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ABSTRACT 

Adenovirus has evolved to bypass, or inactivate host cell cycle checkpoints that would 

otherwise inactivate cell cycle arrest or apoptotic programmes in the infected cell. 

Adenovirus 5 (Ad5) inhibits both ATM and ATR activation, whereas Adenovirus 12 

(Ad12) inhibits ATM activation and differentially regulates ATR activation. However, 

both Ad5 and Ad12 types inhibit ATR-dependent Chk1 phosphorylation. Ad5 E4orf3 

promotes the relocalization of the MRN complex in order to inhibit Chk1 activation 

during infection, whereas Ad12 E4orf3 is unable to inactivate MRN by this method.  

To determine how Ad12 inhibits the ATR-dependent Chk1 phosphorylation we 

investigated the relationship between Ad12 and known mediators of the ATR signalling 

pathway required for Chk1 phosphorylation and activation. Here we show that Ad12 

has evolved to inhibit Chk1 phosphorylation by targeting the ATR/ATRIP activator, 

TopBP1 for degradation. We have determined that Ad12 E4orf6, independent of E1B-

55K, associates with the cellular Cul2-containing ubiquitin ligase to promote TopBP1 

degradation. Indeed, using RNA interference we have shown that Ad5 and Ad12 

differentially activate Cullin-containing ubiquitin ligase complexes during infection 

such that Ad5 utilizes Cul5, and Ad12 utilizes Cul2. Furthermore, we have also 

determined that Ad12 E4orf3 promotes the degradation of two ATR signalling pathway 

mediator proteins, Timeless and Tipin, in an Ad12E1B-55k/E4orf6-independent, and 

Cul2-dependent fashion, during infection. Taken together, our data provides evidence 

to indicate that Ad12 inhibits ATR-dependent activation of Chk1 by targeting TopBP1, 

Timeless, and Tipin for Cul2-dependent degradation. 

Given the ability of Ad oncoproteins to target cellular tumour suppressor gene products, 

many researchers have strived to identify novel, cellular Ad oncoprotein-interacting 
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proteins using a wide range of techniques. Previous research from our laboratory 

identified the centrosomal protein, WDR62, as possible E1B-55K interacting protein. 

The second aim of this study was to expand our current knowledge of this protein and 

determine its role during infection. Here we show that E1B-55K interacts with WDR62 

in vivo and colocalizes with it at centrosomes. We also provide evidence to show that 

WDR62 functions in the cellular DNA damage response. Indeed, cells depleted of 

WDR62 by RNA interference resulted in a UV-sensitive phenotype, defects in ATR 

activation and G2/M checkpoint control, as well as displaying supernumerary 

centrosome during mitosis. Furthermore, we identified by mass spectrometry, BRCA1, 

ATR, RPA70, and DNA-PK as possible interacting-proteins for WDR62. Taken 

together, our data provide evidence for novel functions of a cellular E1B-55K 

interacting protein, WDR62, in the ATR signalling pathway, and give further credence 

to the importance of studying the biological functions of adenovirus oncoproteins to 

further our understanding of fundamental cellular signalling pathways.  
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1.1. ADENOVIRUS 

1.1.1. DNA tumour viruses 

Cell growth and division is a very tightly controlled process that is governed by a 

complex balance of signalling pathways. Defects in these signalling pathways can lead 

to unrestrained cell proliferation leading to the formation of tumours, causing a disease 

called cancer. Cancer as a disease has been recognised for centuries, dating back as far 

as the ancient Egyptian era where the aetiology of the disease was attributed to the “will 

of the gods” (Diamandopoulos 1996). Over the centuries many theories on the cause of 

cancer have been discussed, however it was not until the beginning of the 20
th

 century 

that an infectious aetiology was considered (Javier and Butel 2008). In 1911 Peyton 

Rous founded the scientific field of tumour virology by discovering an avian retrovirus, 

Rous sarcoma virus (RSV), which was found to induce tumours in chickens (Rous 

1911). The significance of this ground breaking research was not fully appreciated for 

many years; however it did eventually pave way for the discovery of many cancer-

causing viruses, which in turn has vastly contributed to the discovery of oncogenes and 

tumour suppressor genes. The study of cancer-causing viruses has been split into two 

general fields; RNA tumour viruses and DNA tumour viruses. A representative member 

from every group of DNA tumour viruses that have been studied which include 

adenoviruses, polyomaviruses, papillomaviruses, and herpesviruses, have been shown 

to cause tumours in animals or humans (Levine 1988). Furthermore, in 2002 it was 

estimated that 1.9 million new cases of cancer (17.8% of human cancers worldwide) 

were attributable to the infectious agents: human papillomavirus (HPV), human 

immunodeficiency virus type 1 (HIV-1), hepatitis B virus (HBV), hepatitis C virus 
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(HCV), Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpesvirus (KSHV) 

and the human T-cell lymphotrophic virus 1 (HTLV-1) (Parkin 2006).  

Unlike RNA tumour viruses, DNA tumour virus viral oncogenes bear little or no 

resemblance to any cellular proto-oncogenes. Instead, the products of these viral 

oncoproteins serve to disrupt host cellular processes, many of which are down regulated 

in cancer cells, such as apoptosis and cell cycle checkpoint activation, and therefore 

increase the chances of the cell becoming tumorous. In fact, under the correct 

experimental conditions, primary cells can undergo transformation once transfected 

with viral oncogenes, causing them to bypass normal growth barriers and gain tumour-

like characteristics. These transformed cells display characteristic morphological and 

growth changes such as reduced-serum requirements, decreased adhesion, disruption of 

the cytoskeleton, loss of contact inhibition, and immortalisation (Hanahan and 

Weinberg 2000). 

With the exception of a few (EBV, KSHV, HPV), at present, most DNA tumour viruses 

are not thought to be causative agents of human cancers, albeit the fact that they can 

transform cells in culture and cause tumours in animal models under certain conditions. 

Instead, over the past 40 years the study of DNA tumour viruses and their oncogenes 

has revolutionised our understanding of many cellular processes which include cell 

cycle regulation, transcription and DNA replication (Javier and Butel 2008). One 

example of the impact that tumour virology has had in the scientific field is the 

discovery of the tumour suppressor, p53. Immunoprecipitation studies using antibodies 

against the simian virus 40 (SV40) large tumour antigen (LTag) in transformed cells led 

to the discovery of p53 (Lane and Crawford 1979; Linzer and Levine 1979), which later 

was also found to interact with adenovirus (Ad) early region 1B 55kDa (E1B-55K) 

oncoprotein in Ad-transformed cells (Sarnow et al. 1982), and also the HPV E6 
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oncoprotein (Werness et al. 1990). Furthermore, the retinoblastoma gene product, pRB, 

has also been shown to interact with SV40 LTag, Ad early region 1A (E1A), and HPV 

E7 oncoproteins; pRB interaction with E1A served to provide significant insights into 

pRB function (DeCaprio et al. 1988; Whyte et al. 1988; Dyson et al. 1989). 

1.1.2. Adenovirus identification and classification 

Adenoviruses are non-enveloped icosahedral DNA tumour viruses, with a linear 

double-stranded (ds) DNA genome that undergo a lytic cycle of replication. This family 

of viruses have been studied for the best part of 60 years, in which time they have been 

used as a model system to study viral entry, viral assembly, transcription and DNA 

replication, mRNA splicing, cell cycle control, cell transformation and tumourigenesis. 

Originally discovered in 1953 at the National Institutes of Health (Bethesda, Maryland) 

by researchers trying to identify the virus of the “common cold”, viral agents were 

isolated from the adenoid and tonsil tissue grown in cell culture, and hence, 

subsequently named adenovirus (Rowe et al. 1953). The next significant discovery in 

the adenovirus field came in 1962 when Trentin and colleagues discovered that 

adenovirus type 12 (Ad12) was able to induce tumour formation in new born rodents in 

a laboratory setting (Trentin et al. 1962). This was not only a significant discovery in 

the adenovirus field, but in the tumour virus field as a whole, as it was the first time that 

a human virus was shown to cause cancer, albeit under experimental conditions (Javier 

and Butel 2008).  

There are currently 5 accepted genera in the Adenoviridae family which have been 

determined by their common ancestor, and these are Mastadenoviridae, 

Aviadenoviridae, Atadenovirus, Siadenoviridae, and Ichtadenovirus. 

Avianadenoviruses and Ichatadenoviruses infect birds and fish respectively, whereas 
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Atadenoviruses and Siadenoviruses have a slightly broader range of host which include 

ruminants, reptilian, and avian hosts (Davison et al. 2003). Mastadenoviruses infect 

mammalian hosts, of which there are over 50 known human serotypes that have been 

subdivided into groups A-G according to their sequence homology, oncogenic potential 

in rodents, and their capacity to agglutinate erythrocytes of rat, monkey and human (see 

Table 1.1) (Russell 2009). Members of the group A adenoviruses which includes Ad12 

are known to be highly oncogenic, which is in contrast to group C viruses that includes 

the widely studied adenovirus type 5 (Ad5) which has been shown to be non-oncogenic 

(Trentin et al. 1962; Trentin et al. 1968; Mackey et al. 1979). Our current understanding 

is that adenoviruses are not causative agents of cancer in humans; however DNA from 

both oncogenic and non-oncogenic viruses are able to transform human and rodent 

primary cells (McBride and Wiener 1964; Russell 2009). The non-oncogenic Ad5 E1 

DNA is able to transform human embryonic kidney cells (HEK), whereas oncogenic 

Ad12 E1 DNA is able to transform human embryonic retinoblast cells (HER) (Graham 

et al. 1977; Byrd et al. 1982).   

Adenoviruses readily infect a broad range of species and tissues; however their ability 

to cause disease is relatively restricted as a result of the effective defences mounted by 

the infected host. Despite this, it is known that approximately a third of the human Ad 

serotypes can cause respiratory, gastrointestinal, and ocular diseases that occur in 

children, military recruits, and immunocompromised individuals (Echavarria 2008). 

Furthermore, it is known that some adenovirus serotypes can cause pneumonia, 

hepatitis, hemorrhagic cystitis, colitis, pancreatitis, meningoencephalitis, and 

disseminated disease in AIDS and other immunocompromised patients (Echavarria 

2008).  
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Table 1.1. Classification of human adenoviruses.  

 

 

 

 

 

 

 

Group Serotypes
Oncogenicity

in rodents

Transformation

in vitro

A 12, 18, 31 High Yes 

B1 3, 7, 16, 21, 50 Moderate Yes

B2 11, 14, 34, 35, 55 Moderate Yes

C 1, 2, 5, 6 Low or none Yes

D
8, 9, 10, 13, 15, 17, 19, 20, 22-30, 

32, 33, 36-39, 42-49, 51, 53, 54
Low or none Yes

E 4 Low or none Yes

F 40, 41
None 

reported
Yes

G 52
None 

reported
Unknown
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1.1.3. Adenovirus structure and genome 

Adenoviruses are relatively large viruses that weigh around 150 MDa and have a 

diameter of approximately 70 nm.  A combination of electron microscopy and X-ray 

crystallography techniques have contributed towards elucidating the structure of 

adenovirus virions, whereby it has been determined that the virion is composed of two 

major structural elements, the outer capsid and the core. It was initially determined that 

adenoviruses have a nonenveloped icosahedral structure, with 240 surface features 

(homotrimeric hexons) and long fibres with terminal knobs extending from penton 

bases at the 12 vertices, which together form the outer caspid (Brenner and Horne 1959; 

Horne et al. 1959; Valentine and Pereira 1965). Furthermore, proteins IIIa, VI, VIII, 

and IX have all been shown to associate with the hexons and pentons, and have been 

implicated in helping to cement the virion capsid (Saban et al. 2006).  

Adenoviruses have linear, dsDNA genomes, that are 26-45 kb in size,  which ranks it as 

medium-sized when compared to other DNA viruses, and encode over 40 different 

proteins (Davison et al. 2003). The Ad genomes are characterized by inverted terminal 

repeats (ITR) approximately 100-140 bp in size, and are condensed in the core of the 

virion, where they are associated with the proteins V, VII, and X, as well as the 

terminal protein (TP) which binds covalently to the 5’ termini of each ITR and acts as a 

primer for DNA replication (Smith et al. 2010; Rauschhuber et al. 2011). The Ad 

infectious cycle can be split in two phases, early and late, which are separated by the 

commencement of DNA replication (Russell 2000). Therefore the Ad genome by 

convention is organized into three sections; the early region which consists of 6 

transcription units (E1A, E1B, E2A, E2B, E3, and E4), the intermediate region with 2 

transcription units (IX and IVa2), and the late region which consist of a single 

transcription unit which is transcribed to produce five families of late mRNAs [L1-L5] 
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(Fig. 1.1;(Tauber and Dobner 2001). The E1, E2, and E4 regions are discussed below. 

The E3 region is required for immune evasion, whereas the intermediate and late genes 

products are essential for transcriptional activation of the major late promoter (MLP) to 

regulate the early to late switch, and synthesis of structural proteins respectively 

(Russell 2000). 

1.1.4. Adenovirus DNA replication 

The adenovirus fibre and penton base proteins play very distinct roles in the uptake of 

the adenovirus particle into the cell. The fibre protein promotes entry into the cell 

through its interactions with various cell receptors which include the major 

histocompatibility complex (MHC) class I molecule, and the coxsackievirus-adenovirus 

receptor (CAR), which tethers the virus to the cell surface (Wu and Nemerow 2004). 

Binding of the penton base protein to a coreceptor (which is an αv integrin for all 

adenovirus subgroups with the exception of subgroup F) triggers signals for virus 

internalization by clathrin-coated pits (Mathias et al. 1998; Meier and Greber 2003). 

Capsid dissociation and structural rearrangements that occurs as a result of endosome 

acidification allows the virus particle to be released into the cytoplasm, where it is then 

transported to the nuclear pore complex, allowing the viral DNA to be transported into 

the host cell nucleus, allowing it to use host cell transcription machinery for gene 

expression (Wu and Nemerow 2004). 

Ad DNA replication occurs around 6-8 hours post-infection, and utilizes the three viral 

proteins transcribed from the E2 region. These are the TP precursor (pTP) and the DNA 

binding protein (DBP), and DNA polymerase (AdPol), encoded by the E2A and E2B 

genes, respectively (van der Vliet and Levine 1973; de Jong et al. 2003; Liu et al. 

2003). Furthermore, in vitro studies have shown that there are at least three cellular  



 
 

9 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.1. Adenovirus genome organization. The relative positions and 

orientation of the major transcription factors are shown. The early genes are 

shown in green and the intermediate and late genes are shown in yellow. 

