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1 Introduction

The κ-Poincaré Hopf algebra Uκ(P) [1–3] is a deformation of (the universal enveloping

algebra of) the Poincaré algebra, with the strength of the deformation being governed by

a parameter κ with units of mass [4, 5].

This paper is a continuation of earlier work [6, 7], following [8], whose aim is sys-

tematically to construct κ-deformed quantum field theory from the following particular

perspective. (Other approaches can be found in [9–24].) We recall the viewpoint on quan-

tum field theory taken by Weinberg in [25], namely that quantum field theory takes the

form it does because this is essentially the only way to construct a quantum mechanical

theory of point particles with Poincaré symmetry – given only a very limited number of ad-

ditional physical principles, like cluster decomposition. Thus, if one wishes to understand

κ-deformed QFT, it is natural to try to follow this path as closely as possible, making only

those modifications forced upon one by the κ-deformation.

In this approach one begins with particles and scattering theory. The first task is

to understand the structure of asymptotic scattering states – that is, “in” states, “out”

states, or states of a free theory. Single-particle states transform, by definition, in projective

irreducible representations of the Poincaré algebra.3 Poincaré and κ-Poincaré are in fact

known to be isomorphic as algebras [26–28], so they share the same representations. Single

particle states are consequently well-understood. States of many particles are constructed

by taking tensor products of single-particle states. Recall that in order to specify the action

of a symmetry algebra on tensor products one requires a coalgebra structure: if

ρ1 : A → End(V1), ρ2 : A → End(V2) (1.1)

are two representations of an algebra A then the tensor product V1 ⊗ V2 carries the repre-

sentation

(ρ1 ⊗ ρ2) ◦ ∆ : A → End(V1) ⊗ End(V2) ∼= End(V1 ⊗ V2) (1.2)

where ∆ : A → A ⊗ A is the coproduct. As a bialgebra (i.e. an algebra with a compat-

ible coalgebra; see e.g. [29]) κ-Poincaré is not isomorphic to Poincaré. In particular, the

generators of the Poincaré algebra obey the usual cocommutative Leibniz rule,

∆X = X ⊗ 1 + 1 ⊗X, (1.3)

but the coproduct of κ-Poincaré is not cocommutative. This leads to the first major

obstacle: in quantum field theory one is concerned with states of many identical particles

3More precisely: single particles transform in projective irreducible representations whose states have
only one continuous label, which specifies the momentum of the particle.
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with definite exchange statistics [8,30–33]. For example, the space of states of two bosons

of some species transforming in a representation V is usually the quotient of the tensor

product V ⊗ V by the map τ which exchanges the two factors:

τ : V ⊗ V → V ⊗ V ; χ⊗ ψ 7→ ψ ⊗ χ. (1.4)

Quotienting out by τ is a frame-independent operation because τ is an intertwiner of

representations, i.e. it commutes with the action of the Poincaré algebra. This in turn

holds by virtue of the cocommutativity of (1.3). Cocommutativity means, of course, that

∆ = ∆op where ∆op := σ ◦ ∆ and σ is the flip map

σ : A ⊗ A → A ⊗ A; a⊗ b 7→ b⊗ a. (1.5)

In the κ-deformed case, to define states of two identical particles the task is thus to

find an intertwiner τ (κ) to play the role of τ . It is also natural to demand that τ (κ) → τ as

κ→ ∞, so that we recover the usual notion of particle exchange in the undeformed limit.

R matrices

There is a class of bialgebras whose representations necessarily admit intertwiners: those

possessing a quantum universal R-Matrix, also called a quasitriangular structure. Recall

that a universal R-matrix for the bialgebra A is an invertible element

R ∈ A ⊗ A (1.6)

with the property that, for all X ∈ A,

R∆XR−1 = ∆opX. (1.7)

Let us stress that this is of course not the only axiom that R must obey for (A,R) to be

a quasitriangular bialgebra – and we return to this point in section 4 below – but it is,

nevertheless, sufficient to guarantee the existence of intertwiners. For suppose that Uκ(P)

possesses such an R, with the property that

R = 1 ⊗ 1 +O

(

1

κ

)

. (1.8)

Then, for any representation ρ : Uκ(P) → End(V ) of κ-Poincaré, the map

τ (κ) = τ ◦ (ρ⊗ ρ)(R) ∈ End(V ⊗ V ) (1.9)

is an intertwiner with the correct κ → ∞ limit. (Note that τ (κ) can be thought of as the

representation of the braided R matrix Ř = σ ◦ R, which obeys
[

Ř,∆X
]

= 0.)
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An important question is therefore whether or not such an R actually exists for Uκ(P).

