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Abstract 
 
Abstract 

The necrotrophic fungal pathogen Mycosphaerella graminicola causes septoria 

tritici blotch, the most important foliar disease of wheat in Europe.  During a 

compatible interaction, host responses to infection allow the development of necrosis 

as a form of programmed cell death which appears to aid infection rather than 

hindering it.  Aspects of the response of wheat to infection with M. graminicola were 

studied. 

Blumeria graminis f. sp. tritici causes powdery mildew disease of wheat. A 

method for dual inoculation of wheat with both M. graminicola and mildew was 

developed. Leaves preinoculated with virulent M. graminicola and subsequently 

inoculated with a normally virulent isolate of B.graminis had substantially reduced 

formation of mildew colonies, conidiophores and conidia. This was not the result of 

reduced success of infection or early development of B. graminis spores on leaves 

inoculated with virulent M. graminicola.  

Expression of 11 plant defence- and senescence-related genes was tested in 

eight variety/isolate combinations which involved Stb6 and Stb15, the two most 

common resistance genes in European wheat.  Inoculation with M. graminicola caused 

a large effect on plant gene expression with seven genes showing differential 

expression compared to mock inoculated controls.  Patterns of gene expression were 

largely characteristic of varieties rather than compatible or incompatible interactions in 

general.  TaMPK3 protein accumulated in all the compatible interactions tested, above 

the level of the mock-inoculated controls, but also accumulated in some incompatible 

interactions, although not to greater levels than the mock-inoculated controls, 

implying that this is a consistent feature of the wheat M. graminicola-wheat 

interaction. 

 Three common microscopy stains were tested to develop a reliable method of 

investigating M. graminicola growth and development during wheat infection, 

especially visualisation in the apoplast.  None of the stains tested were suitable for this 

purpose, implying that the fungal hyphal wall is modified or protected within the plant
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Introduction 
 

1  
Introduction 

A substantial proportion of this chapter was included in a review paper, 

’Mycosphaerella graminicola: from genomics to disease control’  by E.S. Orton, S. 

Deller and J.K.M. Brown in Molecular Plant Pathology 12(5),413-424 (2011). 

 

1.1  Septoria tritici blotch disease and its importance 

1.1.1 The pathogen 

Mycosphaerella graminicola (Fuckel) Schröter in Cohn is the teleomorph of Septoria 

tritici Roberge in Desmaz..  It is an ascomycete fungus in the Order of Dothideales.  

This pathogen is the causal agent of septoria tritici blotch (STB) on bread and durum 

wheat (Triticum aestivum L. and T. turgidum ssp. durum L.).  It is a well characterised 

filamentous fungal pathogen propagated by both sexual ascospores and asexual 

pycnidiospores and spread by wind-dispersal and rain splash respectively (Cohen & 

Eyal, 1993; Duncan & Howard, 2000; Kema et al., 1996).  

The M. graminicola genome was sequenced by the USA Department of Energy’s 

Joint Genome Institute and has been of enormous importance for research on M. 

graminicola and for phytopathology in general.  The M. graminicola sequence has 

revealed that the Dutch field isolate IPO323 has a total genome size of 39.7 Mb, and 

21 chromosomes ranging in size from ~0.3Mb to ~6Mb.  Thirteen chromosomes are 

considered core chromosomes, being apparently essential, while the other 8 are 

known to be independently dispensable despite containing approximately 12% of the 

genome (Mehrabi et al., 2007; Wittenberg et al., 2009). Of ~10,900 genes in the 

genome that have been functionally annotated approximately 59% of the genes on the 

core chromosome have annotations (including automatic and manual curation) while 

this is only the case for approximately 10% of genes on the dispensable chromosomes 

(Goodwin et al., 2011).   The genome browser maintained by the Joint Genome 

Institute provides the genome sequence, organisation, automatic and manual 
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annotations and large amounts of other information on the genes and intervening 

regions at http://genome.jgi-psf.org/Mycgr3/Mycgr3.home.html.  

In addition to loss of dispensable chromosomes, there are other features of 

genomic plasticity in M. graminicola.  Translocation of chromosome sections, 

chromosome length polymorphisms and chromosome copy number polymorphisms 

including disomy, the presence of two copies of a chromosome, have all been detected 

between progeny and parent isolates (Wittenberg et al., 2009). The high genome 

plasticity could be among the strategies that enable the pathogen population to quickly 

overcome adverse biotic and abiotic conditions in wheat fields. 

1.1.2 The disease 

STB is of global economic importance, but the disease thrives especially in climates 

with rain during the development of the wheat until flag leaf emergence.  STB is 

currently the most important foliar disease of wheat in Europe, including the UK, and 

many other temperate parts of the world. In the UK, 52% of wheat leaf samples 

surveyed by the UK’s Home Grown Cereals Authority (HGCA) in 2010 were infected by 

STB (www.cropmonitor.co.uk). That was a reduction on 2009 levels but it remained 

the most important foliar disease of wheat in the UK.   

Symptoms of STB are characterised by necrotic blotches that contain pycnidia, 

the asexual fruiting-bodies containing pycnidiospores (figure 1.1).  The anamorph 

mainly contributes to disease development during the growing season, whereas the 

teleomorph is the primary source of inoculum for emerging wheat in the autumn 

(Eriksen & Munk, 2003; Shaw & Royle, 1993). The heterothallic mating system 

recently determined by Kema et al. (1996) provides an explanation for the wide 

genetic variation in M. graminicola and its ability to evolve rapidly under selection.   

 

1.2 The infection cycle 

The infection cycle is completed when a compatible interaction occurs between the 

pathogen and a susceptible host. 
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1.2.1 Germination 

Germination of conidia occurs within hours of a spore landing on a wheat leaf.  Conidia 

of both compatible and incompatible isolates produce germ tubes.  Differences have 

been seen in the percentage of conidia germinating; Cohen and Eyal (1993) stated 

that 85-90% of all conidia germinated regardless of cultivar. Kema et al. (1996) 

agreed with this but Shetty et al. (2003) noticed a low germination rate, although 

importantly this was not dependent on cultivar.  Many factors apart from cultivar are 

likely to have an impact on germination rate; environmental conditions are especially 

likely to play a large role. 

Hyphal growth has also differed between studies; Duncan and Howard (2000) 

noticed that germ tubes grew towards stomata, others noted that most germ tubes 

actually grew away from the stomata (Shetty et al., 2003). Cohen and Eyal (1993) 

stated that hyphal ramification was perpendicular to the leaf axis. An exogenous 

nutrient supply has been demonstrated to be important for germling morphogenesis in 

vitro by comparing water with yeast peptone dextrose agar (Duncan & Howard, 2000).   

 

1.2.2 Penetration 

 

Figure 1.1 Pycnidia of M. graminicola on a wheat leaf. 
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Once the spore has germinated it must penetrate the host leaf, this occurs within 24 

hours after inoculation (Kema et al., 1996).  The general consensus is that penetration 

occurs solely through the stomata (Duncan & Howard, 2000; Kema et al., 1996; 

Shetty et al., 2003) although direct penetration has occasionally been observed 

between through the cuticle (Hilu & Bever, 1957) either between the guard cells  

(Cohen & Eyal, 1993) or through host epidermal cells (Rohel et al., 2001).  The 

requirement for an appressorium-like structure remains unclear; appressorium-like 

structures (swellings) have been observed before the occurrence of penetration 

through the stomata (Cohen & Eyal, 1993; Kema et al., 1996; Shetty et al., 2003).  As 

M. graminicola entry appears to be (almost) entirely through the stomata it may not to 

require appressorial development (although it would be required for direct 

penetration). 

 

1.2.3 Colonisation 

The hyphae colonise the substomatal cavity of the leaf after penetration. This occurs 

within 48 hours after inoculation with the pathogen (Duncan and Howard, 2000).  The 

fungus colonises the mesophyll intercellular space approximately two days post 

inoculation (dpi) (Cohen & Eyal, 1993; Kema et al., 1996).  The rate of increase in 

fungal growth during symptomless colonisation of M. graminicola is relatively low 

(Keon et al. 2007).   Fungal growth is usually in close contact with the cell walls 

(Cohen & Eyal, 1993), although the reason for this has not been elucidated.  The 

hyphae form an increasingly dense network from 9 to 15 days post inoculation (Shetty 

et al., 2003).  This correlates with the appearance of macroscopic symptoms.  Kema et 

al. (1996) noted that 8 dpi mesophyll cell walls had a wrinkled appearance and 

sometimes collapsed, increasing at 10 dpi.  The pathogen remains entirely intercellular 

during the infection process.  No specialised feeding structures such as haustoria are 

formed during the infection process, leading to the question of how the fungus 

acquires its nutrients. 
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1.2.4 Growth and Pycnidia Formation 

On a susceptible host, STB symptoms appear coincident with the activation of host 

programmed cell death (PCD), with similarity to a hypersensitive response (HR) (Keon 

et al., 2007).  This response is normally associated with a resistance reaction 

particularly towards biotrophs, but is not seen in the resistance response to M. 

graminicola by wheat.  The collapse of plant cells during this time releases nutrients 

into the apoplast due to a loss of membrane integrity.  This is a clear difference from 

natural senescence, where nutrients are gradually redistributed to an alternative part 

of the plant without the loss of membrane integrity.  The increase in the availability of 

nutrients is suggested to allow the fungus to grow and form pycnidia in stomatal 

cavities, thereby completing its infection cycle within the host (Keon et al., 2007). 

 

1.2.5 The incompatible interaction 

No differences are seen between incompatible and compatible interactions during 

germination or penetration.  The resistance must therefore occur once the pathogen 

has entered the host. 

Very little hyphal growth was seen after penetration of the M. graminicola 

isolate IPO323 on the resistant cultivar Stakado studied by Shetty et al. (2003).  Kema 

et al. (1996) reported similar findings, in the interaction between Kavkaz/K4500 

1.6.a.4 and isolate IPO87016, only occasionally observing hyphae between mesophyll 

cells.  Cohen and Eyal (1993) reportedly saw immature pycnidia of the Israeli isolates, 

ISR 398A1 and ISR 8036, in an arrested state in the resistant cultivar Kavkaz/K4500 

L.6.A.4.  The authors reported that these isolates differ in their virulence on 

Kavkaz/K4500 L.6.A.4. but did not explain how they differed.  Immature pycnidia on a 

resistant variety has not been reported since.  These observations suggest that 

resistance genes may act to stop or slow hyphal growth or development of the 

pathogen. 
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In an incompatible interaction there is no measurable increase in biomass, 

indicating that the fungus is not an effective biotroph and ultimately requires host cell 

death to complete infection (Keon et al., 2007)  There is no hypersensitive response.  

No macroscopic visible symptoms have been reported in incompatible interactions, 

although pycnidia in an arrested state of development have been seen microscopically 

(Cohen and Eyal, 1993). 

 

1.3  Comparisons between pathogens with differing nutritional lifestyles 

The long latent period of M. graminicola is an unusual infection strategy for what is 

ultimately a necrotrophic pathogen.  The genome sequence of M. graminicola reveals 

distinct differences in its ability to infect and obtain nutrients compared with 

necrotrophic fungal pathogens and biotrophic pathogens.  Comparing the recently 

published genomes of two pathogens, Blumeria graminis and Botrytis cinerea, 

differing in nutritional lifestyle, with M. graminicola gives some clues as to how M. 

graminicola has developed as a pathogen. 

B. graminis is a specialist pathogen, infecting only cereals.  The species is 

divided into several formae speciales adapted to specific cereal hosts; i.e. wheat, 

barley, oats and rye (Inuma et al., 2007).  Biotrophic pathogens are obligate feeders, 

requiring a living host to grow and develop; they cannot generally be grown in axenic 

culture.  B. graminis reproduces both asexually through conidia borne on 

conidiophores and sexually producing asci contained in chasmothecia (Braun et al., 

2002). The asexual cycle is completed in a strictly programmed way (Both et al., 

2005a). When a spore comes into contact with a leaf, tiny projections that cover the 

surface of the conidium, provide a conduit for the release of an extracellular matrix 

(ECM) (Carver et al., 1999; Zhang et al., 2005).  It appears that the ECM is used as a 

means for signal exchange between the conidium and the host (Zhang et al., 2005).  

A primary germ tube (PGT) is rapidly produced and then an appressorial germ tube 

(AGT) is formed, during which time the germling uses stored glycogen as an energy 
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source (Both et al., 2005b). The germinated spore produces an appressorium with an 

infection peg, allowing penetration into an epidermal cell. Penetration of the host cell 

wall occurs by a combination of turgor pressure and enzymatic means.  B. graminis 

germlings can produce cutinases and glucanses which assist with hydrolysing plant cell 

walls (Zhang et al. 2005).  Once inside the cell an haustorium is formed, this generally 

happens within 48 hours after inoculation (Zhang et al., 2005).  Haustoria allow the 

uptake of glucose from the plant which is used to fuel glycolysis and feed the 

elongating secondary hyphae which develop on the surface of the epidermal cells 

(Both et al., 2005b). The hyphae rapidly proliferate, synthesising proteins and nucleic 

acids. Approximately 4-7 days after initial inoculation, conidiophores form on the 

surface of the leaf. 

Necrotrophic pathogens are generalist feeders and can be grown in axenic 

culture.  B. cinerea rapidly adopts a necrotrophic lifestyle once it has entered a host 

plant.   Botrytis produces an appressorium to enter host cells.  In conditions conducive 

to the pathogen, infection occurs soon after inoculation and lesions rapidly form 

(Benito et al. 1998).  The pathogen creates an acidic environment and produces toxins 

which kill host cells, allowing the pathogen to obtain nutrients from the host and 

complete its lifecycle. It reproduces by both asexually and sexually, although mostly 

by conidiophore production. 

The infection strategy of M. graminicola is different from either of the 

pathogens described above.  By comparing it with the infection strategies of both B. 

graminis and B. cinerea, both similarities and differences can be perceived.  M. 

graminicola is a specialist feeder, infecting only bread and durum wheat, as is B. 

graminis, but is not obligate and is easily grown in axenic culture. Unlike B. graminis 

and B. cinerea it produces no specialist infection structures; the genome of M. 

graminicola contains no predicted genes linked to appressorial production (Goodwin et 

al., 2011).   The long latent period where it remains intercellular is unlike either of the 

other pathogens described here and appears to be more indicative of an endophytic 

lifestyle.  B. cinerea and M. graminicola both ultimately adopt a necrotrophic lifestyle.  
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B. cinerea achieves this by bombarding the host with chemicals that alter the leaf 

environment to its advantage and ultimately kill host cells, whereas, to date, it is 

unknown if any effectors or toxins are produced which enable the M. graminicola to kill 

host cells.  The means by which host cells die during infection with M. graminicola is, 

as yet, unknown.   

Comparing the genome of M. graminicola (Goodwin et al., 2011) with recently 

published data on both B. graminis (Spanu et al., 2010) and B. cinerea (Amselem et 

al. 2011) reveals distinct differences, probably due to the differing nutritional lifestyles 

of these pathogens.  The most striking difference is in genome size; the genome of B. 

graminis is ~120 Mb, whilst B. cinerea is 38-39 Mb and M. graminicola ~40 Mb, the 

latter two being more in line with other ascomycetes.  The number of genes in B. 

graminis is comparatively small, ~6000 whereas B. cinerea has ~16,500 and M. 

graminicola ~11,000.   

The genome expansion of B. graminis is due to the large number of 

transposable elements (TEs) (Parlange et al., 2011; Spanu et al., 2010).  Parlange et 

al. (2011) found that 85% of the B. graminis f. sp. tritici genome was made up of TEs.  

TEs generate high levels of genetic variation and provide a way for the genome to be 

flexible and adaptable.  It has been shown that effector genes can be associated with 

TEs and coevolve.  Sacristan et al. (2011) showed that the effector encoding gene 

family, AVRk1, lies closely associated with a retrotransposon, TE1a, and has coevolved 

with it providing a mechanism for amplifying and diversifying these effector alleles.  

Very little is known about the abundance or function of effectors proteins encoded in 

the M. graminicola genome.  Three LysM-containing domain effector proteins have 

been identified and functionally tested that are homologous to Ecp6 from C. fulvum 

and have been shown to interfere with chitin-triggered immunity (Marshall et al. 

2011).  Motteram et al. (2009) identified MgNLP1, which is possibly able to induce cell 

death, but is not a major virulence factor.  It is not known if MgNLP1 functions as an 

effector protein. Three putative effectors, homologous to the C. fulvum Ecp2, have 

been identified, but these have not been functionally tested (Stergiopoulous et al. 
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2010).  It appears that there are far fewer effectors in the genome of M. graminicola 

than in B. graminis.  

 In terms of nutritional lifestyle, the biggest differences are seen in the 

numbers of carbohydrate active enzymes (CAZymes) predicted in each of the three 

genomes.  B. graminis has no enzymes for degrading cellulose, xylan or pectin, 

whereas B. cinerea has many enzymes for degrading plant cell walls, particularly 

those which degrade pectin, which is found particularly in soft fruits.  M. graminicola 

has a reduced number of genes encoding CAZymes, compared with other cereal 

pathogens (S. nodurum and M. oryzae), with few for cellulases, xylanases or 

xyloglucanses, which is in accordance with its intercellular lifestyle.  The relatively 

small number of cell wall degrading enzymes (CWDEs) seen in M. graminicola is 

comparable to the reduced number of CWDEs found in the ectomycorrhizal fungus, 

Laccarria bicolor (Goodwin et al., 2011), indicating that M. graminicola perhaps has a 

similar nutritional lifestyle to endophytes and has perhaps only recently evolved a 

pathogenic lifestyle.  B. cinerea has a large number of proteases, which may benefit 

the parasite by reducing the activity of antifungal proteins produced as a host defence 

response and also by providing nutrients for the pathogen.  M. graminicola has an 

expanded repertoire of protease genes compared with other cereal pathogens and also 

of amylase genes. It has been proposed that utilising alternative nutrition sources, 

such as proteins and starch, may reflect the stealthy mode of pathogenesis of this of 

this fungal pathogen (Goodwin et al., 2011). 

 

1.4 Methodologies  

A well tested toolbox of methods is now in place for studying the M graminicola-wheat 

interaction. The fungus can be detected and measured in infected leaves and seeds by 

quantitative PCR (Bearchell et al., 2005; Consolo et al., 2009; Guo et al., 2006; Shetty 

et al., 2007), which has been used to great effect in studying historical wheat samples 

in the Rothamsted Research Broadbalk archive from 1844 until 2003  (Bearchell et al., 
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2005).  Studying the interaction has been aided by the use of young plants, requiring 

a short growth time and no vernalisation, and by the use of both attached and 

detached leaf assays (Arraiano et al., 2001a; Keon et al., 2007).  Samples of M. 

graminicola isolates from around the world  representing populations from many 

different spatial scales over time and in conditions with varying plant husbandry have 

been used in research on fungicide sensitivity, virulence and the genetic structure of 

the global M. graminicola population.  Data on disease severity provides the basis for 

epidemiological studies such as the correlation between STB severity and weather 

(Pietravalle et al., 2003), and predictive models for use by agronomists and farmers 

(Beest et al., 2009). 

 

1.5 Plant disease resistance and control 

Plants are subjected to a constant attack of potential pathogens from which they 

cannot escape.  They have developed mechanisms that allow them to resist infection. 

The many components of defence overlap to provide resistance against most 

pathogens.  Resistance (or incompatibility) can be broadly defined as the ability of a 

plant to prevent infection or growth of the pathogen.  Tolerance is also an important 

concept in plant disease and can be defined as the ability of the host to compensate 

for damage caused by the pathogen (Brown & Handley, 2006).  Three types of 

resistance are broadly defined in the literature: non-host (Heath, 2000; Thordal-

Christensen, 2003); partial (Johnson, 1984) and gene-for-gene (Flor, 1971).  There is 

an overlap between these defence systems which make studying these mechanisms 

difficult.    

 

1.5.1 Non-host resistance 

Most plants are resistant to most pathogens.  Plants have both constitutive and 

inducible defences not requiring known R genes for specific pathogen recognition by 

the plant (Heath, 2000).  Passive defences are the first obstacle which potential 

pathogens must overcome. These defences are usually physical or chemical barriers 
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that provide a broad spectrum resistance to pathogens.  Plants have structural barriers 

to pathogens which the pathogen must circumvent to infect the plant.  Wax and cuticle 

layers form a hydrophobic barrier that can inhibit pathogen spores from attaching to 

the surface of the plants, especially if spread by water. The size and location of 

stomata can be regulated, for example there may be a narrow entrance, or guard cells 

may protrude from the stomata, preventing pathogen germtube entry. Various 

preformed chemical defences are employed; phenolic compounds including tannins 

and dienes are potent inhibitors of hydrolytic enzymes, saponins are antifungal and act 

to exclude pathogens, glucanases and chitinases degrade fungal cell walls.  These 

various peptides, proteins and other secondary metabolites are a major component of 

non-host resistance (Heath, 2000). 

Inducible non-host responses involve the recognition of a pathogen leading to 

the activation of defence signalling.  This type of recognition involves the detection of 

MAMPs (microbe associated molecular patterns); which are proteins and other 

molecules that are thought to be indispensable, abundant elements of pathogens that 

are not present in plants, making them capable of acting as non-self recognition 

determinants.  MAMPs enable the plant to recognise an attack by a potential pathogen 

and initiate an appropriate response.  Transmembrane pattern recognition receptors 

(PRRs) recognise MAMPs (Jones & Dangl, 2006), and, when associated with a 

pathogen, lead to PAMP (pathogen associated molecular pattern)-triggered immunity 

(PTI), halting further colonization by an incompatible pathogen. A bacterial flagellin 

protein has been shown to induce this kind of response in Arabidopsis via a mitogen-

activated protein kinase (MAPK) cascade (Asai et al., 2002). Other MAMPs which 

initiate this cascade are elf-18 from bacteria (Kunze et al., 2004) and Pep-13 from 

Phytophthora spp. (Brunner et al., 2002).  MAPKs form part of a highly conserved 

signalling cascade that is able to respond to extracellular stimuli and regulate various 

cellular responses such as gene expression, mitosis, differentiation and cell survival or 

PCD during responses to pathogen infection.  Structural barriers can also be inducible, 

potentially activated by MAMPs. One example of this is papilla formation.  It has been 

http://en.wikipedia.org/wiki/Gene_expression%20/o%20Gene%20expression
http://en.wikipedia.org/wiki/Mitosis%20/o%20Mitosis
http://en.wikipedia.org/wiki/Cellular_differentiation%20/o%20Cellular%20differentiation
http://en.wikipedia.org/wiki/Apoptosis%20/o%20Apoptosis
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shown that Blumeria graminis f. sp. hordei cannot infect the nonhost Arabidopsis as 

the pathogen induces papilla formation (Thordal-Christensen, 2003).  It has been 

indicated that virulence factors from pathogenic bacteria, such as P. syringae pv. 

tomato, suppress expression of genes induced by MAMPs and target the MAPK 

signalling cascade (Nurnberger & Lipka, 2005) indicating that establishment of 

infection is associated with suppression of plant non-host resistance. 

 

1.5.2 Fungal effectors and plant recognition 

Pathogens need to suppress or evade the plant’s basic lines of defence and the 

MAMP/PAMP based surveillance system to adopt a pathogenic lifestyle within the plant. 

A successful pathogen can deliver effectors that interfere with PTI and promote 

virulence within the host.  Effectors may be recognised by the host in a gene-for-gene 

manner, by specific nucleotide binding and leucine rich repeat (NB-LRR) domain 

proteins, encoded by R genes, resulting in effector triggered immunity (ETI).  ETI 

results in disease resistance and usually a hypersensitive cell death response (Jones & 

Dangl, 2006), which is effective against biotrophic pathogens.  Pathogens must evolve 

to evade this recognition if they are to successfully infect the plant.  The initiation of 

further plant defence responses to pathogen attack impedes the pathogen’s progress, 

exerting a selective pressure for the pathogen to become ever more specialised.  

Recognition of the increasing levels of specialisation has led to the development of a 

‘Zigzag Model’ (Jones & Dangl, 2006) in which natural selection favours new plant R 

gene alleles to recognize new fungal effectors as the pathogen overcomes ETI after 

evading PTI.  The evolution of this gene-for-gene relationship between the pathogen 

and the host is an isolate-specific response where a pathogen avirulence gene is 

recognised by a specific R-gene in the plant.   Although resistance to M. graminicola 

follows a gene-for-gene relationship (Brading et al. 2002) the pathosystem does not fit 

the standard zigzag model.  An HR is not seen as part of ETI, although the R-genes do 

recognise as yet uncharacterised Avr genes which result in plant immunity to the 
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pathogen.  It is unknown how the plant resistance mechanism responds to M. 

graminicola. 

1.5.3 Resistance genes and breeding to control the disease 

Resistant cultivars are an effective means of controlling STB, but until recently 

breeders relied on uncharacterised genetic resistance in breeding programmes 

(Chartrain et al., 2005b).  Resistance to STB has been broadly divided into two 

classes; specific and quantitative. Specific resistance is near complete and oligogenic.  

Partial, or quantitative, resistance is incomplete and polygenic (Jlibene et al., 1994; 

Zhang et al., 2001). 

Specific resistance interactions between wheat cultivars and specific M. 

graminicola isolates occur in detached leaf tests, seedling tests and tests under field 

conditions (Brading et al., 2002).  Fourteen major genes in wheat for resistance to 

STB have so far been identified, mapped and published Stb1-Stb12, Stb15 and Stb18, 

with another four that are, as yet, unpublished (table 1.1).  The resistance 

mechanisms by which these genes confer resistance to specific pathogen genotypes is 

currently unknown and none of the Stb genes have been cloned. A gene-for gene 

relationship has been demonstrated between wheat Stb6, the best understood of these 

genes, and M. graminicola (Brading et al., 2002). The gene-for-gene relationship is the 

most studied and yet is the least durable in the field, because pathogen populations 

can adapt to the selection pressure placed on them by the presence of a major 

resistance gene; for example commercial use of the cultivar Gene led to selective 

changes in the pathogen population to strains adapted to overcome the resistance 

gene (Cowger et al., 2000).   

Partial resistance is generally much more durable than gene-for-gene, race-specific 

resistance but is harder to select and less well studied than specific resistance.  

Chartrain et al. (2004b) used a doubled-haploid population produced from a cross 

between susceptible and resistant varieties, Riband and Arina respectively, to attempt 

to locate quantitative trait loci (QTL) and determine the genetics of this partial 
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resistance.  No QTL controlled a significant fraction of variation in the resistant parent, 

Arina, in which partial resistance, therefore, is most probably controlled by several 

dispersed genes.  Chartrain et al. (2004b) also showed that partial resistance is isolate 

non-specific and therefore likely to be durable.  Investigating quantitative resistance is 

complicated by the fact that resistance at the seedling and adult stage are sometimes 

controlled by different genes.  Chartrain et al. (2004b) reported no correlation 

between disease levels on seedlings and adult plants in the Arina x Riband population 

while Eriksen et al. (2003) detected QTLs for resistance at the adult stage in a 

population of Senat x Savannah which were not present at the seedling stage.  This 

has implications for breeding, because resistance at all growth stages is desirable, 

although resistance is most important when the weather is most conducive to 

symptom development and pathogen spread, namely in the later adult stages. 

 The emergence of strains of M. graminicola resistant ot quinine outside inhibitor 

(QoI) fungicides and more recently triazole based fungicides has increased the need to 

develop resistant varieties of wheat as a cost effective means of controlling the 

disease.  There has been substantial progress in breeding resistant wheat varieties in 

the last 15 years, largely relying on partial resistance which is broadly effective against 

all known fungal genotypes and therefore durable (Angus & Fenwick, 2008).  