(Adapted from http://viralzone.expasy.org/all_by_species/183.html) 
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proteins that play a vital role in Ad DNA replication, which include the transcriptional 

factors nuclear factor 1 (NF1) and octamer-binding protein 1 (Oct1) (also known as 

nuclear factor 3), as well as nuclear factor 2 (NF2) which is a type 1 DNA 

topoisomerase (Nagata et al. 1982; Nagata et al. 1983; Pruijn et al. 1986).  

Viral DNA replication is initiated by a novel protein-priming mechanism at either end 

of the linear genome, in which Ad pol catalyses the covalent linkage between the β-OH 

group of a serine residue in pTP and the α-phosphoryl group of the 5’-terminal residue 

deoxycytidine monophosphate (dCMP) to form the pTP/dCMP complex, which acts as 

a primer for synthesis of the nascent strand (Liu et al. 2003). DBP promotes the binding 

of NF1 to Ad pol, whereas Oct1 binds to pTP, which enhances their affinity for viral 

DNA sequences (van Leeuwen et al. 1997; de Jong et al. 2003). The combined actions 

of NF1 and Oct1 can increase DNA replication up to 200-fold, and these cellular 

proteins, together with the three viral proteins pTP, DBP, and Ad pol, form the stable 

pre-initiation complex (de Jong and van der Vliet 1999; de Jong et al. 2003). DBP also 

plays a major role in promoting elongation in an ATP-independent manner, hence 

bypassing the requirement for a helicase to unwind the DNA double helix, although 

complete replication of the viral genome requires the topoisomerase activity of NF2, 

given that elongation cannot continue beyond 30% of the template strand without it 

(Van der Vliet 1995; de Jong and van der Vliet 1999). After replication, pTP is cleaved 

by a virally encoded protease, to produce its mature, smaller form TP, which remains 

covalently attached to the 5’ end of the genome. The role of the covalently attached 

pTP has yet to be fully elucidated, although it is thought to play a role in unwinding of 

the DNA duplex at the origin of replication, as well as protecting viral DNA from 

exonucleases, and allowing DNA-nuclear matrix association (Dunsworth-Browne et al. 

1980; Stillman et al. 1981; Schaack et al. 1990).  
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Adenoviruses have evolved to bypass antiviral responses by controlling host cellular 

processes like cell cycle checkpoints and apoptosis, in order to facilitate viral DNA 

replication and keep the host cell alive long enough to produce viral progeny. The 

mechanisms employed by adenovirus to achieve this are outlined later in this chapter, 

with particular focus on how Ad negates the cellular DNA damage response (DDR).  

1.1.5. E1A 

E1A is one of the most extensively studied viral oncogenes, and is the first to be 

transcribed during adenovirus infection (approximately 1 hour post-infection), 

preceding the onset of viral DNA replication. Transcription of E1A produces two major 

mRNA products, 12S and 13S, as well as 3 minor mRNA products, 9S, 10S, and 11S, 

named after the sedimentation coefficients of their respective mRNAs (Boulanger and 

Blair 1991). The 12S and 13S E1A proteins are identical given that they are transcribed 

from the same mRNA, and both contain the three highly conserved regions CR1, CR2, 

and CR4, with the 13S form containing an extra conserved region CR3 in the C-

terminal half due to alternative RNA splicing, which control Ad early gene expression 

(Gallimore and Turnell 2001). E1A is not a DNA-binding protein itself, yet it plays a 

role a major role in both the transcriptional activation and repression of many early 

viral and cellular genes. Instead, the conserved regions of E1A proteins have been 

shown to interact with a number of cellular proteins, most of which play a role in 

transcriptional regulation (some of which are illustrated in Fig. 1.2), which is crucial for 

adenovirus to manipulate normal cell cycle control in order to facilitate viral DNA 

replication (Gallimore and Turnell 2001; Berk 2005).  

The first cellular protein that was found to bind to E1A was the product of the tumour 

suppressor gene Rb-1, pRB, which significantly, was the first link between a product of 
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transcriptional
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Proteasome

CBP/p300
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Fig. 1.2. Linear representation of Ad5 12S and 13S E1A and its biological 

functions.  The conserved regions (CR) of the 12S and 13S E1A are represented 

by the coloured rectangles. E1A interacts with a number of host cellular factors 

listed above to carry out its functions which are also listed. (Zheng 2010)   
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a tumour suppressor and E1A (Whyte et al. 1988). Furthermore, E1A also binds to the 

two related pocket proteins p107 and p130, which are functionally and biochemically 

similar to pRB. The CR1 and CR2 regions are responsible for the E1A interaction with 

pRB, and consequently interfere with the transcriptional repression activity of pRB by 

causing it to be displaced from E2F-responsive promoters (Frisch and Mymryk 2002). 

The displacement of pRB from E2F complexes allows E2F-dependent transcription of 

cyclin-dependent kinase (CDK) 2, cyclin E, and cyclin A, resulting in the host cells 

being pushed into S-phase, bypassing normal cell growth restrictions, and priming the 

cell for viral DNA replication (Grand et al. 1998). Furthermore, the displacement of 

pRB from E2F complexes also allows for E2F to activate transcription of the E2 gene 

from the E2 early promoter, which is important for production of proteins that are vital 

for viral DNA replication (Bagchi et al. 1990).  

Another way that E1A promotes S phase entry is through the interactions between CR1 

and the transcriptional co-activators p300 and CREB-binding protein (CBP), which 

possess intrinsic histone acetyl transferase activity (Howe et al. 1990; Howe and Bayley 

1992). Transcription of cellular genes, such as p53 and nuclear factor-kappa B (NF-

κB), which are involved in cell cycle regulation are affected as a consequence of the 

E1A-p300/CBP interaction, further promoting host cell progression into S phase and 

viral replication (Ben-Israel and Kleinberger 2002). 

The pRB- and CBP/p300-binding domains of E1A are required for E1A-dependent 

stabilization of p53 and stimulating p53-dependent apoptosis in primary cells. E1A also 

binds to proteasome subunits to inhibit p53 degradation (Querido et al. 1997; 

Samuelson and Lowe 1997; Turnell et al. 2000; Zhang et al. 2004). However, 

stabilization of a pro-apoptotic protein like p53 is quite likely to be deleterious for a 

replicating virus, thus these actions are counteracted by the expression of other viral 
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proteins, E1B and E4, although there is evidence to suggest that functional p53 might 

be able to promote viral replication and late virus protein expression (Rhodes et al. 

2005).  

1.1.6. E1B 

The products of the Ad E1B gene are involved in a number of different mechanisms 

that are crucial for efficient viral replication and Ad-mediated cell transformation. 

There are five known gene products encoded from the Ad E1B gene, which are 

generated by alternative splicing of a common mRNA precursor. E1B-55K and E1B-

19K are the two proteins which are the best characterized, and individually, both have 

been shown to function in concert with E1A to transform rodent cells in culture, albeit 

they have no transforming potential of their own (Sieber and Dobner 2007). These two 

proteins are two unrelated polypeptides whose primary functions are to inhibit 

apoptotic effects of p53 and to cooperate with E1A to promote Ad-mediated cell 

transformation (Berk 2005). Whilst much research has gone into characterizing the 

functions of E1B-55K and E1B-19K, very little is known about the other three proteins, 

E1B-84R, E1B-93R, and E1B-156R, which are designated as such in relation to the 

numbers of their amino acid residues (Fig. 1.3; (Sieber and Dobner 2007).   

E1B-19K is a functional homologue of the cellular B-cell lymphoma-2 (BCL2) family 

of proteins (Cuconati and White 2002). Expression of E1A promotes degradation of the 

myeloid cell leukaemia 1 (MCL1) protein, also a BCL2 homologue, which results in 

the release of the pro-apoptotic BCL2 antagonist killer (BAK) protein, normally bound 

to MCL1 in uninfected cells (Cuconati et al. 2003). This then allows BAK to form 

oligomers with another pro-apoptotic protein, BCL2-associated X (BAX), resulting in 

pore formation in the outer mitochondrial membrane, leading to the release of pro-
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apoptotic proteins, which include cytochrome c and Smac/DIABLO into the cytoplasm, 

and subsequent activation of the caspase-9 and caspase-3 mediated apoptotic 

programmes (Cuconati and White 2002; Cory et al. 2003; Cuconati et al. 2003). During 

infection, E1B-19K binds to, and sequesters BAX and BAK, and thus inhibits the 

caspase-mediated apoptotic programme, which could potentially cause premature cell 

death and restricted viral replication as a result of p53 activation (White 2001).  

E1B-55K is a multifunctional protein that utilizes a number of different mechanisms to 

facilitate efficient viral replication during infection. A schematic representations of Ad5 

E1B-55K protein is shown in Figure 1.4. E1B-55K also functions in concert with E1A 

to promote complete oncogenic transformation of mammalian cells (Barker and Berk 

1987). The first interaction between an adenovirus E1-protein and a cellular protein to 

be identified is the one between E1B-55K and p53 in transformed cells, where they are 

found in a stable complex within subcellular structures in the cytoplasm near the 

nucleus (Sarnow et al. 1982; Zantema et al. 1985). These subcellular structures are now 

known as aggresomes, which are formed at the microtubule organizing centre in 

response to misfolded proteins that occur when their rate of synthesis exceeds their rate 

of degradation; it is believed that the sequestration of p53 into these aggresomes by 

E1B-55K inhibits the protein from performing its normal functions (Liu et al. 2005). 

The transforming ability of E1B-55K correlates with its role as a transcriptional 

repressor of p53, whereby it binds with high affinity to p53 at p53-responsive 

promoters, thus repressing its transcriptional activity (Yew and Berk 1992; Yew et al. 

1994). In contrast to Ad5 E1B-55K, Ad12 E1B-55K only associates weakly to p53, and 

does not co-localize at cytoplasmic aggresomes, but instead has a diffuse nuclear 

localization (Zantema et al. 1985; Grand et al. 1994). Despite the difference in the 

binding affinities for p53, both Ad5 E1B-55K and Ad12 E1B-55K are able to inhibit  
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NES SCM RNP CKI/IIZnFNH2 COOH

Transcription activation 

Transformation Inhibition of apoptosis

Late viral mRNA export

NLS

Fig. 1.3. Linear representation of Ad5 E1B gene products. The numbers at 

the top represent the nucleotides in the Ad5 sequence. The four alternatively 

spliced mRNAs are depicted by the thick black lines, whereby the arced and 

dashed lines that connect them represent their non-coding introns. The grey, 

black, and white shaded boxes next to the mRNAs represent their gene products, 

indicating the used reading frames 1-3 respectively. The open reading frames 

encoding E1B-156R, E1B-93R, and E1B-84R are generated through fusion of 

two different exons. (Sieber and Dobner 2007).  

Fig. 1.4. Linear representation of Ad5 E1B-55K and its biological functions.  
The coloured rectangles represent the five different E1B-55K binding motifs. 

The biological functions of this protein are also listed. NES, nuclear export 

signal; SCM, SUMO1 conjugation motif; RNP, ribonucleoprotein motif; ZnF, 

putative C
2
H

2
 zinc finger; CKI/II, caesin kinase I/II phosphorylation sites; NLS, 

nuclear localization signal. (Zheng 2010).  
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p53 transcriptional activity (Yew and Berk 1992).  

E1B-55K undergoes a post-translational modification by the small ubiquitin-like 

modifier 1 (SUMO-1) via the ΨKxE consensus motif required for SUMO-1 

conjugation, which surrounds the lysine residue at amino acid position 104 (Endter et 

al. 2001). A single mutation (K104R) inhibits E1B-55K SUMOylation, which results in 

a significant reduction in the ability of E1B-55K to transform primary baby rodent cells 

in cooperation with E1A, as well as reducing the inhibition of p53-mediated 

transactivation (Endter et al. 2001). Overexpression of SUMO-1 results in 

relocalization of E1B-55K into the nucleus, whereas a mutation in the SUMO 

conjugation motif restores the proteins cytoplasmic location, and therefore suggests that 

SUMO-1 conjugation and deconjugation acts as a molecular switch to control E1B-55K 

distribution in the cell (Endter et al. 2001; Kindsmuller et al. 2007). In contrast to Ad5 

E1B-55K, Ad12 E1B-55K has diffuse, nuclear distribution in transformed cells, and is 

not detectably SUMOylated (Zantema et al. 1985; Endter et al. 2001).  Furthermore, 

E1B-55K also regulates p53 SUMOylation (Muller and Dobner 2008). E1B-55K-

mediated SUMOylation of p53 is essential for maximum inhibition of p53 activity, 

whereby it tethers p53 into promyelocytic leukemia (PML) nuclear bodies to decrease 

its mobility, and then facilitates its nuclear export and subsequent degradation (Pennella 

et al. 2010).  

The roles of the E1B-55K protein are generally better understood during infection than 

transformation, where it generally functions in concert with the early region 4 open 

reading frame 6 (E4orf6) protein to perform both early and late roles that are crucial for 

viral replication (Berk 2005). The roles of Ad12 E1B-55K during infection have not 

been as extensively characterized when compared to Ad5 E1B-55K, but it is thought to 

function in a similar fashion to the Ad5 protein (Grand et al. 1999; Stracker et al. 2005). 
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One such function that E1B-55K carries out together with E4orf6, is to promote the 

proteasomal degradation of p53, thus allowing the virus to evade cellular p53-

dependent events like apoptosis and cell cycle arrest (Querido et al. 2001). E1B-55K 

and E4orf6 function in concert to recruit p53 to a E3 ubiquitin ligase complex 

containing the cellular proteins Cullin (Cul) 5, RING-box 1 (RBX1), and elongins B 

and C, where it is then ubiquitylated, and targeted to the 26S proteasome for 

proteasomal degradation (Querido et al. 2001; Harada et al. 2002). Although E4orf6 is 

able to bind to p53 independently,  it has been suggested that E1B-55K acts as a 

substrate adapter for the complex, and E4orf6 recruits the Cullin ring ligase (CRL) as it 

has been found to contain motifs termed BC boxes, that bind to elongins B and C 

(Dobner et al. 1996; Blanchette et al. 2004; Cheng et al. 2007). Furthermore, a number 

of other cellular proteins that are involved in the cellular DNA damage response are 

also targeted by E1B-55K and E4orf6 for degradation, which include; DNA ligase IV, 

Mre11, and BLM, and will be discussed in more detail later in this chapter (Stracker et 

al. 2002; Liu et al. 2005; Baker et al. 2007; Orazio et al. 2011). 