After recalling the precise definition of Uκ(P) in section 2 below, we address this question

to the first few orders in 1
κ

in section 3. Then in section 4, again working perturbatively in
1
κ
, we introduce the coassociator Φ and discuss states of more than two particles. Finally,

some conclusions and open questions are given in section 5.

2 The Hopf algebra Uκ(P)

The κ-deformed Poincaré algebra in general dimension 1 + d was first given in [2]. Its

generators are

Mij = −Mji, Ni, Pi, P0 = E, i = 1, . . . , d (2.1)

of, respectively, rotations, boosts, and translations in space and time. The non-vanishing

commutators are

[Mij ,Mkl] = δi[lMk]j + δj[kMl]i , [Mij , Nk] = δk[iNj] . (2.2)

[Mij , Pk] = δk[iPj] (2.3)

[Ni, Pj] = δij κ sinh

(

E

κ

)

, [Ni, E] = Pi , (2.4)

[Ni, Nj] = −Mij cosh

(

E

κ

)

+
1

4κ2

(

~P ·~PMij + PkP[iMj]k

)

. (2.5)

The coalgebra is given by

∆E = E ⊗ 1 + 1 ⊗E , (2.6)

∆Pi = Pi ⊗ e
E
2κ + e−

E
2κ ⊗ Pi , (2.7)

∆Ni = Ni ⊗ e
E
2κ + e−

E
2κ ⊗Ni +

1

2κ

(

Pj ⊗ e
E
2κMij − e−

E
2κMij ⊗ Pj

)

, (2.8)

∆Mij = Mij ⊗ 1 + 1 ⊗Mij . (2.9)

For completeness, the additional structures which make Uκ(P) a Hopf algebra (rather than

just a bialgebra) are the antipode and counit maps

S(Pµ) = −Pµ, S(Mij) = −Mij , S(Ni) = −Ni +
d

2κ
Pi, (2.10)

ǫ(Mij) = ǫ(Ni) = ǫ(Pµ) = 0. (2.11)

Note that we shall work with this “original” basis of Uκ(P) rather than the bicrossproduct

basis of [3]; the calculations below are very similar in either basis, but the more “balanced”

form of the coproduct makes the original basis slightly more convenient to work with for

our purposes.
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3 A universal R matrix to O(1/κ6)

In this section we look for an invertible element R ∈ Uκ(P)⊗Uκ(P) with the property that

∆op(a) = R∆(a)R−1 (3.1)

for all a ∈ Uκ(P). It suffices to demand that (3.1) hold for the generators

{E, Pi, Ni}, (3.2)

because the Mij and all other elements of Uκ(P) are generated by these (and ∆ is, of course,

a homomorphism of algebras). We will not be able to make any exact statements at finite

κ, but rather are only able to work order by order in the deformation parameter κ−1. We

shall do so up to terms at O(κ−6). Thus, let

R = er = exp

(

1

κ
r1 +

1

κ2
r2 +

1

κ3
r3 +

1

κ4
r4 +

1

κ5
r5

)

+O

(

1

κ6

)

. (3.3)

One has then the expansion

R∆(a)R−1 = ead(r)∆(a) := ∆(a) + [r,∆(a)] +
1

2
[r, [r,∆(a)]] + . . . (3.4)

which proves useful for calculations – although note that this series, as written, is certainly

not the expansion in inverse powers of κ: in general all of the first n+ 1 terms contribute

at order κ−n.

