
Context-Sensitive Measurement-Based Worst-Case Execution Time Estimation

Michael Zolda, Sven Bünte
Department of Computer Engineering

Vienna University of Technology
Vienna, Austria

Email: {michaelz, sven}@vmars.tuwien.ac.at

Raimund Kirner
Department of Computer Science

University of Hertfordshire
Hatfield, United Kingdom

Email: r.kirner@herts.ac.uk

Abstract—The goal of measurement-based WCET estimation
(MBWE) is to derive an estimate of the worst-case execution
time (WCET) of a given piece of software on a particular target
platform by executing the software on the target hardware and
analyzing the obtained time-stamped execution traces.

In this paper we introduce context-sensitive MBWE, an
approach that can reduce pessimism by making use of state
information that is exposed through individual control-flow
decisions. We show how to extend the popular IPET method,
to obtain tighter WCET estimates. We provide confirmative
empirical results that demonstrate the effectiveness of our
approach.

Keywords-WCET analysis, worst-case execution time, IPET,
measurement-based timing analysis, temporal analysis, non-
functional testing

I. INTRODUCTION

In Measurement-based WCET estimation (MBWE), which
is a special case of measurement-based timing analysis
(MBTA) [1], we estimate the WCET of a given piece of
software by executing it with selected input vectors on the
actual target hardware and processing the obtained time-
stamped execution traces to infer a WCET estimate.

In traditional MBWE we use the maximal observed execu-
tion time (MOET) of individual program parts as an estimate
for the local WCET. The accuracy of the overall WCET
estimate is influenced by two opposed effects:

Optimism arises due to the coverage limit of the timing-
relevant computer state (TRCS) [2]—the relevant part of
the system state that can influence the execution time of
an individual instruction or instruction sequence—that we
face during measurement. It is an inherent property of the
measurement-based approach that we can never guarantee
that the local worst-case behavior of individual program
parts is always covered by a time-stamped trace.

Pessimism arises due to abstraction during temporal anal-
ysis. Traditional IPET [3], [4] considers only the highest of
all possible execution times of each CFG node. However,
due to functional dependencies in the program as well as in
the hardware, any local WCET scenario need not necessarily
contribute to the global WCET [2].

In practice, we can observe that these two effects typically
tend to compensate each other to a certain degree. However,

in the experiments that we performed we saw that pessimism
virtually always appears to overcompensate optimism.

Unlike in static WCET analysis, estimates obtained by
MBWE are not directly useable for verification or certifica-
tion. The most important use-case of MBWE is to obtain
early WCET estimates. Given an existing piece of code,
an engineer can employ the analysis tools to obtain an
estimate of the codes WCET on the target platform of his
choice. Doing so can help him in making design decisions
concerning the software and/or the intended target platform,
even if static WCET analysis is not viable, e.g., due to
high initial costs to develop a dependable analysis for a
specific target platform, no or limited retargetability, or
highly pessimistic WCET bounds.

In this paper we attack the problem of pessimism. As our
first contribution, we present strong evidence that the control
flow decisions that are taken just before some program part is
executed can expose a substantial part of the TRCS. Based
on this evidence, we develop, as our second contribution,
the idea of using the information that is exposed through
individual control-flow decisions to reduce pessimism. We
show how the context-sensitive approach can be integrated in
IPET and conclude with confirmative experimental results.

II. PRELIMINARIES

In MBWE we try to derive a WCET estimate for trans-
formational tasks, i.e., tasks that initially read their complete
input, execute for a finite amount of time, and finally produce
some output before terminating. Such tasks are the usual
building blocks of more complex systems [5]. Following
the state-of-the-art in WCET estimation, we assume that the
software under scrutiny is running on a single CPU core
without interference from other tasks or hardware features
like dynamic frequency scaling.

We analyze at the source code level, where we can
benefit from features like type system and high-level control
flow structures. However, this decision makes it necessary
to consider code transformations that happen at compile
time. Recent studies of compiler transformations show that
only certain transformations are problematic with respect to
MBWE [6], [7]. These can be deactivated without significant

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/9840461?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1. The workflow of measurement-based WCET estimation.

performance loss. Another option is to apply flow transfor-
mations to simulate the compiler transformations [8].

A. The MBWE Workflow

We briefly describe the individual steps of the MBWE
workflow, as indicated in Figure 1:

Code Analysis takes the source code of the software under
scrutiny and applies static program analysis techniques to
extract the control flow graph (CFG). Code analysis can also
derive additional flow information, like iteration/recursion
bounds for looping/recursive control flow.

Compilation and Linking takes the source code and pro-
duces executable code for the target platform.

