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Abstract

The variability of surface ocean pCO2 is examined on multiple spatial and temporal

scales. Temporal autocorrelation analysis is used to examine pCO2 variability over multi-

ple years. Spatial autocorrelation analysis describes pCO2 variability over multiple spatial

scales. Spatial autocorrelation lengths range between<50 km in coastal regions and other

areas of physical turbulence up to 3,000 km along major currents. Analysis of the drivers

of pCO2 shows that ocean currents are the primary driver of spatial variability. Autocor-

relation lengths of air-sea CO2 fluxes are approximately half as long as for pCO2 due to

the effects of highly variable wind speeds.

The influence of modes of climate variability on ocean pCO2 and related air-sea CO2

fluxes is examined through correlations of climate indices with interannual pCO2 anoma-

lies separated from the long-term trend and mean seasonal cycle. Changes in the El Niño

Southern Oscillation alter pCO2 levels by -6.6 ± 1.0 µatm per index unit (µatm iu−1)

in the Equatorial Pacific, leading to changes in air-sea flux of up to 0.40 ± 0.06 Pg C

yr−1. The Pacific Decadal Oscillation shows statistically significant correlations with

pCO2 across the Equatorial Pacific, North Pacific and North Atlantic. No statistically sig-

nificant correlations are found with the North Atlantic Oscillation in the North Atlantic.

An important product of the analysis performed in this thesis is a spatially and tempo-

rally complete interpolated data set of surface ocean pCO2 data over an extended period.

This data product is the first of its kind, both in terms of its coverage and the fact that it

does not rely on the derivation of empirical relationships between pCO2 and other bio-

geochemical variables. The technique works as well as or better than previous regional

interpolations, with 90% of values likely to be within 30 µatm of the actual pCO2 value.
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et al. [2009]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Climatological mean annual air-sea CO2 fluxes for the global ocean. From

Takahashi et al. [2009]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 The number of months in the calendar year for which measurements are

available in the LDEO database of pCO2 measurements between 1970

and 2008. From Takahashi et al. [2009]. . . . . . . . . . . . . . . . . . . 14

2.1 (a) Map of the grid cells that pass the statistical significance test on the

monthly temporal ACF. (b) The mean monthly temporal ACF calculated

from all grid cells. The gray shaded area indicates one standard devi-

ation either side of the mean. The symbols show the progression of the

ACF between 6 and 12 months in different regions, to indicate the relative

influence of the seasonal cycle. . . . . . . . . . . . . . . . . . . . . . . . 28

xv



2.2 Examples of scatter plots used to estimate uncertainties of spatial auto-

correlation lengths for (left) all cruises in the global ocean, (middle) zonal

cruises in the eastern North Pacific, and (right) meridional cruises in the

eastern North Pacific. The mean autocorrelation length is plotted against

the standard deviation of contributing cruises for each grid cell, and a lin-

ear fit is made to estimate the relationship between the two. The steepness

of the slope is converted to a percentage, which is used for the uncertainty. 30

2.3 Histogram showing the frequency of zonal (diagonal stripe) and merid-

ional (gray) decorrelation lengths as a percentage of the total number of

cells for which spatial ACFs could be calculated. The arrows on the x-axis

indicate the median decorrelation lengths for (gray) meridional direction,

(striped) zonal direction and (black) all directions combined. . . . . . . . 34

2.4 (a) The mean spatial autocorrelation length of cruises passing through

each 5◦ grid cell. White values indicate the median autocorrelation length

of 400 km, while blue and red cells show longer and shorter correlations

respectively. Dark gray cells indicate regions where there is insufficient

data to calculate the autocorrelation length, or the autocorrelation length

is shorter than the minimum detectable distance. (b) shows the number of

cruises passing through each cell. . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Spatial autocorrelation maps for (a) zonal and (b) meridional cruises only,

with accompanying cruise counts (c) and (d) as for Figure 2.4 (Page 35). . 37

2.6 The difference between spatial autocorrelation lengths of the temperature

and residual components of the pCO2 measurements for (a) all seasons,

(b) summer and (c) winter. Red (blue) regions indicate that the tempera-

ture (residual) component is more spatially stable. . . . . . . . . . . . . . 39

2.7 Maps of spatial autocorrelation lengths of (clockwise from top left) pCO2

(from Figure 2.4, page 35), chlorophyll, sea surface height and sea surface

temperature. Dark gray cells indicate regions where there is insufficient

data to calculate the autocorrelation length, or the autocorrelation length

is shorter than the minimum detectable distance. . . . . . . . . . . . . . . 41

xvi



2.8 Autocorrelation lengths of components of the air-sea flux of CO2. Top

left: The difference between atmospheric and surface ocean pCO2; Top

right: solubility; Bottom left: gas transfer velocity; Bottom right: The

calculated air-sea flux. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 Data density of the LDEO database sampled onto a 5◦x5◦ grid. The scale

indicates the number of days between 1990-2008 for which pCO2 mea-

surements are available in each grid cell. . . . . . . . . . . . . . . . . . . 50

3.2 Maps of spatial autocorrelations of pCO2 in various compass directions

(top four maps) and the mean of all directions combined (bottom left).

The shading of each cell indicates the e-folding length of the ACF for that

cell. The graph (bottom right) shows the different directional ACFs for an

example cell centered on 32.5◦N 147.5◦E. The e-folding threshold (1/e)

is shown as a dashed horizontal line. . . . . . . . . . . . . . . . . . . . . 54

3.3 The complete process used to interpolate the pCO2 data. . . . . . . . . . 55

3.4 The process used to fit a curve to a single grid cell’s time series. . . . . . 58

3.5 The workflow followed in performing the spatial interpolation. . . . . . . 59

3.6 The grid cells used in the construction of the daily resolution temporal ACF. 60

3.7 Variogram computed for a cruise in the eastern equatorial Atlantic Each

dot represents the change in pCO2 between two points of the cruise (ver-

tical axis), and the distance between those points (horizontal axis). The

value for each 50 km bin (thick line) is calculated as the mean value for

all points at that distance (thin dashed line) plus one standard deviation. . 62

3.8 Calculation of uncertainty values for the curve fitted to the grid cell cen-

tered on 2.5◦S 147.5◦E. The time series (a) shows (red) the cell’s mea-

surements and (blue) interpolated values with uncertainties overlaid on

the fitted curve (black). (b) shows the mean uncertainty for each day of

the year (blue) and interpolated uncertainties (red) where no other values

are available. (c) shows the final interpolated time series (black line) with

uncertainties (gray). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xvii



3.9 The root mean squared error (in µatm) of each grid cell of the interpolated

PlankTOM5 data compared to the original model output sub-sampled us-

ing the LDEO spatial and temporal density. . . . . . . . . . . . . . . . . 65

3.10 Global maps of linear trends in pCO2 values (in µatm yr−1) from 1990-

2008 for (a) sub-sampled PlankTOM5 model output and (b) the interpo-

lated data from the sub-sampled model output. (c) shows the differences

between the two (in µatm yr−1). . . . . . . . . . . . . . . . . . . . . . . 65

3.11 Comparison of the seasonal cycle of pCO2 in the PlankTOM5 model (left)

to the interpolation of the PlankTOM5 data. The comparison is in terms

of (top) seasonal amplitude, (middle) the day of the pCO2 maximum, and

(bottom) the day of the pCO2 minimum. . . . . . . . . . . . . . . . . . . 66

3.12 Mean uncertainty assigned to the interpolated values of each grid cell for

the LDEO database. The color scale is identical to that used for the RMS

errors (Figure 3.9, page 65) for easy comparison. . . . . . . . . . . . . . 68

3.13 The mean pCO2 field from the interpolated data set for two seasons: (top)

December 1999 to February 2000, and (bottom) June to August 2000. . . 69

3.14 Comparison of (left) the climatology published by Takahashi et al. [2009]

and (right) the mean pCO2 concentration and seasonal cycle of the in-

terpolated data set. The comparison is in terms of (a) the mean pCO2

concentration in 2000, (b) seasonal amplitude, (c) the month of the pCO2

maximum, and (d) the month of the pCO2 minimum. . . . . . . . . . . . 71

3.15 The linear trend of pCO2 (in µatm yr−1) for each grid cell of the interpo-

lated data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.16 Comparison of linear trends calculated from the LDEO database [Le Quéré
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1.1 The greenhouse effect

Without an atmosphere, the Earth’s mean surface temperature would be approximately

-18◦C, over 30◦C cooler than the observed temperature of approximately 15◦C [Seinfeld,

2011]. The atmosphere acts as a filter on the incoming and outgoing radiation at Earth’s

surface, trapping some of the radiation and thereby maintaining its higher surface temper-

ature (Figure 1.1, page 4). Certain gases present in the Earth’s atmosphere do not readily

absorb the high-frequency incoming radiation, but do absorb the low-frequency outgoing

radiation [Fourier, 1827; Tyndall, 1861; Kiehl and Trenberth, 1997]. These are known

as greenhouse gases. The extra energy thus captured leads to an energy imbalance at the

top of the atmosphere. The imbalance is countered by an increase in the temperature of

the atmosphere [Arrhenius, 1896; Manabe and Wetherland, 1967; Kiehl and Trenberth,

1997], which in turn increases the temperature at the Earth’s surface.

The warming effect of the atmosphere on the Earth’s surface is known as the green-

house effect. The majority of the greenhouse effect is controlled by just a few greenhouse

gases. Water vapour (H2O) is the largest contributor to the greenhouse effect, accounting

for 60% of the warming effect in clear skies. Carbon dioxide (CO2) is the second biggest

contributor (26%) [Kiehl and Trenberth, 1997], followed by methane (CH4) with 9%, and

nitrous oxyde (N2O) with 3% [Ramaswamy et al., 2001]. All other greenhouse gases

combined contribute only 2% of the greenhouse effect.

Although H2O is the most influential greenhouse gas [Kiehl and Trenberth, 1997], di-

rect changes to its concentration are very small and have an insignificant effect on surface

temperatures. The largest changes in H2O concentration result indirectly from changing

concentrations of other greenhouse gases such as hydrogen, methane, ozone and chlorine

[Le Texier et al., 1988; Röckmann et al., 2004]. As they cause surface temperatures to in-

crease, more water evaporates from the Earth’s surface, causing a positive feedback. The

effects of this feedback are relatively small compared to the temperature increase incurred

by the initial release of greenhouse gases [Held and Soden, 2000; Philipona et al., 2005;

Schneider et al., 2010]. In contrast, the lifetime of CO2 in the atmosphere following a

perturbation has multiple time scales: about 50% will be removed within 30 years, a fur-

ther 30% within a century, and the final 20% may remain for thousands of years [Archer,
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Figure 1.1: The Earth’s annual global mean energy budget, in Watts m−2. From Kiehl and Tren-
berth [1997].

2005; Denman et al., 2007]. CO2 absorbs and re-emits radiation at portions of the radia-

tive spectrum not covered by H2O [Ahrens, 2007] and thereby has a significant additional

impact over H2O. Thus CO2 is the most influential greenhouse gas that is sensitive to

anthropogenic activity and its increase has caused concerns over humanity’s effect on the

atmosphere and the resulting changes in the global climate. The Greenhouse Gas Index

[Hofmann et al., 2006] indicates that CO2 has accounted for almost 80% of the warming

observed in the period 1990-2010.

1.1.1 Anthropogenic changes to the greenhouse effect

Before the start of the industrial revolution in the 18th Century, variations in the Earth’s

mean surface temperature were due primarily to changes in natural forcings [Crowley,

2000], mainly changes in solar irradiance [Lean et al., 1995] and volcanic activity [Briffa

et al., 1998]. During the 20th Century, Earth’s temperature increased by 0.74◦C, with

the majority of that warming (0.55◦C) occurring after 1970 [Trenberth et al., 2007]. The

HadCRUT3 temperature record [Brohan et al., 2006] shows that warming has contin-

ued into the 21st Century, with the 2001-2010 period approximately 0.2◦C warmer than

the preceding decade. Variations in the above-mentioned natural climate forcings can-

not explain the warming observed during the 20th Century; there is evidence that on the
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contrary, natural forcings of the Earth’s climate would have produced a cooling effect on

climate in the absence of anthropogenic greenhouse gases [Hegerl et al., 2007].

The increasing levels of greenhouse gases in the atmosphere observed throughout the

20th Century from sources such as fossil fuel burning, land use, land use change and

deforestation [e.g. Keeling et al., 2001; Khalil et al., 2002; Karakurt et al., 2012] and

their corresponding influence on the greenhouse effect are the key to understanding the

source of the recent warming. Atmospheric CO2 concentrations varied between 260 and

280 ppm for the 10,000 years preceding the industrial revolution [Indermühle et al., 1999].

Since that time approximately 365 petagrams of carbon (Pg C) have been released into the

atmosphere from fossil fuel combustion [Peters et al., 2012] and 150 Pg C from land use

change [Houghton, 2007]. The global mean atmospheric concentration computed from

measurements [Masarie and Tans, 1995] has increased to in excess of 390 ppm, a rate of

change unprecedented in the last 60,000 years [Indermühle et al., 2000].

The likely impact of the changes in greenhouse gas levels on the earth’s surface tem-

perature (termed the climate sensitivity) is typically expressed in terms of the projected

equilibrium increase in the global average surface temperature in response to a doubling

of atmospheric CO2 concentration. The estimated temperature increase for a doubling of

CO2 is between 2◦C and 4.5◦C [Meehl et al., 2007]. There is a large uncertainty about

the Earth’s climate sensitivity due to the complexity of the climate system and the many

positive and negative feedbacks that occur in response to temperature changes [Roe and

Baker, 2007]. The observed warming realised up to now is fully consistent with both the

theoretical understanding of greenhouses gases and with the observed increase of atmo-

spheric CO2 and other greenhouse gases [Hegerl et al., 2007].

1.2 The carbon budget

Not all of the emitted CO2 remains in the atmosphere. A proportion of the emitted CO2

is absorbed by the natural carbon reservoirs via the oceanic and terrestrial carbon ‘sinks’

[Figure 1.2, page 6; Le Quéré et al., 2009]. The fraction of emitted CO2 that remains in

the atmosphere is termed the airborne fraction. Quantifying the airborne fraction and the

magnitude of the sinks is essential for predicting how anthropogenic emissions will affect

the Earth’s future climate [Houghton, 2007].
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Figure 1.2: The global carbon cycle, including estimates of the capacity of carbon reservoirs (in
Pg C) and transfers between them (in Pg C yr−1) during the 1990s. From Houghton [2007].

CO2 emissions, atmospheric growth rate and CO2 sinks have been combined to form

an overall picture of the anthropogenic emissions and their fate, into what is called a ‘car-

bon budget’ by the research community (http://www.globalcarbonproject/budget). The

latest estimate of the global carbon budget indicates that approximately 10 Pg C were re-

leased into the atmosphere in 2010, continuing an upward trend that has persisted through-

out most of the 20th Century [Peters et al., 2012]. The terrestrial and oceanic sinks ab-

sorbed just over half of these emissions within sub-decadal timescales, leaving an airborne

fraction of between 40% and 50% [Sabine et al., 2004; Jones and Cox, 2005; Le Quéré

et al., 2009]. The amount of carbon absorbed by the sinks has been increasing in line with

the increasing atmospheric growth rate (Figure 1.3, page 7). There are concerns however

that the efficiency of the sinks may have decreased in recent decades [Canadell et al.,

2007; Le Quéré et al., 2007; Schuster and Watson, 2007; Raupach et al., 2008] leading

to an increase in the airborne fraction of CO2 emissions and possibly to an amplification

of climate change [Friedlingstein et al., 2006]. However, this finding is debated both be-

cause of the high uncertainty in airborne fraction [Knorr, 2009], and of the importance
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Figure 1.3: Trends in the rates of growth in (a) atmospheric carbon, (b) the land carbon sink, and
(c) the oceanic carbon sink. Sinks are negative to show their mitigating effect on the growth in
atmospheric carbon. From Le Quéré et al. [2009].

of emissions trajectories and natural variability for airborne fraction trends [Gloor et al.,

2010]. Calculating the individual components of the carbon cycle is subject to large un-

certainties due to high natural variability of the carbon cycle on interannual time scales

and gaps in the knowledge of transfers of carbon between the different parts of the carbon

cycle [Le Quéré et al., 2009]. This translates into large uncertainties in estimates of the

magnitude and long-term trend of the airborne fraction of anthropogenic CO2, and con-

sequent difficulties in creating highly detailed predictions of the likely future impacts of

emissions on the Earth’s climate.

The controversy over the trend in airborne fraction highlights the difficulties in accu-

rately tracking the complex dynamics of the carbon cycle and the subsequent effects on

future climate change. Increasing our understanding of the oceanic and terrestrial carbon

sinks and quantifying their response to global and regional climate change and variability

is therefore fundamental to current climate change research.



8 Context and Background

1.3 The oceanic carbon sink

1.3.1 Overview

The ocean is the Earth’s largest reservoir of carbon outside the solid earth, containing

approximately 38,000 Pg C or 50 times as much as the atmosphere (Figure 1.2, page 6).

CO2 is exchanged between the atmosphere and ocean as their relative concentrations tend

towards equilibrium. Projections of long-term carbon cycle estimate that the airborne

fraction of anthropogenic CO2 after emissions cease will reduce to 20-35% over a time

period of two centuries to thousands of years as the atmosphere and oceans reach equilib-

rium [Archer et al., 2009].

When CO2 enters the ocean from the atmosphere, it reacts with the water to form

carbonic acid (Equation 1.1). The carbonic acid then forms a bicarbonate anion and a

proton (Equation 1.2), which further dissociates giving a carbonate ion and another proton

(Equation 1.3).

CO2 +H2O ⇔ H2CO3 (1.1)

H2CO3 ⇔ H+ +HCO−
3 (1.2)

HCO−
3 ⇔ H+ + CO2−

3 (1.3)

The equilibrium form of dissolved CO2 is therefore:

CO2 +H2O + CO2−
3 ⇔ 2HCO−

3 (1.4)

The combined total of CO2, CO2−
3 and HCO−

3 is known as dissolved inorganic carbon

(DIC), 91% of which is in the form of HCO−
3 . Only 1% of DIC remains as CO2 which

can be exchanged with the atmosphere [Le Quéré and Metzl, 2004]. CO2 dissolves more

readily in cold water than warm water, and as water is heated it loses some of its capacity

to hold CO2. In equatorial regions the ocean acts as a net source of atmospheric CO2 (Fig-

ure 1.4, page 9). Carbon-rich waters are brought to the surface through upwelling, where

the concentration exceeds that of the atmosphere and CO2 is outgassed. The outgassing is

enhanced as the water is warmed. In high latitudes, where the surface waters are cooler,

CO2 is dissolved more readily. This water is then drawn down by ocean transport to form
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Figure 1.4: Climatological mean annual air-sea CO2 fluxes for the global ocean. From Takahashi
et al. [2009].

intermediate and bottom water, to be replaced at the surface by water flowing from the

low- and mid-latitudes which cools as it travels polewards. Intermediate and deep waters

are therefore richer in carbon than surface waters.

CO2 transport into the deep ocean in high latitudes occurs as part of the thermohaline

circulation, contributing to the ocean’s store of DIC. Warm, saline water from the tropics

is transported polewards by the Gulf Stream in the Atlantic, where it cools and becomes

denser causing it to sink [McCartney and Talley, 1984; Dickson and Brown, 1994]. The

North Atlantic is the largest net sink of atmospheric CO2 (Figure 1.4) due to factors en-

hancing the effect of the sinking surface waters. pCO2 concentrations are relatively low,

resulting in a larger air-sea CO2 gradient and therefore increased ocean uptake. Fluxes

are increased still further by the persistent high winds during winter months [Takahashi

et al., 2009]. The drawn down water forms North Atlantic Deep Water, which is then

transported around the world by deep water currents [Schmitz, 1995]. DIC can remain

isolated from the surface in this manner for periods ranging from a few decades to over

2,000 years [Primeau and Holzer, 2006; Holzer and Primeau, 2008].

Approximately 48 Pg C is removed from the surface waters through biological pro-

cesses each year [Figure 1.2, page 6; Longhurst et al., 1995]. The primary mechanism

of export is photosynthetic activity of phytoplankton, converting the dissolved CO2 into



10 Context and Background

organic matter which then becomes part of the oceanic food chain. This is termed pri-

mary production. 37 Pg C is returned to the surface through respiration and excreta, as

well as decomposition of dead organisms. Therefore, approximately 11 Pg C remains and

is exported below the surface layers of the ocean each year through biological activity.

As these organisms excrete detritus or die, some of the entrained carbon re-dissolves into

the water as dissolved organic carbon (DOC) where it is subjected to the same physical

processes as DIC [Hansell et al., 2009]. The remainder sinks as particulate matter. The

majority of DOC is remineralised to DIC over a period of decades [Jiao et al., 2010], and

thus has a similar residence time to DIC.

1.3.2 Anthropogenic changes to the oceanic carbon sink

Much of the change in the oceanic carbon sink will be directly related to increases in

the atmospheric CO2 concentration. As this increases, so will the gradient between the

atmospheric and oceanic CO2 concentration, leading to increased air-sea flux rates. Re-

cent studies show that these fluxes have increased to absorb approximately 25% of the

anthropogenic carbon emissions of CO2 released into the atmosphere each year [Mikaloff

Fletcher et al., 2006; Le Quéré et al., 2009]. This increase will continue until the oceanic

concentration equilibrates with the atmospheric concentration, which may already be hap-

pening in some regions [Le Quéré et al., 2007; Schuster and Watson, 2007; Raupach et al.,

2008].

Human-induced climate change is likely to have some effect on ocean circulation,

which in turn will affect the uptake and subsequent transport of CO2 from the atmo-

sphere. For example, a hypothetical reduction in salinity in the Southern Ocean caused

by increased ice melt [Broecker et al., 1999; Aiken and England, 2008] could result in in-

creased stratification and reduced transport of carbon to deep waters [Caldeira and Duffy,

2000]. Similarly, climate change effects may reduce the efficiency of the Atlantic Merid-

ional Overturning Circulation with similar reductions in transport of carbon between the

surface and the deep ocean [Schuster and Watson, 2007; Ullman et al., 2009; Tjiputra

et al., 2010].

