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Abstract

Statistical methodology is proposed for comparing molecshapes. In order to
account for the continuous nature of molecules, classhabes analysis methods are
combined with techniques used for predicting random fiehdspiatial statistics. Ap-
plying a modification of Procrustes analysis, Bayesianrérfee is carried out using
Markov chain Monte Carlo methods for the pairwise alignnadrihe resulting molec-
ular fields. Superimposing entire fields rather than the gomdition matrices of nu-
clear positions thereby solves the problem that there isllysno clear one—-to—one
correspondence between the atoms of the two molecules nadsideration. Using a
similar concept, we also propose an adaptation of the giésemiaProcrustes analysis
algorithm for the simultaneous alignment of multiple maikee fields. The methodol-

ogy is applied to a dataset of 31 steroid molecules.

Keywords: Bioinformatics, Chemoinformatics, Geostatistics, Kmigi Markov chain Monte

Carlo, Procrustes, Rotation, Shape, Size, Spatial, Si®roi

1 Introduction

A major goal in pharmaceutical research is the design ottekeligands for protein and

DNA binding — an extremely difficult task because the spadgahds with a potential ben-
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eficial effect on the human body is vast. Since in most prabtiases the three—dimensional
structure of a receptor is unknown, direct rational druggiesechniques such as docking
are not generally applicable. A way to tackle this problemoisiake use of the fact that any
chemical binding process requires some complementaritydsn the ligand and its recep-
tor. Ligands which bind to the same target can therefore Ipe@®rd to possess a certain
degree of shape (and size) similarity. When designing new dnolecules, the converse
of this concept is exploited. Here, the underlying conjexis that molecules of a similar

shape exhibit a similar biochemical activity and hence dvatency. In order to use this

idea, methods for calculating molecular shapes and thmitagities have to be available.

Molecular data are usually given in form of atomic coordassénd in most cases there is no
clear correspondence between atoms of different molecktesn a statistical point of view,
the task of comparing molecular shapes is therefore thadmoparing unlabelled point sets
which has been of recent interest in statistical shape argjénanalysis. For example
Green & Mardia (2006) and Drydest al. (2007) have proposed Bayesian approaches to
the problem of comparing protein binding sites and smatostemolecules, respectively.
Our alignment procedure differs substantially due to the afscontinuous random fields
which interpolate additional information measured at tbapcoordinates. In the context
of molecules, the additional data usually comprise theashf molecular properties such
as partial atomic charges or hydrophobicity associated thi¢ individual atoms. As most
of these properties are diffused in space rather than Idcdtthe discrete atoms positions,
our random field approach captures the diffuse nature of cotde shapes better than the

use of discrete point sets.

Our main application is a dataset comprising 31 steroid oués which bind to the corti-
costeroid binding globulin (CBG) receptor. For each molecthexyz—coordinates of the
atom positions as well as the atom types (e.g. carbon, oxygen the associated van der
Waals radii and the partial atomic charge values at the atositipns are provided. The
data has originally been compiled by Crareéal.(1988), and Gooeét al.(1993) classified
each steroid according to its binding activity towards ti&3Creceptor as 1 (high), 2 (in-

termediate), or 3 (low). A major feature of the dataset is &lanolecules share a common



core structure consisting of four carbon rings. Figure pldigs the two steroid molecules
aldosterone and androstanediol. In this two—dimensi@mksentation, the common ring
structure is clearly visible. The main objective is to obtdie common features in each of

the three groups which are associated with the type of bgndativity.
INSERT FIGURE 1 ABOUT HERE

In Section 2, we motivate and describe our geostatisticalehfor molecular shapes and
point out the relationship to existing models used in thenubieformatics community.
The Bayesian framework for the pairwise molecular alignt@ed similarity calculation is
introduced in Section 3. An extension of this methodologth® simultaneous alignment
of multiple molecular fields is described in Section 4. Intget5, we apply our methods
to the steroids data and assess the results with respeditehiemical relevance. Finally,

Section 6 concludes the paper with a discussion.

2 Molecular Similarity Using Geostatistics

2.1 Molecular Similarity

In datasets for molecular alignment, each molecdules usually represented by two ma-
trices, namely its conformation matriX" = (z}... 2} )7 € R"** and a matrix of
marksZ" € R™*? wherek, denotes the number of atoms i, = € R? is thexyz—
coordinate vector of the position of th#h atom, andZ" row—wise containg—dimensional
vectors of molecular properties (e.g. partial charge, vanWlaals radius, hydrophobicity,

...) observed at the atom positions.

We wish to develop a measure of similarity between two mdéscwhich does not depend
on their relative position. In particular, we are not intesl in rotationd” € SO(3) and
translationsy € IR® of a moleculeB when matching it to a moleculg, say. As a member
of the special orthogonal groupO(3), the matrixI" satisfies thd’T' = I'T” = I; and

IT'| = 1, and can be described by three parameters. We will paraisefeusing the Euler



angles in the so—called-convention, wher€' is decomposed into the following elementary

rotation matrices

cosf; sinf; 0 1 0 0 cosf; sinf; O
I'=T(0)= | —sinf; cosh; 0 0 cosfy sinby —sinf; cosf; 0
0 0 1 0 —sinfy cosby 0 0 1

With the domains—7 < 6,,03 < mand—7/2 < 6, < w/2, everyI'’ € SO(3) is
uniquely determined apart from a singularity @t = —x /2. The probability measure
for SO(3) which is invariant under the group action is given by the Haaasureil' =
1/(872) cos(6,)db,dh2db5 (e.g. Miles, 1965). The singularity therefore has a measiire

zero although one must take care numerically in its vicinity

Let us denote moleculd as (XA, ZA) and a translated, rotated version of molechlas

((X®— 1{87)I‘, Z®), wherel,, denotes thé,—dimensional vector of ones.