Input Data Generation produces a suitable set of input
vectors—a test suite—to be used in the subsequent measure-
ment step. Suitable means that the test suite should conform
to a given coverage goal. That can be a structural coverage
goal, e.g., a requirement like basic block, condition or deci-
sion coverage, or more sophisticated specifications [9], [10].
Alternatively, a coverage goal can be an optimization goals,
e.g., maximization of locally observed execution times [11].

Measurement performs at least one run of the executable
code on the target platform for each input vector from the
test suite and produces corresponding time-stamped execu-
tion traces. A time-stamped execution trace indicates the ex-
act execution sequence of the individual CFG nodes and the
execution duration for each entry in this sequence. Possible
measurement techniques comprise non-intrusive capturing
of traces via special debugging interfaces [12], [13], [14],
software instrumentation, and cycle-accurate simulation.

Timing Model Composition combines information from
the obtained time-stamped execution traces with the flow
information obtained from code analysis into a timing model
that summarizes the temporal behavior of the code under
scrutiny on the target platform.

Estimate Inference produces a WCET estimate from the
timing model.

B. Methods for Input Data Generation

It is a basic assumption of MBWE that we do not know
the hardware in full detail. Creating a sufficiently detailed

model of present-day hardware is an expensive and error-
prone task. Specifications that are published by hardware
vendors do not normally contain enough detail to model
temporal aspects. It can even happen that the hardware
vendor is unwilling or unable to provide the required in-
formation. MBWE shuns these problems by relying time-
stamped execution traces obtained from the actual target
system instead of using a complete hardware model.

Because the space of possible input vectors is usually
huge, it is not tractable to expose all possible software
behavior. A selection has to be made. We use a mix of
heuristic techniques that try to minimize the chance of
missing relevant temporal behavior [10]:

Random input data generation can sometimes achieve a
surprisingly good coverage in a very short time, but tends
to miss rare conditions.

Model checking is good at dealing with special cases, but
expensive in terms of time and memory complexity [15].

Heuristic optimization methods can do a good job at
covering certain rare conditions, without the high time and
memory costs of model checking. They cannot guarantee
to cover all special cases, though. Finding good heuristic
methods is part of an ongoing research effort.

C. Temporal Analysis using IPET

The analysis we discuss in this paper is based on the
Implicit Path Enumeration Technique (IPET) with linear
programming [3], [4], which views the problem of finding
the WCET of a piece of software as an optimization prob-
lem: The possible control flow within the software is ap-
proximated by linear constraints. The operations performed
within the software have different costs in execution time.
The optimization goal is to find the maximal overall costs
realized by some feasible flow.

First the software is decomposed into atomic parts that can
be assigned individual local WCET values. These atomic
parts must match the nodes in the flow graph obtained
from program analysis. They can be individual machine
instructions, basic blocks, or larger software components.

We use node variables fv to capture the control flow
through (i.e. the number of executions of) each node v
during a single run of the software. Likewise, we use edge
variables fe to capture the number of times that control
passes through each edge e. We link node and edge variables
via linear constraints, according to the CFG semantics:

fv =
∑

f∈out(v)

fe,

i.e., the flow through a node v equals the sum of the
flow through its outgoing edges out(v). A similar equation
connects each node with its incoming edges.

As the CFG semantics allows for unbounded flow within
loops, the number of iterations must be limited. For natural



Figure 2. Example CFG of Bubble Sort. Also indicated is a segment
comprising nodes v4, v5, v6, v8, and edges e6, e12, e15, for the marked
target node v4, c.f. Section IV.

loops these are usually inequalities that bound the flow
through the back edge back by a multiple b of the total
outside flow f1, . . . , fn into the loop header, i.e.,

fback ≤ b · (f1 + . . .+ fn).

Many iteration constraints can be derived automatically
by code analysis. Otherwise they must be supplied by an
expert who has to manually inspect the source code.

The linear problem’s objective function is∑
v∈nodes

cv · fv,

where cv is the execution time cost of node fv . Maximizing
this function yields the WCET estimate.

III. A MOTIVATING EXAMPLE

Pessimism arises during analysis whenever there are two
or more ways that the system can behave, and we abstract
from this by assuming the highest execution time. The
execution time of each CFG node can vary with the TRCS.
In its original form IPET does not consider the TRCS, but
rather assumes a constant execution time for each node. If
we want to reduce the pessimism of IPET, we have to extend
the method so it can distinguish between different TRCS.

Consider Figure 2, depicting the CFG of a Bubble Sort
implementation. After systematic input data generation and
measurement, we inspected the obtained time-stamped exe-
cution traces and made the following observations:

1) The execution time of v4 never exceeded 634ns.

2) Whenever edge e5 had been taken, the execution time
of the closest subsequent occurrence of v4 did not
exceed 440ns.

