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DEDICATION:  This paper is a modest tribute to the memory of Bruno Piombo, a very dearest 

colleague and friend, with whom we spent so many good moments. 

 

SUMMARY: The dynamic response of a structure can be described by both its translational 

and rotational receptances.  The latter ones are frequently not considered because of the 

difficulties in applying a pure moment excitation or in measuring rotations.  However, in 

general, this implies a reduction up to 75% of the complete model.  On the other hand, if a 

modification includes a rotational inertia, the rotational receptances of the unmodified system 

are needed.  In one method, more commonly found in the literature, a so called T-block is 

attached to the structure.  Then, a force, applied to an arm of the T-block, generates a moment 

together with a force at the connection point.  The T-block also allows for angular displacement 

measurements.  Nevertheless, the results are often not quite satisfactory.  In this work, an 
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alternative method based upon coupling techniques is developed, in which rotational 

receptances are estimated without the need of applying a moment excitation.  This is 

accomplished by introducing a rotational inertia modification when rotating the T-block.  The 

force is then applied in its centroid.  Several numerical and experimental examples are discussed 

so that the methodology can be clearly described.  The advantages and limitations are identified 

within the practical application of the method. 

 

KEYWORDS:  Rotational Degrees of Freedom (RDOFs), Structural Modification, Coupling, 

Dynamic Response, Modal Analysis. 
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1. INTRODUCTION 

It is nowadays recognized that rotational degrees of freedom (RDOFs) may represent an 

important role in the characterization of the dynamic behaviour of real structures.  One of the 

mathematical models used in the description of the dynamical behaviour of a structure is the 

response model, which relates the response to an excitation at two given locations.  The 

response may either be a linear displacement (translation) or an angular displacement (rotation) 

and the excitation may either be a force or a moment.  Thus, one can consider relations between 

translation and force, translation and moment, rotation and force and rotation and moment.  The 

measurement equipments used nowadays allow for obtaining the relationships between 

translation and force with enough accuracy.  However, the other relations are often not 

considered because of the difficulties in exciting the structures with pure moments.  It is clear 

that if rotations and moments are neglected, up to 75% of the model used to describe the 

dynamic behaviour of a structure at a given location will not be known. 

Various authors have discussed the utility of including RDOFs in dynamic models.  In 

coupling techniques, consideration of rotations in the coupling co-ordinates may be decisive, as 

they can be responsible for force or moment transmissions between the various substructures [2, 

6, 32].  On the other hand, in the field of Structural Dynamic Modification (SDM) and Updating 

[4], consideration of rotations seems to have a strong importance, as data are acquired on a 

prototype to validate and correct a Finite Element Model (FEM), which, once verified, can be 

used to evaluate project alterations.  Also, if a modification is to include a rotational inertia or 

rotational stiffness, the rotational receptances of the unmodified system are needed [9, 18].  

Furthermore, the combined use of translations and rotations may reduce the number of 

measurements that are necessary to represent the vibration modes with an accuracy identical to 

the one which would be obtained by measuring only translations [16]. 

The following is mainly based on the very comprehensive surveys given in references 

[13] and [18]. 
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When talking about RDOFs, there are two problems to be considered: the measurement 

and the excitation. 

The first has already been approached by several authors, showing that measurements of 

angular displacements can be done with little uncertainty.  The first solution is the use of 

appropriate response transducers, which have the disadvantage of being much more expensive 

than conventional response transducers.  In one method, more commonly found in the literature 

[2, 5, 6, 7, 9, 13, 20, 25, 28, 31], a so called T-block is attached to the structure, allowing for the 

measurement of translations at two locations conveniently chosen which are converted into 

rotations by the use of simple geometrical relations.  In a different technique, Cafeo et al. [16] 

measure a translation and two rotations simultaneously with no physical contact.  Bokelberg et 

al. [10, 11] developed a multidirectional transducer, which allows for the measurement of the 

six DOFs in a single location using three LASER vibrometers pointed on a tetrahedrical device 

placed on the structure.  Nevertheless, the device dimensions are still considerable.  Another 

multidirectional response transducer, consisting of six piezoelectric accelerometers conveniently 

displaced in a triangular geometry, was developed within the scope of a EU contract Brite 

Euram PR-CT97-0540 [13].  Other alternative solutions to the measurement of rotations can be 

found in that work, such as the use of a LASER vibrometer, which avoids physical contact to 

the structure and allows for a scanning process by moving the beam from one measurement site 

to the next in a controlled way [8].  Stanbridge and Ewins use a similar approach in [1]. 

Considering the problem of exciting the structure with a moment and measuring it, many 

works have been carried out in the pursuit of an effective solution.  Still, a generally accepted 

technique has not yet been developed, as a wide variety of limitations is usually present.  

