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Abstract

The propagation of waves on the surface of a fluid layer of finite depth is
considered in the presence of a normal electric field, due to parallel electrodes
at arbitrary separation distance. The combined effect of electric field, gravity
and surface tension is considered in the long-wavelength small-amplitude
limit. Travelling wave solutions are characterised in terms of the Froude
number, an electric Weber number and a Bond number and conditions for
the existence of solitary waves are determined in terms of these parameters.

Keywords:

1. Introduction

The effect of normal electric fields on the occurence of solitary surface
waves has been considered in a series of papers, both analytic and numeric.
Two-dimensional disturbances on a horizontal sheet of fluid, have been in-
vestigated in the presence of an applied electric field in a horizontal direction
[1, 2]. A normal electric field has been considered [3, 4, 5, 6] when the field is
due to parallel electrodes with separation distance comparable to the depth
of the fluid. When the normal electric field tends to a constant far from
the surface, corresponding to parallel electrodes with very large separation
distance, a Kortweg-deVries Benjamin-Ono type equation is obtained for par-
ticular wavelength and amplitude scalings [7, 8]. In the present paper a more
general analysis for the normal electric field case derivation is provided, which
allows for a wider range of wavelength and amplitude scalings and includes
the effect of electrode separation distance. Conditions for the existence of
travelling solitary wave solutions are determined, and numerical results for a
range of parameter values are presented.
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For a horizontal fluid layer of depth h, small amplitude disturbances with
wavelength much greater than h propagate at speed

√
gh. For a particular

scaling between disturbance amplitude and wavelength, a weakly nonlinear
analysis, taking account of surface tension gives rise to the Kortweg-de-Vries
equation [9], with the familiar sech2 solitary solutions. Capillary effects are
characterised by the inverse Bond number τ = σ/ρgh2 but when that is
close in value to 1

3
wavelength shortening means that higher order terms in

the weakly nonlinear analysis must be included. A different scaling between
amplitude and wavelength then gives rise to an additional fifth derivative
term [9]. The inclusion of an electric field modifies these governing equations.

In the present paper we consider two horizontal parallel plates separated
by distance h + d with a layer of inviscid fluid, undisturbed depth h, lying
on the lower impermeable plate. Between the fluid layer and the upper
plate, a second fluid with different electric properties is present and this
fluid is taken to be hydrodynamically passive. A potential difference V0 is
then applied between the two plates. Previous analysis of this problem has
focused either on the case when the lower fluid is a perfect conductor, or
on the case when both fluids are perfect dielectrics. In the first case the
tangential component of electric field at the interface is zero, in the second
case the surface charge density at the interface is zero. In both cases the
tangential force at the interface due to the electric field is zero. If instead the
two fluids are modelled as leaky dielectrics [10], then the interfacial tangential
force is non-zero and a large-Reynolds number analysis is required, involving
a hydrodynamic boundary layer below the interface. This is beyond the
scope of the present paper. Here we consider the case when the lower fluid is
assumed to be a perfect conductor, but the analysis can be readily modified
to the case of two perfect dielectrics. In either case, a potential field V is
set up in the upper fluid, but when the lower fluid is taken to be a perfect
conductor the potential in this region is a constant.

As well as considering the case of parallel electrodes, we also consider
separately the case when the electric field tends to a constant magnitude in
the vertical direction, far from the the fluid layer. We consider this case to
allow direct comparison with earlier works [7, 8]. However this case should
correspond to the limit d → ∞, the exact nature of the limit emerges as part
of the analysis presented in §3.

The structure of the paper is as follows. In §2 the governing equation is
derived in a fashion similar to previous analyses [7, 8], but without assuming
any particular scaling between wavelength and amplitude, and allowing a
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more general electrical forcing. In §3 the dependence of the electric field
on the electrode separation distance is considered, along with the resulting
effect on the surface waves. These results are compared with other approaches
[5, 8] and previous results then emerge as limits of this governing equation.
In §4 travelling wave solutions are considered. The question of whether
true solitary wave solutions are possible for particular parameter values is
studied by considering when the linearised equation permits non-decaying
oscillatory solutions. In §5 these predictions are compared with numerical
solutions obtained using spectral methods.