3) Whenever edge e7 had been taken, the execution time
of the closest subsequent occurrence of v4 did not
exceed 400ns.

4) Whenever edge e13 had been taken, the execution time
of the closest subsequent occurrence of v4 did not
exceed 379ns.

We have observed similar patterns in various experiments
with different benchmarks. We therefore conclude that the
control flow leading to the execution of a node v can
potentially expose a substantial part of the TRCS for v—
enough information to considerably tighten the MOET of
the target node v. By adapting IPET to handle control flow
individually, we can effectively reduce pessimism.

On the downside, the segregation of a special case can
lead to a local increase of optimism. This can happened
when some identified special case has not received sufficient
coverage. For instance, in the previous example we observed
that whenever edge e13 had been taken in an execution path,
the execution time of the closest subsequent occurrence of
v4 did not exceed 379ns. However, there might exist some
runs through e13 that induce a considerably higher execution
time in the closest subsequent occurrence of v4 which just
have not been covered during input data generation and
measurement. In that case singling out the observed special
behavior would introduce undue local optimism.

Our current implementation uses model-checking based
input data generation to increase the coverage for each iden-
tified special case. Thus we either increase the confidence
in the special case, or refute it by a higher execution time.

Traditional IPET presumes constant costs for each node,
namely the absolute worst case costs. In the measurement-
based approach we use the local MOET as an estimate of
the local WCET. In our example we would therefore obtain
an objective function of the form

. . .+ cv3 · fv3 + 614 · fv4 + cv5 · fv5 + . . .

In our extended version of IPET we introduce new flow
variables fv4

634, f
v4
440, f

v4
400, f

v4
379 that describe the individual

flows that induce different MOETs in v4. Each execution of
v4 is associated with exactly one of the control flows:

fv4
634 + fv4

440 + fv4
400 + fv4

379 = fv4 .

In the original objective function we replace the term
614 · fv4 with the sum

614 · fv4
634 + 440 · fv4

440 + 400 · fv4
400 + 379 · fv4

379

As the program can never execute backwards, there
should, of course, be no negative flows, so we add appro-
priate non-negativity constraints

fv4
t ≥ 0, for t ∈ {634, 440, 400, 379}.



At this point our modified IPET problem yields the same
result as the original problem, as the maximization of the
objective function will attribute all executions of v4 to the
costliest flow, i.e., fv4

440 = fv4
400 = fv4

379 = 0 and fv4
634 = fv4 .

Next we specify upper and lower bounds for the individual
flows. We translate our observations individually, working
upwards from the lower execution times bounds:

1) Variable fv4
379 should describe the flow from edge e13

to node vv4
4 that is not shared with any cheaper flow.

Since fv4
379 is the cheapest flow, that would be the flow

through edge e13 that does not escape through edge
e9. That flow can be bound through the constraints

fv4
379 ≥ fe13 − fe9 , fv4

379 ≤ fe13 + fe2 − fe9 ,

fv4
379 ≤ fe13 .

2) Variable fv4
400 should describe the flow from edge e7

to node v4 that is not shared with any cheaper flow.
Because v4 post-dominates e7 and flow fv4

400 is disjoint
from the only cheaper flow f379, that would be the
complete flow through edge e7, i.e.,

fv4
400 = fe7 .

3) Variable fv4
440 should describe the direct flow from

edge e5 to node v4 that is not shared with any cheaper
flow. That would be the flow through edge e5 that does
neither escape through edge e9 or e14, nor is shared
with fv4

400 or fv4
379:

fv4
440 ≥ fe5 − fe14 − fe7 − fe13 , fv4

440 ≤ fe5 .

4) Variable fv4
634 should describe the direct flow from

edge e1 to node v4 that cannot be described by any
of the cheaper flows. Because the flow fv4

634 is disjoint
from all cheaper flows, that would be the flow through
edge e1 that does not escape through edge e9:

fv4
634 ≥ fe1 − fe9 , fv4

634 ≤ fe1 + fe16 − fe9 ,

fv4
634 ≤ fe1 .

With these constraints in place the modified IPET problem
for our example yields a less pessimistic WCET estimate that
takes into account variations in the execution time of node
v4. We could proceed likewise for the other CFG nodes.

IV. CONTEXT-SENSITIVE MBWE

Having presented the main idea of our approach on a
motivating example, we now present the systematic details.

Let G = 〈VG]{vstart, vend}, EG〉 be a CFG, where VG]
{vstart, vend} is the set of nodes, including a virtual start
node, vstart, and a virtual end node, vend, and where EG ⊆
(VG]{vstart})× (VG]{vend}) is the set of directed edges.