The aim in molecule matching is to estimdiey by maximizing a measure of similarity
between the molecules. This procedure bears a clear reaeoabto the ordinary partial
Procrustes analysis well-known in statistical shape ama(g.g. Dryden & Mardia, 1998,
p.94) where analytical methods are applied to superimpaseconfiguration matrices of
the same dimension by minimising the sum of the squaredmtistabetween corresponding
landmarks. However, the optimisation problem at hand wilgeneral involve numerical
methods due to the lack of clear one—to—one corresponddratesgeen atoms il and
B, respectively. Moreover, not only the conformation masidut also the matrices of
observed molecular propertie®s' andZ® should be taken into account when superimposing
A and B. Another important difference from classical shape anslisthat viewing a
molecule as a set of discrete landmarks implies a consitiesmplification of the true
nature of the molecules which are in fact fuzzy bodies oftededc clouds. To account for

this, a continuous representation of molecular shapessisatde.



2.2 Geostatistical Modelling of Molecular Shapes

In order to obtain a descriptor of the shape of a moleculewvhich captures its rather
continuous nature, the values #1" are interpolated intdR* using spatial prediction (e.g.
Cressie, 1993, Chapter 3). As the prediction is performedech molecular property
separately, it suffices to illustrate the procedure usimgth column of Z", say, i.e. the
ky—dimensional vectog) = (z; (), ..., zi(a:Z'M))T containing the values of the molecular
property Z; (i € {1,...,p}) observed at the atom positions. For the sake of clarity, the

indicesM ands are thereby omitted in this section.

In the geostatistical setting; = (z(x1), .. .,z(a:k))T is viewed as a sample of one re-
alisation z(x) of the random field{Z(x) : « € IR’} which in the following is as-
sumed to be second—order stationary with a positive defirgtgropic covariance func-
tion o(||h||) = Cov(Z(x), Z(x + h)). As any molecular property gradually fades away
with the distance from the molecular skeleton and therefakes the value of zero in most
parts of R*, we assume the constant mean to be zero. With these assnmmimple
kriging is appropriate to predict the value of the randomdfial a location of interest,,.
Here, a weighted average of the forif{z,) = > ow  wiZ(x;) is sought so as to min-
imise the prediction mean squared error PMBE= E[(Z(z) — Z(a:o))2} with respect

to the weight vectom = (uy,...,u,)’. The resulting system of equations has the so-
lution w = X' with predicted value fotZ(x,) given by Z(xz,) = ¢7% 7'z = u’z,
whereo = (U(ml —xy),...,0(x, — wo))T and (X);; = o(x; — x;). By defining
o(x) = (o(x1 — x),...,0(z, — a:))T, the above prediction equation can now be gen-

eralised to yield a field—based representation of moleaiape:
Z(x)=0(x)'T 'z = u(x) 2. (1)

Similar to other continuous definitions of molecular shapediin the structural alignment
community, (e.g. Gooet al, 1992),Z(x) is a weighted average of the observed values of
the considered molecular property with the weights dependn the position of relative

to the atom positions. However, the weighige) in (1) offer the advantage that they have

a well-defined optimality property in that they are chosemiaimise the mean squared
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prediction error.

A very useful descriptor of molecular shape can be obtaihedjuation (1) is seen as a

weighted average of covariance functions centred at tha atusitions, i.e.
) k
Z(x) =2'Yo(x) = Zwia(a:i —x), (2)

where the vector of weight® = X'z does not depend anand combines the information
about the geometry of the molecule and the observed valuge @fuantityZ. As will be
seen in the next section, (2) can directly be utilised for shrectural alignment of two

molecules.

2.3 TheKriged Carbo Index

A similarity index which is well-established in the liteva¢ on field-based molecular
alignment is the Carbo index (Carled al,, 1980). In terms of the Carbo index, the simi-
larity of two moleculesA and B in a certain relative position with respect to the molecular
property P is defined as

[ Pi(x)Ps(x)dx
(f i) dw>”2(fp2
where P, (x) denotes the field aP for moleculeM (M € {A, B}) evaluated at point in

Che (F7 "Y) ) 1/2° (3)

IR®. The above index is a variant of Pearson’s correlation amefft. The numerator term
measures the “overlap” of the molecular fields whereas tm®énator is a normalising
constant which ensures th@af;(I",v) € [—1, 1]. In situations where a discrepancy rather
than a similarity measure is required, (3) can be uniquelpped into the appropriate

codomain using

1_0 ( 77)

T
DAB F? -~ TN
(L) = 1+ Cu(T, )

€ [0, 00). (4)

Due to the fact thaf’ P?(x)dx is invariant under translation and rotation, (4) is intiedgt

linked to an alternative discrepancy measure, namely tiegiated square error
ISE, (T, ) = / (Pu(z) — Pu(@)) da. (5)
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The main difference between these measures is that (4) asiamt to the relative scales
of the two fields whereas (5) not only depends on the scalealbaton the extent of the
molecules under study. In particular the latter is undésraso that we shall apply the

Carbo—-based discrepancy and similarity measures thradghis paper.

Written as (2), the kriged molecular fields of two moleculas directly be substituted into
the Carbo index which then becomes
[ Z(x) Zo(x)dz Z lewf x — x})o(x — x5)dx
(fZQ dw)l/Q(fZQ )1/2 - NANB )
(6)

CAB(F’ '7)

where

N — (ZZwywy/a(w—w Jo(x — xf )dw) /2, M € {A, B}

i=1 j=1
denotes the normalising constant associated with moleduleptimising the above ex-
pression with respect to rotation and translation thengjilkie required similarity measure,

the Kriged Carbo Index

C(A,B) = sup Cu(T,7), )
reso(3)
~yER3

which is invariant under the rigid body transformations.