Application of a single point pure moment is, for practical reasons, very difficult to accomplish.  

Based on the definition of binary, Smith [12] used two shakers in such a configuration that it 

would be possible to excite the structure with two identical forces with opposite directions.  

Thirty years later, Ribeiro [2] used a similar approach, concluding that the main problems of 

this method are related to differences in the impedances between the two shakers and to the 

structure reactions, giving no guarantee that the applied forces are, in every moment, perfectly 
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symmetrical.  Sanderson and Fredo [23] and Sanderson [24] used two rigid blocks, in the shape 

of a T-block and an I-block, showing that the errors arise from the moment applied to the 

structure and from the uncertainties on the measurement of the applied moment.  The mass of 

the moment exciter is also said to be a major obstacle.  In the already mentioned EU contract 

Brite Euram PR-CT97-0540 [13], a low weight pure moment exciter is described.  Trethewey 

and Sommer [26] presented a device which allows for generating a pure moment by the 

centrifugal forces generated by eccentric masses symmetrically attached to two rotating wheels. 

Again, the weight of the device came out to be a major drawback.  Furthermore, several other 

restrictions may be found, such as the narrow frequency range, limitation to harmonic 

excitations and problems related to the fixture. 

The method studied by Ewins and Sainsbury [5], Ewins and Gleeson [6], Sainsbury [25], 

Silva [20] and Ewins and Silva [7] is one of the first attempts to measure rotational receptances.  

Using a rigid T-shaped block, they showed that the full matrix of receptances can be derived 

from the knowledge of the measured translational receptances.  However, results are often not 

accurate enough, namely when using them for substructural coupling.  Mottershead et al. [17] 

have recently proposed a technique in which a T-block is treated as a modification at the point 

of its attachment deriving the full forcing and response vector at the connection point.  The 

FEM of the T-block has been used in order to include its stiffness in the formulation, thus 

avoiding ill-conditioning problems. 

Maia et al. [30, 21] proposed a method, based on impedance coupling techniques, in 

which rotational receptances are estimated without having to measure them.  It is also shown 

that neither a moment exciter nor an eccentric force applied to a rigid fixture are needed in the 

estimation of rotational receptances.  This method will be exploited throughout this paper, 

though following a different approach, where uncoupling is undertaken in steps and not 

simultaneously.  The method developed herein is also based on the one proposed by Maia et al. 

[29, 22] for the estimation of the full matrix of receptance of an MDOF translation system from 

a single column or line of the receptance matrix corresponding to an applied force. 
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The main goal of this work is to provide a new approach for the determination of a 

rotational response to a moment excitation without application (and measurement) of a moment, 

exploiting its limitations and studying in a comprehensive way the main reasons that may be in 

the origin of poor results. 
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2. THEORETICAL DEVELOPMENT 

2.1. BASIC EQUATIONS 

The method developed herein is based in the Mechanical Impedance Coupling 

Technique.  Consider two separate structures, called A and B.  When rigidly connected through 

some co-ordinates, a new structure, called C, is constituted. One may represent the domains of 

substructures A and B, coupled by a finite number of coordinates, so that, together, they form 

structure C.  Naming the coordinates that belong exclusively to A by i, those which belong 

exclusively to B by k and those which are common to both by j, i.e., the connection ones, the 

respective domains may be represented as shown schematically in figure 1. 

(Figure 1 to be included here) 

Let also: ( )[ ]A
iiH  represent the matrix of accelerance FRFs amongst co-ordinates i; 

( )[ ]A
ijH  and ( )[ ]A

jiH  represent the matrix of accelerance FRFs amongst co-ordinates i and j; 

( )[ ]A
jjH  represent the matrix of accelerance FRFs amongst co-ordinates j belonging to 

substructure A; ( )[ ]B
kkH  represent the matrix of accelerance FRFs amongst co-ordinates k; ( )[ ]B

kjH  

and ( )[ ]B
jkH  represent the matrix of accelerance FRFs amongst co-ordinates k and j; ( )[ ]B

jjH  

represent the matrix of accelerance FRFs amongst co-ordinates j belonging to substructure B.  

Hence, the matrix of accelerance FRFs of substructures A and B and of the resulting structure C 

may be given by the following expressions: 
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Applying the appropriate equilibrium and compatibility conditions at the common co-ordinates 

(constituting the joining locations), one may conclude that the coupling of both substructures 

will result in a system C with an accelerance matrix that may be written as a function of both 

matrixes of accelerance of substructures A and B [28]: 
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Because this formulation requires three matrix inversions, thus becoming computationally 

“heavy”, one may write an alternative form of equation (4) as proposed in [2, 22]: 
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where the matrix to invert is of the order of the number of co-ordinates common to A and B. 