A straight path π from a node w to a node v is a path
v1 . . . vn through G with v1 = w, vn = v, where vi 6∈
{v, w}, for 1 < i < n.

A straight path π from an edge e to a node v is a path
v1 . . . vn through G, with (v1, v2) = e, vn = v, where
(vi, vi+1) 6= e, for 1 < i < n − 1, and where vi 6= v,
for 1 < i < n.

A history-sensitive execution time of a node v is a pair
(π, t), where π is a straight path to v, called history path,
and where t is an execution time of v.

For context-sensitive MBWE, we start by generating test
data, performing measurements, building an initial database
of history-sensitive execution times. Next, we classify the
different executions times of a given node based on control
flow decisions in its execution history. It is therefore im-
portant that the database can provide a suitable collection
of different history paths for each CFG node. Hence, we
impose the following coverage criterion:

For each node v and edge each e, we demand
at least one history-sensitive execution time (π, t)
where π is a straight path from e to v.

This is a minimal requirement. Ideally, we should obtain
a large number of history-sensitive execution times for each
edge-node pair.

Let M be a database of observed context-sensitive exe-
cution times for a node v, and let x be either a node or
an edge. The x-dominated maximal observed execution time
MOET (x, v) of v (where x is either a node or an edge) is
the maximal execution time observed in v over all observed
history-sensitive execution times (π, t) ∈ M where π is a
straight path from x to v, i.e.,

MOET (x, v) = max{t | (π, t) ∈M,π is a straight
path from x to v}.

The central assumption of our approach is that
MOET (x, v) is a suitable estimate for all possible history-
sensitive execution times (π, t) of v, where π is any straight
path from x to v. As mentioned before, this is an optimistic
assumption that needs support through appropriate coverage.

How can context-sensitive execution times be used in
IPET? To answer this question, we first introduce the general
concept of a segment to describe sets of straight paths. We
then show how the flow through a segment, i.e., the flow
through the corresponding set of paths, can be approximated
by a set of IPET constraints. Next, we explain how to
construct a segment that describes the set of straight paths
from an edge e to a node v. Subsequently, we show how to
subtract, from a given segment S that describes the set of
straight paths from an edge e to a node v, another segment T
that describes the set of straight paths from an edge e′ to v,
where e′ is inside segment S. This operation is sufficient to
exclude cheaper subsets of straight paths to v, as was seen
in our motivating example from Section III. We complete
our discussion of context-sensitive IPET with a sketch of an
algorithm that can identify segment nestings that correspond
to increasingly cheaper subsets of straight paths.



A segment is a weakly connected subgraph of the CFG
with a defined set of entry edges that point into the subgraph
and a defined set of exit edges that point out of the subgraph.
Its purpose is to capture the total flow through the subgraph
from any of its entry edges to any of its exit edges. Any
flow coming into the subgraph though an edge that is not an
entry edge, as well as any flow going out of the subgraph
through an edge that is not an exit edge does not contribute
to the segment flow.

A segment is a quadruple 〈V,E,Entry,Exit〉 comprising
a set of nodes V ⊆ VG, a set of edges E ⊆ EG, such that
S = 〈V,E〉 is a weakly connected graph, a set of entry edges
Entry = {(v, w) | (v, w) ∈ (EG \ E), w ∈ V }, and a set
of exit edges Exit = {(v, w) | (v, w) ∈ (EG \ E), v ∈ V }.

As a shorthand notation, let Entry be the set of CFG
edges that point into the segment from outside, and let Exit
be the set of CFG edges that point out from inside of the
segment, but are no exits, i.e.,

Entry = {(v, w) | (v, w) ∈ (EG \ E) \ Entry, w ∈ V },

Exit = {(v, w) | (v, w) ∈ (EG \ E) \ Exit, v ∈ V }.

For example, in Figure 2 we have highlighted segment

P = 〈VP , EP , EntryP , ExitP 〉, where

VP = {v4, v5, v6, v8}, EP = {e6, e12, e15},

EntryP = {e5}, ExitP = {e5, e10},

EntryP = {e4, e8}, ExitP = {e7, e11}.

The flow f through a segment 〈V,E,Entry,Exit〉 can
be approximated by the following constraints:

f ≤
∑

x∈Entry

fx +
∑

y∈Entry

fy −
∑

z∈Exit

fz,

f ≤
∑

x∈Entry

fx, f ≥
∑

x∈Entry

fx −
∑

y∈Exit

fy.

For instance, the flow through our example segment P
can be approximated by the constraints

fS ≤ fe5 + fe4 + fe8 − fe7 − fe11 ,

fS ≤ fe5 , fS ≥ fe5 − fe7 − fe11 .

