q
⊗
[
[f
(0)
1 , f

(0)
2 ]q, f

(0)
2

]
q
,

E5(q) = 1⊗ 1+ (q − q−1) e
(0)
5 ⊗ f

(0)
5 ,

E6(q) = 1⊗ 1+ 2(q
1
2 − q−

1
2 ) e

(0)
6 ⊗ f

(0)
6 ,

E7(q) = 1⊗ 1− 2(q
1
2 − q−

1
2 ) [e

(0)
5 , e

(0)
6 ]q−1 ⊗ [f

(0)
5 , f

(0)
6 ]q−1 ,

E8(q) = 1⊗ 1+ (q − q−1)
[
[e
(0)
5 , e

(0)
6 ]q−1 , e

(0)
6

]
q−1 ⊗

[
[f
(0)
5 , f

(0)
6 ]q−1 , f

(0)
6

]
q−1 .

Here [x, y]q = q−
1
2 x y − q

1
2 y x denotes the q-commutator of x with y.

Quantizations of (5.4) may now be written in the following form

A(q, λ) =
1

1 + λ2
B(q)−1 +

λ2

1 + λ2
C(q) (5.6a)

+
(
q

1
2 − q−

1
2
)( 2λ2

1−λ4

(
C(00) + C(22)

)
+

2λ

1−λ4
C(13)
q +

2λ3

1−λ4
C(31)
q

)
,

D(q, λ) =
1

1 + λ2
C(q)−1 +

λ2

1 + λ2
B(q) (5.6b)

+
(
q

1
2 −q−

1
2
)( 2λ2

1−λ4

(
C(00) + C(22)

)
+

2λ

1−λ4
q−10HC

(13)
q−1 +

2λ3

1−λ4
q−10HC

(31)
q−1

)
,
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where C
(13)
q and C

(31)
q are q-deformations of the respective components C(13) and C(31) of

the tensor Casimir. Explicitly, the q-deformation C
(13)
q is defined as

C(13)
q = −1

2

4∑

m,n=1

q(ǫn−ǫm)H
(
Em,n+4 − iσ(Em,n+4)

)
⊗
(
En+4,m + iσ(En+4,m)

)

with (ǫn)
4
n=1 = (0, 4, 1, 3), whereas the q-deformation C

(31)
q is obtained from this as C

(31)
q12 =

C
(13)
q−121

. Here we have introduced

H =
1

2

4∑

i=1

h
(0)
i ⊗ h

(0)
i .

We also have the relation C
(13)
q + C

(31)
q = C(13) + C(31).

Properties. The matrices (5.5) and (5.6) satisfy all the properties listed in section 3 with

γ(q) = diag(14, q
514), γ̃(q) = diag(1, q−4, q−1, q−3, 1, q−4, q−1, q−3). (5.7)

Note that the first four and last four entries along the diagonal of γ̃ are just q−ǫn . Con-

cerning the unitarity property we have

A12(q, λ)A21(q, λ
−1) =

(
q − λ2

) (
q−1 − λ2

)

(1− λ2)2
1, (5.8)

and similarly for D.

6 Conclusion

We have shown, by way of example, how to quantize the lattice Poisson algebra of (semi-

)symmetric space sine-Gordon models previously identified in [5–7]. The quantum lattice

algebras obtained for the four models considered each provide new interesting examples

of the general formalism laid out in [14, 15]. But moreover, there is a certain uniformity

among these examples which hints at a general framework for quantizing (semi-)symmetric

space sine-Gordon models.

Indeed, in each of the four models considered, the function algebra can be quantized

within the language of affine quantum braided groups. The necessity for the departure

from the conventional set-up of affine quantum groups can be seen as a remnant of the

non-ultralocality of these models at the classical level. Specifically, the braiding arises as

a quantum counterpart of the regularization prescription [21] necessary to unambiguously

define the Poisson bracket of the monodromy matrix. This strongly suggests that the

general formalism presented in section 3 should be the appropriate language within which

to address the quantization of (semi-)symmetric space sine-Gordon models.

Furthermore, the examples discussed in section 4.2 indicate a general procedure for

constructing the various R-matrices entering the quantized lattice algebra of these models.

Indeed, in the specific cases of the CP 2 and SU(3)/SO(3) symmetric space sine-Gordon
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models, we have shown how these R-matrices can be directly obtained from the R-matrix

of, respectively, the untwisted and twisted affine Lie algebras of type A2 in the fundamental

representation through the works of [23, 28].

Finally, in view of ultimately identifying a quantum lattice model for the theories in

question, the next challenge is to find explicit quantum lattice Lax operators L̂n satis-

fying the algebra given in section 3.1. This is an important problem which we leave for

future work.
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[18] A. Mikhailov and S. Schäfer-Nameki, Sine-Gordon-like action for the superstring in

AdS5 × S5, JHEP 05 (2008) 075 [arXiv:0711.0195] [INSPIRE].