In the case where more than one molecular property has beasunmegl at the atom posi-
tions for each molecule, a multivariate version of the Carintex is desirable. This can
easily be obtained by first assessing the similarity of theertwolecules in the given relative
position for each property separately using (6), and thdcutating a weighted average
of the univariate Carbo indices. If the weights are posiamel normalised to sum up to
one, the resulting multivariate Carbo index takes valués®en minus one and one like its

univariate equivalents and can therefore be optimiseddarséme way.

2.4 Relationship to Established M ethods

Evaluating molecular similarity using (6) can be viewed ageaeralisation of the SEAL

(Steric and Electrostatic ALignment) method proposed bgrkkey & Smith (1990). Here,
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two moleculesA and B are aligned by maximising the similarity index

ka kg

Swe(L',y) = Z Zwij eXP(‘M‘“’? - w[;HQ) (8)

i=1 j=1

with respect to rotation and translation. The weightsare thereby chosen to be weighted
averages of the electrostatic and the steric propertiesoof ain A and atomyj in B, i.e.
wij = weq;q; + wsv;v§, wheregy' denotes the partial charge value associated withitthe

nuclear position in moleculé/ andv} denotes some power of the corresponding van der

Waals radius:}'.

The relationship of the SEAL objective function with the damty index based on the
kriged molecular fields becomes clear when the Gaussiarrieoga functiono®(h) =
o?exp{—||h||*/p*}, is considered. The quantity’ thereby denotes the variance of the
random field and the value of the range parametgoverns the spatial dependence of
neighbouring observations. #°(.) is substituted into (6) the integral can be calculated

analytically, and the Carbo index becomes

k k
_ 2121 Zji1 w?w? eXp<_$||w? - "D?HQ)

OAB (F7 7) NANE ) (9)
where the normalising constant associated with moletfilean now be written as
kv km

N = (03wl exp(—glallat - ww))m, M e {A B},

i=1 j=1

If a bivariate version of (9) using the steric and electrbstproperties of the molecules
under consideration is applied, the numerator of the Canloex is very similar to the
SEAL objective function described above. In fact, if theoimhation about the geometry of
the two molecules is neglected and the covariance matnd@3 are replaced by the identity
matrices of the appropriate dimension, the two objectiveefions are identical. However,
the use of (9) instead of the SEAL objective function congsiseveral advantages: apart
from allowing for spatial dependence of the molecular props, the weights in (9) exhibit
a well-defined optimality property in that they minimise tirediction mean squared error.
Moreover, the results in SEAL highly depend on the choicethefadjustable parameters
(Klebeet al,, 1994) which can be circumvented by the data—driven chditieeoparameter

values in the kriging—based approach.



3 MCMC for the Pairwise Alignment of Molecules

3.1 ThelLikeihood

We shall develop a Bayesian model for the alignment of twoemdlar fields. Using a
Markov chain Monte Carlo (MCMC) scheme and posterior infiees a rotation/translation
invariant molecular comparison can be carried out. Withis framework, it also is possible
to introduce a mask parameter vector for each molecule twdibr the possibility that

only parts of the molecules match. The underlying ratiofateising masks is that most
chemical binding processes only require a sufficient degfemmplementarity between
parts of the binding partners, whereas the rest of the mt@deqlay at most a minor role.
Let A, € R* and)\, € IR*® denote the mask vectors whose entries are indicator furstio
where)! € {0, 1} determines if theth atom of moleculé\/ (M € {A, B}) is considered

to contribute to the matching parts of the moleculg$ = 1) or not(A\! = 0).

Following Drydenet al. (2007), we define a Bayesian model in which one molecule is
viewed as random while the other one serves as a fixed referaotecule. Letd be the
random molecule with an estimated figld(«) and B the fixed molecule with fieldZ; (z)

We define the likelihood for the random molecule as
L(ZA(Q:”O? s AA? AB? T, 57 ZB(w)> X Tg_l eXp<_T DAB (Fu v, AA? AB))? (10)

wheref denotes the vector of the Euler angles which specifies doatatatrixI'(8) and~y
denotes a displacement vector betwdesmd B. The mask vectors play a similar role as the
labelling matrices in the MCMC schemes defined by Green & li4af#006) and Dryden
et al. (2007). Due to the continuous representation of molectapss we use in our
paper, however, there is no need to establish one—to—on&afoy—to—one) correspondences
between atoms in moleculé and molecule3, and it suffices to define two separate mask
vectors. FurtherD,: (T, v, As, As) denotes a variant of the discrepancy measgdiyevhich
depends on the mask vectors through a “partial” Carbo indiéixeoform

Zi:k?zl Zj:AJB.:l wf(}\A)w?(AB) f o(x —x})o(x — a:‘;’)da:
NAAL)NE(Xe) ’

O/-\B (F7 Y, AA: AB) -



whereN" () denotes the normalising constant associated with molédul&é/ < { A, B}).
The term “partial” thereby reflects that the mask vectorgeeine which atoms (and asso-
ciated quantities) are included in the molecular comparisthroughout we shall use the
Gaussian covariance function for the kriging, and hencerttegral in the Carbo index is
available analytically as in (9). The remaining parametefli0) is a precision parameter

7 € IR™ which determines the mean and variance of the model.