The rate of biological uptake of CO2 is not determined by the availability of CO2, but

instead by light, nutrients and minerals such as iron [Martin et al., 1990; Falkowski et al.,
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1992]. Changes in atmospheric CO2 and air-sea fluxes caused by anthropogenic activity

consequently have little direct impact on the biological portion of the oceanic carbon

cycle. However, increasing atmospheric CO2 can have significant effects on biological

production via indirect impacts. Increasing levels of carbon in the ocean lower the pH

of the water [Raven et al., 2005; Bindoff et al., 2007; Doney et al., 2009], while burning

of fossil fuels increases the direct input of acids into the ocean [Doney et al., 2007].

Ocean acidification leads to reduced growth mass in calcifying organisms and therefore

decreased biological uptake of CO2 from surface waters [Fabry et al., 2008; Doney et al.,

2009]. Climate-induced changes in physical ocean properties such as circulation and

mixing can also affect the nutrient supply and related biological activity in some ocean

regions [Behrenfeld et al., 2006].

1.4 Calculation of the air-sea CO2 flux

The ability to quantify accurately the air-sea flux of CO2 is essential if we are to under-

stand the likely long-term effects of anthropogenic CO2 emissions. The rate at which

CO2 is transferred between the atmosphere and ocean (the flux) is calculated using a sim-

ple formula [Fangohr and Woolf , 2007]:

F = k s ∆pCO2 (1.5)

where k is the gas transfer velocity (the rate at which CO2 is exchanged between the

air and water), s is the solubility of CO2 in the water, and ∆pCO2 is the difference in

partial pressure of CO2 between the ocean and atmosphere (sea - air). The solubility s

is computed from a simple formula based on the salinity and temperature [Weiss, 1974].

∆pCO2 can be calculated from direct measurements of surface ocean and atmospheric

CO2.

The gas transfer velocity k is less certain. Factors affecting the gas transfer velocity

include wind speed [Liss and Merlivat, 1986; Wanninkhof , 1992], characteristics of sur-

face films [Frew et al., 1990; Tsai and Liu, 2003], bubbles [Asher et al., 1996; McNeil

and D’Asaro, 2007] and precipitation [Ho et al., 1997; Takagaki and Komori, 2007]. The
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exact contribution of these on the total gas transfer velocity is still the subject of investi-

gation [Wanninkhof et al., 2009]. Direct measurements of gas transfer velocity have been

made using a number of techniques. The most common technique involves examining the

covariance of eddies in the density of CO2 and vertical wind velocity [Smith and Jones,

1985; Edson et al., 1998; McGillis et al., 2001; Kondo and Tsukamoto, 2007; Yelland

et al., 2009]. Other approaches such as measuring isotopic fluxes of CO2 [e.g. Broecker

et al., 1986] have seemingly fallen out of favour. None of the direct measurment meth-

ods account for all the factors described above, and can give significantly different results

[Broecker et al., 1986; Wesely, 1986]. Additionally, direct measurements are not widely

avaialble; the vast majority of studies record only sea surface pCO2, and fluxes must be

calculated using other data sources.

The majority of air-sea CO2 flux calculations use gas transfer velocities calculated

from a parametrisation of wind speed alone, since it is relatively well understood and

wind speed data are available across the entire ocean via remote sensing. Several such

paramtrisations have been developed using both laboratory experiments and in situ mea-

surements [Liss and Merlivat, 1986; Wanninkhof , 1992; Wanninkhof and McGillis, 1999;

Nightingale et al., 2000; Ho et al., 2006; Sweeney et al., 2007]. Although the choice of

a single parameterisation from the available options is in itself a source of uncertainty in

global flux estimates [Ho et al., 2006], and a single wind speed relationship is unlikely to

be representative across the globe [Zhang, 2007], this is the most practical approach given

the limits of current knowledge.

1.4.1 Limitations on knowledge of the oceanic CO2 flux

The main limiting factor in our ability to calculate air-sea CO2 fluxes is the availability of

surface ocean pCO2 measurements. Other data required to calculate air-sea CO2 fluxes

are readily available at all temporal and spatial scales. Atmospheric CO2 can be measured

using land-based air sampling stations [e.g. Conway et al., 1994]. Measurements do not

need to be taken at spatially close locations since the atmosphere is well mixed and mea-

surements can be accurately extrapolated to produce globally complete coverage [Masarie

and Tans, 1995]. Wind speeds can be derived via remote sensing [Atlas et al., 2011], as
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can sea surface temperatures (SST) [Minnett, 2001]. Sea surface salinity (SSS) can be ob-

tained from interpolated data sets such as the World Ocean Atlas [Antonov et al., 2006].

SSS has only a small effect on air-sea CO2 fluxes so using interpolated data is sufficient to

calculate flux values. SST and SSS are also frequently measured alongside surface ocean

pCO2 measurements.

Surface ocean pCO2 can only be measured using under-way sensing equipment in-

stalled on ships [e.g. Cooper et al., 1998; Pierrot et al., 2009] or fixed measuring stations

[e.g. Karl and Lukas, 1996; Michaels and Knap, 1996; González-Dávila et al., 2003;

Nemoto et al., 2009]. Although pCO2 sensors are being developed that will be suitable

for deployment on autonomous profiling floats and gliders, these have yet to come to

fruition [Johnson et al., 2009]. To date, therefore, pCO2 measurements across the global

ocean are only available where ships travel equipped with appropriate devices.

Databases of collected pCO2 measurements are the basis of the majority of large-scale

estimates of the oceanic CO2 flux. Historically this data has only been released as a cal-

culated climatology [e.g. Takahashi et al., 2002, 2009]. More recently, complete versions

of the measurement database have been published, each providing several million individ-

ual measurements for analysis [Takahashi and Sutherland, 2009; Pfeil et al., submitted].

These databases have allowed scientists to drill deeply into the available surface ocean

pCO2 data for the first time, and also highlighted the limitations of the data collected to

date.

There are large ocean regions with very few or no pCO2 measurements (Figure 1.5,

page 14). The lack of available measurements is a significant problem, because unlike

atmospheric concentrations oceanic pCO2 is highly variable on temporal and spatial scales

[Feely et al., 1997; Bates et al., 1998; Cooper et al., 1998; Sarma, 2003; Lüger et al., 2004;

Li et al., 2005; Midorikawa et al., 2006; Santana-Casiano et al., 2007; Ishii et al., 2009;

Tortell and Long, 2009; Shadwick et al., 2011].

There are regions where there are sufficient pCO2 measurements to make some as-

sessment of interannual air-sea flux variability. These regions are mostly in the North

Atlantic, where equipment has been installed on commercial ships travelling between the

United Kingdom and the Caribbean [Cooper et al., 1998; Schuster and Watson, 2007] and

between Iceland and Newfoundland [Corbière et al., 2007]; the North Pacific [e.g. Inoue
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Figure 1.5: The number of months in the calendar year for which measurements are available
in the LDEO database of pCO2 measurements between 1970 and 2008. From Takahashi et al.
[2009].

et al., 1996; Midorikawa et al., 2003; Takahashi et al., 2006; Takamura et al., 2010]; and

the Equatorial Pacific where a network of fixed buoys is deployed [Feely et al., 2002,

2006; Ishii et al., 2009]. However, even in these regions of greatest data coverage a full

picture of pCO2 variability on multiple temporal and spatial scales is missing. In the rest

of the global ocean, pCO2 and air-sea fluxes are largely limited to monthly climatologies

[Takahashi et al., 1997, 2002, 2009] and long-term trends in specific regions [Lefèvre

et al., 2004; Takahashi et al., 2006; Metzl, 2009; Schuster et al., 2009]. While these data

products can be combined into global estimates of trends in air-sea fluxes, they show

large interannual variability [Le Quéré et al., 2009] that is poorly constrained by the lack

of ocean-wide flux data.

1.4.2 Estimating surface ocean pCO2

A globally and temporally complete data set of interpolated and extrapolated oceanic

pCO2 values would be an invaluable resource for a number of studies. First, it would

allow comprehensive air-sea flux rates to be calculated for all sectors of the ocean for an
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extended time period, and would provide a much greater insight into the temporal vari-

ability of fluxes compared to existing climatologies [e.g. Takahashi et al., 2009]. Second,

it could act as a valuable input for model validation studies [e.g. Le Quéré et al., 2009]

and as an input of prior estimates for atmospheric inverse methods [Gurney et al., 2002].

There will also be countless opportunities to drill into such a comprehensive data set to

examine many characteristics of surface ocean pCO2 that may have been impossible pre-

viously. Advanced interpolation and extrapolation techniques have been developed to

estimate temperature [Locarnini et al., 2006], salinity [Antonov et al., 2006] and oxygen

[Garcia et al., 2006] anomalies for the world’s ocean, but they have not yet been adapted

to carbon variables.

1.4.2.1 Interpolation and Extrapolation Techniques

Data interpolated in both space and time are preferable to climatological estimates for

many studies since they can encompass interannual and longer term variability. The most

common approach to extrapolating pCO2 data used so far has been to establish relation-

ships between pCO2 and other oceanic variables and use these relationships to reconstruct

pCO2 for those regions and times where no measurements are available. At its simplest,

this approach can establish a simple linear relationship between changes in sea surface

temperature (SST) and changes in pCO2 [Lee et al., 1998; Boutin et al., 1999; Lefèvre

and Taylor, 2002]. Such simple relationships can be useful if SST is the dominant factor

affecting pCO2 [Boutin et al., 1999; Shim et al., 2007], or if the SST/pCO2 relationship

is known to represent closely the myriad other factors affecting pCO2 levels, such as bi-

ological activity or mixing, although the latter is unlikely [Park et al., 2006]. Whether

or not a single parameter can be used as an adequate proxy for pCO2 depends largely on

the characteristics of highly localised regions [Shim et al., 2007]; it is unlikely that this

approach will be effective over large spatial scales.

More sophisticated interpolation approaches have been used to establish relationships

between pCO2 and multiple other variables representing aspects of the ocean’s biogeo-

chemical cycle. Such approaches typically use a combination of SST, chlorophyll (Chl)

and mixed layer depth (MLD) [e.g. Ono et al., 2004; Jamet et al., 2007; Watson et al.,

2009], although other indicators such as NO3 are sometimes included [Wanninkhof et al.,
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1996]. A multi-variate relationship between all these variables is constructed using multi-

linear regression techniques. This provides a more complete representation of the factors

affecting pCO2 levels than a single relationship, which is important where no single fac-

tor has a dominant influence. A similar technique uses neural networks to construct a

self-organising map of relationships between pCO2 and related oceanic variables, which

can then be used as a reference for inferring missing pCO2 values from the known val-

ues of the related variables [Telszewski et al., 2009; Watson et al., 2009; Valsala et al.,

2011]. Still others have constructed relationships utilising principal components analysis

[Lohrenz and Cai, 2006].

Such multi-variate approaches to estimating pCO2 values are very useful in studies

of limited spatial and temporal extent. Accuracy tests show that, where there are plenty

of pCO2 measurements, the interpolated pCO2 values can be very accurate: mean errors

of 10-15 µatm are typical [Jamet et al., 2007; Telszewski et al., 2009], though errors less

than 2 µatm have been reported in some instances [Watson et al., 2009]. However, the

relationships established may not be representative across large regions or extended time

periods. This is particularly evident in Wanninkhof et al. [1996], where the errors in the

interpolated pCO2 values vary between 1 µatm and 48 µatm. Multiple relationships at

different spatial locations and times would be required to achieve consistently accurate

results using regression techniques. Some studies have begun to break down the relation-

ships for seasonal variations [e.g. Lee et al., 1998; Jamet et al., 2007], but extending the

analysis to encompass geographical and interannual variations [e.g. Park et al., 2006] is

much less common.

1.5 Interannual variability of the climate and the carbon cycle

Changes in the Earth’s climate system over periods of one to a few years are frequently

discussed in terms of large scale modes of climate variability. These are typically defined

in relatively simple terms, such as teleconnections in atmospheric pressure systems or

changes in sea surface temperature in specific regions.

The mode of climate variability which has the largest global effect is the El Niño

Southern Oscillation (ENSO). ENSO indices are a measure of sea surface temperature
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(SST) anomalies in the Equatorial Pacific [Trenberth, 1997]. The indices are comple-

mented by the Southern Oscillation Index (SOI), a measure of the difference in pressure

between Darwin and Tahiti [Ropelewski and Jones, 1987]. This index is representative

of the atmospheric portion of ENSO [Trenberth, 1997]. SSTs in the Equatorial Pacific

are typically characterised by cold waters upwelling from the eastern Equatorial Pacific

that propagate across the Pacific to form what is known as the ‘cold tongue’ [Yulaeva and

Wallace, 1994]. El Niño events occur at periods of two to seven years and last usually

6-12 months. They are characterised by a weakening of the trade winds, allowing warm

waters to extend from the western Pacific and suppress the upwelling in the east [Feely

et al., 1987]. The shift from cold to warm surface waters during El Niño events in turn

causes significant changes in the overlying atmosphere and can affect weather systems

around much of the globe [e.g. Joseph et al., 1994; Chiew et al., 1998].

The North Atlantic Oscillation (NAO) is defined as an atmospheric teleconnection

similar to the SOI, measured as the difference in sea level pressure between Iceland and

the Azores. This variation influences surface temperatures, winds and precipitation, al-

though the effects are much more geographically limited than those of ENSO and the SOI

[Hurrell, 1995].

Large-scale climate variability in the North Pacific cannot be measured in terms of a

single climatic phenomenon as in other regions. However, there is a consistent variation

in climate that can be detected in a number of measured properties such as SST, sea

level pressure, air temperatures and precipitation known as the Pacific Decadal Oscillation

(PDO) [Mantua et al., 1997].

1.5.1 Effects on surface pCO2

The modes of climate variability described above are most commonly associated with

their meteorological effects, but also have an influence on the carbon cycle. The ENSO in-

dices are closely related to surface pCO2 in the Equatorial Pacific as upwelling of carbon-

rich water is suppressed during El Niño events and enhanced during La Niña events [Feely

et al., 1987; Inoue and Sugimura, 1992]. The SOI is closely related to ENSO but the two

indices are opposite in sign. Changes in the SOI index therefore lead to an opposing rela-

tionship to pCO2, but the strength of the correlation is nonetheless similar to that of ENSO
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[Inoue et al., 1996; Etcheto et al., 1999; Feely et al., 1999, 2002, 2006; Sheu et al., 2010].

The PDO’s influence over pCO2 in the North Pacific is not so clearly defined as

ENSO’s effects on the Equatorial Pacific. However, the changes in several climatic vari-

ables related to the PDO are expected to have some effect on pCO2. The changes in

climate are related to variations in vertical mixing rates and biological activity, both of

which are known drivers of surface pCO2 variability [McKinley et al., 2006; Valsala et al.,

2011].

The link between the NAO and pCO2 levels in the North Atlantic is less certain and the

subject of considerable debate. Model-based analyses tend to show a relationship caused

by increasing MLD and decreasing SST in positive phases of the NAO [Thomas et al.,

2008; Ullman et al., 2009]. The link tends to vary across the basin, with a dipole between

the sub-tropics and sub-polar regions [Le Quéré et al., 2000]. Analysis of the NAO based

on observational data give differing results. Some have found links between the NAO and

pCO2 in at least some areas of the North Atlantic, again related to changes in MLD and

SST [Gruber et al., 2002; Corbière et al., 2007; Schuster et al., 2009; McKinley et al.,

2011]. Other studies have concluded that no such link exists [Schuster and Watson, 2007;

Watson et al., 2009; Padin et al., 2011].

Quantifying the effects of climate variability on surface pCO2 is a critical step in un-

derstanding how the processes represented by the indices described above affect air-sea

CO2 fluxes. Such links may be either direct, through changes in sea surface tempera-

ture and hence the solubility of CO2 in sea water, or indirect through variations in ocean

circulation, biological processes or wind speed and thus the gas transfer velocity. The

systematic collection and collation of global pCO2 measurement data will ease efforts to

understand such links.

1.6 Aim of this research

The aim of this research is to extend the current knowledge of surface ocean pCO2 vari-

ability in both spatial and temporal dimensions. While this topic has been studied in the

past, the scope has generally been limited in time or space. The recent release of large

databases of pCO2 measurements from multiple data sets spanning the entire globe over

more than 30 years [Takahashi and Sutherland, 2009; Pfeil et al., submitted] provide an
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invaluable opportunity to extend the analysis of pCO2 variability to a global extent and

multiple time scales. Specifically, this thesis aims to identify:

• Over what spatial and temporal scales do surface pCO2 levels vary?

• Which underlying drivers have the greatest influence of spatial pCO2 variability?

• How does spatial variability of air-sea fluxes compare with that of sea surface sea

surface pCO2?

• How much does surface pCO2 change in response to large-scale modes of interan-

nual climate variability?

• In which regions are the relationships between pCO2 and modes of climate vari-

ability most evident?

• Which areas of the global ocean lack sufficient measurements to accurately assess

pCO2 and air-sea CO2 flux variability?

Chapter 2 presents an analysis of the spatial and temporal variability of the available

pCO2 measurements in the form of autocorrelations. This information can be used to

inform strategies for determining pCO2 sampling rates in space and time [Sweeney et al.,

2002; Lenton et al., 2009], and as a prior estimate of variability for inverse modelling

techniques based on data assimilation [e.g. Rödenbeck et al., 2003]. The chapter also

contains an analysis of other oceanic variables to determine which aspects of the ocean

system dominate the spatial pCO2 variability. Finally it examines the spatial variability of

air-sea fluxes.

Chapter 3 describes a new method to construct a spatially and temporally complete

data set of interpolated surface ocean pCO2 based purely on statistical techniques. The

data set will be used to examine pCO2 variability in response to modes of climate variabil-

ity in Chapter 4. This method avoids the pitfalls of relationships to other oceanic variables

which are less accurate on large spatial and temporal scales. The method also provides

uncertainty estimates for the interpolated pCO2. Finally, the interpolation technique is

validated against a model output data set to assess its accuracy. The method developed in

this thesis will be useful not only for this study, but will also have other applications in

the wider community.
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Chapter 4 analyses the interannual variability of pCO2 concentrations in relation to

large-scale modes of climate variability (e.g. the El Niño Southern Oscillation and North

Atlantic Oscillation). The relationship is examined using the correlation of pCO2 levels

to the climate indices as a measure of the strength of the link, its magnitude, and spatial

extent.

Finally, the Summary and Conclusion chapter reviews the findings of the research,

reflects on its efficacy, and provides suggestions for improving and extending the work of

the thesis in future.

1.6.1 Data Used

This thesis utilises data from both the Lamont-Doherty Earth Observation (LDEO) database

[Takahashi and Sutherland, 2009] and Surface Ocean CO2 Atlas (SOCAT) database [Pfeil

et al., submitted]. Only the LDEO database was available at the outset of this study, so that

was used for Chapter 2 and Chapter 3. The SOCAT database was released in September

2011. The SOCAT project implements a more thorough and transparent quality control

process than the LDEO database, so that database is therefore deemed a more reliable

data product. The SOCAT database is used for the analysis in Chapter 4.



Chapter 2

Autocorrelation Characteristics of

Surface Ocean pCO2



22 Autocorrelation Characteristics of Surface Ocean pCO2

Autocorrelation characteristics of Surface Ocean pCO2

Steve D. Jones1, Corinne Le Quéré2, Christian Rödenbeck3
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Published in Global Biogeochemical Cycles, doi:10.1029/2010GB004017.

All the work and analysis presented in this chapter was undertaken by Steve Jones,

primarily to support the work performed in the remainder of this thesis. The co-authors on

the paper provided guidance and suggestions regarding analyses and results that would

be of most use and interest to the wider scientific community.



2.1 Abstract

Understanding the variability and coherence of surface ocean pCO2 on a global scale can

provide insights into its physical and biogeochemical drivers and inform future sampling

strategies and data assimilation methods. We present temporal and spatial autocorrelation

analyses of surface ocean pCO2 on a 5◦x5◦ grid using the LDEO database. The seasonal

cycle is robust with an interannual autocorrelation of ∼0.4 across multiple years. The

global median spatial autocorrelation (e-folding) length is 400±250 km, with large vari-

ability across different regions. Autocorrelation lengths of up to 3,000 km are found along

major currents and basin gyres while autocorrelation lengths as low as 50 km are found in

coastal regions and other areas of physical turbulence. Zonal (east-west) autocorrelation

lengths are typically longer than their meridional counterparts, reflecting the zonal nature

of many major ocean features. Uncertainties in spatial autocorrelation in different ocean

basins are between 42% and 73% of the calculated decorrelation length. The spatial au-

tocorrelation length in air-sea fluxes is much shorter than for pCO2 (200±150 km) due to

the high variability of the gas transfer velocity.

2.2 Introduction

The ocean is estimated to absorb approximately 25% of the total anthropogenic emissions

of carbon dioxide (CO2) released into the atmosphere every year [Mikaloff Fletcher et al.,

2006; Le Quéré et al., 2009]. The partial pressure of CO2 at the ocean surface (pCO2) is a

fundamental determinant of the rate at which CO2 is absorbed by the ocean [Fangohr and

Woolf , 2007]. Thus, understanding the spatial and temporal variability of surface ocean

pCO2 is critical to understanding the interaction between the atmospheric and oceanic

carbon cycles.

There are several methods of assessing the variability of a physical variable such as

pCO2 on different scales, such as direct comparison of adjacent measurements [e.g. Bates

et al., 1996; Jiang et al., 2008] and frequency domain analysis [Lenton et al., 2006].