Knowledge about the distribution of resistance genes in wheat varieties has advanced 

considerably.  The presence of specific resistance genes (Arraiano & Brown, 2006) and 

partial resistance (Arraiano et al., 2009) in 238 European wheat varieties has been 

ascertained. Chartrain et al. (2004a) screened 24 varieties with 12 isolates of M. 

graminicola for isolate-specific resistance and identified new sources of resistance that 

could be utilised in breeding.  Some varieties, such as TE911, could be used in 

crossing programmes to provide both partial and specific resistance (Chartrain et al., 

2005c).  It appears that the major resistance gene Stb6 had entered wheat breeding 



27 
Introduction 

Gene Chromosome location Isolate  Variety Reference 

Stb1 5B L IN95-Lafayette-1196-ww 1-4 Bulgaria 88 (Adhikari et al., 2004c) 

Stb2 3BS Paskeville Veranopolis (Adhikari et al., 2004b) 

Stb3 6DS Paskeville Israel 493 (Adhikari et al., 2004b) 

Stb4 7D IN95-Lafayette-1196-ww 1-4 Tadinia (Adhikari et al., 2004a) 

Stb5 7D IPO92469 Synthetic 6X (Arraiano et al., 2001b) 

Stb6 3AS IPO323 Flame (Brading et al., 2002) 

Stb7 4AL MG2 ST6 (McCartney et al., 2003) 

Stb8 7BL IN95-Lafayette-1196-WW 1-4 W7984 synthetic (Adhikari et al., 2003) 

Stb9 2BL IPO89011 Courtot  (Chartrain et al., 2009) 

Stb10 1D IPO94269 and ISR8036 Kavkaz-K4500 L.6.A.4 (Chartrain et al., 2005a) 

Stb11 1BS IPO90012 TE911 (Chartrain et al., 2005c) 

Stb12 4AL ISR398 Kavkaz-K4500 L.6.A.4 (Chartrain et al., 2005a) 

Stb13 7BL MG2 and MG96-13  Salamouni USDA Wheat Newsletter 53 

Stb14 3DS MG2 Salamouni USDA Wheat Newsletter 53 

Stb15 6AS IPO88004 Arina  (Arraiano et al., 2007) 

Stb16 3DL Various M3 synthetic (Ghaffary et al., 2011a)  

Stb17 5AL Various M3 synthetic (Ghaffary et al., 2011a) 

Stb18 6DS IPO98, IPO022,IPO323 and IPO89011 Balance (Ghaffary et al., 2011b) 

Table 1.1  Location of known Stb genes and the cultivar and isolates used for mapping them. 
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programmes on numerous occasions and been used world-wide as a source of STB 

resistance (Chartrain et al., 2005b).  Stb6 explains a significant level of variability in 

susceptibility to STB in the field (Arraiano et al., 2009), which may explain why it was 

present in many well-known sources of resistance.  The mechanism behind this 

resistance is not known; Stb6 may confer partial resistance to STB itself or may be 

linked to a gene conferring partial resistance. Studies have shown that pyramiding 

genes for resistance may also help with breeding efforts for more durably resistant 

wheat.  The identification of varieties with more than one resistance gene, such as the 

breeding lines Kavkaz-K4500 and TE9000, that have good resistance to STB suggests 

that pyramiding of R genes might achieve high levels of field resistance (Chartrain et 

al., 2004a). In field trials, several cultivars were identified with especially high levels of 

partial resistance, some with no known specific resistance genes.  These may be useful 

sources of resistance in breeding for STB resistance (Arraiano et al., 2009). In 

summary, this research has shown that breeders, at least in Europe, have sufficient 

genetic variation in their germplasm and they increasingly have the information 

available to make more informed choices about specific parents to use in crosses.  

1.5.4 The use of fungicides 

While fungicides have been successfully used against M. graminicola, the effectiveness 

of the two main groups of chemicals has declined as insensitivity to triazoles and QoIs, 

also known as strobilurin,  has evolved in the fungal population  (Fraaije et al., 2005b; 

Fraaije et al., 2007).  Sustained application has led to evolution of fungicide 

insensitivity, for example, isolates from Europe show resistance to QoI fungicides and 

there is widespread failure of these fungicides to control STB (Fraaije et al., 2005b).  

QoIs act against mitochondrial protein cytochrome b but a mutation from glycine to 

alanine at residue 143 (G143A) in the cytochrome b protein sequence, has caused 

apparently total loss of efficacy of these fungicides (Fraaije et al., 2003).  Both 

breeding of cultivars with improved genetic resistance and development of effective 
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fungicides are slow and demanding processes. Fungicide use remains the main control 

practice, although fungicides are expensive and not entirely reliable.  

 

1.6 Septoria tritici blotch disease 

1.6.1 Host responses to pathogen recognition 

In most of the current 'model' systems where non-host defences have been evaded, 

further responses must be activated to attempt to suppress or kill the invading 

pathogen.  These can be triggered during inducible non-host resistance and during R-

gene mediated recognition by both nonspecific and specific pathogen signals (Heath, 

2000). There is often a large degree of similarity in the responses triggered.  These 

defence strategies can include: generation of reactive oxygen species (ROS) (oxidative 

burst); cell wall modifications; induction of pathogenesis-related (PR) proteins and an 

HR. The inter-relationships between these events has also been studied. 

 There have been significant advances in knowledge of how M. graminicola 

interacts with host cells to result in host cell death and completion of the fungus’ life 

cycle. Firstly, the cell death pathway induced in the wheat cells during compatible 

interactions resembles the apoptosis-like pathway (Keon et al., 2007).  Secondly, 

features of the plant-pathogen interface between wheat and M. graminicola have been 

examined, including glucans which may act as pathogen associated molecular 

patterns, and the interchange of ROS (Shetty et al., 2003; Shetty et al., 2007). 

 The defence mechanisms conveying resistance in wheat to STB do not currently 

appear to follow the pattern of response to either of the common models for biotrophic 

fungi or necrotrophic fungi.  How plant defence responses contribute to wheat 

resistance to M. graminicola is largely unknown, but the resistance mechanisms are 

beginning to be elucidated by work studying the compatible interactions. Specific 

interactions can now be exploited to determine the mechanisms of resistance in 

relation to the presence or absence of major resistance genes. 
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1.6.2 Living in a biotrophic phase and the switch to necrotrophy 

Plant pathogens often trigger host PCD. The HR is a form of PCD which is 

characteristically associated with disease resistance.  HR can feature in inducible non-

host reactions or this resistance response can be triggered either directly or indirectly 

when the product from a dominant host R gene corresponds with the product of the 

dominant pathogen avr gene (Greenberg & Yao, 2004). Although HR is not always 

necessary, the Arabidopsis thaliana mutant, dnd1 exhibits resistance to virulent 

pathogens in the absence of HR (Yu et al., 1998).  Biotrophs and necrotrophs react 

differently to PCD; many biotrophs are inhibited by the HR, whereas necrotrophic 

pathogens are able to utilise it (Glazebrook, 2005; Govrin and Levine, 2002).  

Some pathogens are adapted to utilising nutrients that are available in the 

apoplast, or to manipulating the plant to gain a nutrient supply. The hemibiotrophic 

pathogen Cladosporium fulvum is closely related to M. graminicola  (Goodwin et al., 

2001).  Soloman and Oliver (2001) found that available nitrogen in the apoplast 

greatly increases during a compatible interaction between tomato and C. fulvum 

adding evidence to the hypothesis that the apoplast is not rich in nutrients and that 

biotrophic fungi must manipulate this to support infection.  Soluble carbohydrate in the 

apoplast represents a very small fraction, less than 1 %, of the total soluble 

carbohydrate of the leaf (Tetlow & Farrar, 1993). Strains of the hemibiotrophic 

bacteria, P. syringae,  are specifically adapted to utilizing sugars and amino acids that 

are  found within the apoplast, to multiply within the plant and further infect plant 

tissues before entering the necrotrophic phase (Rico & Preston, 2008).  This gives 

weight to the hypothesis that there may be enough availability of nutrients in the 

apoplast to support M. graminicola during its latent phase of development. 

Nutrition of M. graminicola is thought to be greatly influenced by host cell 

death. It has been stated that nutrients in the apoplast are sufficient to support the 

growth of intercellular fungi such as M. graminicola (Spencer-Phillips, 1997).  

However, qPCR measurements showed little increase in fungal biomass before host cell 

death (Keon et al., 2007; Shetty et al., 2007), so it is unclear how much M. 
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graminicola growth is supported by apoplastic-derived nutrients in the latent or 

biotrophic phase.   Keon et al. (2007) examined apoplast metabolite levels using 1H-

nuclear magnetic resonance spectroscopy and metabolomic analysis during 

symptomless and necrotic periods of infection.  They found very little difference in 

metabolite levels between infected and uninfected leaves during the symptomless 

phase of growth (days 6-9). This could be because the plant is constantly replacing 

lost nutrients providing a renewable source of nutrient supply, although other studies 

have found quantitative differences.  Later in infection, day 13, they found an increase 

in the quantity of plant-derived compounds available in the apoplast.  Current 

evidence therefore suggests that there is little biotrophic feeding, perhaps even none, 

in the asymptomatic phase which precedes the host cell death.   

 The start of fungal growth coincides with nutrient release at the time of host 

cell death as reflected in the induction of a number of genes related to energy 

production at this time.   Keon et al. (2007) showed that cellular features consistent 

with apoptosis were present in wheat cells dying following leaf infection by a 

compatible strain of M. graminicola including leakage of cytochrome c from the 

mitochondria into the cytoplasm, and the characteristic DNA laddering seen on agarose 

gels which indicates internucleosomal cleavage along with degradation of RNA.  It was 

shown that cell contents leak into the apoplastic spaces during cell death, but only 

after the initial asympomatic phase.   

The activation of PCD in the host appears to aid infection rather that restrict it.  

No form of PCD takes place in the incompatible interaction.  The trigger and 

mechanism by which PCD is activated is as yet unknown, but the host plant must be 

able to recognise that it is undergoing pathogen attack.  MAP kinases have been 

shown to initiate cell death during HR-mediated resistance in tomato infected with C. 

fulvum after a signal is received (Stulemeijer et al., 2007).  AtMPK3 and AtMPK6 have 

been implicated in stress and pathogen responses in tobacco and Arabidopsis (Asai et 

al., 2002).  In Arabidopsis both of these MPKs are activated downstream of a pathway 

induced by H2O2 but have also been suggested to trigger oxidative burst in tobacco 
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suggesting induced a positive feedback pathway.  The wheat mitogen-activated protein 

kinase TaMPK3 has been implicated in the induction of the cell death pathway that 

produces STB symptoms (Rudd et al., 2008).  TaMPK3 gene expression was induced 

during asymptomic colonisation by a compatible M. graminicola isolate, possibly 

indicating either non-specific PAMP recognition or highly specific manipulation of the 

host responses to initiate cell death.  The TaMPK3 protein was post-translationally 

activated during the infection period coincident with the first appearance of disease 

symptoms and the initial commitment of wheat cells to programmed cell death (PCD). 

Finally, the TaMPK3 protein was found in increased concentrations from the time of 

macroscopic appearance of disease symptoms onwards. This pathway was only 

activated in a compatible M. graminicola-wheat interaction, not in incompatible 

interactions. This is the opposite of the pattern reported previously in interactions of 

plants with biotrophic pathogens.  This is the first study to implicate mitogen-activated 

protein kinases in the STB-wheat pathosystem and in disease susceptibility towards 

necrotrophic pathogens. It highlights the emerging similarities between resistance 

signalling towards biotrophs with ‘susceptibility’ signaling towards necrotrophs.   

 It is not yet known how the MPK3 pathway is activated, but one model 

proposes stage-specific production of fungal toxins or elicitors which initiate MAP 

kinase activity and trigger host cell death (Kema et al., 1996; Keon et al., 2007). The 

dothideomycete wheat pathogens Pyrenophora tritici-repentis and Stagonospora 

nodorum generate necrosis-inducing toxins as components of their virulence arsenal 

(Ciufetti et al., 2010; Deller et al., 2011).  Effectors have not yet been isolated from 

M. graminicola and their activity confirmed but three homologues of the C. fulvum 

effector gene Ecp2 have been identified in the M. graminicola genome (Stergiopoulos 

et al., 2010).  The results of research on PCD and the MAPK pathway provides further 

support for the hypothesis that resistance may result from an interaction between, as 

yet unidentified AVR-R proteins while the aggressive host response seen in a 

compatible interaction may be the result of the fungus hijacking disease resistance 

signalling pathways (Hammond-Kossack & Rudd, 2008). 
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1.6.3 The role of reactive oxygen species in the resistant and susceptible  

One of the first reactions to occur in defence is the accumulation of cytosolic calcium 

ions (Grant et al., 2000).  Cytosolic calcium ions have been strongly implicated as a 

post-recognition molecular switch, capable of producing responses in multiple 

downstream processes.  One of the effects of this is to lead to an oxidative burst 

(Bolwell, 1999). The oxidative burst is critical to a highly complex signaling system 

that is activated upon recognition of pathogen avirulence signals (Lamb & Dixon, 

1997).  The oxidative burst rapidly generates and releases reactive oxygen species 

(ROS) which include superoxide, the hydroxyl radical and hydrogen peroxide (H2O2).   

ROS, in particular hydrogen peroxide, H2O2, are proving to be an important 

factor in the mechanisms regulating STB. H2O2 accumulated in a resistant cultivar 

early in infection. This initial response was expected as a precursor to a hypersensitive 

response but no necrotic symptoms were seen in a resistant interaction. In a 

susceptible cultivar, much larger quantities of H2O2 accumulated later in infection than 

in earlier stages, when the pathogen started to increase its rate of hyphal growth 

(Shetty et al., 2003).  It is possible that the accumulation of H2O2 aids pathogen 

growth but H2O2 may only be indirectly necessary for pathogenicity; ROS have been 

shown to have antimicrobial effects. Treating resistant tomato plants with H2O2 

scavengers after infection with virulent Cladosporium fulvum increased fungal growth, 

showing a critical role for ROS in limiting colonisation (Borden & Higgins, 2002).  A 

direct antimicrobial effect on M. graminicola has been demonstrated by treating 

cultures with H2O2.  Shetty et al. (2007) demonstrated that H2O2 inhibited the growth 

of M. graminicola in vitro, and hindered pathogen growth in planta at both early and 

late stages of infection.  Genes encoding some ROS scavenging enzymes are highly 

induced in M. graminicola during symptomatic infection stages (Keon et al., 2007).  

Studies of other necrotroph-plant interactions suggested ROS can aid development of 

the pathogen (Govrin & Levine, 2000) whilst ROS were required for limiting the 

growth of an endophyte (Tanaka et al., 2006).  This indicates a potential regulation 

role for ROS in the stealthy growth of M. graminicola during the early stages of 
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infection.  It remains unclear as to whether the H2O2 observed is host or pathogen 

generated.  If it is generated from the pathogen, there may be a role in inducing or 

regulating cell death which aids pathogen development.  Kovtun et al. (2000) 

demonstrated that H2O2 activates a MAPK kinase cascade, which ultimately ends in a 

stress response. H2O2 can also act as a signalling molecule regulating PCD, although 

little is known about how the molecule is perceived (Apel & Hirt, 2004).   

1.6.4 Induction of pathogenesis-related proteins 

Pathogenesis-related proteins (PRs) are made by the host plant and are only induced 

after an interaction by a pathogen or related situation eg. mechanical wounding. The 

HR triggered during infection with a biotrophic pathogen causes localised necrosis.  

Within a few hours of this necrosis developing the plant will express defence genes 

both locally and systemically (Van Loon, 1985).  PR proteins can be induced by H2O2 

which also triggers HR.  β-1,3-glucanases (PR2) and chitinases (PR3) are PR proteins 

that act against fungal cell walls.  These enzymes act to degrade the cell wall which 

produce monomers of chitin and glucans, which can in turn act as PAMPs triggering 

further defence responses perhaps involving PR proteins.  Although the many PR 

proteins are well characterised, such as the chitinases and β-1,3-glucanases, many 

still have an unknown function, PR1 being an example.  PR1s are induced to high 

levels in many pathogen interactions often acting as a marker of systemic acquired 

resistance (SAR). PR1s role in inducing salicylic acid mediated resistance is well 

recognised in dicotyledenous plants, but the function of the proteins are unclear.  In 

interactions with M. graminicola wheat PR1, PR2, PR3 and PR9 genes have all been 

induced (Adhikari et al., 2007; Ray et al., 2003; Shetty et al., 2009).  Different 

studies show differing levels of expression in incompatible and compatible interactions.  

The expression of PR genes and their role in the interaction between wheat and M. 

graminicola to host resistance will be returned to in chapter 4. 

The M. graminicola-wheat interaction is not related closely to any other model 

pathosystem and therefore defining the differences between incompatible and 
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compatible interactions is important to assist with the selection of STB resistant 

material.  As yet, few studies have been carried out that attempt to identify host 

genes involved in the resistance response but those that have have indicated that 

defence responses in wheat are activated before the fungus has even penetrated the 

host, 12 hours after inoculation (Adhikari et al., 2007; Ray et al., 2003). Most of the 

genes identified as differentially expressed during infection are PR genes, although a 

few others, possibly involved with signalling or regulatory pathways, have been 

investigated (Adhikari et al., 2007). 

In plant diseases in general, PR gene transcript accumulate during both 

incompatible and compatible interactions, but earlier and more strongly in 

incompatible responses (Boyd et al., 1994b; Ray et al., 2003).  During the interaction 

with M. graminicola, wheat defence-related genes such as chitinase and PR1, were 

strongly up-regulated at an early stage (Ray et al., 2003).  Adhikari et al. (2007) 

proposed that the expression level of PR1, 12 hours after inoculation could distinguish 

resistant and susceptible lines in segregating mapping populations, as there was little 

change in expression of any of the defence-related genes tested in two susceptible 

cultivars.  However, later timepoints (after 6 dai), revealed no differences in PR1 levels 

between susceptible and resistant cultivars.  Shetty et al. (2009) showed that 

although β-1,3-glucanase and chitinase are slightly but significantly upregulated early 

in an incompatible interaction, they are strongly upregulated in a compatible 

interaction from 9 dai. The results of these studies have evidently been variable and 

although the number of such studies is still limited, they indicate that resistance to M. 

graminicola may be complex. 

There may be two stages of defence at early and later stages of infection 

(Adhikari et al., 2007) once during initial recognition and again later, when the fungus 

starts to grow within the leaf.  Some studies suggest that genes other than known PR 

genes are upregulated during the wheat-M. graminicola interaction (Adhikari et al., 

2007; Ray et al., 2003) but the mechanism leading to resistance or susceptibility is as 

yet unknown. Rudd et al. (2008) proposed that, in compatible interactions, there 
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appears to be an active response to M. graminicola involving the wheat TaMPK3 as 

described previously. The molecular basis of resistance has an absence of the MPK3 

activation that is seen in other fungal pathogen-host incompatible interactions e.g. 

Cladosporium fulvum on Cf-9 tomato where the MPK3 homologue is activated (Romeis 

et al., 1999). 

In some experiments, the pattern of gene expression in wheat in response to 

M. graminicola has contrasted sharply with that expected from prior studies of plant 

infection by biotrophic pathogens, while the lack of consistency between experiments 

points to significant genotype-by-environment interaction in defence mechanisms. 

Further studies of gene expression in both incompatible and compatible interactions 

using different variety and isolate combinations may elucidate what appears to be a 

complicated pattern. The decrease in the cost of global gene expression studies may 

enable this useful tool to assist in the identification of quantifiable markers and 

perhaps novel genes specific to compatible or incompatible interactions.  

 

1.6.5 Host physical modifications in resistant and susceptible interactions. 

In some systems, modifications may be made to the cell wall that inhibits the growth 

of the pathogen. These defences include the formation of papillae, callose deposition, 

accumulation of phenolic compounds and cell wall cross linking.  Cross-linking of cell 

walls has not been observed in M. graminicola interactions, but has been observed in 

tomato plants infected with C. fulvum in both incompatible and compatible interactions 

(although at a significantly greater level in the incompatible), especially in areas 

showing H2O2 accumulation (Borden & Higgins, 2002).  It is hypothesised that cell wall 

responses may restrict the flow of nutrients from host cells suppressing growth, 

although this is most likely to be an important defence against cell penetrating 

pathogens.  Callose deposition and the cross-linking of cell walls may restrict the flow 

of nutrients to the apoplast and perhaps confine the pathogen to a limited area 

(Borden and Higgins, 2002). 
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An increase in autofluorescence is an intrinsic property of cells, indicative of a 

defence mechanism (Christiansen & Smedegaard, 1990).  Autofluorescence of wheat 

cells has been seen in incompatible interactions with M. graminicola (Cohen & Eyal, 

1993; Duncan & Howard, 2000; Shetty et al., 2003).  It can be seen in epidermal cell 

walls and subsequently the mesophyll, accumulating approximately 48 hours post 

inoculation (Cohen & Eyal, 1993).  Duncan and Howard (2000) also detected 

autofluorescence in these areas although only after a period of 6 dpi.  They noted that 

after 11 dpi these autofluorescing cells became necrotic.  Autofluorescent compounds 

also strongly accumulate in the compatible interaction as lesions develop (pers. 

comm., Jason Rudd, Rothamsted Research, Harpenden, UK). 

Cohen and Eyal (1993) proposed that suppression of hyphal growth can partly 

be explained by the production of fluorescing materials, indicative of a defence 

mechanism, early in infection.  If the fungus is retarded in its ability to accumulate 

hyphal biomass in the substomatal cavity, it cannot produce pycnidia.  Shetty et al. 

(2003) also suggest that the accumulation of biomass in the initial phase of 

development is essential for initiating its reproductive stage.  This would fit with the 

hypothesis that the fungus is not a successful biotroph and during an incompatible 

interaction the fungus cannot obtain enough nutrients to grow within the plant. 

 

1.7 Objectives of this research 

The objectives of this research were to gain an understanding of how the host 

responds to infection by M. graminicola.  The specific aims were: 

● To investigate how the presence of M. graminicola on the host affects the host’s 

interactions with a biotrophic pathogen (Chapter 3).  

Crop species are attacked by more than one pathogen in the field, which may 

be both biotrophic and necrotrophic.  Because of their different lifestyles, a trade-off 

may occur that affects the ability of the pathogens to cause disease.  The biotrophic 
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pathogen, Blumeria graminis f.sp. tritici, was used as it is a comparatively tractable 

biotrophic pathogen. 

● To test how selected wheat defence-related and other genes are involved in 

resistance towards M. graminicola and if any could be used as a marker for resistance 

during the early stages of selection in a breeding programme. In particular, to 

investigate if the TaMPK3 protein is a marker for susceptibility in different 

variety/isolate interactions (Chapter 4). 

 Breeding for resistance to STB is an increasingly important target.  As yet, 

there is no fast way to select for resistant lines early in the breeding cycle.  These 

experiments aimed to identify a defined wheat set of genes that are associated with 

either a resistant or a susceptible interaction.  The presence of TaMPK3 has been 

investigated by Rudd et al. (2008), who demonstrated that the protein accumulates 

during a compatible interaction in two variety/isolate combinations.  Here, other 

varieties and isolates were studied to test if this protein is consistently associated with 

a compatible interaction. 

● To develop a method for staining M. graminicola reliably when it is in the 

apoplast to enable the timing of the resistance response to be identified using 

microscopic techniques (Chapter 5). 

 There is not yet a reliable way to stain M. graminicola once it has entered the 

apoplast.  This has meant that although the compatible interaction has been studied in 

depth using scanning electron microscopy, less is known about the incompatible 

interaction.  It was hoped that, by developing a straightforward method to reliably 

stain the pathogen during its latent phase, the timing and mode of resistance of a 

gene-for-gene interaction could be identified. 
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2 
Materials and methods 

 

2.1 Fungal Material 

2.1.1 Mycosphaerella graminicola 

The M. graminicola isolates used throughout the experiments were IPO323 

(Netherlands) and IPO88004 (Ethiopia). IPO323 is avirulent on lines containing the 

Stb6 (Brading et al., 2002) resistance gene and IPO88004 is avirulent in lines with 

Stb15 (Arraiano & Brown, 2006).  The isolates were stored at -80 ˚C.  Spores for plant 

inoculation were grown on YPD+ agar plates (2% bacto agar, 2% peptone, 1% yeast 

extract, 2% glucose at pH 5.8) for 4-7 days at 18 ˚C with blacklight blue UV light at 

350nm. The leaves were inoculated evenly with a fungal spore solution at a density of 

107 spores per mL of water containing 0.1% (v/v) Tween 20 (Sigma-Aldrich, St. Louis, 

MO,USA) using a swab stick with a cotton sterile tip (Fisher Scientific, Loughborough, 

Leicestershire, UK). Spore concentration was assessed using a Mod Fuchs Rosenthal 

counting chamber (Hawksley, Lancing, UK). The number of spores in four of the 

smallest squares were counted and the average number taken.  This was multiplied to 

give an estimate of spore concentration using the equation: 

Quantity of inoculum required x 107 

 

(Average number of spores) x 16 x 5000 

 

Control leaves were mock-inoculated with water containing 0.1% Tween 20. 

 

2.1.2 Blumeria graminis f.sp. tritici 

The B. graminis f.sp. tritici (Bgt) isolates used were JIW11 and JIW48.  Isolates were 

kept on the susceptible wheat variety Cerco.  For inoculations, fresh spores were 

produced by tapping spores off the host leaves two days before the isolate was needed 

so new spores were ready for the inoculation.  Inoculations were carried out using 
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aluminium inoculation towers (Boyd et al., 1994b) by blowing the spores over the 

plants and leaving them to settle. 

 

2.2 Plant material 

For plant infection the second leaf of 17 day old seedlings at growth stage 12 on the 

Zadok et al. (1974) decimal code, was attached adaxial side up to Perspex sheets 

using double-sided tape (Keon et al., 2007).  Plants inoculated with M. graminicola 

were placed in high relative humidity in the dark for 48 hours. The plants were kept at 

18 ˚C in the light for 16 h and 12 ˚C in the dark for up to 21 days.  

Inoculated leaves used for RNA, DNA or protein extraction were cut off the 

plants and placed immediately into liquid nitrogen and then stored at -80˚C before 

further processing. 

The varieties used throughout experiments were Longbow, Flame, Arina, Poros, 

Cadenza, Avalon and Courtot.  The known resistance genes that each variety has are 

shown in Table 2.1.  Stb6 and Stb15 were chosen as they are the two most common 

STB resistance genes in the current European germplasm (Arraiano & Brown, 2006).  

Also IPO323, which is avirulent on Stb6 is the isolate that has been sequenced 

(Goodwin et al., 2011). 

 

Figure 2.1 Perspex sheets used to attach second 

leaves of seedlings for inoculation. 
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The varieties Longbow and Flame were used for experiments with Bgt. Longbow 

has the resistance gene Pm2 (Bennett & Van Kints, 1982) and Flame has Pm4b (Slater 

& Mitchell, 1995).  The Bgt isolates used were JIW11 and JIW48.  JIW11 is avirulent 

on both varieties and JIW48 is virulent on both varieties.   

2.3 Detached leaf boxes 

The bottom of rectangular clear polystyrene boxes were filled with 50 mL 1% water 

agar with 10% (v/v) benzimidazaol (from 1 g L-1 stock solution).  The leaves were 

placed in the box so the cut ends were held in place by the agar (Arraiano et al., 

2001a).  

 

2.4 Interactions between B. graminis f.sp. tritici and M. graminicola and the 

host. 

Plants were attached to Perspex sheets as described in section 2.2 and inoculated with 

isolate IPO323 with the modification that the inoculum did not contain Tween 20.  

Tween 20 was found to inhibit the growth and development of mildew.  Control leaves 

were mock inoculated with water only.  Leaves were then placed into detached leaf 

boxes as described in section 2.3.  The leaves were inoculated with mildew spores 

under a settling tower as described in section 2.1. 

Details of the experimental designs of experiments involving interactions 

between Bgt and M. graminicola are described in section 3.2. 