It has also been shown that through their ability to recruit the CRL5, E1B-55K and 

E4orf6 also cooperate to inhibit host cell nuclear mRNA export, and promote late 

nuclear viral mRNA export to the cytoplasm during the late phase of infection (Woo 

and Berk 2007; Blanchette et al. 2008). Cells expressing either mutant E1B-55K or 

E4orf6, or both, have been shown to have a defect in late nuclear viral mRNA export to 

the cytoplasm, and cannot inhibit host cell mRNA export from the nucleus to the 

cytoplasm, as well as a reduction in the synthesis of viral late proteins when compared 

to that of wt Ad5 (Babiss et al. 1985; Cutt et al. 1987; Gonzalez et al. 2006). These 

functions are likely to be associated with the fact that both E1B-55K and E4orf6 have 

an N-terminal nuclear export signal (NES), and a carboxy-terminal (C-terminal) nuclear 
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localization signal (NLS), which are required for shuttling between the nucleus and the 

cytoplasm (Goodrum et al. 1996; Weigel and Dobbelstein 2000; Dosch et al. 2001). 

E1B-55K also has a ribonucleoprotein (RNP) RNA-binding motif which is essential for 

functionality of the protein (Horridge and Leppard 1998). Together these observations 

suggest that a possible model for viral mRNA export is that an mRNA 

ribonucleoprotein (mRNP) whose degradation causes the inhibition of cellular mRNA 

export from the nucleus, yet promotes viral mRNA export, maybe ubiquitylated and 

targeted for proteasomal degradation; an E1B-55K substrate that may carry out these 

functions has yet to be identified (Berk 2005).  

1.1.7. E4 region 

The E4 transcription unit is located at the far right hand side of the adenovirus genome 

and is transcribed in the leftward direction which produces a primary transcript of 

around 2800 nucleotides in length (Tauber and Dobner 2001). Alternative splicing of 

this transcript generates at least 18 different mRNAs that encode for at least seven orfs: 

orf1, orf2, orf3, orf3/4, orf4, orf6 and orf6/7, which, with the exception of orf3/4, have 

all been shown to be present in infected cells (Cutt et al. 1987; Tauber and Dobner 

2001; Thomas et al. 2001).  E4 proteins collectively play a number or roles which are 

vital for efficient viral replication via a complex network of protein interactions with 

viral and cellular proteins that function in DNA replication, mRNA transport, virus 

particle assembly, transcriptional regulation, and host cell shutoff (Halbert et al. 1985; 

Weiden and Ginsberg 1994; Tauber and Dobner 2001). It has been shown that 

mutations in individual orfs result in only minimal effects on viral growth in cultured 

cells, rendering them dispensable for lytic growth, however a mutation in the E4orf6 

coding region was found to be modestly defective, whilst mutations resulting in loss of 

both E4orf3 and E4orf6 resulted in significant defects in DNA replication, 
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accumulation of viral mRNAs, and host cell shutoff (Halbert et al. 1985). Furthermore 

it has been shown that E4orf3 and E4orf6 can compensate for each other’s defects as 

they have been shown to be functionally redundant, as both proteins are involved in 

inhibiting adenovirus DNA concatamer formation, promoting late viral protein 

synthesis, augmenting viral DNA replication, and shut-off of host protein synthesis, 

although they carry out these functions via different mechanisms (Halbert et al. 1985; 

Huang and Hearing 1989; Weiden and Ginsberg 1994).  

The E4orf6 gene encodes for a 34 kDa protein that plays a role in regulating a number 

of host cell pathways in order to promote viral gene expression and viral replication. 

Most of the functions carried out by E4orf6 require another viral oncoprotein E1B-55K, 

although E4orf6 in some instances can act alone.  The E4orf6 proteins has been shown 

to bind directly to p53 at the C-terminal regulatory domain of the protein, which 

inhibits the interaction between the N-terminal activation domain of p53 and TAFII31, 

a component of the transcription factor IID (TFIID), thus blocking p53-mediated 

transcriptional activation (Dobner et al. 1996).  

E4orf6 contains a N-terminal NES, and C-terminal NLS, which are required for 

shuttling between the nucleus and the cytoplasm, as well as an amphipathic arginine-

rich α-helical nuclear retention signal (NRS), which has been shown to be required for 

E1B-55K-E4orf6 complexes to localize in the nucleus (Orlando and Ornelles 1999). 

E4orf6 also contains a functional zinc-binding region, which has been shown to be 

required for its interaction with E1B-55K, and three functional BC boxes, which are 

required for recruitment of CRL complexes, as well as also mediating its indirect 

interaction with E1B-55K (Boyer and Ketner 2000; Blanchette et al. 2004; Cheng et al. 

2007). As discussed above, E4orf6 functions in concert with E1B-55K to counteract the 

effects of E1A-induced p53 stabilization by promoting the proteasome-mediated 
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degradation of p53 (Querido et al. 2001; Blanchette et al. 2004). Viruses harbouring 

mutations that express E4orf6 proteins lacking BC boxes are defective in production of 

late viral proteins, export of late viral mRNAs, and viral growth (Blanchette et al. 

2008). This shows that the interactions between E4orf6 and E3 ubiquitin ligase 

complexes are required for these late functions, suggesting that E3 ubiquitin ligase 

activity may play a part in mRNA transport and stability.  

The E4orf3 gene encodes for a highly conserved 11 kDa protein which was the first 

gene product to be identified from the E4 region in infected cells and found to associate 

with the nuclear matrix (Sarnow et al. 1982; Downey et al. 1983). Like E4orf6, E4orf3 

also interacts with E1B-55K to carry out some of its functions, as well as functioning 

alone. E4orf3 has been shown to reorganize cellular and viral proteins in to nuclear 

track like structures that surround sites of viral replication, the most studied of which is 

promyelocytic leukemia (PML) protein; E4orf3 is able to reorganize PML oncogenic 

domains (PODs) into these elongated nuclear track structures (Carvalho et al. 1995; 

Doucas et al. 1996). Further research has shown that E4orf3 specifically targets the 

PMLII isoform to reorganize PODs into nuclear tracks, and the reorganization of PODs 

into these nuclear structures is important for viral replication, as overexpression of 

PML inhibits the E4orf3-mediated reorganization of the PODs, causing a severe delay 

in adenoviral replication (Doucas et al. 1996; Hoppe et al. 2006). Furthermore, like 

E4orf6, E4orf3 has been shown to interact with E1B-55K, and reorganize it into nuclear 

tracks (Leppard and Everett 1999). 

More recent research has shown the E4orf3 also interacts with members of the 

transcriptional intermediary factor 1 (TIF1) family of proteins, TIF1α and TIF1γ, which 

like PML, are members of the tripartite motif (TRIM) family of proteins. E4orf3 

recruits TIF1α to PML nuclear tracks during infection, however the functional 
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significance of this reorganization during infection remains to be elucidated (Yondola 

and Hearing 2007). Furthermore, E4orf3 not only reorganizes TIF1γ to PML nuclear 

tracks, but also promotes the proteasomal degradation of this protein, independent of 

E1B-55K, E4orf6, and CRLs (Forrester et al. 2012).  

Like E1B-55K and E4orf6, E4orf3 is also able to inhibit p53 transcriptional activity via 

epigenetic silencing of p53 promoters, and occurs independent of E1B-55K/E4orf6 

mediated degradation of p53 (Soria et al. 2010). E4orf3 forms a scaffold in the nucleus, 

which directs heterochromatin formation via trimethylation of histone H3 at lysine 

residue 9 (H3K9me3) at p53 target promoters, thus silencing p53-mediated 

transcription in response to DNA damage (Soria et al. 2010).  The role of E4orf3 in 

reorganizing other DNA damage proteins will be discussed later.  

The E4orf4 gene encodes for a highly conserved 14 kDa protein which does not appear 

to be essential for Ad infection, and instead appears to have an inhibitory role in Ad 

replication by negatively regulating the E1A transactivation of both the E2 and E4 

promoters (Bondesson et al. 1996; Mannervik et al. 1999). The primary cellular target 

for E4orf4 was found to be the Bα subunit of the protein phosphatase 2A (PP2A), 

which together have been shown to function in many processes which include 

regulation of viral and cellular gene expression, down regulation of virus-induced 

signal transduction, and induction of p53-independent apoptosis  (Kleinberger and 

Shenk 1993; Kleinberger 2000). E4orf4 together with PP2A, in the absence of other 

viral proteins, is able to induce p53-independent apoptosis in human cancer cells, as 

well as inducing G2/M arrest in mammalian cells prior to apoptosis (Marcellus et al. 

2000; Kornitzer et al. 2001). These functions of E4orf4 make it an excellent potential 

target for cancer therapy seeing as a high incidence of human tumours lack functional 
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p53 and are thus susceptible to treatments which require p53-dependent apoptosis 

(Branton and Roopchand 2001).  

E4orf6/7 is a 17 kDa protein that also appears to be non-essential for adenovirus 

infection, yet it is able to functionally compensate for E1A expression during viral 

infection (O'Connor and Hearing 2000). The expression of E4orf6/7 in the absence of 

E1A causes the displacement of Rb and p107 from E2F complexes, and allows E2F to 

bind to the E2a promoter region and promote expression of E2 (O'Connor and Hearing 

2000). E4orf1 is also not essential for adenovirus infection, however it has been shown 

display oncogenic properties as it essential for Ad9-induced mammary tumours in rats 

(Javier 1994; Thomas et al. 2001) 

1.1.8. Biological significance of studying adenoviruses 

As discussed adenoviruses have often been used as a model system to study many 

fundamental cellular and molecular processes (Berk 2005; Weitzman and Ornelles 

2005). Scientists studying Ad2 found that an Ad2 pre-mRNA moleule was reorganized 

in such a way that it resulted in a variety of mature mRNA molecules with an assorted 

arrangement of exons; this process which we now know as alternative splicing was first 

described in adenovirus, for which Phillip Sharp and Richard Roberts were awarded the 

Nobel Prize in Physiology or Medicine in 1993 (Berget et al. 1977; Chow et al. 1977). 

The study of adenovirus oncogenes have also played a major role in identification 

and/or characterization of many cellular proteins, in particular the E1A viral oncogene, 

which has been used to study a range of cellular proteins, in particular pRB, E2F, p300, 

and CtBP (Yee and Branton 1985; Kovesdi et al. 1986; Whyte et al. 1988; Boyd et al. 

1993). Furthermore, adenovirus was found to directly interact with p53, initially via 
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E1B-55K, which lead to subsequent studies that were crucial for discovering the 

fundamental nature and function of the protein (Sarnow et al. 1982; Russell 2000). 

Adenoviruses were the first family of human viruses to be described as capable of 

causing cancer, where they have been shown to promote tumour formation in rodents 

(Trentin et al. 1962). The Ad early gene products, E1A, E1B, E4orf3 and E4orf6 can 

function together to mediate cellular transformation by utilizing what has been 

described as a “hit and run” mechanism seeing as there are no detectable viral DNA 

sequences, or viral proteins, in the resulting tumour cells (Trentin et al. 1962; Nevels et 

al. 2001). Adenoviruses have been associated with a number of human conditions in 

both healthy and immunocompromised individuals, yet despite this, they are not 

thought to be associated with human cancers (Sarantis et al. 2004; Echavarria 2008). 

Although a recent study which utilized real-time quantitative PCR assay managed to 

detect Ad DNA from serotypes that belong to groups B and D, in paediatric brain 

tumours, and this was further confirmed by in situ hybridization assays, suggesting that 

some Ad serotypes might have tumourigenic capabilities in humans (Kosulin et al. 

2007). 

The Ad5 E1B-55K mutant virus, dl1520 (also known as ONYX-015), is an oncolytic 

virus which has been of particular interest with regards its potential use as a therapeutic 

tool in cancer treatment. In theory, adenoviruses that do not express E1B-55K will be 

unable to replicate efficiently in healthy human cells that express p53, but instead will 

be able to replicate in tumour cells that express mutant p53 (Bischoff et al. 1996). Ad5 

dl1520 has been shown to preferentially infect and lyse cancer cells, although there are 

conflicting reports of its efficacy in clinical trials of cancer patients (Heise et al. 1999; 

Turnell et al. 1999; Khuri et al. 2000; Cherubini et al. 2006). Adenoviruses are able to 

infect a broad range of cells, can be genetically altered with relative ease, and are able 
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to remain fairly stable in vitro, which is why they have been used as vehicle for gene 

delivery since the early 1990’s, and are currently the vector of choice for gene therapy, 

representing a fourth of all vectors utilized in gene therapy clinical trials (Robinson et 

al. 2011). It is likely that adenoviruses will continue to be used, in the future, to explore 

fundamental cellular processes, and be central to potential therapeutic strategies. 

 

1.2 THE DNA DAMAGE RESPONSE 

1.2.1. DNA damage and cancer 

The cell’s genome is under constant attack from agents that can directly damage the 

DNA, such as ultraviolet (UV) or ionising radiation (IR) or indirectly as a consequence 

of normal cellular metabolic processes that result in by-products such as oxygen free 

radicals. Approximately 10,000 DNA lesions are repaired by each cell every day. These 

can be in the form of many different types of lesion including oxidative base damage, 

double-stranded, single-stranded breaks or mismatches (Abraham 2001; Lilley et al. 

2007). Complex molecular pathways have evolved to recognize and correct cellular 

DNA damage, which are collectively termed the DNA damage response (DDR) and is 

thought to be the key early anti-cancer barrier that cells must negotiate before becoming 

tumorous (Bartkova et al. 2005). The DDR utilizes the cell-cycle machinery, which is 

overlaid with a series of surveillance pathways called cell-cycle checkpoints. These 

checkpoints detect damaged or abnormally structured DNA and then co-ordinate cell-

cycle progression with DNA repair. Cell-cycle checkpoint activation slows or arrests 

cell-cycle progression which allows the appropriate DNA repair mechanisms to correct 

genetic lesions so that they are not passed onto the next generation of daughter cells 

(Abraham 2001; Lilley et al. 2007). These processes are not perfect and consequently 
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mutations in oncogenes and tumour suppressor genes, as well as other cell regulatory 

genes, can occur despite a functional cellular DNA damage response (Lobrich and 

Jeggo 2007). Defects in these processes can lead to errantly or unrepaired DNA, which 

can result in genomic instability and subsequent cancer development. This is supported 

by the fact that individuals who harbour inherited mutations in their DNA damage 

response genes are predisposed to developing tumours (O'Driscoll et al. 2006).  

Interestingly, DNA damaging agents such as IR and alkylating agents are used in a 

controlled manner in current cancer treatments. This is because most tumour cells have 

defects in the DNA damage response machinery, and are therefore more susceptible to 

the cytotoxic effects of DNA damage agents than the surrounding healthy cells. These 

treatments however have many adverse side effects as a result of DNA damage caused 

in the normal cells, which include the gastrointestinal problems, hair loss, immune 

suppression, and possible secondary tumour development (Kastan and Bartek 2004). 