While there have been many recent studies of pCO2 variability, the paucity of available

measurements has limited their extent. The majority of spatial studies have focused on

relatively small regions [Jiang et al., 2008; Ishii et al., 2009; Krasakopoulou et al., 2009;
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Santana-Casiano et al., 2009; Zhang et al., 2010] or individual/repeated cruise tracks

[Fransson et al., 2009; Padin et al., 2010]. Temporal studies are also restricted to specific

regions, and are additionally limited in scope, focussing on either sub-daily [Bates et al.,

1998; Dai et al., 2009; Leinweber et al., 2009] or seasonal timescales [Sarma, 2003; Shim

et al., 2007; Olsen et al., 2008; Litt et al., 2010]. A small number of previous studies have

attempted to produce a global perspective on pCO2 variability. The lack of long-term

measurement projects has prevented interannual analysis in most cases, although there

are exceptions where fixed stations have been deployed [Bates et al., 1996; Gruber et al.,

2002; Cosca et al., 2003; Wong et al., 2010]. Some attempts at global assessments of

pCO2 variability have been undertaken despite these limitations. Li et al. [2005] produced

global maps of spatial autocorrelation lengths from surface ocean pCO2 based on previous

data sets of pCO2 measurements, but their analysis was made on a coarse 10◦x10◦ grid

and their results were restricted to variability on scales of <∼1,000 km only. These

limitations both reduced the ability to discern long-scale autocorrelations and restricted

detection of finer detail. Sweeney et al. [2002] examined the decorrelation lengths for

a selection of cruise tracks with a view to estimating desired spatial sampling rates for

future observation projects, but a full global analysis was not attempted.

This paper presents a global assessment of the spatial and temporal variability of sur-

face ocean pCO2, based on the measurements from the Lamont-Doherty Earth Obser-

vatory database [Takahashi and Sutherland, 2009] (hereafter referred to as the LDEO

database). This work expands on previous analysis by using a more extensive data set,

by looking at much larger spatial scales limited only by the length of individual cruise

tracks, and by examining the directional features of the autocorrelation characteristics.

The factors controlling the spatial variability of pCO2 are identified by decomposing the

pCO2 signal into its temperature and residual components [Takahashi et al., 2002]. The

study is extended to cover the spatial variability of air-sea CO2 fluxes. The differences in

spatial variability between pCO2 and CO2 fluxes are identified and discussed. Finally the

influence of other external drivers (winds, ocean circulation, biology) on CO2 variability

is also examined directly or through the analysis of proxy variables (sea surface height,

surface chlorophyll). This study thus provides a global view of the spatial and temporal

coherence of surface ocean CO2 data, their underlying controls, and their correspondence
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with the signatures of known physical and biological drivers.

The global view of oceanic pCO2 variability presented here can inform strategies for

determining sampling rates in both space and time [Sweeney et al., 2002; Lenton et al.,

2009]. It will also prove useful in a number of modelling projects: sea-air CO2 fluxes

can be calculated using this data, which in turn can be used as prior estimates of ocean

variability for inverse modelling techniques based on data assimilation [Rödenbeck et al.,

2003]. Furthermore, knowledge of the autocorrelation characteristics of pCO2 can inform

advanced methods of interpolating the sparse measurements available, such as those used

for other physical and geochemical variables [Levitus, 1982]. This will provide an im-

portant improvement over the necessarily less comprehensive interpolations performed to

date [Lefèvre and Taylor, 2002; Takahashi et al., 2002; Schuster et al., 2009].

2.3 Data preparation

The LDEO database consists of ∼4.1 million individual surface ocean pCO2 measure-

ments spanning the period 1968-2008. Outliers were detected and removed from the data

to reduce the influence of erroneous entries caused by transcription errors or faulty instru-

mentation. The remaining measurements were converted into two separate formats for

temporal and spatial autocorrelation.

The autocorrelation calculations performed in this analysis are based on two surface

ocean pCO2 data products: time series for each 5◦x5◦ grid cell and ship track data. This

section describes the treatment of the data necessary to construct the data products and

their rationale. The method will be described in detail in Section 2.4 (page 27).

2.3.1 Data for temporal autocorrelation

To compute the temporal autocorrelation, the ocean was divided into 5◦x5◦ grid cells

and time series constructed for each. This grid size represents a compromise between a

high-resolution analysis and the limitations of the available data. Daily mean values were

calculated for each cell to produce a time series spanning the complete time period of

the data set. For leap years, a ‘day’ was calculated as 1 1
365 calendar days, to produce a

constant year length of 365 days throughout. While calculating the daily mean value for

each grid cell, any measurements falling outside three standard deviations of the mean
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were flagged as outliers in an iterative process, repeated until no outliers were detected.

17,952 measurements (0.004%) were flagged as outliers in this manner. Further outliers

were removed by examining the complete daily time series for each grid cell as follows. A

linear trend for the time series was calculated and temporarily removed. Any day whose

mean pCO2 level fell outside three standard deviations of the mean was flagged in an

iterative process, again repeated until no outliers were detected. A total of 268 days’

measurements (0.007%) were flagged across all grid cells.

The measurements flagged as outliers were removed from both the binned and original

data sets, which were then used as the basis for the temporal and spatial autocorrelation

analysis respectively.

2.3.2 Data for spatial autocorrelation

Calculating the spatial variability of the pCO2 measurements requires a set of data with

sufficient spatial coverage over the ocean. Using the gridded data set created for the

temporal autocorrelation above was not suitable: in any given day or month there was

insufficient coverage to calculate the variability, and combining multiple maps from the

gridded data set to produce sufficient spatial coverage would artificially increase the vari-

ability of the data as pCO2 levels changed over time. Using gridded data also restricts

the spatial resolution of the final autocorrelation calculation, and prevents the detection of

small-scale variability.

The LDEO database is constructed from measurements taken along individual cruise

tracks. Each cruise represents a suitable data set for assessing the spatial variability of

pCO2 in the region through which it passes, with most cruises made up of several hundred

measurements logged to sub-kilometer precision. Each cruise’s measurements are also

taken closely together in time, thus minimising the effect of temporal variations in pCO2.

Calculating the spatial autocorrelation for each cruise’s data, then projecting the results

onto a gridded map, allows a global assessment of the spatial variability of pCO2 levels

to be created.

Unfortunately, the LDEO database does not identify individual cruises: it lists only

the institutes or scientists who collected the data. Extraction of specific cruise informa-

tion was therefore performed by analysing the characteristics of the data as follows. The
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measurements provided from a single source were grouped together and sorted by date

and time. Where two consecutive measurements were taken within 10 days, both were

assumed to be from the same cruise period; greater time periods between measurements

were treated as boundaries between separate cruises. The 10-day period was chosen to

provide a balance between maintaining coherent cruises, and accounting for reduced cor-

relations due to large time differences between measurements. The measurements from

each of these periods were split into cruises by assessing their geographical proximity.

For any pair of measurements to be considered as part of the same cruise, they could not

be separated by more than the distance a ship is likely to travel in the time between the

two measurements. The threshold was set at a rate of 1,500 km per day, equating to an

average speed of 33 knots. While this is faster than most ships can travel, it provides

some flexibility to account for errors in the recorded measurement positions and/or times.

Even this threshold was not sufficient to capture accurately all cruises: in some cases, all

the measurements for a cruise are recorded on a single date or at short fixed intervals,

presumably where accurate time records were not available. These cruises would be split

erroneously using the above threshold, and so were identified and processed manually.

Finally, any cruise containing fewer than five measurements was discarded, as this was a

strong indication of errors in the original data such as mis-recorded ship positions. This

yielded a total of 1,535 individual cruises from the LDEO database.

2.4 Method

2.4.1 Temporal autocorrelation

A temporal autcorrelation function (ACF) for each 5◦x5◦ grid cell was calculated at

monthly resolution. Since no grid cells contained a complete time series, the autocor-

relations could be computed only where the original and lagged time series contained

pairs of values at the same time steps. In some cases the number of paired time steps was

very small, so a measure of the statistical significance of the result was required to ensure

that the results were robust. The statistical significance of each ACF value was calculated

as a function of the number of time steps used in the calculation using the formula:
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Figure 2.1: (a) Map of the grid cells that pass the statistical significance test on the monthly
temporal ACF. (b) The mean monthly temporal ACF calculated from all grid cells. The gray
shaded area indicates one standard deviation either side of the mean. The symbols show the
progression of the ACF between 6 and 12 months in different regions, to indicate the relative
influence of the seasonal cycle.

T =
Q
(
1
2(1 + 0.95)

)
√
n

(2.1)

where T is the threshold of statistical significance, Q is the quantile of the cumulative

distribution function of the normal distribution at 95% [Wichura, 1988] and n is the num-

ber of values used to construct the ACF. This function gives a threshold between 0 and 1.

Individual ACF values between T and 0 (either positive or negative) are not statistically

significant; any such values in the calculated ACFs were discarded. A value of T ≤ 0.5

was used for this study, since the number of monthly values available for a given grid cell

is relatively low. A total of 348 grid cells had ACFs containing statistically significant

values at the 95% level (Figure 2.1a). The majority of these were in the North Pacific and

North Atlantic, where most pCO2 measurements are available [Takahashi et al., 2009].

Temporal ACFs at daily resolution were also calculated for each grid cell, but too few
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cells produced statistically significant ACFs to allow a robust analysis of the results.

2.4.2 Spatial autocorrelation

Spatial autocorrelation functions were calculated for each cruise in the LDEO database

using the Moran’s I technique [Moran, 1950], comparing the similarity of pairs of mea-

surements within the cruise. Autocorrelation values for the cruise were calculated in dis-

tance groups of 50 km. For the 0-50 km bin, pairs of measurements separated by 50 km

or less were assessed to give an autocorrelation value for the cruise at a distance lag of

50 km. Next, pairs of measurements separated by 50-100 km were examined and so on,

to build a complete ACF covering the full distance of the cruise. This approach limited

the smallest detectable autocorrelation length to 50 km, which meant that some detail was

lost around coastlines where autocorrelations are likely to be very short. However, this

was necessary to reduce the amount of computation required for the analysis to a feasible

level.

Any cruise from the LDEO database that covered a distance of 50 km or less was

discarded from the analysis. Similarly, any cruise with a correlation length of within

100 km of the overall cruise distance was also discarded as it is likely that the correlation

length was limited by the length of the cruise. A total of 1,454 cruises remained for

the spatial autocorrelation analysis. The Moran’s I technique includes an assessment of

the statistical significance of its results. Any value that fell below the threshold of 95%

significance was discarded. The decorrelation length of the measurements from each

cruise was determined by the e-folding length of the ACF.

Many of the cruises in the data set pass through different water masses, meaning

that the ACF for each cruise represents the combined autocorrelation characteristics of

all the water masses encountered and any variability between them is hidden. The auto-

correlation analysis for each cruise was extended to reveal this variability. For each grid

cell through which the cruise passed, an ACF was calculated for the measurements taken

within a reference distance of the center of the cell. The reference distance was set at five

times the e-folding length of the original ACF calculated for the entire cruise.

Global maps of spatial autocorrelation lengths were produced using the e-folding

lengths of the ACFs calculated for the individual grid cells. Where more than one cruise
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Figure 2.2: Examples of scatter plots used to estimate uncertainties of spatial autocorrelation
lengths for (left) all cruises in the global ocean, (middle) zonal cruises in the eastern North Pacific,
and (right) meridional cruises in the eastern North Pacific. The mean autocorrelation length is
plotted against the standard deviation of contributing cruises for each grid cell, and a linear fit is
made to estimate the relationship between the two. The steepness of the slope is converted to a
percentage, which is used for the uncertainty.

had an ACF for a given grid cell, the mean e-folding length of all those ACFs cruises

was calculated to determine the spatial autocorrelation length for that particular cell. This

produced a map of decorrelation lengths for each 5◦x5◦ grid cell. An accompanying map

showing the number of cruises contributing to each cell’s value was constructed to pro-

vide a measure of the confidence level for each cell. Additional maps were produced to

show directional autocorrelations. A zonal map was computed using the 571 cruises trav-

elling within 30◦ of the east-west direction, and a meridional map from the 521 cruises

travelling within 30◦ of the north-south direction.

Assessing the uncertainty of the spatial autocorrelation lengths was difficult because

very few cruises contribute to each grid cell over much of the ocean (Figure 2.4b, page 35).

An estimate of the uncertainty for each grid cell was calculated as follows. The standard

deviation of the autocorrelation lengths that were used in each grid cell was plotted against

the mean autocorrelation length calculated for that cell, and a linear fit applied to the

scatter plot. The slope of the fitted line was converted to an uncertainty expressed as

a percentage of the grid cells’ mean autocorrelation length. The uncertainty estimates

were calculated for the global ocean as well as smaller ocean regions. Examples of the

scatter plots and fitted slopes are shown in Figure 2.2. The linear fit used to estimate the

uncertainty was robust, as illustrated by the r2 values of the linear fits (Table 2.1, page 34).

We examined the pCO2 autocorrelation lengths in greater detail by extracting the

temperature-driven component of the pCO2 measurements, calculated as pCO2 at a con-

stant temperature, and a residual component representing the effect of all other processes.
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Following the method of Takahashi et al. [1993], pCO2 has been observed to vary with

temperature at the rate:

δln pCO2

δT
= 0.0423 ◦C−1 (2.2)

This allows each pCO2 measurement to be decomposed into temperature and residual

components:

pCO2 = pCOT
2 + pCOresidual

2 (2.3)

where:

pCOresidual
2 = pCO2 ∗ exp

[
0.0423

(
T − T

)]
(2.4)

where pCO2 and T are the in situ pCO2 and SST measurements respectively, and T

the global mean sea surface temperature (20.29◦C) cell calculated from Level-3 Stan-

dard measurements from the Aqua-MODIS satellite provided by NASA/GFSC/DAAC

(http://oceancolor.gsfc.nasa.gov). Spatial autocorrelation maps of each component were

produced for direct comparison.

2.4.3 Autocorrelation of drivers

Spatial autocorrelation analysis was also performed on other ocean properties to deter-

mine possible drivers for the autocorrelation of pCO2 values. We used Chlorophyll data

from the SeaWiFS satellite, sea surface temperature (SST) data from the MODIS satel-

lite, and sea surface height (SSH) data from AVISO. The latter was used as a proxy for

ocean currents, since spatial gradients in SSH are a strong indicator of current strength

and direction [Imawaki et al., 2001; Van Sebille et al., 2010]. These are gridded data sets

covering multiple years. To eliminate the influence of seasonal cycles and trends, a sin-

gle grid was produced for each data set containing the temporally averaged data from the

whole data set.

The nature of gridded data sets means that they cannot be used to detect very short

decorrelation lengths unless they are of very high resolution, at which point the computa-

tion requirements of the Moran’s I technique become unamanageable. However, using a
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coarse grid allows an approximation of the spatial ACF for each grid cell to be obtained

while maintaining realistic computation times. We used 1◦x1◦ grids for each of the data

sets, and the decorrelation limit was set to 0.1 instead of the e-folding length to com-

pensate for the larger distances between data points. Even so, the minimum detectable

decorrelation length was 200 km with spatial autocorrelation lag steps of 100 km instead

of the 50 km obtained for the pCO2 autocorrelation.

2.4.4 Spatial flux autocorrelation

Spatial autocorrelation analyses were also performed on air-sea CO2 fluxes. Instanta-

neous CO2 flux values were calculated for each of the individual measurements using the

standard formulation:

F = k s∆pCO2 (2.5)

where k is the gas transfer velocity, s the solubility, and ∆pCO2 the difference between

the atmospheric and oceanic pCO2. The gas transfer velocity k was calculated using the

wind formulation by Wanninkhof [1992] with bomb 14C corrections by Sweeney et al.

[2007]. 6-hourly wind data were taken from the ERA-Interim Reanalysis [Simmons et al.,

2007] for measurements from 1989 onwards, and from the ERA-40 Reanalysis [Uppala

et al., 2005] for measurements prior to that date. The solubility s was calculated accord-

ing to the method presented by Weiss [1974], using the in situ temperature and salinity

value from the LDEO database. The Hadley Centre’s EN3 data set [Ingleby and Huddle-

ston, 2007] were used where salinity data were missing from the LDEO database. The

atmospheric pCO2 levels used to calculate ∆pCO2 were taken from the corresponding

latitude in the GLOBALVIEW atmospheric CO2 database [GLOBALVIEW-CO2, 2008]

for measurements from 1979 onwards, and from the Mauna Loa record [Keeling et al.,

1976] for measurements prior to 1979. Barometric pressure values were taken from the

in situ measurements recorded in the LDEO database.

The spatial autocorrelation of air-sea flux values was calculated in exactly the same

manner as for the pCO2 values, using the same set of 1,454 cruises. Autocorrelation maps

were also produced for each of the flux components k, s and ∆pCO2 to see which had

the greatest influence in determining the flux decorrelation scales.
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2.5 Results and discussion

2.5.1 Temporal autocorrelation

The monthly temporal ACF shows almost no sub-seasonal variability, with a dominant

seasonal cycle (Figure 2.1b, page 28). The e-folding length of this ACF falls between

the first and second months. The 12-month autocorrelation is ∼0.46. The interannual

correlation decays only very slowly (∼0.33 after four years), indicating that the seasonal

cycle is consistent and robust. The ACF from the original data is indistinguishable from

the ACF computed from the observations with the long-term trend removed. This means

that the slow decay of the temporal ACF is not due to the trend in pCO2 levels, but is

caused by other sources of inter-annual variability.

The prominence of the seasonal cycle is not consistent across all regions. Examining

the six- and twelve-month lags in the ACF for five major ocean regions (Figure 2.1b,

page 28) shows that the seasonal cycle is strong in the north Pacific and north Atlantic,

and slightly less influential in the Indian and Southern Oceans (although there is much

less data available in these regions). In the equatorial Pacific, a seasonal cycle is not

evident at all. This is consistent with previous analyses of the seasonal cycle of pCO2

levels [Takahashi et al., 2009].

2.5.2 Spatial autocorrelation

The decorrelation lengths calculated for each grid cell range between 50 km and 3,150 km

(Figure 2.4a, page 35), with a median of 400 km and 25%/75% quantiles of 200 km and

650 km respectively. This reflects the large variability of the world’s oceans. The zonal

and meridional mean decorrelation lengths (Figure 2.4b, page 35) are 450 (250-850) km

and 350 (200-550) km respectively. Zonal decorrelation lengths are frequently longer

than their meridional counterparts (Figure 2.3, page 34) because many ocean currents

run east-west, resulting in a zonal transport of water with similar characteristics in most

regions.

The uncertainties for the autocorrelation lengths were calculated in seven ocean re-

gions as well as globally (Table 2.1, page 34). The global mean uncertainty for the map
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Figure 2.3: Histogram showing the frequency of zonal (diagonal stripe) and meridional (gray)
decorrelation lengths as a percentage of the total number of cells for which spatial ACFs could be
calculated. The arrows on the x-axis indicate the median decorrelation lengths for (gray) merid-
ional direction, (striped) zonal direction and (black) all directions combined.

Basin All directions Zonal Meridional
Western North Pacific 47% (0.64) 79% (0.83) 37% (0.52)
Eastern North Pacific 64% (0.81) 58% (0.76) 49% (0.40)
Equatorial Pacific 44% (0.60) 34% (0.48) 38% (0.34)
South Pacific 65% (0.65) 49% (0.52) 40% (0.35)
North Atlantic 73% (0.67) 71% (0.61) 72% (0.58)
South Atlantic 42% (0.34) 19% (0.09) 20% (0.13)
Indian Ocean 57% (0.39) 35% (0.24) 23% (0.19)
Global 59% (0.75) 46% (0.68) 37% (0.55)

Table 2.1: Uncertainty levels for the autocorrelation lengths of pCO2 measurements in different
ocean regions. Uncertainties are calculated as the linear relationship between the autocorrelation
length for each grid cell and the standard deviation of cruise autocorrelation lengths contributing
to that cell. This gives the uncertainty as a percentage of the calculated autocorrelation length.
Numbers in brackets show the r2 coefficient of the linear fit to illustrate the robustness of the
uncertainty estimate. The boundary between the eastern and western North Pacific is at 170◦E,
and the Equatorial Pacific is between 15◦S and 15◦N.
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Figure 2.4: (a) The mean spatial autocorrelation length of cruises passing through each 5◦ grid
cell. White values indicate the median autocorrelation length of 400 km, while blue and red cells
show longer and shorter correlations respectively. Dark gray cells indicate regions where there
is insufficient data to calculate the autocorrelation length, or the autocorrelation length is shorter
than the minimum detectable distance. (b) shows the number of cruises passing through each cell.

of all cruises (Figure 2.4a) is 59% of the calculated autocorrelation length, varying be-

tween 42% and 73% in different regions. The zonal and meridional uncertainties are

46% (19%-79%) and 37% (20%-72%) respectively. Errors in the zonal and meridional

autocorrelation lengths are smaller than those found in the directionless autocorrelations

because they eliminate much of the variability caused by different cruises crossing or fol-

lowing currents. Using the same technique, the zonal and meridional errors are calculated

as 46% and 37% of the autocorrelation lengths respectively. The region with greatest

uncertainty is the North Atlantic, where the uncertainty is greater than 70% in all direc-

tions. This is because there are several gyres, currents and upwelling/downwelling areas
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[Schmitz, 1996] in this relatively small region, including the Gulf Stream whose position

varies over time [Kelly, 1991]. This means that cruises passing through this region will

encounter several different water masses with different spatial variability, which may be

in different locations for different cruises in the LDEO database. This accounts for the

large uncertainties in spatial autocorrelation length in the North Atlantic. The varying po-

sition of the Kuroshio current and its extension [Kawabe, 1995] has a similar effect in the

western North Pacific, which shows much higher zonal variability than the eastern North

Pacific.