Variety Stb6 Stb15 

Arina Yes Yes 

Avalon No Yes 

Cadenza Yes No 

Courtot No No 

Flame Yes No 

Longbow No Yes 

Poros Yes Yes 

Table 2.1.  List of wheat varieties and whether or 

not they have Stb6 and Stb15 (Arraiano and Brown 

2006). 
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2.4.1 Staining mildew with Aniline Blue 

Aniline Blue 0.1 % made up in lactoglycerol (1:1:1 solution of lactic acid, glycerol and 

water) was used to visualise fungal spores.  Leaves were cleared using 75 % ethanol 

until all chlorophyll was visibly removed.  The leaves were then rinsed in water and 

placed in a storage solution of lactoglycerol.  The leaves were placed on a glass slide 

and the stain pipetted onto them before visualisation. 

 

2.4.2 qPCR determination of mildew biomass on infected leaves 

Three boxes of Longbow leaves, two replicates in each box, were inoculated with and 

without M. graminicola and then dual inoculated after 6 days with the virulent Bgt 

isolate, JIW48.  10 days after Bgt inoculation, DNA was extracted and the amount of 

mildew DNA quantified using a Taqman probe assay (Fraaije et al., 2006). 

To test that isolate JIW48 contained the same cytochrome b gene fragment 

that is amplified by the primers, the fragment was cloned and sequenced.  DNA was 

extracted from leaves with visible sporulating mildew colonies of isolate JIW48 using a 

Qiagen DNeasy kit (Qiagen, Valencia, CA, USA).  A 136bp fragment of the cytochrome 

b gene was amplified with primers PMR1 (5’-TTACTGCATTCCTGGGTTATGTATTG-3’) 

and PMS1 (5’ACAGAGAAACCTCCTCAAAGGAACT-3’) (Fraaije et al., 2006).  The 

fragments amplified were cloned into pGEM-T easy vector (Promega, Madison, Wi, 

USA) following the manufacturers protocol.  The vector was transformed into OneShot 

TOP10/P3 competent cells (Invitrogen, Carlsbad, CA, USA) following the 

manufacturers protocol using a heatshock transformation procedure.  Blue/white 

colony selection was used to select for transformed cells, which were purified using 

Qiagen MinElute plasmid purification kit (Qiagen, Valencia, CA, USA) and sent for 

sequencing at The Genome Analysis Centre, Norwich, UK.  Sequences were aligned 

using WebPrank using the default settings (http://www.ebi.ac.uk/goldman-

srv/webprank/) to four known Bgt cytochrome b sequences from different isolates 

available on the NCBI database (http://www.ncbi.nlm.nih.gov): Fel08 (AF343442.1), 

Fel12 (AF343441.1), JAS501 (AJ293567.1) and W26 (AJ293566.1).   
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DNA was extracted from the leaf samples as above.  Total DNA was quantified 

on a picodrop and diluted so each sample contained 50 ng/ μL. For reaction mixture 

for qPCR contained 0.5 uM foward primer, 0.3 uM reverse, 0.1 μM of 5’-CY5/3’-BHQ2 -

labelled probe (5'-CTTGTCCTATTCATGGTATAGCGCTCATTAGG-3') and 50 ng of DNA 

sample and 10 μL iQ supermix (Bio-Rad, Hemel Hempstead, Herts, UK) to a volume of 

20 μL.   A standard curve was produced by plotting known amounts of DNA against Cq 

values.  Reactions were cycles were for 2 min at 50 °C, 2 min 95 °C followed by 50 

cycles of 15 s at 95 °C and 1 min at 60 °C.  The increase in fluorescence from the 

probe was recorded at 60 °C during every cycle. 

 

2.4.3 Gene expression of TaMPK3 in leaves inoculated with a compatible and 

incompatible mildew isolate. 

17 day old seedlings of Longbow were attached to Perspex trays (section 2.2) and 

inoculated with either the compatible isolate JIW48, or with the incompatible isolate, 

JIW11, under settling towers.  Control seedlings had no inoculation.  Plants were 

placed in a growth cabinet at 17 C light/ 12 C dark cycle.  Three leaves were excised 

at 1, 3, 7, 10 and 14 days after inoculation. Two replicates of the experiment were 

carried out.  RNA extracted using Qiagen RNeasy Plant Mini Kit (Qiagen, Valencia, CA, 

USA) as described in 2.5.1 and cDNA was synthesised as described in section 2.5.2.  

The TaMPK3 primer set used was foward 5’-TACATGAGGCACCTGCCGCAGT-3’ and 

reverse 5’-GGTTCAACTCCAGGGCTTCGTTG-3’ (described in chapter 4, table 1).  qPCR 

was carried out as described in 2.5.3, with the exception that Sigma SYBR® Green 

JumpStart™ Taq ReadyMix™ (Sigma-Aldrich, St. Louis, MO,USA) was used instead.  

The PCR reaction cycle was 2 minutes 90 ˚C followed by 40 cycles of denaturation at 

95 ˚C for 30 sec; annealing at 56 ˚C for 30 sec and extension at 72 ˚C for 30 sec.   

 

2.5 Expression Analysis of wheat genes 

The varieties Longbow, Flame, Avalon, Cadenza, Arina and Poros were inoculated with 

the isolate IPO323.  The varieties Longbow and Courtot were inoculated with isolate 
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IPO88004.  Three leaves were sampled for each interaction on the following days after 

inoculation: 0.5, 1, 3, 7, 10 and 14. Control leaves were also sampled at each 

timepoint.  Three biologically replicated experiments were carried out. 

 

2.5.1 RNA isolation  

Total RNA was isolated from frozen leaf tissue using either the Tri-reagent procedure 

(Sigma-Aldrich, St. Louis, MO,USA), following the supplier’s protocol and using the 

additional suggested step for polysaccharide-containing tissues or Qiagen RNeasy Plant 

Mini Kit (Qiagen, Valencia, CA, USA), following the suppliers instructions.   

 

2.5.2 cDNA synthesis 

A DNase treatment was carried out on the extracted RNA using Turbo DNA-free 

(Ambion, Austin, TX, USA), following the supplier’s Rigourous procedure, which is 

designed to remove DNA from samples containing >2 μg DNA/50 μL RNA To test that 

all genomic DNA had been removed from the RNA sample, each sample was subjected 

to real-time PCR analysis using a reference gene set of primers designed for cDNA 

(table 1.2).  The total quantity of RNA was quantified using a Picodrop100 (Picodrop 

Ltd, Saffron Walden, UK).  1000 ng of total RNA was converted to cDNA using 

Superscript III reverse transcriptase (Invitrogen, Carlsbad, CA, USA), following the 

manufacturer’s protocol using random hexamers. 

 

2.5.3 Quantitative Real-time PCR 

Each cDNA sample was diluted 1:20 in nuclease-free water.  Quantitative Real-time–

PCR (qRT-PCR) was performed using a CFX96 detection system (Bio-Rad, Hemel 

Hempstead, Herts, UK), in white plates with optically clear seals (both Thermo 

Scientific, Waltham, MA, USA).  Each reaction contained 5 μL of the diluted cDNA and 

12.5 μL Brilliant II SYBR® Green master mix (Agilent Technologies, Edinburgh, UK), 

with 500 nM each of the left and right primers (unless otherwise specified) to a total 

volume of 25 μL.  All PCR reactions were carried out using the following cycle: 95 ˚C 
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for 10 minutes; followed by 40 cycles of denaturation at 95 ˚C for 30 sec; annealing at 

56 ˚C for 30 sec and extension at 72 ˚C for 30 sec.  Immediately after this a melt 

curve analysis was carried out by ramping from 65 ˚C to 90 ˚C.  All samples had two 

technical repetitions. 

Primer efficiencies for the genes of interest were tested for each primer pair 

using a dilution series from 1:10 to 1:10000 made from a mixture of cDNA samples.  

Amplification values ranged from 1.89 to 2.15 giving efficiencies of between 90 and 

115 %. The efficiency was assessed using the equation: -1+10(-1/slope)  available on the 

agilent technologies website (http://www.genomics.agilent.com). 

Quantification cycle (Cq) values of three reference genes (table 2.2) were 

checked for stability using the geNORM software (Vandesompele et al., 2002) 

(http://medgen.ugent.be/ ~jvdesomp/genorm/). The reference genes in all 

experiments were found to be stable.  

 

2.5.4 Meta-analysis of genes of interest  

Predicted nucleotide sequences of the genes of interest were retrieved from NCBI 

(http://www.ncbi.nlm.nih.gov).  Probe sets representing the genes of interest on the 

Affymetrix Wheat GeneChip were retrieved by using BlastN and the coding sequences 

of the proteins used to query the microarray (Wise et al., 2007).  Wheat Affymetrix 

data sets for experiments investigating wheat-pathogen interactions were downloaded 

from PlexDB under the accessions TA9 (Coram et al., 2008b), TA11 (Coram et al., 

2008a), TA24 (Tufan et al., 2009), TA25 (Bozkurt et al., 2010), TA31 (Desmond et al., 

Reference  

Gene 

Left Primer (5’-3’) Right Primer (5’-3’) Reference 

Ta 

Elongation 

factor 

TGGTGTCATCAAGCCTGGTATGGT ACTCATGGTGCATCTCAACGGACT Coram et al. 

2008 

Hv GapDH CCTTCCGTGTTCCCACTGTTG ATGCCCTTGAGGTTTCCCTC McGrann et al. 

2009 

Ta 

Ubiquitin 

CCTTCACTTGGTTCTCCGTCT AACGACCAGGACGACAGACACA van Riet et al. 

2006 

Table 2.2.  Reference genes used for normalising Cq values 

 

http://www.genomics.agilent.com/
http://medgen.ugent.be/%20~jvdesomp/genorm/
http://www.ncbi.nlm.nih.gov/
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2008) and TA32 (Bolton et al., 2008).   Analysis of the data sets was carried out by 

Tufan et al. (2012) in R using the package AffylmGUI (Wettenhall et al., 2006). 

Differential expression was calculated using linear models and an Empirical Bayes 

moderated t-statistic (Smyth, 2004). In all cases contrasts were made between 

pathogen-inoculated and mock-inoculated control samples. Differential regulation of 

probe sets were assessed based on expression levels and the data exported in to a tab 

delimited file.  The comparisons between treatments and probe sets were analysed in 

Cluster 3.0 (Eisen et al., 1998) using a Euclidean distance matrix and complete linkage 

clustering. The results were viewed in Treeview v.1.0.13. 

 

2.6 Wheat mitogen-activated protein kinase 3 analysis 

As for gene expression analysis, the varieties Longbow, Flame, Avalon, Cadenza, Arina 

and Poros were inoculated with the isolate IPO323.  The varieties Longbow and 

Courtot were inoculated with isolate IPO88004.  Three leaves were collected for 

protein analysis on the following days after inoculation: 1, 3, 7, 10, 11, 14, 15, 16 and 

17.  Control leaves were taken at 1, 10 and 17 days after inoculation. 

 

2.6.1 Protein Extractions 

Three leaves were collected on various days after inoculation into liquid nitrogen and 

stored at -80 ˚C until extraction. Protein was extracted by grinding frozen cells in 

extraction buffer (37.5 mM Tris-HCl pH 7.4, 112.5 mM NaCl, 22.5 mM EGTA, 0.15% 

v/v Tween 20 , 1.5 mM NaF, 0.75 mM Na-Molybdate, 1.5 mM DTT, 0.75 mM PMSF, 15 

μg /ml Leupeptin, 15 μg/ml Aprotinin, 22.5 mM β-glycerophosphate)  followed by 

centrifugation at 23000 g for 20 min at 4 °C.   

 A Bradford assay was performed to quantify the concentration of protein in 

each sample using Biorad Bradford protein assay reagent (Bio-Rad, Hemel Hempstead, 

Herts, UK) and comparing with a Bovine Serum Albumin standard of 2 mg mL-1 

(Sigma-Aldrich, St. Louis, MO,USA). Readings were taken using a Biophometer 

(Eppendorf, Hamburg, Germany) at 595 nm, the wavelength at which the bound 



47 
Materials and methods 

formed of the reagent is absorbed.  Samples were mixed with a loading dye consisting 

of 5 % v/v 2-Mercaptoethanol, 250 mM Tris-HCl pH 6.8, 10% w/v SDS, 30% v/v 

glycerol, and bromophenol blue, so that all samples contained an equal amount of 

protein.  Samples were heated to 90 ˚C for at least five minutes to solubilise the 

protein and then spun for 5 minutes at maximum speed before use.  Samples were 

stored at -20 ˚C. 

 

2.6.2 MAPK-Specific Antisera  

Antisera used to detect TaMPK3 were those reported by Rudd et al. (2008) 

 

2.6.3 Western Blotting 

Approximately 120 μg of protein was separated on 10 % SDS-PAGE gels and wet 

blotted onto Hybond ECL nitro cellulose membrane (GE healthcare Life Sciences, Little 

Chalfont, Bucks, UK).  Membranes were blocked overnight at 4 °C in TBS-Tween pH 

7.3 (20mM Tris-HCl, 137mM NaCl, 0.1 % V/V Tween 20).  The MAPK-specific antibody 

TaMPK3-N (affinity purified) (Rudd et al. 2008) at 1:500 dilution was used against leaf 

extracts at room temperature for 90 minutes.  After the membranes were washed five 

times, chemiluminescent detection using Amersham ECL Plus Western Blotting 

Detection Reagents was carried out in accordance with manufacturer’s instructions (GE 

Healthcare Life Sciences, Little Chalfont, Bucks, UK). 
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3 
Interactions between pathogens and the host 

 

3.1 Introduction 

Wheat crops are attacked by many different pathogens.  Two lines of defence are 

available to control them, fungicide use and breeding for resistance.  Powdery mildew 

is well controlled in the UK with a combination of resistance genes and fungicides, 

particularly carboximide and specific anti-mildew compounds (HGCA, 2011), so 

although mildew is the second most common disease in the UK, disease severity 

remains low (www.cropmonitor.co.uk).  Septoria tritici blotch (STB) is the most 

common disease of wheat in the UK, with 53% of samples showing the disease in 

2010 (www.cropmonitor.co.uk).  Efficacy of fungicides is declining for control of this 

disease as the population develops insensitivity to both triazoles and strobulurins 

(Fraaije et al., 2005a; Fraaije et al., 2007). Breeding is improving the level of 

resistance to disease, but not to the extent that fungicides can be dispensed with, 

while carboximides and modern triazoles still give good control of STB.  As two of the 

major pathogens of wheat in the UK which often infect the same plants, how they 

interact with each other is of great interest.   It is of little value to breeders if a variety 

has good resistance to one disease but the resistance against another is poor.  

Investigating how varieties respond to infection with more than one pathogen will 

assist efforts to breed varieties resistant to multiple pathogens. 

Classical R-gene mediated resistance allows rapid recognition of the pathogen 

and a hypersensitive response (HR), which includes an oxidative burst and 

programmed cell death (PCD) of surrounding cells, limiting the pathogen’s access to 

nutrients and thereby killing it.  Most pathogens are adapted to cause disease only on 

a limited number of plant species, or sometimes even just one species.  Each plant 

usually has several well-adapted pathogens that are capable of initiating effector-
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triggered immunity (ETI).  The HR is very effective against biotrophic pathogens, as it 

specifically kills the cells under attack by the pathogen, rendering them unable to 

obtain nutrients.  The HR is not effective against necrotrophic pathogens, as they are 

able to exploit the HR by obtaining nutrients after the loss of cellular membrane 

integrity, enabling them to cause disease (Govrin & Levine, 2000).  No HR response is 

seen during an incompatible interaction between wheat and M. graminicola, although 

during a compatible interaction a PCD response occurs which aids infection (Keon et 

al. 2007). 

It has been proposed that there is a biological cost to resistance (Agrawal et 

al., 1999; Baldwin, 1998), which when breeding crop plants such as wheat must be 

taken into consideration.  Smedegaard-Petersen and Stølen (1981) showed that 

infection of barley with an avirulent B. graminis f.sp. hordei reduced the yield of the 

plants. Felton and Korth (2000) reviewed how trade-offs occur between pathogen and 

herbivore resistance and how this is mediated by the salicylic acid (SA) and jasmonate 

(JA) pathways. Biotrophic pathogens often induce SA signalling whereas wounding 

responses to herbivory induce a JA response. Cross-talk between SA and JA pathways 

can lead to a trade-off between responses, for example when tobacco plants are 

infected with tobacco mosaic virus production of systemic SA is induced and the plants 

are unable to produce a normal wound response because JA production is inhibited 

(Preston et al 1999). These pathways also mediate resistance between pathogens with 

different modes of infection (Spoel et al., 2007) and trade-offs affect plant defence 

responses controlling these resistances.  The biotrophic pathogen, Pseudomonas 

syringae pv. tomato (Pst), induces a SA-mediated defence response which suppresses 

JA-mediated signalling. Leaves that were inoculated with Pst and a normally avirulent 

Alternaria brassicola, a necrotrophic pathogen, showed susceptibility towards the 

necrotroph because the SA suppressed the JA-dependent defence (Spoel et al., 2007).  

This provides evidence that interactions between biotrophs and necrotrophs are 

antagonistic. 
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The research presented here investigated levels of TaMPK3 gene transcript 

accumulation to test the hypothesis that a rise in TaMPK3 due to a compatible 

interaction with a necrotrophic pathogen will result in a loss of susceptibility to a 

normally virulent biotrophic pathogen, such as Blumeria graminis causing it to become 

avirulent.  It is known that a compatible interaction between wheat and M. graminicola 

increases the level of TaMPK3 (Rudd et al., 2008 and chapter 4), a protein which has 

previously been shown to accumulate during R-gene-mediated resistance responses in 

tomato (Stulemeijer et al., 2007), tobacco expressing tomato Cf9 (Romeis et al., 

1999) and tobacco infected with Tobacco Mosaic Virus  (Zhang & Klessig, 1998) for an 

overview see Pedley and Martin (2005). Therefore, it can be hypothesised that an 

increase of TaMPK3 during a compatible interaction between wheat and M. graminicola 

is the same response as seen during an incompatible interaction between wheat and 

B. graminis.  The rise may be enough to change the response of a normally virulent B. 

graminis isolate to an incompatible one. 

Few studies have investigated how infection by one pathogen has an effect on 

infection by another pathogen, although the question has been posed for a number of 

years.   The first recorded interaction between S. tritici and B. graminis f.sp. tritici was 

by Brokenshire (1974) under glasshouse conditions who described an increase in S. 

tritici in the presence of mildew.  Cooper et al. (2008) found that infection of 

Arabidopsis with a virulent Albugo candida, a biotroph, can suppress a plant’s 

resistance to avirulent, biotrophic Hyaloperonospora arabidopsis.  It appears to be 

linked to the ability of A. candida to suppress cell death of the Arabidopsis host cells, 

thereby inhibiting HR in response to a normally avirulent biotroph.  In contrast, 

Aghoum and Niks (2011) investigating interactions between a virulent Puccinia hordei 

and B. graminis f.sp. hordei (Bgh) isolates on barley, found that pre-inoculation with 

the rust isolate induced an increased resistance to both avirulent and virulent isolates 

of Bgh by preventing haustorium formation. Virulent and avirulent isolates of the same 

pathogen can also induce either accessibility or inaccessibility.  Lyngkjaer and Carver 
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(1999) found that successful penetration of an inducer appressorium of B. graminis 

f.sp. hordei into barley epidermal cells rendered the cells highly accessible to future 

attacks by other isolates. Conversely, failed attacks by an inducer led to subsequent 

failed attacks by secondary inoculations.  Other studies have investigated whether the 

use of mycelial extracts of various fungi and oomycetes could act as a form of 

biological control against a fungal pathogen (Haugaard et al., 2001).  Colony 

formation of mildew could be reduced using some extracts as a pretreatment, but the 

mechanism behind this is yet to be fully understood; it appears that there are different 

modes of action, both a direct antifungal and an induced resistance response 

(Haugaard et al., 2002). There are many possible interactions between pathogens 

inoculated onto the same leaf; for interactions on crop plants, knowing how the 

pathogens behave in the presence of each other may assist with crop protection and 

breeding. 

The aim of this research was to investigate how infection of wheat with a 

necrotrophic pathogen affects the plant’s response to inoculation with a biotrophic 

pathogen.  M. graminicola has a long latent period before symptoms appear on the 

leaf.  It enters the leaf through the stomata and remains within the substomatal cavity 

for at least 7 days after inoculation (dai) before the onset of host cell collapse and 

growth of the fungus in the mesophyll layer between 7 and 14 dai. Pycnidia are 

formed through the stoma after at least 14 days.  Blumeria graminis f.sp. tritici (Bgt) 

grows on the epidermis infecting cells by forming appressoria by approximately 12 

hours after inoculation (hai). Haustoria are formed from 24 hai onwards within host 

cells, enabling the fungus to feed.  Except for the haustoria, which occupy the 

epidermal cells, the fungus grows on the surface of the leaf throughout its lifecycle.  

Conidiophores are produced on the surface of the leaf from 5-10 dai (figure 3.1).  The 

objective of this study was to investigate whether M. graminicola can inhibit Bgt from 

infecting.  The hypotheses are that in a compatible interaction between M. graminicola 

and the wheat host, cell death caused by a virulent M. graminicola isolate will inhibit a 
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virulent Bgt isolate from growing on the same leaf and that the avirulent isolate will 

remain avirulent.  During an incompatible interaction between M. graminicola and the 

wheat it is predicted there will be an increase in the susceptibility of the leaf to an 

avirulent Bgt isolate but virulent Bgt will remain equally virulent.   

 

3.2 Experimental Design and Methods 

A system was designed to test infection of two pathogens of wheat that could be 

carried out repeatably under experimental conditions.  It was not feasible to do this 

with whole plants as it was difficult to get the conditions conducive for both pathogens 

to infect the leaves.  Additionally, powdery mildew disease is easily spread causing 

cross contamination to be a problem.  A system of using detached leaf boxes 

(Arraiano et al., 2001a) was investigated and found to allow manipulation of many 

leaves without risk of mildew contamination, whilst allowing both pathogens to grow. 

Leaves were inoculated with the required M. graminicola isolate and placed into 

detached leaf boxes.  Each box contained two replicates of each variety plus isolate or 

 

Figure 3.1 Stages of mildew spore growth and development: A.ungerminated spore B. 

primary germ tube C. appressorial germ tube D. appressorium E. haustorium F. 

elongating secondary hyphae G. colony 

PGT AGT

A B C D

E F G

Haustorium
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control combination.  Boxes were subsequently inoculated with the required Bgt 

isolate using settling towers (Boyd et al., 1994b). 

Details of materials and methods used throughout the experiments can be 

found in chapter 2, including details of inoculations, culture maintenance and growing 

conditions for plant material. 

 

3.2.1 Assessment of the effect of M. gramnicola on the development of 

avirulent or virulent isolates of B. graminis f.sp. tritici 

Leaves of both Longbow and Flame, each inoculated with and without M. graminicola, 

were placed in detached leaf boxes with the mildew susceptible variety, Cerco.  Flame 

has the resistance gene Pm4b and Longbow carries Pm2.  The Bgt isolate, JIW11 is 

avirulent towards both of these genes and JIW48 is virulent on both of these genes.  

Both interactions were also tested to ensure that the isolate virulence was as expected 

before any experimental tests were carried out.  The leaves were then inoculated with 

JIW11 or JIW48 at 2, 5, 7, or 10 days after inoculation with M. graminicola.  

Photographs were taken to compare the development of colonies on leaves inoculated 

with and without M. graminicola. 

 

3.2.2 Dosage effect of M. graminicola spores on the number of mildew 

colonies formed by virulent B. graminis f.sp. tritici 

Leaves of Longbow were inoculated on Perspex trays, with decreasing concentrations 

of the M. graminicola isolate, IPO323.  The dilution series was the same as in Keon et 

al. (2007) starting at 107 spores per mL and diluting the inoculum by 2.5 times for 

each new dilution to give the following dilution series: 107, 4x106, 1.6x106, 6.4x105, 

2.6x105, 1x105, 4.1x104, 1.6x104 , 6.6x103 and 2.6x103 spores per mL.  The leaves 

were placed into detached leaf boxes.  Each detached leaf box contained a leaf of 

Cerco and 10 leaves encompassing the whole dilution series to give four individual 

boxes.  Three of the replicate boxes were inoculated individually but on the same 



54 
Interactions between pathogens and the host 

 

date, with the virulent Bgt isolate JIW48 under settling towers, 4 days after 

inoculation with M. graminicola.  One box was left uninoculated as a control.  Colony 

formation was assessed by counting visible colonies under a 2x magnifying lens after 

8-10 days.   

3.2.3 The effect of non-viable M. graminicola spores on the growth of B. 

graminis f.sp. tritici  

A spore suspension of M. graminicola isolate IPO323 was autoclaved at 121 °C at 15 

psi for 15 minutes.  The spore suspension was then inoculated onto leaves of Flame 

and Longbow and the leaves placed into detached leaf boxes.  Two leaves of each 

treatment were included in each box and the experiment was carried out a total of 

three times.  Leaves inoculated only with autoclaved water were included as controls.  

After initial inoculation with M. graminicola the leaves were inoculated with either Bgt 

isolate JIW11 or JIW48 after 1 day or 10 days. Leaves were assessed at 21 days after 

inoculation with M. graminicola. 

 

3.2.4 Development of B. graminis f.sp. tritici spores at the early stages of 

development on leaves preinoculated with M. graminicola 

Three leaves each of Longbow inoculated with IPO323, Flame inoculated with IPO323 

and mock-inoculated Longbow, were placed in detached leaf boxes with the 

susceptible variety Cerco.  Leaves were inoculated with the mildew isolate JIW48, 1 

day or 6 days after M. graminicola inoculation.  One box was left as a control to assess 

STB disease.  One box was left inoculated with mildew but not sampled to ensure that 

mildew colonies formed on Cerco as expected. The whole experiment was replicated 

three times. 

Leaves were destructively sampled at 8 hours, 24 or 32 h, 48 h, and 72 h after 

infection with mildew. After the first replicate was assessed at 24 h, it was decided 

that 32 h would be a better timepoint to sample at as more development of the spores 

had taken place. This is valid because in terms of mildew development, the time 
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points are fairly close and during statistical analysis each replicate is treated as a block 

effect.  The sampled leaves were placed onto filter paper soaked in 3:1 ethanol: acetic 

acid until the leaves had cleared and were stored in lactoglycerol until assessment by 

microscopy.   For assessment the leaves were placed on a glass slide and stained with 

Aniline Blue.  For each leaf 30 spores were assessed for growth development at the 

following stages; no germination, primary germ tube, appressorial germ tube, 

appressorium, balloon haustorium, digitate haustorium or elongating secondary 

hyphae (ESH). Only spores that were isolated, undamaged and not infecting the same 

cell were assessed.  Observations were made using a Nikon Microphot-SA (2) general 

light microscope.  Haustoria were visualised under differential interference contrast 

(DIC) microscopy where necessary.  

The data were statistically analysed separately for each timepoint.  The 

categories were formed into groups. At 8 hours the number of spores that had 

germinated with either a primary germ tube or an appressorium, was studied as a 

proportion of the total spores counted. The 24/32 h timepoints were combined and the 

proportion of spores that had infected the host as a proportion of all germinated 

spores was analysed.  The spores scored as having infected had at least formed an 

appressorium. At 48 and 72 h the categories were grouped to analyse spores that had 

developed secondary hyphae as a proportion of the total number of infecting spores.  

A logistic regression model was fitted with a binomial distribution.  The model 

analysed at each sampling time was Replicate+ Day*Treatment, where the * operator 

indicates that both the main effects and the interaction of the factors were estimated. 

Treatment was either: Longbow inoculated with IPO323, Flame inoculated with IPO323 

or Longbow mock inoculated. Standard errors were calculated on a logit scale and 

backtransformed predicted means were calculated for the purposes of presentation. 

 

3.2.5 Pre-inoculation with virulent M. graminicola and its effect on the later 

stages of mildew colony development 
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Two leaves of Longbow were inoculated either with M. graminicola isolate IPO323 or 

mock inoculated in the same way as the early stage development inoculations. Leaves 

were subsequently inoculated after 6 dai with the Bgt isolate JIW48. Leaves were 

sampled at 5, 6, 7, 8, and 9 dai with Bgt. One box was left as the control box so that 

mildew colony formation could be assessed and one to check for good STB disease 

levels. This experiment was carried out three times. 