Equation (3.1) is true at leading order. At order κ−1 one finds the equations

[r1, E ∨ 1] = O(κ−1) (3.5)

[r1, Pi ∨ 1] = Pi ∧ E +O(κ−1) (3.6)

[r1, Ni ∨ 1] = Ni ∧ E + Pj ∧Mij +O(κ−1) (3.7)

where, for the sake of brevity, we have introduced the notation

A ∨B = A⊗B +B ⊗ A (3.8)

A ∧ B = A⊗ B − B ⊗ A. (3.9)

These equations are solved by

r1 = Nk ∧ Pk (3.10)

which is the classical r-matrix associated to Uκ(P), and has been known since the work

of [34]; see also [35,36]. The solution r1 is unique up to the addition of terms that commute
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with E∨1, Pi∨1, Ni∨1 to leading order; in other words, terms that are classically4 Poincaré

invariant. In all dimensions other than 1+2 no such terms exist with the correct mass

dimension (i.e. 1) to match the power of the dimensionful deformation parameter κ in the

expansion (3.3). The 1+2 dimensional case is very special because there does exist such an

invariant, obtained by splitting the Casimir ǫµνρMµνPρ = −2NkPk +ǫijMijE symmetrically

over the tensor product: ǫµνρMµν ∨ Pρ [37, 38].

At the next order, κ−2, one finds that there are no “source” terms and that r2 must

obey simply

[r2, E ∨ 1] = O(κ−1), [r2, Pi ∨ 1] = O(κ−1), [r2, Ni ∨ 1] = O(κ−1). (3.11)

These equations do have nonzero solutions of mass dimension 2 in all spacetime dimensions,

because there always exists the mass Casimir, E2 − ~P ·~P + O(κ−1) of Uκ(P). In 1 + 3

dimensions, there are further invariants, ǫµνρσPµMνρ ∨ Pσ and ǫµνρσPµMνρ ∧ Pσ. However,

let us ignore these possibilities and set

r2 = 0. (3.12)

More generally, let us place the following extra condition on R = er:
[

r must be linear in the Lorentz generators Mij , Ni

and indices must be contracted solely with Kronecker δ’s

]

(3.13)

which is a convenient way to fix the freedom we would otherwise have to add homogeneous

solutions at each order.

To give a rough motivation for this choice, consider how the intertwiner (1.9) acts on

tensor product states |p〉 ⊗ |q〉 , or equivalently on two-particle momentum-space wave-

functions

ψ(p, q) (3.14)

where we suppress spin degrees of freedom for simplicity. Terms in r containing only mo-

menta Pi, E will merely produce overall factors. It is rather the terms linear in Lorentz

generators, whose realizations on wavefunctions involve derivatives, that shift the argu-

ments of ψ. And following [6] we expect that

ψ(p, q) 7−→
τ (κ)

ψ(f(q, p), g(q, p)) = e(f−p)∂p+(g−q)∂qψ(p, q). (3.15)

In the end it is possible that one should introduce some scalar prefactor here, perhaps for

reasons having to do with the way creation/annihilation operators must be combined into

4“classical” in the sense of “undeformed”
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quantum fields, c.f. [33]. But, having noted the freedom to add homogeneous solutions, let

us restrict ourselves to (3.13) in this paper.

At order κ−3 one finds after some calculation that

[r3, E ∨ 1] = O(κ−1) (3.16)

24 [r3, Pi ∨ 1] = −3E3 ∧ Pi + 3PiE
2 ∧ E

+ 2PkPi ∧ PiE − 2Pk ∧EPiPk

+ 2E ∧ ~P ·~PPi + 2EPi ∧ ~P ·~P − 2E2 ∧EPi +O(κ−1) (3.17)

24 [r3, Ni ∨ 1] = 3Ni ∧ E
3 + 9E2Mki ∧ Pk − 3E2Pk ∧Mki

− 3E ∧E2Ni − 6E ∧EPkMik − 2~P · ~N ∧ EPi

− 2PiPk ∧ ENk − 2Ni ∧E ~P ·~P − 2EPiPk ∧Nk

− 2PkMki ∧ E
2 − 4Pk ∧EPkNi − 2E ~P · ~N ∧ Pi

− 2E2 ∧ ENi − 6~P ·~PNi ∧E − 4EPk ∧ EMki

+ 4Pj ∧ PjPkMik − 2PjPi ∧ PkMjk − 4E ∧ Pi
~P · ~N

− 4EPk ∧ PiNk − 2Mki ∧ Pk
~P ·~P

+ 6PiPkMjk ∧ Pj − 6~P ·~PMki ∧ Pk +O(κ−1); (3.18)