The map of mean autocorrelation lengths highlights many of the major ocean cur-

rents and gyres as regions where autocorrelation lengths are long (1,000 km and above),

especially away from the coasts (Figure 2.4a, page 35). The North Pacific and South

Atlantic gyres are clearly discernible, as are the currents of the Indian Ocean. Short au-

tocorrelation lengths (400 km and below) are evident where waters are heterogeneous or

where different water masses are in close proximity. This is most evident in the Southern

Ocean, where the water characteristics are heterogeneous [Watson and Naveira Garabato,

2005], especially around Drake Passage and the Scotia Sea [Heywood et al., 2002]. Other

prominent regions of short autocorrelation lengths include the Humboldt current system

off Chile, Peru and into the equatorial Pacific, where biological activity is particularly pro-

nounced [Morales and Lange, 2004]; the North Atlantic around Iceland and Greenland,

where the Gulf Stream is most prominent [Dickson and Brown, 1994]; the Kuroshio cur-

rent in the western Pacific south of Japan [Taft et al., 1973]; the highly variable currents

of the Caribbean Sea and Gulf of Mexico [Richardson, 2005]; and the continental shelf of

the South Atlantic Bight of the United States [Jiang et al., 2008]. The North Atlantic is

the only ocean basin with no obvious coherence in spatial autocorrelation lengths. This is

due to the high variability of the currents in this region combined with the effects of bio-

logical activity. The distribution of autocorrelation lengths in the North Atlantic becomes

much clearer when the zonal and meridional cruises are assessed separately (Figure 2.5,

page 37).

The accompanying map of cruise counts for each cell shows areas of most prolific

coverage (and therefore greatest confidence) in the western North Pacific off the Japanese

coast, the Caribbean islands and Drake Passage in the Southern Ocean, with over 50
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Figure 2.5: Spatial autocorrelation maps for (a) zonal and (b) meridional cruises only, with ac-
companying cruise counts (c) and (d) as for Figure 2.4 (Page 35).
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cruises recorded in the database (Figure 2.4b, page 35). The North Atlantic and North

Pacific have 10 or more cruises recorded over the majority of their areas. The remainder

of the world’s oceans are only minimally sampled outside repeat cruise tracks such as

those between New Zealand and the Antarctic, and a repeated circular cruise track in the

Indian Ocean.

Further detail of spatial autocorrelation patterns can be seen by examining the zonal

and meridional cruises independently (Figure 2.5, page 37). The extended autocorrela-

tion lengths in the North Pacific basin (1,200 ± 700 km), the South Equatorial current

(1,500 ± 500 km) and the Antarctic Circumpolar current (1,300 ± 500 km) are more

clearly discernible in the zonal map along the main direction of water flow, with much

shorter meridional autocorrelations of 550 ± 200 km, 450 ± 150 km and 450 ± 150 km

respectively. Meridional correlations dominate in the Atlantic Ocean only, particularly in

the mid to high latitudes of the North Atlantic (1,400 ± 1,000 km) and the western South

Atlantic (1100 ± 200 km). In the western tropical Atlantic the autocorrelations follow

the bifurcation of the South Equatorial current on the coast of South America, forming

the Brazil and North Brazil currents [da Silveira et al., 1994]. In the eastern North At-

lantic, the autocorrelations are associated with the Canary Current [Schmitz, 1996]. The

long meridional autocorrelations in the western North Atlantic follow the Gulf Stream

and the North Atlantic Current [Flatau et al., 2003], showing the greatest dominance of

meridional over zonal correlations. Cruises travelling east-west here will cross many cur-

rents carrying waters of different characteristics, thereby producing short autocorrelation

lengths; north-south cruises, meanwhile, will not see this effect. These long autocorrela-

tions extend as far north as Greenland and Iceland, where the North Atlantic Current loses

its identity around Greenland and there is a large area of dense, sinking water at the limits

of the thermohaline circulation [Dickson and Brown, 1994].

A full analysis of zonal and meridional autocorrelations cannot be performed for the

eastern South Pacific, the region of the Southern Ocean south of South Africa, or for

much of the South Atlantic due to the uni-directional nature of the cruises in this region

(Figure 2.5c and d, page 37). Comparing the autocorrelation lengths of the temperature-

driven and residual components (Figure 2.6a, page 39) shows that the temperature-driven

component is more spatially stable in much of the ocean, with 61% (17%) of grid cells
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reporting longer correlations for the temperature (residual) component. The residual com-

ponent tends to have the longest relative autocorrelation length in the mid-latitudes of the

Atlantic, with similar but weaker patterns in the Pacific mid-latitudes. This pattern com-

pares well with analyses of the biological influence on surface pCO2 levels [Takahashi

et al., 2002], indicating that this is a significant constituent of the residual component.

The relative spatial stability of these two components varies with the seasonal cycle. In the

summer months (June-July-August/December-January-February in the northern/southern

hemisphere), the pattern of relative spatial stability (Figure 2.6b, page 39) is much the

same as that for the complete year, while pattern in the winter months changes signifi-

cantly (Figure 2.6c, page 39). Analysis of the seasonal differences in the two compnents

(not shown) shows that this is due to a combination of the temperature component be-

coming less spatially stable in the winter months, and biological activity becoming more

spatially stable as it decreases to a minimum in most regions.

2.5.3 Comparison with drivers

Comparing the maps of pCO2 autocorrelation lengths with those of chlorophyll, SST and

SSH (Figure 2.7, page 41) shows the extent to which the latter variables may act as drivers

for the pCO2 autocorrelations. The chlorophyll and SST maps show the same basic large-

scale patterns of spatial autocorrelation, with larger autocorrelations in the central basins

of the Atlantic and Pacific. Values in the eastern Indian Ocean are not well defined, since

they are consistently shorter than the 200 km lower limit on detectable autocorrelation

lengths for the gridded data sets and therefore show no variability. SSH autocorrelation

lengths are also below the 200 km threshold across much of the global ocean, with only

the Equatorial and North Pacific, tropical Atlantic and portions of the Southern Ocean

exhibiting longer autocorrealtion lengths.

The pattern of the chlorophyll and SST maps is visible to some extent in the map

of pCO2 autocorrelation lengths, although it is obvious that these are not leading drivers

of the autocorrelation length since the pCO2 map shows greater spatial variability. This

is confirmed with a quantitative comaprison of the maps, with pattern correlations of

r2=0.24 and r2=0.21 for chlorophyll and SST respectively. The SSH map cannot be reli-

ably compared to the pCO2 map because of the limited number of regions in which the
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Figure 2.7: Maps of spatial autocorrelation lengths of (clockwise from top left) pCO2 (from
Figure 2.4, page 35), chlorophyll, sea surface height and sea surface temperature. Dark gray
cells indicate regions where there is insufficient data to calculate the autocorrelation length, or the
autocorrelation length is shorter than the minimum detectable distance.
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autocorrelation length can be estimated. However, the relatively low similarity of pCO2

autocorrelation lengths, and the fact that ocean currents and gyres are clearly visible in

the zonal and meridional maps of autocorrelation (Figure 2.5, page 37), leads to the con-

clusion that it is the physical circulation of the oceans is likely to be the largest influence

on the patterns of pCO2 autocorrelation.

2.5.4 Flux autocorrelation

Spatial autocorrelation lengths for CO2 fluxes are approximately half those calculated

from the pCO2 measurements (200 (150-350) km). Estimated uncertainties for the flux

autocorrelation lengths are very similar to those for the pCO2 measurements (Table 2.1,

page 34). Mapping the individual components of the flux calculation (Figure 2.8, page 43)

reveals the primary cause of this difference. The ocean pCO2 and ∆pCO2 autocorrela-

tion lengths are essentially identical, with a mean difference that is smaller than the 50 km

resolution of this analysis; atmospheric CO2 therefore has no influence on the flux auto-

correlation. Solubility autocorrelation lengths are typically longer than those of the pCO2

measurements (600 (350-950) km), but this has the parameter with by far the smallest

influence over the calculated flux value, consistent with current understanding of the car-

bonate system [Takahashi et al., 2009]. The difference between the pCO2 measurements

and the gas transfer velocity is 150 (50-350) km, which is very close to the overall differ-

ence between pCO2 and the total flux (150 (50-300) km). Pattern correlation tests show

that the fluxes have a very similar distribution to both pCO2 and the gas transfer velocity,

with r2 = 0.71 and r2 = 0.76 respectively. Thus we conclude that the gas transfer velocity

is most influential in causing the decreased autocorrelation length in CO2 fluxes.

2.5.5 Validation

2.5.5.1 Bias detection

Tests for the existence of systematic biases in the data show that there are no inherent

characteristics of the LDEO data set that influence the results of this study. Checks were

performed to ensure that the spatial autocorrelation length for a given grid cell is not in-

fluenced by the number of cruises contributing to that value, despite observations that the

regions with most cruises tend to be regions of short spatial autocorrealtion length. A
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Figure 2.8: Autocorrelation lengths of components of the air-sea flux of CO2. Top left: The
difference between atmospheric and surface ocean pCO2; Top right: solubility; Bottom left: gas
transfer velocity; Bottom right: The calculated air-sea flux.
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linear regression fit on the relationship between autocorrelation length and the number of

cruises in each cell gives an r2 of 0.056, confirming that there is no such relationship. Fur-

thermore, examination of the sea surface height (SSH) (calculated using the AVISO SSH

anomaly data) also shows that the regions of high cruise counts and short autocorrelation

lengths are regions of high SSH variability. This indicates the high mesoscale variability

caused by unstable currents where short autocorrelation lengths are expected.

2.5.5.2 Comparison with previous studies

The results of our autocorrelation analysis compare well with previous studies of pCO2

variability, but provides near-global coverage and a level of detail that better highlights

oceanographic features and allows the identification of underlying drivers. The strong

seasonal cyle in the temporal ACF is in agreement with similar regional studies, both in

terms of interannual variability [Bates et al., 1996; Gruber et al., 2002; Wong et al., 2010]

and the ability to fit harmonic curves to time series of pCO2 measurements [Schuster

et al., 2009]. The spatial autocorrelation analysis also compares well with other studies

examining both surface ocean pCO2 and related air-sea fluxes. The gyre and current fea-

tures visible in Figures 2.4 (Page 35) and 2.5 (Page 37) are similar those described by Li

et al. [2005], but they provide a more coherent picture and details that were not captured

therein because of the scale limitation and the coarse grid selected. The additional reso-

lution and less restrictive limits used here enhance significantly the ability to detect and

understand these characteristics. The short autocorrelation lengths in the Humboldt cur-

rent region agree well with high spatial pCO2 variability associated with strong CO2 draw-

downs [Lefèvre and Taylor, 2002]. Relatively short autocorrelation lengths also agree with

high spatial variability of carbon fluxes found in the south-east Atlantic [Santana-Casiano

et al., 2009] and the South Atlantic Bight [Jiang et al., 2008], while the “moderate” vari-

ability in the western equatorial Pacific [Ishii et al., 2009] is reflected in autocorrelation

lengths close to the global mean average. The autocorrelation lengths found in this study

also match closely estimates of the required spatial sampling rate for pCO2 along specific

cruise tracks from previous versions of the Takahashi database [Sweeney et al., 2002].

The directional autocorrelation lengths we find in the regions matching the same cruises

are very close to the results from that study, which is to be expected since both studies
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are based upon the analysis of individual cruises. However, our analysis shows that all

available data should be examined to provide a true picture of spatial variability of pCO2

across the oceans.

2.6 Summary and conclusion

The temporal and spatial autocorrelation analysis of the LDEO database of surface ocean

pCO2 measurements and their corresponding air-sea fluxes provides a comprehensive in-

sight into the global variability of these critical ocean characteristics. For pCO2 in the

temporal dimension, the monthly mean ACF exhibits a robust and consistent seasonal cy-

cle. For pCO2 in the spatial dimension, the global median and quantile autocorrelation

lengths of pCO2 are 400 (200-650) km. For the air-sea CO2 flux, the global median au-

tocorrelation length decreases to 200 (150-350) km because of the spatial variability of

the gas transfer velocity. In both cases zonal correlations are longer than their meridional

counterparts, indicating that ocean currents play a significant role in determining these

lengths. The major ocean currents and gyres have longer correlations in both pCO2 and

CO2 fluxes than those regions with less heterogeneous characteristics, consistent with the

autocorrelation lengths in sea surface height.

The results of this study will be useful to both the measurement and modelling com-

munities. They will inform a future research into the interaction between the atmospheric

and oceanic carbon cycles, and help to develop future oceanic measurement strategies.

The results are particularly relevant for atmospheric CO2 inversions, which require a-

priori correlations in Bayesian inverse calculations to estimate CO2 fluxes from atmo-

spheric data. Our analysis suggests that inverse calculations should incorporate a-priori

correlation of pCO2 patterns and compute CO2 fluxes using observed winds to optimize

the information content of the available surface ocean data. Such a strategy would re-

quire the addition of a surface ocean box in inversions in order to merge the oceanic and

atmospheric data streams most effectively.





Chapter 3

A Global Interpolation of Surface

Ocean pCO2
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3.1 Abstract

We have developed an interpolation technique adapted to the specific coverage and prop-

erties of surface ocean pCO2 observations, and used it to produce a complete daily data

set of pCO2 values from 1990-2008 on a 5◦x5◦ global grid south of 70◦N based on the

database of the Lamont-Doherty Earth Observatory. The interpolation combines spatial

techniques based on a ‘radius of influence’ to detect nearby related observations and har-

monic curve-fitting to determine trends and seasonal cycles. Tests of the technique using

model data show the technique to perform as well as or better than previous regional in-

terpolations: globally, 90% of interpolated values are likely to be within 30 µatm of the

actual pCO2 value. All values are assigned an uncertainty based on the spatial and tem-

poral range over which they are interpolated, which will guide future users in their use of

the data set. Unlike previous interpolations, our approach does not rely on relationships to

external variables, and can therefore be applied to other data sets of similar data density.

3.2 Introduction

The very uneven distribution of surface ocean pCO2 measurements is a fundamental lim-

iting factor on our ability to understand many features of the oceanic carbon cycle and

to calculate global air-sea CO2 fluxes. The majority of measurements are concentrated

in the northern hemisphere (Figure 3.1, page 50), with most obtained within the last 20

years. This relative lack of spatial and temporal data coverage is in stark contrast to many

other oceanic observations. For example, sea surface temperature, sea surface height and

chlorophyll concentrations can all be measured via remote sensing satellites, providing

almost global coverage at high resolutions. Other surface ocean variables such as dis-

solved oxygen concentrations are easier to measure and therefore have much more com-

plete records than pCO2, as sensors can be deployed on floats and gliders [Johnson et al.,

2009].

The limited distribution of surface ocean pCO2 has meant that much of the past work

to map these values has concentrated on the production of climatological data sets of the

seasonal cycle [Takahashi et al., 2002] and on long-term trends [e.g. Takahashi et al.,

2003, 2009], with little or no emphasis on variability at other temporal scales. Until
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Figure 3.1: Data density of the LDEO database sampled onto a 5◦x5◦ grid. The scale indicates
the number of days between 1990-2008 for which pCO2 measurements are available in each grid
cell.

recently, only regional studies have focused on pCO2 variability on sub-annual time scales

[e.g. Bates et al., 1998; Sarma, 2003; Shim et al., 2007; Olsen et al., 2008; Litt et al., 2010]

and on interannual variability [Bates et al., 1996; Gruber et al., 2002; Cosca et al., 2003;

Wong et al., 2010]. Whilst these studies go some way towards aiding our understanding

of oceanic fluxes of CO2, a global perspective of pCO2 characteristics remains lacking.

The recent release of a complete global database of surface ocean pCO2 measurements

by the Lamont-Doherty Earth Observatory [Takahashi and Sutherland, 2009] (hereafter

referred to as the LDEO database) provides opportunities for a more detailed global anal-

ysis of surface ocean pCO2 over multiple time scales. An interpolated data set of sur-

face ocean pCO2 measurements covering multiple years would be invaluable as a starting

point for analysis of pCO2 trends and variability and their drivers on a variety of tem-

poral and spatial scales. It could provide insight into the response of oceanic pCO2 to

climate change and variability, provide the necessary prior estimates for atmospheric in-

verse methods [e.g. Gurney et al., 2002], and help the validation of ocean biogeochemical

model results [e.g. Le Quéré et al., 2009]. Some work has already begun in assimilat-

ing the observations from the LDEO database into biogeochemical models [Valsala and

Maksyutov, 2010].
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Large-scale interpolations of other physical and biogeochemical variables have been

produced in the past: the World Ocean Atlas [Levitus, 1982] pioneered this field with

the adaptation of a spatial interpolation method developed for atmospheric pressure fields

[Cressman, 1959; Barnes, 1964] using data coherence within a ‘radius of influence’ (the

distance over which a given value is correlated with nearby values). This method was

used to produce climatologies of several ocean variables. Masarie and Tans [1995] de-

veloped a temporal interpolation method to establish long term trends and seasonal cycles

in atmospheric CO2 levels, fitting harmonic curve equations to measurement time series

[GLOBALVIEW-CO2, 2008]. More complex interpolation techniques have allowed in-

terpolation in both space and time, for example by representing sea surface temperature

and sea level pressure as empirical orthogonal functions [Kaplan et al., 1997; Allan and

Ansell, 2006]. Each of these has been successful because there is much greater data cov-

erage for those variables, or because (in the case of GLOBALVIEW) the atmosphere is

relatively well mixed compared to the ocean which allows for a simpler interpolation

approach.

Some interpolations of surface ocean pCO2 measurements have been produced in the

past. The most widely used pCO2 climatology [Takahashi et al., 2009] was calculated

using a diffusion-advection model that transports pCO2 values to regions where no data

are available. Harmonic time series have been fitted to pCO2 measurements in individ-

ual basins to analyze longer term trends [Schuster et al., 2009], but without the ability to

increase spatial coverage. Others have interpolated the available measurements by ana-

lyzing the relationships between pCO2 and related ocean properties, such as sea surface

temperature, salinity, chlorophyll and mixed layer depth. These relationships have been

calculated using single or multiple regression analysis [Boutin et al., 1999; Lefèvre and

Taylor, 2002; Cosca et al., 2003; Ono et al., 2004; Olsen et al., 2004; Park et al., 2006;

Jamet et al., 2007; Watson et al., 2009; Park et al., 2010], principal components analysis

[Lohrenz and Cai, 2006] or by training neural networks [Telszewski et al., 2009]. Assess-

ing the relationships between these variables has worked well within a limited temporal

and spatial scope, but it has also been shown that the relationships are not constant through

space and time [Boutin et al., 1999; Lefèvre and Taylor, 2002; Cosca et al., 2003; Jamet
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et al., 2007; Park et al., 2010], thus it is problematic to apply them to larger scale interpo-

lations. These approaches require a minimum number of available pCO2 measurements

in multiple regions and times against which reliable relationships to other variables can

be established.

This paper presents a purely statistical method to interpolate surface ocean pCO2 in

space and time for the entire global ocean south of 70◦N. The method uses autocorre-

lations of pCO2 measurements within a radius of influence as in the World Ocean Atlas

[Cressman, 1959; Barnes, 1964; Levitus, 1982] combined with harmonic curve fitting as

in GLOBALVIEW [Masarie and Tans, 1995] to interpolate the available pCO2 measure-

ments. This purely statistical approach avoids the need to establish relationships between

pCO2 and other variables, and can therefore be more reliably extended into regions of

lesser data coverage. The method includes an assessment of the uncertainty of the inter-

polated values. Every value in the final data set is assigned an uncertainty as a measure

of the relative likelihood that the computed value is close to the real-world value. This

allows subsequent users of the interpolated data set to understand explicitly the limitations

of the interpolated data.

3.3 Method

3.3.1 Data preparation

The LDEO database consists of ∼4.1 million individual surface ocean pCO2 measure-

ments taken between 1968 and 2008. We focused on the 1990-2008 time period, which

includes 85.95% of the measurements in the LDEO database. These measurements were

binned into 5◦x5◦ grid cells of daily temporal resolution. For leap years, a ‘day’ was cal-

culated as 1 1
365 calendar days to produce a constant year length of 365 days throughout.

The complete data set was analyzed to remove erroneous entries caused by transcrip-

tion errors or faulty instrumentation. Measurements falling outside three standard devi-

ations of the daily mean for a given grid cell were discarded as outliers in an iterative

process, repeated until no further outliers were detected. 17,952 measurements (0.004%)

were eliminated in this manner. Further outliers were removed by examining the complete

daily time series for each grid cell as follows. A linear trend for the time series in each
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grid cell was calculated and temporarily removed. Any day whose mean pCO2 level fell

outside three standard deviations of the mean was removed from the cell’s time series in

an iterative process, again repeated until no further outliers were detected. A total of 268

days’ measurements (0.007%) were discarded across all grid cells.

The radius of influence over which values could be interpolated was dependent on the

autocorrelation characteristics of the pCO2 data in both temporal and spatial dimensions.

A global mean autocorrelation function (ACF) was calculated for the temporal dimension

using data from those grid cells that had sufficient measurements. Spatial autocorrela-

tion functions were calculated for each cruise in the LDEO database using the Moran’s

I technique [Moran, 1950], and the e-folding length assigned to each cell through which

the cruise passed as a first guess of the autocorrelation length for that cell. This was then

refined by calculating the ACF for only those measurements within a radius of five times

the first guess value and recording the resulting e-folding length. Where multiple cruises

passed through a given cell, the mean e-folding length was used (Chapter 2). The ACFs

for a given cell can vary with compass direction, particularly in strong ocean currents.

To provide the greatest accuracy, four directional spatial ACFs were calculated for each

cell: north-south, east-west, northeast-southwest, and northwest-southeast. A ‘direction-

less’ ACF was calculated for use where insufficient data existed to construct directional

ACFs, using all data regardless of directionality. Figure 3.2 (Page 54) shows maps of the

e-folding lengths of the ACFs for all cells.

3.3.2 Interpolation

The interpolation of the LDEO pCO2 data combines the temporal [Masarie and Tans,

1995] and spatial [Cressman, 1959; Barnes, 1964] techniques used in prior interpolations

of other physical variables, with minor adjustments to accommodate the specific charac-

teristics of the pCO2 data set. This allows a full interpolation of the pCO2 data where the

use of a single technique would not be sufficient. No interpolation was attempted pole-

ward of 70◦N as there are too few available measurements to produce reliable interpolated

values.