 

2.2. ESTIMATION OF RDOFS 

Normally, a T-block is used to perform two distinct functions: to allow for an accurate 

measurement of the tangent to the deformation of the structure during vibration (by use of finite 

differences) and to allow for a moment excitation, together with a force, at the coupling point 

between the T-block and the structure (by applying a single force through an arm of the T-

block).  In this work, the excitation force will be applied through the centroid of the T-block and 

we will assume that the tangent and the secant to the structural deformation are parallel, so that 

one can make measurements either on the arms of the T-block or directly on the structure.  The 

novelty of this method is to explore a third function that the T-block may perform:  to introduce 

a rotational inertia modification by rotating the T-block around one of its symmetry axis. 

The best way to explain how the proposed technique works is to use an example where 

measurements are made in two co-ordinates.  Hence, consider a structure, named ‘O’, with two 

co-ordinates of interest x  and θ  at location P (figure 2). 
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(Figure 2 to be included here) 

Suppose the intention is to characterize its dynamic behaviour, relating the two co-

ordinates of interest by measuring the corresponding FRFs.  The structure will be excited with a 

shaker at co-ordinate x  and the force and acceleration signals will be measured through a force 

transducer and response transducers respectively.  Using a finite difference procedure, it is clear 

that one can easily access xxH , θxH  and, considering reciprocity, xHθ .  The problem is that, to 

measure θθH , it seems that one needs to apply a moment through co-ordinate θ .  In fact, that is 

not necessary, as will be shown. 

Coupling a T-block at point P, one obtains structure ‘T1’ (figure 3-a), which, by rotating 

90º around its vertical axis, is turned into structure ‘T2’ (figure 3-b).  For purposes of this 

procedure explanation, the mass effects of transducers and T-block will be neglected. 

(Figure 3 to be included here) 

Noting that the contact base of the T-block is a square, the main difference between 

structure ‘T1’ and ‘T2’ is a rotational inertia with a value of 12 II −  (thus, only small changes in 

the local stiffness are expected, which will be neglected).  Estimation of the rotational FRF θθH  

will be accomplished by cancellation of the rotational inertia 12 II − . 

The measurement technique is very simple.  Using conventional response and force 

transducers, one can measure, for each structure, the force (which is applied at co-ordinate x ) 

and translational responses at coordinates Ax  and Bx , so that FRFs 
AxxH  and 

BxxH  can be 

known.  To obtain the FRFs xxH  and θxH  the expressions are: 

 
2

BA xxxx
xx

HH
H

+
=  (6) 

 
s
HH

H AB xxxx
x 2

−
=θ  (7) 

As a result, one should have two pairs of FRFs:  ( )1T
xxH  with ( )1T

xH θ  and ( )2T
xxH  with ( )2T

xH θ . 
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The structure ‘T2’ represented in figure 3-b can be seen as the result of coupling ‘T1’ to 

12 III −=  and therefore, according to the notation used previously in section 2.1, it may be 

stated that: 

ITTCIBTA ⊕≡≡≡≡ 121 ,,  

where ⊕  means “coupled to”.  As two co-ordinates are being considered, the FRF matrix 

( )[ ]AH  will be of order two and ( )[ ]BH  of order one, as it represents a simple rotational inertia 

modification.  Thus, co-ordinate x  corresponds now to co-ordinate i, co-ordinate θ  

corresponds to co-ordinate j and, in this case, there is no co-ordinate k.  Noting that ( ) IH B 1=θθ  

is the only element in the FRF matrix ( )[ ]BH , and using the same notation as in figure 3, 

equation (5) is then reduced to: 
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which may be written as 
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The latter formulation allows for a clearer visualization of the interrelationship between the sub-

structures FRFs.  Furthermore, solving for the known FRF ( )2T
xHθ  (notice again that considering 

reciprocity θθ xx HH = ): 
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Finally, solving equation (9) for the unknown FRF ( )2THθθ : 
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As already said before, it is important to notice that, since ITT ⊕≡ 12 , expression (9) states 

that the FRF matrix of structure ‘T2’ is equal to the FRF matrix of structure ‘T1’ coupled to the 

rotational inertia 12 III −= . Hence, the rotational FRF ( )1THθθ  in expression (10) is obtained by 

cancellation of the rotational inertia 12 III −= , which corresponds to the only difference (at 

least theoretically) between structures ‘T2’ and ‘T1’. Once ( )1THθθ  is known, cancellation of 

additional masses and of the residual rotational inertia 1I  must be made in order to obtain the 

FRF of system ‘O’ shown in figure 2.  The procedure is identical to the one explained above 

starting with equation (5).  For purposes of this article that will not be done.  Montalvão [9] 

showed that the main problems that arise with the use of this methodology are directly related 

with the use of expression (10). 
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3. EXAMPLES OF APPLICATION 

3.1. NUMERICAL EXAMPLE 

In order to analyse the performance of the proposed technique, a very simple numerical 

example will be used: a two DOF system, with hysteretic damping, as shown in figure 4. 