3.2 Prior Distributions and Posterior Sampling

We do not have any prior information about the rigid body paggersf and~ so that
they are treated as uniformly distributed 60 (3) and on a large bounded regionIi?,
respectively. Let\,, denote the space of &l|,—vectors with entries of either zero or one.
To prevent the MCMC algorithm from converging to a solutiohese very few atoms are
used in the field comparison, we introduce a penalty parangete 1 and define the joint

prior density of the mask vectors as
(A AefQ) oc (ZAHEAN (AT AT € Ay, X Ay

The penalty parameter therefore inherently comprises pgsumptions about the extent of
the matching parts off and B. With the further assumptions that the precision parameter
is Gamma distributeé priori, i.e. 7 ~ I'(«, 3), and that all unknown parameters are

independent priori, their joint posterior density conditioned on the givenadhas the

property
7T(07 77 AA: AB: T|ZA(w>7 ZB(w>7 «, 67 57 C)

oc o2 eXp{_T (DAB(F7 ¥s Aas As) + ﬁ)} % el cos ().

Note that this can be regarded as a mixture model dyer< Ay, .

Bayesian inference can now be carried out in order to obtamtedion/translation invariant
notion of (dis)similarity between the molecular fieldg(x) and Z,(x). In particular, we

use MCMC to sample from the posterior distribution and abpaint estimates for the rigid
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body parameters and the mask vectors which can then betsiddintoD,s (T, 7, Aa, As)-
Within the MCMC schemey is updated with a Gibbs step using its full conditional distr
bution. Updated versions of the other parameters are aatamfour blocks, each using a
Metropolis—Hastings step. For the rigid body parameteesuse random walk proposals
with normally distributed noise, and a proposal distribatfor the masks vectors, and
s can be obtained by choosing an entry at random and then smgtdk value from zero

to one orvice versa

The algorithm that is used ensures that the defined Markow ¢bareducible and aperi-
odic. Hence, the chain will converge and eventually the &aed value will be an approx-
imate realisation from the posterior distribution. We vaitimate the parameters using the

posterior mode or posterior mean obtained over a large nuofbeerations.

Convergence to, and sampling from, the limiting distribatin practice results in an ap-
proximate stochastic minimisation of the discrepancy temith the concentratiom being
large for close molecule matches. In fact, if one is maintgiiested in obtaining point esti-
mates of the model parameters which provide a good supé¢igros thorough exploration
of the parameter space is redundant. Instead simulatedamypéKirkpatricket al., 1983)

can be included so that the MCMC algorithm simulatates from

7-((9777 >‘AaABaT|ZA(w)aZB(w)>aaﬂ7€>C>l/Ta (11)

whereT" > 0 is slowly reduced deterministically.

4 Multiple Alignment of Molecules

In the multiple alignment problem, the objective is to sitankously superimpose a set
of n moleculesMy, ... M,. Previous approaches to this problem include Drydeml.
(2007) who extend their two—configuration matching appihdache multiple configuration
situation and Ruffieux & Green (2008) whose approach is basdtie model formulated
by Green & Mardia (2006) (cf. Section 6 for a further discosgi Here, we adapt the

generalised Procrustes analysis (GPA) algorithm for disdandmark data (e.g. Dryden &
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Mardia (e.g. 1998, p.90)) to our field—based approach. Irckesical GPA context, it is of
interest to find an alignment of the given objects which mises the sum of their pairwise
distances. A similar goodness of fit criterion for the mu#ipuperposition ofi molecular
fields can be formulated in terms of their overall similazity

;]Zﬂ/ . N de, (12)
whereA” = (AT ... ATy e R=k 97 = (07,...,07) e R* andy” = (47,...,~47) €
IR*" denote the stacked vectors of the involved mask, rotatiaht@mslation parameters,
respectively. As before, the field of thiln molecule depends on the position of the molecule
and on theth mask vector, i.eZ;(x) = Z;(x; 6;,~,, \;) whereas the associated normalis-

ing constant only depends on the mask vector,N.e= N;(\;).

For the multiple alignment o/, ..., M,, we want to maximise (12) with respect to the

6n + >, k; involved parameters. Note that the multiple Carbo indexthagproperty

1 n
Z/ ) Z ;) (x)de = " > Cliy(0:,75 Ai 8y Yy Ay
=1

where Z;(z) = Z;(x)/N; denotes the normalised field of tith molecule andZ ;) (z)

denotes a “normalised mean field” of all but titke molecule, i.e.

Zo(®) = n_lzz—w x| — ),

JF N =1

where X/ denotes théth entry of the mask vectok;, «] is thezyz—coordinate vector of
the /th atom in thejth molecule, andulj()\j) denotes the corresponding kriging weight.
Due to this decomposition, the optimisation can be carriedstepwise by maximising
Ci) (5,75 Ni; 00y, Y (i), M) intumn. The vectord(y) = (07,...,607 ,,6;,,,...67),~7(; =
(1, Ahs D) and Ay = (AL AL L AL, AL are thereby kept fixed
at each step.

Let D;)(0;,v;, Ai) denote the discrepancy measure which results from applyieglis-
tance transformation (4) t0';)(0;,v;, Ai). A stepwise maximisation af'(8,~, A) is then
equivalent to minimising;y(0;,v;, A;) in turn. To do so, we apply an optimisation ver-

sion of the MCMC algorithm for the pairwise alignment at eatdp. The normalised mean
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field Z; () thereby takes the role of the fixed reference molecule wisefgia) acts as

the random test molecule whose paramefkrsy, and\; are to be updated.

Our MCMC scheme can be used as an approximate optimisagonithim due to the in-
terplay of the precision parameterand the acceptance probability for “downhill moves”.
In particular, if we choose a prior distribution with a largeean forr, the MCMC algo-
rithm in practice pushes the estimates of the other modelnpaters towards the posterior
mode, rather like using a low temperature paramétar (11). An algorithm which updates
the normalised fields;(x) in turn using a “large precision version” of the MCMC algo-
rithm for the pairwise alignment and then uses the obtainddPMstimates to determine a
new mean field will therefore in practice decred&s@, v, A) at every step. This procedure
can then be repeated until a convergence criterion is meg algorithm is displayed as
Algorithm 1.