The interpolation technique operates in a number of distinct stages which are run

iteratively on each 5◦x5◦ grid cell individually (hereafter referred to as the target cell) to
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Figure 3.2: Maps of spatial autocorrelations of pCO2 in various compass directions (top four
maps) and the mean of all directions combined (bottom left). The shading of each cell indicates the
e-folding length of the ACF for that cell. The graph (bottom right) shows the different directional
ACFs for an example cell centered on 32.5◦N 147.5◦E. The e-folding threshold (1/e) is shown as
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build the complete interpolated data set. Here we describe the overall progression of the

technique employed, together with details of the individual steps that are taken during the

interpolation. Flow charts are provided to give a visual overview of the progression of the

interpolation.

3.3.2.1 Progression of the Interpolation

The complete process for creating interpolating a single grid cell is shown in Figure 3.3

(Page 55). This process is run in parallel for all grid cells simultaneously, so values could

be shared between multiple grid cells in the spatial interpolation step.
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Figure 3.3: The complete process used to interpolate the pCO2 data.

For each grid cell, a curve fit was attempted (Section 3.3.2.2, page 56). If the curve fit

was not successful, the spatial and temporal interpolation were performed (Section 3.3.2.3,

page 58), and the next iteration of the process begun. This process was repeated until ei-

ther a successful curve fit was achieved, or no new data points could be interpolated into

the cell’s time series. For those regions of the ocean where the spatial autocorrelation is

the longest such as the central North Pacific (Figure 3.2, page 54), up to five iterations

were possible before no more values could be added, i.e. values can be interpolated from



56 A Global Interpolation of Surface Ocean pCO2

up to five grid cells away from the target grid cell. In other regions, only one or two in-

terpolations were possible before the spatial ACFs indicated that the neighbouring cells

were unlikely to be related to those of the target cell.

Even if a curve fit was successful and passed the criteria for a valid fit, it may be that

it was not truly representative of the actual pCO2 values for that grid cell. When a curve

fit was successful the results are stored temporarily, and one more iteration of the interpo-

lation completed. The new curve fit and the stored curve fit were then compared. If the

differences between them were not statistically significant at the 95% level, the original

(stored) curve fit was used as the final output of the interpolation for the grid cell. If the

differences were significant, this indicated that more interpolated values would produce a

more realistic curve fit, so the interpolation was repeated until either the differences were

no longer significant or no more values could be added via spatial interpolation.

3.3.2.2 Curve Fitting

As described above, the initial step of interpolating data within a grid cell fitted a curve

to the time series of that cell. The formula of the curve is a simplified version of that

used by Masarie and Tans [1995], which included a polynomial term to detect changes

in the long-term trend. This was omitted from the present study as the available data was

insufficient to detect varying interannual trends in the time period being examined. The

curve used here was of the form:

f(t) = a0 + a1t+
n∑

k=1

[b2k−1sin (2πkt) + b2kcos (2πkt)] (3.1)

where t is the time in days since January 1st 1990, a0 is the y-axis intercept, a1 is the

linear trend, and n is the maximum number of harmonics used to represent the seasonal

cycle. n is initially set to 4 to allow the fitted curve to encompass deviations from a purely

sinusoidal progression of the seasonal cycle caused by biological activity and temperature

changes [e.g. Lüger et al., 2004; Körtzinger et al., 2008].

The fitted curve was assessed against a number of criteria to ensure that it produced a

realistic result. The criteria ensured that the curve was based on data covering a reasonable

time period with measurements representing a large proportion of the calendar year; that

the fitted curve was representative of the range of pCO2 values and exhibited a plausible
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Criterion
Name

Description Justification

Total time
range

The timespan covered by the earli-
est and latest measurements in the
time series must be at least five
years.

Short timespans of measurements
can result in unrealistically steep
linear trends.

Standard de-
viation

The standard deviation of the
available measurements must not
exceed 75 µatm.

Curve fits applied to time series
with only extreme low and high
measurements are frequently un-
realistic.

Populated
months

Measurements must be available
in at least 8 of the 12 calendar
months at some point in the time
series.

Unless at least three of the four an-
nual seasons are represented in the
time series, the fitted curve is un-
likely to represent a realistic sea-
sonal cycle.

Curve ratio The amplitude of the fitted curve
must be between 50% and 150%
of the range of values represented
by the measurements. The up-
per and lower limits of the fitted
curve must not exceed the limits
of the measurements by more than
75 µatm.

A fitted curve whose amplitude is
too small or too large does not rep-
resent an accurate fit to the mea-
surements.

Seasonal
peaks

Plankton blooms can produce a
secondary peak in the sinusoidal
seasonal cycle. Only one such ad-
ditional peak should exist in the
fitted curve. The size of the sec-
ondary peak must not exceed 33%
of the total magnitude of the sea-
sonal cycle.

Fits of multiple harmonics can
frequently produce an over-fitted
curve with multiple complex
peaks in the seasonal cycle.
This is unrepresentative of the
known annual cycles of pCO2

concentrations.

Linear trend
limit

The fitted linear trend (a1 in
Eq. 3.1) must be in the range
-2.5 ≤ trend ≤ 4.75 µatm yr−1.

Linear trends outside these limits
are unlikely to be realistic.

Table 3.1: Criteria used to determine whether or not a curve fitted to a time series of pCO2 values
is plausible.

seasonal cycle; and that the trend of the fitted curve was within known reasonable limits.

The complete set of criteria are listed in Table 3.1 (page 57). If the fit failed to meet all

criteria, the value of n was reduced by 1 and the curve fit repeated until either a good fit

was achieved or no good fit was achieved after n is reduced to 1, at which point the curve

fitting was deemed to have failed. A flowchart showing the progression of the curve fit is

presented in Figure 3.4 (Page 58).
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Figure 3.4: The process used to fit a curve to a single grid cell’s time series.

3.3.2.3 Spatial and Temporal Interpolation

If the curve fitting for a given target cell failed, spatial and temporal interpolation methods

were employed to add values to that cell’s time series to increase the chances of obtaining

a successful curve fit. Figure 3.5a (Page 59) shows the process of performing the spatial

interpolation.

Each step of the cell’s time series was processed in turn. If that step already had

a value, either from the original pCO2 measurements or from a previous iteration of the

spatial interpolation, no further action was taken. If no value was present in the time series,

values were obtained from the same time step in grid cells surrounding the target cell. For

the first interpolation iteration, the directly neighbouring cells were used. For subsequent

iterations, cells two steps away from the target cell were chosen (see Figure 3.5b). If

any values existed for the time step in the surrounding cells, they were combined using a

weighted mean and added to the target cell’s time series. The weights used were between

0 and 1, and used to give more influence to those values that were more likely to be

representative of the target cell. Where possible, the directional ACF was used to match
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Figure 3.5: The workflow followed in performing the spatial interpolation.

the bearing between the centre of the target cell and interpolated cells; otherwise the

directionless ACF was used (Figure 3.2, page 54). If the directionless ACF was also not

available, the neighboring cell’s directional ACF was used as the best available substitute.

The value of the ACF at the distance between the target and interpolation cells was used as

a weighting for the interpolated measurement unless it was below the e-folding threshold

(1/e, or 0.37); in this case the value was not used in the interpolation. The root-mean-

squared (RMS) of the weights was assigned as a weighting to the interpolated value, which

was then used by subsequent iterations of the curve fitting algorithm to assign greater

importance to more representative values in the time series. Since the interpolation was an

iterative process, it was possible that a neighbouring cell’s time series contained spatially
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interpolated values from a previous iteration of the process. These values were included

in the spatial interpolation, but given much lower weightings due to being interpolated

multiple times (the weighting assigned in both interpolation steps were multiplied). Note

that no values from fitted curves were interpolated as part of the spatial interpolation.

In some grid cells there were insufficient data points in the time series for the curve

fitting algorithm to achieve a fit at all, even after the spatial interpolation. To increase

the likelihood of a curve fit being achieved, all values in the cell’s time series (both mea-

surements and spatially interpolated values) were copied to the 14 days’ time steps before

and after the value. This represented the e-folding length of a daily-resolution temporal

ACF similar to the monthly temporal ACF developed in Chapter 2 (Figure 2.1b, page 28),

but constructed from the few grid cells where daily-resolution measurements were suffi-

ciently dense to produce a statistically significant ACF (Figure 3.6). Although such an

ACF is unlikely to be representative of the true daily ACF for surface pCO2, its use here

simply increased the chances of the curve fitting algorithm achieving a fit to the available

data. The copied values were assigned weightings from the daily temporal ACF. Once the

curve fit was achieved, the temporally interpolated values were discarded to leave only

the fitted curve.

3.3.2.4 Completing the Interpolation

The interpolation process described above provided fully interpolated time series for

1,104 of the 1,750 ocean grid cells south of 70◦N (63%) after a single iteration. After
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five iterations, a further 168 cells were populated. 478 grid cells (27%) remained unpro-

cessed after five iterations of the interpolation algorithm, and the limits to the extent of

the spatial interpolation meant that these could not be processed further.

The remaining grid cells were interpolated separately by spatially interpolation the

complete time series, including fitted curves that were previously ignored, from the neigh-

bouring successful cells. As with the original spatial interpolation (Section 3.3.2.3,

page 58), the interpolated values were weighted according to the target cell’s spatial

ACFs and coincident values from multiple cells were combined in the target cell using

a weighted average.

3.3.3 Calculation of uncertainty

Every value in the interpolated data set is assigned an uncertainty according to the tempo-

ral and spatial distance over which the value was obtained. Uncertainties for interpolated

values are assigned according to variograms calculated for each grid cell. Variograms are

computed for each cruise in the database by creating a scatter plot of the distance be-

tween measurement locations and the difference in pCO2 at those locations (Figure 3.7,

page 62). These values are then binned into intervals of 50 km to reduce processing time.

The variogram value for each interval is calculated as the mean ∆pCO2 value plus one

standard deviation of all the values within that bin. The fitted variogram is assigned to

each grid cell through which the cruise passes in the same manner as the spatial ACFs

above, and combined with other variograms for that cell to produce mean variograms in

each of eight compass direction. A global average variogram is used in the temporal di-

mension; variograms require relatively long periods of frequent measurements, and there

are few regions where the available measurements are suitably distributed.

Original measurements from the LDEO database are given an uncertainty of ±2.5

µatm as in the original data set [Takahashi and Sutherland, 2009]. Uncertainties for

interpolated values from nearby grid cells are assigned as the value of the variogram (Fig-

ure 3.7) from that cell at the distance between the value and the target cell; temporally

interpolated values have their uncertainty assigned from the global mean temporal vari-

ogram (Figure 3.8a, page 63). Uncertainties for values from the fitted curve (Equation 3.1,
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page 56) are based on the uncertainties assigned to the interpolated values. Each inter-

polated value is assigned to the day of the year on which it occurs, to produce a set of

daily uncertainties for a complete year (Figure 3.8b, page 63, blue line). Where multiple

interpolated values within a grid cell fall on the same day, the mean uncertainty is used. If

there are days of the year for which no interpolated values (and therefore no uncertainties)

are available, the missing values are interpolated between the two known uncertainties ei-

ther side of the missing values. The interpolation is an average of the two values at each

end of the gap in values, weighted according to temporal distance from each point (Fig-

ure 3.8b, page 63, red line).This gives a complete progression of uncertainty values for

the complete 365-day year.

3.3.4 Building the final data set

Following from the methodology described above, there will be up to three values that

can be used for each day in each grid cell where a curve fit has been successfully applied:

a measurement from the LDEO database, an interpolated value from a nearby cell and/or

time, and a value from the fitted time series (Equation 3.1, page 56). The value chosen for

the final data set is the one with the lowest uncertainty assigned during the interpolation

(Figure 3.8c, page 63).
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3.4 Method validation

Validation of the interpolation method involved testing its ability to recreate a complete

data set against model output. Daily pCO2 values were used from a simulation of the

PlankTOM5 model over 1990-2008 (updated from [Buitenhuis et al., 2010]), converted

to a 5◦x5◦ grid to match the characteristics of the main interpolation. The regridded Plank-

TOM5 output was sub-sampled to provide the same spatial and temporal density of input

values as the LDEO data set. The resulting PlankTOM5 data set was interpolated using

the method described above. The autocorrelation characteristics of the model output were

computed in the same manner as for the LDEO database. Spatial ACFs were calculated

using measurements from the days and grid cells that matched the LDEO cruises, and

assigned to those cells accordingly.

The interpolated PlankTOM5 data set can be compared with the original PlankTOM5

results to assess the performance of our interpolation method. 72% of the values have a

root mean squared (RMS) error of ≤20 µatm and 89% have an RMS error of ≤30 µatm

(Figure 3.9, page 65). The cells with the largest RMS errors are concentrated around

regions with few or no measurements, namely the eastern equatorial Pacific, the south

Atlantic and the Southern Ocean. There is a strong correspondence between the uncer-

tainties assigned during the interpolation and the error determined with the model fit: the

values with the highest errors are also those with the largest interpolation uncertainties.

Trends in the interpolated and original PlankTOM5 data show good agreement, with

the interpolated trends marginally lower than the original data (1.60 µatm yr−1 versus

1.63 µatm yr−1 on average). The interpolated trends show greater spatial variability than

the original data (Figure 3.10, page 65), with the largest difference in the South Atlantic

where the interpolation produces negative pCO2 trends that are absent from the original

data. Negative trends are also seen in the northern Indian Ocean and individual cells

elsewhere. These poorly-performing areas have low data density and correspondingly

large uncertainties.

The seasonal cycle in the interpolated and original PlankTOM5 data sets are also in

good agreement in nearly all regions (Figure 3.11, page 66). The RMS error of the sea-

sonal amplitude is 28.5 µatm, with a pattern correlation of r2=0.34. Zonal and meridional

correlations are r2=0.59 and r2=0.51 respectively.
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Figure 3.9: The root mean squared error (in µatm) of each grid cell of the interpolated PlankTOM5
data compared to the original model output sub-sampled using the LDEO spatial and temporal
density.

Figure 3.10: Global maps of linear trends in pCO2 values (in µatm yr−1) from 1990-2008 for (a)
sub-sampled PlankTOM5 model output and (b) the interpolated data from the sub-sampled model
output. (c) shows the differences between the two (in µatm yr−1).
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Figure 3.11: Comparison of the seasonal cycle of pCO2 in the PlankTOM5 model (left) to the
interpolation of the PlankTOM5 data. The comparison is in terms of (top) seasonal amplitude,
(middle) the day of the pCO2 maximum, and (bottom) the day of the pCO2 minimum.

The results of these tests give a strong level of confidence that interpolating the LDEO

database using this technique will give a good estimate of pCO2 values over much of the

global ocean and an appropriate assessment of the uncertainty. The performance of this

interpolation also compares well with that of alternative techniques. Table 3.2 (page 67)

shows comparisons of the errors calculated for interpolated values in this study with those

in previous regional interpolations. In most cases the errors are very similar, and the

largest differences occur when this study out-performs the others.
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Figure 3.12: Mean uncertainty assigned to the interpolated values of each grid cell for the LDEO
database. The color scale is identical to that used for the RMS errors (Figure 3.9, page 65) for easy
comparison.

3.5 Results of interpolating the LDEO database

The implementation of this interpolation method on the LDEO database produces a data

set consisting of daily pCO2 values in the period 1990-2008 on a 5◦x5◦ grid south of

70◦N. The pattern of uncertainties (Figure 3.12) corresponds well with the data density

of the original data set (Figure 3.1, page 50), with the smallest uncertainties in the north

Pacific and north Atlantic and the largest uncertainties in the eastern equatorial and south

Pacific, south Atlantic and Southern Ocean. The assigned uncertainties are typically larger

than the predicted errors (Figure 3.9, page 65).

The interpolated pCO2 data set exhibits a number of features that reflect some major

aspects of the oceanic CO2 cycle, visible in the seasonal mean pCO2 field for the year

2000 (Figure 3.13, page 69). The mid-latitudes of the North Pacific and North Atlantic

have low pCO2 concentrations in winter and moderate concentrations in summer, due

primarily to seasonal temperature changes tempered by biological activity and vertical

transport of pCO2 [Ayers and Lozier, 2012; Schuster and Watson, 2007]. Similar features

are found in the mid-latitudes of the Southern Hemisphere [Takahashi et al., 2002]. There

is large seasonal variability of pCO2 in the Southern Ocean, due to the combined effects of
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Figure 3.13: The mean pCO2 field from the interpolated data set for two seasons: (top) December
1999 to February 2000, and (bottom) June to August 2000.

temperature changes and significant changes in biological activity due to light limitation in

winter [Metzl et al., 2006]. The consistently high levels of pCO2 in the eastern Equatorial

Pacific are a result of upwelling of CO2-rich water at the eastern boundary of the Pacific

along with transport of similar waters northward along the coast of South America [Feely

et al., 1999; Etcheto et al., 1999].

The annual mean pCO2 field and seasonal cycle from the interpolation compares

well with that published by Takahashi et al. [2009] (Figure 3.14, page 71). Compar-

ing the Takahashi climatology, which is normalised to the year 2000, and the annual mean
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pCO2 for 2000 from the interpolation shows very good similarity between the two (Fig-

ure 3.14a). The RMS error between the two maps is 13.69 µatm, and an overall pattern

correlation of r2=0.55. Separating the zonal and meridional mean correlations removes

many of the effects of variability between individual cells, and gives a better picture of

the coherence between the two data sets. This shows that the overall structure of the two

data sets is very similar; the zonal mean correlation is r2=0.64, and the meridional mean

correlation is r2=0.85. The lower zonal mean correlation is due to a divergence in the high

northern latitudes, where the Takahashi climatology exhibits a sudden reduction in pCO2

in both the North Pacific and North Atlantic. This difference is due to the interpolation’s

inability to work with the much sparser data in these high latitudes, meaning that values

from lower latitudes are interpolated northwards.

The amplitude of the seasonal cycle in each data set (Figure 3.14b, page 71) is also

very similar for much of the ocean. The RMS error between the two is 28.4 µatm, with

a pattern correlation of r2=0.43. The zonal and meridional pattern correlations of the sea-

sonal amplitude are r2=0.77 and r2=0.40 respectively. Many of the spatial structures in the

northern Pacific and Atlantic Oceans are very similar, as is the large seasonal amplitude

in much of the Southern Ocean. The major difference between the two datasets is the

larger seasonal cycles produced in the equatorial Pacific by the Takahashi climatology.

This region is characterized by large interannual variability compared to the amplitude of

the seasonal cycle, due in large part to ENSO activity [Cosca et al., 2003; Doney et al.,

2009]. Reproduction of pCO2 values in this region is therefore very difficult, and it is un-

surprising that the Takahashi climatology and the interpolation give different outcomes.

These differences are exacerbated by the fact that measurements from strong El Niño pe-

riods are removed prior to the calculation of the Takahashi climatology [Takahashi et al.,

2009], but were not removed for this study.

Comparisons of the timing of maximum and minimum pCO2 values (Figure 3.14c

and d) show strong zonal coherence between the Takahashi climatology and this study,

with r2=0.89 in both cases. Meridional differences are much larger (r2=0.18 and r2=0.36

respectively). The most likely cause for the low similarity is the differing method of

interpolation between the two studies. The Takahashi climatology employs a transport

model to determine missing values, and since the majority of oceanic transport is zonal
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Figure 3.14: Comparison of (left) the climatology published by Takahashi et al. [2009] and (right)
the mean pCO2 concentration and seasonal cycle of the interpolated data set. The comparison is
in terms of (a) the mean pCO2 concentration in 2000, (b) seasonal amplitude, (c) the month of the
pCO2 maximum, and (d) the month of the pCO2 minimum.
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Figure 3.15: The linear trend of pCO2 (in µatm yr−1) for each grid cell of the interpolated data
set.

there is much greater inter-cell similarity in this direction than found using our purely

statistical technique.

The scarcity of pCO2 measurements in much of the ocean has meant that global esti-

mates of long-term pCO2 trends are not available directly from the LDEO data set, so a

thorough comparison of the trends in the interpolated data set (Figure 3.15) is not possi-

ble. However, it is likely that the negative trends seen in the South Atlantic are artifacts

of the interpolation method, since the same trends were shown to be incorrect when val-

idating against model output (Figure 3.10, page 65). The region of negative trends south

of western Australia are also likely to be artifacts for the same reason, although attempts

to assess trends from measurement data in this region have also been unsuccessful [Inoue

et al., 1999] so it is difficult to assess the likelihood of accuracy here. The North Atlantic

and North Pacific, meanwhile, have yielded suitable trends for comparison [Le Quéré

et al., 2009]. Comparisons of the trends for individual grid cells in these regions (Fig-

ure 3.16) show that the two sets are comparable, although with considerable variability.

This is due to the different methods of applying trend fits to the sparse data. A complete

study of oceanic pCO2 trends is beyond the scope of this study.



3.6 Calculation and verification of air-sea CO2 fluxes 73

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

In
te

rp
ol

at
io

n 
tr

en
d

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

LDEO trend

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
te

rp
ol

at
io

n 
tr

en
d

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

LDEO trend

North Atlantic
r = 0.45

North Pacific

r = 0.37

Figure 3.16: Comparison of linear trends calculated from the LDEO database [Le Quéré et al.,
2009] and the interpolated data set, for (left) north Atlantic and (right) north Pacific.

3.6 Calculation and verification of air-sea CO2 fluxes

A complete interpolated data set of surface ocean pCO2 such as that presented above

allows calculation of air-sea CO2 fluxes of the same temporal and spatial resolution. This

in turn allows detailed examination of the global air-sea flux. The fluxes obtained from the

interpolated data set were compared with the Takahashi climatology (adjusted to represent

the year 2000) [Takahashi et al., 2009] both globally and in a number of ocean regions.

Air-sea CO2 fluxes were calculated using the standard formulation (Equation 1.5,

page 11). Atmospheric CO2 values were obtained from the GLOBALVIEW atmospheric

CO2 database [GLOBALVIEW-CO2, 2008]. Atmospheric CO2 was adjusted to sea level

pressure using data from the NCEP/NCAR Reanalysis [Kalnay et al., 1996]. The gas

transfer velocity was calculated using 6-hourly wind data from the CCMP Level 3 wind

product from JPL [Atlas et al., 2011], and the Reynolds SST data set [Reynolds et al.,

2002] and the Hadley Centre’s EN3 salinity data set [Ingleby and Huddleston, 2007] were

used to calculate solubility. Finally, fluxes were limited in high latitudes due to sea ice

cover with data from the Hadley Centre’s sea ice cover database [Rayner et al., 2003].