Given these side effects, therapies that utilize specific DNA damage pathway inhibitors 

are being developed and are currently being administered in clinical trials in 

combination with traditional therapies. An example of such inhibitors are ones that 

target the poly (ADP-ribose) polymerase (PARP) family of enzymes, which play a role 

in base excision DNA repair pathway. Inhibitors target the PARP1 and PARP2 

isoforms, and have been shown to enhance the antineoplastic potential of 

chemotherapeutic agents, as well as showing preferential killing of neoplastic cells 

when treating patients with breast or ovarian cancers that are caused by mutations in 

either the BRCA1 or 2 genes (Kummar et al. 2012).  

Mutations in DDR genes have been attributed to a number of rare human genetic 

conditions, which include ataxia telangiectasia (A-T), ataxia telangiectasia-like disorder 

(ATLD), Nijmegen breakage syndrome (NBS), NBS-like syndrome, RIDDLE 



 
 

27 
 

(radiosensitivity, immunodeficiency, dysmorphic features and learning difficulties) 

syndrome, Fanconi anaemia (FA), DNA ligase IV deficiency syndrome (LiDS), Li-

Fraumeni syndrome, Seckel syndrome and xeroderma pigmentosum (XP; (Jackson and 

Bartek 2009).  These diseases present with many different symptoms, of which the 

most common are sensitivity to agents that cause DNA damage, as well as a 

predisposition to the development of tumours.  

1.2.2. p53 

The tumour suppressor protein p53 was first discovered in 1979 in a complex with 

SV40 LTag using immunoprecipitation assays (Lane and Crawford 1979; Linzer and 

Levine 1979). Originally, p53 was described as an oncogene as it was shown to have 

transforming activity, although this was heavily disputed as the original gene sequence 

for the wt TP53 was questioned, and it was later found to actually be a suppressor of 

transformation  (Eliyahu et al. 1984; Parada et al. 1984; Finlay et al. 1989). Since its 

discovery, p53 has been the one of the most extensively studied proteins and has been 

described as the ‘guardian of the genome’ as it has been shown to regulate a number of 

cellular processes in response to cellular stress, and has been shown to be mutated in 

over 50% of human cancers (Lane 1992; Whibley et al. 2009).  

The major role that p53 plays is that of transcription factor that binds to a very loose 

DNA sequence found in the regulatory regions of p53-responsive genes (Meek 2004). 

This tumour suppressor is able to regulate various genes that function in cellular 

processes like cell cycle control, DNA repair, senescence and apoptosis, in response to 

different cellular stresses as illustrated in Figure 1.5 (Whibley et al. 2009). In response 

to DNA damage, p53 acts as a molecular switch between DNA repair and apoptosis.  
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Fig. 1.5. The p53 pathway.  This illustration highlights the complexity of p53 

regulation and its importance in maintaining genome integrity. Upstream 

signalling to p53 increases its level and activates its function as a transcription 

factor in response to a wide variety of stresses, whereas downstream components 

execute the appropriate cellular response. p53 function is regulated by at least 50 

known enzymes which effect its interaction with the MDM2-MDM4 complex. 

In unperturbed cells, MDM2-MDM4 bind to p53 and ubquitylate it, targetting it 

for proteasome-mediated degradation. The functions of MDM2-MDM4 are 

blocked under stressed conditions by protein-binding events, phosphorylation, 

and degradation. This then allows p53 to transcriptionally activate or repress 

genes involved in cell cycle arrest, DNA repair, angiogenesis, apoptosis and 

senescence (Brown et al. 2009). 
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When DNA damage occurs, p53 acts to induce cell cycle arrest to allow the repair of 

the damage and then subsequent entry into the normal cell cycle. However, when 

damage is too severe and irreparable, p53 activates the apoptotic pathways to cause cell 

death in order to prevent the damaged DNA being passed on to daughter cells (Latonen 

and Laiho 2005).  

In unperturbed cells the expression levels of p53 remain quite low via mechanisms that 

promote ubquitylation and subsequent proteasome-mediated degradation of the protein. 

These processes are mainly regulated by the murine double minute 2 (MDM2) E3 

ubquitin ligase, which binds to the N-terminal of p53 and ubquitylates multiple lysine 

residues located in its C-terminal region (Rodriguez et al. 2000). A second mechaninsm 

by which MDM2 acts as a negative regulator of p53 function is by binding directly to 

the N-terminal transactivation domain of p53 thus inhibiting its transcriptional activity 

(Momand et al. 1992; Oliner et al. 1993). MDM2 also promotes the relocalization of 

p53 from the nucleus into the cytoplasm, thus removing it from its site of action (Roth 

et al. 1998). Furthermore, MDM2 itself is also transcriptionally regulated by p53 via a 

p53 response element in the MDM2 gene, hence creating an auto-regulatory negative 

feedback loop through which both the expression levels of p53 and MDM2 can be 

regulated (Wu et al. 1993). MDM2 has also been referred to as an oncongene as it has 

been observed to be overexpressed in over forty various forms of malignancies, though 

a mechanism for its involvement remains to be identified; it has been postulated that 

overexpression of MDM2 results in aberrant p53 degradation (Leach et al. 1993; 

Rayburn et al. 2005). In addition to MDM2 there are a large profile of proteins that can 

also play a role in p53 regulation, most of which act via post-translational modifications 

of the protein, such as phosphorylation, methylation and acetylation (Whibley et al. 

2009). Many of these modifications occur withihin the N-terminal region of p53, which 
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prevents MDM2 interaction and results in the stabilization of p53 (Brooks and Gu 

2003). 

1.2.3. Cell cycle checkpoints 

The cellular response to DNA damage initiates an entire ensemble of processes that 

include cell cycle arrest, activation of DNA repair genes, and if needed, activation of 

apoptotic pathways. The cell cycle checkpoints are an integral component of the DDR, 

and are active surveillance mechanisms that are required to maintain DNA integrity 

(Sancar et al. 2004). In response to DNA damage, these checkpoints allow the cell 

cycle to arrest, allowing time for the cell to repair the lesion, and if repair is successful 

the cell cycle is allowed to progress error-free. However if the damage is irreparable, 

the cell will undergo apoptosis.   

G1, S, G2, and M are the four phases of the cell cycle that occur in all eukaryotic cells, 

and transitions between these phases are tightly controlled. Checkpoints are activated in 

response to DNA damage. There are three main DNA-damage regulated checkpoints, 

the G1/S checkpoint, which can block S phase entry, the intra-S phase checkpoint, 

which can delay S phase progression, and the G2/M phase checkpoint, which can inhibit 

mitotic entry (Fig. 1.6). There are a large plethora of proteins involved in the DDR that 

form an integrated network to signal DNA lesions and activate the checkpoints, which 

can be simply grouped into sensors, mediators, signal transducers, and effectors, 

although some of these proteins can act as both signal transducers and sensors, and 

some mediators also have been shown to function in more than one step (Fig. 1.7) 

(Sancar et al. 2004).  

Ataxia-Telangiectasia Mutated (ATM) and ATM-Rad3-related (ATR) are members of 

the phosphatidylinositol 3-kinase-like kinase (PIKK) family that function as key 
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Fig. 1.6. Schematic representation of the cell cycle. DNA damage 

activates cell cycle checkpoint. The yellow triangle depicts the restriction 

point, which is the point at which cells are committed to S-phase entry. 

The Red triangles depict the checkpoints, whereby the G
1
/S checkpoint 

block S phase entry, the intra-S phase checkpoint delays S phase 

progression, and the G
2
/M phase checkpoint inhibits mitotic entry. Cell 

cycle arrest at these checkpoints allows time to repair damaged DNA.  
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Fig. 1.7. Transduction of the DNA damage signal. DNA damage is 

detected by sensor proteins, which in turn activates the signalling cascade. 

This recruits mediators and transducers which amplify the signal and pass 

it on to effector proteins, which results in cell cycle arrest to allow DNA 

repair, or apoptosis if damage is too severe. (Sancar et al. 2004) 
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transducers of signals initiated in response to DNA damage. These proteins 

phosphorylate and subsequently activate a number of proteins involved in the 

checkpoint pathways, a number of which are common substrates for both proteins. 

These kinases respond to different types of DNA damage, as ATM responds primarily 

to DSBs, whilst ATR responds to single-stranded DNA breaks SSBs and stalled DNA 

replication forks (Bakkenist and Kastan 2004). However, cross talk between the two 

pathways has been shown to occur as there is evidence for an ATR response to DSBs, 

as well ATM activation via ATR signalling in response UV and hydroxyurea (HU) 

treatment (Adams et al. 2006; Jazayeri et al. 2006; Stiff et al. 2006).  

Mutations in the ATM gene have been shown to result in the rare genetic condition 

called Ataxia telangiectasia, where patients lack functional ATM proteins and display 

symptoms such as cerebellar degeneration, immunodeficiency, hypersensitivity to 

ionizing radiation-IR (as they are unable to repair DSBs), and a predisposition to 

certain cancers (Savitsky et al. 1995). However, evidence indicates that the ATM gene 

is not essential for cell survival, as ATM-null mice are still viable (Barlow et al. 1996). 

In contrast, ATR-null mice display early embryonic lethality, showing that ATR is 

essential for cell survival (Brown and Baltimore 2000). Hypomorphic mutations in ATR 

cause a rare condition called Seckel syndrome, where patients still have low levels of 

functional ATR and display growth and mental retardation (O'Driscoll et al. 2003).  

1.2.4. ATM kinase activation 

In normal unperturbed cells, ATM activity is minimal as it exists as a homodimer in the 

nucleus, whereby the kinase domain of the protein is blocked by its tight binding to an 

internal domain in the adjacent ATM protein which surrounds the serine 1981 (Kastan 

and Bartek 2004). The formation of DSBs leads to ATM undergoing conformational 
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change, which results in autophosphorylation of the protein at serine 1981 and 

subsequent dissociation of ATM dimers, thus releasing the activated ATM monomers 

(Bakkenist and Kastan 2003). The recruitment of proteins to sites of DSBs occurs 

rapidly, although the autophosphorylation of ATM does not appear to be dependent on 

its recruitment to these lesions, rather it results from a change in the higher-order 

structure of chromatin that occurs at some distance away from the DNA damage sites 

(Bakkenist and Kastan 2003). Despite this, ATM-mediated activation of cell cycle 

checkpoints requires ATM to be localized at sites of DSBs that occurs through its 

interactions with the C-terminal region of Nijmegen breakage syndrome 1 (NBS1) 

protein (Falck et al. 2005; You et al. 2005). The meiotic recombination 11 (Mre11) and 

Rad50 proteins are both binding partners for NBS1, and together form the Mre11-

Rad50-NBS1 (MRN) complex, which are amongst the first proteins to be recruited to 

DNA damage foci and have been shown to be required for efficient ATM kinase 

activation (Trujillo et al. 1998; Uziel et al. 2003).  

There are many other proteins that are required for efficient activation of ATM, which 

include mediator of DNA damage checkpoint 1 (MDC1), breast cancer susceptibility 

gene 1 (BRCA1), and p53-binding protein 1 (53BP1), which like NBS1, contain 

BRCA1 C-terminal (BRCT) domains. MDC1 is phosphorylated by casein kinase 2 

(CK2) at the N-terminal region that is enriched with Ser-Asp-Thr (SDT) repeats, which 

facilitates its interaction with the forkhead-associated (FHA) domain of NBS1, and this 

association is required for the MDC1-MRN-ATM complex to be tethered to chromatin-

flanking sites of unrepaired DSBs (Chapman and Jackson 2008; Melander et al. 2008; 

Spycher et al. 2008).   
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Upon recruitment to sites of DSBs, ATM phosphorylates a number or transducer and 

effector proteins which activate signalling cascades that lead to checkpoint activation 

and DNA repair (Fig. 1.8). The major transducer protein in this cascade is the 

checkpoint kinase 2 (Chk2) protein, which is phosphorylated in the ATM pathway, 

causing the stabilization of p53 by phosphorylating it at sites which interfere with 

MDM2 binding, and thus resulting in subsequent activation of cell cycle checkpoints or 

apoptosis (Hirao et al. 2000). Thus, ATM activation, and ATM-mediated 

phosphorylation of its downstream targets can be summarised as occurring in two steps, 

the first being autophosphorylation of itself to dissociate it from its homodimer form in 

to monomers, and secondly localization of these activated monomers to sites of DNA 

damage where its substrates are located (Kastan and Bartek 2004). 

1.2.5. ATR kinase activation 

In contrast to ATM, ATR exists as in a heterodimeric complex with the ATR-

interacting protein (ATRIP), which has been deemed its essential binding partner, as 

loss of either gene results in the destabilization of both proteins (Cortez et al. 2001). 

Until recently it was believed that ATR-ATRIP complexes were not subject to post-

translational modification in response to DNA damage, neither was there an increase in 

ATR kinase activity, however, recent studies have shown that autophosphorylation of 

ATR occurs on T1989 in response to DNA damage (Bartek and Mailand 2006; Liu et 

al. 2011; Nam et al. 2011). ATR-ATRIP is recruited to sites of DNA damage through 

an interaction between ATRIP and replication protein A (RPA) (Zou et al. 2003). RPA 

is a heterotrimeric ssDNA-binding complex which consists of 14, 32, and 70 kDa 

subunits, that coats ssDNA, and recruits the ATR-ATRIP complex to DNA via 

interactions between RPA70 and ATRIP (Zou and Elledge 2003; Ball et al. 2007). The 

sole recruitment of ATR to sites of DNA damage is not sufficient for an ATR- 
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Fig. 1.8. ATM signalling pathway. DSBs are sensed by MRN complex which  

recruits the ATM kinase to these lesions. ATM phosphorylates H2AX which 

then recruits a series of mediator proteins such as MDC1 and transducer 

proteins such as Chk2. RNF8 and RNF168 ubiquitylate γH2AX to further 

amplify the signal and allow further recruitment of mediator proteins. Activation 

of ATM kinase activity by MRN allows phosphorylation of downstream 

transducer proteins such as Chk2, which promotes cell cycle arrest, DNA repair, 

and apoptosis (Weitzman et al. 2010). 
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dependent damage response. RPA also recruits the Rad17-RCF2-5 (RSR) complex 

known as the ‘clamp loader’, and the Rad9-Hus1-Rad1 (9-1-1) complex which 

functions as the sliding checkpoint clamp (Zou et al. 2002; Zou et al. 2003). Rad17 is 

required to load the 9-1-1 complex which requires ATP, and occurs independently of 

ATR localization or function (Zou et al. 2002). Until recently the functional relevance 

of loading of the 9-1-1 complex was unclear, but now it is known to be required to 

recruit topoisomerase (DNA) II binding protein 1 (TopBP1) to sites of DNA damage 

through the proteins interactions with the C-terminal of Rad9 (Delacroix et al. 2007; 

Lee et al. 2007). TopBP1 functions to directly activate ATR by stimulating its kinase 

activity via interactions with both ATR and ATRIP (Kumagai et al. 2006; Mordes and 

Cortez 2008). Therefore the recruitment of TopBP1 to DNA lesions requires 9-1-1, 

which links it to ATR-ATRIP, resulting in checkpoint signalling. In support of this, 

TopBP1 has been shown to be essential for certain ATR-dependent signalling events, 

including checkpoint kinase 1 (Chk1) and NBS1 phosphorylation (Kumagai et al. 