 Leaves were cleared using 75 % ethanol until all visible chlorophyll was 

removed.  The leaves were then stored and stained as in 3.2.4.  All mildew colonies on 

the leaves were measured using a graticule on 10 x eyepieces under 10 x 

magnification.  The area of the colony was calculated by assessing the area as that of 

an ellipse π(ab) where a and b are half the ellipse’s major and minor axes 

respectively.  The number of conidiophores was assessed on a scale of 0-4: (0 = zero, 

1= <5, 2= 5-10, 3= 11-30 and 4= 30+ conidiophores). The data were analysed using 

linear modelling using the model Treatment*Day, where the Treatment factor was 

indicated whether the leaves were inoculated with IPO323 or mock-inoculated. Colony 

sizes were transformed to square roots for statistical analysis. This normalised the 

variance and made it independent of fitted values. In addition, this procedure reflects 

the constant radial growth rate of mildew colonies. Least significant differences of 

predicted means were calculated at the 5 % level.  

 

3.2.6 qPCR determination of mildew biomass on infected leaves 

Two boxes of Longbow leaves, two leaves of each treatment in each box, were 

inoculated with and without virulent M. graminicola, IPO323 and then inoculated after 

1 or 6 days with the virulent Bgt isolate, JIW48.  5 or 12 days after Bgt inoculation, 

DNA was extracted and the amount of mildew DNA quantified using a Taqman probe 

assay (Fraaije et al 2006). Further details are in section 2.4.2. 

 



57 
Interactions between pathogens and the host 

 

3.2.7 Gene expression of TaMPK3 in leaves inoculated with a compatible and 

incompatible B. graminis f.sp. tritici isolate 

17 day old seedlings of Longbow were attached to Perspex trays (section 2.2) and 

inoculated with either the compatible isolate JIW48, or with the incompatible isolate, 

JIW11, under settling towers.  Control seedlings had no inoculation.  Plants were 

placed in a growth cabinet in a 17 ˚C light for 16 h/ 12 ˚C dark cycle.  Three leaves 

were excised at 1, 3, 7, 10 and 14 days after inoculation. Two replicates of the 

experiment were carried out.  Details of laboratory methods are in section 2.4.3. 

The data were analysed by restricted maximum likelihood (REML) using a linear 

mixed model, with the fixed model term: Time*Treatment*Type, where Treatment 

was either inoculation with the mildew isolate or not inoculated with mildew and Type 

was either a reference gene or the TaMPK3 gene.  Reference genes were standardised 

to 0 (section 4.2.1).  The random model was the interaction term 

Rep.Time.Treatment.Gene, where Gene was the individual reference genes and the 

gene of interest.  ‘Rep’ was initially included in the random model but was then 

removed as it did not have a significant effect. 

 

3.3 Results 

 

3.3.1 Pre-inoculation with M. graminicola and its effect on the development 

of B. graminis f.sp. tritici 

When the variety Longbow was inoculated first with the compatible M. graminicola 

isolate, IPO323, and subsequently inoculated with a virulent Bgt isolate, JIW48, fewer 

or no colonies were macroscopically visible on the leaf (figure 3.2 E-H) than on the 

mock inoculated controls.  This result was consistent, regardless of whether the Bgt 

inoculation was carried out 2, 5, 7 or 10 dai with M. graminicola.  When both Flame 

and Longbow were pre-inoculated with M .graminicola and subsequently inoculated 

with an avirulent Bgt isolate, JIW11, no colonies of mildew formed (figure 3.2 A-D).  
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When Flame was preinoculated with M. graminicola and subsequently inoculated with 

a virulent Bgt isolate, JIW48, the appearance of the pre-inoculated leaves was the 

similar in terms of mildew colony numbers to that of the mock inoculated leaves 

(figure 3.2 E-H).   

 

3.3.2 Dosage effect of M. graminicola spores on the number of colonies 

formed by virulent B. graminis f.sp. tritici  

Higher concentrations of M. graminicola spores hindered the formation of Bgt colonies 

more than lower concentrations (figure 3.3).  An increase in the concentration of M. 

graminicola spores reduces the number of mildew colonies formed by a normally 

virulent Bgt isolate (P=0.02); for every 10-fold reduction in M. graminicola spores 

there were 18 more mildew colonies on average. 

 

3.3.3 The effect of non-viable spores on the growth of B. graminis f.sp. tritici 

When Flame and Longbow were inoculated with a M. graminicola spore suspension 

that had been autoclaved to kill the spores, the appearance of mildew colonies on the 

leaves was similar to that on the mock inoculated leaves (figure 3.4).  The leaves were 

either inoculated after 1 day or 10 dai with the non-viable M. graminicola spores; at 

10 days, less mildew developed on all the leaves inoculated with the virulent mildew.  
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Figure 3.2. The effect of prior inoculation with M. graminicola on the development of 

mildew on the varieties, Flame and Longbow.  M. graminicola isolate IPO323 was used 

which is virulent on Longbow and avirulent on Flame. Order of leaves in each 

photograph, from left: Cerco, Flame IPO323, Flame Mock, Longbow IPO323, Longbow 

Mock.  A-D were inoculated with avirulent Bgt isolate JIW11.  E-H were inoculated with 

virulent Bgt isolate JIW48.  Bgt was inoculated 2 days (A,E) 5 days (B, F) 7 days (C, 

G) and 10 days (D, H) after inoculation with M. graminicola. 
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Figure 3.3 The effect of different concentrations of virulent M. 

graminicola inoculum on the number of visible colonies of virulent 

Bgt. A reduction of 18 mildew colonies is seen for every 10 fold 

increase in M. graminicola spores (P=0.002 for linear regression). 
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Figure 3.4 The effect of non-viable M. graminicola spores on Flame and Longbow. 

Order of leaves in each photograph, from left: Cerco, Flame IPO323, Flame Mock, 

Longbow IPO323, Longbow Mock. All leaves were inoculated with non-viable M. 

graminicola at the same time.  A shows leaves inoculated only with unviable M. 

graminicola spores.  B and C were inoculated with the avirulent Bgt isolate JIW11.  

D and E were inoculated with virulent Bgt isolate JIW48. B and D inoculated with 

Bgt 1 day after M. graminicola inoculation C and E inoculated with Bgt 10 days after 

M. graminicola inoculation.   
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3.3.4 Development of B. graminis f.sp. tritici spores at the early stages of 

development on leaves preinoculated with M. graminicola 

At 8 hai, Bgt germination rates (germlings scored as having at least a PGT) on all the 

leaves ranged from 60 % to 74.8% for leaves inoculated at 1 dai with M. graminicola 

and 62.2 % to 77.8% for leaves inoculated 6 dai with M. graminicola (figure 3.5 A).  

There were no significant differences in the proportion of spores that had germinated 

between the treatments: Longbow with virulent M. graminicola IPO323, Longbow with 

a mock inoculation, Flame with avirulent M. graminicola, IPO323.  There were also no 

significant differences between the leaves inoculated with Bgt at 1 or 6 dai with M. 

graminicola (table 3.1).   

At 24 and 32 hai, a proportion of Bgt spores had attempted or succeeded in 

infecting the host, producing appressoria and occasionally haustoria and hyphae. The 

percentage of germinated spores that had formed at least an appressorium ranged 

from 45.6 % to 59 % in leaves inoculated with Bgt 1 dai with M. graminicola and from 

41.9 % to 52.7 % in leaves inoculated with Bgt, 6 dai with M. graminicola (figure 3.5 

B). No significant differences in the proportion of germinated spores which had 

infected the plant were seen either between treatments or between days (table 3.2).   

At 48 hai and 72 hai many spores produced ESH.  At 48 hai the percentage of 

Bgt spores which had formed an appresorium that had gone on to form ESH ranged 

from 26.1 % to 42.8 % at 1 dai with M. graminicola and 8.4 % to 21.0 % at 6 dai with 

M. graminicola. At 72 hai the percentage of spores forming ESH ranged from 32.0 % 

to 49.9 % at 1 dai with M. graminicola and 9.5 % to 13.8 % at 6 dai with M. 

graminicola (figure 3.5 C and D). There were no significant differences were seen 

between treatments, but there was a significant effect of day (tables 3.3 and 3.4).  

Consistently fewer Bgt spores produced ESH when infected with Bgt 6 dai with M. 

graminicola than when infected 1 dai with M. graminicola.  This was seen in the 

Longbow mock-inoculated samples, as well as those treated with M. graminicola, 

indicating that there was an overall change in susceptibility. 
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 on 

 

Figure 3.5 Progression of Bgt spore development 

A % of germinated spores 8 hours after inoculation (hai) with M. graminicola.  B % of 

germinated spores that form at least an appressorium up to 24/32 hai. C % of spores 

which form an appressorium that produce elongated secondary hyphae (ESH) at 48 hai. 

D % of spores which form an appressorium that produce ESH at 72 hai.  Error bars 

indicate ±1 s. e. of predicted mean. 
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d.f. deviance      F pr. 

Rep 1 0.578 0.7 

Day 1 0.159 0.8 

Trt 2 3.12 0.6 

Day.Trt 2 19.89 0.06 

Residual 29 92.8   

3.1.Proportion of Bgt spores which had germinated at 8 hai  

 

 
d.f. deviance       F pr. 

Rep 1 11.427 0.1 

Day 1 3.194 0.4 

Trt 2 9.402 0.3 

Day.Trt 2 0.271 1 

Residual 29 114.041   

3.2 Proportion of germinated spores that have formed at least an 

appressorium by 24/32 hai 

 

 
d.f. deviance       F pr. 

Rep 1 0.189 0.8 

Day 1 39.475 <0.001 

Trt 2 11.675 0.1 

Day.Trt 2 2.03 0.7 

Residual 29 75.495   

3.3 Proporation of spores with an appressorium that produce  

ESH at 48 hai 

 

 
d.f. deviance       F pr. 

Rep 1 1.404 0.4 

Day 1 87.999 <0.001 

Trt 2 4.865 0.3 

Day.Trt 2 3.298 0.4 

Residual 29 49.635   

3.4  Proporation of spores with an appressorium that produce  

ESH at 72 hai 

 

Tables 3.1-3.4.  Analysis of deviance tables showing effect of 

replicate, day of inoculation with Bgt after inoculation with M. 

graminicola and pre-inoculation treatment (Trt): Flame with 

IPO323, Longbow with 323 or Longbow mock inoculation. 
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 3.3.5 Pre-inoculation with M. graminicola and its effect on the later stages of 

mildew colony development 

The area of each mildew colony formed was measured from 5-9 days after inoculation 

with Bgt.  At 5 and 6 days, pre-inoculation with virulent M. graminicola had no effect 

on the area of the colonies produced. By 7 days, the colonies formed on the leaves 

infected with M. graminicola were significantly smaller than the mock inoculated 

control leaves.  At 9 days, the gap between the two treatments was wider, with a 

difference of 20.6 μm2 between them (figure 3.6).  

The number of conidiophores produced by mildew colonies on leaves 

preinoculated with M. graminicola was greater than on leaves mock inoculated at 7 

days.  After 8 and 9 days the number of conidiophores produced by the colonies on 

mock inoculated leaves was greater than those on the preinoculated leaves (figure 

3.7).  At 8 days the mock inoculated leaves produced on average over 10 

conidiophores per colony, whereas the leaves preinoculated with M. graminicola 

produced no more than 10 conidiophores. At 9 days the mock inoculated leaves were 

Figure 3.6 Mean square root of colony area (μm2) 5-9 days after 

inoculation with Bgt after pre-inoculation with either M. graminicola 

isolate IPO323 or water (mock).  The square root of the area is 

proportional to the length of the axis of the ellipse formed by the colony.  

Error bars are ± 1 s.e of predicted means. * P<0.05 (Fisher’s protected 

least significant difference). 
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producing between 10 and 30 conidiophores per colony, while the preinoculated leaves 

were still only producing up to 10 condiophores per colony.  The leaves assessed were 

the same as those used in figure 3.6. 

 

3.3.6 qPCR determination of mildew biomass on infected leaves 

Primers used to amplify a cytochrome b gene fragment from Bgt have been designed 

by Fraaije et al. (2006).  The primers were used to amplify a fragment from isolate 

JIW48.  This was cloned, sequenced and aligned to known cytochrome b sequences 

from four other Bgt isolates to ensure that JIW48 has the same cytochrome b 

sequence.  The fragment aligned with the known cytochrome b sequences (figure 3.8) 

and therefore the primers used were suitable for use in quantifying the amount of 

mildew in the leaves. 

A Taqman probe assay was used to determine the quantity of mildew on the 

leaves of Longbow, both with and without pre-inoculation with M. graminicola.   

Leaves preinoculated with M. graminicola spores at 1 day before inoculation with Bgt 

had less Bgt DNA in both the 5 and 12 day samples than the mock-inoculated leaves 

 

Figure 3.7 Mean number of conidiophores per colony at 7-9 days after 

inoculation with Bgt after preinouclation with M. graminicola isolate 

IPO323 or water (mock).  Error bars are ± 1 s.e of predicted means. 

*0.05>P≥0.01 
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                      *       220         *       240         *        

JIW48_4_M1 : -------------------------------------------------- :    - 

JIW48_5_M1 : -------------------------------------------------- :    - 

Fel08      : TTTATATTACGGCTCATATAGAGCACCAAGAACATTAGTTTGAACAATTG :  250 

Fel12      : TTTATATTACGGATCATATAGAGCACCAAGAACATTAGTTTGAACAATTG :  250 

JAS501     : TTTATATTACGGATCATATAGAGCACCAAGAACATTAGTTTGAACAATTG :  125 

W26        : TTTATATTACGGATCATATAGAGCACCAAGAACATTAGTTTGAACAATTG :  125 

                                                                       

                                                                       

                    260         *       280         *       300        

JIW48_4_M1 : ----------------------------TACTGCATTCCTGGGTTATGTA :   22 

JIW48_5_M1 : ----------------------------TACTGCATTCCTGGGTTATGTA :   22 

Fel08      : GTACAGTAATATTCATATTAATGATCGTTACTGCATTCCTGGGTTATGTA :  300 

Fel12      : GTACAGTAATATTCATATTAATGATCGTTACTGCATTCCTGGGTTATGTA :  300 

JAS501     : GTACAGTAATATTCATATTAATGATCGTTACTGCATTCCTGGGTTATGTA :  175 

W26        : GTACAGTAATATTCATATTAATGATCGTTACTGCATTCCTGGGTTATGTA :  175 

                                         TACTGCATTCCTGGGTTATGTA        

                                                                       

                      *       320         *       340         *        

JIW48_4_M1 : TTGCCATACGGGCAGATGAGCCACTGGGCTGCAACCGTTATCACTAACCT :   72 

JIW48_5_M1 : TTGCCATACGGGCAGATGAGCCACTGGGCTGCAACCGTTATCACTAACCT :   72 

Fel08      : TTGCCATACGGGCAGATGAGCCACTGGGCTGCAACCGTTATCACTAACCT :  350 

Fel12      : TTGCCATACGGGCAGATGAGCCACTGGGGTGCAACCGTTATCACTAACCT :  350 

JAS501     : TTGCCATACGGGCAGATGAGCCACTGGGCTGCAACCGTTATCACTAACCT :  225 

W26        : TTGCCATACGGGCAGATGAGCCACTGGGGTGCAACCGTTATCACTAACCT :  225 

             TTGCCATACGGGCAGATGAGCCACTGGG TGCAACCGTTATCACTAACCT        

                                                                       

                    360         *       380         *       400        

JIW48_4_M1 : AATGAGCGCTATACCATGAATAGGACAAGATATTGTGGAGTTCCTTTGAG :  122 

JIW48_5_M1 : AATGAGCGCTATACCATGAATAGGACAAGATATTGTGGAGTTCCTTTGAG :  122 

Fel08      : AATGAGCGCTATACCATGAATAGGACAAGATATTGTGGAGTTCCTTTGAG :  400 

Fel12      : AATGAGCGCTATACCATGAATAGGACAAGATATTGTGGAGTTCCTTTGAG :  400 

JAS501     : AATGAGCGCTATACCATGAATAGGACAAGATATTGTGGAGTTCCTTTGAG :  275 

W26        : AATGAGCGCTATACCATGAATAGGACAAGATATTGTGGAGTTCCTTTGAG :  275 

             AATGAGCGCTATACCATGAATAGGACAAGATATTGTGGAGTTCCTTTGAG        

                                                                       

                      *       420         *       440         *        

JIW48_4_M1 : GAGGTTTCTCTGT------------------------------------- :  135 

JIW48_5_M1 : GAGGTTTCTCTGT------------------------------------- :  135 

Fel08      : GAGGTTTCTCTGTAAATAATGCAACGTTAAACAGATTCTTTGCTTTACAC :  450 

Fel12      : GAGGTTTCTCTGTAAATAATGCAACGTTAAACAGATTCTTTGCTTTACAC :  450 

JAS501     : GAGGTTTCTCTGTAAATAATGCAACGTTAAACAGATTCTTTGCTTTACAC :  325 

W26        : GAGGTTTCTCTGTAAATAATGCAACGTTAAACAGATTCTTTGCTTTACAC :  325 

             GAGGTTTCTCTGT                                             

                                                                       

                    460         *       480         *       500        

JIW48_4_M1 : -------------------------------------------------- :    - 

JIW48_5_M1 : -------------------------------------------------- :    - 

Fel08      : TTTGTCTTGCCGTTCGTTTTAGCTGCTTTAGCTTTAATGCACTTAATAGC :  500 

Fel12      : TTTGTCTTGCCGTTCGTTTTAGCTGCTTTAGCTTTAATGCACTTAATAGC :  500 

JAS501     : TTTGTCTTGCCGTTCGTTTTAGCTGCTTTAGCTTTAATGCACTTAATAGC :  375 

W26        : TTTGTCTTGCCGTTCGTTTTAGCTGCTTTAGCTTTAATGCACTTAATAGC :  375 

                                                                       

                                                                       

                      *       520         *       540         *        

JIW48_4_M1 : -------------------------------------------------- :    - 

JIW48_5_M1 : -------------------------------------------------- :    - 

Fel08      : ACTTCACGATAGTGCAGGATCTGGTAATCCTTTAGGTGTTTCAGGTAATT :  550 

Fel12      : ACTTCACGATAGTGCAGGATCTGGTAATCCTTTAGGTGTTTCAGGTAATT :  550 

JAS501     : ACTTCACGATAGTGCAGGATCTGGTAATCCTTTAGGTGTTTCAGGTAATT :  425 

W26        : ACTTCACGATAGTGCAGGATCTGGTAATCCTTTAGGTGTTTCAGGTAATT :  425 

                                                                       

Figure 3.8 Sequence alignment of two clones from isolate JIW48 to a fragment of the cytochrome 

b gene from four known Bgt isolates. 

 



68 
Interactions between pathogens and the host 

 

 (figure 3.9A).  The leaves inoculated with virulent M. graminicola 6 days before Bgt 

inoculation had less Bgt DNA in the leaves sampled 5 days after inoculation by Bgt 

samples than the mock-inoculated samples but had more Bgt DNA in the 12 day 

samples. However, both the 5 and 12 day samples that were inoculated with Bgt 6 

days after inoculation with M. graminicola, had less Bgt DNA overall than the samples 

inoculated after 1 day(figure 3.9B).  These results are based on only 2 replicates and 

more replication is needed to make statistical comparisons. 

 
Figure 3.9 Mean quantity of Bgt DNA per 50 ng of total DNA extracted from leaf 

tissue and determined by qPCR. Leaves of the susceptible variety Longbow were 

either inoculated with M. graminicola IPO323 or mock inoculated before inoculation 

with virulent Bgt isolate JIW48. Samples were taken at 5 and 12 days after mildew 

inoculation.  A. Bgt inoculated onto leaves 1 day after leaves were inoculated with 

M. graminicola. B. Bgt inoculated onto leaves 6 days after were inoculated with M. 

graminicola. Error bars =±1 s.e.m.  Data are based on two observations so no 

statistical comparisons have been made. 
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3.3.7 Gene expression of TaMPK3 in leaves inoculated with virulent or 

avirulent B. graminis f.sp. tritici 

The level of TaMPK3 transcript accumulation was assessed in both a compatible and 

incompatible interaction with mildew over time.  The term Type used in the fitted 

model describes whether the gene was the reference gene or the target gene.   A 

significant Treatment.Type effect implies that there is a significant difference between 

treatments in the expression of the target gene in relation to that of the reference 

genes, the analysis showed that the most significant interactions involved differences 

between expression of TaMPK3 and the reference genes (Type) (table 3.5), indicating 

that the level of TaMPK3 accumulation is strongly affected in these experiments.  

The effect of the interaction between Treatment and Type demonstrates that 

the effect of mildew isolate was significant (figure 3.10).  Over time, more transcript 

accumulated in leaves inoculated with virulent Bgt than with the avirulent isolate.  

When all the timepoints were combined leaves inoculated with JIW48 showed 

significantly higher expression of TaMPK3 than leaves inoculated with JIW11 

(P=<0.001).  Neither of the terms Time.Type or Treatment.Time.Type were significant 

indicating that there was no temporal effect of TaMPK3 accumulation. 

Fixed term Wald statistic n.d.f F pr 

Time 51.16 4  <0.001 

Treatment 10.52 2   0.007 

Type 21836.51 1 <0.001 

Time.Treatment 36.97 8 <0.001 

Time.Type 2.6 4 0.6 

Treatment.Type 15.12 2 <0.001 

Time.Treatment.Type 5.73 8 0.7 
Table 3.5 Level of TaMPK3 transcript accumulation in leaves of 

Longbow inoculated with virulent, JIW48, or avirulent, JIW11, 

B. graminis f.sp. tritici.  Leaves were inoculated at 1, 3, 7, 10 

and 14 dai. Tests for fixed effects sequentially adding terms to 

the model Time*Treatment*Type. 
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3.4 Discussion 

 

When environmental conditions are conducive to more than one pathogen, wheat 

plants must defend themselves against different pathogens, often with different 

lifestyles.  This research investigated the biotroph, B. graminis f.sp. tritici and the 

necrotroph, M. graminicola and how they interact on the host leaf.  The main findings 

were that a compatible interaction between M. graminicola and the wheat leaf reduced 

the number and size and reproduction of mildew colonies that a normally virulent Bgt 

isolate produced. An incompatible interaction between M. graminicola and the wheat 

leaf had no apparent effect on the ability of the virulent Bgt isolate to form mildew 

colonies.  An incompatible interaction between M. graminicola and the wheat leaf did 

not detectably alter the susceptibility of the leaf towards the avirulent Bgt isolate.  The 

effect of a compatible interaction with M. graminicola was an active process, as 

 
Figure 3.10.  Accumulation of TaMPK3 in Longbow inoculated with 

avirulent JIW11 or virulent JIW48.  Figures show fold change of gene 

expression in relation to the control plants.  TaMPK3  accumulated more 

transcript in Longbow inoculated with Bgt isolate JIW48 than JIW11.  

(P=<0.001).  Error bars indicate ±1 s.e.of the mean 
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inoculation with dead, unviable spores did not reduce the appearance of mildew 

colonies.  The effect is also dosage dependent, as higher inoculum levels of M. 

graminicola reduced the number of mildew colonies formed on the leaf. 

Few studies have looked at the effect of the interactions between two 

pathogens of differing lifestyles on crop plants.  The interaction between Puccinia 

striiformis and M. graminicola (Madariaga & Scharen, 1986) showed that M. 

graminicola has a negative effect on the ability of the biotrophic rust pathogen to 

colonise the leaves the whole plants grown in glasshouse conditions.  The amount of 

rust infection was reduced in the presence of M. graminicola as it could only colonise 

areas of the leaf that had not been infected by M. graminicola. This was different to 

what was seen in the experiments here where M. graminicola spores covered the 

leaves and therefore mildew was developing in the presence of M. graminicola spores. 

 Weber et al. (1994) showed that the necrotrophic pathogen Stagonospora nodorum 

reduced the disease severity of mildew in both field trials and under glasshouse 

conditions. The presence of mildew also increased the final accumulated disease of S. 

nodurum in field trials.  The effects found in glasshouse conditions were confined to 

the inoculated leaves demonstrating a lack of systemic effect.  These papers provide 

evidence that necrotrophic pathogens have a negative effect on the ability of 

biotrophic pathogens to cause disease on the host leaf, supporting the research 

presented here, where mildew is reduced in the presence of M. graminicola. The 

implication of these findings is that there is a trade-off between biotrophs and 

necrotrophs and the defence systems that regulate them.  The research presented 

here builds on these studies by starting to investigate the mechanisms that cause 

these interactions. 

 M. graminicola is a necrotrophic pathogen with a long latent period.  Host cell 

death is essential for the compatible interaction to take place, but this takes place only 

after at least 7 days (Keon et al., 2007).  Bgt infects the cells and actively inhibits cell 

death to produce the ‘green island’ effect in order to feed from the intact leaf cell 
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(Walters et al., 2008).  In these experiments the mildew spores started to form 

haustoria by 32 hai.  The development of the Bgt spores at early stages was not seen 

to be significantly altered by pre-inoculation with M. graminicola, independent of 

whether the mildew spores had been inoculated after 1 or 6 dai with M. graminicola.  

This contrasts with what has been shown for P. striiformis where germination of 

uredinospores is reduced by the presence of M. graminicola spores and rust 

development was restricted to areas of the leaf not infected by M. graminicola 

(Madariaga & Scharen, 1986).  During the time when Bgt is inhibited, M. graminicola 

is still in its latent phase, with little or no growth (Kema et al., 1996); it is unknown 

how it obtains nutrients at this time.  There are no differences seen in the penetration 

ability of avirulent and virulent spores in the early stages of infection of M. graminicola 

(Shetty et al., 2003). The pathogen may be suppressing plant defence responses in 

order for it to colonise the substomatal cavity.  The virulent Bgt is able to develop as 

normal during these early stages of the infection process of M. graminicola.   

Bgt spore development was observed during the time when M. graminicola was 

still in its initial and latent stages of infection, 2-9 dai.  This is the time before PCD 

occurs during a M. graminicola infection.  There are two types of resistance 

mechanism against mildew, one of which involves an HR, which occurs during R-gene 

mediated resistance following penetration of an epidermal cell by a haustorium (Boyd 

et al., 1995).  In the other, known as partial resistance, infection of epidermal cells by 

appressoria is inhibited (Carver, 1986).  During R-gene mediated resistance, Bgt 

spores may develop haustoria or go on to develop ESH.  In the experiments reported 

here, development of haustoria and ESH on leaves preinoculated with M. graminicola 

was not significantly different from those preinoculated with an avirulent isolate or 

mock-inoculated. During partial resistance, fewer spores form haustoria and failed 

penetration attempts are caused by papilla formation (Carver, 1986).  This type of 

resistance was not seen here as there was no reduction in the number of spores 

forming haustoria on leaves inoculated with the virulent M. graminicola isolate.   
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During the later stages of mildew spore development studied here the M. 

graminicola hyphae are starting to interact with the leaf mesophyll cells, eventually 

causing cell death and nutrient release (Keon et al., 2007).  The reduction in the 

number of mildew colonies and the quantity of mildew at the late stages of 

development shows growth is limited after they have formed ESH indicating that the 

response that occurs is vital for the survival of the biotroph.  During infection with M. 

graminicola, although there is some formation of hydrogen peroxide in cells during 

both compatible and incompatible interactions, during a compatible interaction from 

11 dai onwards, there is a massive accumulation of hydrogen peroxide which is seen 

to aid the susceptible response of the leaf (Shetty et al., 2003).  In the experiments 

presented here, this would coincide with the timepoints where the mildew colony size 

on Longbow inoculated with the virulent M. graminicola is significantly smaller than 

the mock-inoculated leaves.  Hydrogen peroxide accumulation in barley has been 

demonstrated as a response to infection by avirulent B. graminis f. sp. hordei which is 

linked to HR (Thordal-Christensen et al., 1997), therefore it is feasible that the growth 

of Bgt would be stopped by the presence of an influx of hydrogen peroxide produced 

as a consequence of the compatible interaction between the virulent M. graminicola 

and the wheat leaf.  Staining leaves with 3,3’-diaminobenzidine (DAB) would show 

when and where H2O2 was present and if it coincided with the timing of restricted 

growth of Bgt.  In addition, hyphal penetration and attempted penetration at the 

edges of the mildew colonies could be examined to assess if M. graminicola has an 

effect on the later stages of the growth of Bgt 

The effect of non-viable M. graminicola had on mildew colony formation was 

investigated to test if the interaction was mediated by recognition of PAMPs by the leaf 

surface.  PAMPs such as chitosan, a deacetylated derivative of chitin, act as general 

elicitors of basal defences through pathogen recognition receptor (PRR)–mediated 

responses (Iriti & Faoro, 2009).  Chitosan directly inhibited the growth of Botrytis 

cinerea on grapes (Munoz & Moret, 2010) and chitosan also activated defence gene 
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expression in Oryza sativa seedlings (Agrawal et al., 2002). Purified β-1,3-glucans 

gave protection against M. graminicola in wheat (Shetty et al., 2009).  Inoculation 

with non-viable M. graminicola spores did not produce the reduction in mildew colony 

formation seen with viable M. graminicola spores.  This suggests that the effect is not 

mediated by the recognition of PAMPs in the absence of a viable pathogen.  