INSERT ALGORITHM 1 ABOUT HERE

As the objective of the multiple alignment is to find the malkee features common to all
or most of the molecules under study, we initialise the atgor by superimposing each
molecule on the smallest (in terms of the number of atomsdistenolecule in the dataset.
Contrary to the pairwise alignment which started at a rangtane in the parameter space,
this initialisation will be close to the global optimum whigustifies the use of the large
prior mean for the precision values. All the algorithms ddsex in this paper have been

written in R (R Development Core Team, 2006).

5 Application to Steroid Molecules

5.1 Pairwise Alignment

We first consider the pairwise alignment of the steroid males. As the alignment is
asymmetric, in that one molecule is treated as random wheheaother one serves as a

fixed reference molecule, we carry out each of the possilldg@Bwise superpositions.
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For each superposition, 10,000 MCMC iterations are usedigach iteration contains five
blocks updating rotation, translation, precision, andtthe@ mask vectors, respectively. In
an initial phase of the MCMC algorithm, we use the informatebout both the partial
charge values and the (cubed) van der Waals radii by caleglatbivariate partial Carbo
index. The univariate partial Carbo index for each prop&thereby calculated assuming
that the corresponding random field is very smooth and etehdbiGaussian covariance
structure. The range of the Gaussian covariance functisocested with the electrostatic
field is estimated from the data by visual inspection of a pd@mpirical semivariogram
function. The range for the steric field is taken to be thedatyan der Waals radius in the

dataset. The resulting covariance functions then haveotine f
_k? b2
og(h) =oze /i and og(h)=oc’e A |
Wherepg = 363, p? = 8.67. As o, ando, cancel out when calculating the Carbo indices,

they do not need to be estimated.

The initial phase comprised’; = 2,000 MCMC iterations during which the relative

weights for the partial charges and van der Waals radii abs@&h dynamically: at thah it-

Nr—i

ior 1 =1,..., N;. The electrostatic

eration they are defined ag, = and wg =

N
fields are therefore only used for an approximate alignmadttheir impact fades out as
the algorithm proceeds. This mimics real-life moleculaognition where the long-range
electrostatic attraction governs the initial approachh® molecules. As they get closer,
however, the short—range repulsive steric forces take amdrbecome the chief manipu-
lator for the binding affinity (e.g. Richards, 1993). Aftdretinitial 2,000 iterations, the
alignment is adjusted using the univariate partial Carlyalie cubed van der Waals radii

only.

To choose the value for the likelihood paramétewne exploit the fact that the likelihood for
the data also has the form of a Gamma distribution for theigi@tparameter with shape

parametet and a variable scale paramefef; (T', v, A., As) which changes from iteration
to iteration. From pilot runs of the MCMC algorithm we thesed have to opportunity

to estimatet empirically using standard probability plots. As a valueSof 18 fits the
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observed data well for all pilot runs, we use it throughowet éimalysis.

The hyperparameters associated with the prior distrilgtfor the precision parameter cho-
sen asy = 16, # = 0.04. The choice ofj is thereby based on the fact that the discrepancy
measureD,; for good matches typically takes values between 0.01 arsl @M@e to the
form of the posterior distribution for the precision parderelarger values fog mask the
impact of the discrepancy at each iteration on the propoakeeforr, which is undesir-
able. Even smaller values gfon the other hand increase the posterior mean fdynless

the initial alignment of the molecules is known to be closthoptimal one, this results in

a spurious notion of precision and increases the probglofitt getting trapped in a local
mode. The same reasoning applies for the chosen valueaofl overall, the combination

of a« = 16 and$ = 0.04 works well for our application.

The value for the penalty parameter is chosen applying tleside theoretical approach
described in Green & Mardia (2006). From pilot runs of our MCMcheme we found that

a penalty parameter value ©f= 3 gives the best distinction between included and excluded
atoms in terms of the marginal posterior inclusion proliied p;. This value( = 3 gives
desirable robustness against changes of cost Katio ly; /(lo1 + [10), Wherely,; is the cost

for falsely treating an atom as part of the matching part®iefmholecules ant, is the cost

for a false negative. The optimal mask vecdSt for a given cost ratids< € [0, 1] is given

by \® = I~ k1, wherel, denotes the indicator function of an event E.

As standard deviations of the proposal distributions weoskg, = 3.25° for the rotation
parameters ang, = 0.5A for the translation parameters, and these values enseepac
tance rates for the associated parameters between 20% &ndH@e standard deviation
for the rotation parameters is thereby in line with previgutescribed proposal distribu-
tions for rotation parameters, e.g. with = 3.25°, roughly 92% of the proposed rotation
values fall into the limits of the uniform proposal distriimn on[—0.1, 0.1] which Green
& Mardia (2006) use for a Metropolis update @f

Finally, for each run we define the initial relative positiofithe two molecules under study

by first aligning the reference molecule along its principaés and transforming the test

15



molecule in the same way to preserve the relative positioa.tgn translate the random
test molecule using a translation vectgy, wherey,, (i = 1,2, 3) is uniformly distributed
on [-5A,5A]. A further rotation using a rotation matriR(8,), wheredy, (i = 1,2,3) is
uniformly distributed orj—90°, 90°], then transforms the test molecule to its random initial

position.
INSERT FIGURES 2-4 ABOUT HERE

An example run of the MCMC algorithm is illustrated in Figar2-4. Here, aldosterone is
taken to be the random test molecule which is to be superiegposto androstanediol (cf.
Figure 1). The initial relative position and the relativesgmn according to the maximum
a—posteriori (MAP) estimates of the rigid body parametéesa burn—in period of 2,000
iterations are displayed in Figure 2. Figure 3 shows thest@ots for the number of atoms
which are involved in the field calculations and are hencesictared as belonging to the
common part of the molecules and a (post burn—in) summargeofrtasks vectors for the
two molecules. For each atom, the average value of the gamneling entry (big circles)

and the MAP estimate (small circles) are displayed. Figus@@ws the trace plots of the

other variable quantities.