2006). A model for ATR activation in response to ssDNA damage is illustrated in 

Figure 1.9.  

The major transducer protein in the ATR signalling pathway is the Chk1 kinase, which 

is phosphorylated by ATR on serine residues 317 and 345 (Liu et al. 2000; Zhao and 

Piwnica-Worms 2001). Chk1 phosphorylation also requires the combined actions of 

Claspin, Timeless (Tim), and Timeless-interacting protein (Tipin) to mediate its 

recruitment to ATR (Chini and Chen 2003; Unsal-Kacmaz et al. 2005; Chou and 

Elledge 2006). 

1.2.6. TopBP1 

TopBP1 is a multifunctional protein, and is involved in transcriptional regulation, DNA  
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Fig. 1.9. ATR signalling pathway. The generation of ssDNA as a result 

of replication stress or single-stranded breaks becomes coated in RPA. 

RPA then recruits ATR-ATRIP, Rad17, Rad9-Hus1-Rad1 complex to 

ssDNA. Rad17 loads the 9-1-1 complex, which in-turn recruits TopBP1 

to bind and activate ATR. Tipin binds to RPA, which stabilizes Tim-

Tipin complexes and Claspin onto RPA-coated ssDNA, which allows 

recruitment of Chk1 to ATR. Activation of ATR kinase activity 

phosphorylates downstream transducer proteins such as Chk1, which 

promotes cell cycle arrest, DNA repair, and apoptosis (Weitzman et al. 

2010). 
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replication, and checkpoint signalling (Garcia et al. 2005). TopBP1 is a structurally and 

functionally conserved protein amongst eukaryotes, and was originally identified as a 

topoisomerase IIβ interacting partner; it contains 8 BRCT domains that are often found 

in proteins that function in cell cycle checkpoint regulation and cellular response to 

DNA damage (Yamane et al. 1997; Garcia et al. 2005).  

The best characterized function of TopBP1 is its role as an ATR activator. TopBP1 has 

been shown to contain an ATR-activating domain in the C-terminal region of the 

protein which lies between the 6
th

 and 7
th

 BRCT domain, where it binds to ATR to 

activate its kinase activity; activation of ATR is required for both the phosphorylation 

of its downstream targets, and the regulation of the G2/M checkpoint (Yamane et al. 

2003; Kumagai et al. 2006). However, the interaction between TopBP1 and ATR 

described above is not regulated by DNA damage, and until recently it was unclear how 

activation of ATR by TopBP1 in response to DNA damage occurred (Mordes et al. 

2008). Recent research has shown that autophosphorylation of ATR at T1989 in 

response to DNA damage is directly recognised by the TopBP1 BRCT domains 7 and 

8, and allows TopBP1 to interact with ATR-ATRIP resulting in subsequent activation 

of the ATR kinase activity and substrate recognition (Liu et al. 2011). As described 

above, TopBP1 is recruited to ssDNA by the 9-1-1 complex via its interaction with the 

C-terminal region of Rad9 (Delacroix et al. 2007; Lee et al. 2007). Furthermore, 

depletion of TopBP1 results in decreased Chk1 phosphorylation, and the partial 

abrogation of the G2/M checkpoint, further suggesting that TopBP1 plays a role in 

Chk1 activation (Yamane et al. 2003). Also, like ATR-null mice, TopBP1-null mice 

display early embryonic lethality, showing that TopBP1 is essential for cell survival 

(Brown and Baltimore 2000; Jeon et al. 2011). 
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TopBP1 function has also been attributed to cellular response to DSBs. It is known that 

there is crosstalk between the ATM and ATR signalling pathways that are activated in 

response to DNA damage (Adams et al. 2006; Jazayeri et al. 2006; Stiff et al. 2006). In 

response to DSBs, ATM has been shown to regulate TopBP1 by phosphorylating it at 

Ser-1311, and strongly enhancing its association with ATR (Yoo et al. 2007). Cells that 

express a mutant TopBP1 that prevents this phosphorylation from occurring are 

defective in ATR-mediated Chk1 phosphorylation in response to DSBs, demonstrating 

that TopBP1 is essential for the ATM-mediated activation of ATR in response to DNA 

damage that causes DSBs (Yoo et al. 2007). The interaction between ATM and 

TopBP1 requires MRN, in particular the NBS1 subunit, as depletion of NBS1 inhibits 

ATM from interacting with TopBP1 (Yoo et al. 2009). TopBP1 binds directly to NBS1 

via its BRCT 1 and 2 domains and the two tandem BRCT repeats on NBS1 (Yoo et al. 

2009). Furthermore, TopBP1 also interacts with 53BP1 through its BRCT domains 4 

and 5 to mediate the DNA damage checkpoint function of 53BP1 in G1, where TopBP1 

is recruited to sites of DNA DSBs by 53BP1, specifically in the G1 phase of the cell 

cycle (Cescutti et al. 2010).  

In unperturbed cells, TopBP1 plays a role in DNA replication by functioning as a 

modulator of G1/S transition (Kim et al. 2005). TopBP1 is able to transcriptionally 

regulate E2F1 by repressing it in a pRB-independent fashion by recruiting a component 

of the SWI/SNF chromatin-remodelling complex, Brg/Brm, to E2F1- responsive 

promoters, which represses E2F1 activity and inhibits E2F1-dependent apoptosis at 

G1/S (Liu et al. 2004). Subsequent studies have revealed that the phosphorylation of 

TopBP1 at Ser-1159 by Akt results in the oligomerization of the protein, which is 

essential for its interaction with, and the repression of, E2F1 (Liu et al. 2006). 

Furthermore, TopBP1 depletion results in cells being unable to enter S phase, as it 
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causes the defective chromatin-loading of replication factors, and the up-regulation of 

p21 and p27 cdk inhibitors and the down-regulation of cyclin E/CDK2  (Jeon et al. 

2007). TopBP1 is also required for the formation of the pre-initiation complex in 

mammalian cells and Xenopus egg extracts, and is required to load cell division cycle 

45 (CDC45) onto replication origins; TopBP1 association with Treslin promotes 

CDC45 loading (Fig. 1.10) (Schmidt et al. 2008; Kumagai et al. 2010). 

TopBP1 has been shown to be functionally similar to BRCA1 as well as sharing 

sequence conservation within their respective BRCT domains. As discussed above both 

proteins are required for Chk1 activation and G2-M regulation, as well as being able to 

partially compensate for each other’s function  (Yamane et al. 2003). Furthermore, like 

BRCA1 and BRCA2, TopBP1 has been shown to a possible susceptibly gene for breast 

and ovarian cancers, as there is commonly occurring TopBP1 Arg309Cys alteration 

that has been linked with an increased risk to hereditary breast and ovarian cancer, 

although there are conflicting reports as to whether this is the case (Karppinen et al. 

2006; Blaut et al. 2010). Furthermore, TopBP1 has been shown to bind to p53 and 

inhibit its transcriptional activity via an interaction between its BRCT 7 and 8 domains 

and p53’s DNA-binding domain (Liu et al. 2009). This function of TopBP1 is essential 

in normal cells for G1/S transition, however, in breast cancer tissues TopBP1 has been 

found to be overexpressed and linked with high tumour grade and short patient survival 

time; it has been postulated that the oncogenic potential of  overexpressed TopBP1 

resides in its ability to inhibit p53 (Liu et al. 2009).  

1.2.7. Timeless and Tipin 

Timeless (Tim) is a protein that is essential for the regulation of circadian rhythms and 

was first identified in Drosophila melanogaster in 1994. The mammalian homologues  
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Fig. 1.10. TopBP1 promotes DNA replication. TopBP1 binds to 

chromatin along with Treslin. Cdk2 promotes phosphorylation of Treslin 

which is required for it form a complex with TopBP1. The TopBP1-Treslin 

complex is required for the recruitment and loading of CDC45 onto 

replcation origins (Kumagai et al. 2010). 
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were discovered later in 1998, and have been since shown to function in cell cycle 

progression, DNA replication, cellular responses to DNA damage (Sehgal et al. 1994; 

Koike et al. 1998; Kondratov and Antoch 2007). Unlike its Drosophila homologue, the 

role of Tim in the mammalian clock is debatable, and it also appears that it is not 

actually a true homologue of drosophila Tim, but instead shares a greater homology 

with another Drosophila protein, Timeout (Tim-2) (Benna et al. 2000; Gotter et al. 

2007).  

Tim has functions in the ATR pathway as a mediator protein and interacts with Chk1, 

ATR, and ATRIP in response to DNA damage that occurs as a consequence of 

exposure to the genotoxic agents UV and HU (Unsal-Kacmaz et al. 2005). The 

importance of its role in the ATR signalling pathway is highlighted by the fact that 

depletion of Tim reduces Chk1 phosphorylation in cells treated with HU (Unsal-

Kacmaz et al. 2005). The mechanism behind which Tim promotes Chk1 activation is 

relatively unclear, however, seeing as it has been shown to bind to Claspin it has been 

suggested that it functions to recruit Chk1 to ATR, whereupon Chk1 is then 

phosphorylated (Gotter et al. 2007).  

Tim exists in the nucleus of cells with its binding partner Tipin, an  interaction that 

occurs through the N-terminal region of both proteins, and has been shown to be 

important for the stability for both proteins, as it has been shown that down-regulation 

of either protein by small interfering (si)RNA leads to reduced protein levels and 

relocalization to the cytoplasm of the other protein (Gotter 2003; Chou and Elledge 

2006; Yoshizawa-Sugata and Masai 2007). Like Tim, depletion of Tipin inhibits Chk1 

phosphorylation in response to DNA damage caused by genotoxic agents, thus showing 

that Tipin is also required for an efficient DDR (Unsal-Kacmaz et al. 2007). 

Furthermore, Tipin binds to RPA2 in response to DNA damage, which stabilizes Tim-
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Tipin complexes and Claspin onto RPA-coated ssDNA, and promotes the Claspin-

mediated phosphorylation of Chk1 by ATR (Unsal-Kacmaz et al. 2007; Kemp et al. 

2010). 

Tim/Tipin also function to stabilize replication forks and promote sister-chromatid 

cohesion (Leman et al. 2010). Tim/Tipin co-localize with RPA at nuclear replication 

sites and interact with MCM2 (Tim), MCM6, MCM7 (Tipin), and Polδ and Polε DNA 

polymerases, where they are then thought to coordinate helicase-induced DNA 

unwinding and polymerase-mediated DNA synthesis (Chou and Elledge 2006; Gotter et 

al. 2007). Replication fork stabilization by Tim/Tipin is essential, as depletion of these 

proteins result in defective damage repair in response to fork collapse and chromosome 

fragmentation, as well as impaired sister-chromatid cohesion and defective mitotic 

progression (Leman et al. 2010). Further evidence for the role of Tim in maintaining 

genome integrity comes from a study that shows that like TopBP1 and ATR, Timeless-

null mice also display embryonic lethality (Gotter et al. 2000). 

1.2.8. Mediators of the DNA damage checkpoint 

In addition to TopBP1, there are a number of proteins that have been identified as DDR 

mediators, many of which, like TopBP1, possess BRCT domains. Well known 

examples include MDC1, 53BP1, and BRCA1 (Schultz et al. 2000; Stewart et al. 

2003). In response to DNA damage, the principle function of these proteins is to 

provide a base, or scaffold, for DNA damage signal amplification, whilst 

simultaneously providing signal transduction specificity (Sancar et al. 2004). The 

recruitment of mediator proteins to sites of DNA damage require the ATM-mediated 

phosphorylation of histone 2A family member X (H2AX), which then marks the 

chromatin regions flanking the DSBs (Rogakou et al. 1999; Niida and Nakanishi 2006). 
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Mediator proteins are phosphorylated by either ATM or ATR, and carry out their 

functions through interactions with sensors, transducers, effectors and other mediators 

in a cell cycle-dependent manner (Houtgraaf et al. 2006).  

Like TopBP1, other mediator proteins have multiple roles in the DDR. For example, 

MDC1 localizes the MRN complex to sites of DSBs as well as recruiting the RING-

finger 8 (RNF8) ubiquitin ligase to these lesions; RNF8 ubiquitylates H2A and H2AX 

and consequently recruits 53BP1 and BRCA1 to DSB sites (Huen et al. 2007; Mailand 

et al. 2007). Claspin is another mediator protein with multiple functions. It is required 

principally to recruit Chk1 to ATR to allow for the ATR-dependent phosphorylation of 

Chk1. Claspin also associates with, and stabilizes, replication forks during unwinding 

and DNA replication (Chini and Chen 2003; Yoo et al. 2006). Depletion of mediator 

proteins such as TopBP1, BRCA1, and 53BP1 cause defects in DNA damage 

checkpoint activation and sensitize cells to genotoxic stress agents, demonstrating that 

these proteins are required for rapid and efficient cell cycle arrest in response to DNA 

damage (Stewart et al. 2003; Yamane et al. 2003).  

1.2.9. Role of Transducer and effector proteins in checkpoint activation 

Chk1 and Chk2 are two key, specific transducers of signals from DNA damage sensors 

to cell cycle checkpoints. Signals from ssDNA are primarily transduced to Chk1 by  

ATR-mediated phosphorylation, which activates Chk1 kinase activity, whilst Chk2 

kinase activity is stimulated in response to ATM-mediated phosphorylation and 

primarily transduces signals from DSBs, although there is some overlap between the 

functions of the two proteins (Matsuoka et al. 2000; Zhao and Piwnica-Worms 2001; 

Gatei et al. 2003). Like ATR, Chk1-null mice display embryonic lethality, whereas like 

ATM, Chk2-null mice are still viable (Takai et al. 2000; Hirao et al. 2002). Once 
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activated, Chk1 and Chk2 dissociate from chromatin and activate the appropriate 

effectors proteins depending on the cell cycle phase; effectors include the essential 

regulators of cell cycle progression, p53, and the phoshotyrosine phosphatase, CDC25A 

(Chen et al. 2003; Li and Stern 2005; Smits et al. 2006). The effector proteins are what 

give DNA damage checkpoint signalling pathways their unique identities, as the sensor 

and signal transducer proteins are common in all three pathways (Sancar et al. 2004).  