To construct a segment

S(e, v) = 〈V (e, v), E(e, v), Entry(e, v), Exit(e, v)〉,

that describes the straight paths from an edge e to a node v,
let V (e, v) and E(e, v), respectively, be the sets of all nodes
and edges reachable from e without passing through e or v,
and from where v can be reached, let Entry(e, v) = {e},
and let Exit(e, v) be the set of all outgoing edges of v.

The flow through this segment corresponds to the number
of history-sensitive executions of v with a straight history
path π from e to v, i.e., those executions of v for which we

have assumed the e-dominated maximal observed execution
time MOET (e, v). For instance, Segment

R = 〈VR, ER, EntryR, ExitR〉, where

VR = {v4, v7, v8}, ER = {e8, e15},

EntryR = {e7}, ExitR = {e5, e10},

EntryR = {e4, e12}, ExitR = ∅.

describes the straight paths from edge e7 to node v4, i.e., it
is the segment for the flow fv4

400 from motivating example
in Section III.

To construct from two given segments

S = 〈VS , ES , EntryS , {out(v)}〉 and

T = 〈VT , ET , EntryT , {out(v)}〉,

where out(v) is the set of outgoing edges of node v, VT ⊆
VS , ET ⊆ ES , EntryT ⊆ ES , a segment

U = 〈VU , EU , EntryU , ExitU 〉

that captures the flow through S that does not also contribute
to the flow through T , let VU and EU , respectively, be the
sets of all nodes and edges that are reachable from any edge
in EntryS without passing through any edge in EntryT

or through node {v}, and from where v can be reached
without passing through any edge in EntryT , let EntryU =
EntryS , and let ExitU = {out(v)}.

This construction rule allows us to exclude nested flows
from surrounding flows, like in our motivating example.

There remains one important open point: How can we find
a segmentation for each CFG node that can effectively re-
duce pessimism in our analysis? We sketch an algorithm that
produces a nested segmentation for any given target node v
that can be resolved by nesting rule we just introduced, with
separate segments starting in all edges e = (u,w) with an e-
dominated maximal observed execution time MOET (e, v)
of v that is lower than the u-dominated maximal observed
execution time MOET (u, v) of v.

Our algorithm performs a depth first search along the
transpose graph G′ of G, starting from the target node v, i.e.,
the algorithm searches backwards from v until it runs into
an edge e = (u,w) that is either a start edge (u = vstart), a
back edge, a forward edge, or a cross edge. In either of these
cases it creates a new segment entry at edge e, for a segment
with associated costs of MOET (e, v). Upon backtracking
the algorithm collects the nodes u and edges e = (u,w)
along the backtracking path into all segments for which
entries have been created in the currently finished search
subtree, unless it finds MOET (e, v) < MOET (u, v). In
that case it finishes all those segments at edge e (u is the
last node that is collected into the segments) and starts a
new segment entry at edge e, for a segment with associated
costs of MOET (e, v).



Table I
WCET ESTIMATES AND END-TO-END MAXIMUM OBSERVED

EXECUTION TIME FOR EACH BENCHMARK.

Benchmark WCET Estimate
Suite Function Trad. Sens. MOET
MD binary search 25.7µs 20.7µs 13.0µs
MD bsort10 333.2µs 222.5µs 174.4µs
PB-F1a servo set 230.0µs 228.4µs 200.3µs
PB-F2 vector 10 9.6µs 9.3µs 9.1µs
JOP-Lift ctrl loop 57.6µs 45.5µs 43.0µs

Table II
CODE METRICS AND TIME SPENT ON GENERATING INPUT DATA.

Benchmark CFG Size Input Data
Suite Function Nodes Edges Generation
MD binary search 14 16 37s
MD bsort10 15 19 7134s
PB-F1a servo set 43 56 222s
PB-F2 vector 10 18 21 5s
JOP-Lift ctrl loop 119 175 81270s

After the depth first search has completed, all bo-
gus segment entries, i.e., entry edges e = (u,w) with
MOET (e, v) = MOET (u,w) are removed and turned into
inner edges of the corresponding segment.

For each segment S that was created by the algorithm,
we let ExitS be the set of all outgoing edges of v.

V. EVALUATION

We have implemented both, traditional and context-
sensitive IPET within the FORTAS timing analysis
suite [16]. To evaluate the benefit that context-sensitive IPET
can provide, we have performed a WCET estimation on five
benchmark programs taken from different sources.

Table I shows our WCET estimates and end-to-end
MOET. The latter is our best lower bound of the actual
WCET.

Table II views some code metrics, as well as the analysis
time spent on generating input data. Due to the concurrent,
multi-user, server-client architecture of our timing analysis
framework, it is difficult to provide precise numbers for the
total analysis times. However, as input data generation is by
far the costliest step in our analysis, the time spent on this
part provides a rough estimate of the total analysis effort.