2. Governing Equation

An impermeable electrode is located at y∗ = −h and an inviscid fluid layer
occupies the region −h < y∗ < η∗(x∗) above the electrode, where we take
x∗, y∗ to be the horizontal and vertical dimensional coordinates. The flow in
the perturbed fluid layer is taken to be irrotational and so the velocity field is
given by u∗ = ∇∗φ∗ where φ∗(x∗, y∗) is the dimensional velocity potential and
satisfies Laplace’s equation. The electrode is maintained at potential V ∗ = 0
and we consider the case when the fluid is a perfect conductor and hence the
electric field in the fluid layer is zero. Above this layer we have a dielectric
medium assumed to be hydrodynamically passive, but which supports an
electric field E∗ = ∇V ∗, where V ∗(x∗, y∗), the dimensional electric potential,
satisfies Laplace’s equation.

As previously noted we consider two different imposed electric fields. In
case 1 we take the upper medium to be unbounded, with electric field E∗ →
E0y as y∗ → ∞. In case 2 we consider a second horizontal electrode located
at y∗ = d and maintained at potential V ∗ = V0. In this case V ∗ satisfies
Laplace’s equation in the region η∗(x∗) < y∗ < d. The set-up is illustrated
in figure 1.

At the interface the fluid velocity satisfies the kinematic condition, and
since the lower fluid is a perfect conductor the tangential component of the
electric field is zero. The normal component of the electric field at the in-
terface gives rise to a normal stress on the surface, which together with the
effect of surface tension lead to additional terms in the Bernoulli condition
at the interface.

The set of equations governing the fluid flow, the electric field and the
interface conditions is non-dimensionalised using the undisturbed depth h,
the gravitational acceleration g and the magnitude of the electric field in the
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(a) (b)
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y∗ = η∗(x∗)
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g

Figure 1: Fluid layer occupying the region −h < y∗ < η∗(x∗) with: (a) unbounded upper
medium with electric field E∗ → E∗y as y∗ → ∞ (Case 1); (b) upper electrode located at
y∗ = d and maintained at potential V0 (Case 2)

upper medium E∗. For the first case considered where the upper medium is
unbounded and E∗ → E0y as y∗ → ∞, we take E∗ = E0. For the second
case we take E∗ = V0/d, where V0 is the potential of the upper electrode.
Now, changing to a frame moving with the shallow water linear wave speed√
gh, and assuming that the amplitude of the perturbation of the surface is

O(δh) and that the wavelength is O(ǫ−1h), we write

η =
1

δh
η∗, x =

ǫ

h

(
x∗ −

√
ght∗

)
, y =

1

h
y∗.

In the small-amplitude long-wavelength limit (δ, ǫ ≪ 1), specific scalings
between δ and ǫ are considered elsewhere [8], but here we describe a gen-
eral method without specifying a particular scaling between the two small
parameters, and clarifying the required scalings of the other quantities.

At this stage we choose arbitrary scalings for the remaining variables

t = K1

√
g

h
t∗, φ =

K2

h
√
gh

φ∗, V =
K3

hE∗
V ∗, Y =

K3

h
y∗,

where Y is the vertical coordinate in upper fluid, chosen so that VY , the
vertical component of the non-dimensional electric field is O(1). With this
choice of rescaling the interface is given by y = δη and the governing equation
for the lower fluid flow becomes

ǫ2φxx + φyy = 0 − 1 < y < δη
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with the no-slip condition φy = 0 on y = −1 and the kinematic condition at
the interface

δK1K2ηt − δǫK2ηx + ǫ2δφxηx − φy = 0, y = δη.

In the upper medium, the electric potential field V satisfies

Vxx +

(
K3

ǫ

)2

VY Y = 0 Y > K3δη.

and the scaling factor for the electric field is chosen as K3 = ǫ so that V
satisfies Laplace’s equation. The condition that the tangential component of
electric field at the interface is zero then becomes

Vx + δǫηxVY = 0, Y = ǫδη,

while the upper boundary condition depends on whether we are considering
an unbounded upper medium or the case of an upper electrode,

VY → 1 as Y → ∞ (Case 1); V

(
Y =

ǫd

h

)
=

ǫd

h
(Case 2) (1)

Finally the hydrodynamic flow and the electric field are linked through
Bernoulli’s equation at the interface which takes the form

δR +
Eb

S
Q− ǫ2δτ

S
3

2

ηxx = constant, on y = δη.

where the non-dimensional parameters characterising the effects of the elec-
tric field and the surface tension are

Eb =
εE∗2

ρgh
, τ =

σ

ρgh2
, (2)

an electric Weber number and an inverse Bond number respectively. Here σ
is the surface tension parameter and ε is the dielectric constant of the upper
medium. The terms R,Q, S are given by

