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Abstract. 

The aim of the study was to investigate lower limb coordination and stiffness in five male and 

five female university volleyball players performing block jump landings. Coordination was 

assessed using angle – angle plots of the hip – knee, knee – ankle and hip – ankle joint 

couplings and discrete relative phase (DRP) of right – left joint couplings (i.e. left knee 

coupled with right knee). Leg stiffness was calculated as the ratio of the change in vertical 

ground reaction force (GRF) to the change in vertical displacement of the centre of gravity 

between ground contact and maximum vertical GRF. Knee stiffness was calculated as the 

ratio of the change in knee joint moment to the change in knee flexion angular displacement 

between ground contact and maximum knee joint moment. Comparison of the DRP angles 

between left and right legs indicated reduced symmetry between the left and right legs in 

females compared to males which may indicate greater likelihood of ligament strain in 

females compared to males. Furthermore, females exhibited reduced stability in the 

coordination between the left and right knee joints than males. Males exhibited significantly 

greater absolute and normalised leg stiffness and significantly greater absolute and 

normalised knee joint stiffness during landing compared to females. In conjunction with the 

coordination data, this may indicate reduced dynamic stability of the leg in females compared 

to males which may contribute to the greater incidence of ACL injury in females compared to 

males.  

 

Key words: Coordination, stiffness, landing, ACL injury. 

 

 

 



 3

Introduction.  

Between 70% and 90% of anterior cruciate ligament (ACL) injuries have been reported to 

occur in non-contact situations (Griffin, Angel, Albohm, et al. 2000; McNair, Marshall, and 

Matherston 1993; Mykelbust, Maehlum, Engbretsen, et al. 1997). A non-contact situation is 

where there is no direct contact with the knee at the time of injury. Non-contact ACL injuries 

appear to occur most commonly during landing (Hume and Steele 1997; Otago and Neal 

1997), rapid change of direction (Bartold 1997) and deceleration (Miller, Cooper, and Warner 

1995). Furthermore, most non-contact ACL injuries appear to occur close to foot strike with 

the knee close to full extension and in a valgus position (Boden, Dean, Faegin, et al. 2000; 

Olsen, Mykelbust, Engebretsen, et al. 2004). Not surprisingly, the incidence of ACL injury is 

relatively high in sports involving a high frequency of landing, decelerating and rapid 

changes of direction such as basketball, netball, handball and volleyball (Arendt and Dick, 

1995; Griffin, Angel, Albohm, et al. 2000). The incidence of non-contact ACL injury has 

been reported to be 6 to 8 times greater in females than in males competing in the same sports 

(Arendt and Dick 1995; Chandy and Grana 1985; Ferretti, Papandrea, Conteduca, et al. 1992; 

Gray, Taunton, McEnzie, et al. 1985; Gwinn, Wilkens, McDevitt, et al. 2000; Lindenfeld, 

Schmitt, Hendy, et al. 1994; Malone, Hardaker, Garrett, et al. 1993).  

 

Previous studies (Griffin, Angel, Albohm, et al. 2000) have identified a number of possible 

intrinsic and extrinsic risk factors associated with the gender difference in the incidence of 

ACL injury. However, since the cause of ACL injury is likely to be the result of a complex 

interaction of risk factors (Lysens, Steverlynck, Van Den Auweele, et al. 1984), composite 

variables, including measures of coordination and stiffness, may provide more insight into the 

causes of ACL injury in general and the greater incidence of ACL injury in females in 

particular.  
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Coordination.  

A number of previous studies have examined gender differences in the angle – time histories 

of the lower limb joints during landing/cutting (Malinzak, Colby, Kikendall, et al. 2001; 

Decker, Torry, Wyland, et al. 2003; Hughes, Watkins, Owen, et al. 2007) which provide a 

measure of movement patterns of individual joints. The relative movement of one joint with 

respect to another, i.e. the coordination, may provide insight into the relationship between the 

lower limb joints and therefore the likely strain on the stabilising structures of the lower limb 

joints. However, there would appear to be no reports of lower limb coordination during 

landing/cutting manoeuvres in males and females. Coordination refers to the relative timing 

of motion between body segments (Jensen, Phillips, and Clark 1994). In any particular whole 

body movement, each body segment can be thought of as an independent oscillator that 

oscillates through a particular range of motion during the movement. The coordination 

between any two oscillators is the degree of coupling (relative timing or relative phasing) 

between these two oscillators. Since a landing manoeuvre is a discrete action, angle – angle 

plots are likely to provide the most appropriate illustration (qualitative) of relative motion, 

where the angle of one joint is plotted against the angle of another (Anderson and Sidaway 

1994), and time series – based discrete relative phase (DRP) is likely to provide the most 

appropriate measure (quantitative) of relative timing between the hip, knee and ankle joints. 