and further that these equations have a unique solution obeying (3.13), which is

24r3 = − 3E2Nk ∧ Pk − 3Nk ∧E
2Pk

− 2PlMkl ∧EPk + 2Nk ∧ ~P ·~PPk

+ 6~P ·~PNk ∧ Pk − 6EPlMkl ∧ Pk

− 2ENk ∧EPk − 4PkPlNk ∧ Pl. (3.19)

Beyond this order direct calculations are somewhat laborious. We have written a program

in FORM [39] to carry them out, and found

r4 = 0 (3.20)
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720r5 = 75
8
E4Nk ∧ Pk + 25

2
E3Nk ∧EPk + 81

4
E2Nk ∧ E

2Pk

+ 25
2
ENk ∧ E

3Pk + 75
8
Nk ∧E

4Pk

+ 75
2
E3PlMkl ∧ Pk + 75

2
E2PlMkl ∧ EPk

+ 81
2
EPlMkl ∧ E

2Pk + 25
2
PlMkl ∧E

3Pk

− 21
2
E2Nk ∧ ~P ·~PPk − 9ENk ∧E ~P ·~PPk −

45
2
Nk ∧ E

2 ~P ·~PPk

− 135
2
E2 ~P ·~PNk ∧ Pk − 27E ~P ·~PNk ∧ EPk −

63
2
~P ·~PNk ∧ E

2Pk

+ 45E2Pl
~P · ~N ∧ Pl + 18EPl

~P · ~N ∧ EPl + 21Pl
~P · ~N ∧ E2Pl

− 45E ~P ·~PPlMkl ∧ Pk − 9~P ·~PPlMkl ∧EPk

− 21EPlMkl ∧ ~P ·~PPk − 9PlMkl ∧ E ~P ·~PPk − 36~P ·~PPj
~P · ~N ∧ Pj

− 12Pl
~P · ~N ∧ Pl

~P ·~P + 45~P ·~P ~P ·~PNk ∧ Pk + 30~P ·~PNk ∧ Pk
~P ·~P

− 12PlPjNk ∧ PkPlPj + 9Nk ∧ Pk
~P ·~P ~P ·~P (3.21)

Given (3.13), this solution to (3.1) is unique. Observe that r is antisymmetric. This

means that R is triangular i.e.

R21 = R−1 (3.22)

where R21 is the R matrix with the tensor factors flipped. Consequently the intertwiners

(1.9) of representations of Uκ(P) are involutive:

τ(κ) = τ−1
(κ) ⇒ τ 2

(κ) = id (3.23)

and one can speak of bosons and fermions. (Had R not turned out to be triangular it

would be less clear how to match physics at large κ to physics in the undeformed case;

though see [46].)

However, as mentioned above, in order for Uκ(P) to be a (quasi)triangular bialgebra

there are further requirements on R in addition to (3.1). Essentially, R should obey the

quantum Yang-Baxter equation, and as we discuss below the R matrix presented here

certainly does not do so.5 But in fact this is no disaster, because there exists a rather more

general notion, that of a quasitriangular quasibialgebra structure [40], [29,41]. It will turn

out that (to the first few orders in κ−1, at least) Uκ(P) does possess such a structure, and

that this is sufficient for our purposes. We turn to this now.

5The 1+2 dimensional case is exceptional, as we saw above, and in fact there does exist, in this
dimension only, a quasitriangular bialgebra structure [38], i.e. a quantum R matrix obeying the quantum
Yang-Baxter equation. It is genuinely braided, i.e. not triangular.
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4 The coassociator and quasibialgebra structure

Recall [29] that (A,R) is a quasitriangular bialgebra if, in addition to (3.1),6

(∆ ⊗ id)R
!
= R13R23, (id ⊗ ∆)R

!
= R13R12. (4.1)

Intuitively speaking, these are statements about ways of manipulating three “objects”,

initially ordered 1,2,3. For example the second equation, which is sometimes written