All analyses were performed on an Intel Core2 Quad
Q9450 CPU running at 2.66GHz with 8GiB of DRAM.
The analyzed code was taken from the Mälardalen WCET
Benchmark Suite (MD) [17], PapaBench (PB) [18], as used
in the WCET Tool Challenge 20111, and the Java Optimized

1The benchmarks for the WCET Tool Challenge can be found at http:
//www.mrtc.mdh.se/projects/WCC/2011.

Figure 3. Convergence of WCET estimates obtained with traditional IPET
(dotted line), context-sensitive IPET (dashed line), and end-to-end MOET
(solid line) during refinement.

Processor Benchmark Suite (JOP)2.
Our target platform was a TriBoard TC1796 evaluation

board[19] equipped with a TriCore 1796 processor [20].
We used a Lauterbach PowerTrace [12] device to capture
complete end-to-end time-stamped execution traces of the
software via the Infineon OCDS interface, without exerting
a probe effect. The hardware setup was the same as the one
used during the WCET Tool Challenge [21].

To generate appropriate input data, we used FShell, a
CBMC-based [22] model checker that generates test suites
from formal test suite specifications [9], [23].

For each benchmark, we initially generated a test suite
matching the coverage criterion introduced in Section III,
i.e., a test suite that contains a test case for each feasible
edge-node pair. We then obtained the corresponding traces
by measurement and constructed a segmentation. We then
started to refine our timing model by generating additional
test data for each segment. In the refinement phase we
generated additional test suites for each segment, containing
at least one test case for each feasible edge-edge-node triple
on any path through the segment.

The results in Table I show the final WCET estimates
after the last refinement step. However, users of our analysis
framework need not wait for the whole analysis process to
complete. Rather, they can obtain an intermediate WCET
estimate at any time during refinement. As can be seen in
Figure 3, good estimates can usually be obtained after just
a few refinement steps.

VI. RELATED WORK

Theiling and Ferdinand use abstract interpretation to clas-
sify instruction cache accesses into the categories always hit,
always miss, persistent, and not classified [24]. By using
virtual inlining/virtual unrolling (VIVO), they are able to
separate the first iteration of loops from subsequent ones,

2Function ctrl loop is taken from a C port of the lift control application
from the JOP Benchmark Suite. The original Java source is available at
http://www.soc.tuwien.ac.at/trac/jop/browser/java/target/src/bench/jbe/lift.



and to distinguish procedure invocations that originate from
different call sites. They perform IPET on a corresponding
partially unrolled and inlined CFG. The different copies of
control flow nodes can then be weighted according to their
context-sensitive cache classification.

The concept of VIVO is not limited to the static analysis
approach of timing analysis, but can also be applied in the
measurement-based approach. Through partial loop peeling
we can obtain a control flow graph that exposes certain loop
iterations—usually the first one. It is also easy to conceive
a generalized variant of VIVO that can expose subgraphs
or even individual paths. We presented such an approach
in [16]. However, this strategy is limited by a potentially
exponential growth of the flow graph.

The approach that we present in this paper does not
increase this size of the CFG at all. We merely modify the
IPET problem based on observed correlations. In a practical
analysis tool, using a hybrid approach that combines the
benefit of both approaches might be a good choice.

Betts and Bernat present a tree-based calculation method
for measurement-based timing analysis that combines execu-
tion time measurements of complete basic block sequences
instead of treating them individually [25]. By treating certain
sequences of basic blocks as atomic, the method is able
to benefit from a certain reduction of pessimism. In a
similar fashion, Wenzel et al. treat entire subgraphs as atomic
units [1]. Our approach attacks the problem of pessimism
in an entirely different fashion: We do not rely on the
combined execution time of multiple CFG nodes to achieve a
reduction of pessimism. Rather, we use information from the
execution history to discriminate different execution times
of individual CFG nodes. More recent work of Betts et
al. on measurement-based timing analysis focuses on the
integration of object-code level time-stamped traces into
source-level timing analysis [13].

Stattelmann and Martin propose a solution for non-
intrusive, context-sensitive tracing of defined program frag-
ments [14]. They describe how programmable trigger logic
can be used to overcome the technical limitations imposed
by small trace buffers found in simple on-chip debugging
solutions, arguing that context information can reduce pes-
simism during the composition of local execution times.