Maps of the global air-sea CO2 flux for February and August 2000 are shown in

Figure 3.17 (page 75). These are accompanied by the same maps from the Takahashi

climatology for comparison. Overall the two products are very similar, with all the major
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features duplicated across the maps with some variation in their spatial extent. Even rela-

tively small features, such as the February outgassing in the northern North Pacific and be-

tween Iceland and Greenland are reproduced (Figure 3.17a and b). The largest difference

occurs in the Southern Ocean in August. The Takahashi climatology (Figure 3.17d) shows

a strong outgassing along a narrow band at approximately 60◦S, which follows the edge of

the ice cover. This band is also present in the fluxes from the interpolation (Figure 3.17c),

but is much less well defined. This is caused by the relative lack of pCO2 measurements

in the Southern Ocean, which means that those that are available are interpolated between

neighbouring grid cells. The same effect can be seen to a lesser extent in Equatorial Pa-

cific. There is a region of outgassing related to what is known as the ‘cold tongue’ of

upwelled waters spreading from the eastern edge of the Pacific and extending to approxi-

mately 180◦ longitude. This ‘tongue’ is restricted to a narrow zonal band in the Takahashi

climatology, but in the interpolated data it extends much further south, again due to data

being interpolated into regions of few measurements. The difference in the meridional ex-

tent of the cold tongue in both February and August is due to the fact that measurements

taken during El Niño events are excluded from the Takahashi climatology. These events

suppress the upwelling of carbon-rich water in the eastern Equatorial Pacific, which in

turn reduces the rate of outgassing [Feely et al., 2006], explaining the smaller extent of

the outgassing region in the fluxes calculated from the results of this study’s interpolation.

The seasonal cycle of the fluxes in different regions of the global ocean has been

calculated for both the interpolated data set and the Takahashi climatology (Figure 3.18,

page 76). The fluxes in the North Pacific and Equatorial/South Atlantic (Figures 3.18a

and e) match well. For the former this is not surprising, since this region contains the

most measurements and therefore constrains the interpolation. The latter is less expected

due to the small number of measurements available in this region (Figure 3.1, page 50).

The Southern Ocean (Figure 3.18d) exhibits a similar shape in both cases, but the in-

terpolation has a lower sink efficiency and acts as a source of atmospheric CO2 during

more of the year. This is due to the extended region of outgassing along the ice boundary

discusses earlier. There is a large difference in the seasonal cycles in the South Pacific

(Figure 3.18c). This is again due to the sparse measurements, and means that outgassing

in the Equatorial Pacific is interpolated southwards into the South Pacific region, and
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Figure 3.17: Maps of air-sea CO2 flux for (top) February and (bottom) August for the year 2000.
Maps on the left are calculated from this study’s interpolated data set, while those on the write
are from the Takahashi climatology [Takahashi et al., 2009]. Negative (blue) and positive (red)
represent fluxes into and out of the ocean respectively.

neurtralises the increased sink observed during the winter months. The Equatorial Pacific

itself (Figure 3.18b) shows little seasonal variability as would be expected in this region.

In both the interpolated data and the Takahashi climatology the region is a year-round

source of atmospheric CO2. The rate of outgassing is much lower in the interpolated data

because it includes the effects of ENSO events, which were removed from the Takahashi

climatology.

The Indian Ocean (Figure 3.18g) is similar in both data sets except for a much larger

sink in the interpolated data during the winter months. The converse is true in the North

Atlantic (Figure 3.18f), with a much larger sink seen in the Takahashi climatology during

winter. In both cases this is due to differences in the way that pCO2 measurements are

interpolated. Takahashi used a transport model to ‘move’ data between grid cells and does

so for all values regardless of data density. This study copies pCO2 values between grid

cells and only does so when required. In the Indian Ocean, there are measurements in a

few season of strong oceanic sinks in wintertime. In copying these values across cells, this

study’s interpolation maintains the strength of the sink across a larger area of the Indian
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Figure 3.18: Seasonal cycles of air-sea CO2 fluxes in seven ocean regions for the interpolated data
set (black lines) and the Takahashi climatology (red lines). The map in the bottom right shows the
various regions: North Pacific (15◦N to 70◦N); Equatorial Pacific (15◦N to 15◦S); South Pacific
(15◦S to 50◦S); Southern Ocean (South of 50◦S); Equatorial and South Atlantic (15◦N to 50◦S);
North Atlantic (15◦N to 70◦N); Indian Ocean (North of 50◦S).
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Ocean, while the physical transport approach used by Takahashi allows the strong sink to

dissipate as the low-CO2 water dissipates through the ocean. In the North Atlantic there

are a large number of available measurements (Figure 3.1, page 50), so this study does

not spatially interpolate the data to such a large extent. Takahashi approach, meanwhile,

continues to transport water between grid cells. The different results of these approaches

can be seen in the comparison of the February flux maps (Figure 3.17a and b, page 75).

There is a region of strong CO2 sink off the east coast of North America, which spreads

across much of the North Atlantic in the Takahashi climatology. In this study there are

plenty of measurements available adjacent to this region, so spatial interpolation is not

required and the region of strong sink is not extended so far across the Atlantic.

3.7 Conclusion

This chapter presents a new interpolation method adapted to the available measurement

coverage of surface ocean pCO2 values over the 1990-2008 period south of 70◦N, demon-

strating comparable or improved accuracy compared to other approaches. The interpo-

lated data set includes uncertainties based on the spatial and temporal distance over which

values have been interpolated, which will be useful to guide data selection in future stud-

ies. Such a data set can be used to assess pCO2 variability over multiple temporal and

spatial scales, and help to establish the most beneficial placement and frequency of fu-

ture pCO2 observation programs to reduce the uncertainties in our knowledge of this key

oceanic variable. Our interpolated data set can also provide prior estimates required in

atmospheric inversion models, and data to evaluate forward model simulations.

This new interpolated data set provides coherent coverage for the global ocean with

greater temporal and spatial extent than existing data products. The technique relies nei-

ther on knowledge of other oceanic variables nor on the physical characteristics of the

ocean. There is therefore no need to establish these relationships between variables in sit-

uations where there is insufficient data to do so, nor to take into account how they might

change over space and time and recalculate them accordingly. It is therefore possible to

interpolate data in regions where these previous approaches are inapplicable. The inde-

pendent statistical nature of the technique means that it can be readily applied to other

environmental global data sets with comparatively little effort.
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4.1 Abstract

We quantify the magnitude and extent of the response of the partial pressure of surface

ocean CO2 (pCO2) to interannual climate variability. Our results are based on observa-

tions taken during the period 1990-2007, and informed by model output to assess their

representativeness. We find a strong relationship between pCO2 and the El Niño Southern

Oscillation in the Equatorial Pacific (15◦S-15◦N; r = -0.47), where pCO2 levels changed

by -6.6 ± 1.0 µatm per index unit (µatm iu−1), which corresponds to a change in air-

sea flux of 0.118 ± 0.018 Pg C yr−1 iu−1 over 4.029 × 107 km2. pCO2 levels were

low when the SOI was in its negative (El Niño) phase. The Pacific Decadal Oscillation

(PDO) has the strongest effect in the North Pacific (North of 15◦N; r = 0.25), although the

pCO2 response of -0.8 ± 0.4 µatm iu−1 is weak. We do not find a statistically significant

correlation between the North Atlantic Oscillation and pCO2 in the North Atlantic North

of 15◦N, although the pattern of correlations across the basin supports previous findings.

The PDO shows a statistically significant correlation with pCO2 in the North Atlantic,

albeit with a weak pCO2 response of -1.4 ± 1.0 µatm iu−1 and a corresponding change

in air-sea flux of 0.057 ± 0.024 Pg C yr−1 iu−1 over 3.112 × 107 km2.

4.2 Introduction

The interannual variability of the global climate is complex and difficult to predict. How-

ever, various large-scale oscillations repeat on multi-year time scales, and many of the re-

lated and consequent effects have been observed and quantified. These ‘modes of variabil-

ity’ are quantified using climate indices. They are commonly defined as teleconnections in

atmospheric pressure systems [Barnston and Livezey, 1987; Ropelewski and Jones, 1987;

Hurrell, 1995; Limpasuvan and Hartmann, 1999; Thompson and Wallace, 2000] or as re-

gional changes in sea surface temperature [Trenberth, 1997; Mantua et al., 1997; Zhang

et al., 1997].

These modes of climate variability affect the carbon cycle and the partial pressure

of carbon dioxide (pCO2) at the ocean surface, either directly through the temperature-

dependence of pCO2, or indirectly through the impact of ocean circulation and biological

fluxes on dissolved inorganic carbon (DIC). Relationships between pCO2 and climate
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indices have been observed in the equatorial Pacific [e.g. Inoue et al., 1996; Etcheto et al.,

1999; Feely et al., 2006; Sheu et al., 2010] and North Atlantic [Corbière et al., 2007;

Schuster et al., 2009], but the magnitude of the response of pCO2 to changes in the indices

and the spatial extent of those responses has not been directly quantified before.

The recent release of a global database of surface ocean pCO2 measurements (the

Surface Ocean CO2 Atlas (SOCAT) [Pfeil et al., submitted] presents an invaluable op-

portunity to quantify the impact of climate variability on surface ocean pCO2, and to

determine the spatial extent of influences. Here we compare the interannual variability of

surface ocean pCO2 to changes in several climate indices between 1990 and 2007, and

determine the direction, magnitude and spatial extent of their relationship. This work will

contribute to improving our understanding of the relationship between climate variability

and biogeochemical processes in the ocean, and help quantify interannual variations in

air-sea CO2 fluxes.

4.3 Methods

4.3.1 Calculation of anomalies

The seasonal cycle and long-term trend are the largest components of the temporal vari-

ability of surface ocean pCO2 (Chapter 2). These were removed from all the data sets

used here as explained below, leaving anomalies that represented the interannual variabil-

ity alone.

4.3.2 SOCAT measurements

The SOCAT measurements on their own provide little opportunity to determine how the

interannual variability (IAV) of pCO2 is related to large scale modes of climate variability,

because the seasonal cycle is large in many regions and difficult to isolate with the avail-

able measurements. To minimise this problem, we first interpolated the SOCAT data to

produce spatially and temporally complete set of pCO2 data. The SOCAT database con-

tains over 6 million measurements covering the period 1968-2007. However, only 10% of

the available measurements were taken before 1990, and these are too sparsely distributed

to produce a reliable interpolation. We therefore used only the measurements from the
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period 1990-2007. The measurements were binned on a 5◦x5◦ grid with daily resolution.

Where multiple measurements exist for a particular day, the mean value was calculated.

In leap years, each ‘day’ was calculated as 1 1
365 days to provide a consistent year length

throughout. A curve was fitted to each grid cell’s time series of the form:

f(t) = a0 + a1t+
n∑

k=1

[b2k−1sin (2πkt) + b2kcos (2πkt)] (4.1)

where f is the fitted curve, t is the time in years since 1990 and n is a number of har-

monics representing the seasonal cycle. Up to four harmonics were fitted where the data

density allowed. If a curve could not be fitted to the time series, values from neighbouring

grid cells were added according to a ‘radius of influence’ [Levitus, 1982] based on the

spatial autocorrelation characteristics of surface pCO2 (Chapter 2). These interpolated

values were weighted according to the decorrelation length of pCO2 values in that region

(Chapter 3). This process was repeated until a realistic curve fit was achieved.

The curve fitting process produced a linear trend and mean seasonal cycle for each

grid cell, which were removed from the cells’ original time series to leave anomalies from

the expected seasonal cycle. These were converted to monthly mean anomalies to match

the temporal resolution of the climate indices.

4.3.3 Models

The interannual variability of the SOCAT observations alone is not sufficient to provide

a robust result. Since the measurements in each grid cell are temporally sparse, it is not

possible to tell whether or not the results obtained are representative of the values that

would be obtained from a complete data set. We therefore used model data to constrain

the output of the results obtained from the SOCAT data.

We use the pCO2 output data of eight model simulations from five different mod-

els contributing to the RECCAP project [Canadell and Ciais, in preparation]: the Bergen

model MICOM-HAMOCC [Assmann et al., 2010], the CSIRO model [Lenton and Matear,

2007], the WHOI model BEC [Thomas et al., 2008], the ETH model (two simulations)

[Graven et al., submitted], the UEA model NEMO-PlankTOM5 (three simulations) [Le

Quéré et al., 2010]. The two ETH model runs used different gas transfer formulations:

ETHk19 used a coefficient of 0.31 cm hr−1 s2/m2 for the gas transfer formulation leading
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to a global mean velocity of 19 cm hr−1 for CO2; ETHk15 used a coefficient of 0.24 cm

hr−1 s2/m2 leading to a global mean velocity of 15 cm hr−1 for CO2. The UEA model

runs were each forced with a different wind reanalysis product: the NCEP/NCAR reanal-

ysis [Kalnay et al., 1996], ERA-Interim from ECMWF [Dee et al., 2011] and the CCMP

Level 3 wind product from JPL [Atlas et al., 2011].

The pCO2 data from each model was regridded to match the 5◦x5◦ grid used for the

SOCAT data. The regridded data from the eight simulations were averaged to produce

an ensemble mean pCO2 field for comparison with the SOCAT data. The long-term lin-

ear trend was removed from each grid cell of the ensemble mean, along with the mean

seasonal cycle calculated from the detrended time series by computing the average value

for each calendar month. The remaining anomalies represented the interannual variability

equivalent to those extracted from the SOCAT data.

The anomalies produced above were more comprehensive than those from the SOCAT

data since there were no temporal gaps in the model output. A second set of anomalies

were produced by selecting values from the model output at those times and grid cells

where anomalies exist in the SOCAT data. Comparing the models’ complete and sampled

anomalies provided information regarding the realism of the observed SOCAT relation-

ships with climate indices.

4.3.4 Comparison with climate indices

The calculated pCO2 anomalies were partitioned into three ocean regions (Figure 4.1,

page 85): The Equatorial Pacific between 15◦S and 15◦N; the North Pacific between

15◦N and 60◦N; and the North Atlantic between 15◦N and 60◦N. The anomalies in these

regions are correlated with a set of indices representing major modes of climate variability

(Figure 4.2, page 86). The North Atlantic Oscillation (NAO) [Barnston and Livezey, 1987;

Hurrell, 1995] is an index of the difference in sea level pressure (SLP) between Iceland

and the Azores, which influences surface temperatures, winds and precipitation rates.

ENSO indices are a measure of SST anomalies in the Equatorial Pacific, signalling the

suppression of upwelling in the east. In this study we use the El Niño Region 3.4 SST

index (hereafter referred to as Niño34) [Trenberth, 1997] which measures ENSO events

at their largest spatial influence across the Equatorial Pacific in the region covering 5◦S to
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Figure 4.1: The three ocean regions used in this study.

5◦N and 120◦W to 170◦W. The Southern Oscillation Index (SOI) measures a dipole of sea

level atmospheric pressure between Tahiti and Darwin, Australia [Ropelewski and Jones,

1987], and is frequently used to measure the atmospheric effects of ENSO activity. The

Niño34 and SOI indices measure different aspects of the same climate phenomenon, but

whether the indices have equivalent relationships to aspects of the biogeochemical cycle is

currently unknown. Finally, the Pacific Decadal Oscillation (PDO) is a measure of shifts

in climate regimes across the North Pacific whose effects can be detected in a number of

climatic variables including SST, SLP, air temperature and precipitation [Mantua et al.,

1997]. The index is based on the spatial pattern of SSTs in the North Pacific. The PDO

has far less high frequency (monthly) variability than the NAO because it is based on

SST rather than SLP. Each of the indices was detrended and deseasonalised to ensure a

consistent comparison with the SOCAT and mean model anomalies. Correlations were

calculated for the pCO2 measurements outside the three regions shown in Figure 4.1, but

the results were not robust because there were insufficient measurements.

The NAO exhibits very high month-to-month variability which hides the interannual

signal. Since this index is primarily a winter-summer shift in relative atmospheric pres-

sure between two locations [Hurrell, 1995], three alternative versions of the index were

produced and correlated with the pCO2 anomalies (Figure 4.2, page 86): A six-month

mean (January-June, July-December), winter and summer means (December-February

and June-August), and winter only (December-February).

As the indices are indicative of large-scale features of the global climate, there are sim-

ilarities between them. Cross-correlation of the indices (Table 4.1, page 87) shows that the
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Figure 4.2: Detrended and de-seasonalised climate indices used in this study. All indices are
measured at one-month intervals. The top panel shows the variations of the NAO index used in
the study: The original monthly index (dashed line), the six-month mean (red), the December-
January-February/June-July-August (DJF-JJA) means (blue) and the DJF mean (orange).
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Niño34 and PDO indices are quite well correlated, which is caused by ENSO’s influence

as a driver of the PDO [Newman et al., 2003]. The SOI is strongly anti-correlated with

Niño34, as ENSO is a coupled atmosphere/ocean system with effects in both domains.of

the changes in SST related to ENSO propagate into the atmospheric system [Rasmusson

and Wallace, 1983]. There is also a small negative relationship between the NAO and

PDO.

4.3.5 Basin-wide correlations

Basin-wide correlations were calculated by combining all the pCO2 anomalies for each

region into a single time series and correlating it with the climate indices. The correlation

coefficient and slope of the fitted line from the correlation calculation show the robustness

and strength of the relationships in each case. This simple approach provides a perspective

on the relationships over large spatial scales, incorporation as many of the available pCO2

measurements as possible.

4.3.6 Per-cell correlations

Assessment of the relationships between pCO2 and climate indices on sub-basin scales

allowed a finer understanding of the spatial extent of those relationships. Each set of

pCO2 anomalies (SOCAT observations, complete model mean and sampled model mean)

was correlated with each of the indices for all 5◦x5◦ grid cells to assess the spatial extent

of the impact of climate modes on pCO2. The correlation coefficient (r) of each grid

cell indicates the strength of the pCO2-index relationship. The sign and magnitude of

the pCO2 response to the changes in index values calculated as the slope of the linear fit

(Figure 4.8, page 97) provides information on the underlying processes.

For the SOCAT data (Figure 4.3, page 88) and the sampled model data (Figures 4.4

and 4.5 c and d, pages 89 and 90), grid cells with 5 or fewer measurements were discarded

NAO Niño34 PDO
Niño34 −0.17
PDO −0.24 0.42
SOI −0.09 −0.69 −0.39

Table 4.1: Cross-correlations (r) of the indices of climate variability used in this study.
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Figure 4.3: Correlations of observed surface pCO2 anomalies with the climate indices. The pCO2

anomalies have been computed by removing the mean seasonal signal and the trend for each
variable (see text). Monthly anomalies are used for the PDO, Niño34 and SOI indices. 6-monthly
anomalies are used for the NAO. The pCO2 data are from the Surface Ocean CO2 Atlas [Pfeil
et al., submitted]. See text for the source of the climate indices. All data are analysed over the
1990-2007 time period. The SOI correlations have been inverted for simpler comparison.

because the sample was too small. In the maps generated from the complete model output

(Figures 4.4 and 4.5 a and b), correlations calculated for the eight individual model sim-

ulations were used to establish the model agreement. The models were said to agree if at

least three quarters of the simulations showed the same sign of correlation coefficient in

a given grid cell. For all indices the area of inter model agreement covers at least 79% of

the ocean, giving confidence that the model mean is representative of the characteristics

of the relationship between pCO2 and the climate indices.

The correlations obtained from the sampled model mean (Figures 4.4 and 4.5 c and d,

pages 89 and 90) were examined in greater detail to determine where they reproduced the

complete model output (Figures 4.4 and 4.5 a and b), and identify where sufficient data is

available for our analysis. This was done first by randomly sampling the complete model

mean at each grid box, to create 100,000 samples with the same number of data as in the

sampled model mean. Correlations were then computed for all samples, and a probability



4.3 Methods 89

Figure 4.4: Correlations of modelled pCO2 anomalies with the NAO (left) and PDO (right) cli-
mate indices. The modelled pCO2 anomalies are from an ensemble average of eight model simula-
tions. Top: Correlations calculated using the complete ensemble model mean output (every month
between 1990 and 2007). Dots indicate cells where 75% or more of the eight models agree on
the sign of the correlation. Middle: Correlations calculated from the model output sampled at the
same locations in space and time as the SOCAT observations. Bottom: Statistical estimate of the
most likely correlation when using the same number of data points as observed for each box but
randomly distributed in time. The dots show cells whose correlation sign is consistent with both
the sampled and unsampled models, and therefore represent the locations where the uneven sam-
pling does not bias the correlation results. The dotted mask is applied to the correlations computed
with the observations in Figure 4.3 (page 88).

distribution of correlations was produced for all grid cells (see examples in Figure 4.6,

page 90). The peak value in the histogram is the most likely correlation coefficient for that

grid cell. The grid cell was deemed representative of the true correlation if 63.2% (1– 1
e )

or more of the values in the histogram were of the same sign (i.e. clearly different from

zero), or if the peak value ± 0.1 encompassed at least 36.79% (1e ) of all sample values

(i.e. the correlation is consistent regardless of sampling). Between 60% and 68% of the

grid cells were found to be representative of the true correlation. Second, the correlation

coefficients for each cell calculated from the 100,000 samples (Figures 4.4 and 4.5 e and
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Figure 4.5: As Figure 4.4 (page 89), but for (left) Niño34, and (right) the SOI. The SOI correla-
tions have been inverted for simpler comparison.