R =
K1

δK2

φt −
ǫ

δK2

φx +
1

2δK2
2

(
ǫ2φ2

x + φ2
y

)
+ η

Q = −1
2

(
V 2
Y − V 2

x

) (
1− δ2ǫ2η2x

)
+ 2δǫηxVxVY ,

S = 1 + δ2ǫ2η2x.
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In the subsequent analysis we consider Eb and τ to be O(1) or smaller.
At this stage we choose distinguished scalings motivated by physical

balances. The scaling K2 is chosen so that the leading order balance in
Bernoulli’s equation is between η and φx, and K1 so that the time deriva-
tives and quadratic nonlinearity enter at the same order. This choice of
balances gives

K1 = δǫ, K2 =
ǫ

δ
.

hence the governing equations for the velocity potential and the electric po-
tential in the lower and upper fluids respectively are given by

ǫ2φxx + φyy = 0, −1 < y < δη, (3)

Vxx + VY Y = 0, Y > ǫδη. (4)

The conditions at the interface then become,

δǫ2 (ηt + φxηx)− ǫ2ηx − φy = 0, y = δη, (5)

Vx + δǫηxVY = 0, Y = ǫδη, (6)

δR + EbQ− ǫ2δτηxx +O(δ2ǫ2) = constant, y = δη, (7)

where

R = η − φx + δ

(
φt +

1

2
φ2
x

)
+

δ

2ǫ2
φ2
y,

Q = −1
2

(
V 2
Y − V 2

x

)
+ 2δǫηxVxVY .

We begin by considering the term involving the electric field. Motivated
by the boundary conditions on V , we set

V = Y + δǫW,

whereW (x, Y ) satisfies Laplace’s equation, Wx = −ηx+O(δǫ) at the interface
and from (1)

WY → 0 as Y → ∞ (Case 1); W

(
Y =

ǫd

h

)
= 0 (Case 2).

In terms of the new function W the contribution to (7) from the electric
field is given by Q = −1

2
− δǫWY + O ((δǫ)2), where WY is evaluated at the

interface. We return to the calculation of the electric field in §3 but at this
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stage we retain as much generality as possible and write WY at the interface
as P[η], where this symbolic dependence on the interface position, η, depends
on the boundary conditions on the electric field in the upper medium. Hence

Q = −1
2
− δǫP[η] +O

(
(δǫ)2

)

and the equations relating η(x) and φ(x, y) on y = δη become

φy = −ǫ2ηx + ǫ2δ(ηt + φxηx), (8)

η = φx − δ

(
φt +

1

2
φ2
x

)
+ EbǫP [η] + ǫ2τηxx +O

(
δǫ2Eb

)
. (9)

Rearranging (9) by repeated substitution of η into the right hand side gives
η in terms of φ,

η = φx − δ

(
φt +

1

2
φ2
x

)
+ EbǫP [φx] + ǫ2τφxxx + ǫ4τ 2φxxxxx (10)

+O
(
ǫ6, ǫδEb, ǫ

3Eb, ǫ
2E2

b

)
.

In an analysis of this form, care must be taken to consider all terms which
may enter the final model equation at leading order. There may appear to
be an inconsistency in the terms retained in the expression for η above, in
that the O(ǫ4) has been retained. The reason for this becomes clear later in
the exposition.

Next η can be eliminated from (8) to give

φy = −ǫ2φxx + 2ǫ2δ (φxt + φxφxx)− ǫ3EbPx [φx]− ǫ4τφxxxx

−ǫ6τ 2φxxxxxx +O
(
δǫ4, ǫ8τ 3, ǫ3δEb, Ebǫ

5, ǫ4E2
b , δ

2ǫ2
)
,

on the boundary y = δη. Finally transferring the boundary conditions from
y = δη to y = 0 we have

φy(δη) = φy(0) + δηφyy(0) +O(δ2) = φy − ǫ2δηφxx +O(ǫ2δ2)

from which it follows that the set of equations to be solved for φ(x, t) becomes,

φyy = −ǫ2φxx, −1 < y < 0,

φy = 0, y = −1,

φy = −ǫ2φxx + ǫ2δ (2φxt + 3φxφxx)− ǫ3EbPx [φx] y = 0.