Recognition of M. graminicola is more likely to take place following stomatal 

penetration when hyphal components are recognised by the plant.  

To investigate if TaMPK3 has a role in the interaction between M. graminicola 

and mildew, transcript levels of TaMPK3 were assessed in wheat infected with both 

virulent and avirulent Bgt.  Over time, the plants inoculated with the virulent isolate 

accumulated more transcript than those inoculated with the avirulent isolate.  Previous 

reports have shown that MPK3 orthologues accumulate during incompatible 

interactions involving biotrophic pathogens or non-host responses in tomato, tobacco 

and Arabidopsis (Asai et al., 2002; Romeis et al., 1999; Stulemeijer et al., 2007), 

although there are few reports of compatible interactions with which these results can 

be compared.   Many studies focus on the very early stages of infection, whereas here 

the experiments covered 1-14 dai.   MPK3 expression and protein accumulation has 

not been studied in response to powdery mildew in cereals.  In rice, a MPK3 

orthologue accumulates both during an incompatible and compatible interaction with 

M. grisea (Xiong & Yang, 2003).  Rudd et al. (2008) demonstrated that TaMPK3 

protein accumulated in wheat during a compatible interaction with M. graminicola, and 

chapter 4 of this thesis indicates that the protein accumulated to a greater extent in 

the compatible interaction, but also accumulated during resistant interactions in some 

varieties.  The experiments presented here suggest that TaMPK3 may have a role in 

enabling the compatible interaction with Bgt. This result does not conclusively show 

that TaMPK3 is involved in the interaction between the two pathogens on the host, but 

it indicates it may not be important.  It also suggests the possibility that, in wheat at 

least, MPK3 may be involved in compatible rather than incompatible responses to 
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infection by fungal pathogens.  To test this further, accumulation of the TaMPK3 

protein could be tested in both interactions with virulent and avirulent Bgt isolates.  It 

may be that post-translational activation of the protein is more important than 

transcription of the gene.  Protein accumulation could also be investigated in the 

presence and absence of virulent M. graminicola, to discern if any changes take place 

during the interaction from what is seen in response to single pathogen inoculation. 

This chapter establishes that two pathogens of wheat with differing lifestyles do 

have an effect on each other, although the mechanism behind this remains unclear. 

Cross-talk between the SA and JA signalling pathways may be the underlying 

mechanism for resistance trade-offs between pathogens of different lifestyles (Schenk 

et al., 2000; Spoel et al., 2007).  Resistance to necrotrophs such as Botrytis cinerea 

require JA signalling and camalexin production (Glazebrook, 2005).  Ethylene (ET) 

signalling also plays an important role in regulating disease development of 

necrotrophic fungi, often in conjunction with JA (Glazebrook, 2005). Little is known 

about ET signalling in monocotyledonous species, but its role is beginning to be 

elucidated (Chen et al., 2009).  ET is required for disease symptom development of 

Fusarium graminearum; enhancing ET levels of wheat and barley increased conidial 

production of F. graminearum and conversely reducing ET perception reduced conidial 

production (Chen et al., 2009).  The effect of ET signalling and perception on M. 

graminicola disease development is unknown.  It is known that ET plays a role in 

senescence and therefore it could be predicted that ET levels will increase as necrosis 

of the leaf develops and disease symptoms progress. In tomato infected with the 

actinomycete, Clavibacter michiganensis subsp. michiganensis (Cmm), genes involved 

in ethylene biosynthesis and response are upregulated.  In plants with impaired 

ethylene perception, the appearance of wilt symptoms is delayed in comparison with 

WT (Balaji et al., 2008).  The effect of ethylene on wheat has not been studied for 

disease interactions with powdery mildew.  In Arabidopsis, Erysiphe spp. do not 

trigger the JA-/ET- signalling pathways which can induce resistance against them; this 
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is mediated by a mutation, cev1, which regulates the ethylene signalling pathways 

(Ellis & Turner, 2001).  It could be predicted that if ET accumulates in wheat during a 

compatible interaction with M. graminicola this could induce resistance to the normally 

virulent Bgt isolate. (In experiments I conducted using silver thiosulphate, an inhibitor 

of ethylene perception (Chen et al., 2009), the silver thiosulphate was found to be 

fungistatic towards the M. graminicola so it was not possible to tell if ethylene was 

having an effect on disease development (data not shown)). 

Breeding for mildew resistance has taken place for many years, whereas 

breeding for resistance to STB has been relatively recent. In the 1960s and 1970s 

stagonospora nodorum blotch (SNB) was the major facultative disease in the UK 

(Bearchell et al., 2005).  In the 1970s a shift occurred, as a result of which STB 

became the major facultative disease of wheat in the UK from the 1980’s onwards 

(Arraiano et al., 2009; Bearchell et al., 2005).  There are varieties available which 

provide good STB resistance for breeding (Arraiano et al., 2009; Chartrain et al., 

2004a), but it can take seven years to get a variety onto the commercial market 

(Brown, 2011) and disease resistance is not as important as yield and quality 

characteristics. Breeders and farmers require moderate resistance to all diseases, and 

all the varieties on the recommended list in the UK in the last 2 years have been rated 

5 or higher for STB indicating a moderate level of resistance to this disease 

(http://www.hgca.com/document.aspx?fn=load&media_id=6707&publicationId=481).

More information on how different diseases interact with each other is desirable when 

breeding new varieties, especially in the face of growing government and public 

concern over fungicides (Haynes et al., 2010). Pesticide availability in the UK and 

Europe will decline over the next decade due to changes in pesticide approvals 

legislation and insensitivity (Clarke et al., 2011). There is little value in having good 

resistance to one disease if its resistance to another is poor as this will not reduce 

demand for pesticides.  The results here indicate that because susceptibility to M. 

graminicola inhibits powdery mildew, breeding efforts should focus on increasing 
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resistance to STB whilst maintaining the existing current level of moderately good 

partial resistances to powdery mildew. Resistance to M. graminicola had no effect on 

Bgt, so focusing attention on breeding resistance to M. graminicola should not have a 

detrimental effect on Bgt resistance.   Speculatively, long term breeding for resistance 

to powdery mildew may have meant that wheat is now well adapted to defence 

against biotrophic pathogens, but less well adapted to defence against necrotrophic 

pathogens.  Further insights into the mechanism controlling these defences in wheat 

are needed to breed plants that are able to withstand disease pressure from 

pathogens of differing infection mechanisms. 
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4  
Gene expression and TaMPK3 protein accumulation 
  

4.1 Introduction 

The goal of identifying specific host responses to Mycosphaerella graminicola 

inoculation is of interest to understand how disease symptoms are caused and how 

resistance works. For example, there is no means of identifying specific resistances in 

wheat varieties or avirulences in M. graminicola isolates other than a rather 

complicated statistical analysis of quantitative disease symptoms (see Arraiano & 

Brown (2006) for an example). It would be greatly preferable to have a test in which 

an incompatible interaction could be recognised by its phenotype, as with powdery 

mildew and rust diseases of cereals (Ma & Singh, 1996; Moseman et al., 1965; Stubbs 

et al., 1986).  In addition, it would benefit breeding programmes where time and 

money could be saved through the early identification of resistant lines.  

Specific resistant interactions involve recognition of the pathogen by the host.  

The resistance response towards a biotrophic pathogen frequently involves a 

hypersensitive response (HR).  Gene expression of host defence-related and other 

genes during interactions between biotrophic pathogens and their host have been 

extensively studied, particularly for both rust pathogens and powdery mildew (Boyd et 

al., 1994b; Bozkurt et al., 2010; Coram et al., 2008b).  These tend to show that 

defence-related genes are upregulated rapidly after a resistant cultivar is inoculated 

with a pathogen.  The response of barley to Blumeria graminis f.sp. hordei (powdery 

mildew), the pathogenesis-related genes, PR1, chitinase, peroxidase and PAL were 

upregulated in both compatible and incompatible interactions, but the response was 

seen later and was not as strong in a compatible interaction (Boyd et al., 1994b). 

Many gene expression studies have now been done using microarray 

transcription profiling, which shows whole sets of genes that are differentially 

expressed. During the interaction with wheat and Puccinia striiformis 54 transcripts 
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that were upregulated in both incompatible and compatible interactions were 

considered to be basal defence transcripts including some chitinases, β-1,3-

glucanases, PALs, peroxidase and protein kinases.  Different chitinases, β-1,3-

glucanases and peroxidase were specifically upregulated in response to the HR.  

Bozkurt et al. (2010) found that only four wheat genes, encoding two chitinases, a β-

1,3-glucanase and a peroxidase were upregulated during interactions with P. 

striiformis isolates either virulent or avirulent on Yr1.  These genes consistently appear 

as differentially regulated between incompatible and compatible interactions in studies 

of different pathogens indicating a strong involvement in defence responses following 

recognition of pathogens (Boyd et al. 1994b; Coram et al. 2008b; Coram et al. 2008a; 

Bozkurt et al.2010).    

Few studies have compared transcriptional responses of the cereal hosts during 

incompatible/compatible interactions with either hemibiotrophic or necrotropic 

pathogens.  Transcriptional changes during compatible and incompatible interactions 

with pathogens such as Magnaporthe species and Pyrenophora tritici-repentis have 

been investigated with the use of microarray studies.  These studies demonstrate that 

the transcription of traditionally defined defence genes is not as clear in necrotrophic 

interactions as is demonstrated during biotrophic interactions.  During interactions 

between wheat and M. oryzae (adapted) or M. grisea (non-adapted) isolates there was 

a subset of genes that were upregulated in all interactions.  The genes included β-1,3-

glucanases, chitinases, cell wall defence-related genes and phenylalanine ammonia-

lyase (PAL) (Tufan et al. 2009).  The ToxA-Tsn1 toxin receptor interaction between 

wheat and P. tritici-repentis induces host recognition that is as specific as an Avr-R 

type disease interaction but results in susceptibility rather than resistance. Recognition 

of ToxA by Tsn1 in wheat triggers transcription of numerous defence-related genes 

including chitinase and β-1,3-glucanase, genes involved in the phenylpropanoid 

pathway and the production of reactive oxygen species (ROS) which play a role in 

avirulent interactions (Adhikari et al., 2009).  These genes were often more strongly 
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upregulated in the compatible than the incompatible interaction once cell death was 

triggered.  The transcriptional changes seen during ToxA induced cell death are 

consistent with responses usually associated with defence (Pandelova et al., 2009). 

Tsn1 is encoded by a NBS-LRR disease resistance protein (Faris et al., 2010).  

There is emerging evidence that successful infection by a necrotrophic 

pathogen, such as M. graminicola, activates the same signalling pathways that are 

triggered during a resistance response towards a biotrophic pathogen (Deller et al., 

2011; Hammond-Kossack & Rudd, 2008).  The TaMPK3 protein and transcript 

accumulate in wheat leaves after infection by a compatible M. graminicola isolate 

(Rudd et al., 2008) in two tested isolate-variety interactions.  The gene transcript of 

TaMPK3 accumulated during a compatible B. graminis isolate (chapter 3 of this thesis).  

Orthologues of this protein had previously been shown to accumulate in Avr-R 

mediated resistance responses in tobacco and tomato (Romeis et al., 1999; 

Stulemeijer et al., 2007; Zhang & Klessig, 1998).  This evidence goes some way to 

support the view that non-biotrophic pathogens have a more sophisticated mechanism 

of infection than previously thought. For example, instead of simply using toxins and 

enzymes to cause cell death which it can then ustilise as a nutrient source, M. 

graminicola appears to appropriate host defence signalling (Hammond-Kossack and 

Rudd, 2008).  Understanding how host responses work in specific M. graminicola-

wheat interactions may enable the development of a phenotypic method of identifying 

resistance as well as an understanding of how this non-biotrophic pathogen causes 

infection.     

Host responses to M. graminicola have begun to be elucidated, producing an 

emerging picture of what still remains a highly variable response.  The pathogen is 

unusual in several respects, first that it remains extracellular for its entire lifecycle, 

and second because it has a long latent period between inoculation and symptom 

development suggesting that responses do not have highly regulated timings.  The 

published data on this pathosystem have focused on a few selected defence-related 
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genes and others found to be differentially expressed (Adhikari et al., 2007; Ray et al., 

2003).   

The aim of the experiments reported in this thesiswas to find a potential 

marker for resistance or susceptibility that could be used to phenotype whether a 

wheat line was resistance or susceptible using an easily identifiable gene or protein.  

This aim was similar to that of Ray et al. (2003) and Adhikari et al. (2007).  The 

hypothesis here is that genes normally upregulated in resistant responses towards 

biotrophic pathogens will be upregulated during a susceptibility response to M. 

graminicola, as it appears that a response similar to the resistance response against 

biotrophs is activated during susceptibility towards M. graminicola (Deller et al., 2011). 

It was expected that genes associated with cell death and senescence would be 

differentially regulated at later time points of a compatible interaction when the plant 

cells start to necrose as the pathogen colonises the leaf and the tissue dies. It was also 

predicted that strongly resistant varieties would show a lesser response than strongly 

susceptible varieties, and weakly resistant varieties would respond somewhere in the 

middle. 

The accumulation of TaMPK3 was analysed in different variety/isolate 

combinations to test if the same pattern emerged  as that  found by Rudd et al. (2008) 

in which TaMPK3 accumulated during two compatible interactions but not in an 

incompatible interaction.  It was predicted that TaMPK3 would not accumulate during 

an incompatible interaction, but would accumulate to an intermediate level in the 

varieties with intermediate levels of resistance. 

The varieties chosen for study have known resistances conferred by specific Stb 

genes.  Arraiano and Brown (2006) tested 238 European wheat lines in detached leaf 

box tests to ascertain which specific resistances they have.  Stb15 was found to be the 

most common with 142 displaying specific resistance to isolate IPO88004.  This was 

followed by Stb6 which was found in 43 lines tested.  Resistance to septoria tritici 

blotch (STB) is a quantitative trait although the difference between responses to 
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virulent and avirulent isolate are highly distinct in the cases of Stb6, Stb15 and a few 

other genes (Arraiano et al., 2007; Brading et al., 2002).  In these experiments, four 

varieties have the Stb6 gene, Arina, Flame, Poros and Cadenza.  Longbow and Avalon, 

both of which have Stb15 but not Stb6, were chosen as highly susceptible varieties to 

the isolate IPO323.  The varieties with Stb6 show varying levels of resistance to 

IPO323, Flame and Arina are strongly resistant whereas Poros and Cadenza show a 

more weakly resistant response (Arraiano and Brown, 2006). The varieties Courtot and 

Longbow were chosen to test the interaction with IPO88004.  Courtot has Stb9 but not 

Stb15 and is therefore susceptible to IPO88004, whereas Longbow has Stb15 and is 

resistant to IPO88004.   In field trials of UK varieties, the presence of the Stb6 gene 

explains a significant proportion of the variation in levels of STB; it may confer a 

partial resistance, although the mechanism by which this could operate is unknown 

(Arraiano et al., 2009).   

 

4.2 Experimental design 

Full details of materials and methods are described in chapter 2. 

 

4.2.1 Selection of genes of interest 

A list of 11 candidate wheat gene targets that are hypothesised to play a role in the 

infection process of M. graminicola were selected from previous studies of M. 

graminicola and from studies of biotrophic pathogens (table 4.2).  Meta-analysis of 

these genes is fully described in section 2.5.4 (Tufan et al. 2012).  

 

4.2.2 Gene expression analysis of wheat genes 

The varieties Longbow, Flame, Avalon, Cadenza, Arina and Poros were inoculated with 

the isolate IPO323.  The varieties Longbow and Courtot were inoculated with isolate 

IPO88004.  Mock inoculations were also carried out in which the leaves were 

inoculated with the water and Tween 20 solution only (section 2.2).  Three leaves were 
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sampled for each interaction at 0.5, 1, 3, 7, 10 and 14 days after inoculation according 

to the linear infection assay described by Keon et al. (2007). Mock-inoculated leaves 

were also sampled at each timepoint.  The leaves sampled at each timepoint were 

pooled.  Three biologically replicated experiments were carried out at different times 

with each isolate. In total, 12 replicates were set up at different times.  The replicates 

chosen for analysis all showed macroscopic necrosis at 14 dai. RNA was extracted 

using the Trizol (Invitrogen, Carlsbad, CA, USA) method for experiments with IPO323 

and Qiagen RNeasy kits (Qiagen, Valencia, USA) for experiments using IPO88004 

following the manufacturer’s protocol (section 2.5.1).  cDNA synthesis was carried out 

using Invitrogen Superscript III (Invitrogen, Carlsbad, CA, USA)  following the 

manufacturer’s protocol (section 2.5.2). 

qPCR reactions were carried out using the following cycle: 95 ˚C for 10 

minutes; followed by 40 cycles of denaturation at 95 ˚C for 30 sec, annealing at 56 ˚C 

for 30 sec and extension at 72 ˚C for 30 sec.  Immediately after this a melt curve 

analysis was carried out to check that all samples had a similar melting temperature 

by raising the temperature slowly from 65 ˚C to 90 ˚C and measuring the 

fluorescence.  All samples had two technical repetitions.  Quantification cycle (Cq) 

values were normalised to three reference genes (table 2.2).   Primer efficiencies for 

the genes of interest were tested for each primer pair and were between 90 and 115 

%, equivalent to amplification values from 1.89 to 2.04 (table 4.1).  

 

Table 4.1 Primer amplification values for genes of interest. 

 

 

Gene of interest Amplification value 

β-1,3-glucanase 1.93 

Chitinase 1.90 

Chorophyll a/b 2.05 

Cysteine protease (Sag12) 2.04 

LOX 2.04 

mlo3 1.98 

TaMPK3 2.01 

PAL 1.99 

PDI 1.94 

Peroxidase 1.90 

PR1 1.89 
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Data were analysed using restricted maximum likelihood (REML) to fit a linear 

mixed model.  The mean amount of RNA of the reference genes was standardised to 0 

to avoid large but irrelevant differences between the mean level of transcription of 

each gene.  The model fitted was Treatment.Type.Time.Compatibility.Variety where 

Type was either the reference genes or the gene of interest and Treatment was either 

inoculation with M. graminicola or mock inoculation. Compatibility was either the 

resistant or susceptible response of the variety/isolate combination.   Predicted means 

were calculated for each combination of Treatment with Variety and Type at each 

Time. 

The effect of infection by M. graminicola on gene expression was calculated 

from the Cq values.  For each gene, Cq is equal to the logarithm of the quantity of 

cDNA in the sample to the base of the amplification value (table 4.1). First, Cq for the 

target gene in an inoculated sample (Cqti) was standardised by comparing it to the 

mean Cq for the reference genes in that sample (Cqri).  Likewise, Cq for the target 

(Cqtm) and reference genes (Cqrm) were calculated for the relevant mock-inoculated 

sample.  The four Cq values were estimated separately and the logarithm of the fold 

increase in gene expression was proportional to (Cqti - Cqtm) – (Cqri + Cqrm) = ΔCq.  

The standard error of ΔCq was calculated from the variance-covariance matrix of the 

predicted means as the square root of the sum of the four variances and six 

covariances of the Cq estimates.  Calculation of ΔCq by the method described here is 

based on the assumption that all genes have the same amplification values.  This is 

approximately correct because the amplification values for the 11 genes varied within 

a narrow range from 1.89-2.05.  While comparisons between treatments of ΔCq for 

the same target gene are exact, comparisons involving different target genes are 

approximate. 
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4.2.3 Wheat mitogen-activated protein kinase 3 analysis 

Amounts of the TaMPK3 protein were quantified in the varieties Longbow, Flame, 

Avalon, Cadenza, Arina and Poros inoculated with the isolate IPO323.  The varieties 

Longbow and Courtot were inoculated with isolate IPO88004 in separate experiments.  

Three leaves were collected for protein analysis on the following days after inoculation: 

1, 3, 7, 10, 11, 14, 15, 16 and 17.  Mock inoculated leaves were taken at 1, 10 and 17 

days after inoculation, to cover the beginning, middle and end of the infection process. 

Protein was extracted by grinding frozen tissue in extraction buffer as described 

in Rudd et al. (2008). A Bradford assay was used to quantify the amount of protein in 

each sample.  Samples were mixed with a loading dye so that all samples contained an 

equal amount of protein and stored at -20 ˚C.  Approximately 120 μg of protein was 

separated on 10 % SDS-PAGE gels and wet blotted onto Hybond ECL nitro cellulose 

membrane (GE Healthcare Life Sciences, Little Chalfont, Bucks, UK).  Membranes were 

blocked overnight at 4 °C in TBS-Tween pH 7.3 with 5% skimmed milk powder.  The 

MAPK-specific antibody TaMPK3-N at 1:500 dilution was used against leaf extracts at 

room temperature for 90 minutes.  The membranes were washed and 

chemiluminescent detection using Amersham ECL Plus Western Blotting Detection 

Reagents was carried out in accordance with the manufacturer’s instructions (GE 

Healthcare Life Sciences, Little Chalfont, Bucks, UK) (see section 2.6.3). 

 

4.3 Results 

4.3.1 Selection of genes to be investigated 

A list of 11 candidate wheat gene targets that are hypothesised to play a role in the 

infection process of M. graminicola were selected from previous studies of M. 

graminicola and from studies of biotrophic pathogens (Adhikari et al., 2007; Bolton et 

al., 2008; Ray et al., 2003; Rudd et al., 2008; Shetty et al., 2009) (table 4.2).  A 

hierarchical cluster analysis was performed to identify how these genes performed 

during other host pathogen interactions.  In general, the analysis supports the list of 
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chosen candidates as genes that have shown differential expression in host-pathogen 

interactions (figure 4.1).  The data sets analysed were mostly from biotrophic 

interactions, but also included early stages of infection with M. grisea, M. oryzae, and 

Fusarium pseudograminearum, all of which are non-biotrophic pathogens.  The data 

show strong support for a basal defence response in many of the interactions involving 

chitinase, PR1 β-1,3-glucanase, peroxidase and mlo genes.  Genes involved in 

senescence were not strongly differentially expressed in most of these pathosystems, 

but the predicted genes for the cysteine protease and chlorophyll a/b binding 

precursor group together suggesting that their transcription responds similarly to 

environmental stimuli.  The interactions involving very early timepoints (6 hours and 

12 hours) grouped together and showed very little change in gene expression of any of 

the genes analysed.  The 7 dai timepoint of a compatible rust interaction had a lineage 

that stands slightly apart from the other data sets, showing downregulation of many 

defence related genes and the cysteine protease.  Overall this analysis provides 

support for testing the selected genes, as they showed differential expression between 

different interactions and over time. 
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Table 4.2 List of the genes of interest and their GenBank accession number and most likely wheat Affymetrix code and primer sequences. (Pers. 

comm., Dr Jason Rudd, Rothamsted Research, Harpenden, UK) 

Gene of Interest 

GenBank 

Accession 
Number Wheat Affymetrix code Expect value Reference Left Primer 5'-3' Right Primer 5'-3' 

 PR-1 

AY258615.1 Ta.278.1.S1_x_at 0 

Ray et al., 2003 ACGTACGCCAACCAGAGGATCA GCATGCGATTAGGGACGAAAGAC Ta.278.1.S1_at 0 

Chitinase 2 

CD490414 Ta.2278.3.S1_x_at 0 
Bolton et al., 
2008 GAGCAGCCTCACTTGCTAGG ATACGCATGCCGAACGTTTA   Ta.2278.2.S1_at 0 

Inducible PAL AY005474 Ta.28736.1.S1_at 0 
Adhikari et al., 
2007 GTGTCTCCATGGACAACACCCG TCAATGGCCTGGCACAGAGC 

Protein disulfide 
isomerase  

AF262980 Ta.74.1.S1_at 0 

Ray et al.,  2003 TTATGACTTTGGCCACACCG CGAGCTCATCAAATGGCTTG   Ta.796.1.S1_x_at 0 

Peroxidase 

X85229    Ta.24715.1.S1_at 0 Adhikari et al., 
2007 CCAGCACGACACGTGAATG CATGATTTGCTGCTGCTCGTA   Ta.22564.1.S1_at 1.00E-168 

 TaMPK3  AF079318.1  Ta.236.1.S1_at 0 Rudd et al., 2008 TACATGAGGCACCTGCCGCAGT GGTTCAACTCCAGGGCTTCGTTG 

 Lipoxygenase  AY253443 

Ta.23763.1.S1_at 0 

Ray et al.,  2003 GGGCACCAAGGAGTACAAGGA CGATCACCGACACTCCAATG Ta.28171.1.S1_at 1.00E-18 

Cysteine protease 
(Sag12 homology)  CA680100  TaAffx.81921.1.S1_at 0 

Rudd (pers. 
comm.) GTTCTCGGACCTCACCAGCGAA ACGCCCACCAACAACCGCAT 

mlo CA745732 

Ta.27345.1.S1_at 0 Rudd (pers. 
comm.) CCTACCACTATACGCCGTCGTCTCC CACCGACGAGTTTGCCCGTGTAT TaAffx.50046.1.S1_at 1.00E-158 

β-1,3-glucanase Y18212.1 

Ta.28.1.S1_at 0 Shetty et al., 
2009 AACGACCAGCTCTCCAACAT GTATGGCCGGACATTGTTCT Ta.8584.1.S1_at 0 

Chlorophyll a/b 
binding precursor U73218.1 Ta.22984.1.S1_x_at 0 

Rudd (pers. 
comm.) CCTTGGTGAGGCCCGAGTCACTAT TTGGCAAAGGTCTCGGGGTC 

http://www.plexdb.org/modules/PD_probeset/annotation.php?genechip=Wheat&sequence_id=Ta.278.1.S1_at
http://www.plexdb.org/modules/PD_probeset/annotation.php?genechip=Wheat&sequence_id=Ta.28171.1.S1_at
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Key: 

Figure 4.1 Hierarchical cluster analysis of the eleven chosen genes of interest.  Red squares 

indicate upregulation and green squares indicate downregulation in the specific interaction.  