[19] P. Bowcock, Canonical quantization of the gauged Wess-Zumino model,

Nucl. Phys. B 316 (1989) 80 [INSPIRE].

[20] B. Vicedo, The classical R-matrix of AdS/CFT and its Lie dialgebra structure,

Lett. Math. Phys. 95 (2011) 249 [arXiv:1003.1192] [INSPIRE].

[21] M. Semenov-Tian-Shansky and A. Sevostyanov, Classical and quantum nonultralocal systems

on the lattice, hep-th/9509029 [INSPIRE].

[22] O. Babelon, H. de Vega and C. Viallet, Solutions of the factorization equations from Toda

field theory, Nucl. Phys. B 190 (1981) 542 [INSPIRE].

[23] H. Boos, F. Gohmann, A. Klumper, K.S. Nirov and A.V. Razumov, Exercises with the

universal R-matrix, J. Phys. A 43 (2010) 415208 [arXiv:1004.5342] [INSPIRE].

[24] V. Tolstoy and S. Khoroshkin, The universal R-matrix for quantum untwisted affine Lie

algebras, Funct. Anal. Appl. 26 (1992) 69.

[25] S.M. Khoroshkin and V.N. Tolstoy, The uniqueness theorem for the universal R-matrix, Lett.

Math. Phys. 24 (1992) 231.

[26] S. Khoroshkin and V. Tolstoy, Universal R-matrix for quantized (super)algebras,

Comm. Math. Phys. 141 (1991) 599.

[27] A. Izergin and V. Korepin, The inverse scattering method approach to the quantum

Shabat-Mikhailov model, Commun. Math. Phys. 79 (1981) 303 [INSPIRE].

[28] H. Boos, F. Gohmann, A. Klumper, K. Nirov and A. Razumov, On the universal R-matrix

for the Izergin-Korepin model, J. Phys. A 44 (2011) 355202 [arXiv:1104.5696] [INSPIRE].

– 19 –

http://dx.doi.org/10.1016/0550-3213(95)00074-3
http://arxiv.org/abs/hep-th/9410140
http://inspirehep.net/search?p=find+EPRINT+hep-th/9410140
http://dx.doi.org/10.1007/JHEP11(2010)111
http://arxiv.org/abs/1008.4914
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.4914
http://dx.doi.org/10.1016/0370-2693(91)91566-E
http://inspirehep.net/search?p=find+J+Phys.Lett.,B262,278
http://dx.doi.org/10.1016/0370-2693(91)90479-A
http://inspirehep.net/search?p=find+J+Phys.Lett.,B263,403
http://dx.doi.org/10.1063/1.530523
http://arxiv.org/abs/hep-th/9210152
http://inspirehep.net/search?p=find+EPRINT+hep-th/9210152
http://dx.doi.org/10.1063/1.530926
http://arxiv.org/abs/hep-th/9412142
http://inspirehep.net/search?p=find+EPRINT+hep-th/9412142
http://dx.doi.org/10.1088/1126-6708/2008/05/075
http://arxiv.org/abs/0711.0195
http://inspirehep.net/search?p=find+EPRINT+arXiv:0711.0195
http://dx.doi.org/10.1016/0550-3213(89)90387-8
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B316,80
http://dx.doi.org/10.1007/s11005-010-0446-9
http://arxiv.org/abs/1003.1192
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.1192
http://arxiv.org/abs/hep-th/9509029
http://inspirehep.net/search?p=find+EPRINT+hep-th/9509029
http://dx.doi.org/10.1016/0550-3213(81)90447-8
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B190,542
http://arxiv.org/abs/1004.5342
http://inspirehep.net/search?p=find+EPRINT+arXiv:1004.5342
http://dx.doi.org/10.1007/BF02102819
http://dx.doi.org/10.1007/BF01208496
http://inspirehep.net/search?p=find+J+Comm.Math.Phys.,79,303
http://dx.doi.org/10.1088/1751-8113/44/35/355202
http://arxiv.org/abs/1104.5696
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.5696

	Introduction
	Quadratic Poisson algebra
	Poisson algebra in the continuum
	Lattice Poisson algebra

	Quantum lattice algebra
	Quadratic algebra
	Affine quantum braided group

	Symmetric space sine-Gordon models
	Complex sine-Gordon model
	Models related to affine Lie algebras A**(N)(2)
	CP**2 symmetric space sine-Gordon model
	SU(3)/SO(3) symmetric space sine-Gordon model


	Affine quantum braided group for gl(4|4)
	Conclusion