−ǫ4τφxxxx − ǫ6τ 2φxxxxxx

+O (δǫ4, ǫ8, ǫ3δEb, Ebǫ
5, ǫ4E2

b , δ
2ǫ2) ,

7



Solving the first of these equations subject to the boundary condition at
y = −1 gives

φ = G− 1

2
(y + 1)2G(ii)ǫ2 +

1

4!
(y + 1)4G(iv)ǫ4 +− 1

6!
(y + 1)6G(vi)ǫ6 +O(ǫ8),

where G(x, t) is an as yet undetermined function. Note that terms such as
ǫ2H1(x, t) and δH2(x, t) can be included in this expansion, but that with
suitable normalisation, such terms can then be incorporated into the leading
term G(x, t). Substituting into the boundary condition at y = 0 finally gives,

ǫ2δ (2Gxt + 3GxGxx)− ǫ3EbPx [Gx]− ǫ4
(
τ − 1

3

)
G(iv)

+ǫ6
(
1
2
τ − τ 2 − 1

30

)
G(vi) +O

(
δǫ4, ǫ8, ǫ3δEb, Ebǫ

5, ǫ4E2
b , δ

2ǫ2
)

= 0

and hence, dropping the smaller correction terms,

2ηt + 3ηηx =
ǫ2(τ − 1

3
)

δ
ηxxx +

ǫEb

δ
Px [η] − 1

45

ǫ4

δ
ηxxxxx,

[1] [2] [3]
(11)

since Gx = η to leading order. It is now clear why the O(ǫ4) terms were
retained along with the O(ǫ2) terms, since when τ is close to the critical
value of 1

3
then this apparently smaller term can enter at leading order.

The importance of the electric field and surface tension terms is deter-
mined by the relative size of the coefficients involving δ, the non-dimensional
wave disturbance amplitude, ǫ−1 the non-dimensional wavelength, τ the non-
dimensional surface tension parameter and Eb the non-dimensional electric
field parameter. The derivation of (11) is based on both δ and ǫ being small,
but without assuming anything about their relative sizes, while as previusly
noted, Eb and τ are O(1) or smaller. Taking Eb and τ large requires more
careful analysis of the higher order terms dropped in the asymptotic analysis
and is not considered in the present paper.

We now consider the leading order balance for different relative sizes of
δ, ǫ, Eb and τ̂ = τ − 1

3
. If we first consider the case

δ ≫ max(ǫEb, ǫ
2τ̂ , ǫ4),

then the leading order equation exhibits nonlinear steepening and hence a
shortening lengthscale before the terms on the right hand side of (11) become
comparable to the nonlinear term. The shortening lengthscale is equivalent to
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(a) (b)

Figure 2: Schematic diagram showing the dominant terms on the right hand side of (11)
as a function of τ̂ and Eb in terms of (a) disturbance amplitude, δ, and (b) wavelength,
ǫ−1.

an increase in ǫ; which term becomes comparable to the nonlinearity depends
on the size of the parameters Eb and τ̂ .

Unless τ is close to 1
3
, the third derivative term in (11) is larger than the

fifth derivative term and so the effect of surface tension and the electric field
enter at the same order as the quadratic nonlinearity when

ǫ = δ
1

2 , Eb = O(δ
1

2 ). (12)

If τ − 1
3
is small then all three terms on the right hand side of (11) enter at

the same order as the nonlinearity if

τ − 1

3
= O

(
δ

1

2

)
, ǫ = δ

1

4 , Eb = O(δ
3

4 ). (13)

The structure of the governing equation for different ranges of the pa-
rameter is summarised in figure 2, and this result illustrates the power of the
present method, rather than specifying the key scalings at the start of the
asymptotic analysis.

Before we consider the form of solutions in the different regimes we must
determine the electric forcing term for the two cases of electric field previously
discussed.

3. Electric Field

In order to calculate the term in the governing equation for the surface
elevation, we must solve for the electric field in the upper medium. Linearis-
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ing so the boundary condition on the interface is applied at Y = 0, at leading
order we have

Wxx +WY Y = 0, Wx(x, 0) = −ηx





WY → 0 Y → ∞ (Case 1),

W = 0 Y = ǫd
h

(Case 2),

and the effect of the electric field on the surface wave is given by P[η] =
WY (x, 0). We now determine P[η] for the two cases of imposed electric field.

3.1. Case 1 - Unbounded upper medium

In case 1, since W satisfies Laplace’s equation on Y > 0 andWY decays as
Y → ∞, it can be readily shown that the first partial derivatives throughout
Y > 0 are related by

WY = −H[Wx], Wx = H[WY ].