In the majority of the 930 superpositions, a similar behaviof the trace plots can be
observed. Simultaneous inference about the rigid bodynpeters, the precision parameter
and the mask vectors, however, is a difficult task and dued@timplexity of the problem
it is not surprising that the MCMC algorithm sometimes geapped in a local mode. As
described in Dryderet al. (2007), the local modes for the steroid application esa#ti
correspond to alignments along the principal axes, and btigese alignments is correct.
To overcome the difficulty of this multimodality, we restdie algorithm by generating
another random initial position for the test molecule if #uen of the 10% smallest distances
between atoms of the test and the reference molecule exd86ds after 1,500 iterations
or if the mean of the Carbo distance values between iter&600 and 4,000 exceeds
0.1. These criteria are based on the experience we gaineddiiot runs of the MCMC
algorithm. The latter can thereby interpreted as a convergeriterion whereas the first is

merely used as an early detector for an alignment along tbegvprincipal axis.
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INSERT TABLE 1 ABOUT HERE

To investigate the sensitivity of the analysis to the primtributions, we again consider
the alignment of the two molecules aldosterone and andredial. Table 1 shows how
different values of the penalty parameteaffect the empirical (post burn—in) 95% credi-
bility intervals for the number of included atoms for both lexules. As expected, the total
number of included atoms increases wjthAs the two molecules in the example run are
structurally very similar, they can be aligned more closéiymnore atoms are included so
that credibility interval for the precision parameter igfedd towards higher values &5
increases. After a certain threshold, however, even largkres for the penalty parameter
force the algorithm to include more atoms in the similarigfoulations than desired and
the precision decreases. Table 1 shows that, in terms ofuimber of included atoms, the
algorithm is robust against changescaf Also as the posterior mean and variance of the
precision parameter directly depenggshe credibility intervals for- become wider and get

shifted towards higher values adncreases.

The pairwise distances which result from the superposstan be regarded as chemically
relevant if they reflect the membership of the steroid mdiesto the three activity classes,
I.e. if steroids within an activity class can be aligned mdoesely than those from different
activity classes. To asses this, we perform two clusteryaealusing Ward’s (1963) method
as implemented in the R functidrcl ust . To account for the asymmetry in our alignment
method, the applied pairwise dissimilarity measures far tmoleculesA and B are thereby
based on both the MCMC run which superimposesn B and the MCMC run which

superimpose® on A. In particular, we use

-Dmean(A7 B) - \/-DAB (F(é)7 ;Ya XAa XB)-Z)BA (F(O)a ﬁ? XB7 XA)

and

Do (A, B) = \/ D (T(8™), 7% X% X2) D (T(6"%), 7, A% A7),

wheref and~ denote the (post burn—in) estimates of the marginal pastarean vectors
of the rigid body parameters, an and\, denote thresholded mean mask vectors. The

cost ratio is thereby chosen &5 = 0.7 which is based on the fact that valuesX§fbelow
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0.7 appear as outliers in the majority of graphs of the typ€&igtire 3. From a decision
theoretical point of view/<' = 0.7 indicates that we consider a false inclusion of an atom
as worse than a false exclusion which is readily justifiedigyfact that including atoms in
the distance calculation which do not contribute to the inig@ffinity towards the common
receptor can distort an alignment more severely than falseilitting relevant atoms. The
second cluster analysis is based on a similar distance meelasuusing the MAP estimates

of the parameters.
INSERT FIGURE 5 ABOUT HERE

Figure 5 shows the dendrograms resulting from the clustalyaas. The graph on the left—
hand side is based ab,..{.), and the right-hand side shows the dendrogram calculated
using Dys(.). The labels on both sides correspond to the activity claséise steroid
molecules. It is notable that both distance measures leadiéoy good separation of high
and low activity steroids. In particular, the cluster asédybased o, (.) is at the highest
level able to separate these two activity classes compleédelerall, both dendrograms are
more homogeneous than the one in Dry@eml. (2007) which is comparable to the ones
in Figure 5 in that it uses the geometrical information onlg, the dendrogram on the

right—hand side of the top row of Figure 5 in their paper.

5.2 Multiple Alignment

The pairwise superpositions used to initialise the field GiRforithm (step 1) are carried
out in exactly the same way as the superpositions descrb#teiprevious section. Only
the penalty parametéris reduced t@ = 2 to incorporate the knowledge that the reference
molecule in all superpositions has a small number of atomsendas in step 1 the electro-
static fields of the molecules are used for an approximagmeadent, the superpositions on
the mean fields (step 7) are obtained using only the discoégmaof the steric fields. Like in
the pairwise alignment, the steric fields are thereby asdumexhibit a Gaussian covari-
ance structure with a practical ranged8p, = 1.7. As the initial molecular fields obtained

in step 1 are good approximations of the fields which mininiieemultiple Carbo index,
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we usea = 600 and/ = 0.0001 to ensure that full conditional of the precision parameter
has a large mean value at each iteration, and we reduce tidastiedeviations of the pro-
posal distributions for the rigid body parametergto= 0.75 A andn, = 0.03°. Moreover,
we set the number of iterations for each MCMC run in step 7 t 8@d the tolerance value

totol = 0.0001. Therefore here, the algorithm is used as a stochastic &arm
INSERT FIGURE 6 ABOUT HERE

The algorithm converges quickly. After the 4th field GPA @gon, the improvement of the
multiple alignment ceases to exceed the tolerance thrésimal the algorithm stops. Figure
6 shows orthographic views of the resulting overlays. Theegposition after step 1 of the
field GPA algorithm is displayed in the top row, and the bottom shows the final overlay

after 4 iterations.