Li et al. describe an extension of IPET for modeling direct
mapped instruction caches. In their approach the variables
for individual nodes are split by cache line and hit/miss
condition, opening the possibility to associate different costs
with each case [26], [27]. By analyzing the cache conflict
graph, a safe overapproximation of potential cache conflicts,
they are able to derive constraints that limit the number of
cache misses. Function calls are inlined similarly to [24].
Later, the approach is extended to set-associative caches by
analyzing cache state transition graphs [28], [29]. Accord-
ing to [24], the approach has scalability issues.

The latter approach addresses specific hardware. The

behavior has to be modeled explicitly for the particular
hardware on hand, whereas our approach is generic. Our
only premise is that the temporal effects are at least partially
exposed by the control flow.

VII. CONCLUSION

The accuracy of measurement-based WCET estimation is
influenced by two opposed effects: Optimism, which arises
due to the coverage limit of the timing-relevant computer
state (TRCS) of measurement, implies a potential underesti-
mation of the global WCET. On the other hand, pessimism,
which arises due to abstraction, implies a potential overes-
timation of the global WCET.

As our first contribution, we have presented strong evi-
dence that the control flow decisions taken just before some
program part is executed can expose a substantial part of
the TRCS. Based on this evidence, we have developed our
idea of using the TRCS information that is exposed through
individual control flow decisions to reduce pessimism.

As our second contribution, we have described how this
idea can be integrated into IPET-based WCET calculation.

Lastly, we have presented confirmative experimental re-
sults demonstrating that the presented context-sensitive ap-
proach can significantly reduce pessimism in measurement-
based WCET estimation.

ACKNOWLEDGMENT

The research leading to these results has received funding
from IST FP-7 project ”Asynchronous and Dynamic Vir-
tualization through performance ANalysis to support Con-
currency Engineering (ADVANCE)” under contract no IST-
2010-248828 and from the Austrian Science Fund (Fonds
zur Förderung der wissenschaftlichen Forschung) within
project “Formal Timing Analysis Suite of Real-Time Sys-
tems” (FORTAS-RT) under contract P19230-N13.

REFERENCES

[1] I. Wenzel, R. Kirner, B. Rieder, and P. Puschner,
“Measurement-based timing analysis,” in 3rd Intl. Symposium
on Leveraging Applications of Formal Methods, Verification
and Validation (ISoLA’08), ser. Communications in Computer
and Information Science, vol. 17, no. 8. Springer, Oct. 2009,
pp. 430–444.

[2] R. Kirner, A. Kadlec, and P. Puschner, “Precise worst-case
execution time analysis for processors with timing anoma-
lies,” in 21st Euromicro Conference on Real-Time Systems.
IEEE, Jul. 2009.

[3] P. Puschner and A. Schedl, “Computing maximum task exe-
cution time - a graph-based approach,” Journal of Real-Time
Systems, vol. 13, no. 1, pp. 67–91, Jul. 1997.

[4] Y.-T. S. Li and S. Malik, “Performance analysis of embedded
software using implicit path enumeration,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 16, no. 12, pp. 1477–1487, Dec. 1997.



[5] H. Kopetz, Real-time systems, ser. The Kluwer international
series in engineering and computer science. Boston, Mass.:
Kluwer, 1997.

[6] R. Kirner and W. Haas, “Automatic calculation of cover-
age profiles for coverage-based testing,” in 15. Kolloquium
Programmiersprachen und Grundlagen der Programmierung,
Oct. 2009.

[7] R. Kirner, “Towards preserving model coverage and structural
code coverage,” EURASIP Journal on Embedded System,
2009.

[8] R. Kirner, P. Puschner, and A. Prantl, “Transforming flow
information during code optimization for timing analysis,”
Journal of Real-Time Systems, vol. 45, no. 1-2, pp. 72–105,
Apr. 2010.

[9] A. Holzer, M. Tautschnig, H. Veith, and C. Schallhart, “How
did you specify your test suite?” in 25th IEEE/ACM Intl.
Conference on Automated Software Engineering (ASE’10),
Sep. 2010, pp. 407–416. [Online]. Available: http://portal.
acm.org/citation.cfm?id=1858996.1859084

[10] S. Bünte, M. Zolda, M. Tautschnig, and R. Kirner, “Improving
the confidence in measurement-based timing analysis,” in
14th IEEE Intl. Symposium on Object/Component/Service-
oriented Real-time Distributed Computing (ISORC’11), Mar.
2011.

[11] S. Bünte, M. Zolda, and R. Kirner, “Let’s get less optimistic
in measurement-based timing analysis,” in 6th IEEE Intl.
Symposium on Industrial Embedded Systems (SIES’11), Jun.
2011.