Here H denotes the Hilbert transform with respect to x, defined [11] as the
Cauchy principal value of a convolution integral,

H[f ] = PV

(
1

π

∫ ∞

−∞

f(s, t)

x− s
ds

)
. (14)

From this definition it immediately follows that,

d

dx
(H(f)) = H(fx), H[eikx] =

|k|
ik

eikx. (15)

At the interface, Wx = −ηx at leading order, so WY = H[ηx] and hence

P[η] = H[ηx]. (16)

Thus for an unbounded upper medium the governing equation for surface
elevation becomes

2nt + 3nnx =
ǫ2(τ − 1

3
)

δ
nxxx +

ǫEb

δ
H [nxx]−

1

45

ǫ4

δ
nxxxxx. (17)

For the two specific scalings (12) and (13) previously discussed, the resulting
governing equation corresponds to equation (29) and (40) respectively of
Gleeson et al [8], allowing for the alternative sign convention of the Hilbert
transform.
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3.2. Case 2 - Parallel Electrodes

Writing D = ǫd/h we consider the problem,

Wxx +WY Y = 0, W (x, 0) = −η(x), W (x,D) = 0.

Note that we could add an arbitrary constant to W (x, 0) though it can be
readily shown that this will have no effect on the final solution.

By taking Fourier transforms with respect to x, W (x, Y ) can be obtained
in the form of a convolution integral

W (x, Y ) = −
∫ ∞

−∞

η(x− s)g(s, Y ) ds,

g(x, Y ) =
1

2π

∫ ∞

−∞

sinh (k(D − Y ))

sinh(kD)
eikxdk

and so P[η] = WY (x, 0) is given by

P[η] = lim
Y→0

(∫ ∞

−∞

η(x− s)h(s, Y ) ds

)
,

(18)

h(x, Y ) =
1

2π

∫ ∞

−∞

k cosh (k(D − Y ))

sinh(kD)
eikxdk

It should be noted that while the integral for h(x, Y ) does not converge for
Y = 0, it does for all Y > 0 since

k cosh (k(H − Y ))

sinh(kH)
→ |k| exp (−|k|Y ) , |k| → ∞.

Hence P[η] which appears in (11) has been determined for general D.

3.3. Comparison with other work

The effect of the electric field on the wave equation is through the term
Px[η] with the form of P given by (16) and (18) for the two cases considered.
The governing PDE (11) is best solved numerically using a pseudospectral
scheme [12] in which all linear terms involving spatial derivatives, including
the electric forcing term, are evaluated in Fourier space, but the solution is
advanced forwards in time in physical space. Also, in §4 travelling waveforms
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are calculated in spectral space. Hence we require P[η] when η(x) = eikx,
and obtain

P[eikx] = f(k)eikx, f(k) =





|k| Case 1,

|k|coth(|k|D) Case 2.
(19)

The result for case 1 follows from the definition of the Hilbert transform,
while the result for case 2 follows immediately from the solution in Fourier
transform space. It is then clear that case 1 is the limit of case 2 as D → ∞.
More precisely, since D = ǫd/h, the case of an unbounded upper medium
previously studied [7, 8] corresponds to parallel electrodes with separation
large compared with the disturbance wavelength ǫ−1h.

If d is small compared with the disturbance wavelength (that is D ≪ 1)
then

f(k) =
1

D

(
1 +

1

3
k2D2 +O(D4)

)
, =⇒ P[η] =

1

D
η − D

3
ηxx +O(D3),

and hence from (11),

2(ηt− cηx)+ 3ηηx =
ǫ2

δ

(
τ − 1

3
− Ebd

3h

)
ηxxx−

1

45

ǫ4

δ
η(v), c =

Ebh

2δd
. (20)

So the effect of the electric field is to shift the wave speed and modify the
coefficient of the dispersion term. Thus the critical value for τc for the inverse
Bond number when the fifth derivative term becomes significant is now

τc =
1

3
+

Ebd

3h
.