(Figure 4 to be included here) 

Considering that measurements were made as explained in section 3.2 (figure 3), one 

obtains a set of two pairs of FRFs, each pair corresponding to its respective system or structure: 

( )1T
xxH  and ( )1T

xH θ  for system ‘T1’ and ( )2T
xxH  and ( )2T

xH θ  for system ‘T2’.  Use of equations (10) 

and (11) allow us for the determination of ( )1THθθ  and ( )2THθθ  respectively.  Figures 5 and 6 

summarize the procedure presenting the FRF curves superimposed so that the performance of 

the method can be observed. 

(Figure 5 and 6 to be included here) 

Despite this extremely good performance, it cannot be forgotten that the method can only 

be of interest if its application to real data also performs well.  It was therefore decided to repeat 

the previous performance check using the same data and polluting them with random errors.  

The use of polluted data is meant to simulate real experimental results.  Figures 7 and 8 show 

the results after applying a ±2% random error to the real and imaginary parts of the “measured” 

accelerance data ( ( )1T
xxA

H , ( )1T
xxB

H , ( )2T
xxA

H  and ( )2T
xxB

H ). 

(Figure 7 and 8 to be included here) 

Although ( )1T
xxH , ( )1T

xH θ , ( )2T
xxH  and ( )2T

xH θ  are quite acceptable with the introduction of a 

random error of ±2% on the original “measured” data, the same cannot be said for both the 

derived FRFs ( )1THθθ  and ( )2THθθ .  It is clear that the cancellation procedure is very sensitive to 

errors.  Furthermore, it can be seen that, in this particular case, only the region around the first 

resonance frequency is acceptable. As both the cancellation exercise and the objective of 

deriving a point FRF that had not been measured previously produce very disappointing results, 

which shows a strong dependency on measurement errors, and thus, on real data, the use of 
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either modal identification or structural modification techniques (e.g., to incorporate a stiff 

spring connecting a specific co-ordinate to ground) are suggested in [22]. The former suggestion 

will be followed when discussing the experimental example in chapter 4. 

As stated before, when observing the derived FRFs ( )1THθθ  and ( )2THθθ , the region with a 

better behaviour is around the first resonance frequency.  With respect to ( )1T
xH θ  and ( )2T

xH θ , this 

is also true, though the error propagation seems to be of  less importance. First, notice that the 

first resonance frequency corresponds to a rotational mode and that the second resonance 

frequency corresponds to a translational mode (this can be seen in figures 5-8 by the resonance 

frequencies shifts caused after cancellation of the rotational inertia).  Now consider expressions 

(7) and (10) used to derive FRFs ( )1T
xH θ , ( )2T

xH θ  and ( )1THθθ .  The graphical representation of 

( )1T
xH θ , ( )1THθθ  and the FRFs involved in their derivation are sufficient for the elaboration of some 

important remarks (figures 9 and 10). 

(Figures 9 and 10 to be included here) 

Observation of figure 9 shows that ( )1T
xH θ  seems to be rather noisy above 25 Hz, which is 

precisely when ( )1T
xxA

H  and ( )1T
xxB

H  have closer amplitude values.  This can be easily explained 

noting that the numerator of equation (7) is the subtraction between two similar values.  In fact, 

the difference between two quantities that are similar in value may be of the same order or 

smaller than the data errors.  This phenomenon is known as subtractive cancellation [15].  

Despite a mathematical explanation has been given, a physical explanation can be found too.  

Once the second resonance frequency is mostly associated to a translation mode, there is little 

rotation at the measurement point for that frequency, which means that measurements are being 

made near a peek of vibration. 

Figure 10 is very clear with respect to the error propagation in ( )1THθθ .  Exception made to 

the neighbourhood around the first resonance frequency, ( )1THθθ  has no meaning.  These are also 

intervals in which FRFs ( )1T
xH θ  and ( )2T

xH θ  are very similar.  Once again, we are in the presence 
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of a subtractive cancellation numerical problem, as in equation (10) one has a subtraction 

between a quotient near unity (when ( )1T
xH θ  has identical values to ( )2T

xH θ ) and unity itself, thus 

augmenting the introduced ±2% error.  The problem may be said to be ill-conditioned as small 

changes in data generate big changes in results. 

Some explanations were found to justify the type of errors that may appear with real data.  

The main purpose of this analysis was not to try to find some corrective solutions for these kind 

of errors (which have already been made in [22]), but to try to understand the problems 

associated with the method itself and to predict its consequences when applied to real data.  