Accessions for experiments used for analysis were: TA9 (Coram et al., 2008b), TA11 (Coram et 

al., 2008a), TA24 (Tufan et al., 2009), TA25 (Bozkurt et al., 2010), TA31 (Desmond et al., 

2008) and TA32 (Bolton et al., 2008).    
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Abbreviation Pathogen and interaction studied 

Mg NHR Magnaporthe grisea nonhost  

Mo PRa M. oryzae   Partially resistant a 

Mo PRb M. oryzae   Partially resistant b 

Fp Fusarium pseudograminearum Compatible 

Pst yr39_S Puccinia striformis _Yr39 compatible 

Pst Yr39_R P. striformis _Yr39 incompatible 

Pst yr5_S P. striformis _Yr5 compatible 

Pst Yr5_R P. striformis _Yr5 incompatible 

Pt S P. triticiana compatible  

Pt Lr34_R P. triticiana _Lr34 incomaptible 

Pt Lr1_R P. triticiana_Lr1 incompatible  

Pst Yr1_R P. striformis _Yr1 incompatible 

Pst Yr1_S P. striformis _Yr1 compatible 

Bgt S Blumeria graminis f.sp. tritici compatible 

 NB. Timepoints are specified on the diagram
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4.3.2 Gene expression analysis of wheat genes. 

The timepoints at which the samples were taken were chosen to cover the period from 

inoculation to when necrosis first starts.  Once necrosis begins, the RNA in the leaf 

degrades and is not suitable for analysis.  Figure 4.2 shows symptoms when the final 

samples were collected on day 14 after inoculation.   The resistant varieties Arina, 

Cadenza, Flame and Poros remained green throughout the course of the experiment. 

The resistant variety Longbow inoculated with IPO88004 showed some necrosis at 14 

dai, but no pycnidium development, even by 21 dai. 

When the Cq data for plants inoculated with either of the isolates were analysed 

as a set, taking into account the compatibility between the isolate and the variety, it 

was found that isolate had little effect on the outcome and therefore, all the data, 

regardless of the isolate used for inoculation, was analysed together. Inoculation with 

M. graminicola had a highly significant effect on gene expression (table 4.3). The 

Treatment.Type term identifies whether or not inoculation with M. graminicola affects 

the gene of interest.  If Treatment.Type is significant the gene of interest is 

 

Figure 4.2 Example of symptoms on selected varieties 14 days after inoculation 

with either IPO323 or IPO88004 R=Resistant S=susceptible. 

IPO323 IPO88004
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upregulated (or downregulated) relative to the reference genes in the inoculated 

plants compared to the mock inoculated plants, as indicated by a large ΔCq value.  

The Treatment.Type effect is related to the average value of ΔCq across Varieties and 

Times.  The genes that were significantly affected by inoculation with M. graminicola, 

as indicated by a significant Treatment.Type effect in table 4.3 were; chitinase, LOX, 

mlo, PAL, peroxidase, PR1 and β-1,3-glucanase.   

 

For five of these genes more complex interactions which include Treatment and 

Type as fixed terms had a significant effect on Cq values (table 4.4).  There was a 

significant effect of compatibility on expression of chitinase (Trt.Type.Comp effect in 

table 4.4; P=0.04)) because on average more transcript accumulated in compatible 

interactions than in incompatible ones across varieties and time points (figure 4.3).  

There was a significant difference in the temporal pattern of expression of mlo in 

compatible and incompatible interactions (Trt.Type.Time.Comp effect in table 4.4; 

Gene 
Wald 

statistic d.f. P   

Chitinase 63.12 1 <0.001 *** 

Chlorophyll a/b precursor 2.03 1 0.2 ns 

Cysteine protease 1.19 1 0.3 ns 

LOX 5.22 1 0.02 * 

mlo 56.86 1 <0.001 *** 

PAL 31.65 1 <0.001 *** 

PDI 0.6 1 0.4 ns 

Peroxidase 174.1 1  <0.001 *** 

PR1 135.96 1 <0.001 *** 

TaMPK3 3.21 1 0.07 ns 

β-1,3-glucanase 106.26 1 <0.001 *** 
Table 4.3  The effect of inoculation with M. graminicola on the genes 

tested: statistical significance of Trt.Type effect, where Treatment 

(Trt) is either M. graminicola or mock inoculation and Type is either 

the reference gene or the gene of interest.  This indicates the size of 

the effect of inoculation with M. graminicola on the expression of the 

gene of interest relative to a set of reference genes. P=chi-squared 

probability *0.05>P≥0.01, **P0.01>P≥0.001, ***P<0.001.  Lox= 

Lipoxygenase, PAL= Phenylalanine lyase, PDI= Protein disulfide 

isomaerase. 
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P=0.009) with mlo more upregulated in the susceptible varieties at 7 and 14 dai than 

in the resistant varieties (figure 4.4).  

 

Figure 4.3 Expression of chitinase in either resistant or 

susceptible varieties inoculated with M. graminicola, averaged 

over time and variety.  Significant differences compared to the 

mock inoculated control: **P0.01>P≥0.001, ***P<0.001.Error 

bars =±1 s.e of predicted means. 
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Interaction d.f. Chitinase mlo Peroxidase PR1 β-1,3-glucanase 

Trt.Type.Comp 1 4.2** 1.5 0.1 4.8* 2.3 

Trt.Type.Time 5 15.6** 9.2 23.3*** 60.5*** 25.8*** 

Trt.Type.Time.Comp 5 8.6 15.4*** 6.3 4.7 18.1** 

Trt.Type.Variety.Comp 6 4.1 3.8 19.0** 22.2*** 3.4 

Trt.Type.Time.Variety.Comp 30 37.1 28.2 64.2*** 69.2*** 49.4* 

 

Table 4.4 Wald statistics and their statistical significance for effects which include the Trt.Type 

interaction indicating a difference between inoculated and mock-inoculated plants in the 

expression of the genes of interest relative to a set of reference genes. Trt=Treatment 

Comp=compatibility.  Significance level of chi-squared probability: *0.05>P≥0.01, 

**P0.01>P≥0.001, ***P<0.001. 
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Peroxidase, PR1 and β-1,3-glucanase have several significant interaction terms, 

but all show a significant interaction between all the factors Time, Treatment, Variety, 

Type and Compatibility (table 4.4) demonstrating that there is significant variation in 

the expression of these genes, over time and varieties and dependent on whether the 

interaction was compatible or incompatible, independent of the isolate used for 

inoculation. 

β-1,3-glucanase (figures 4.5) showed significant differential regulation between  

susceptible and resistant varieties at all timepoints.  The relative expression of β-1,3-

glucanase in inoculated plants changes significantly over the time course 

(Treatment.Type.Time in table 4.4; P=<0.001).  When the effect of resistance or 

susceptibility to the isolate is introduced (Treatment. Type.Time.Compatibility in table 

4.4; P=0.003 and figure 4.5) the effect remains significant.  Susceptible varieties 

accumulated more of the transcript at 7 and 14 dai than the resistant varieties (figure 

4.5).   

Peroxidase (figures 4.6) was significantly differentially regulated at all 

timepoints, although there was no effect of compatibility indicating that peroxidase 

 
Figure 4.4 Expression of mlo in either resistant or susceptible varieties inoculated 

with M. graminicola over time determined by qPCR. Significant differences 

compared to the mock inoculated control: *0.05>P≥0.01, **P0.01>P≥0.001, 

***P<0.001. Error bars =±1 s.e of predicted means. 
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was produced in response to inoculation rather than as a resistance or susceptibility 

response.  There was substantial variation in the level of expression in inoculated 

 

Figure 4.5 Expression of β-1,3 glucanase in either resistant or susceptible 

varieties inoculated with M. graminicola over time determined by qPCR.  

Significant differences compared to the mock inoculated control: *0.05>P≥0.01, 

**P0.01>P≥0.001, ***P<0.001. Error bars =±1 s.e of predicted means 
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Figure 4.6 Expression of peroxidase in leaves inoculated with M. 

graminicola, irrespective of the compatibility of the isolate used 

determined by qPCR.  Significant differences compared to the averaged 

mock inoculated controls **0.01>P≥0.001, ***P<0.001. Error bars =±1 

s.e. 
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plants over time (Trt.Type.Time in table 4.4; P=<0.001) with the highest levels of 

transcript accumulation at 7 dai (figure 4.6).   

Levels of PR1 were differentially regulated at all timepoints (figure 4.7).  The 

relative expression of PR1 in inoculated plants changes significantly over the time 

course (Trt.Type.Time in table 4.4; P=<0.001) with more transcript accumulating at 7 

dai (figure 4.7).   

Figure 4.8 shows the fold change over the mock inoculated samples for 

peroxidase, PR1 and β-1,3-glucanase for the most resistant (Flame inoculated with 

IPO323) and most susceptible (Longbow inoculated with IPO323) interactions.  Current 

evidence suggests that Flame only has Stb6 and Longbow only Stb15 (Arraiano and 

Brown, 2006).  There is a clear differential in the gene expression between a resistant 

and susceptible variety.  The expression of all three genes is consistently higher from 

7 dai onwards in the susceptible variety Longbow than in the resistant one, Flame.  At 

7 dai all three genes are significantly upregulated in Longbow but not in Flame, 

suggesting that this timepoint may have some biological significance.  Expression of 

peroxidase, PR1 and β-1,3-glucanase in Flame shows very little change over the mock 

 

Figure 4.7 Expression of PR1 in leaves inoculated with M. graminicola, 

(predicted mean over varieties and isolates) determined by qPCR. 

*0.05>P≥0.01, **P0.01>P≥0.001 Error bars =±1 s.e of predicted 

means. 
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inoculated samples at the 7, 10 and 14 dai timepoints, but the peroxidase gene is 

significantly upregulated at 0.5 dai and 1 dai.  

Figures 4.9-4.11 compare the expression levels of peroxidase, PR1 and β-1,3-

glucanase over the eight interactions over time.  There was a great deal of variation in 

the transcript accumulation for all genes between varieties and at all timepoints.  

Moreover, gene expression was variable between replicates, giving large standard 

errors.  Overall, the expression of the genes is strong at 7 dai followed by 14 dai.   

Expression of β-1,3 glucanase was strongest at 7 dai followed by 14 dai (figure 

4.9).  Although the average value of relative expression of β-1,3-glucanase over the 

time-course did not vary significantly between varieties (Treatment.Type.Comp Variety 

in table 4.4; P=0.753), there were marked differences in the change in expression of 

β-1,3-glucanase between timepoints in different varieties 

(Treatment.Type.Time.Comp.Variety in table 4.4; P=0.014 and figure 4.9).  Across the 

varieties tested with both isolates over the time course, there was no clear pattern to 

differentiate between resistant and susceptible varieties using β-1,3 glucanase as a 

marker. This does not mean that the levels of β-1,3 glucanase accumulation are not 

biologically significant.   

Peroxidase was most strongly upregulated at 7 dai followed by 10 dai (figure 

4.10).   The temporal pattern of peroxidase expression was strongly influenced by the 

variety (Trt.Type,Time.Comp.Variety in table 4.4; P=<0.001 and figure 4.10), 

implying that peroxidase gene expression does not differ consistently between 

resistant and susceptible varieties.   

Expression levels of PR1 were highest at 7 dai, followed 14 dai (figure 4.11).  

More transcript accumulated in the susceptible varieties averaged over time and 

varieties (Trt.Type.Comp in table 4.4; P=0.028), but there was no clear differential 

between susceptible and resistant varieties once separated into independent varieties 

at either early or late timepoints (figure 4.11). 
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Figure 4.8 Expression levels (ΔCq) of A β-1,3-glucanase, B Peroxidase and C 

PR1 in the varieties Flame (highly resistant) and Longbow (highly susceptible) 

inoculated with IPO323 as determined by qPCR.  Error bars are ±1 s.e. of the 

predicted mean (explained in section 4.2.2) Significant differences from 

mock-inoculated control: *0.05>P≥0.01, **P0.01>P≥0.001, ***P<0.001.  

Fitted model: Treatment.Type Time.Variety.Compatibility. 
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Figure 4.9 Expression (ΔCq) of β-1,3-glucanase over time.  Incompatible interactions are coloured blue and compatible interactions are red with M. 

graminicola isolate IPO323 or IPO88004.  Error bars are ±1 s.e. of the predicted mean (explained in section 4.2.2) Significant differences from mock-

inoculated control: *0.05>P≥0.01, **P0.01>P≥0.001, ***P<0.001.Fitted model: Treatment.Type Time.Variety.Compatibility. 
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Figure 4.10 Expression (ΔCq) of peroxidase over time.  Incompatible interactions are coloured blue and compatible interactions are red with M. 

graminicola isolate IPO323 or IPO88004.  Error bars are ±1 s.e. of the predicted mean (explained in section 4.2.2) Significant differences from mock-

inoculated control: *0.05>P≥0.01, **P0.01>P≥0.001, ***P<0.001. Fitted model: Treatment.Type Time.Variety.Compatibility. 
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Figure 4.11  Expression (ΔCq) of for PR1 over time.  Incompatible interactions are coloured blue and compatible interactions are red with M. 

graminicola isolate IPO323 or IPO88004.  Error bars are ±1 s.e. of the predicted mean (explained in section 4.2.2) Significant differences from mock-

inoculated control: *0.05>P≥0.01, **P0.01>P≥0.001, ***P<0.001.Fitted model: Treatment.Type Time.Variety.Compatibility. 

0.01

0.1

1

10

100

1000

10000

100000

1000000

0.5 1 3 7 10 14

M
e

an
 f

o
ld

 c
h

an
ge

*
*

**
**

*** ***

***

***

* *

***

*

***

***

*

**

***

***

Days after inoculation

PR1

0.1

1

10

100

1000

10000

100000

0.5 1 3 7 10 14

M
e

an
 f

o
ld

 c
h

an
ge

Arina

Avalon

Cadenza

Flame

Longbow

Poros

Courtot

Longbow

(Sus)

(Res)



100 
 

Gene expression and TaMPK3 protein accumulation 

 
4.3.2 Accumulation of the wheat mitogen activated protein kinase 3 protein 

Changes in the levels of TaMPK3 gene expression were not significant in the 

experiments in 4.3.1, although it was previously found to be upregulated in a 

compatible interaction involving the variety Avalon (Rudd et al., 2008).  TaMPK3 

expression was also upregulated in the resistant variety Cadenza, although to a lesser 

extent than in the compatible interaction (Rudd et al., 2008). 

 Western blots were used to assess the amount of the TaMPK3 protein that 

accumulated in each variety from 1 to 17 dai (figure 4.11 and 4.12). The whole 

timecourse of the experiment was run over two gels; days 1-10 and 11-16 and run at 

the same time; because of this, levels across varieties cannot be directly compared.     

All reasonable steps were taken to ensure that each set of gels were treated in exactly 

the same way.  The two gels were processed together in the same gel tank and then 

probed with the antibody in separate vials, which may account for the apparent rapid 

increase in TaMPK3 levels between days 10 and 11.  The two gels are shown side by 

side in figures 4.11 and 4.12.   The inset shows days 7-14 run on the same gel (from a 

second replicate) to give a more realistic indication of the change from days 10-11. 

The loading levels are indicated by the 60-kD region.  Very little difference in TaMPK3 

levels was seen between 1 and 10 dai in all varieties independent of the isolate used 

for inoculation (figures 4.11 and 4.12).  All varieties with the exception of Avalon 

showed little accumulation of TaMPK3 at 1 dai.  At 3 dai some TaMPK3 accumulated in 

both the treated samples and in the mock inoculated samples, indicating a response to 

either the experimental set up or environmental conditions.  In all treatments, levels 

of TaMPK3 remained fairly constant up to 10 dai.  Mock inoculated samples at 10 dai 

had the same levels of TaMPK3 as in inoculated leaves or slightly less (Avalon and 

Courtot). 

 The varieties inoculated with isolate IPO323 (figure 4.11) started to show 

differences in the accumulation of TaMPK3 from 11 dai onwards. The effect can be 

seen most strongly by comparing the 16 dai sample with the mock-inoculated sample 
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at the same timepoint.  In Avalon and Longbow, which are susceptible to IPO323 much 

more of the protein had accumulated in the treated sample than in the mock 

inoculated sample at 16 dai.  Avalon had a particularly high level of accumulation.  The 

level of TaMPK3 did not increase in the variety Longbow after 11 dai but still had much 

higher levels than in the mock inoculated sample at 16 dai.  The weakly resistant 

varieties, Poros and Cadenza, did show some accumulation of TaMPK3, especially 

Poros, which appeared to show an increase at 14 and 15 dai, before the level reduced 

again by 16 dai. The resistant varieties, Flame and Arina, showed little accumulation of 

TaMPK3 through the timecourse; although, from the second replicate of Flame shown 

in figure 4.11, there is an accumulation of the protein at 14 dai, by 16 dai there is no 

increase over the mock inoculated sample,   In the two varieties inoculated with 

IPO88004 the susceptible variety Courtot (figure 4.12), accumulated the TaMPK3 

protein gradually from 11 dai.  While the resistant variety Longbow did accumulate the 

protein there was no increase in comparison with the mock inoculated sample. 

 These results show that TaMPK3 protein accumulated during both compatible 

and incompatible interactions between M. graminicola and wheat in response to 

different isolates on different varieties.  In the susceptible varieties TaMPK3 

accumulated to greater levels than in the resistant and weakly resistant varieties and 

at the late stages of the interaction showed greater levels than in the mock inoculated 

samples.  The resistant and weakly resistant varieties also accumulated TaMPK3 to 

differing levels, although by 16 dai none of these varieties showed greater 

accumulation than in the mock inoculated samples.  The accumulation appears to have 

been independent of the level of gene expression in these experiments because 

TaMPK3 expression levels were not significantly different between varieties (tables 4.3 

and 4.4).  
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Figure 4.12 Western blots showing TaMPK3 accumulation in Avalon, Longbow, 

Cadenza, Poros. Arina and Flame inoculated with IPO323 over a timecourse of 

17 days.  Samples were loaded over two gels.  The loading control was stained 

with Coomassie blue in the 60-kD region. X-axis = dai.  Anti-3-N=kinase 

specific antibody to TaMPK3 recognising the N terminus of the protein.  Boxes to 

the right show samples from days 7-14 after inoculation from a second replicate 

loaded on the same gel. 

 

Anti-3-N

Loading

Anti-3-N

Loading

L
o
n
g
b
o
w

A
v
a
lo

n
Anti-3-N

Loading

Anti-3-N

Loading

Susceptible Varieties

F
la

m
e

A
ri
n
a Anti-3-N

Loading

Anti-3-N

Loading

Resistant Varieties

P
o
ro

s
C
a
d
e
n
z
a

Weakly susceptible varieties



103 
 

Gene expression and TaMPK3 protein accumulation 

 
 

 

4.4 Discussion 

Currently, there is no reliable method for identifying specific resistances by phenotype 

in plants inoculated with M. graminicola; by contrast resistance to rust is well 

correlated with infection type and latent period (Ma and Singh, 1995) and resistance to 

mildew is well defined on an infection type scale (Moseman, 1965). This is important 

for understanding how disease is caused, but also in breeding programmes where the 

early, quick and reliable identification of resistant lines is of commercial importance.  

The experiments described here investigated wheat gene expression, using several 

genes which are known to be differentially regulated in both compatible and 

incompatible interactions with other pathogens.  The accumulation of TaMPK3 protein 

was studied to test the pattern of accumulation in the eight variety by isolate 

 
Figure 4.13 Western  blots showing TaMPK3 accumulation in Longbow and Courtot 

inoculated with IPO88004 over a timecourse of 17 days.  Samples were loaded over 

two gels.  The loading control wa stained with Coomassie blue in the 60-kD region.  

X-axis = dai.  Anti-3-N=kinase specific antibody to TaMPK3 recognising the N 

terminus of the protein.  Boxes to the right show samples from days 7-14 after 

inoculation from a second replicate loaded on the same gel. 
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interactions used for gene expression analysis and to test that this response is not 

specific to infection by IPO323 (Rudd et al., 2008).   

 The gene expression analysis presented here used a linear mixed model to 

analyse the Cq values in the samples in comparison with the reference genes.  

Normalisation of the Cq value to the reference genes took place after the statistical 

analysis, to allow the accurate calculation of the fold change in the expression level.  

This method improves the accuracy of statistical analysis, using a widely available 

method of calculation without the need for specialist software, and allows standard 

errors to be calculated by conventional means. 

Study of the compatible interactions between two M. graminicola isolates and 

two different gene-for-gene interactions using several varieties allows comparisons to 

be made between the expression of the 11 genes chosen for analysis in the different 

interactions over time.  The biggest effect in these experiments was that of the M. 

graminicola inoculum; simply inoculating the plants with M. graminicola caused 

differential regulation in 7 out of the 11 genes tested compared with the mock 

inoculated control plants.  The isolates used were not found to have an effect on gene 

expression, rather it was the compatibility of the interaction that affected gene 

expression and was therefore used as a factor in the model. There was no evidence 

that there was a distinct response specifically to either a virulent or an avirulent 

isolate.  Across the varieties, the response to inoculation was varied and overall the 

expression levels of the genes tested in the resistant varieties were not less than those 

of the susceptible varieties.   

β-1,3-glucanase was differentially expressed across the timecourse in all 

varieties and differences were seen between compatible and incompatible interactions. 

Shetty et al. (2009) found that in wheat inoculated with M. graminicola, β-1,3-glucans 

induced the expression of a wheat apoplastically located endo-1,3-beta glucanase 

gene and induced callose deposition.  It was proposed that these responses inhibited 

STB symptom development of a virulent isolate at 15 dai.  This recognition of β-1,3-
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glucans resembles a PAMP-pathogen recognition receptor interaction (Zipfel & Felix, 

2005).  β-1,3-glucans from M. graminicola must be recognised by the plant, 

presumably by a receptor which has yet to be discovered in wheat (Orton et al., 

2011).  If β-1,3-glucanase has a role in the interaction between wheat and M. 

graminicola, it is as yet unclear what this might be. From my experiments and the 

evidence from previous investigations, it appears that using β-1,3-glucanase as a 

marker for either resistance or susceptibility of wheat lines would be ineffective. 

Upregulation of the gene occurs in both compatible and incompatible interactions with 

M. graminicola so it may be a general PAMP defence response. 

The results here show that the susceptible varieties expressed β-1,3-glucanase 

more than the resistant varieties, but the pattern seen was highly variable and no 

pattern emerged by separating the data by variety.  Large differences between 

replicate tests have been seen in other experiments investigating the expression of 

various defence-related genes in interactions with M. graminicola.  Ray et al. (2003) 

showed that although trends were similar between replicates, induction of various PR 

genes, including β-1,3-glucanase, varied between replicates indicating that the timing 

of the interaction between M. graminicola and the host is inherently variable.  An 

experiment testing β-1,3-glucanase transcription up to 15 dai only investigated one 

compatible and one incompatible interaction (Shetty et al., 2009); this renders it 

difficult to make general conclusions about the role of Stb genes because it is not 

possible to tell if it is the reaction of a single variety or more generally of the gene.  In 

the experiments presented here, using several varieties with two isolates, the isolate 

used does not have an effect on gene expression and it is the compatibility of the 

interaction which is significantly associated with the response of the wheat variety. 

In the experiments reported here, chitinase was more upregulated in the 

susceptible than the resistant varieties, although it accumulated significantly in both. 

This is consistent with other experiments (Shetty et al., 2009), although in some 

experiments, very little transcript accumulated during compatible interactions 
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(Adhikari et al., 2007).  The role of chitinase during the interaction between wheat and 

M. graminicola is unclear; it may acting in a similar way to β-1,3-glucanase as these 

genes often show transcription levels that follow the same pattern (as shown by the 

hierarchical cluster analysis in figure 4.1).  Marshall et al. (2011) reported an M. 

graminicola secreted protein, Mg3LysM, that has chitin binding properties.  This 

protein also appears to protect the fungus from hydrolysing enzymes.  Mg3LysM is 

only expressed during the symptomless phase of growth, so it could  be hypothesised 

that the increase in chitinase seen in susceptible varieties is mostly due to an increase 

in the presence of chitin during macroscopic symptom development, although this 

would not take into account why there is no effect of time on this interaction. 

 Peroxidase has been reported to be associated with resistance to  pathogens 

(Hiraga et al., 2001; Thordal-Christensen et al., 1997).  Here, expression of 

peroxidase was differentially regulated over time and between the varieties and 

compatibilities over time.  There was high variability between replicates with no clear 

pattern of expression.  The variability between varieties has been noted in previous 

investigations; Adhikari et al. (2007) showed that peroxidase transcript accumulated 

to high levels in one of the resistant varieties investigated at 1-3 dai, but in another 

resistant variety and two susceptible varieties investigated, the transcript 

accumulation was low at all timepoints.  Shetty et al. (2003) found that H2O2 

accumulation was not well correlated with accumulation of host peroxidase, suggesting 

that the H2O2 may be partly or wholly produced by the pathogen, not the plant, 

perhaps to advance the host cell death needed for susceptibility; in the experiments 

reported here the peroxidase gene used was specific to the plant.  Peroxidase can be 

involved with both the production and scavenging of H2O2.  It has also been proposed 

to aid lignification and cross-linking of cell wall components during pathogen resistance 

reposnses (Hiraga et al., 2001).  To date these effects have not been reported in the 

interaction with M. graminicola; the nature of its involvement in the wheat-M. 

graminicola interaction is unclear.  More investigation would be needed to determine if 



107 
 

Gene expression and TaMPK3 protein accumulation 

 
expression of this peroxidase gene is a marker for resistance at 7 dai.  Other 

peroxidases could be investigated and further investigation of the staining patterns of 

H2O2 may allow resistant or susceptible varieties to be differentiated early on in the 

infection process.  

Shetty et al. (2003) demonstrated that different varieties constitutively produce 

different levels of peroxidase; the resistant variety Stakado produced more than the 

susceptible Stevin.  This may have an effect on the amount of H2O2 produced in planta.  

Comparisons between the two varieties inoculated with the same isolate showed that 

although peroxidase transcript accumulation was higher in the resistant variety 

compared to the susceptible variety, the change in the level of peroxidase was greater 

in the susceptible variety.  There may be a biological threshold for transcript 

accumulation which is different in different varieties.  These experiments and the 

experiment presented here show that the production of peroxidase per se may not be 

directly related to susceptibility.  Comparing Longbow with Flame inoculated with 

IPO323, however, shows that Flame accumulates higher levels of peroxidase between 

1-3 dai and Longbow accumulates more at 7-14 dai, implying that temporal variation 

in the expression of peroxidase may be related to susceptibility.  Even in the resistant 

varieties, Flame and Arina, there was a quantitative difference in the amount of 

peroxidase transcript, which means that if peroxidase transcription plays a role in the 

host response to M. graminicola, the amount of transcript produced may be important.   

PR1 is often used as a marker for a disease resistance. It is upregulated in both 

incompatible and compatible interactions, although the response tends to be faster 

and stronger response in incompatible interactions (HammondKosack & Jones, 1996).  

The experiments here showed that there was differential regulation between virulent 

and avirulent isolates and between different varieties.  As with the other genes tested 

the variability was high and there was no clear pattern to differentiate between 

resistant and susceptible varieties.  Ray et al. (2003) showed that PR1 was 

upregulated strongly in both resistant and susceptible interactions with M. graminicola 
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at 12 hai (the study did not include timepoints at the start of macroscopic symptom 

development).  Here, PR1 was not upregulated strongly at the early timepoints in any 

of the varieties, but showed much greater upregulation at 7 dai.  Adhikari et al. (2007) 

demonstrated strong induction of PR1 in incompatible interactions but little PR1 

response in susceptible cultivars.  The experiments here showed that the susceptible 

cultivars do accumulate PR1.  PR1 does not appear to be a good indicator for either 

resistance or susceptibility as it shows high variability both within and between 

experiments. 

Of the other genes tested only chitinase, LOX, mlo and PAL were found to be 

significantly affected by treatment with M. graminicola inoculum.  The evidence did not 

support the hypothesis that resistant varieties accumulate less transcript of these 

genes than susceptible varieties, with the weakly resistant varieties showing an 

intermediate response.  However, overall chitinase was more upregulated in the 

susceptible varieties than resistant varieties and mlo showed significant upregulation 

in susceptible varieties at 7 and 14 dai, indicating that there is some effect of 

compatibility.  The pattern of mlo transcript accumulation was similar to that of  β-1,3-

glucanase over time and separated by compatibility, indicating that the expression 

patterns of these genes may be biologically significant, and that these defence genes 

may be regulated by the same mechanisms to cause resistance or susceptibility within 

the plant.  Two of the genes tested, β-1,3-glucanase and peroxidase, showed similar 

patterns of expression in response to both the tested isolates, suggesting that Stb6 

and Stb15 may function in a similar way with regards to resistance.  It also suggests 

that a compatible interaction may induce expression of β-1,3-glucanase and 

peroxidase in a similar way.   