The G1/S checkpoint is activated in response to DNA damage to prevent cells from 

entering S phase and commencing DNA replication in the presence of DNA 

aberrations. Cells that have entered the G1 phase of the cell cycle typically become 

committed to enter S phase once they have passed the restriction point. However, if 

DNA becomes damaged during G1, entry into S phase becomes inhibited even if cells 

have passed the restriction point (Sancar et al. 2004). The two main effectors in the 

G1/S checkpoint are p53 and CDC25A. Initial G1/S arrest occurs when activated Chk1 

and Chk2 phosphorylate CDC25A; phosphorylation inactivates CDC25A by promoting 

its nuclear exclusion and proteolytic degradation (Bartek and Lukas 2001). CDC25A 

degradation inhibits the initiation of DNA replication, as CDC25A is normally required 

to activate CDK2 and promote the CDK2-dependent phosphorylation, and loading of 

CDC45 onto replication origins (Costanzo et al. 2000). To maintain G1/S arrest, ATM 

and ATR either phosphorylate p53 directly at Ser15, or indirectly via Chk1 and Chk2 at 

Ser20, which activates and stabilizes the p53 protein, allowing it to stimulate the 

transcription of its target genes, one of which is the CDK inhibitor, p21 (Bartek and 

Lukas 2001; Sancar et al. 2004). Both cyclin E-CDK2 and cyclin D-CDK4 are inhibited 

by p21; inactivation of CDKs by p21 inhibits pRB phosphorylation, and prevents pRB 

release from E2F and the transcription of genes required for S phase progression 

(Harper et al. 1993; Lin et al. 2001).  
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The intra-S phase checkpoint is activated to block DNA replication in response to either 

DNA damage that occurs during S phase, or by unrepaired damaged DNA that has 

managed to escape the G1/S checkpoint (Sancar et al. 2004). There are two commonly 

known pathways that exist to activate the intra-S phase checkpoint, both of which are 

p53-independent. The first pathway involves the phosphorylation of CDC25A by 

checkpoint kinases, much like in the G1/S checkpoint, to prevent CDC45 loading onto 

replication origins (Falck et al. 2001). The second mechanism involves a Chk1/2-

independent pathway, and is dependent upon the ATM-dependent phosphorylation of 

structural maintenance of chromosomes 1 (SMC1),  Fanconi anaemia complementation 

group D2 (FANCD2), BRCA1 and the MRN complex; phosphorylation of these 

proteins results in replication inhibition, although the exact mechanism of how this 

branch of the intra-S phase  functions remains unclear (Kim et al. 2002; Nakanishi et al. 

2002; Yazdi et al. 2002). As mentioned above, the intra-S phase is generally thought to 

be p53-independent, however, recent studies have shown a possible role for p53 in this 

checkpoint where it acts with Chk1 to prevent DNA synthesis (Ahmed et al. 2011).  

The G2/M checkpoint is activated in response to cells that have undergone DNA 

damage in the G2 phase to block them from entering mitosis (Houtgraaf et al. 2006). 

The initiation and maintenance of this checkpoint requires both ATM and ATR kinase 

activity. Chk1 and Chk2 phosphorylate and inactivate CDC25A, which in turn inhibits 

CDC2/cyclin B1 and prevents cells from entering mitosis (Sanchez et al. 1997; Mailand 

et al. 2002). Furthermore, both Chk1 and Chk2 phosphorylate and activate the WEE1 

kinase, which also leads to CDC2/cyclin B1 inhibition (Parker and Piwnica-Worms 

1992; McGowan and Russell 1993). The maintenance of G2/M arrest is again mediated 

by p53 via its transcriptional activation of CDK inhibitors such as p21, although unlike 
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the G1/S checkpoint, this pathway is non-essential (Lakin and Jackson 1999; Taylor and 

Stark 2001). 

1.2.10. The role of ubiquitin in the DNA damage response 

The Nobel prize in Chemistry was awarded in 2004 to Avram Hershko, Aaron 

Ciechanover, and Irwin Rose for their discovery of the function of ubiquitin 

(Welchman et al. 2005). Ubiquitin is 76 amino acid polypeptide that can be covalently 

attached to substrate proteins; poly-ubiquitylation is widely recognised as a post-

translational modification that signals proteins for degradation by ATP-dependent 

protease, the 26S proteasome (Thrower et al. 2000; Xie 2010). However, it is becoming 

increasingly apparent that conjugation of ubiquitin to proteins, does not necessarily 

promote degradation, and that ubiquitin is required for many cellular functions, such as 

cellular differentiation, cell cycle progression, DNA repair, and apoptosis (Welchman 

et al. 2005). Furthermore, there is increasing evidence to show that DNA damage 

response proteins are continuously ubiquitylated and deubquitylated to regulate their 

function (Zhang et al. 2006).  

Ubquitylation is the process by which ubiquitin is covalently attached to its target 

protein, and occurs in three steps, with each step requiring a separate type of enzyme: a 

ubiquitin-activating enzyme (E1), a ubiquitin-conjugating enzyme (E2), and a 

ubiquitin-protein ligase (E3) (Hershko et al. 1983; Welchman et al. 2005).  The E1 

enzyme binds to free ubiquitin which is adenylated in an ATP-dependent manner to 

activate it, whereupon it is then modified by a trans-thiolation reaction allowing it to 

conjugate to the E2 enzyme, which associates with the E3 enzyme, that acts as the 

bridge between the substrate and the E2 conjugating enzyme, and allows for ubiquitin 

to be transferred onto the amino group of the substrate (Fig. 1.11)  
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Fig. 1.11. Protein ubiquitylation and 26S proteasome-mediated 

degradation. The covalent attachment of ubiquitin (Ub) to its substrate is 

dependent on ATP hydrolysis and occurs in three steps, which requires three 

different enzymes (E1, E2, and E3). E1 binds and activates Ub and then 

transfers it to E2 Ub-conjugating enzyme. The E3 Ub-protein ligase then 

mediates the attachment of Ub to a lysine residue on it substrate, which are then 

recognized by the 26S proteasome and subsequently degraded. Deubiquitylating 

enzyme (DUB) is able to reverse ubiquitylation. (Hoeller et al. 2006) 
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(Weissman 2001; Welchman et al. 2005). There are also many de-ubiquitylating (DUB) 

enzymes that exist in the cell which act to reverse ubiquitylation by catalysing the 

hydrolysis of ubiquitin-substrate bonds (Wilkinson 2000).  

As mentioned above, ubiquitylation and deubiquitylation regulates the function of a 

number of proteins involved in the DDR pathways, and there are an increasing number 

of E3 ubiquitn ligases that are being identified that function in these pathways, which 

include RNF8, RNF168, and HERC2 (Huen et al. 2007; Mailand et al. 2007; Stewart et 

al. 2009; Bekker-Jensen et al. 2010). The E3 ubiquitin ligase RNF8 and the E2 Ub-

conjugating enzyme UBC13 ubiquitylate γ-H2AX in response to IR, which is required 

for receptor protein 80 (RAP80), BRCA1, and 53BP1 accumulation at sites of DSBs 

(Huen et al. 2007; Mailand et al. 2007). RNF168 is an E3 ubiquitin ligase (mutated in 

RIDDLE syndrome) which binds to ubiquitylated H2A and along with UBC13 operates 

downstream of RNF8 to amplify the RNF8-dependent ubiquitylation of histones 

(Stewart et al. 2009). Recent data has shown that another E3 ubiquitin ligase, HERC2, 

interacts with both RNF8 and RNF168, and is required to facilitate assembly of UBC13  

with RNF8, and maintain levels of RNF168 (Bekker-Jensen et al. 2010). Furthermore 

BRCA1 has been shown to display E3 ubiquitin ligase activity, as there is evidence to 

suggest that it ubiquitylates CtBP-interacting protein (CtIP) and Claspin; BRCA1-

mediated ubiquitylation of Claspin selectively triggers Chk1 activation (Yu et al. 2006; 

Sato et al. 2012). Another DDR protein that is ubiquitylated is proliferating cell nuclear 

antigen (PCNA), which is mono-ubiquitylated by the E3-ubiquitin ligase activity of 

Rad18 in response to DNA damage (Hoege et al. 2002). The ubiquitin is removed in 

undamaged cells by the DUB, ubiquitin-specific protease 1 (USP1), which also de-

ubiquitylates FANCD2 after DNA repair (Nijman et al. 2005; Huang et al. 2006). In 

DNA damaged cells, USP1 undergoes autocleavage, thus inactivating it and allowing 
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both PCNA and FANCD2 to remain ubiquitylated and function in DNA repair 

pathways (Huang and D'Andrea 2006). Another DUB that has been shown to play a 

role in the DDR is USP28, which has been shown to inhibit the degradation of a 

number of proteins in response to IR, including ATRIP, TopBP1, NBS1, MDC1, 

53BP1, and Chk2 (Zhang et al. 2006).  

 

1.3. REGULATION OF THE CELLULAR DNA DAMAGE 

RESPONSE BY ADENOVIRUS DURING INFECTION 

1.3.1. Concatenation of adenovirus genomes 

During its replication life cycle, the terminal portions of the Ad linear ds DNA genome 

has the potential to mimic a DNA DSB in the host cell, whilst viral DNA replication 

generates ssDNA intermediates that are also capable of eliciting a cellular DNA 

damage response (Weitzman et al. 2004). As described above, the DDR is a rapid and 

efficient process which would prove to be detrimental to Ad DNA replication in the 

host cell. Therefore Ad has evolved a number or mechanisms to inactivate these 

pathways in order to facilitate efficient replication of its genome in the host cell.  

The first indication that Ad DNA was recognised by the host cell as damaged DNA 

came from observations of Ad5 mutant viruses lacking the E4 region. Infections with 

these viruses resulted in production of large concatemers of viral DNA, which are 

covalently linked monomers of DNA joined by no specific orientation (Weiden and 

Ginsberg 1994). Concatenation of the Ad genome results in loss of ITRs which contain 

the origins of Ad DNA replication, thus rendering them as dead-end molecules. 

Subsequent studies using the mutant Ad5 virus dl1004, which lacks the entire E4 
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region, showed that this virus was defective for DNA replication and late protein 

synthesis due to the formation of large viral concatamers (Stracker et al. 2002). 

Furthermore it was found that dl1004 infection of mutant cell lines that did not express 

Mre11, DNA ligase IV, and DNA-PKcs rescued the concatemer phenotype, suggesting 

that core components of the ATM and NHEJ pathways are likely to be inactivated 

during infection with wt Ad (Stracker et al. 2002). Using the dl1004 virus and wt Ad it 

was later shown that the MRN complex is required for ATM and ATR activation in 

responses to DNA damage, as infection with the mutant virus yielded a DDR, whilst 

the infection with the wt Ad virus did not (Carson et al. 2003). A more recent study 

questioned whether the DDR response and concatemer formation was indeed the cause 

of defective DNA replication and late protein synthesis seen in E4 mutant viruses 

(Lakdawala et al. 2008). This study revealed that inhibition of viral DNA replication 

was a direct consequence of MRN activity, rather than activation of DDR pathways and 

concatemer formation (Lakdawala et al. 2008). 

1.3.2. Adenovirus-mediated degradation of cellular proteins 

There are an ever-increasing number of cellular proteins that are being recognised as 

targets for Ad-mediated degradation. The Ad oncoproteins have been shown to hijack 

E3 ubiquitin ligase complexes to facilitate degradation of their cellular substrates in an 

ubiquitin-dependent proteasome-mediated pathway. Ad predominantly target CRLs 

during infection. CRLs are the largest family of multi-subunit E3 ligases in eukaryotes 

with eight members (Cul1, 2, 3, 4A, 4B, 5, 7, and PARC/Cul9) (Sarikas et al. 2011). 

Adenoviruses have thus far only been shown to utilize Cul1, Cul2, and Cul5 (Querido 

et al. 2001; Isobe et al. 2009; Cheng et al. 2011; Forrester et al. 2011).  
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The work presented in this thesis focuses primarily on the relationship between Ads and 

Cul2 and Cul5. The CRL complexes that contain these scaffold proteins also have  

Elongin BC adaptor proteins, which link the substrate recognition von Hippel-Lindau 

(VHL) receptor boxes to Cul2, and suppressor of cytokine signalling (SOCS) to Cul5 

(Kamura et al. 2004). The RBX1 E3 ligase component of the CRL is bound to the 

highly conserved C-terminal Cullin domains (Petroski and Deshaies 2005).  The E3 

ubiquitin ligase activity of CRLs are activated by a process known as neddylation, in 

which a ubiquitin-like protein, neural precursor cell-expressed developmentally down-

regulated 8 (NEDD8) becomes covalently attached to a conserved lysine residue in the 

Cullin-homology domain (Petroski and Deshaies 2005). The conjugation of NEDD8 is 

essential for the ligase activity of CRLs, but it is reversible by deneddylation which 

subsequently inactivates it (Duda et al. 2008). 

As described in section 1.1.6, Ad5 E1B-55K and E4orf6 function in concert to mediate 

the proteasome-mediated degradation of a number of proteins that function in the DDR 

pathway. The first to be described was p53, where E1B-55K replaces the SOCS-box as 

the substrate adaptor to bring p53 to CRL5, which is in turn recruited to the E1B-

55K/E4orf6 complex by E4orf6 via one of its three BC box motifs that binds to the 

Elongin BC unit (Fig. 1.12) (Querido et al. 2001; Blanchette et al. 2004; Cheng et al. 