Another type of errors, such as those related to the measurement of rotational inertias, have 

already been approached in [9], but it was concluded that they had little influence on the results. 
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3.2. EXPERIMENTAL EXAMPLE 

A very simple experimental set-up was conduced in order to apply the developed method 

to a practical and real situation.  The test structure is a simulated free-free steel beam, with 

rectangular cross section, with dimensions 800.5mm×25.4mm×6.3mm.  An aluminium t-

shaped block is attached at 20mm apart from one of its tips, in order to obtain structures ‘T1’ 

and ‘T2’ (figures 11 and 12). 

(Figures 11 and 12 to be included here) 

Measurements were made using a two channel LASER vibrometer and a conventional 

piezoelectric force transducer, thus yielding a set of two pairs of FRFs: ( )1T
xxH  and ( )1T

xH θ  for 

system ‘T1’ and ( )2T
xxH  and ( )2T

xH θ  for system ‘T2’.  Finally, ( )1THθθ  and ( )2THθθ  are determined by 

use of equations (10) and (11) respectively.  Figures 12 and 13 summarize the procedure 

presenting the experimental FRF curves and the theoretical ones (obtained by Timoshenko 

beam theory [19, 14]) superimposed so that the performance of the method can be observed. 

(Figures 12 and 13 to be included here) 
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4. DISCUSSION 

As it has already been observed in the numerical method, the terms ( )1THθθ  and ( )2THθθ  are 

rather noisy, when compared to the terms used for their derivation, ( )1T
xH θ  and ( )2T

xH θ .  One 

solution that is pointed out to minimize the measurement errors propagation and their 

amplification, and thus to obtain cleaner FRF elements, is based on the regeneration of the 

curves by mean of identification of the modal parameters. 

Curves ( )1T
xxH , ( )1T

xH θ , ( )2T
xxH  and ( )2T

xH θ  were identified according to the modal 

identification technique which uses the so-called Characteristic Response Function (CRF) [27].  

Once the modal parameters are identified, it is possible to write the FRF function, which in the 

case of a receptance is: 

 ∑
= +−

==
N

r rrr

jkr

k

j
jk i

A
F
X

1
222)(

ωηωω
ωα  (12) 

where jkα  is the receptance relating the complex amplitude jX  of the dynamic response at co-

ordinate j to the amplitude iF  of the exciting force at co-ordinate i, rω  and rη  are, 

respectively, the resonance frequency and hysteretic damping for mode r, jkr A  is a complex 

quantity known as Modal Constant and N is the total number of modes. 

Figures 15 and 16 summarize the procedure presenting the identified FRF curves and the 

theoretical ones superimposed so that the performance of the method can again be observed. 

(Figures 15 and 16 to be included here) 

It is clear that the identification of the modal parameters eliminated random errors such as 

noise.  However, its use was not good enough to minimize some spurious resonances and to 

bring out some anti-resonances that have disappeared, which, according to the theoretical model 

and to the qualitative appreciation of curves ( )1T
xxH , ( )1T

xH θ , ( )2T
xxH  and ( )2T

xH θ , were to predict. 

Since the determination of ( )1THθθ  and ( )2THθθ  depends exclusively on ( )1T
xH θ  and ( )2T

xH θ , it 

can be expected that the appearance of spurious resonances and the disappearance of anti-
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resonances are directly related to the experimental determination of ( )1T
xH θ  and ( )2T

xH θ .  In fact, it 

can be seen that, in general, the spurious resonances of ( )1THθθ  are at the same frequency as the 

anti-resonances of ( )2T
xH θ .  Also, under 300 Hz it is evident that some anti-resonances of ( )1THθθ  

are missing.  In that region, ( )1T
xH θ  and ( )2T

xH θ  are very similar and the numerical problem of 

subtractive cancellation arises.  Furthermore, in that region, the method reveals to be more 

sensitive to identification of the modal parameters. 

Figures 17 and 18 show, respectively, the theoretical and experimental (identified) ( )1THθθ , 

( )1T
xH θ  and ( )2T

xH θ  curves superimposed for further discussion. 

(Figures 17 and 18 to be included here) 

With attention to figure 17, almost all of the spurious resonances are at the same 

frequencies as the anti-resonances of ( )2T
xH θ  ( ( )2T

xH θ  has an anti-resonance at 382Hz which does 

not match the spurious resonance of ( )1THθθ  at 383.5Hz).  This simple observation can be 

numerically justified if one remembers that expression (10), used to estimate ( )1THθθ , involves a 

quotient of ( )1T
xH θ  by ( )2T

xH θ .  When ( )2T
xH θ  has a very small value, and if ( )1T

xH θ  has a much 

greater value than ( )2T
xH θ , it is expected that this quotient has itself a big value.  However, this 

problem does not occur in the theoretical model, as it can be seen by observation of figure 18, 

despite the fact that ( )2T
xH θ  has also very small values (when an anti-resonance is present).  By 

comparing figure 17 to figure 18, one may notice that in the theoretical model the anti-

resonances of ( )1T
xH θ  and ( )2T

xH θ  have coincident frequencies, though in the experimental model 

that is not observed.  This is much more evident at higher frequencies, namely between 580Hz 

and 620Hz. 