DRP analysis determines the relative timing between key events in a movement cycle, such 

as the maximum angle of two different joints.    
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Leg and knee joint stiffness.  

Whilst analysis of the relative phase between pairs of joints provides an indication of the 

coordination between the joints, it is the coordination between all of the joints in the kinetic 

chain that determine the effectiveness and efficiency of the movement as a whole. In a 

landing manoeuvre, it is the coordination between the hip, knee and ankle joints that largely 

determine the dynamic stability of the leg. The dynamic stability of the leg is reflected in the 

stiffness of the leg, i.e. the resistance of the leg to compression (flexion of hip, knee and 

ankle joints) during landing. Leg stiffness refers to the stiffness of the leg when modelled as a 

single linear spring and is calculated as the ratio of the change in vertical GRF to the change 

in vertical displacement of the centre of gravity (CG) between ground contact and maximum 

vertical GRF (Farley and Morgenroth 1999). Knee joint stiffness refers to the torsional 

stiffness of the knee joint when modelled as a spring and is calculated as the ratio of the 

change in knee joint moment to the change in knee flexion angular displacement between 

ground contact and maximum knee joint moment (Farley and Morgenroth 1999).  

 

Whilst studies have examined gender differences in leg stiffness during two-legged hopping 

(Granata, Padua, and Wilson 2002), to our knowledge no study has investigated gender 

differences in leg stiffness during tasks in which non-contact ACL injury is common, such as 

landing. Furthermore, previous studies (Granata, Padua, and Wilson 2002; Farley and 

Morgenroth 1999) only report absolute leg stiffness without normalising for body weight and 

height. Since leg stiffness is the combined effect of the stiffness in the hip, knee and ankle 

joints, the lower leg stiffness in females compared to males reported by Granata, Padua, and 

Wilson (2002) may be due, at least in part to reduced stiffness of one or more of the hip, knee 

and ankle joints in females compared to males. These differences in leg stiffness and possibly 

joint stiffness may indicate less dynamic stability of the legs in females compared to males 
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which may in some way account for the greater incidence of ACL injury in females 

compared to males. To our knowledge, no study has examined gender differences in knee 

joint stiffness when performing tasks such as hopping, running or landing.  

  

Aim. 

The aim of the study was to compare lower limb coordination and stiffness in male and 

female university volleyball players performing block jump landings.  

 

Methodology.  

Subjects. 

Five female (mean age 21.8 ± 0.5 years, mass 58.85 ± 8.03 kg and height 1.66 ± 0.08 m) and 

five male (mean age 21.0 ± 3.5 years, mass 69.88 ± 3.47 kg and height 1.76 ± 0.10 m) 

university volleyball players with between three and seven years experience of playing 

volleyball participated in the study. All subjects had no previous history of hip, knee or ankle 

injury and had not participated in any specific training programmes designed to reduce lower 

extremity injuries. Ethical approval was granted for the study by the University Ethics 

Committee and written consent forms were signed by all subjects prior to data collection.  

 

Measurement system. 

Ground reaction force (GRF) was measured using two AMTI force platforms embedded into 

the laboratory floor sampling at 600 Hz. A 12 camera Vicon 512 system (Vicon, Oxford, 

England) sampling at 120 Hz was used to determine 3D coordinates of 39 retro-reflective 

markers (25 mm diameter). Markers were placed directly on each subject (on skin or on 
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clothing covering the skin) in accordance with the Vicon system’s plug-in gait marker set. All 

subjects wore tight fitting clothing in order to minimise movement of markers relative to the 

anatomical locations they were intended to designate. From the markers and anthropometric 

data (height, weight, leg length, knee width, ankle width, elbow width, wrist width and hand 

thickness) of each subject, the Vicon system calculated the 3D coordinates of the location of 

the whole body CG and the hip, knee and ankle angles in the sagittal plane. Knee joint 

moment was calculated as the equivalent to the muscle moment in the quasi static method of 

determining joint moment (equal and opposite to the external moment about the knee due to 

the ground reaction force) in the sagittal plane (Alexander and Vernon 1975). Based on a 

frequency content analysis of the 3D coordinate data, marker trajectories were filtered using a 

Woltring Filter with a low-pass cut-off frequency of 10 Hz and stop-band frequency of 30 

Hz. 