The transcription profiles of the three genes with the most significant results 

shows a large upregulation in gene transcript at 7 dai, before macroscopic symptoms 

appear on the leaves.  It is possible that at 7 dai the plant responds to infection by the 

fungus as its biomass starts to increase.  This could be the point at which resistance 
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and susceptibility begin to be differentiated; more investigation would be needed to 

investigate this further using more isolates and varieties with different Stb genes.   It 

has been proposed that a contributing factor to resistance may be the failure of the 

fungus to trigger host cell death that is a feature of the compatible interaction (Rudd 

et al 2008; Hammond-Koasack and Rudd 2008); this could arise from an active 

suppression of the cell death element of the resistance response.  Incompatibility 

would require an R-Avr interaction to directly or indirectly prevent the ‘susceptibility’ 

events from happening (Hammond-Koasack and Rudd, 2008).  Wolpert et al. (2002) 

reviewed several pathosystems involving host selective toxins and suggested that 

avirulence factors and toxins essentially trigger the same pathways.  Lorang et al. 

(2007) demonstrated that the host-specific Victorin toxin produced by the necrotrophic 

pathogen, Cochliobolus victoriae, can exploit the host PCD signalling response to gain 

virulence by inducing HR-like cell death.  In Arabidopsis this has been shown to be 

mediated by LOV1 a ‘resistance’ protein belonging to the NBS-LRR resistance gene 

family.  During the wheat-M. graminicola interaction this type of R-gene mediated 

‘susceptibility’ is not seen as the genetics follow the gene-for-gene interaction, but a 

toxin could potentially mediate susceptibility which manipulates the host resistance 

reponse. 

In these experiments it has been assumed that resistance against IPO323 is 

dependent on the same gene, Stb6 (and similarly Stb15 for IPO88004).  No Stb genes 

have been cloned therefore it is not known what function they may have; only the 

effects of inoculations with isolates known to have corresponding Avr genes can be 

studied (Arraiano and Brown, 2006). Whereas it has been demonstrated by genetic 

analysis that many wheat varieties have the Stb6 gene effective against isolate 

IPO323 (Chartrain et al. 2005b), the presence of Stb15 has only been inferred from 

observations of resistance to IPO88004.  A factor that may be the cause of some of 

the variation seen between resistant varieties is that there is likely to be genetic 

variation in the expression of Stb6 (Arraiano and Brown, 2006). 
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Stb6 and Stb15 may not cause resistance through the same mechanism.  It 

remains to be discovered how Stb genes confer resistance and if the different genes 

cause this through the same mechanism. It has been assumed that they do because 

varieties with different resistance genes all present resistance in the same way; no 

macroscopic symptoms are seen and there is no HR. 

The accumulation of the TaMPK3 protein in all of the three compatible 

interactions tested shows that this is a consistent feature of the M. graminicola-wheat 

interaction, irrespective of the variety or isolate.  In contrast to Rudd et al. (2008), the 

accumulation of the gene transcript did not show significant differential regulation in 

the experiments reported here, but there were differences seen in the accumulation of 

the protein.  In the susceptible varieties, accumulation of the protein started from 11 

dai in these experiments, at the time when the levels of nutrients in the apoplast are 

increasing (Keon et al., 2007).  Two of the resistant varieties, Poros and Flame, also 

showed some accumulation of TaMPK3, whereas three of the resistant varieties 

showed no increase in levels of TaMPK3 over the timecourse.  The data suggest that 

TaMPK3 protein accumulation is a consequence of inoculation with M. graminicola and 

that during compatible interactions, TaMPK3 always accumulates during the later 

stages of infection.  During incompatible interactions TaMPK3 accumulation appears to 

be variety dependent.  The mock inoculated samples also accumulate a small amount 

of TaMPK3, perhaps due to a senescence response to experimental conditions. The 

resistance genes Stb6 and Stb15 may both either directly or indirectly reduce the 

strength of the signalling cascade that results in accumulation of TaMPK3 and 

differences in the expression of the resistance genes contributing to differences in the 

accumulation levels of TaMPK3.     

To date, the function of the TaMPK3 protein or any of its orthologues remains 

unknown. It appears to be related to cell collapse or disruption or the development of 

HR (in response to biotrophic pathogens) or PCD.  MPK3 and MPK6 have been 

implicated in stress and pathogen responses in Arabidopsis (Asai et al., 2002) and 
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orthologues have been shown to initiate cell death during HR-mediated resistance in 

tomato infected with C. fulvum after a signal is received (Stuhlemeijer et al., 2007).  

In Arabidopsis both of these MPKs are phosphorylated downstream of a pathway 

induced by H2O2  (Kovtun et al., 2000).  There are few studies that have investigated 

MAPK involvement of pathogen infection of monocots; an orthologue of AtMPK3, 

OsMAPK5 in rice, accumulates during an incompatible interaction with Magnaporthe 

oryzae (syn. M. grisea (Couch & Kohn, 2002)) before an HR is seen, but accumulation 

accompanies the onset of lesion formation during a compatible interaction (Xiong & 

Yang, 2003). All these studies suggest that the accumulation of the MPK3 orthologues 

across several species is involved with HR or PCD, either during the HR to an avirulent 

biotroph or lesion formation during a compatible interaction with a non-biotroph.  As 

no HR is seen during an incompatible interaction with M. graminicola (Cohen & Eyal, 

1993; Kema et al., 1996), it is unsurprising that there is no accumulation of TaMPK3 

above the mock inoculated samples. During PCD and cell collapse in a compatible 

interaction, accumulation of the TaMPK3 is seen which may be related to the increased 

levels of H2O2 that accumulate in the late stages of the pathogen development (Shetty 

et al., 2007).  H2O2 has been shown to initiate a MAPK cascade that results in the 

induction of AtMPK3 (Kovtun et al., 2000), but it may also be part of a positive 

feedback loop to induce more H2O2.  It is known that M. graminicola can tolerate H2O2 

but growth is inhibited by its presence (Shetty et al., 2007), unlike in other non-

biotrophic interactions, such as B. cinerea and Drechslera spp., where it appears to aid 

infection (Govrin & Levine, 2000; von Gonner & Schlosser, 1993).  H2O2 accumulates 

in both resistant and susceptible varieties when infected with M. graminicola (Shetty et 

al. 2003) and the experiments presented here show that peroxidase transcript 

accumulation was also variable between varieties.  Varying levels of H2O2 during the 

interaction with M. graminicola may therefore be influencing the level of TaMPK3 

accumulation in the different varieties.  If the plant produces more H2O2 in response to 

the increasing biomass of the pathogen, that could explain the increase in the 
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accumulation of TaMPK3. It is possible that the Stb resistance genestops this positive 

feedback loop.  The results in chapter 3, where TaMPK3 gene transcripts accumulated 

in response to a virulent isolate of B. graminis indicate that the induction of MPK3 

response is not the same for all fungal pathogens.  This is discussed further in chapter 

6. 

The high variability in the expression of the genes tested may be an inherent 

problem with this pathosystem.  There is a long latent period in which the fungus 

grows very little and it is unlikely that all the infection points will start host cell death 

signalling at the same time. As the growth and lesion formation do not spread 

throughout the leaf there is unlikely to be a systemic effect of M. graminicola 

inoculation (Rudd et al., 2008).  This might cause gene expression to be less uniform 

than in a disease in which there is a systemic host response.  If there are localised 

responses over a longer period of time, they are unlikely to be perceived in a gene 

expression study. The timing of resistance and/or susceptibility events may not be the 

same in all varieties; from figure 4.2 it can be seen that the three susceptible varieties 

differ in the level of macroscopic chlorosis and necrosis at 14 dai.  To investigate this 

further an appropriate method for staining M. graminicola inside the mesophyll is 

required. A further factor which has not been considerd either here or in previous work 

on M. graminicola or most other pathogens is that expression of defence-related genes 

is affected by exposure to microbes other than the pathogen of interest (Boyd et al., 

1994b).  Variation in plant response to saprophytic or endophytic bacteria and fungi 

may be an additional source of variation in these experiments, as discussed further in 

chapter 6. 

Even in well defined race-specific interactions, such as those between Puccinia 

striiformis f.sp. tritici and wheat, identifying an expression pattern of a gene or genes 

known to be involved with incompatibility is difficult.  Bozkurt et al. (2010) showed 

that for several PR genes, including a peroxidase and a β-1,3-glucanase, although 

these genes were upregulated to a greater level in the incompatible interactions than 
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the compatible interactions, there was a high level of variation seen both between 

different varieties and between replicates.  Similar results were found in barley 

inoculated with B. graminis f.sp. hordei (Boyd et al., 1994a; Boyd et al., 1994b).  Even 

in these well defined systems, it is difficult to identify a specific level of gene 

expression at a particular timepoint that could be used to clearly predict that an 

interaction would be an incompatible one.  Genes that have previously been identified 

as being differentially regulated during interactions with M. graminicola show no 

correlation with known resistances (PAL and LOX, Adhikari et al., 2007; PDI, Ray et 

al., 2003).  In the experiments presented here β-1,3-glucanase showed significant 

upregulation in susceptible varieties at 7 dai.  The response was highly variable and 

involved statistical analysis over three replicate experiments (with three leaves pooled 

within each experiment) to determine the results; it is therefore unlikely that using 

this gene as a marker of resistance would be of more value than the current system of 

measuring quantitative resistance by scoring visual symptoms.   

It may be that the results here could be used to develop a more appropriate 

method, based on either gene expression analysis or microscopy, that could identify 

phenotypic resistance.  Powdery mildew has a well defined set of characteristics for 

cytological analysis that are not available for studying interactions with M. graminicola.  

Boyd et al., (1995) and Kmecl et al. (1995) both demonstrated that cytological 

analysis of powdery mildew development was more effective at defining resistance 

than using gene expression analysis.  From the results presented here, it appears that 

defining a set of characteristics for cytological study would be of more benefit to obtain 

an indication of resistance or susceptibilty soon after inoculation, than trying to 

identify gene induction or suppression.  The lack of clear patterns in gene expression 

uncovered by this detailed analysis of 11 genes covering the period of infection by M. 

graminicola demonstrates that the variable nature of the results is not conducive for 

use of the genes studied to classify wheat varieties as resistant or susceptible to 

particular isolates of M. graminicola. 
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The experiments presented here on gene expression analysis, offer no evidence 

that any of the genes tested were consistently involved in either a resistant or 

susceptible responses towards M. graminicola in different varieties.  Although several 

of the genes were affected by inoculation by the pathogen, this could perhaps be a 

basal response to recognition of an unknown entity.  The genes that showed a 

differential response over time suggests that the plant is responding to as yet 

uncharacterised changes in the development of the pathogen.   This is indicative that it 

is difficult to reduce the variability seen after inoculation with M. graminicola and that 

selection of a single timepoint that allows informative comparisons between a 

compatible and incompatible interaction is difficult to achieve.  No microarray analysis 

of wheat genes in response to M. graminicola has yet been published. 
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5 
Symptom development and timing of resistance 

 

5.1 Introduction 

Mycosphaerella graminicola which causes septoria tritici blotch of wheat is a pathogen 

with a long latent period.  Susceptibility is characterised by necrosis and the formation 

of pycnidia which produce conidia. Both virulent and avirulent spores germinate on the 

leaf surface and penetrate through the stomata.  Although the lifecycle of the virulent 

isolate is well studied (Duncan and Howard 2000; Kema et al., 1996) the avirulent 

interaction is less well studied (Cohen and Eyal, 1993; Kema et al., 1996) with specific 

details and timings of the incompatible interaction unclear. Details of the timing of the 

incompatible interaction during isolate-specific resistance are ill defined and how this 

resistance operates is largely unknown; different R-genes may confer resistance by 

different mechanisms. 

 A resistance phenotype has been identified in several cereal pathogens 

including rusts and powdery mildew.  For powdery mildews a infection scale has been 

designed: 0= no signs of infection through to 4= abundant mycelial growth and no 

necrosis or chlorosis visible (Moseman et al., 1965).  For rusts infecting cereals an 

infection type from 0-9 is assigned and the latent period of the uredinospores is 

quantified (Ma and Singh, 1996).  More histological observations have also been made 

for powdery mildews, identifying the hypersensitive response (HR) in relation to race-

specific genes (Boyd et al., 1995) and penetration attempts and haustoria formation in 

relation to partial resistance.  Recently, Rhyncosporium secealis (Linsell et al., 2011; 

Thirugnanasambandam et al., 2011), has been studied using GFP-transfomed isolates.  

This has allowed infection processes to be characterised and a resistance phenotype is 

beginning to emerge.  M. graminicola evidently differs in many ways from that of other 

well studied pathogens therefore inferences about resistance mechanisms cannot be 

compared directly.  Currently, resistances are identified using quantitative analysis 



116 
 

Symptom development and timing of resistance 

 
(Arraiano and Brown, 2006; Orton et al., 2011).  It is unclear when the resistance 

response occurs; Kema et al. (1996) found that less colonisation of the sub-stomatal 

cavity takes place in an incompatible interaction and there is less hyphal growth in the 

surrounding intercellular space compared with a compatible interaction but this is a 

quantitative trait.  In terms of efficiency for breeding efforts it would be of great value 

to have an easily identifiable resistance phenotype that could be identified soon after 

inoculation has taken place.  Identifying a resistance phenotype would also aid 

investigations into how the resistance mechanism works.  The existence of the long 

latent period offers no clues as to the timing of resistance; it is known that it is R-gene 

mediated (Brading et al., 2002) but as neither the R-gene or the corresponding Avr 

gene have been cloned their function remains unknown.   

 The aim of these experiments was to develop a reliable method for visualising 

M. graminicola in the intercellular space which could be used to identify a phenotypic 

resistance response.  The prediction is that an avirulent isolate won’t grow into the 

intercellular space and will remain in the substomatal cavity.  The hyphae will die if 

they cannot eventually access nutrients through host cell death.  Identifying the 

resistance response would enable the timing of the response to be more clearly 

defined and should eventually lead to understanding how resistance works.  The 

prediction is that the latent period in a compatible interaction ends at 7 dai.  

Therefore, any resistance phenotype could be identified from this time. 

 

5.2 Materials and methods 

Descriptions of materials and methods not included here are in Chapter 2. 

 

 

5.2.1 Plant and fungal material 

17 day old seedlings of Flame (resistant) and Longbow (susceptible) were inoculated 

with M. graminicola isolate IPO323 when attached to Perspex sheets. Plants were 
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grown at 18 ˚C in the light for 16 h and 12 ˚C in the dark.  At each collection time at 

least 3 leaves were sampled for staining.  All inoculated plants were kept for at least 

21 dai to ensure that pycnidia formation was seen in the compatible interaction and 

that no macroscopic symptoms were seen in the incompatible interaction (section 2.2). 

 

5.2.2 Staining Uvitex 2b 

Uvitex 2b stains chitin.  Leaves were fixed and cleared in chloral hydrate (80% w/v) 

based solution, in 95% ethanol (30%): 90% lactic acid (12.5%) made up with 

chloroform.  After washing in water, the samples were incubated at 90 °C in 0.05M 

sodium hydroxide for 17 minutes.  Leaves were then rinsed twice in water and soaked 

in 0.1M Tris-HCl buffer (pH 5.8) for 30 minutes.  Subsequently, leaves were then 

stained in 0·1% Uvitex 2B (Ciba-Giegy, (BASF), Ludwigshafen, Germany) in 0.1M Tris-

HCl buffer for 5 minutes and rinsed with water. After a rinse with 25% glycerol 

samples were stored in 40% glycerol (modified after Rohringer et al., 1977; Tufan et 

al., 2009).  

Leaves were examined using a Nikon fluorescence microscope equipped with 

epifluorescence optics. A UV-1A filter (excitation filter 330–380 nm, barrier filter 420 

nm) was used to visualise fungal structures by their light blue fluorescence. A confocal 

laser scanning microscope (Leica), was used to excite the leaves with UV-laser beams 

at 351 and 364 nm and scanned with filter settings at 400–500 nm for Uvitex stained 

fungal structures. 

 

5.2.3 Staining with Trypan Blue  

Trypan Blue is a vital stain which is commonly used for staining dead tissue.  It is 

unknown as to what this stain actually binds to.  Leaves were cleared in 3:1 

ethanol:acetic acid overnight.  The leaves were then washed in water for 4 hours 

before being fixed in lactoglycerol (1:1:1 water:lactic acid:glycerol) for 20 minutes.  A 

0.1 % solution of Trypan Blue made up in 1:2 lactoglycerol:ethanol was used to stain 
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leaves.  The cleared leaves were incubated at 70 °C for 2 hours in the Trypan Blue 

solution.  Samples are stored in lactoglycerol.  A Nikon Microphot-SA general light 

microscope was used to visualise fungal structures.  Samples were taken at 8 dai, 

when it would be expected that the fungus had entered the apoplast. This method 

followed Siah et al. (2010).  

 

5.2.4 Staining with Chlorazol Black E 

Chlorazol Black E is used to selectively stain chitin.  Several variations of the method 

of Brachmann et al (2002) and Sesma and Osbourn (2004), were tried to stain M. 

graminicola hyphae in the apoplastic space.  All leaves were cleared in 75 % ethanol 

overnight before being rinsed with water and stained with 0.03 % Chlorazol Black E 

stain (CBE) in lactoglycerol solution and then stored in 50 % glycerol after staining. 

Method 1:  Leaves were incubated in 10 % potassium hydroxide (KOH) in a 

waterbath at 90 °C for 3 hours. Leaves were then washed in water and treated in CBE 

at 60 °C overnight.  

Method 2: Leaves were incubated at 60 °C in 5 % KOH for 3 hours.  Leaves 

were then washed in water and treated with CBE at 60 °C overnight. 

Method 3: Leaves were incubated at 70 °C in 5 % (KOH) for 3 hours.  Leaves 

were then washed in water and treated with CBE at 60 °C for 2 days.  The waterbath 

containing the samples was turned off after 3 hours. 

 

5.3 Results 

5.3.1 Uvitex 2b  

Staining with Uvitex 2b (U2b) was carried out on samples collected at different 

timepoints, 8, 13, and 20 dai. At each timepoints staining was attempted at least three 

times and on three separate leaves. Infection was successful and pycnidia visible on 

Longbow in all replicates used for staining tests.  At 8 dai after inoculation, spores but 

no hyphae were visible on the surface of the leaf on both varieties, Flame and 
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Longbow (figure 5.1).  No fungal hyphae was stained.  Staining was very weak against 

the strong autofluorescent background, the trichomes in particular strongly 

autofluoresced at this time.  Leaves were sampled from Longbow at 13 dai to check for 

staining in the mesophyll layer, as it was assumed that there would be a lot of growth 

of the pathogen in the substomatal cavity at this stage in a susceptible variety.  Some 

spores were visible on the surface of the leaf, but no fungal material was visualised in 

the mesophyll layer.  To see if the conidia formed as a result of the compatible 

interaction would be stained by U2b, samples were taken at 20 dai when pycnidia were 

clearly present on the leaves.  The pycnidia were stained with the uvitex, although the 

staining was not clear enough to differentiate individual conidia (figure 5.2).   Conidia 

stained on the leaves and when they are produced from pycnidia but no staining of 

hyphae was seen.  

 

 

Figure 5.1 Spores of M. graminicola isolate IPO323 on Flame (left) and Longbow 

(right) stained with Uvitex 2b 8 days after inoculation. 

M. graminicola spores
M. graminicola spores

20 μm 20 μm
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5.3.2 Trypan Blue 

Trypan Blue has has been used to successfully stain Blumeria graminis f. sp. tritici in 

wheat.  It has also been used to stain M. graminicola in wheat during the later stages 

of infection (Siah et al., 2010).  It also differentiates necrotic host cells as it stains 

dead tissue. The method of Siah et al. (2010) was followed to stain leaves 7 dai with 

M. graminicola. The method was tried 3 times.  Trypan blue stained the germinated 

spores on both Flame and Longbow on the surface of the leaf (figure 5.3) and 

germinated spores can be seen entering the stomata.  No staining took place in the 

mesophyll layer. 

 

 

Figure 5.2 Longbow (A, B) and Flame (C,D) stained with Uvitex 2b at 20 dai 

inoculation with M. graminicola isolate (IPO323).  Pycnidia have stained on the 

variety Longbow.  No spores are visible on the variety Flame. 
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5.3.3 Chlorazole Black E 

Several methods were tried for staining with Chlorazol Black E as the seedling leaves 

used were very fragile after heating in potassium hydroxide.  On several occasions the 

leaves disintegrated completely.  Using a 5% concentration of KOH still meant that 

some of the leaf tissue disintegrated, but a fair proportion remained intact.  Staining 

overnight proved to be ineffective, therefore staining for a longer period was tried 

(method 3), on three occasions.  None of the methods  resulted in staining M. 

graminicola (figure 5.4).  Leaves were also examined under 200x magnification; the 

clearing process allowed all the leaf layers to be seen, no fungal material was visible in 

any of the layers. 

 

Figure 5.3 Longbow (A,B) and Flame (C,D) stained with Trypan Blue 7 dai with 

M. graminicola isolate IPO323.  S indicates the stoma and G the germ tube on 

the surface of the leaves.  B and D focus on the mesophyll layer, the stoma are 

just visible.  No staining has taken place in the mesophyll layer. 

A B

C D

S

S
G

G 20 μm

20 μm 20 μm
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5.4 Discussion 

The aim of this research was to find a reliable visual method to investigate the timing 

of the growth and development of M. graminicola in relation to responses of wheat to 

infection.  There is a lack of literature that clearly defines what is happening in a 

resistance response and the timing of this response.  One reason for this appears to be 

difficulties in obtaining a reliable microscopy stain for visualising the fungus in the 

apoplast.  Here, three commonly used microscopy stains were tested to see if they 

could stain M. graminicola in the apoplast during the latent stages of infection.  

However, they either did not stain the fungus at all, or did not stain the fungus within 

the apoplast.   

 

Figure 5.4 Flame (A,B) and Longbow (C,D) stained with Chlorazol Black E 8 dai 

with M. graminicola isolate IPO323.  A and C show the surface of the leaves with 

the stoma of each variety visible.  B and D show the mesophyll layer.  No M. 

graminicola spores or hyphae have been stained. 

Stoma Stoma

Stoma Stoma

40 μm40 μm

40 μm40 μm
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U2b is a fluorescent brightener that binds to chitin.  U2b has long been used in 

medical pathology tests involving pathogenic fungi. More recently, it has been used 

successfully for staining Puccinia striiformis f.sp. tritici (Pst) infecting wheat 

(Moldenhauer et al., 2006).  A similar stain, Calcofluor, has been used for staining 

Blumeria graminis, although only on the leaf surface (Huckelhoven et al., 2003; 

Rohringer et al., 1977).  Here, spores were only visible on the surface of the leaf but 

not within the apoplast.  Two possibilities for the inability of U2b to stain the M. 

graminicola in the apoplast is that either the conditions within the wheat mesophyll 

layer interact with the stain rendering it inactive, or the stain cannot pass into the 

mesophyll layer. Both are unlikely however because U2b has been shown to stain both 

Pst (Moldenhauer et al., 2006) and Magnaporthe grisea and M. oryzae in wheat (Tufan 

et al., 2009) which all grow into the mesophyll layer.  A third possibility is that the 

surface of M. graminicola is modified in some way so as to render it inaccessible to the 

stain, this may be due to chemical modification of the surface, or a macromolecular 

barrier, such as glycoproteins or polysaccharides, preventing the stain attaching to the 

surface.  U2b was found unsuitable for staining Fusarium pseudograminearum in 

infected wheat tissue (Knight & Sutherland, 2011).  Other laboratories have sent me 

personal communications stating they have been unable to stain non-biotrophic fungi 

with U2b; Dr G. Kema (Plant Research International, Wageningen, Netherlands) was 

unable to stain M. graminicola with U2b and Prof. M. Shaw (University of Reading, 

Reading, UK) was unsuccessful in staining Botrytis cinerea with U2b. This implies that 

there may be a wide spread mechanism for protecting the cell walls of non-biotrophic 

fungi within the apoplast.  

Trypan Blue is generally used for staining dead cells as it cannot pass through 

the membrane of a viable cell.  However, this stain is frequently also used for staining 

powdery mildews in wheat and barley, as well as downy mildews in Arabidopsis.  The 

method tried here has previously been used to stain M. graminicola at 22 dai (Siah et 

al., 2010).  In my experiments, Trypan Blue stained the spores and germinated spores 
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on the surface of the wheat leaves but did not stain any fungal material in the 

apoplast.  In the experiments by Siah et al. (2010) the leaves were completely 

necrotic before staining was attempted, which may have made the pathogen more 

accessible to the stain.  In a personal communication, Dr A. Siah (Institut Supérieur 

d’Agriculture, Lille, France) said that the staining technique was difficult and implied 

that it was not very efficient.  Cohen and Eyal (1993) also stained M. graminicola with 

Trypan Blue using a similar method to that described by Siah et al. (2010) and noted 

that different cultivars have different affinities for Trypan Blue.  This might 

speculatively explain why the fungus did not stain well in my experiments with Flame 

and Longbow, if these varieties did not enable good uptake of the stain.  To 

investigate the timing of resistance and phenotypic differences between an 

incompatible and compatible interaction a method is needed that will stain the leaves 

early on in the infection process to enable the course of infection to be studied and is 

not limited by leaf variety.  The other difficulty with Trypan Blue is that it is not 

entirely selective for fungi as it will also stain plant tissue if it is senescing or dead, 

which can lead to problems with clearly visualising fungi clearly under the microscope 

(Rohringer et al., 1977). 

Chlorazol Black E is selective for chitin.  It has been used successfully to stain 

many fungi including M. grisea (Sesma and Osbourn, 2004) and Ustilago maydis 

(Brachmann et al., 2003).  It has been found to most successfully stain in alkaline 

conditions (Burke & Jones, 1984); potassium hydroxide is commonly used.  In these 

experiments, no staining of the fungus was observed at all, not even on the surface of 

the leaf. One possible explanation would be that the treatment with potassium 

hydroxide which is needed as a buffer, dissolved or otherwise removed fungal material 

from the leaf. 

A possible explanation for the difficulty in visualising M. graminicola with stains 

such as U2b and Chlorazol Black E, which selectively stain chitin, might be that M. 

graminicola may shield chitin once it is on the leaf.  Chitin is a recognised to be a 
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pathogen associated molecular pattern (PAMP) (Nurnberger & Brunner, 2002) and its 

recognition can elicit plant defence responses (Boller, 1995). Some fungi use stealth 

mechanisms to avoid detection by host immune responses.  These mechanisms of host 

immune evasion have been well studied for human pathogens.  For example, Candida 

albicans has two morphological states, yeast and hyphal.  When in the yeast like state, 

β-glucans are exposed on the cell surface, rendering it liable to detection by the 

pathogen recognition receptor (PRR), dectin-1.  When growing in the hyphal state the 

β-glucans are masked from recognition by dectin-1 by an outer cell wall component, 

mannan (Chai et al., 2009).   The basiodiomycete pathogen of humans, Cryptococcus 

neoformans, masks its PAMPs by forming an extracellular capsule which is not 

recognised by the host innate immune system (Chai et al., 2009).  It is possible that 

M. graminicola avoids host defence responses in a similar way to C. albicans or C. 

neoformans. Once on the plant, the M. graminicola spores grow in a hyphal state 

entering the apoplast through the stomata.  In the substomatal cavity, the fungus 

grows, very slowly, in a hyphal mass (Kema et al., 1996).   During this time, it 

appears that although the plant recognises the presence of a foreign body (see 

chapter 4) and expresses host defence genes, these are not specific to a compatible 

interaction.  It may be that M. graminicola is able to shield its PAMPs, such as chitin 

and β-glucans, from the host.  Recently, Marshall et al. (2011) found two LysM domain 

effectors, Mg3LysM and Mg1LysM, in M. graminicola which were found to bind chitin. 