Theoretically, it is known [28, 9, 3] that a mass or rotational inertia modification at a 

given co-ordinate implies changes in the anti-resonances of all the FRFs that are not related to 

that co-ordinate and that the anti-resonances of those FRFs which are related to that specific co-

ordinate are kept unchanged.  Thus, with reference to the experimental model studied, a 
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modification on the rotational inertia in co-ordinate θ  should not shift the anti-resonance 

frequencies of curves ( )1T
xH θ  and ( )2T

xH θ .  This is observed in figure 18, where a theoretical 

model is used, but not in figure 17, when an experimental model is present. 

When exciting the beam, it is reasonable to believe that the force is not being applied in 

its neutral axis.  In fact, it’s very difficult to guarantee that the coupling point between the beam 

and the force transducer is exactly on the neutral axis, not only because of dimensional or 

geometric tolerances that have always to be considered, but also because we are dealing with a 

coupling area and not with a single coupling point.  Besides other acceptable reasons, this seems 

to be the one that is more prominent in this case.  This means that torsion is being excited, or at 

least, a rigid rotation towards the neutral fibber of the beam.  Hence, though theoretically not 

considered, a rotational co-ordinate γ  is influencing the dynamic behaviour of the system with 

a relevant importance, as shown schematically in figure 19. 

(Figure 19 to be included here) 

While rotating the T-block, it was considered that the only rotational inertia that was 

being changed was the one related to co-ordinate θ .  Therefore, it was expected that the anti-

resonances of ( )1T
xH θ  and ( )2T

xH θ  would not exhibit shifts.  However, changes in the rotational 

inertia towards co-ordinate θ  also implies changes in the rotational inertia towards co-ordinate 

γ , and, accordingly, ( )1T
xH θ  and ( )2T

xH θ  are not expected to have anti-resonances at the same 

frequencies.  The generic FRF matrix should now have the following aspect: 

 [ ]
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xxxx

 (13) 

in which θγγθ HH =  should be zero, because, in a beam, torsion and flexion modes are 

uncoupled. 

In order to reinforce the idea that the anti-resonances shifting of ( )1T
xH θ  and ( )2T

xH θ  is a 

probable and reliable cause for the formation of spurious resonances, the anti-resonances of 
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( )2T
xH θ  were forced to match (in frequency) those belonging to ( )1T

xH θ .  For this, it was used a 

procedure, based on the CRF modal identification technique, where the residual mass and 

stiffness [9] were determined so that the anti-resonances of ( )2T
xH θ  were shifted, in certain 

intervals, towards the anti-resonances of ( )1T
xH θ .  Since it is not possible, for real structures, to 

measure all the modes (N=∞), the receptance given by equation (12) may be re-written as: 

 ∑
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in which R
jkM  are R

jkK , respectively, the residual mass and stiffness (complex) and 1m  and 2m  

are, respectively, the lower and the higher limits of the frequency range of interest (the residuals 

are quantities that account for the influence of modes which are outside the frequency range). 

Furthermore, it was imposed that ( )1THθθ  would have anti-resonances at its local minima.  

The results are shown in figure 20. 

(Figure 20 to be included here) 

Though the results obtained by the correction procedure used are, apparently, very 

encouraging, one must not forget that the anti-resonances of the corrected ( )1THθθ  cannot be used 

as representative of the real dynamic behaviour of the structure, which is much more obvious 

for frequencies under 250Hz.  This is a consequence of the method used in the determination of 

( )1THθθ  anti-resonances, i.e., based on its local minima which may or may not correspond to anti-

resonances.  However, it has been shown that the formation of spurious resonances is most 

likely related to the “unexpected” shifting of the anti-resonances of curves ( )1T
xH θ  and ( )2T

xH θ . 

Considering the above discussion, there is another question that must be more clearly 

understood, which is to evaluate whether the goal of trying to eliminate the spurious resonances 

is not in fact a way of eliminating the influence of torsion or rotation modes in co-ordinate γ .  

As a first approach, we shall analyse the phase of ( )1THθθ  superimposed to its modulus, as 

represented in figure 21. 
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(Figure 21 to be included here) 

Until 200Hz, it is very difficult to make any judgement concerning the relation between 

phase shifts and the modulus of ( )1THθθ .  Still, above that frequency, general appreciation of the 

phase seems to support the possibility that the spurious resonances may in fact be resonances of 

torsion or rotation modes towards co-ordinate γ . 