 

The laboratory was set up with a rope fixed horizontally to act as a volleyball net at a height 

of 2.43 m for male subjects and 2.24 m for female subjects. The net was placed 5 cm in front 

of and parallel to the adjacent force platforms. In addition to the net, a volleyball was 

suspended from the ceiling so that it was positioned 5 cm above the height of the net and with 

the centre of the ball 10 cm in front of the line of the net (the other side of the net to where 

the subject (blocker) was standing). The ball was positioned vertically above the line 

separating the two force platforms.  

 

Landing Task. 

The jumping and landing task was made as realistic as possible by having subjects attempt to 

block an actual spike performed by an experienced volleyball player. At the start of each trial, 
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the subject stood with each foot on a separate force plate. The subject then timed his/her 

blocking action in order to try to block the ball as it was spiked. The ball was spiked from the 

same suspended position in order to eliminate variation in the position and velocity of the 

ball. On landing, each foot landed on a separate force plate. Following appropriate warm up 

and practice, data was recorded for three successful trials for each subject.   

 

Angular definitions. 

In the Plug-in gait system, the measurement of hip flexion/extension is based on the pelvic 

transverse axis (line connecting anterior superior iliac spine and posterior superior iliac spine 

markers) and the thigh axis (line connecting the hip joint and knee joint centres) projected 

onto the plane of hip flexion/extension (as determined by the plug-in gait marker system). 

The hip flexion/extension angle is the angle between the thigh axis and the line perpendicular 

to the pelvic transverse axis which passes through the hip joint centre. A positive angle 

corresponds to hip flexion (knee anterior to the trunk) relative to the fully extended position. 

 

The measurement of knee flexion/extension is based on the thigh axis (line connecting the hip 

joint and knee joint centres) and the shank axis (line connecting the knee and ankle joint 

centres) projected onto the plane of knee flexion/extension (as determined by the plug-in gait 

marker system). The knee flexion/extension angle is the angle between the distal extension of 

the thigh axis and the shank axis. A positive angle corresponds to knee flexion relative to the 

fully extended position. 

 

The measurement of ankle plantar/dorsiflexion is based on the foot axis (line connecting the 

ankle joint centre and the toe marker) and the shank axis (line connecting the knee and ankle 



 9

joint centres) projected onto the plane of ankle dorsi/plantar flexion (as determined by the 

plug-in gait marker system). The ankle dorsi/plantar flexion angle is the angle between foot 

axis and a line perpendicular to the shank axis. A positive angle indicates dorsiflexion and a 

negative angle indicates plantarflexion. 

 

From the angle – time histories of the hip, knee and ankle, DRP analysis was carried out to 

quantify coordination and angle – angle plots where used to illustrate coordination between 

hip – knee, knee – ankle and hip – ankle joint couplings. DRP angle was calculated between 

corresponding joints in the right and left leg, i.e., left knee coupled with right knee. The DRP 

angle was calculated using the following equation (Hamill, Haddad, and McDermott 2000): 

DRP angle � ×
−
−=

sf tt
tt 12 360o 

where t2 = time of maximum angle of left joint, t1 = time of maximum angle of right joint, tf = 

time of zero velocity of the whole body CG and ts = time of initial ground contact (IC).  

 

During a two-footed landing, the DRP angle between right and left lower limb joints 

indicates the symmetry between the right and left legs during landing which in turn may 

provide an indication of the symmetry in the loading of right and left lower limb joints. The 

DRP angle can range between – 360o and + 360o, where 0o indicates the timing of the two 

key events are perfectly in phase and an angle between ± 1o and ± 360o indicates the degree 

to which the timing of the two key events are out of phase. A positive DRP angle indicates 

that the joint in the left leg takes longer to reach its maximum angle than the corresponding 

joint in the right leg (e.g. left knee reaches its maximum angle after the right knee) and a 

negative DRP angle indicates that the joint in the right leg takes longer to reach its maximum 
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angle than the corresponding joint in the left leg (e.g. right knee reaches its maximum angle 

after the left knee). The standard deviation of the DRP angle over a number of trials (vDRP) 

indicates the variability/stability in the coordination between right and left joints. A small 

vDRP angle indicates high stability in coordination whereas a large vDRP angle indicates 

low stability in coordination.  