2007). The inactivation of DNA ligase IV and Mre11 is believed to occur via the same 

mechanism as the E1B-55K-E4orf6-mediated proteasomal degradation of p53, although 

there are now conflicting reports in the literature with regards to the specific E3 

ubiquitin ligases utilized by Ad to facilitate degradation of these proteins (Stracker et 

al. 2002; Baker et al. 2007; Cheng et al. 2011; Forrester et al. 2011). Furthermore 

E4orf6 functions independently of E1B-55K to dissociate DNA ligase IV from the 

XRCC4 complex prior to its degradation in order to prevent NHEJ of viral genomes  
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CUL5Elongin B

Elongin C

RBX1

E2
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E1B-55K

Substrate
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26S Proteasome

Substrate degraded

Fig. 1.12. Ad5-CRL mediated degradation of cellular proteins. Ad5 hijacks E3 

ubiquitin ligase complexes containing the cellular CUL5, Elongins B and C, and 

RBX1.  Ad5 E1B-55K acts as the substrate adaptor, and Ad5 E4orf6 recruits the 

CRL via interactions with the Elongins. The substrate is then polyubiquitylated and 

targeted for 26S proteasome-mediated degradation.    
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(Jayaram et al. 2008). The Bloom helicase (BLM) is a RecQ DNA helicase, which 

functions in DNA end resection, is also degraded by Ad5 utilising the same mechanism 

as for p53, however the functional relevance of this is yet unknown as BLM was shown 

not to promote concatemer formation (Gravel et al. 2008; Orazio et al. 2011). 

Other cellular proteins that are targeted by adenovirus for proteasome-mediated 

degradation include the multifunctional death domain-associated protein (Daxx), which 

is degraded at late time points by mechanism that requires Ad5E1B-55K to recruit 

CRL5 via a highly conserved BC box motif in an E4orf6-independent manner 

(Schreiner et al. 2010). It is suggested that Daxx might act as a transcriptional repressor 

during early stages of infection, as Ad5 infection of cell lines that do not express Daxx 

result in increased early viral protein synthesis and viral progeny (Schreiner et al. 

2010). In addition to Daxx, TIF1γ is also degraded via novel mechanism which 

involves E4orf3 and is E1B-55K/E4orf6 and CRL-independent (Forrester et al. 2012). 

Ad infection of cells that are depleted of TIF1γ display an increase in early and late 

viral proteins, suggesting that TIF1γ may act as a transcriptional repressor during both 

early and late stages of viral infection (Forrester et al. 2012). Ad infection also results 

in the degradation of the cell surface protein integrin alpha 3, which occurs in the 

classic E1B-55K/E4orf6 and CRL-dependent manner, and is thought to most likely to 

promote release and distribution of viral progeny, or to prevent re-infection (Dallaire et 

al. 2009).  

The DDR proteins that are targeted by Ad for degradation vary between the different 

serotypes, for example, BLM, Mre11 and p53 are not degraded by group B and D 

viruses (Cheng et al. 2011; Forrester et al. 2011). As outlined above there are also 

different requirements for viral proteins that are needed to degrade the cellular targets. 

Degradation of Mrell, DNA ligase IV, and p53 require the combined actions of E1B-
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55K and E4orf6, whereas Daxx only requires E1B-55K, and TIF1γ only E4orf3. The 

role of CRLs in Ad-mediated degradation will be considered in more detail in the 

results Chapters 3 and 4 presented in this thesis. 

1.3.3. Relocalization of cellular proteins during Ad infection 

In addition to degradation of components of the DDR pathways, Ad is also able to 

affect the localization of a number of DDR proteins (Turnell and Grand 2012). RPA32 

is one such example, which is localized at viral replication centres (VRC) during 

infection with both wt and mutant viruses, presumably binding to the ssDNA that 

accumulates at these sites, and is hence used as a marker for VRCs (Stracker et al. 

2005; Turnell and Grand 2012). TopBP1, ATR, ATRIP, E1B-AP5 (hnRNPUL1), 

Rad17 and Rad9 are further examples of DDR proteins that localize at VRCs during 

infection with wt adenoviruses (Carson et al. 2003; Blackford et al. 2008; Carson et al. 

2009). The beneficial consequence of the relocalization of DDR proteins to VRCs is 

unclear, although it has been postulated that some components of the DDR maybe 

required for viral replication, however, this is awaits confirmation (Turnell and Grand 

2012).  

Ads can also relocalize proteins to other sites within the cell, one of which is the 

nuclear ‘track-like’ structures which surround sites of VRCs and is dependent on the 

E4orf3 protein (Carvalho et al. 1995). A number of DDR proteins localize to PML 

bodies, which also has a role in DNA damage sensing (Lombard and Guarente 2000). 

These PML bodies are disrupted during Ad infection and E4orf3 is able to reorganize 

PML oncogenic domains (POD) into these elongated nuclear track-like structures 

(Carvalho et al. 1995; Doucas et al. 1996). As discussed in section 1.1.7, E4orf3 also 

forms a scaffold in the nucleus, which directs heterochromatin formation via 



 
 

57 
 

trimethylation of histone H3 at lysine residue 9 (H3K9me3) at p53 target promoters, 

thus silencing p53-mediated transcription in response to DNA damage (Soria et al. 

2010). E4orf3 is also able to inactivate the DDR independently of E1B-55K and E4orf6 

by relocalizing the MRN complex into nuclear tracks, and this action by E4orf3 appears 

to be conserved between group C, D, and E serotypes, whilst group A and B Ads, Ad12 

and Ad4, respectively, both lack a key isoleucine residue in their E4orf3 proteins that is 

required to relocalize MRN (Stracker et al. 2005; Forrester et al. 2011). The ATR 

pathway is selectively and differentially activated during adenovirus infection, as there 

is evidence to show that both RPA32 and Rad9 are phosphorylated in Ad12-infected 

cells, but not Ad5-infected cells; Chk1 is inactivated by both viruses (Blackford et al. 

2008). Our laboratory has shown that the E1B-55K associated protein (E1B-AP5) is 

required for ATR activation during infection (Blackford et al. 2008). More recently 

E1B-AP5 has been shown to interact with both the MRN complex and BLM to 

facilitate 3’ end resection (Blackford et al. 2008; Polo et al. 2012). It has been proposed 

that the Ad5-mediated inactivation of Chk1 during infection is a consequence of the 

MRN relocalization into nuclear tracks (Carson et al. 2009), however the mechanism 

by which Ad12 achieves this was unclear until recently, and is described in detail in the 

study presented in Chapter 3. 

In addition to VRCs and nuclear tracks, Ad infection and Ad5E1-mediated 

transformation result in the formation of subcellular structures known as aggresomes, 

which are formed at the microtubule organizing centre in response to misfolded 

proteins that occur when their rate of synthesis exceeds their rate of degradation, and 

are enriched in components of the ubiquitin-proteasome pathway (Sarnow et al. 1982; 

Zantema et al. 1985; Garcia-Mata et al. 2002; Liu et al. 2005). As described in section 

1.1.6, E1B-55K is able to from a stable complex with p53 and sequesters it into 
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aggresomes (Liu et al. 2005). Furthermore, the MRN complex, Cul5, E1B-55K, E4orf3, 

and E4orf6 have all also been shown to localize at these cytoplasmic structures (Araujo 

et al. 2005; Liu et al. 2005). During Ad5 infection the MRN complex is localized to 

nuclear tracks by E4orf3, 8 hours post-infection, where it binds E1B-55K, and is then 

transported to the aggresomes, where Mre11 then undergoes degradation (Araujo et al. 

2005; Liu et al. 2005). Ad also relocalizes p53 to aggresomes to promote its 

degradation, suggesting that cellular aggresomes are exploited by Ads to negate the 

restrictive effects that the DDR machinery has on viral growth (Liu et al. 2005).  

1.3.4. Regulation of the cellular DNA damage response by other viruses 

Over recent years there has been growing interest in the virology community with 

regards to the relationship between the DDR pathways and viral infection. Indeed, there 

are now a plethora of viral proteins from many different viruses that have been shown 

to interact with cellular proteins that function in the DDR pathway. 

Some viruses have been shown to deregulate DDR pathways, whilst some have been 

shown to utilize or exploit them to aid viral growth, and others can do both. ATM has 

been shown to be required for efficient SV40 viral DNA replication, whereby ATM is 

phosphorylated and activated in SV40-infected cells to promote phosphorylation of the 

LTag viral protein on S120 (Shi et al. 2005). The MRN complex is also recruited to the 

VRCs during SV40 infection, where it is thought to play an active role in viral DNA 

replication (Boichuk et al. 2010). As with Ad infection, Mrell is degraded along with 

NBS1 in SV40-infected cells, albeit at late times by LTag utilising a Cul7-containing 

CRL, which is also required for viral replication (Zhao et al. 2008).  

HPV is another example of a virus that degrades DDR proteins to facilitate viral 

replication. The tumour suppressor proteins p53 and pRb are targeted by E6 and E7 
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HPV viral proteins for proteasome-mediated degradation to promote S-phase by 

bypassing the G1/S checkpoint (Moody and Laimins 2009). However, HPV also utilizes 

the DDR machinery to promote viral genome amplification and formation of viral 

replication foci by activating ATM (Moody and Laimins 2009).  

HSV-1 is another virus that differentially targets the DDR machinery. It had initially 

been suggested that HSV-1 infection disrupts the ATR pathway in the infected cell by 

spatially uncoupling ATRIP from ATR and sequestering ATRIP and endogenous 

hyperphosphorylated RPA within virus-induced nuclear domains containing molecular 

chaperones and components of the ubiquitin proteasome (Wilkinson and Weller 2006). 

However, a more detailed investigation conducted by the same lab has now reported 

that the ATR-ATRIP interaction remains intact during infection, and they can be co-

immunoprecipated from infected cells, and may actually function to promote viral gene 

expression and virus production (Mohni et al. 2010). ICP0 also recruits ATM to sites of 

HSV DNA replication to promote viral growth by promoting ATM-dependent Chk2 

phosphorylation and G2/M checkpoint activation (Lilley et al. 2005; Li et al. 2008). 

However, ICP0 promotes the degradation of RNF8 and RNF168, thus preventing full 

activation of the ATM pathway (Lilley et al. 2010). 

These are just a few examples of the many mechanisms that viruses have evolved in 

order to negate and/or selectively activate the DDR pathways in order to facilitate the 

replication of their genomes efficiently in host cells. Thus, viruses prove to be powerful 

tools for increasing our understanding of the complex nature of the regulatory pathways 

required for maintaining genome integrity. 
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1.4. MICROCEPHALY  

1.4.1. Autosomal recessive primary microcephaly 

Microcephaly by definition means ‘small head’. Microcephaly is a neurodevelopmental 

disorder whereby the occipitofrontal head circumference (OFC) is more than 2 standard 

deviations (SD) below the mean for the person’s age, sex, and ethnicity (Kaindl et al. 

2010). Microcephaly can be either inherited, or caused by various environmental 

factors such as alcohol consumption, viral infections, and radiation exposure during 

pregnancy or early infancy (Abuelo 2007). Microcephaly that arises congenitally is 

known as primary microcephaly, whereas post-natal development of microcephaly is 

termed as secondary microcephaly. There are conflicting reports in the literature which 

suggest that primary microcephaly occurs solely as a result of genetic influences, and 

secondary microcephaly occurs solely as a result of environmental factors (Opitz and 

Holt 1990). However, some genetic conditions such as Rett and Angelman syndromes 

develop microcephaly during late infancy or childhood, and are considered to have 

secondary microcephaly (Opitz and Holt 1990). Furthermore, environmental factors 

such as viral infections and other disruptive influences to foetal brain development have 

been shown to cause microcephaly that is apparent at birth, and is therefore termed 

primary microcephaly (Hughes and Miskin 1986; Corona-Rivera et al. 2001). It is 

difficult to estimate the incidence of microcephaly as there have been a variety of 

estimates published in the literature, but it is believed to be around 1.3-150 per 100,000 

births, depending on the applied SD threshold to define microcephaly as well as the 

population (Kaindl et al. 2010).  

Autosomal recessive primary microcephaly (MCPH), historically referred to as 

microcephaly vera (‘true microcephaly’), is a rare heterogeneous genetic disorder that 
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is defined by an OFC of more than 3 SD below the average at birth, reduced brain 

volume, and mental retardation, but surprisingly no other neurological symptoms aside 

from mild seizures in some instances (Woods et al. 2005). It has long been known that 

MCPH is inherited as an autosomal recessive trait, but the genes involved have only 

become apparent in the 10-15 years, whereby it has been shown that at least 7 loci are 

associated with this condition, MCPH1-7 (Mochida 2009). Currently, mutations in 6 

genes have been identified at these loci which are associated with inheriting MCPH, 

and these include MCPH1 in MCPH1, WDR62 (WD40 repeat-containg protein 62) in 

MCPH2, CDK5RAP2 (cyclin-dependent kinase 5 regulatory associated protein 2) in 

MCPH3, ASPM (abnormal spindle-like, microcephaly associated) in MCPH5, CENPJ 

(centromeric protein J) in MCPH6, and STIL (SCL/TAL1-interrupting locus) in 

MCPH7 (Bond et al. 2002; Jackson et al. 2002; Bond et al. 2005; Shen et al. 2005; 

Kumar et al. 2009; Nicholas et al. 2010). These genes encode proteins that 

predominantly localize to the centrosome, and are involved in a range of cellular 

pathways which include cell cycle checkpoint control, DNA damage repair, cell cycle 

regulation, and apoptosis, as well as other functions involved in spindle formation and 

attachment (Kaindl et al. 2010). The functions of MCPH1 and WDR62 will be 

discussed in more detail in sections 1.4.2 and 1.4.3, respectively. 

The CDK5RAP2 gene product CDK5RAP2 protein localizes at the centrosome and 

plays a role in centrosome cohesion and spindle checkpoint regulation. CDK5RAP2 has 

an N-terminal interaction site with gamma-tubulin ring complex (γTuRC), which is 

required for docking of γTuRC to the centrosome (Fong et al. 2008). CDK5RAP2 is 

shown to localize at the centrosome for the entire cell cycle where it interacts with 

pericentrin and is required for centrosome cohesion (Graser et al. 2007). Furthermore 

CDK5RAP1 is involved in spindle checkpoint regulation by interacting with the 
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promoters of both BUBR1 (budding uninhibited by benzimidazoles 1 homolog beta) 

and MAD2 (mitotic arrest-deficient 2) to transcriptionally regulate them (Zhang et al. 

2009).  

The ASPM gene product ASPM plays a role in mitotic spindle function, and localizes at 

the centrosome during interphase and at the spindle poles during prophase through to 

telophase (Fish et al. 2006; Kaindl et al. 2010). ASPM functions in the pathway that 

defines the orientation of the cleavage plane during mitosis, which determines if their 

will symmetric or asymmetric division (Fish et al. 2006). ASPM also functions to 

accumulate LIN5 at meiotic and mitotic spindle poles to promote spindle organization 

(van der Voet et al. 2009). 

The CENPJ gene product CENPJ is localised at the centrosome during the entire cell 

cycle by associating with γTuRC, and has been shown to play a role in centrosome and 

spindle function (Hung et al. 2004; Kaindl et al. 2010). CENPJ regulates microtubule 

assembly and disassembly at kinetochores and centrosomes, which is important during 

mitosis for chromosome segregation and spindle structure (Hung et al. 2004). 