These proteins increased in expression from 4-9 dai and disappeared durng 

macroscopic symptom development.  It can be hypothesized that Mg3LysM and 

Mg1LysM prevent the stains tested from accessing the chitin on the pathogen.  If so, 

this would explain why the chitin selective stains were ineffective for visualising the 

pathogen in the apoplast. It may partly explain why the pathogen is able to remain 

latent for so long; because a pathogen which is initially shielded from host defence 

responses may not be disadvantaged by not completing its lifecycle rapidly.  U2b was 

able to stain pycnidia, demonstrating that these spores do contain chitin that the stain 
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is able to bind to in the later stages of infection, this would also be consistent with the 

finding that Mg3LysM and Mg1LysM are not expressed during development of pycnidia 

(Marshall et al., 2011). 

Other stains are available which could be tested on M. graminicola: time did not 

permit a comprehensive study during my PhD research.  The fluorescent stain, 

Solophenyl flavine 7GFE has been used to stain F. pseudograminearum and Pythium 

spp. inside host tissues (Knight & Sutherland, 2011; Oliver et al., 2009).  The 

fluorescein isothiocyanate (FITC)-labelled lectin, wheat germ agglutinin, was used by 

Duncan and Howard (2000) to stain a virulent M. graminicola isolate.  Another 

possibility is to vacuum infiltrate stains such as Trypan Blue into the leaves which may 

facilitate uptake of the stain. To test these stains, leaves of Longbow inoculated with 

M. graminicola isolate IPO323 could be sampled at 7-10 dai, a time when there should 

be lots of fungal biomass in the apoplast, but no necrosis is visible.   

A GFP-tagged isolate of IPO323, IPO323gfp, was obtained and tested during 

investigation into symptom development and the timing of resistance, but found to be 

unsuitable for use.  Comparisons were made between leaves of Longbow inoculated 

with IPO323gfp and leaves inoculated with IPO323.  Those inoculated with IPO323gfp 

developed chlorosis and necrosis several days before the control leaves and fewer and 

later pycnidia also appeared on these leaves than on the controls.  The GFP-isolate 

also weakly fluoresced, making it indistinguishable from background autofluorescence 

of the leaf.  

Using a GFP-tagged isolate for investigating details and timings of resistance 

would have substantial advantages.  A GFP-tagged isolate allows confocal microscopy 

to be used which allows penetration and later infection events to be studied using a 

high imaging resolution.  The ability to visualise the pathogen at different depths 

within the plant allows for detailed studies to take place (Linsell et al., 2011).  The 

disadvantage of using a GFP-tagged isolate appears to be that it is difficult to obtain 

stable expression in M. graminicola and that confocal laser scanning microscopy is 
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need for high resolution visualisation.  Widespread use of GFP-isolates would also 

increase the risk of accidental GMO release.  

 There are two aims of investigating resistance to M. graminicola; the first is to 

differentiate between resistance and susceptibility using a reliable method to identify a 

phenotype, the second is to investigate fully the timing of resistance and how the 

resistance mechanism works.  The first aim could be achieved by finding a stain that 

can reliably bind to M. graminicola when it is in the apoplast.  The second aim is 

probably most likely to be achieved by transforming an isolate with GFP, although a 

good fluorescent stain may also achieve this outcome.  
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6 
General discussion 

The aim of the experiments presented here was to investigate the responses of 

wheat to infection with Mycosphaerella graminicola. Three investigations were carried 

out; one was to research the interaction between a biotrophic pathogen and M. 

graminicola when they were both present on the same leaf, the second was to analyse 

selected wheat gene responses to infection with either a virulent or avirulent M. 

graminicola and to assess accumulation of TaMPK3 in these interactions, the third was 

to develop a method to enable the study of the pathogen growth and development 

inside the apoplast to try and determine a resistance phenotype. 

The experiments presented in this thesis answer some questions about how 

wheat responds to infection by M. graminicola, but also raise many new questions and 

hypotheses to be tested.  This discussion addresses some of the findings and 

speculates on what might be happening in this pathosystem. 

Many questions are raised by the finding that mildew caused by a virulent Bgt 

is inhibited by prior inoculation with a virulent M. graminicola isolate. These results 

demonstrate that there is an antagonistic interaction between Bgt and M. graminicola 

on wheat and begin to elucidate the mechanism by which this interaction occurs.  

Investigation into Bgt spore development and growth in leaves also infected with M. 

graminicola has not been carried out before.  The findings indicate that the resistance 

mechanism occurs before macroscopic symptoms from infection with M. graminicola 

develop.  What is not known is whether or not there is cell death on a microscopic 

level that limits the growth of the mildew colony.  To test this the leaves could be 

stained with Evans Blue which can be used to stain for cell death in wheat leaves 

(Shetty et al., 2003), indicating if there is localised host cell death and if it coincides 

with mildew colony development.  A chlorophyll meter could be used to measure if leaf 

senescence occurs over many leaf cells by measuring if there is a reduction in 

chlorophyll content.  As mildew is a biotrophic pathogen, it relies on living cells for 
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nutrition; any decrease in chlorophyll indicates that the host cells are dying and 

therefore nutrition is limited.  These effects may take place before they are visible 

macroscopically. 

An interesting question raised by these experiments is; how does a pathogen 

that resides in the mesophyll layer, M. graminicola, have an effect on a pathogen that 

remains solely on and in the epidermis, Bgt?  It is likely that cell-to-cell 

communication events are involved.  In barley, plants carrying the Mla3 and Mla7 

resistance genes induce a resistance phenotype of an HR which is not only seen in the 

epidermal layer, but also in the mesophyll (Boyd et al., 1995).  This suggests that 

communication does occur between cell layers when infected by a pathogen.  It is 

unknown if a similar effect occurs during the M. graminicola-Bgt-wheat interaction, but 

events in the mesophyll layer must be having some effect on the epidermal layer, 

otherwise no interaction would occur.  Lyngkjaer and Carver (1999 and 2000) found 

that mildew spores could induce accessibility to further inoculation by avirulent mildew 

and that avirulent mildew could make cells inaccessible to future inoculations.  This 

type of induction is not seen in the experiment of chapter 3, whereas pre-inoculation 

with M. graminicola, which infects the mesophyll layer, renders the leaf less 

susceptible to a subsequent inoculation with a normally virulent mildew.   

During investigations into the interactions between M. graminicola, Bgt and 

wheat, the reverse inoculation procedure was not carried out during these 

experiments i.e. pre-inoculation with Bgt and then inoculating with M. graminicola. It 

can be predicted that a virulent M. graminicola isolate inoculated within a few days 

after Bgt would reduce mildew colony formation, because the effect would happen 

before macroscopic symptom development.  The effect of mildew on the growth and 

development of pre-inoculated M. graminicola was also not studied in detail, although 

virulent M. graminicola was always able to produce pycnidia in the presence of 

mildew.  M. graminicola fungal biomass accumulation could be measured using a qPCR 

based assay to test if there is any reduction (or increase) in the amount of biomass 

the pathogen produces in the presence of Bgt.  It may be that the ‘green island’ effect 
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produced by a virulent Bgt isolate is able to inhibit the growth of virulent M. 

graminicola, this might depend on the timings of the two inoculations e.g. if M. 

graminicola was inoculated soon after Bgt inoculation it may be able to develop 

normally, but if Bgt has produced many elongated secondary hyphae, there may be an 

effect on M. graminicola.  This effect may be a reduction in area the M. graminicola 

can colonise (as is seen between the interaction of rust and M. graminicola (Madariaga 

and Scharen, 1986)).   

The experiments presented in chapter 3 only included one isolate of M. 

graminicola. Additional M. graminicola isolates should be tested to ensure the results 

apply more generally to disease caused M. graminicola, rather than just a single 

isolate.  Furthermore, there is also a need to test the incompatible interaction with a 

different M. graminicola resistance gene; only Stb6 has been tested.  Longbow has 

Stb15 and is resistant to isolate IPO88004 which could be used to test this without 

involving other wheat varieties which could introduce additional variation.  Only a 

single virulent and avirulent isolate of mildew was tested, therefore additional mildew 

isolates should be investigated as well.  

An assay that allows the inoculation of intact leaves needs to be developed.  

The method of using detached leaf boxes is a convenient way to study many leaves at 

one time, without the risk of cross contamination, the risk of which is a particular 

threat from mildew spores.  Studying responses of intact leaves allows findings to be 

applied more readily to a field situation.  Investigation could be extended from using 

seedling plants to adult plants that would indicate if the findings apply to plants in the 

field and whether or not they are specific to young plants. 

How inoculation with M. graminicola affects other biotrophic pathogens, such 

as rusts, would also be of interest to see if the trade-off seen in the experiments 

reported here is specific to powdery mildew or applies more generally to other 

biotrophic fungi.  Rusts infect the mesophyll layer and would potentially be in direct 

contact with M. graminicola.  Pre-inoculation with M. graminicola may affect the rust in 

the early stages of development because it is occupying cells in close proximity to the 
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M. graminicola fungal hyphae. To develop the study by Madariaga and Scharen (1986) 

on an interaction between rust and M. graminicola, the microscopic analysis of the 

growth and development of rust spores, as has been done with powdery mildew 

(chapter 3) would enable the resistance response to be more fully characterised 

during the interaction.  

The results presented in chapter 4 showed that there was no clear pattern of 

gene expression that differentiates susceptible from resistant varieties over time, 

involving any of the genes tested.  Most of the genes tested have been linked to a role 

in defence.  This leads to the question; what is the role of these genes in the M. 

graminicola-wheat interaction?  The genes tested were not specifically differentially 

regulated in either incompatible or compatible interactions.  This has been found in 

other pathosystems; rusts (Bozkurt et al., 2005) and powdery mildew (Boyd et al., 

1994a) are two examples where defence-related genes are upregulated in both 

incompatible and compatible interactions. The role of genes, such as chitinase and β-

1,3-glucanase, in response to M. graminicola infection appears not to be specific to a 

resistance response.  They may be involved in basal recognition of microbes, which 

may then trigger a separate suite of genes that are involved in the resistance 

response aimed specifically at an infecting pathogen; if this happens, it is unknown 

what these other genes may be.  The upregulation of these genes may be a general 

defence response to inoculation with the pathogen, independent of virulence, or that 

the level of transcript produced in response to the pathogen is variety specific. 

The greatest upregulation of the genes tested was seen at 7 dai.  This suggests 

that something biologically significant occurred at 7 dai.  The target genes β-1,3-

glucanase, mlo, peroxidase and PR1 are all upregulated to the greatest levels at 7 dai.  

One hypothesis is that between 1 and 6 dai the plant perceives (or does not perceive) 

both virulent and avirulent isolates as non-threatening endophytic fungi that do not 

cause harm and therefore plant defences are not activated as there is no perception of 

a threat.  Data from the sequenced genome of M. graminicola suggests that there are 

many similarities to an endophytic genome (Goodwin et al. 2011), and it is known that 
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the fungus has a stealthy approach to pathogenicity.  At 7 dai it appears that a change 

occurs and this could allow the pathogen to be recognised by the plant as a threat and 

activate defences.     

The reason for trying to find a microscopy stain which clearly stains M. 

graminicola at all stages of infection was to phenotype the pathogen in relation to 

gene expression data.  Because of the large variability seen between data sets it is 

important to match the growth and development of the pathogen to the response of 

the plant.  This is important when investigating the M. graminicola-wheat interaction 

because of the variability of gene expression data between replicates and between 

varieties.  By matching the development of the pathogen to gene expression data, 

more accurate inferences could be made about the amount of growth and/or the 

developmental stage which affects the genes analysed.  This would be of particular 

importance if using microarray analysis to investigate gene expression.  To date, there 

have been no published microarray analyses of wheat’s response to infection by M. 

graminicola.  This is likely due to the high variability seen between replicates, as has 

been demonstrated in this thesis and in other studies during gene expression analysis 

(Ray et al. 2003).   

The pathogen Fusarium pseudograminearium has been found to specifically 

induce genes classified as ROS-defence (e.g. germin-like and peroxidase) when 

compared with a biotrophic pathogen, rust (Desmond et al. 2008a), although F. 

graminearum, increased peroxidase transcript levels in both resistant and susceptible 

cultivars at the early stage of infection (Pritsch et al. 2000).  Inoculation with M. 

graminicola upregulated the transcription of peroxidase, particularly at 7 dai, this 

occurred in both compatible and incompatible interactions, suggesting that peroxidase 

plays an, as yet unknown, role in the interaction.  The data in chapter 4 indicate that 

M. graminicola has commonalities with other necrotrophic pathogens, but does not 

disregard similarities to biotrophic pathogens.  Without a microarray analysis it cannot 

be predicted what classes of genes will be upregulated and to what degree. 
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It has been suggested that M. graminicola produces a toxin that either aids or 

causes pathogenicity (Kema et al. 1996) and that this toxin activates defence 

responses specific to a compatible interaction.  No data yet published or this thesis 

has shown any response which is specific to a compatible interaction. Non-biotrophic 

pathogens such as Fusarium spp., often produce toxins which cause or assist in the 

necrotrophic stage of the pathogen’s lifecycle.   Many crop pathogens produce toxins 

that are known to aid pathogenicity, the most notable of these is deoxynivalenol 

(DON), produced by several Fusarium species including those infecting wheat and 

barley.  Toxins such as DON can activate defence responses in wheat that are the 

same as activated by the pathogen itself (Desmond et al. 2008b).  No toxin has ever 

been found to be produced by M. graminicola, but if one does exist it is likely to 

enable a virulent pathogen to cause plant cells to die, enabling the pathogen to utilise 

the available nutrients.  It can be hypothesised that the toxin triggers this response at 

7 dai, which is the time when the greatest defence-related gene upregulation occurs. 

The lack of a pattern in gene expression data may, speculatively, be in part 

due to opportunist bacteria or fungi being able to enter the leaf due to inoculation by 

M. graminicola.  In barley infected with powdery mildew, stomatal ‘lock-up’ has been 

observed where stomata have lost the ability to close in darkness (Withers et al., 

2011) during infection with avirulent mildew isolates.  It is unknown what effect M. 

graminicola has on wheat stomata, but as the pathogen penetrates the leaf through 

the stomata, it is likely to cause some effect.  Boyd et al. (1994b) grew barley plants 

in both non-sterile and sterile conditions and, after wounding, probed for chitinase, 

peroxidase and a pathogenesis-related gene (PR-R).  They showed that wounded 

plants grown in non-sterile conditions induced transcript accumulation of all the genes 

tested with no discernible pattern, although induction was greater at later timepoints.  

Plants grown under sterile conditions accumulated no chitinase or peroxidase, 

although they did accumulate PR-R at 0 hours after wounding, which may have been 

due to physiological stress.  Boyd’s results indicated that defence genes may be 

induced by opportunistic organisms accessing the leaf through wounds and I suggest 
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that this may explain the variation seen in the data presented in chapter 4 of this 

thesis.  If M. graminicola infection keeps stomata open, it may decrease the plants 

ability to resist entry by opportunistic, non-pathogenic microbes and the plant 

response to these organisms may be to produce defence-related proteins, such as 

chitinases, β-1,3-glucanases and peroxidases.  This would produce ‘noise’ seen during 

the gene expression studies here which hides what the specific response to M. 

graminicola is.  To investigate these possibilities, measurements of stomatal 

conductance, using a porometer, could be carried out on plants inoculated with 

avirulent and virulent M. graminicola, to relate stomatal movements to disease 

development.  Secondly, if wheat plants could be grown in sterile conditions and 

inoculated with avirulent and virulent M. graminicola without causing the pathogenicity 

of the isolate to change due to the plant being under stressful conditions, gene 

expression of defence-related genes could be measured.  Leaves could also be surface 

sterilised before inoculation with M. graminicola, this may enable a quantitative result 

about the role of non-specific microbes in the M. graminicola–induced defence 

response.  The results of chapter 4 were not consistent with the results obtained in 

other experiments on defence-related genes (Adhikari et al. 2007 and Ray et al. 

2003).  In particular no correlation was found between an incompatible response and 

the protein disulfide isomerase (PDI) gene in the experiments presented here, 

whereas Ray et al. (2003) found that PDI was upregulated during the incompatible 

interaction.  If opportunist microbes are able to induce defence-related gene 

transcription through microbe associated molecular pattern (MAMP)- triggered 

immunity, PDI  may have been elicited by a particular MAMP involved in their 

experimental set-up. 

Another hypothesis is that the defence-response to M. graminicola is mounted 

by a specific set of plant cells, possibly the guard cells or those immediately present in 

the sub-stomatal cavity.  As M. graminicola enters the leaf through stomata, guard 

cells might be involved in defence against the pathogen.  The guard cells may produce 

a defence response towards M. graminicola in a way specific to avirulent or virulent 
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isolates.  The apparent lack of a pattern in the gene expression study presented in 

chapter 4 may be caused by other plant cells, most likely the epidermal cells, 

responding to fungal hyphae on the leaf surface by triggering a pathogen-associated 

molecular pattern (PAMP) response, which is not determined by the compatibility of 

the pathogen.  It is now possible to isolate specific cells from tissue using laser 

capture microdissection, enabling gene expression of the guard cells to be tested in 

the absence of other plant tissue to determine if they mount a specific resistance or 

susceptibility response on single cell levels. 

It has been proposed that the accumulation of the TaMPK3 protein and its 

subsequent post-translational activation seen during the compatible interaction of M. 

graminicola and wheat is due to a functional relationship with the onset of leaf cell 

programmed cell death (PCD) (Rudd et al. 2008; this thesis, chapter 4).  In the 

experiments presented in chapter 3, TaMPK3 gene transcript was upregulated more 

during the compatible interaction than the incompatible interaction between wheat 

and powdery mildew.  This is not consistent with the hypothesis that MPK3 

orthologues accumulate during a R-gene mediated hypersensitive response (HR) 

during a resistance response to a biotrophic pathogen (Reyna & Yang, 2006; 

Stulemeijer et al., 2007) 

One possible explanation for this is that the accumulation of TaMPK3 behaves 

differently in monocotyledonous plants from what has been found from work on 

Arabidopsis, tobacco and tomato (Pedley and Martin, 2005).  It may be that TaMPK3 

accumulates as part of a wound response towards pathogens, no matter what the 

lifestyle of that pathogen. The tobacco wound-induced protein kinase (WIPK) shares 

high sequence similarity to AtMPK3 (Ichimura et al., 2002) which is orthologous to 

TaMPK3 (Rudd et al., 2008).  WIPK is rapidly activated after wounding (Seo et al., 

1995) and also during resistance to infection by tobacco mosaic virus (Zhang and 

Klessig, 1998).  Virulent M. graminicola causes the host cells to rupture and collapse, 

releasing nutrients into the apoplast; this loss of membrane integrity may, 

speculatively, be recognised by the plant as wounding.  Virulent mildew forms 
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haustoria inside the cell by penetrating the cell wall using an appressorium. This 

results in rupture of the cell wall and disturbance to the plasma membrane as well as 

a possible change in turgor pressure and leakage of cell contents.  Again, this may be 

perceived by the plant as a wound.  The HR that occurs after inoculation with an 

avirulent isolate is localised and only occurs in the infected epidermal cell.  This cell 

death may not be on a large enough scale to produce a detectable change in the level 

of TaMPK3, although there may be a change on a local scale. This could be clearly 

tested in barley where the phenotype of powdery mildew resistance genes has been 

characterised (Boyd et al. 1995).  Mildew resistance alleles in barley which produce 

large necrotic lesions, often into the mesophyll, during an incompatible interaction 

such as Mla3 and Mla7 would be predicted to accumulate more MPK3 than during the 

incompatible interaction involving Mla1 and Mla6 which produce a more discrete 

response in the epidermal cells only (Boyd et al. 1995).  Another, potentially 

overlapping, possibility is that TaMPK3 transcript and protein levels may correlate with 

the amount of fungal biomass produced in the plant mediated via PAMP recognition.  

Chitin has been shown to induce kinase activity of AtMPK3 in Arabidopsis (Wan et al., 

2004).  An increase in fungal biomass may increase the amount of defence inducing 

chitin perceived by the plant which could trigger a MAPK cascade (Asai et al., 2002; 

Pitzschke et al., 2009), resulting in the accumulation of TaMPK3.  This could apply to 

both M. graminicola and Bgt.  The late accumulation of TaMPK3 in plants infected with 

M. graminicola may be associated with the levels of the fungal effector protein, 

Mg3LysM (Marshall et al., 2011). This a LysM domain protein which has some 

similarities to the Ecp6 effector found in the biotrophic tomato pathogen, 

Cladosporium fulvum (de Jonge et al., 2010).  Mg3LysM has chitin binding properties 

and is able to protect fungal hyphae against hydrolytic plant enzymes, but significantly 

it is only strongly produced during the latent period of infection by M. graminicola 

when TaMPK3 protein levels remain low.  During the transition to necrotrophic growth 

the Mg3LysM effector is downregulated.  This may increase the availability of chitin to 

plant receptors and trigger defence signalling perhaps resulting in the protein 
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accumulation during this phase.  The fact that Mg3LysM is necessary for full virulence 

of M. graminicola, highlights the importance of suppressing early chitin mediated 

recognition events and PAMP- triggered immunity during the latent period of infection 

(Marshall et al., 2011).  During infection with Bgt there may be a more gradual 

increase in biomass.  There may be a threshold of chitin (or another PAMP) above 

which the plant response is to accumulate MPK3, more would therefore accumulate in 

a compatible rather than an incompatible interaction with Bgt.  There was some 

accumulation of TaMPK3 during the incompatible interactions in the experiments 

presented in chapter 4.  The presence of the pathogen appears to be enough to 

activate the accumulation of TaMPK3 in some wheat varieties, again this may be due 

to chitin levels or wounding responses specific to each variety.  The function of MPK3 

remains unknown; it may be involved in a more general response to pathogen 

inoculation or a general senescence response rather than a specific susceptibility 

response, this should to be investigated further. 

Over recent years many plant R-genes have been cloned.  Analysis of these 

genes has lead to recognition of the NBS-LRR common protein motif, suggesting that 

plants may share a common mechanism of resistance to a diverse range of pathogens.  

More specifically, cloning of R-genes will lead to a greater understanding of the 

molecular basis of disease resistance specificity. Cloning of either Stb6 or Stb15, the 

most common Stb genes, could mean that the function and molecular basis of disease 

resistance to M. graminicola could be defined.  Resistance to M. graminicola does not 

follow the zig-zag model of plant resistance, therefore it can be predicted that the Stb 

genes will not only function in a unique way when compared with other R-genes, but 

that it will not share the common protein motif of previously cloned R-genes.  The 

cloning of genes in wheat, such as Lr34, has allowed defence mechanisms in a single 

variety to be tested with and without the resistance gene in the same genetic 

background, e.g. Thatcher and Thatcher-Lr34 (Krattinger et al. 2009) which confers 

adult plant resistance to rust.  Cloning of an Stb gene would mean that gene and 

protein expression relating to a defence mechanism could be identified using the same 
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plant genetic background, something that is important in the wheat-M. graminicola 

pathosystem due to its high variability.   

M. graminicola has characteristics which more closely fall into the category of 

necrotroph than biotroph; it has no specific feeding structures, can be grown in axenic 

culture and is not killed by hypersensitive cell death.  However, it remains entirely 

intercellular throughout its lifecycle and has no specific feeding structures and is not, 

as yet, known to produce any toxins or elicitors of cell death.  The initial stealthy 

phase of this pathogen and the lack of carbohydrate enzymes, suggests that this is a 

pathogen that is similar to an endophyte during the initial stages of infection.  There is 

a lack of evidence for feeding from the plant during the latent period, although Rohel 

et al. (2001) suggested that M. graminicola takes up soluble carbohydrates as early as 

1 dpi.  No evidence for carbohydrate uptake was found by Keon et al. (2007) using 

mass spectrometry.  It is unclear as to whether the pathogen is feeding off of the 

plant or from degradation of its own spore, which could provide nutrition especially as 

very little growth occurs at the early stages.  M. graminicola may have evolved 

necrotrophic tendencies but not be a fully developed as a necrotroph; the cell death 

that occurs is localised to the cells next to the infecting spore, with no movement of 

necrosis throughout the plant.  Necrotrophs, such as Botrytis cinerea, tend to cause 

spreading necrosis to enable the pathogen to spread quickly and utilise all available 

nutrients.  M. graminicola may not have fully developed as a necrotroph from an 

endophytic lifestyle or, as suggested by Goodwin et al. (2011), may be evolving 

towards necrotrophy. 

This thesis presents new findings about how wheat responds to infection by M. 

graminicola, but it also raises new questions to be investigated, which have been 

outlined in this chapter.  Overall, this work adds weight to the growing body of 

evidence that M. graminicola is a sophisticated pathogen, which is able to evade and 

manipulate host defences to eventually exploit host resources to its advantage. 
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Abbreviations 

µg  microgram 

µL  microlitre 

µM  micromolar 

µm  micrometre 

avr  avirulence 

Bgt  Blumeria graminis f.sp.tritici 

Bgh  Blumeria graminis f. sp. hordei 

CBE  Chlorazol Black E 

Cmm  Clavibacter michiganensis subsp. michiganensis 

cDNA  Complementry DNA 

Comp  Compatibility 

Cq  Quantitative cycle 

DAB  Diaminobenzidine 

Dai  Days after inoculation 

DNA  Deoxyribonucleic acid 

DON  Deoxynivalenol 

Dpi  Days post inoculation 

DTT  Dithiothreitol 

EGTA  Ethylene glycol tetraacetic acid 

ESH  Elongated secondary hyphae 

ET   Ethylene 

ETI  Effector-triggered immunity 

FITC  Fluroecein isolthiocyanate 

GFP  Green fluorescent protein 

H2O2  Hydrogen peroxide 

HCl  Hydrogen chloride 

HGCA  Home Grown Cereals Authority 

HR  Hypersensitive response 
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JA  Jasmonate 

kD  kilo Dalton 

KOH  Potassium hydroxide 

LED  Light emitting diode 

LOX  Lipoxygenase 

MAPK/MPK Mitogen activated protein kinase 

mL  Millilitre 

mM  Millimolar 

NaCl  Sodium chloride 

NaF  Sodium fluoride 

NB-LRR Nucleotide binding-leucine rich repeat 

NCBI  National Centre for Biotechnology Information 

ng  Nanogram 

nm  Nanometer 

nM  Nanomolar 

PAL  Phenylalanine lyase 

PAMP  Pathogen associated molecular pattern 

PCD  Programmed cell death 

PCR  Polymerase chain reaction 

PDI  Protein disulfide isomerase 

pg  Picogram 

PlexDB  Plant Expression Database 

PMSF  Phenylmethylsulfonyl fluoride 

PR  Pathogenesis-related 

PR1  Pathogenesis-related 1 

PRR  Pathogen recognition receptor 

Pst  Pseudomonas syringae f.sp. tomato 

Pst  Puccinia striiformis f. sp. tritici 

PTI  PAMP-triggered immunity 
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QoI  Quinine outside inhibitor 

qPCR  Quantitative PCR 

QTL  Quantitative trait loci 

R-gene Resistance gene 

RNA  Ribonucleic acid 

ROS  Reactive oxygen species 

SA   Salicyclic acid 

SAR  Systemic acquired resistance 

SDS  Sodium dodecyl sulfate 

SDW  Sterile distilled water 

STB  Septoria tritici blotch 

TaMPK3 Wheat mitogen-activated protein kinase 3 

TBS-Tween Tris-buffered saline-Tween 

Tris  Tris (hydroxymethyl) aminomethane 

Trt  Treatment 

U2b  Uvitex 2b 

UV  Ultra violet 

WGA  Wheat germ agglutinin 
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