This can be compared to the results of [4, 5], where it was assumed that
the electrode separation and the depth of the fluid layer are comparable. In
this case care must be taken in interpreting (11), since Px[η] is now large
and terms previously dropped as being uniformly small in the derivation of
(11) may become significant. However, if the electrode separation is such
that ǫ−1 ≫ d/h ≫ 1, with Eb = O(1), then (20) is valid as a leading order
approximation and agrees with the limit d/h ≫ 1 of equation (9) in [5].
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4. Travelling Wave Solutions

In order to reduce the number of parameters appearing in the governing
equation, for a given wave amplitude scaling δ, we choose the wavelength
scale

ǫ =

√
δ

|τ − 1
3
| ,

so that the third-derivative dispersion term becomes O(1). The governing
equation (11) then becomes

2ηt + 3ηηx = aηxxx − bη(v) + pPx[η], (21)

with parameters

a =

{
1 τ > 1

3

−1 τ < 1
3

b =
δ

45|τ − 1
3
|2 , p =

Eb

δ1/2|τ − 1
3
|1/2 .

It should be noted that ǫ is defined in this way merely to simplify the form
of the equation. If the coefficients b and p are large, then these terms will
dictate the actual wavelength of the disturbance. For a given initial condi-
tion η(x, 0) = η0(x), (21) is best solved numerically using a pseudospectral
scheme. Each of the terms on the right hand side are evaluated in Fourier
space using fast Fourier transforms. For the nonlinear term, ηx is evaluated
in Fourier space but ηηx is expressed as a product in physical space. How-
ever, here we restrict ourselves to travelling wave solutions, and in particular
we are interested in the parameter regimes for which solitary travelling waves
exist.

We consider travelling wave solutions in the form η = 2cN(Z), with
Z =

√
2|c|(x− ct). In terms of the original dimensional variables we have

η∗ = 2cδh N(Z), Z =
√

2|c| ǫ
h

(
x∗ −

√
gh(1 + cδ)t∗

)
.

The Froude number F is related to the perturbation, δc, in the propaga-
tion speed, through F 2 = 1 + cδ, and hence the disturbance amplitude is
characterised by δ|c| = |F 2 − 1|.

The equation for the travelling wave then becomes

−γ

(
N − 3

2
N2

)
= aN ′′ − BN ′′′′ + CP(N), (22)
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where the parameters are given by

γ =

{
1 F > 1

−1 F < 1
B =

2|F 2 − 1|
45|τ − 1

3
|2 , C =

Eb

|2(F 2 − 1)(τ − 1
3
)|1/2 , (23)

with B and C greater than or equal to zero, from the definition of Eb. Thus
for a prescribed form of electric forcing (ie P[η] given), the travelling waves
are defined by the set of non-dimensional parameters τ, Eb, F . Numerical
solutions in terms of these parameters are presented later in this section, but
first we seek the condition for existence of solitary waves in terms of these
parameters. However, it proves simplest to first analyse the behaviour of the
solution in terms of the set of variables a, γ, B and C.

In the limit B = C = 0 this equation has the soliton solution F (Z) =
sech2(Z/2) if aγ < 0, but has no solitary wave solutions for aγ > 0. For non-
zero B,C we consider the existence of true solitary waves by investigating
the possibility of oscillatory solutions in the small-amplitude tail. Writing
N(Z) = eikZ , and substituting into the linearised form of (22) gives

Bk4 + ak2 − Cf(k)− γ = 0, (24)

where f(k) is defined in (19) for the two forms of electric field considered.
For case 2 when f(k) = kcoth(kD), there is little prospect of any progress
analytically and the problem becomes numeric, so for the remainder of this
paper we focus on the case when the electrode separation is much longer than
the disturbance wavelength and f(k) = |k|. Since (24) is even in k we define

G(k) ≡ Bk4 + ak2 − Ck − γ, (25)

and non-decaying oscillations occur in the tail of the disturbance if G(k) = 0
has a positive, real root with B,C ≥ 0. Otherwise solitary wave solutions
are possible.

First the case B = 0 is considered which corresponds to dropping the fifth
derivative dispersive term. Solving the quadratic for k shows that if aγ > 0
positive real roots for k exist and so solitary waves are not possible. The only
cases where there are no positive real roots for k are when a = −1,γ = 1
for all C ≥ 0, and when a = 1, γ = −1 with C ≤ 2. Thus solitary wave
solutions exist for F > 1, τ < 1

3
for all Eb, and for F < 1, τ > 1

3
, if

Eb < 2
(
2(1− F 2)(τ − 1

3
)
)1/2

. (26)
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For B > 0 more careful analysis is required. Taking F > 1 so γ = 1, we
see that G(0) = −1 and G(k) → ∞ as k → ∞, and hence there is at least
one positive root for k, and an oscillatory tail appears. Thus there is no true
solitary wave possible for the model equation, with F > 1.