Although the field GPA is not a posterior simulation algamitin the strict sense, it is still
worth investigating the effect of the used valuesd@andg: in step 7 of the field GPA algo-
rithm, the Carbo indices measuring the overlap of the fiel@ohdividual moleculé/; and
the mean field of the remaining 30 molecules take very highesbf around 0.97 so that
the corresponding discrepancy values are very small (a@oudil5). During the course of
the algorithm, these distance values decrease down tosvataand 0.002. For the distance
to have an impact, the value gfshould therefore be below this value. With this restriction
the result of the field GPA is fairly robust against changes ahd. In particular, with our
choice ofg = 0.0001, we ran the algorithm for nine values afbetween 100 and 900 and
observed only marginal differences between these rungmmstef the resulting entries of
the masks vectors and the molecular coordinates. Merelgdgheergence rate is affected

by the choice ofy, and lower values yield a slower convergence.

The relative positions obtained in the field GPA provide thstloverall alignment of the 31
steroid molecules and can therefore be used as basis fobalglomparison of the steric
properties of the molecules. It is, for example, of intetestxplore whether there are sig-
nificant differences between the mean steric fields of theetlactivity groups. However,

the field GPA described above is designed to find the overadimfield and extracts only
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features common to all molecules so that the resulting mastovs are not suitable for this
comparison. We therefore perform the generalised field nagcwithin each group sep-
arately to obtain mask vectors which reflect the steric prtiggecommon to all molecules
within a group but with the features of the individual mollEmuremoved. Using these mask
vectors and the relative positions obtained in the overaltl {lGPA, we then calculate the

mean fields for each groups.
INSERT FIGURE 7 ABOUT HERE

Figure 7 displayscy—cross—sections of the mean fields for different values.oLight

points thereby correspond to locations where the displayedc field takes a large value
whereas dark points show field values close to zero. Due téathe¢hat the common ring
structure of the molecules is almost planar, the middle rew=( 0) essentially depicts
the ring atoms of the mean fields and is similar for all thregvag groups. Atz = 1.5

andz = —1.5, however, differences occur and, as expected, these efiffes are most
pronounced between the mean field of the high and low actyiayps. The objective now

IS to assess whether the differences are statisticallyfgignt or not.

For each pair@,, C;) of activity classesd,b = 1,2,3; a # b), we want to test the null
hypothesis that there are no differences between the ddxsenean fields. We consider a

(two sample)—field of the form

tab(w) = , T E ]R'Ba (13)

wheren, andn, denote the number of molecules in activity classandC}, respectively,
andZ,(z) andZ,(x) denote the corresponding mean fields, afjg,(z) = s2,(x) + d, is
the pooled variance (witlh = 0.001 a small offset to avoid spurious significance in regions

far away from the centre where all predictions are essegrtalio).

For each pairwise comparison of the given average fields, fo&dium, high), we define

a three—dimensional grid and calculate a-value of the form (13) at a large number of
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points (142598 here). The residual process ffih molecule has the form

ri(®) = Zj(®) = Zo;(z)

o 7, —1 , ij 313\\2 el
= O ;7/ E wl](Aj)e E E wl }\k A ;
@j X =1 Ma; k:My€ Ca; 1:\k=1
k#j

whereC,, (a; € {1,2,3}) denotes the activity class af/;. The mean of the variances of
the standardised residual processes across the grid céshteserves as an estimate for

Applying this procedure we obtaikh = 0.031.

Using results from Cao & Worsley (2001), the above estimesesbe used to approximate
the probability that, under the null hypothesis, the maxmilj,,, of the randomi—field
under study exceed a threshald For the two—sided—tests in our example, a threshold
of t = 5.26 can be considered as significant at the 0.01 significancé. |&\es critical
value is conservative in the sense that it the largest of tiieal values associated with
the three pairwise comparisons. Figure 8 shows the regiowsich significant differences
between the mean steric fields of the three activity classaisl e found which occur in the
bottom right and/or top left ofs. These findings are in line with Figure 7 and they are also
supported by Figure 9 in Drydest al. (2007) which is the equivalent figure for the atom—
based alignment (although no significance tests were daoug). These findings support
the conjecture that the steric properties of the steroicegwdes have a discriminating effect

with respect to the binding affinity towards the CBG receptor

INSERT FIGURE 8 ABOUT HERE

6 Discussion

A major advantage of our procedure is that point correspoocee do not need to be es-
timated when matching molecules. Another approach whigsdwt require correspon-
dences has been formulated by Durrlenedral. (2007) who view the given sets of point

coordinates as segmented lines and formulate a distaneedethe point sets in terms of
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a distance between the lines using “currents” and reproduaernel Hilbert spaces. How-
ever, they do not incorporate the possibility that only fib®f the given point sets match

but they do use non-rigid deformations.

In our examples we have used interpolation in the kriging.ska alternative would be to
include a nugget effect in the covariance function, and tigirkg would result in smooth
predictions. This would be particularly appropriate in bggtions where there is more

measurement noise present.

Our methodology has been developed in the context of alggaaml comparing molecules in
chemoinformatics. Although kriging has been mentioneafzein the literature on molec-
ular similarity (e.g. Fangt al, 2004), its application to the estimation of a moleculadfiel
provides a novel tool for determining a field—based stradtalignment. However, the fact
that our alignment procedure can be seen as a probabiliatieivork and generalisation of
the SEAL algorithm which is well-established in the field afional drug design, provides

an indication of the suitability of our approach.