 

Whole body centre of gravity location. 

The location of the whole body CG was determined by the Vicon system based on a 15 

segment model defined by the plug-in gait marker set (right and left hand, right and left 

forearm, right and left upper arm, right and left foot, right and left shank, right and left thigh, 

head and neck, thorax, pelvis). The Vicon system incorporates the anthropometric data of 

Dempster (1955) as reported by Winter (1990).  

 

Leg and knee stiffness calculations 

Leg stiffness was calculated as the ratio of the change in vertical GRF to the vertical 

displacement of the whole body CG between IC and the maximum vertical GRF: 

L
F

kleg ∆
∆=  

where kleg = leg stiffness, �F = change in vertical GRF and �L = vertical displacement of the 

CG. 

 

Knee joint stiffness was calculated as the ratio of the change in knee joint moment to the knee 

flexion angular displacement between IC and the maximum knee joint moment: 
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θ∆
∆= M

k jo int  

where kjoint = knee joint stiffness, �M = change in knee joint moment and �� = knee flexion 

angular displacement. 

 

Data analysis. 

The angular displacement – time data were standardised with respect to average trial time 

(between IC and maximum knee flexion). Angular displacement mean data was based on 30 

trials for males and 30 trials for females (5 subjects × 3 trials × 2 legs). Vertical GRF, vertical 

CG displacement and leg stiffness mean data was based on 15 trials for males and 15 trials 

for females (5 subjects × 3 trials). Absolute and normalised (with respect to weight and 

height) leg stiffness data were calculated for males and females. Since the force-measurement 

system was unable to determine the centre of pressure on the left foot, knee joint moment 

data was only collected for the right leg. Therefore mean data was based on 15 trials for 

males and 15 trials for females (5 subjects × 3 trials × 1 leg). Absolute and normalised (with 

respect to weight and height) knee joint stiffness data were calculated for males and females. 

 

Independent-samples t-tests were carried out on the hip, knee and ankle angular displacement 

data (at initial ground contact, maximum flexion and range of motion), DRP angles for left – 

right joint couplings, change in vertical GRF, vertical displacement of the CG, leg stiffness, 

change in knee joint moment, knee flexion angular displacement and knee joint stiffness to 

examine gender differences. Due to multiple t-tests (23) being carried out on samples taken 

from the same population, there was a high chance of statistical error due to multiple 

comparisons. Consequently, a Bonferroni adjustment to the alpha level was made.  
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Results.  

 

Angle – angle plots.  

There was no significant difference in hip flexion at IC between males and females (Table 1), 

but maximum hip flexion was significantly greater in females than males. Consequently, the 

ROM of hip flexion was significantly greater in females than males. Knee flexion at IC was 

significantly greater in males than females (Table 1). There was no significant difference in 

the maximum knee flexion angle between males and females. However, the ROM of knee 

flexion was significantly greater in females than males. At IC, ankle plantarflexion was 

significantly greater in females compared to males (Table 1). There was no significant 

difference in the maximum angle of ankle dorsiflexion between males and females. However, 

the ROM of ankle plantar/dorsiflexion was significantly greater in females than males.  

________________ 

Table 1 about here. 
________________ 
 

The relationship between hip flexion and knee flexion, shown in Figure 1(a), was fairly linear 

(straight line on graph) throughout landing in males and females with males and females 

exhibiting greater knee flexion relative to hip flexion. Females exhibited a slightly greater 

rate of hip flexion relative to knee flexion than males, indicated by the peak gradient of the 

hip flexion – knee flexion coupling graph (Table 2).  

 

The relationship between knee flexion and ankle plantar/dorsiflexion, shown in Figure 1(b), 

was fairly linear (straight line on graph) except at the end of the landing manoeuvre in males 
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and females with males and females exhibiting greater ankle plantar/dorsiflexion relative to 

knee flexion. Males and females exhibited a similar rate of knee flexion relative to ankle 

plantar/dorsiflexion, indicated by the peak gradient of the knee flexion – ankle 

plantar/dorsiflexion coupling graph (Table 2).  