R1(23) = R13R12, says that “interacting” 1 with 2 and 3 is the same thing as first in-

teracting 1 with 2 and then interacting 1 with 3. The meaning of “object” and “interact”

depends on the context: in our case, the objects are the labels p, q, . . . of individual con-

stituent particles of a tensor product state.7 To interact p with q is the first step in the

process

|p〉 ⊗ |q〉 7−→
(ρ⊗ρ)R

|p′〉 ⊗ |q′〉 7−→
τ

|q′〉 ⊗ |p′〉 (4.2)

of exchanging the particles according to the prescription (1.9). Equations (4.1) are then

statements about manipulating the labels of states of three or more particles.8 It is straight-

forward to check directly that they fail at first order in κ−1 for the R matrix in (3.21).

This is equivalent to the well-known fact that the classical r-matrix r1 = Nk ∧Pk of Uκ(P)

does not obey the classical Yang-Baxter equation but rather only the modified classical

Yang-Baxter equation (MCYBE) [34].

Fortunately, there is a natural way in which the intuition above about manipulating a

string of objects can fail. Suppose that when specifying a state it is necessary to give not

only the order of the tensor factors but also a complete bracketing of them:

|p (q r)〉 := |p〉 ⊗
(

|q〉 ⊗ |r〉
)

,

|p ((q r) s)〉 := |p〉 ⊗

(

(

|q〉 ⊗ |r〉
)

⊗ |s〉

)

(4.3)

and so on. A new operation is then needed to move the brackets around. This idea is made

precise with the notion of a quasitriangular quasibialgebra structure [29, 40] in which the

axioms (4.1) are generalized to

(∆ ⊗ id)R = Φ312R13Φ
−1
132R23Φ , (id ⊗ ∆)R = Φ−1

231R13Φ213R12Φ
−1 (4.4)

6Following the standard notation, this is an equation in A ⊗ A ⊗ A and, for example, R13 means R
acting in the first and third tensor factors.

7For brevity, we implicitly include all the quantum numbers in p, including any discrete indices corre-
sponding to spin or internal degrees of freedom.

8They would ensure that τ
(κ)
ij = τij ◦ (ρi ⊗ ρj)R obey the braid relations τ

(κ)
i,i+1τ

(κ)
i+1,i+2τ

(κ)
i,i+1

!
=

τ
(κ)
i+1,i+2τ

(κ)
i,i+1τ

(κ)
i+1,i+2, which, together with τ

(κ)
i,i+1τ

(κ)
i,i+1 = id in (3.23) would mean that the τ

(κ)
i,i+1 were

a realization of the symmetric group.
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where Φ ∈ A⊗A⊗A is the coassociator. It is required to be invertible, to obey the pentagon

equation (or 3-cocycle condition)

(id ⊗ id ⊗ ∆)Φ (∆ ⊗ id ⊗ id)Φ = (1 ⊗ Φ) (id ⊗ ∆ ⊗ id) (Φ ⊗ 1) (4.5)

– which says that the two ways to perform the rebracketing ((pq)r)s → p(q(rs)) agree –

and to be such that for all a ∈ A

(id ⊗ ∆) ◦ ∆(a) = Φ ((∆ ⊗ id) ◦ ∆(a)) Φ−1. (4.6)

In general quasitriangular quasibialgebras can be non-coassociative, but they certainly do

not need to be. When coassociativity, i.e. (id ⊗ ∆) ◦ ∆ = (∆ ⊗ id) ◦ ∆, holds, as it does

for Uκ(P), the final condition says simply that Φ should be invariant, in the sense that

[ Φ , ((∆ ⊗ id)∆(a)) ] = 0 ∀a ∈ A. (4.7)

Let us, then, ask whether a Φ obeying all these conditions exists for Uκ(P) and the R

matrix of the previous section. It turns out that at least to low orders the answer is yes.