Our multiple alignment approach is related to the Bayesiamleh proposed by Dryden
et al. (2007) which uses a similar concept but formulated in terihe point locations.
Contrary to that, a hidden point configuration in the fully deb-based Bayesian approach
by Ruffieux & Green (2008) is integrated out and the multigigranent ofn point sets
involves all2” — n — 1 possible types of matches. The fact that our field—basedapbpr
provides the opportunity to naturally incorporate addiibinformation is of particular ad-
vantage in the multiple alignment setting as the resultiegnields allow straightforward

post—processing like significance testing.

When an alignment is to be carried out using more than oneculaeproperty, a way to
possibly improve the superposition results is to introdseparate mask vectors for each
property. With separate masks, one could account for cawvees between the field using
cokriging (e.g. Subramanyam & Pandalai, 2004), which wanéldomputationally demand-
ing.

Our alignment methodology is based on continuous repragentof shapes. As molecules
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are fuzzy bodies of electronic clouds rather than discrete sf atoms, it is particularly
suitable in the problems described in this paper. Howetes,rnot restricted to the molec-
ular context and applicable for any situation where markediabelled point sets are to be
compared. In fact, as it does not require any predefined digratom correspondence, the
field—based superposition of continuous shapes could be@wach to resolve the align-
ment problem for a fairly broad range of applications. Exéapnclude matching organs

in medical images, or matching objects in images of realleh&renes (e.g. faces).
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¢ 95% ClI forr 95% Cl for}_; A} 95% Cl for)_, A?

2 | (226.62,543.78) (34, 46) (34, 45)

3 | (230.93,543.30) (37, 49) (38, 48)

4 | (250.69, 562.65) (40, 51) (40, 49)

5 | (244.67,548.41) (41, 51) (42, 51)

o 95% Cl forr 95% Cl forzj A} 95% CI forzj A%
(102.53, 315.95) (36, 48) (37, 48)

13 | (221.14,515.13) (38, 49) (38, 49)

23 | (344.68, 770.30) (38, 48) (39, 49)

33 | (432.36,1010.77) (35, 48) (37, 50)

Table 1. The impact of the penalty parameter (first four romrgja (last four rows) on the

marginal posterior distribution of the parameters of ietr The credibility intervals are

based on every 20th value of the parameters recorded ag&dutim—in period.
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Figure 1: Two—dimensional representations of two steroodiecules from the dataset. The

molecules are structurally similar in that their core stune consists of four carbon rings.
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Figure 2: Orthographic views of the carbon rings in the stgrposition and the MAP po-

sition for the alignment of aldosterone and androstanediog unit of all axes is Angstrém

(A).
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Figure 3: Top Row: Trace plots of the number of atoms whichiarelved in the kriging

procedure. Bottom Row: Two possible point estimates fontlask vector of test molecule
(left) and the reference molecule (right), respectiveljie big circles show the mean val-
ues of the (0,1)—entries for the masks vectors, and the simelés display the observed
mask vectors at the MAP iteration. The total number of atamigs$t molecule is 54. The

reference molecule has 53 atoms in total.
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Figure 4: Top Row: trace plot of the rotation parametgr§ = 1,2, 3) in degrees. Mid-
dle Row: trace plots of the translation parametgr& = 1,2,3). Here, all rigid body
parameters are defined in terms of the initial relative pasiof the two molecules under
consideration. Bottom row: Trace plots of the precisiorapaeter, the log—posterior (up to

a constant) and the Carbo distance. In all plots, every 46thlated value is displayed.
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Figure 5: Cluster Analysis Using Ward’s Method: The leftrtiaide dendrogram is based
on D,..{.), and the dendrogram on the right-hand side is calculate®yusj,..(.). The

labels correspond to the activity classes of the steroidhi¢h, 2=intermediate, 3=low).

Figure 6: Top row: Orthographic projections of the the wmlitielative position of the 31
steroid molecules. Bottom Row: Orthographic projectiohthe final relative position of

the 31 steroid molecules.
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Figure 7: Cross—sections of the mean steric fields of thethctivity groups (left column:
high activity, middle column: medium activity, right columlow activity). The different
rows display cross sections at= —1.5 (top row), z = 0 (medium row), andz = 1.5
(bottom row). Light points correspond to locations withganvalue of the displayed field

whereas dark values show points with values close to zero.

Figure 8: Thresholded-Fields Resulting from Pairwise Comparison of the Sterialle
Fields of the Three Activity Classes. Left—-Hand Side: Low &edium Activity Class,
Middle: Low vs. High Activity Class, Right—-Hand Side: Mediws. High Activity Class.
The shaded areas display statistically significant regidfa orientation, the mean ring

structure resulting from the overall GPA is displayed aslwel
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Algorithm 1 Stochastic GPA for Molecular Fields

1: choose the smallest molecule as reference molecule andirappse then — 1 remaining
molecules onto it using the MCMC algorithm for the pairwidegament; the relative posi-
tions of the resulting: — 1 MAP fields and the field calculated from the unchanged datéhtor
smallest molecule then constitute the starting point ferghneralised superposition

2: defined + dy, wheredy > tol andtol is a positive tolerance threshold

3: calculate the multiple Carbo indeX(6,~,A) = >/, E] i1 f w)Z

4: whiled > tol do

5. foriin(1:n)do

6: using the current parameter values for rotation, trarmtatind mask vectors, calculate a

normalised mean fielﬁ(i)(m) omitting theith molecule
7: based on the discrepandy ;) (6;,7;, A;), superimpose théth molecular field onto
Z(,») (x) using a large precision version of the MCMC algorithm for tre@rwise align-
ment; Z(i) (z) thereby takes the role of the reference molecule apgd 6 ;) and~ ;) are
treated as fixed
8: record the MAP estimates for position and mask ofithemolecule
9: end for
10:  calculate the update@™*(0,v,\) = > Zj z+1f Z (m dx
11:  d<— C(0,vy,A) —C*(0,v,A)
12: C(0,v,A) — C*(0,~v,A)

13: end while
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