 

The relationship between hip flexion and ankle plantar/dorsiflexion, shown in Figure 1(c), 

was fairly linear (straight line on graph) except at the end of the landing manoeuvre in males 

and females with males and females exhibiting greater ankle plantar/dorsiflexion relative to 

hip flexion. Males exhibited a greater rate of hip flexion relative to ankle plantar/dorsiflexion 

than females, indicated by the peak gradient of the hip flexion – ankle plantar/dorsiflexion 

coupling graph (Table 2).  

________________ 

Figure 1 about here. 
________________ 
 

________________ 

Table 2 about here. 
________________ 
 

Discrete relative phase. 

The lower the DRP angle between the two joints the tighter the coupling between the two 

joints (the closer the two events are in time in each cycle) and the lower the vDRP the more 

stable the coupling between the two joints. Table 3 shows the DRP angles and the vDRP 

angles for the left – right hip, knee and ankle joint couplings for males and females. The DRP 

angle for the left – right hip joint coupling in females was positive indicating that the right 

hip reached its maximum angle before the left hip. For the left – right joint couplings of the 

hips in males and the knees and ankles in both males and females, the DRP angle was 
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negative indicating that the left joint reached its maximum angle before the right joint (Table 

3).  

________________ 

Table 3 about here. 
________________ 
 

Whilst there were no significant differences between males and females, the DRP angles for 

the left – right joint couplings were greater for females than males for the hip, knee and 

ankle. The vDRP angle was greater for males than females for the hip and the ankle but the 

vDRP angle for the knee was greater for females than males. The DRP (symmetry) and the 

vDRP (stability) results indicate greater symmetry but lower stability between the left – right 

joint couplings in males compared to females. 

 

Leg stiffness. 

Both the absolute and normalised change in vertical GRF were significantly greater in males 

than females (Table 4). There was no significant difference in the absolute or normalised 

vertical displacement of the CG between males and females. However, both absolute and 

normalised leg stiffness were significantly greater in males than females.  

________________ 

Table 4 about here. 
________________ 
 

Knee stiffness. 

There was no significant difference in the absolute or normalised change in knee joint 

moment between males and females (Table 4). Knee flexion angular displacement was 
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significantly greater in males than females. Consequently, both absolute and normalised knee 

joint stiffness were significantly greater in males than females.  

 

Discussion.  

Coordination. 

The angle – angle diagram of the hip – knee joint coupling (Figure 1a) shows that the knee 

moved through a greater angle relative to the hip during landing in both males and females. 

Peak gradient of the hip – knee curve was greater in females than males and range of motion 

of the hip and knee were greater in females than males (Tables 1 and 2).  

 

The angle – angle diagram of the knee – ankle joint coupling (Figure 1b) shows that the ankle 

range of motion was greater relative to the knee during landing in both males and females but 

range of motion of knee flexion and ankle plantar/dorsiflexion was greater in females than 

males (Table 1). The peak gradients of the ankle – knee curves were similar for males and 

females (Table 2).  

 

The angle – angle diagram of the hip – ankle joint coupling (Figure 1c) shows that the ankle 

range of motion was greater relative to the hip during landing in both males and females but 

range of motion of hip flexion and ankle plantar/dorsiflexion greater in females than males 

(Table 1). The peak gradients of the ankle – hip curves were similar for males and females 

(Table 2). Range of motion was significantly greater in all joints in females compared to 

males (Table 1). This increased range of motion in the hip, knee and ankle exhibited by 

females is consistent with the significantly lower leg stiffness and knee joint stiffness 

exhibited by females (Table 4) and may indicate less dynamic stability of the hip, knee and 
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ankle joints in females compared to males. This may also be a protective mechanism where, 

through experience of playing volleyball, the female subjects used in the study have 

developed landing strategies which utilise a greater range of motion of the lower limb joints 

to reduce the ground reaction force acting on the body. This, in turn, is likely to reduce the 

strain on the support structures of the lower limb joints during landing.  

 

During a two-footed landing, it is reasonable to assume that the DRP angle of the 

corresponding event in left and right legs (inter-limb joint coupling) should be very similar 

(i.e. the smaller the DRP angle for right – left hip, knee and ankle joints the greater the 

symmetry between the two legs). Comparison of the DRP angle between corresponding joints 

(hip, knee and ankle) in the right and left legs show a greater DRP angle in females for left – 

right hip, knee and ankle joint couplings compared to males (Table 3). These results indicate 

less symmetry and, therefore, less coordination between the left and right legs during landing 

in females compared to males. The reduced symmetry in females compared to males may 

indicate greater asymmetry in loading on the passive support structures of the legs during 

landing in females compared to males.  