Figure 4.6: Example of histograms of the 100,000 correlation coefficients computed at each grid
cell from the sampled model output, used to determine whether or not the calculated correlations
against the Niño34 index were robust. The vertical dashed line indicates the most common corre-
lation coefficient. In (a) more than 63.21% (1– 1

e ) of the samples were positive (striped) and the
cell is considered robust. In (b) the range of correlation coefficients encompassing 36.79% ( 1e ) of
values (shaded) is within 0.1 of the most common value (dotted lines) and the cell is considered
robust. In (c) neither condition is met and the cell is discarded. These examples are taken for three
grid cells at locations (147.5◦W, 17.5◦N), (157.5◦E, 37.5◦N), and (75.5◦E, 57.5◦S) respectively.
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Figure 4.7: Correlations of observed surface pCO2 anomalies with four climate indices masked
to keep only the cells deemed representative of the likely true value of the correlation (see cap-
tion of Figure 4.4 (page 89) and the text). The SOI correlations have been inverted for simpler
comparison.

f) were compared to the correlations calculated from the complete model output (Figures

4.4 and 4.5 a and b, pages 89 and 90) and to the observed correlations (Figures 4.4 and 4.5

c and d). The grid cell was kept if the signs of the correlations matched across all three

datasets. The correlation signs were considered to match if either all three cells were of

the same sign or if they were within ± 0.1 of each other. Approximately 70% of the

representative grid cells were in agreement across the four climate indices (Figures 4.4

and 4.5 e and f).

Cells that did not meet these criteria were discarded. The representative cells are

marked with black dots in Figures 4.4 and 4.5 e and f (pages 89 and 90). Grid cells

were mostly rejected because they had too few observations or because the total time span

covered by those observations was too short. However, neither factor was conclusively

dominant; some representative cells had few measurements covering a long time period,

while others has a large number of measurements within a relatively short time period.

The SOCAT correlations were masked so that only the representative cells established

from the model data were included (Figure 4.7, page 91).
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4.3.7 Calculation of impact on fluxes

The magnitude of the pCO2 response to changes in climate indices was used to estimate

the corresponding change in air-sea CO2 fluxes. The standard formulation for calculating

air-sea fluxes:

Flux rate = k s ∆pCO2 (4.2)

gives the air-sea flux in mol m−2 yr−1 where k is the gas transfer velocity, s is the solu-

bility of CO2 in sea water, and ∆pCO2 is the difference in partial pressure of CO2 across

the air-sea interface. The total flux of carbon in a given region (in Pg C yr−1) can there-

fore be calculated by multiplying the flux rate by the area of that region and converting

moles into weight of carbon:

Flux = k s ∆pCO2 a 12× 10−15 (4.3)

where a is the area of the region in m2. The change in flux caused by changes in climate

indices was calculated by replacing the ∆pCO2 term in equation 4.2 with the magni-

tude of the pCO2 response to changes in indices, i.e. the slope of the linear fit used in

calculating the correlation between pCO2 and the index values:

∆Flux = k s m a 12× 10−15 (4.4)

where m is the magnitude of the response.

Estimates of the gas transfer velocity were calculated using SSTs from the NEMO/

PlankTOM5 model [Buitenhuis et al., 2010] and winds from the NCEP/NCAR reanalysis

[Kalnay et al., 1996] with the wind parameterisation of Wanninkhof [1992].

4.4 Results and Discussion

4.4.1 Correlations

The strongest correlations between climate variability and pCO2 anomalies are found in

the Equatorial Pacific with the Niño34 (r = -0.47), PDO (r = -0.25) and SOI (r = 0.31)

indices (Table 4.2, page 93). A strong negative correlation with Niño34 is expected as
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North Pacific Equatorial Pacific North Atlantic
NAO 0.04 0.04 0.09

Niño34 −0.12 − 0.47 −0.07
PDO −0.25 −0.25 −0.17
SOI 0.11 0.31 0.04

Table 4.2: Region-wide average correlation coefficients between observed pCO2 anomalies and
climate indices. Bold entries indicate correlations that are statistically significant at the 95% level.
The North Pacific and North Atlantic cover each ocean basin between 15◦N and 60◦N. The Equa-
torial Pacific encompasses the region 15◦S to 15◦N.

the index is a measure of changes in SST related to the suppression of upwelling of cold,

carbon-rich waters in the eastern Equatorial Pacific during El Niño events, and enhance-

ment of the upwelling during La Niña events [Feely et al., 1987; Inoue and Sugimura,

1992]. An increase in SST alone would lead to an increase in pCO2 levels [Takahashi

et al., 1993]. However, the SST effect is overwhelmed by the decrease in upwelled car-

bon throughout the Equatorial Pacific. The SOI is positively correlated with pCO2 in the

Equatorial Pacific (r = 0.31), which is a direct result of the inverse relationship between

the SOI and Niño34 (Table 4.1, page 87). The PDO-pCO2 relationship is similar to but

weaker than that of Niño34 due to its basis in North Pacific. The negative (positive) re-

lationship between Niño34 (SOI) and pCO2 is consistent with previous studies [Inoue

et al., 1996; Etcheto et al., 1999; Feely et al., 1999, 2002, 2006; Sheu et al., 2010]. The

strongest relationships between pCO2 and the Niño34, SOI and PDO indices are restricted

to a narrow band between 10◦S and 10◦N, extending from 175◦E to 120◦W (Figure 4.7b

and c, page 91). This corresponds very closely with the region where the Niño34 index

is defined (5◦S – 5◦N, 170◦W – 120◦W) [Trenberth, 1997]. Correlations outside this nar-

row region are much weaker, indicating that the suppression of the upwelled waters in the

east during El Niño events is responsible for almost all the pCO2 variability in this re-

gion. The positive correlations with the SOI (Figure 4.7d) are not as spatially coherent as

with Niño34 and the PDO, but are dominated by a small region of very high correlations

between 175◦E and 160◦W.

There is a small negative correlation between Niño34 and pCO2 in the North Pacific.

Although this is not statistically significant, it does agree with previous studies of this

region [Inoue et al., 1987, 1995; Brix et al., 2004]. The PDO-pCO2 correlations are sta-

tistically significant in this region (r = -0.25). The distribution of correlation coefficients
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(Figure 4.7b) suggests that there is a west-east dipole between negative and positive cor-

relations in the North Pacific (Figure 4.7c). There is some evidence that such a west-east

dipole exists in several drivers of pCO2 [Weare et al., 1976; Chierici et al., 2006], in-

cluding SST. An empirical study by Takahashi et al. [1993] showed that pCO2 levels are

correlated with changes in SST, changing by approximately 4.23% for each 1◦C change

in SST. The changes in pCO2 observed in the North Pacific are consistent with changes

in the PDO index and related SST changes [Weare et al., 1976], but the magnitude of the

change (-0.8 ± 0.4 µatm per index unut (µatm iu−1)) is much smaller than would be ex-

pected if only SST were affecting pCO2 levels. The pCO2 changes in response to the SST

changes measured by the PDO index are therefore mitigated by PDO-related changes to

other biogeochemical processes such as vertical mixing and biological activity [McKinley

et al., 2006; Valsala et al., 2011].

The influence of the NAO on pCO2 in the North Atlantic is debated. Previous ob-

servational studies have concluded that a link exists in at least some areas [Gruber et al.,

2002; Corbière et al., 2007; Schuster et al., 2009; McKinley et al., 2011], while others

have found no such relationship [Schuster and Watson, 2007; Watson et al., 2009; Padin

et al., 2011]. Model-based studies generally find a link between the NAO and pCO2 lev-

els caused by increased mixed layer depth and decreasing SST during positive phases of

the NAO [Thomas et al., 2008; Ullman et al., 2009; Tjiputra et al., 2012], with largest

variability in the North and indications of a dipole between the sub-tropics and sub-polar

regions [Le Quéré et al., 2000]. Using the monthly NAO index we found a small but

not significant correlation between pCO2 and the NAO (r = 0.09). Using the six-month

(January-June, July-December), seasonal (December-February, June-August) and winter-

only (December-February) NAO indices (Figure 4.2, page 86) we found correlations of

r = 0.21, r = 0.01, and r = 0.21 respectively. None of the correlations were statistically

significant (Table 4.4, page 96). The distribution of correlations using the six-month mean

(Figure 4.7a, page 91) shows positive correlations in the central and northern North At-

lantic, and negative correlations in the extreme east and west. This agrees with the dipole

found by Le Quéré et al. [2000] and Thomas et al. [2008], but contradicts the spatial

variation found by McKinley et al. [2011]. None of the correlations of individual grid
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cells in this region are statistically significant. These results reinforces the conflicting out-

comes found in previous studies, suggesting that there may be a link between the NAO

and pCO2 but a definitive assessment is very difficult either because it is not strong, or

because variability at other time scales masks the signal.

pCO2 in the North Atlantic is most clearly correlated with the PDO, with a small but

statistically significant correlation (r = -0.17). The NAO and PDO are negatively cor-

related (r = -0.24), so any relationship in the North Atlantic with the NAO is likely to

be inverted for the PDO. The more robust relationship with the PDO is probably due to

the fact that this index has less high-frequency variability and better highlights the inter-

annual variability. While teleconnections between Pacific climate variability and North

Atlantic SSTs have been observed via a postulated ‘atmospheric bridge’ [Lau and Nath,

1996], these are usually found to lag by several months [Klein et al., 1999]. Instanta-

neous relationships such as those found here are occasionally observed, but the underly-

ing mechanism is not established [Wanninkhof, pers. comm.]. The spatial variation of

the correlations between the PDO and pCO2 in the North Atlantic shows some evidence

of the dipole observed by Le Quéré et al. [2000] (Figure 4.7a and b, page 91), indicating

that the PDO correlations may coincide well with NAO correlations in the North Atlantic.

This suggests that it may be possible to infer NAO correlations from inverted PDO corre-

lations, although the results from this study are not sufficiently robust to confirm that such

an inference is possible.

4.4.2 Magnitude of the response

The strongest response of pCO2 to changes in the various climate indices corresponds

almost exactly with those regions where the correlation is strongest (Table 4.3, page 96,

page 96). In the Equatorial Pacific, pCO2 levels change by -6.6± 1.0 µatm iu−1, though a

wide range of responses exists across the Equatorial Pacific region (Figure 4.8c, page 97).

Where the correlation is strongest responses can be as high as -18 µatm iu−1 (Figure 4.9a,

page 98). This magnitude of change in pCO2 is sufficiently large to neutralise the gradient

between atmospheric and oceanic pCO2 and therefore reduces the Equatorial Pacific’s

role as a source of atmospheric CO2 during large El Niño events [Feely et al., 2006]. The

pCO2 response to the SOI is much smaller (3.6 ± 0.9 µatm iu−1). This shows that the
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North Pacific Equatorial Pacific North Atlantic
NAO 0.2 ± 0.4 0.6 ± 1.1 0.7 ± 0.7

Niño34 -0.7 ± 0.4 -6.6 ± 1.0 -0.7 ± 0.7
PDO -0.8 ± 0.4 -3.1 ± 1.0 -1.4 ± 0.6
SOI 0.6 ± 0.4 3.6 ± 0.9 0.3 ± 0.6

Table 4.3: The magnitude of the response of pCO2 to changes in climate indices (in µatm per
index unit) in three ocean regions. Uncertainties are calculated as the RMS of the residuals from
the least-squares linear fit used to calculate the correlation. Bold entries indicate the statistical
significance of the correlations as seen in Table 4.2 (page 93).

NAO Version Correlation P-value
Original (monthly) 0.09 0.29
6-month means 0.21 0.23
DJF-JJA 0.01 0.96
DJF only 0.21 0.46

Table 4.4: Correlation coefficients, with p-values, for pCO2 anomalies in the North Atlantic com-
pared with four versions of the North Atlantic Oscillation. Lower p-values have greater statistical
significance (p = 0.05 represents significance at the 95% level). The 6-month mean is used in the
remainder of this study because it has the lowest p-value.

ocean-based index gives a much clearer indication of ENSO effects on pCO2 than the SOI

even though both indices are measures of the same climatic phenomenon.

The response to changes in Niño34 and the PDO in the North Pacific is much smaller

than in the Equatorial Pacific, with values of -0.7 ± 0.4 and -0.8 ± 0.4 µatm iu−1 respec-

tively. For Niño34, this is because ENSO has a much smaller impact outside the Equato-

rial Pacific. The PDO-pCO2 correlation coefficient is identical in both regions (r = -0.25).

Thus the difference cannot be attributed to a difference in the relationship, but highlights

the real differences in climate impact between the two regions. The response to the PDO

in the North Atlantic is also relatively small, with a basin-wide response of -1.4 ± 0.6

µatm iu−1. The response to the NAO is 0.7 ± 0.7 µatm iu−1, although there are small

regions with higher responses than are seen for the PDO (Figure 4.9c and d, page 98).

Again, this suggests that the mechanisms behind the indices do not include factors that

have a strong influence on pCO2. This is expected since both the PDO and NAO measure

changes in aspects of the climate that have only an indirect effect on oceanic processes.
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Figure 4.8: Magnitude of the response of pCO2 levels per unit change in index values. Grid
cells are masked as in Figure 4.7 (page 91). The SOI responses have been inverted for simpler
comparison.

4.4.3 Changes in flux

The estimated changes in flux are closely related to the magnitude of the pCO2 response to

changes in the climate indices (Table 4.5, page 98). The largest response, the Equatorial

Pacific response to Niño34 yields a change in flux of 0.118 ± 0.018 Pg C yr−1 iu−1

(Petagrams of carbon per year per index unit) over an area of 4.029 × 107 km2. This

equates to a change in flux of 0.21 ± 0.03 Pg C yr−1 for the 1992-1994 ENSO event, and

0.40 ± 0.06 Pg C yr−1 for the 1997-1998 ENSO event. This rate of change is smaller

than early estimates of the effect of ENSO on pCO2 fluxes (Feely et al. [1999] estimated

a change in fluxes of 0.4 Pg C yr−1 for the 1992-1994 ENSO event), but larger than

more recent estimates of 0.17 Pg C yr−1 for the 1997-1998 ENSO event [Park et al.,

2010]. The change in flux of the Equatorial Pacific related to the SOI and PDO indices is

proportionally smaller than the Niño34-related change in line with the smaller magnitude

of the pCO2 response.

None of the indices induces a large change in air-sea fluxes across the North Pacific.

The largest change in flux occurs in response to the PDO, with a change of 0.028± 0.014

Pg C yr−1 iu−1 over an area of 4.78 × 107 km2. The largest change in the North Atlantic
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Figure 4.9: Distributions of response magnitudes for (a) Niño34 in the Equatorial Pacific; (b)
PDO in the North Pacific; (c) NAO in the North Atlantic; (d) PDO in the North Atlantic.

North Pacific Equatorial Pacific North Atlantic
4.78 × 107 km2 4.029 × 107 km2 3.112 × 107 km2

NAO -0.007 ± 0.014 -0.011 ± 0.020 -0.029 ± 0.029
Niño34 0.024 ± 0.014 0.118 ± 0.018 0.029 ± 0.029
PDO 0.028 ± 0.014 0.056 ± 0.018 0.057 ± 0.024
SOI -0.021 ± 0.001 -0.065 ± 0.016 -0.012 ± 0.024

Table 4.5: Changes in air-sea fluxes in response to a change of +1 in each climate index across
each ocean region in Pg C yr−1. Positive numbers indicate increasing oceanic uptake of CO2. The
uncertainties are based only on the uncertainty in the pCO2 response to changes in the climate
indices; uncertainties in the flux calculation are not considered.
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is related to the PDO, where the change in flux is almost identical to that found in the

Equatorial Pacific (0.057 ± 0.024 over 3.112 × 107 km2 and 0.056 ± 0.018 Pg C yr−1

iu−1 over 4.029× 107 km2 respectively). This strengthens the evidence for a link between

the PDO and the North Atlantic.

4.5 Summary and conclusion

We have analysed the magnitude of the response of surface ocean pCO2 to climate vari-

ability, using model output to identify locations where the data sampling is sufficient. The

extension of the analysis beyond simply establishing that relationships exist allows more

accurate assessments of that effect climate indices and their underlying mechanisms have

on air-sea CO2 fluxes and the ocean’s biogeochemical cycle.

The strongest effect on pCO2 levels is caused by the influence of ENSO in the Equa-

torial Pacific. pCO2 concentrations change by an average of -6.6 ± 1.0 µatm iu−1, with

extremes of up to -18 µatm iu−1 in some areas. From this, a change of one index unit in

Niño34 leads to a change of 0.118 ± 0.018 Pg C yr−1 over 4.029 × 107 km2. The PDO

and SOI, both closely related to ENSO, also exhibit statistically significant correlations in

the Equatorial Pacific. The PDO also has statistically significant correlations with pCO2

in both the North Pacific and North Atlantic. Although the North Atlantic correlation is

small (r = -0.17), it is stronger than that with the NAO (r = 0.07) probably due to the high

short-term variability of the latter index. The magnitude of the response to the PDO is

also larger than for the NAO, as is the air-sea flux response (0.057 ± 0.024 and -0.029 ±

0.029 Pg C yr−1 iu−1 respectively over 3.112 × 107 km2). The relationship between the

PDO and pCO2 levels in the North Atlantic is an unexpected result, and deserves further

investigation that is beyond the scope of this study.

The relationship between pCO2 and the NAO in the North Atlantic is not statistically

significant, and therefore does not confirm the findings of some previous studies. How-

ever, the spatial distribution of correlations across the North Atlantic does agree with that

of some modelling studies. The large variability of the NAO means that extracting any

potential signal of an NAO-pCO2 relationship is very difficult. Our results show that the

average pCO2 response to changes in the NAO is 0.7 ± 0.7 µatm iu−1. This means that

even if a link to the NAO is found its influence on pCO2 levels is very small.





Chapter 5

Summary and Conclusions
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5.1 Summary of findings

The central aim of this thesis is to improve our quantitative understanding of surface

ocean pCO2 and air-sea CO2 flux variability on both temporal and spatial scales. This has

been achieved with a study of the temporal and spatial autocorrelation characteristics of

the available pCO2 measurements, and a detailed assessment of the relationship between

surface ocean pCO2 and various large scale modes of climate variability. A new method-

ology has been developed to interpolate and extrapolate pCO2 in space and time to assist

this effort.

5.1.1 Autocorrelation analysis of pCO2

The pCO2 measurements from the LDEO database [Takahashi and Sutherland, 2009]

were examined using autocorrelation techniques. A temporal autocorrelation function

was defined at monthly resolution which was used to distinguish between different mag-

nitudes of the seasonal cyle in pCO2 at different latitudes. The autocorrelation is robust

over multiple years (r = 0.46 after 12 months and r = 0.33 after 48 months) showing

that the interannual variability has relatively little effect on the seasonal cycle of pCO2.

Spatial autocorrelation analysis provides very good indications of the pCO2 variability in

most areas of the ocean. Many ocean currents and sub-tropical gyres are visible in the

autocorrelation patterns of pCO2 with autocorrelation lengths of up to 1,400 km. Regions

of heterogeneous water masses and variable currents have much shorter autocorrelation

lengths (400 km or less), especially in coastal regions. Analysis of the underlying causes

of the spatial variability has shown that ocean circulation is the primary driver of spa-

tial variability in pCO2. Division of the pCO2 measurements into temperature and non-

temperature components using the formulation of Takahashi et al. [1993] shows that the

driving forces of spatial variability act more directly on the temperature-driven compo-

nents of pCO2 than on biological and other influences. Similar analysis of the air-sea

CO2 flux and its component parameters reveals that the spatial scales of variability are

approximately half those of pCO2, primarily due to the high spatial of variability wind

speeds.

The assessment of spatial variability produced in this thesis will facilitate the design

of future observation networks for pCO2 [Sweeney et al., 2002; Lenton et al., 2009], by
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providing information which will help determine the optimal distance between measure-

ments necessary to capture the full spatial characteristics of the pCO2 field. This infor-

mation is particularly timely due to the imminent ability to deploy pCO2 measurement

devices on autonomous floats and gliders [Johnson et al., 2009], providing an opportunity

to distribute pCO2 measurements far more widely than the current ship-board measure-

ment network. The monthly resolution of the temporal autocorrelation function (ACF)

is not so useful for informing measurement network design because pCO2 is known to

vary significantly on even sub-diel timescales [Bates et al., 1998; Dai et al., 2009]. Un-

fortunately there was insufficient data to create a daily resolution ACF which would have

been of greater use to inform the design of measurement programmes. Scientists should

therefore aim to collect measurements at a minimum of 6- or 12-hour intervals initially

to establish the daily and weekly variability of pCO2. Understanding how this short term

variability affects air-sea flux calculations on these time scales will help to determine the

requirements of temporal measuring frequency in different regions. Model studies that

produce pCO2 fields at sub-monthly or even sub-daily time resolution may also be use-

ful for this purpose if their results can be validated against observations and the same

frequency. Measures of spatial variability will also be useful as a data input to various

modelling projects, particularly inverse models, where air-sea CO2 flux variability can be

used as a prior estimate of ocean variability and help reduce the degrees of freedom in the

inversions [e.g. Rödenbeck et al., 2003].

5.1.2 Comparison with modes of climate variability

The contribution of climate variability to interannual variability in pCO2 was assessed

using modes of climate variability. The links between pCO2 and climate indices have

been observed previously [e.g. Inoue et al., 1996; Schuster et al., 2009], but the magni-

tude and spatial extent of the climate-driven variability in pCO2 is poorly known. Fur-

thermore, conflicting results have been published for the North Atlantic [Corbière et al.,

2007; Schuster et al., 2009; Watson et al., 2009; Padin et al., 2011]. The work under-

taken in this thesis provides new information on the strength of the pCO2-climate rela-

tionships on interannual timescales based on the most recently available pCO2 database
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[Pfeil et al., submitted]. High sea surface temperatures in the Equatorial Pacific associ-

ated with El Niño events lead to reduced pCO2 concentrations as upwelling of carbon-rich

waters is suppressed. pCO2 levels change by 6.6 ±1.0 µatm per index unit (µatm iu−1),

the strongest response found in the study. This equates to changes in the air-sea flux of

0.118 ± 0.018 Pg C yr−1 iu−1 over an area of 4.029 × 107 km2. The Pacific Decadal Os-

cillation (PDO) is the only index that has statistically significant correlations in all three

basins examined. The relationship between the PDO and pCO2 in the North Atlantic is

unexpected and worthy of more detailed study in the future. No significant correlation

was found with the North Atlantic Oscillation in the North Atlantic, reflecting the high

variability of the index and biogeochemical processes in that region. The spatial pattern

of correlations in the North Atlantic matches some findings of previous studies in this

region, suggesting that a consistent relationship does exist but requires further analysis to

quantify it fully.