For F < 1 so γ = −1, it is clear that as C → 0 G(k) > 0 for all k and
solitary waves exist, whereas when C → ∞, there is a range of k for which
G(k) < 0. The condition on B,C dividing the two cases is that there is a
double root of G(k) = 0 with k > 0. First considering the case τ > 1

3
, solving

G(k) = G′(k) = 0 gives a positive root, k = k1(B), with

k2
1 =

√
1 + 12B − 1

6B
,

and C = C
(1)
∗ (B) where

C(1)
∗ (B) =

Bk4
1 − k2

1 + 1

k1
=

1

3

√
2

3B

(12B − 1 +
√
1 + 12B)

(
√
1 + 12B − 1)1/2

. (27)

Thus the condition that solitary waves exist for τ > 1
3
is that C < C

(1)
∗ (B).

Here C
(1)
∗ (B) is an increasing function of B > 0, with C

(1)
∗ (0) = 2 and the

region C < C
(1)
∗ (B) is illustrated in figure 3(a).

Similar analysis shows that solitary waves exist for τ < 1
3
only if B > 1

4

and C < C
(2)
∗ (B), where

C(2)
∗ (B) =

1

3

√
2

3B

(12B − 1−
√
1 + 12B)

(
√
1 + 12B + 1)1/2

. (28)

Here C
(2)
∗ (1

4
) = 0 and C

(2)
∗ (B) is an increasing function of B for B > 1

4
The

region of the (B,C) plane in which solitary wave solutions exist for τ < 1
3
is

illustrated in figure 3(b).
In §6 the regions in which solitary wave solutions exist is expressed in

terms of the dimensionless parameters τ and Eb, but before that we consider
numerical solutions of the travelling wave equation (22) for sample values of
the parameters B and C, and verify the conditions (27) and (28).

5. Numerical Solutions of Travelling Wave Equation

In this section we obtain solitary wave solutions of (22) by considering
periodic waves in the long wavelength limit using spectral methods. Assum-
ing that the solitary wave is restricted to the region −Mπ < Z < Mπ, with
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Figure 3: Plot of (a) C
(1)
∗ (B) given by (27) and (b) C

(2)
∗ (B) given by (28). The shaded

area identifies the region (B,C) plane in which solitary wave solutions exist for τ > 1
3 and

τ < 1
3 respectively. The filled circles and squares correspond to parameter values for the

waveforms plotted in figures 4 and 5 respectively.

M ≫ 1, we define z = Z/M , so

N − 3
2
N2 = −γ

(
a

M2
Nzz + CP [N ]− B

M4
Nzzzz

)
,

and solve for −π < z < π.
In order to validate the predictions of §4 on the existence of solitary

wave solutions, we now focus on case 1, when the electrode separation is
large compared with the disturbance wavelength. Writing the waveform as a
truncated Fourier sum, N(z) =

∑n
r=−n cre

irz, and recalling that H(ireirz) =
|r|eirz, as noted earlier, we obtain the set of nonlinear equations

cr −
3

2

∑

s

cr−scs = γ

(
ar2

M2
− C|r|

M
+

Br4

M4

)
cr, r = −n..n,

with unknowns cr. Attention is restricted to real symmetric N(z) in which
case cr = c−r and the set of n + 1 equations in n + 1 unknowns is solved
using Newton’s method to iterate from an initial guess. All results illustrated
in this section are obtained with N = 256 and M = 20, though results are
illustrated for a narrower range of Z values for purposes of clarity.
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Figure 4: Wave forms for a = 1,B = 0.5 and C = 0.0, 1.0, 2.0, 2.25. As C increases, the
solution amplitude decreases and the width increases. For these parameter values, (27)
predicts that travelling wave solutions exist for C < 2.29.

We begin by considering solutions with γ = −1, a = 1 (corresponding
to F < 1, τ > 1

3
), where the predicted region for the existence of solitary

wave solutions is illustrated in figure 3a. Since B = C = 0 with solution
N(z) = sech2(Mz) is part of the region, this can be taken as a starting
solution, with solutions for non-zero B and C obtained by changing the
parameters by small increments starting from B = C = 0 and using the
solution for the previous values of the parameters as the initial guess. Results
for B = 0.5 and C = 0.0, 1.0, 2.0, 2.25 are given in figure 4. For this particular
value of B, C

(1)
∗ = 2.29 and it is seen that as C approaches C

(1)
∗ the maximum

wave amplitude decreases accompanied by oscillations which decay ever more
slowly.