Finally, it was tried to simulate the influence of a rotation towards co-ordinate γ  starting 

with the theoretical curves.  Considering that a rotation is occurring, the displacement measured 

by the response transducers is given by: 

 dxx ⋅+=′ γ  (15) 

where x  is the translational displacement (which is the displacement considered in the 

theoretical model), γ  is the rotational displacement and d  is the arm distance.  Thus, let us 

now consider, in the theoretical model, that AA x.x 11=  for structure ‘T1’ and let the other 

responses remain unchanged.  For a matter of simplicity, let us also reduce the frequency range 

to 450Hz to 750Hz, in order to cover the 5th vibration mode.  Figure 22 shows the obtained 

results. 

(Figure 22 to be included here) 

Qualitatively, ( )1T
xxH , ( )1T

xH θ , ( )2T
xxH  and ( )2T

xH θ  curves seem unchanged when compared to 

the exact curves shown in figures 15 and 16.  However, the spurious resonances that appear in 

the derived curves ( )1THθθ  and ( )2THθθ  from theoretically polluted data are very similar in aspect to 

the derived curves ( )1THθθ  and ( )2THθθ  from identified experimental data.  In fact, the result of 

amplification of the signal of structure ‘T1’ in co-ordinate Ax  is a shift in the anti-resonance of 

( )1T
xH θ , producing the formation of spurious resonances, which reinforces the idea that a rotation 

or a torsion mode is present in the analysis, with an impact that is of great importance. 
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5. CONCLUSIONS 

A method to estimate rotational receptances without the need of generating a moment, 

based on coupling techniques, was presented and discussed in the numerical and experimental 

point of view.  A rigid T-shaped block was used to include a rotational inertia modification by 

rotating it 90º around one of its axis of symmetry.  Translational responses were measured 

without physical contact by means of a two channel LASER vibrometer, resulting in rotational 

responses by subtraction.  It has been shown that it is possible to obtain rotational FRFs without 

being necessary to apply excitation moments to the system under analysis.  Cancellation of mass 

and rotational inertia effects can be easily done once the full receptance matrix at a point is 

known. 

In summary, one can point out the following conclusions: 

• When near a peek of vibration, where there is little rotation, the problem is ill-

conditioned, as small changes in data generate big changes in results; 

• Also, at low frequencies, estimation of rotational terms of the receptance matrix 

is often poor, as the FRFs involved in its derivation are very close in value; 

• The identification of the modal parameters and regeneration of the experimental 

curves seem to eliminate problems related to random errors, such as noise.  

Nevertheless, when measuring near a peek of vibration or at low frequencies, the 

regeneration of the curves may introduce several changes on results if the modal 

identification process has not been carefully done; 

• The appearance of spurious resonances in the rotational receptance ( )1THθθ , which 

is not avoided by the use of modal identification, is due to the “unexpected” 

relative shifts between the anti-resonances of the FRFs used in its derivation 

( ( )1T
xH θ  and ( )2T

xH θ ).  In general, spurious resonances of ( )1THθθ  and anti-resonances 

of ( )2T
xH θ  are at the same frequency, reinforcing the previous statement. 
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• The anti-resonances shifting between ( )1T
xH θ  and ( )2T

xH θ  is a consequence of 

rotating the T-block, as a rotational displacement or a torsion mode may be 

present in a co-ordinate γ .  In fact, by rotating the T-block, the rotaional inertia 

is being changed on both θ  and γ  co-ordinates; 

• The use of residual mass and stiffness to correct the rotational receptances 

showed that anti-resonances repositioning of ( )2T
xH θ  practically eliminates the 

spurious resonances of ( )1THθθ , though it was not possible to predict accurately the 

( )1THθθ  anti-resonances. 
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7. FIGURES CAPTIONS 

Figure 1. Structure C, composed by two substructures A and B, connected together.  Notation 

for the sets of co-ordinates used. 

Figure 2. Co-ordinates x  and θ  at location P of structure ‘O’. 

Figure 3. Coupling a T-block at point P of structure ‘O’, one obtains structure ‘T1’ (a), which, 

by rotating 90º around its vertical axis, is turned into structure ‘T2’ (b). 

Figure 4. Two DOF numerical example with hysteretic damping. 

Figure 5. Theoretical and Simulated terms of the accelerance matrix for numerical system 

‘T1’ considering two co-ordinates x  and θ . 

Figure 6. Theoretical and Simulated terms of the accelerance matrix for numerical system 

‘T2’ considering two co-ordinates x  and θ . 

Figure 7. Theoretical and Simulated (real and imaginary parts of the “measured” data 

polluted with ±2% random error) terms of the accelerance matrix for numerical 

system ‘T1’ considering two co-ordinates x  and θ . 