 

The stability of the coordination (indicated by the vDRP angles) between left – right joint 

couplings was less for males than females for the hip and ankle joints but less for females 

than males for the knee joints (Table 3). The reduced stability in the coordination between the 

left and right knees in females compared to males may indicate less dynamic stability of the 

knees in females compared to males which may be a contributory factor in the gender 

difference in the incidence of non-contact ACL injury. To the authors’ knowledge, no data 

has been reported on gender differences in lower limb coordination during landing, therefore 
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comparison of the results of the present study with reference to previous research is not 

possible. 

 

Leg stiffness. 

Since the males weighed more than the females, it was not surprising that the change in 

absolute vertical GRF was significantly greater for males than females. However, even when 

normalised to body weight, the change in vertical GRF was still significantly greater in males 

than females. There was no significant difference between males and females absolute or 

normalised vertical displacement of the CG. However, the resulting absolute and normalised 

leg stiffness were significantly greater in males than females (Table 4). The reduced leg 

stiffness in females compared to males suggests reduced dynamic stability of the leg in 

females compared to males as females appear to be less able to resist compression of the leg 

during landing. This reduced dynamic stability of the leg in females compared to males may 

indicate increased likelihood of stain on the passive support structures of the knee in 

maintaining joint stability during landing in females compared to males which, in turn, may 

be a contributory factor in the increased incidence of non-contact ACL injury in females 

compared to males. 

 

Granata, Padua, and Wilson (2002) reported leg stiffness to be significantly greater in males 

than females when hopping, supporting the findings of the present study. Mean values of leg 

stiffness reported by Granata, Padua, and Wilson (2002) were 33.9 kN/m ± 4.2 for males and 

26.3 kN/m ± 6.5 for females. These values are greater than the values of leg stiffness 

observed for males (15.02 kN/m ± 8.82) and females (10.29 kN/m ± 3.56) in the present 

study. However, this is likely to be due to differences in the task; hopping involves storage 
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and utilisation of strain energy and, therefore, maintenance of leg stiffness, whereas landing 

involves dissipation of strain energy and, therefore, a fairly rapid reduction in leg stiffness 

following the initial impact phase. Granata, Padua, and Wilson (2002) only reported absolute 

values for leg stiffness, therefore the gender difference in leg stiffness may have been due to 

differences in height and weight between males and females. However, the results of the 

present study suggest that even when normalised to weight and height, males still exhibit 

significantly greater leg stiffness than females.  

 

Knee stiffness. 

There was no significant difference in the absolute or normalised change in knee joint 

moment between males and females during landing. However, the knee flexion angular 

displacement was significantly greater in females than males. Consequently, the absolute and 

normalised knee joint stiffness was significantly greater in males than females during landing 

(Table 4). The reduced absolute and normalised knee stiffness in females compared to males 

may contribute to the reduced absolute and normalised leg stiffness in females compared to 

males. As the quadriceps and the hamstrings contract during landing, they act in a way to 

increase the joint contact forces and limit movement within the knee joint (maintain joint 

stability). The greater the ability of the muscles to resist rotation of the knee (i.e., the greater 

the knee joint stiffness) the greater the dynamic stability of the knee is likely to be and 

therefore the less likely the passive structures of the knee, such as the ACL, will be put under 

strain. Consequently, knee joint stiffness may be an important factor in preventing ACL 

injury. The reduced knee joint stiffness in females compared to males may indicate reduced 

dynamic stability of the knee during landing which may contribute, at least in part, to the 

greater incidence of non-contact ACL injury in females compared to males. To the authors’ 

knowledge, no previous data has been reported for gender differences in absolute or 



 19

normalised knee joint stiffness during landing, therefore comparison of the findings of the 

present study with reference to previous research is not possible.  

 

The main limitation of the current study was the small sample size used. However, the results 

indicate potentially important findings for future research into the possible causes of the 

gender difference in the incidence of non-contact ACL injury. The results presented in this 

study provide data for variables not previously examined with regards to gender differences 

in landing biomechanics associated with ACL injury which may provide the basis for further 

study involving larger sample sizes. 

 

Summary and conclusions. 