For τ < 1
3
when a = −1, there are no travelling waves for B < 1

4
, and

so travelling wave forms can not be immediately generated by increasing B
in small increments from the sech2 profile as previously discussed. However
using N(z) = sech2(Mz) as the initial guess, Newton’s method converges for
B > 1

4
, C = 0. The value of C can then be increased in small increments as

earlier. Results for B = 1.0 are illustrated in figure 5. For this value of B
it is predicted that solitary waves exist for C < C

(2)
∗ = 0.93 and results for

C = 0.0, 0.5, 0.9 show similar behaviour to the results shown in figure 4 in
that the amplitude decreases as C increases and slowly decaying oscillations
arise as C

(2)
∗ is approached.

In this section results have been presented in terms of the parameters
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Figure 5: Wave forms for a = −1 B = 1.0 and C = 0.0, 0.5, 0.9. As C increases, the
solution amplitude decreases and the width increases. For these parameter values, (28)
predicts that travelling wave solutions exist for C < 0.93.

B and C as this is the minimum set of parameters required. In the final
section the condition for the existence of solitary waves is recast in terms of
the physical dimensionless parameters, Eb, τ and F .

6. Summary

The governing equation (11) for small-amplitude, long-wavelength dis-
turbances has been derived in the presence of a vertical electric field due to
parallel electrodes. Two cases were considered, one in which the electrode
separation was long compared with the disturbance wavelength and the sec-
ond case where the electrode separation is comparable to the wavelength. In
the first case the analysis can be compared with [8]. The present analysis
differs in that no specific relationship between wavelength and amplitude is
assumed. The more general governing equation (11) agrees with the final
results of the earlier work for the distinguished scalings considered there,
but importantly allows an investigation of the conditions for which solitary
travelling waves exist.

We conclude this paper by determining the conditions under which soli-
tary travelling waves exist, in terms of the original non-dimensional variables
Eb and τ . When the electrode separation distance is large compared with
the wavelength, from §4 the condition that a solitary wave solution exists
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becomes F < 1 and Eb < E∗(F, τ) where

E∗(F, τ) =
(
2(1− F 2)|τ − 1

3
|
)1/2

C∗

(
2(1− F 2)

45|τ − 1
3
|2
)
, (29)

C∗(B) =





C
(1)
∗ (B) τ > 1

3
,

C
(2)
∗ (B) τ < 1

3
.

(30)

Note that as B → ∞, both C
(1)
∗ (B) and C

(2)
∗ (B) tend to 4(B/27)1/4 and

hence E∗ is continuous at τ = 1
3
with

E∗(F,
1
3
) =

4

3

(
8

15

)1/4

(1− F 2)3/4.

Since Eb ≥ 0 by definition, and C
(2)
∗ (B) < 0 for B < 1

4
we see that there are

no solitary wave solutions for

τ <
1

3
−
√

8(1− F 2)

45
.

The region of the (τ, Eb) plane for which (30) predicts the existence of solitary
travelling waves with F < 1 is shown as the shaded region in figure 6 for
F = 0.9.

These results can be compared with the case when the fifth derivative
term in (21) is ignored. From (26) the condition for solitary waves solutions
when F < 1 is then τ > 1

3
and

Eb < E†(F, τ) = 2
(
2(1− F 2)(τ − 1

3
)
)1/2

.

This region is marked by the darker shading in figure 6 for F = 0.9. It is
seen that the conditions for the existence of solitary travelling waves agree
away from the region τ close to 1

3
, but that the inclusion of the fifth deriva-

tive term extends the region for which solitary wave solutions exist in the
neighbourhood of τ = 1

3
. In particular solitary solutions are predicted with

F < 1 for values of τ < 1
3
, at least when the electric field is small.

As well as providing a systematic approach to deriving wave equations for
a range of different scalings and arbitrary electrode separation, the analysis
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Figure 6: Region in τ, Eb space for which solitary wave solutions exist for F = 0.9.
The dark shaded region denotes when solitary waves exist if the fifth derivative term is
ignored. The light shaded region shows the additional part of parameter space when the
fifth derivative term is retained. The filled circles and squares correspond to parameter
values for the waveforms plotted in figures 4 and 5 respectively.
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presented in this paper provides conditions for the existence of solitary waves
in terms of the natural dimensionless parameters, Froude number F , electric
Weber number Eb and Bond number τ . Further numerical investigation using
boundary element methods for the fully nonlinear problem may clarify the
validity of the weakly nonlinear approach of the present work.
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