Figure 8. Theoretical and Simulated (real and imaginary parts of the “measured” data 

polluted with ±2% random error) terms of the accelerance matrix for numerical 

system ‘T2’ considering two co-ordinates x  and θ . 

Figure 9. FRFs involved in expression (7) (real and imaginary parts of the “measured” data 

polluted with ±2% random error). 

Figure 10. FRFs involved in expression (11) (real and imaginary parts of the “measured” data 

polluted with ±2% random error). 

Figure 11. General experimental setup and T-block dimensions. 

Figure 12. Systems ‘T1’ and ‘T2’ obtained by rotation of the T-block around one of its 

symmetry axis. 

Figure 13. Theoretical and Experimental terms of the accelerance matrix for system ‘T1’ 

considering two co-ordinates x  and θ . 
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Figure 14. Theoretical and Experimental terms of the accelerance matrix for system ‘T2’ 

considering two co-ordinates x  and θ . 

Figure 15. Theoretical and Identified terms of the accelerance matrix for system ‘T1’ 

considering two co-ordinates x  and θ . 

Figure 16. Theoretical and Identified terms of the accelerance matrix for system ‘T2’ 

considering two co-ordinates x  and θ . 

Figure 17. Identified FRFs involved in equation (10).  Analysis of possible causes to spurious 

resonances formation. 

Figure 18. Theoretical FRFs involved in equation (10) for comparison with figure 17. 

Figure 19. New system of co-ordinates. 

Figure 20. Regeneration of the rotational accelerance of system ‘T1’ by use of the residual 

mass and stiffness. 

Figure 21. Modulus and phase of the rotational accelerance of system ‘T1’ obtained after 

identification of measured data. 

Figure 22. Simulation of the influence of a rotation or torsion mode at co-ordinate γ  on 

theoretical results. 
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8. FIGURES 

 

Figure 1.  Structure C, composed by two substructures A and B, connected together.  Notation 

for the sets of co-ordinates used. 
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Figure 3.  Coupling a T-block at point P of structure ‘O’, one obtains structure ‘T1’ (a), which, 

by rotating 90º around its vertical axis, is turned into structure ‘T2’ (b). 
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Figure 4.  Two DOF numerical example with hysteretic damping. 
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Figure 5.  Theoretical and Simulated terms of the accelerance matrix for numerical system ‘T1’ 

considering two co-ordinates x  and θ . 
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Figure 6.  Theoretical and Simulated terms of the accelerance matrix for numerical system ‘T2’ 

considering two co-ordinates x  and θ . 
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Figure 7.  Theoretical and Simulated (real and imaginary parts of the “measured” data polluted 

with ±2% random error) terms of the accelerance matrix for numerical system ‘T1’ considering 

two co-ordinates x  and θ . 
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Figure 8.  Theoretical and Simulated (real and imaginary parts of the “measured” data polluted 

with ±2% random error) terms of the accelerance matrix for numerical system ‘T2’ considering 

two co-ordinates x  and θ . 
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Figure 9.  FRFs involved in expression (7) (real and imaginary parts of the “measured” data 

polluted with ±2% random error). 
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Figure 10.  FRFs involved in expression (11) (real and imaginary parts of the “measured” data 

polluted with ±2% random error). 
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Figure 11.  General experimental setup and T-block dimensions. 
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 System ‘T1’ System ‘T2’ 

Figure 12.  Systems ‘T1’ and ‘T2’ obtained by rotation of the T-block around one of its 

symmetry axis. 
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Figure 13.  Theoretical and Experimental terms of the accelerance matrix for system ‘T1’ 

considering two co-ordinates x  and θ . 
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Figure 14.  Theoretical and Experimental terms of the accelerance matrix for system ‘T2’ 

considering two co-ordinates x  and θ . 
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Figure 15.  Theoretical and Identified terms of the accelerance matrix for system ‘T1’ 

considering two co-ordinates x  and θ . 
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Figure 16.  Theoretical and Identified terms of the accelerance matrix for system ‘T2’ 

considering two co-ordinates x  and θ . 
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Figure 17.  Identified FRFs involved in equation (10).  Analysis of possible causes to spurious 

resonances formation. 
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Figure 18.  Theoretical FRFs involved in equation (10) for comparison with figure 17. 
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Figure 19.  New system of co-ordinates. 
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Figure 20.  Regeneration of the rotational accelerance of system ‘T1’ by use of the residual mass 

and stiffness. 
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Figure 21.  Modulus and phase of the rotational accelerance of system ‘T1’ obtained after 

identification of measured data. 
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Figure 22.  Simulation of the influence of a rotation or torsion mode at co-ordinate γ  on 

theoretical results. 

 

 

 