Range of motion of hip, knee and ankle joints were greater for females than males during 

landing. Comparison of the DRP angle for left – right hip, knee and ankle joint couplings 

indicate less symmetry between the left and right legs during landing in females compared to 

males which may indicate greater asymmetry in loading on the passive support structures of 

the joints of the legs in females compared to males during landing which, in turn, may 

influence stain on the ACL. Furthermore, the reduced stability in the coordination between 

the left and right knee joints in female volleyball players compared to males during landing 

may indicate reduced dynamic stability of the knees during landing in females compared to 

males.  

 

Males exhibited significantly greater absolute and normalised leg stiffness and significantly 

greater absolute and normalised knee joint stiffness during landing compared to females. In 

conjunction with the coordination data, this may indicate reduced dynamic stability of the 
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legs in females compared to males. The reduced dynamic stability of the legs in female 

volleyball players compared to males during landing may contribute to the greater incidence 

of ACL injury in female volleyball players compared to males. Future research should 

examine gender differences in coordination and leg and knee joint stiffness in larger sample 

sizes and should investigate the effects of coordination and strength training on leg stiffness 

and knee joint stiffness in female volleyball players during landing.  
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Tables. 

Table 1. Group mean results for hip flexion, knee flexion and ankle plantar/dorsiflexion (– 

plantarflexion; + dorsiflexion) angles at IC, maximum angle and ROM (Mean ± standard 

deviation). 

  Hip flexion (o) Knee flexion (o) Ankle plantar/dorsiflexion (o) 

Males 

IC 13.89 ± 5.78 19.58 ± 6.381 -17.09 ± 10.312 

Maximum 29.16 ± 7.913 62.56 ± 12.11 31.39 ± 6.51 

ROM 15.27 ± 9.294 42.97 ± 14.405 48.49 ± 12.286 

Females 

IC 13.74 ± 5.86 14.77 ± 6.301 -25.05 ± 9.342 

Maximum 39.07 ± 11.893 67.90 ± 12.54 31.45 ± 5.92 

ROM 25.33 ± 11.984 53.13 ± 13.755 56.50 ± 11.136 

1-6: Significant difference between males and females (p<0.05). 
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Table 2. Peak gradient of angle – angle coupling graphs.  

  Hip –  knee  Knee – ankle  Hip – ankle 

Males 0.38 1.43 4.12 

Females 0.54 1.51 3.65 
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Table 3. DRP and vDRP angles of left – right joint couplings for the hip, knee and ankle 

joints.  

 
Hip (o)  

DRP ± vDRP 

Knee (o)  

DRP ± vDRP 

Ankle (o)  

DRP ± vDRP 

Males -2.07 ± 41.48 -3.75 ± 20.01 -19.60 ± 65.93 

Females 19.67 ± 33.58 -9.17 ± 52.39 -31.62 ± 42.04 

* No significant differences between males and females. 
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Table 4. Group mean results for change in vertical GRF, vertical displacement of the CG, leg 

stiffness, change in knee joint moment, angular displacement of the knee and knee stiffness 

during landing (mean ± standard deviation).  

  Males Females 

Change in vertical 

GRF 

Absolute (N) 2501.2 ± 692.01 1659.3 ± 411.31 

Normalised (BW) 3.64 ± 1.012 2.87 ± 0.602 

Vertical CG 

displacement 

Absolute (m) 0.167 ± 0.044 0.161 ± 0.048 

Normalised (ht) 0.095 ± 0.025 0.097 ± 0.029 

Leg stiffness 
Absolute (kN/m) 15.02 ± 8.823 10.29 ± 3.563 

Normalised (BW/ht) 38.55 ± 20.914 29.61 ± 7.944 

Change in knee joint 

moment 

Absolute (N.m) 121.6 ± 76.6 93.2 ± 31.8 

Normalised (BW.ht) 0.101 ± 0.063 0.097 ± 0.033 

Knee flexion 

displacement 
Absolute (o) 28.76 ± 9.855 51.90 ± 14.175 

Knee stiffness 
Absolute (N.m/o) 4.23 ± 1.086 1.79 ± 0.906 

Normalised (BW.ht/o) 0.0035 ± 0.00097 0.0019 ± 0.00097 

1-7: Significant difference between males and females (p<0.05). 
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Figure captions. 

Figure 1. Angle – angle diagrams of a) hip flexion (�) – knee flexion (�) joint coupling, b) 

knee flexion (�) – ankle plantar/dorsiflexion (�) joint coupling and c) hip flexion (�) – ankle 

plantar/dorsiflexion (�) between IC and maximum knee flexion for males and females.   

 