We set

Φ = eφ = exp

(

1

κ
φ1 +

1

κ2
φ2 +

1

κ3
φ3 +

1

κ4
φ4

)

+O

(

1

κ5

)

and find by direct calculation a unique solution:

φ1 = 0 (4.8)

φ2 =
1

12
(Mkl ∧ Pk ∧ Pl + 2Nk ∧E ∧ Pk)

φ3 =
1

12
(1 + σ13)

(

Nk ⊗ EPk ⊗E +Nk ⊗ E ⊗ EPk −EPk ⊗Nk ⊗ E

+ ENk ⊗ Pk ⊗ E −ENk ⊗ E ⊗ Pk − Pk ⊗ENk ⊗ E

+ PkMlk ⊗ Pl ⊗ E − PkMlk ⊗ E ⊗ Pl − Pl ⊗ PkMlk ⊗ E

+Mlk ⊗EPl ⊗ Pk −Mlk ⊗ Pk ⊗EPl + Pk ⊗Mlk ⊗EPl

+ PlNk ⊗ Pl ⊗ Pk − PlNk ⊗ Pk ⊗ Pl + Pl ⊗ PlNk ⊗ Pk

− Pk ⊗ ~P · ~N ⊗ Pk − 2Nk ⊗ PkPl ⊗ Pl

+Nk ⊗ ~P ·~P ⊗ Pk + ~P ·~P ⊗Nk ⊗ Pk −Nk ⊗ Pk ⊗ ~P ·~P
)

where by σ13 we mean the map a⊗ b⊗ c 7→ c⊗ b⊗ a. We have verified using FORM that

φ4 exists and is unique; its actual expression is very lengthy and we omit it. Note that,

as expected, the first non-vanishing term is nothing but φ2 = 1
12
Mµν ∧ P µ ∧ P ν , which is

the (classically-Poincaré invariant) source term that appears in the MCYBE obeyed by the

classical r-matrix [34, 36].
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The role of the coassociator

At first sight, the need to specify a bracketing of particles within state vectors as in (4.3)

seems very odd, and one might worry that it would introduce a large unwanted redundancy

in the space of states. It is important to stress that this is not the case. The important

property which must be maintained is that the counting of states at large κ should agree

with the counting of states in the usual undeformed case. That is, there should be a

bijection between states at large κ and states in the undeformed case. Now the need to

write brackets in kets does not spoil this property, so long as we have the means (provided

by Φ) to rebracket at will and we declare that states which are related by rebracketings

are physically indistinguishable.

More precisely, define the space of states of N identical particles to be the space of

fully bracketed N -fold tensor products of single-particle states, quotiented by all exchange

and rebracketing operations. Observe that this definition is valid both in the κ-deformed

and undeformed cases: all that is modified are the exchange and rebracketing operations

themselves. In the undeformed case rebracketing is trivial (i.e. Φ = 1⊗1⊗1) so to quotient

by it is simply to ignore the brackets, and thus the usual definition is recovered.

To give a concrete illustration, consider the simplest example in which rebracketing is

possible: the case of three scalar particles. The leading order effect is at order κ−2. By

definition

ρ⊗3 (Φ) |(r s) t〉 = |r′ (s′ t′)〉 (4.9)

where in view of (4.8)

r′ν = rν +
rµtµsν − rµsµtν

6κ2
+O

(

1

κ3

)

, s′ν = sν +
sµrµtν − sµtµrν

6κ2
+O

(

1

κ3

)

,

t′ν = tν +
tµsµrν − tµrµsν

6κ2
+O

(

1

κ3

)

. (4.10)

We can now make contact with the perturbative results for states of three scalar parti-

cles of mass m (transforming in Vm) given in the appendix of [7]. It was shown there that

to O(κ−3) there exists a one-parameter family of pairs of maps

τ1, τ2 : Vm ⊗ Vm ⊗ Vm → Vm ⊗ Vm ⊗ Vm (4.11)

such that

τ 2
1 = τ 2

2 = id, τ1 τ2 τ1 = τ2 τ1 τ2 (4.12)

(i.e. τ1, τ2 realize the symmetric group S3) and that, in the limit κ → ∞, τ1 exchanges

the first and second tensor factors, τ2 the second and third. For a certain choice of the
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parameter (a = 0) one has