The direction and magnitude of the pCO2 response to climate indices provides useful

information to help assess the likely impacts on air-sea CO2 fluxes of changes in interan-

nual variability as a result of climate change. Alterations in air-sea fluxes in response to

changes in underlying climate will have a direct effect on atmospheric CO2 and dampen

or accelerate climate change. Anthropogenic activity is likely to alter the behaviour of

modes of climate variability [Trenberth et al., 2007], so the resulting change in air-sea

fluxes will act as a feedback to human-induced climate change. Whether the feedbacks in

response to changes in interannual climate variability will be positive or negative is still

uncertain [Latif and Keenlyside, 2009].

5.1.3 Interpolation of pCO2 data

The interpolation method developed to assess the effects of modes of climate variability

on pCO2 is a valuable product in its own right, providing a globally and temporally com-

plete estimate of pCO2 values for a period of 19 years accompanied by an assessment of

uncertainties. Validation of the results has shown that the method is comparably accurate

to or more accurate than other published approaches. Tests using model output show that

the technique provides useful information even in regions of the ocean with few available

measurements. The estimation of uncertainties for each data point is a key part of the data
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set. Thus future users can establish their own thresholds when using the interpolated data

to fit their requirements.

The globally and temporally complete data set of pCO2 measurements presented in

this thesis will be of use to the scientific community studying the carbon cycle. The data

set on its own can be used for any number of analyses of surface pCO2 trends and variabil-

ity and the underlying drivers of those changes. Chapter 4 of the thesis presents just one

example of such a study. Other examples of potential studies based on the interpolated

pCO2 data are described in Section 5.2.6 (page 111).

5.2 Further work

5.2.1 Improvements to the autocorrelation analysis

There are limited opportunities to extend the temporal autocorrelation analysis performed

in Chapter 2 due to the limited amount of available data at a suitable temporal resolution.

It may be possible to create separate zonal autocorrelation functions at monthly resolu-

tion for different latitudes in the northern hemisphere, although the North Atlantic and

North Pacific ACFs would have to be compared to ensure that different ocean basins have

similar autocorrelation properties before the zonally averaged ACFs could be considered

realistic. A zonal analysis cannot be performed in the southern hemisphere due to a lack

of measurements.

The spatial autocorrelation would benefit from in increase in resolution, both in terms

of grid size and the resolution of the spatial ACFs (using lag steps of less than 50 km).

An increased grid resolution will improve the ability to locate specific dynamic features,

providing more detailed information for those designing observation networks or studying

mesoscale or smaller features of the oceanic biogeochemical cycle. Increasing the reso-

lution would require some compromise in data coverage because there will be more grid

cells without any measurements. A more refined lag resolution would extract more detail

from areas of very high variability, most notably around the coasts. Both the increased res-

olution and smaller lag would dramatically increase the computation requirements of the

autocorrelation analysis. The results presented here required approximately 50,000 hours

of processing time, so an increase in resolution may not be feasible in the short term.
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5.2.2 Developing pCO2 sampling strategies

One of the major potential uses for the spatial autocorrelation analysis is to help develop

sampling strategies for different parts of the world’s ocean to ensure sufficient detail of

pCO2 variability is captured to perform the types of analysis desired by the scientific

community.

Several sampling strategies have been produced for different ocean regions. Some

have focused on temporal sampling requirements [Garçon et al., 1992; Mémery et al.,

2002], which cannot be improved by the spatial autocorrelations from this study. Spa-

tial sampling strategies have been developed using a variety of techniques. Takahashi

et al. [2002] subsampled pCO2 climatologies to ensure detection of large-scale features.

Sweeney et al. [2002] calculated the uncertainty in ∆pCO2 required in a number of regions

to ensure that subsequent flux calculations yielded an uncertainty of ±0.1 Pg C yr−1, and

the sampling distances required to achieve that uncertainty. Lenton et al. [2006, 2009]

utilised Fourier analysis in both space and time to determine the sampling frequency re-

quired to capture the majority of the spatial and temporal structure of pCO2 variability in

high latitude seas.

Using the results of this thesis, the maps of decorrelation length presented in Fig-

ures 2.4 and 2.5 (pages 35 and 37) can be used as a first estimate of the maximum distance

between adjacent samples that maintains some relationship between them, and therefore

allows for reasonable interpolation between those samples. However, it is likely that the

sampling frequency suggested by these maps is overly conservative. For example, Lenton

et al. [2006] state that zonal sampling should only be required at 30◦ (∼2,500 km) inter-

vals in the Southern Ocean, while the zonal autocorrelation map (Figure 2.5a, page 37)

shows regions of the of much shorter autocorrelation length.

One possible cause of this discrepancy is that small-scale spatial structures in pCO2

will lead to short decorrelation lengths. However, if these smaller structures are consis-

tent across a large region, a coarser sampling frequency may still allow a reasonably reli-

able reconstruction of the pCO2 field. Spatial Fourier analysis such as that performed by

Lenton et al. [2006, 2009] has the ability to detect these smaller scale features as variations

of a specific wavelength. If that wavelength is a dominant source of spatial variability in

pCO2, the resulting spatial ACF will reflect that wavelength over any other feature, in
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turn restricting the decorrelation length. Removing that portion of the ACF ascribed to

the dominant Fourier wavelength will allow analysis of the remaining variability. Thus

it will be possible to calculate a sampling frequency that accounts for both the ‘regular’

variaibility and the more noisy variability that cannot easily be detected using Fourier

analysis alone.

5.2.3 Extending the analysis of interannual variability

The analysis of relationships between modes of climate variability and pCO2 was lim-

ited to the North Pacific, Equatorial Pacific and North Atlantic where the most pCO2

measurements are available. It may be possible to extend the analysis of the relationship

between pCO2 and climate indices to some areas of the Southern Hemisphere, particularly

in the Southern Ocean south of Australia and the south-western Indian Ocean (Figure 4.3,

page 88). Similarly, there are some additional modes of climate variability whose influ-

ence could be examined, such as the Southern Annular Mode [Thompson and Wallace,

2000] and the Indian Ocean Dipole [Saji et al., 1999].

The strength of correlation and magnitude of the pCO2 response to climate indices

found in Chapter 4 could be used to develop a new metric for assessing model perfor-

mance. Many physical models are evaluated in terms of their ability to reproduce the

large-scale modes of variability examined in this study [e.g. Oshima and Tanimoto, 2009;

Stoner et al., 2009]. This effort could be extended to biogeochemical models using the

results of this study. It would allow for the first time an observation-based assessment

of the performance of the models with respect to the relationships between the climate

indices and pCO2.

Further analysis of the relationship between climate indices and pCO2 may reveal

more regarding the underlying mechanisms that link them. The link between ENSO and

pCO2 in the Equatorial Pacific is easily understood through variations in the upwelling of

carbon from the upper ocean. The link between the NAO and pCO2 is much less obvious.

Consistent links have been found in regions of the North Atlantic between NAO and SST

[Visbeck et al., 2001] and between SST and pCO2 [Takahashi et al., 1993], but these

do not translate directly into a link between the NAO and pCO2. The influence of the

NAO on pCO2 is a combination of multiple processes, making the relationship difficult to
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quantify. Experiments with computer-based models may prove to be the easiest method

of separating the influence of the different processes involved to improve understanding

the relationship between the NAO and pCO2.

5.2.4 Improvements to the interpolation method

The interpolation method developed in Chapter 3 works well over most of the ocean, as

evidenced by the successful reproduction of model output: 72% of grid cells have an

RMS error of ≤20 µatm across the 1990-2008 period, and 89% have an RMS error of

≤30 µatm. This is the first purely statistical method for interpolating surface pCO2 that

does not rely on other data sources such as sea surface temperature, chlorophyll or mixed

layer depth. From the experience gained through this effort, I highlight below several

areas for improvements and further developments.

The spatial resolution of the data set presented in this thesis is relatively coarse at

5◦x5◦, especially when compared to other attempts to interpolate pCO2 data. Methods

based on neural networks frequently produce results at 1◦x1◦ resolution [Telszewski et al.,

2009; Watson et al., 2009], focused on data-rich regions of the North Atlantic. The method

developed in this thesis could be altered to produce pCO2 maps of equally high resolution

in the North Atlantic and North Pacific where the measurement density is highest. It is

also possible that a higher spatial resolution (e.g. 2◦x2◦) could be achieved across the

global ocean without compromising the accuracy of the output.

The spatial interpolation method used in this technique does not currently take into

account the presence of land boundaries. Where strips of land are very narrow, for exam-

ple in central America near Costa Rica and Panama or the southern tip of South America,

it is possible that pCO2 values from unconnected ocean basins will be combined auto-

matically during the spatial interpolation due to the coarse grid size. Moving to a higher

resolution grid would eliminate most of the land-spanning grid cells. The interpolation

method should further be adapted through the use of a basin mask to take into account

continuous land boundaries and prevent spatial interpolation across basins.

The current method of fitting a uniform seasonal cycle to each grid cell is not ideal be-

cause it does not take account of any interannual variability caused by climatic phenomena

such as ENSO. In years or seasons where no measurements are available the interpolated
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values are taken from the fitted mean seasonal cycle which does not include interannual

variability and leads to discontinuities in the time series for a given grid cell. This effect

is particularly noticeable in the eastern equatorial Pacific, where the variability related to

ENSO is larger than the amplitude of the seasonal cycle. A coarser temporal resolution

(weekly or monthly) would help to mitigate this issue as there would be fewer values to

be interpolated. A method of deriving a variable seasonal cycle would also be beneficial.

The uncertainties assigned to the interpolated pCO2 are currently unrealistically large.

In the model reconstruction test, the assigned uncertainties were far larger than most of the

estimated errors (Figures 3.12 and 3.9, pages 68 and 65). The uncertainties are currently

based the autocorrelation characteristics of the pCO2 data. The ACFs typically resemble

an exponential decay, so even values separated by short distances can appear to be unre-

lated and therefore be given a large uncertainty. A more quantitative technique could be

based on empirical calculations of the variability of pCO2 in space and time measured in

µatm instead of autocorrelation coefficients. This would give a much more direct estimate

of the likely errors introduced through interpolation.

5.2.5 Intercomparison of interpolation techniques

Several techniques have been developed previously to interpolate surface pCO2 data [e.g.

Boutin et al., 1999; Jamet et al., 2007; Telszewski et al., 2009]. To date these have been

restricted to specific ocean regions where measurements are relatively abundant, with few

attempts to extend the interpolations into regions of sparse data availability over multiple

years. The comparison of errors presented in this study shows that results are robust with

respect to the chosen interpolation technique where many measurements are available,

and errors are of a similar magnitude for all methods (Table 3.2, page 67). While the

interpolation presented here is the first interannual study with global coverage, work is

under way to also extend some neural network interpolations globally. Some multi-linear

regression techniques could also be similarly expanded with relatively little effort [Schus-

ter, pers. comm.]. As these global interpolation methods are developed, it is critical to

establish their relative accuracy. One way forward would be to set up an intercomparison

project to establish a set of validation metrics. Such an effort would provide a quanti-

tative assessment of the relative value of the available methods, and may help identify
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whether the ensemble mean result of the combined interpolations is more accurate than

any individual model, as has been frequently observed by modellers in climate science

and other fields [Fraedrich and Leslie, 1987; Palmer et al., 2004; Hagedorn et al., 2005;

Knutti et al., 2010].

5.2.6 Uses of the interpolated data set

The assessment of the magnitude of the effects of major modes of climate variability

presented in Chapter 4 represents just one example of the new types of research that can

be undertaken with a temporally and spatially complete data set of surface ocean pCO2

data. This section describes some of the other possible uses for the data set.

First and foremost, a detailed set of pCO2 data such as the interpolated set created

in this thesis can be used to create equally detailed maps of air-sea CO2 fluxes with cor-

responding uncertainties. The fluxes could feed directly into calculations of global and

regional carbon budgets. They can be used to verify existing understanding of the spatial

and temporal variability of air-sea fluxes, and have the potential to provide new insights

in regions where direct observational data are lacking. Discrepancies between the fluxes

calculated from the interpolated data and global flux estimates could be used to quantify

the likely errors in regions of large uncertainty such as the high latitudes (Figure 3.12,

page 68) and Equatorial Pacific (Figure 3.9, page 65). The fluxes in these regions could

then be adjusted to account for the discrepancies and therefore produce more realistic

estimates. It may also be possible to feed the discrepancies back into the interpolation

method to act as a constraint of estimates of pCO2 values in those regions with the high-

est uncertainties.

A suite of air-sea flux products could be produced using a variety of input sources such

as different wind reanalysis products [Kalnay et al., 1996; Atlas et al., 2011; Dee et al.,

2011] and SST data sets [Reynolds and Chelton, 2010], as well as different formulations

of the gas transfer velocity [Liss and Merlivat, 1986; Wanninkhof , 1992; Wanninkhof and

McGillis, 1999; Nightingale et al., 2000; Ho et al., 2006; Sweeney et al., 2007]. These

could be compared to provide detailed analysis of the effects of using these different

products and methods on global and regional air-sea flux estimates, providing a greater
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understanding of the importance of data and method selection. Similar tests of variabil-

ity between methods will also be useful for understanding the role of non-wind factors

affecting gas transfer velocities such as surface film effects [Frew et al., 1990; Tsai and

Liu, 2003], bubbles [Asher et al., 1996; McNeil and D’Asaro, 2007] and precipitation [Ho

et al., 1997; Takagaki and Komori, 2007] as formulations for these factors are developed

[Wanninkhof et al., 2009].

The interpolation method presented here assesses long-term changes in surface pCO2

only in terms of linear trends. However, the results of the interpolation can be used to

better understand how these trends are varying over time, by inspecting the pCO2 anoma-

lies calculated for the comparison with climate indices, as described in Chapter 4. These

anomalies were computed by removing a linear trend and seasonal cycle from the interpo-

lated pCO2. If the trend in pCO2 is non-linear in any region, having either accelerating or

decelerating growth, this will be visible as a trend in the anomalies after the removal of the

long term linear trend. If any such trends are detected they will be indicative of changes

in the efficiency of the oceanic carbon sink. Variations in global air-sea flux and export

production estimates may also provide some insight into long term pCO2 variability. A

more sophisticated curve fitting technique may be able to detect at least some long term

variability in the pCO2 trend and incorporate it into the interpolated data set, particularly

in the North Atlantic and North Pacific.

The interpolated pCO2 data set could also be useful to support the design of observa-

tion network. In addition to providing information on data frequency as explained above,

the location of the largest uncertainties calculated from the method (Figure 3.12, page 68)

could be used to identify regions where more measurements are required. Similarly, de-

tailed assessment of the errors in reproducing model output (Figure 3.9, page 65) com-

pared to the available measurement density could also be useful, provided those errors can

be shown to be due to a lack of measurements rather than a weakness in the method itself.

A complete data set of pCO2 values will also be very useful to the modelling com-

munity. Some work has already begun in assimilating the pCO2 measurements published

in the LDEO database [Takahashi and Sutherland, 2009] into biogeochemical models

[Valsala and Maksyutov, 2010]. The interpolated data set from this study can be used as a

similar input, and also provide prior estimates for models utilising the atmospheric inverse
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method [e.g. Gurney et al., 2002]. The pCO2 data set and the analysis of spatio-temporal

variability presented in this thesis can also be used to validate the results of biogeochemi-

cal models [e.g. Le Quéré et al., 2009], and help determine the degree to which the oceans

contribute to the interannual variability in atmospheric CO2.

5.3 Concluding remarks

The techniques and analyses provided in this thesis provide a number of new insights into

the spatial and temporal variability of surface ocean pCO2, and by extension air-sea CO2

fluxes. The results presented also provide a basis for much future research. The efficacy

of all interpolation techniques and other studies of global air-sea CO2 fluxes will continue

to be limited by the availability of direct measurements from the ocean. It is critical that

measurements continue to be taken on a regular basis and that the measurement network

is expanded into those regions of the southern hemisphere where the largest data gaps

persist.





References

Ahrens, C. D. (2007), Meteorology Today: An Introduction to Weather, Climate, and the
Environment, 537 pp., Thomson Brooks/Cole, Belmont, CA.

Aiken, C. M., and M. H. England (2008), Sensitivity of the Present-Day Climate to Fresh-
water Forcing Associated with Antarctic Sea Ice Loss, Journal of Climate, 21, 3936–
3946, doi:10.1175/2007JCLI1901.1.

Allan, R., and T. Ansell (2006), A new globally complete monthly historical gridded mean
sea level pressure dataset (HadSLP2): 1850–2004, Journal of Climate, 19, 5816–5842,
doi:10.1175/JCLI3937.1.

Antonov, J. I., R. A. Locarnini, T. P. Boyer, A. V. Mishonov, H. E. Garcia, and S. Levitus
(2006), World Ocean Atlas 2005 Volume 2: Salinity, NOAA Atlas NESDIS 62 , 182
pp., U.S. Government Printing Office, Washington, D. C.

Archer, D. (2005), Fate of fossil fuel CO2 in geologic time, Journal of Geophysical Re-
search, 110, doi:10.1029/2004JC002625.

Archer, D. E., M. Eby, V. Brovkin, A. Ridgwell, L. Cao, U. Mikolajewicz, K. Caldeira,
K. Matsumoto, G. Munhoven, A. Montenegro, and K. S. Tokos (2009), Atmospheric
lifetime of fossil fuel carbon dioxide, Annual Review of Earth and Planetary Sciences,
37, 117–134, doi:10.1146/annurev.earth.031208.100206.

Arrhenius, S. (1896), On the influence of carbonic acid in the air upon the temperature of
the ground, The London, Edinburgh and Dublin Philosophical Magazine and Journal
of Science: 5th Series, 41.

Asher, W. E., L. M. Karle, B. J. Higgins, P. J. Farley, and E. C. Monahan (1996), The influ-
ence of bubble plumes on air-seawater gas transfer velocities, Journal of Geophysical
Research, 101, 12,027–12,041, doi:10.1029/96JC00121.

Assmann, K. M., M. Bentsen, J. Segschneider, and C. Heinze (2010), An isopyc-
nic ocean carbon cycle model, Geoscientific Model Development, 3, 143–167, doi:
10.5194/gmd-3-143-2010.

Atlas, R., R. N. Hoffman, J. Ardizzone, S. M. Leidner, J. C. Jusem, D. K. Smith, and
D. Gombos (2011), A cross-calibrated, multiplatform ocean surface wind velocity
product for meteorological and oceanographic applications, Bulletin of the American
Meteorological Society, 92, 157–174, doi:10.1175/2010BAMS2946.1.

Ayers, J. M., and M. S. Lozier (2012), Unraveling dynamical controls on the North Pacific
carbon sink, Journal of Geophysical Research, 117, doi:10.1029/2011JC007368.

Barnes, S. L. (1964), A technique for maximizing details in numerical weather map
analysis, Journal of Applied Meteorology, 3, 396–409, doi:10.1175/1520-0450(1964)
003〈0396:ATFMDI〉2.0.CO;2.



116 References

Barnston, A. G., and R. E. Livezey (1987), Classification, seasonality and persistence of
low-frequency atmospheric circulation patterns, Monthly Weather Review, 115, 1083–
1126, doi:10.1175/1520-0493(1987)115〈1083:CSAPOL〉2.0.CO;2.

Bates, N. R., A. F. Michaels, and A. H. Knap (1996), Seasonal and interannual vari-
ability of oceanic carbon dioxide species at the U.S. JGOFS Bermuda Atlantic Time-
series Study (BATS) site, Deep-Sea Research Part II, 43, 347–383, doi:10.1016/
0967-0645(95)00093-3.

Bates, N. R., T. Takahashi, D. W. Chipman, and A. H. Knap (1998), Variability of pCO2

on diel to seasonal timescales in the Sargasso Sea near Bermuda, Journal of Geophysi-
cal Research, 103, 15,567–15,585, doi:10.1029/98JC00247.

Behrenfeld, M. J., R. T. O’Malley, D. A. Siegel, C. R. McClain, J. L. Sarmiento, G. C.
Feldman, A. J. Milligan, P. G. Falkowski, R. M. Letelier, and E. S. Boss (2006),
Climate-driven trends in contemporary ocean productivity, Nature, 444, 752–755, doi:
10.1038/nature05317.

Bindoff, N. L., J. Willebrand, V. Artale, A. Cazenave, J. M. Gregory, S. Gulev, K. Hanawa,
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Garçon, V. C., F. Thomas, C. S. Wong, and J.-F. Minster (1992), Gaining insight into the
seasonal variability of CO2 at ocean station P using an upper ocean model, Deep Sea
Research Part A, 39, 921–938, doi:10.1016/0198-0149(92)90032-O.

Garcia, H. E., R. A. Locarnini, T. P. Boyer, and J. I. Antonov (2006), World Ocean Atlas
2005 Volume 4: Nutrients (phosphate, nitrate, silicate), NOAA Atlas NESDIS 64 , 396
pp., U.S. Government Printing Office, Washington, D. C.



120 References

GLOBALVIEW-CO2 (2008), Cooperative Atmospheric Data Integration Project - Carbon
Dioxide. CD-ROM, NOAA ESRL, Boulder, Colorado [Also available on Internet via
anonymous FTP to ftp.cmdl.noaa.gov, Path: ccg/co2/GLOBALVIEW].

Gloor, M., J. L. Sarmiento, and N. Gruber (2010), What can be learned about carbon
cycle climate feedbacks from the CO2 airborne fraction?, Atmospheric Chemistry and
Physics, 10, 7739–7751, doi:10.5194/acp-10-7739-2010.
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