[12] “Powertrace,” Product Information from Lauterbach GmbH,
Höhenkirchen-Siegertsbrunn, Germany. [Online]. Available:
http://www2.lauterbach.com/doc/powertrace.pdf

[13] A. Betts, N. Merriam, and G. Bernat, “Hybrid measurement-
based WCET analysis at the source level using object-level
traces,” in 10th Intl. Workshop on Worst-Case Execution Time
Analysis (WCET 2010), ser. OpenAccess Series in Informatics
(OASIcs), B. Lisper, Ed., vol. 15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2010, pp. 54–63. [Online].
Available: http://drops.dagstuhl.de/opus/volltexte/2010/2825

[14] S. Stattelmann and F. Martin, “On the use of context infor-
mation for precise measurement-based execution-time estima-
tion,” in 10th Intl. Workshop on Worst-Case Execution Time
(WCET) Analysis, B. Lisper, Ed. Austrian Computer Society,
July 2010, pp. 68–79.

[15] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Check-
ing. MIT Press, 2000.

[16] M. Zolda, S. Bünte, and R. Kirner, “Towards adaptable
control flow segmentation for measurement-based execution
time analysis,” in 17th Intl. Conference on Real-Time and
Network Systems (RTNS’09), Oct. 2009.

[17] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The
mälardalen WCET benchmarks - past, present and future,” in
10th Intl. Workshop on Worst-Case Execution Time Analysis,
Jul. 2010.

[18] F. Nemer, H. Cassé, P. Sainrat, J.-P. Bahsoun, and M. D.
Michiel, “Papabench: a free real-time benchmark,” in 6th
Intl. Workshop on Worst-Case Execution Time (WCET) Anal-
ysis, F. Mueller, Ed. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), 2006.

[19] Infineon, TriBoard TC1796 Hardware Manual, http://www.
infineon.com, 2005.

[20] ——, TC1796 User’s Manual V2.0, http://www.infineon.com,
2007.

[21] R. von Hanxleden, N. Holsti, B. Lisper, E. Ploedereder,
R. Wilhelm, A. Bonenfant, H. Cassé, S. Bünte, W. Fellger,
S. Gepperth, J. Gustafsson, B. Huber, M. Islam, R. K. Daniel
Kästner and, L. Kovács, F. Krause, M. de Michiel, M. C.
Olesen, A. Prantl, W. Puffitsch, C. Rochange, M. Schoe-
berl, S. Wegener, M. Zolda, and J. Zwirchmayr, “Wcet tool
challenge 2011: Report,” in 11th Intl. Workshop on Worst-
Case Execution Time (WCET) Analysis, R. von Hanxleden,
N. Holsti, B. Lisper, E. Ploedereder, and R. Wilhelm, Eds.,
2011, to appear.

[22] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking
ANSI-C programs,” in Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS 2004), ser. Lecture
Notes in Computer Science, K. Jensen and A. Podelski, Eds.,
vol. 2988. Springer, 2004, pp. 168–176.

[23] A. Holzer, C. Schallhart, M. Tautschnig, and H. Veith, “An
introduction to test specification in FQL,” in Haifa Verifica-
tion Conference (HVC 2010), ser. Lecture Notes in Computer
Science, S. Barner, D. Kroening, and O. Raz, Eds., vol. 6504,
2011, pp. 9–22.

[24] H. Theiling and C. Ferdinand, “Combining abstract interpre-
tation and ILP for microarchitecture modelling and program
path analysis,” in RTSS ’98: IEEE Real-Time Systems Sym-
posium. Washington, DC, USA: IEEE Computer Society,
1998, p. 144.

[25] A. Betts and G. Bernat, “Tree-based WCET analysis
on instrumentation point graphs,” in 9th IEEE Intl.
Symposium on Object and Component-Oriented Real-
Time Distributed Computing (ISORC’06). IEEE Computer
Society, 2006, pp. 558–565. [Online]. Available: ttp:
//dx.doi.org/10.1109/ISORC.2006.75

[26] Y.-T. S. Li and S. Malik, “Performance analysis of embedded
software using implicit path enumeration,” in DAC ’95: 32nd
annual ACM/IEEE Design Automation Conference. New
York, NY, USA: ACM, 1995, pp. 456–461.

[27] Y.-T. S. Li, S. Malik, and A. Wolfe, “Performance estimation
of embedded software with instruction cache modeling,” ACM
Transactions on Design Automation of Electronic Systems,
vol. 4, no. 3, pp. 257–279, 1999.

[28] ——, “Cache modeling for real-time software: beyond direct
mapped instruction caches,” in Real-Time Systems Sympo-
sium, 1996., 17th IEEE, dec 1996, pp. 254 –263.

[29] ——, “Efficient microarchitecture modeling and path analysis
for real-time software,” in RTSS ’95: 16th IEEE Real-Time
Systems Symposium. Washington, DC, USA: IEEE Computer
Society, 1995, p. 298.