τ1 = τ (κ) ⊗ 1 ≡ τ
(κ)
12 (4.13)

where it may be verified that τ (κ) is indeed the intertwiner (1.9) obtained by representing

the R matrix found in section 3.9 But then it turns out that τ2 6= τ
(κ)
23 ≡ 1 ⊗ τ (κ). This is

now as expected: τ2 should instead be

τ2 = ρ⊗3
(

Φ−1
)

◦ τ
(κ)
23 ◦ ρ⊗3 (Φ)

= ρ⊗3
(

Φ−1
)

◦ (1 ⊗ τ) ◦ ρ⊗3 (1 ⊗R) ◦ ρ⊗3 (Φ) (4.14)

because this is the operation which, starting from a state bracketed as

|(r s) t〉 (4.15)

first moves the bracket, then exchanges the second and third particles, and then returns

the bracket to its initial “reference” position. And one can see that the r, s, t terms in τ2

at a = 0 in [7] correspond to (4.10). Note that taking another value of the parameter a

for τ1,τ2 would correspond to choosing a different linear combination of the bracketings

|(r s) t〉 and |r (s t)〉 as the reference configuration to which the state is returned after

each flip operation.

This scheme extends to states of N particles in a natural fashion. To each choice of

reference bracketing, for example

|(. . . (((p q) r ) s ) . . . ) t〉 , (4.16)

is associated a realization of the symmetric group SN . For the particular choice above one

has

τ1 = τ
(κ)
12

τ2 = ρ⊗N (Φ−1
123) ◦ τ

(κ)
23 ◦ ρ⊗N(Φ123)

τ3 = ρ⊗N (Φ−1
(12)34) ◦ τ

(κ)
34 ◦ ρ⊗N(Φ(12)34)

...

τN = ρ⊗N (Φ−1
(1...N−2) N−1 N

) ◦ τ
(κ)
N−1 N ◦ ρ⊗N(Φ(1...N−2) N−1 N) (4.17)

where the definition

Φ(1...k) k+1 k+2 = (∆k−1 ⊗ id ⊗ id)Φ (4.18)

is unambiguous by coassociativity of Uκ(P).

We should stress though that the definition of the space of states ofN identical particles

itself, as given above, is independent of any choice of preferred bracketing.

9Note that the appendix to [7] and the entirety of [6] used the bicrossproduct basis, so it is necessary
to translate to that basis using the relations in [3] to check this match.
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5 Conclusions and outlook

In this paper we have shown that the κ-deformed Poincaré Hopf algebra Uκ(P) possesses

a triangular quasibialgebra structure up to terms of order κ−5. It appears likely, given the

rather intricate way in which the relevant algebraic equations turned out to be soluble,

that this structure persists to all orders in κ−1. The obvious open problem is to give a

proof of existence to all orders.

Since Uκ(P1,3) is a contraction limit of Uq(so(2, 3)) one approach might be to ask whether

the triangular quasibialgebra structure of Uκ(P) is inherited from Uq(so(n)). It cannot be

the limit of the standard quasitriangular structure on Uq(so(n)), whose R matrix indeed

diverges in the limit (except in the special case of dimension three [38]). But Uq(so(n))

can also be endowed with the structure of a triangular quasibialgebra [47] and it would

be interesting to see whether there is a limit of this reproducing the R and Φ above. It

would also be very nice to have a more geometrical understanding of the intertwiners of

representations, perhaps in the spirit of [48]; this might be another way to obtain exact

rather than perturbative results.

One thing to note is that although it is conceptually valuable to check that the trian-

gular quasibialgebra structure is exact, in practice knowledge of its explicit form at higher

orders in κ−1 seems unlikely to be important for physics. If κ is finite in nature, it is

certainly very large. Moreover it is usually supposed [43–45] – though cf. [37] – that the

role of quantum field theory with κ-deformed Poincaré symmetry, if any, will be that of

an effective description in a regime intermediate between standard QFT and full quantum

gravity.

To restate the central point of this work: what the existence of the triangular quasib-

ialgebra structure ensures is that there is a fully κ-covariant way to define states of many

identical particles (in any representation) in such a way that these states are in bijection

with the states of the theory in the undeformed case. If κ is to be large but finite in (an

effective theory of) the real world, the fact that this property holds is crucial: if it did not,

the counting of states would be affected in ways we should have already observed.
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