The STIL gene product STIL is 150 kDa cytosolic protein, which functions in mitotic 

entry, centrosome function, and control of apoptosis, and has been detected at mitotic 

spindles in metaphase (Campaner et al. 2005; Erez et al. 2007; Erez et al. 2008).  

Increased expression of STIL in some cancers correlates with increased metastatic 

potential and expression of mitotic spindle checkpoint genes (Ramaswamy et al. 2003; 

Erez et al. 2004). STIL is required for mitotic entry and survival of cancer cells, and is 

transcriptionally regulated by E2F (Erez et al. 2007; Erez et al. 2008).  Furthermore, 

STIL binds the C-terminal of SUFU to suppress glioma-associated oncogene homology 

(GLI1) expression and promote cancer cell proliferation (Kasai et al. 2008). 
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1.4.2. MCPH1 

The MCPH1 gene which encodes the protein MCPH1 (also known as BRIT1 and 

microcephalin) is located at 8p23 and was the first gene in which mutations were 

identified in patients with MCPH (Jackson et al. 1998; Jackson et al. 2002). MCPH1 

contains three BRCT domains, one in the C-terminal region and two located in the N-

terminal region (Jackson et al. 2002). This protein has been shown to play a role in cell 

cycle checkpoint regulation, DNA repair, and chromosome condensation, and 

centrosome function.  

MCPH1 has been implicated as a possible tumour suppressor, and functions in both 

ATM and ATR signalling pathways in response DNA damage (Rai et al. 2006). During 

IR-induced DDR, MCPH1 is recruited to DSBs through an interaction with its C-

terminal BRCT domains and phosphorylated H2AX, where it functions as a mediator 

and colocalizes with other mediators such as 53BP1, NBS1, MDC1, and ATM (Rai et 

al. 2006; Wood et al. 2007). MCPH1 also colocalizes with ATR, RPA and Rad17 in 

response to UV-induced DDR, and is essential for ATR-mediated phosphorylation of 

RPA and Rad17 (Rai et al. 2006). Furthermore, MCPH1 has been shown act as a 

transcriptional regulator of BRCA1 and Chk1, and is thus required for the regulation of 

the intra-S and G2/M DNA damage checkpoints (Xu et al. 2004; Alderton et al. 2006). 

It also functions downstream of Chk1 to promote the degradation of CDC25A to 

prevent premature entry into mitosis (Alderton et al. 2006). A more recent study has 

shown the MCPH1 interacts with E2F1 at the promoters of both Chk1 and BRCA1 to 

regulate their transcription, and via the same mechanism it also regulates other genes 

involved in DNA repair and apoptosis such as TopBP1, Rad51, DDB2, and p73 (Yang 

et al. 2008). Furthermore, MCPH1-mutant cell lines that are exposed to UV display 
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nuclear fragmentation, supernumerary centrosomes, and a defective G2/M checkpoint, 

much the same as the ATR-mutant phenotype (Alderton et al. 2006). 

MCPH1 also regulates chromosome condensation, which is apparent in patients with 

premature chromosome condensation syndrome (PCC), a condition that is also a result 

of mutation in the MCPH1 gene and is characterized by misregulated chromosome 

condensation, microcephaly, and short stature (Trimborn et al. 2004). This phenotype 

can be seen in patients with MCPH1 microcephaly as well as in cells depleted of 

MCPH1 via siRNA, where a significant number of prophase-like cells are observed as a 

result of premature chromosome condensation in the early G2-phase and delayed 

decondensation post-mitosis (Trimborn et al. 2004; Trimborn et al. 2006). Furthermore, 

MCPH1 has also been shown to be essential for centrosome function where it has been 

shown to localize throughout the cell cycle via its N-terminal BRCT domain, and 

siRNA-mediated depletion of MCHP1 resulted in impaired centrosomal function  

(Jeffers et al. 2008; Rai et al. 2008).  

MCPH1 provides a link between microcephaly and DDR mechanisms, where there are 

also DDR disorders which present with microcephaly, which include NBS, Seckel 

syndrome, LIG4, FA, and XPA.  

1.4.3. WDR62 

Until recently the gene mutated at the MCPH2 locus was unknown, but has now been 

shown to be WDR62 (Nicholas et al. 2010; Yu et al. 2010). MCPH2 is the second most 

common MCPH, where genetic linkage to chromosome 19q12 was discovered 13 years 

ago. This means that WDR62 eluded discovery for over 10 years, whereafter it was 

eventually identified by classical and neo-classical reverse genetics, and has been 

shown to be comprised of 1523 amino acids, possessing at least 15 WD40 repeats 
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(Nicholas et al. 2010). MCPH2 is caused by missense and frame-shifting mutations in 

the WDR62 gene, which is an unusual mutation spectrum for MCPH genes as the 

majority normally harbour null mutations (Wollnik 2010).  

Very little is known about the functions of the WDR62 protein. It has been shown to be 

a ubiquitously expressed scaffold protein that binds specifically to c-Jun N-terminal 

kinase (JNK), and potentiates its activity, as well as relocalizing JNK to a non-nuclear 

compartment, which results in inhibition of AP-1 transcription (Wasserman et al. 

2010). Furthermore, WDR62 was found to localize at spindle poles during mitosis in 

neural precursor cells in a similar fashion to ASPM, but mutated WDR62 as seen in 

MCPH2 patients is unable to localize at the spindle poles suggesting that WDR62 may 

play a role in centrosome function akin to other MCPH proteins described above 

(Nicholas et al. 2010). Indeed, it was recently shown that WDR62 plays a role in 

mitotic spindle regulation. WDR62 was shown to localize at spindle poles during 

mitotic entry and remained there until the metaphase-anaphase transition; JNK-

mediated phosphorylation of WDR62 was required to maintain metaphase spindle 

organization during mitosis (Bogoyevitch et al. 2012). The siRNA-mediated depletion 

of WDR62 from neuroprogenitor cells led to defects in spindle orientation, caused the 

centrosomes to be displaced from the spindle poles, and delayed mitotic progression, as 

well as causing the cell to exit the cell cycle and reducing their proliferative capability 

(Bogoyevitch et al. 2012).  

WDR62 is a relatively poorly understood protein, whose functions still remain a focus 

for much research. Work presented in this thesis investigates the relationship between 

Ad and WDR62 and investigates a role for this protein in the DDR (Chapter 5). 
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1.4.4. Environmental causative factors of microcephaly 

Microcephaly can be caused by both genetic influences and environmental factors, of 

which the main genetic causes of microcephaly have been described above. There are 

many described environmental factors that can cause either primary microcephaly 

which occurs during foetal development, or secondary microcephaly which occurs post-

natally, and these include alcohol consumption, exposure to radiation, maternal 

diabetes, vascular accidents, death of a monozygous twin, and intrauterine infection 

(Abuelo 2007).  

The most common teratogen that the foetus is exposed to is alcohol, and in the United 

States alone there is an incidence of foetal alcohol spectrum disorders in 1-2 per 1000 

live births (Abuelo 2007). Infants display both pre- and postnatal growth retardation 

and are at risk for developing microcephaly and mental retardation with an average IQ 

of 65 (Abuelo 2007).  

Cytomegalovirus (CMV) was first isolated from human cultures in the early 1970s; one 

of the first patients samples that contained CMV was that of a 3 month old infant that 

had microcephaly (Dudgeon 1971). Congenital CMV infection is well known cause of 

microcephaly. Another virus that has been known to cause microcephaly is HIV-1. 

HIV-1 infection in infants can cause secondary microcephaly, whereby onset of the 

disorder occurs between 2-4 months of age. In congenital HIV-1 infection babies are 

born normocephalic and show deceleration of head growth between 2 and 4 months,    

caused by aberrant excitatory amino acid neurotransmitter expression during early 

postnatal development, which is normally required for dendritic differentiation, 

synaptogenesis, and activity-dependent plasticity (Epstein and Gelbard 1999).  
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1.5 AIMS AND OBJECTIVES 

As described in section 1.3.3, Ad5 and Ad12 differentially activate ATR during 

infection, however both inhibit Chk1 phosphorylation. Ad5 inhibits Chk1 activation by 

relocalizing the MRN complex into nuclear tracks through the action of Ad5 E4orf3, 

however this function is not conserved between certain serotypes. Ad12 E4orf3 lacks a 

key isoleucine residue required to carry out this function. 

E1B-55K has been shown to interact with a number of proteins involved in the DDR 

making it a useful tool to identify novel DDR proteins. A proteomic study in our 

laboratory utilizing a mass spectrometry approach identified WDR62 as a possible 

interacting protein for E1B-55K (Forrester, N.A. PhD thesis (2011), The University of 

Birmingham).  

Therefore the specific aims and objectives for this study were as follows: 

1. To investigate the molecular mechanism by which Ad12 inhibits Chk1 activation. 

2. Investigate the relationship between E1B-55K and WDR62. 

It was hoped that the investigations outlined above would not only further our 

understanding of Ad infection, but also provide new insights into DDR function in both 

non-infected, and Ad-infected cells. Results arising from these investigations are 

presented in this thesis. 
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2.1. TISSUE CULTURE TECHNIQUES 

2.1.1. Cell lines 

All of the cell lines that were used throughout this study are summarized in the table 

below (Table 2.1). 

Table 2.1. Human cell lines used in this study 

Cell Line 
Cell 

Type 
Source Origin 

Culture 

Medium 

ATCC
®
 

Number 

A549 epithelial 
small cell lung 

carcinoma 
human DMEM CCL-185 

HEK293 epithelial embryonic kidney human DMEM CRL-1573 

HER911 epithelial embryonic retinoblast human DMEM 
(Fallaux et al. 

1996) 

HER2 epithelial embryonic retinoblast human DMEM 
(Byrd et al. 

1982) 

HER3 epithelial embryonic retinoblast human DMEM 
(Byrd et al. 

1982) 

HER10 epithelial embryonic retinoblast human DMEM 
(Byrd et al. 

1982) 

HeLa epithelial cervical carcinoma human DMEM CCL-2 

U2OS 

ATRIP-wt 
epithelial osteosarcoma human DMEM 

(Mordes et al. 

2008) 

U2OS 

ATRIP-top 
epithelial osteosarcoma human DMEM 

(Mordes et al. 

2008; Mohni 

et al. 2010)  

U2OS 

Empty 

vector 

epithelial osteosarcoma human DMEM 
(Mordes et al. 

2008) 

 

2.1.2. Tissue Culture Media 

All tissue culture reagents were pre-sterilized and purchased from Invitrogen unless 

otherwise stated. Reagents were stored at 4 °C and pre-warmed to 37 °C unless 
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otherwise stated. Cell lines were maintained in DMEM (Dulbecco’s modified Eagles 

medium) supplemented with 2 mM L-glutamine and 8% (v/v) foetal calf serum (FCS).   

2.1.3. Maintenance and passage of cell lines 

Cells were grown in humidified incubators set at 37 °C and supplied with 5% (v/v) 

CO2. All tissue culture techniques were performed in specialised flow hoods under 

sterile conditions. Cell lines were grown in monolayers and passaged as follows. 

Existing medium was removed from cells and then washed twice with phosphate-

buffered saline (PBS). Adherent cells were then detached from the plates by adding 1 

ml of trypsin followed by a 5 minute incubation at 37 °C. Detachment of cells was 

confirmed by microscopy, after which cells were washed with media containing FCS to 

inactivate the trypsin and then pelleted by centrifugation at 1400 rpm for 5 minutes. 

Pelleted cells were then resuspended in fresh medium and re-plated at the required 

density before being transferred back to the humidified incubators.  

2.1.4. Cryopreservation of cell lines 

Cells were trypsinised and pelleted as outlined above before being resuspended in 

DMEM growth medium containing 10% dimethyl-sulphoxide (DMSO). Typically a 

confluent plate was divided into 4 aliquots of 1 ml that were cooled to -80 °C at a 

controlled rate of 1 °C/min in isopropanol. Frozen samples were then transferred to 

liquid nitrogen tanks for long term storage at -180 °C.  

2.1.5. Recovery of cells from liquid nitrogen 

Cells taken from liquid nitrogen storage were thawed rapidly in a 37 °C water bath 

followed by immediate drop wise transfer to a centrifuge tube containing 10 ml of fresh 

culture medium. Cell were pelleted at 1400 rpm, washed in fresh culture medium, 
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resuspended in fresh culture medium, and then re-plated and incubated at 37 °C in a 

humidified incubator. 

 

2.2. CELL BIOLOGY TECHNIQUES 

2.2.1 Viruses 

Wild-type (wt) Ad5 and Ad12 viruses were obtained from the American Type culture 

Collection (ATCC). Several Ad5 and Ad12 mutants were used in this study. Ad5 

dl1520 is an E1B-55K null virus generated by deletional mutagenesis, with two stop 

codons at nucleotides 3 and 3336, as well as an another deletion from nucleotides 2496 

to 3323 (Barker and Berk 1987). Ad12 dl620 contains an in-frame deletion in the large 

E1B open reading frame from nucleotides 2129 to 2825 (Byrd et al. 1988). Ad12 hr703 

contains a point mutation which converts amino acid 134 from a Gln to a stop codon 

(Byrd et al. 1988). FLAG-Ad12, a mutant Ad12 virus that expresses FLAG-tagged 

E4orf6, was constructed in collaboration with Professor Thomas Dobner (Blackford et 

al. 2010). wt Ad5 and Ad5 d11520 viruses were propagated on permissive HEK293 

cells. wt Ad12, hr703 and dl620 viruses were propagated on permissive HER3 cells. 

Stock titres were determined by plaque assay on HER911 and HER3 cells, as 

appropriate. 

2.2.2. Viral infections 

Ad infection was carried out using subconfluent monolayers of cultured cells in DMEM 

without FCS grown on either 6 or 10 cm dishes, or wells of multispot glass microscope 

slides (Hendley-Essex). Cells were washed twice in PBS, before addition of the virus at 

10 plaque forming units per cell (p.f.u) diluted in DMEM without FCS. Cells were kept 
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at 37 C, with agitation at 15 minute intervals to ensure even dispersal of the virus. 

After 2 hours incubation, medium containing virus was removed and replaced with 

DMEM supplemented with 8% (v/v) FCS. 

2.2.3. Transient DNA transfections 

Transfections were performed on HeLa cells that were grown to 90% confluence on 6 

cm dishes. 4 µg of plasmid DNA was added to 200 µl of Opti-MEM (Invitrogen) and 

left for 5 minutes at room temperature. In a separate universal, 10 µl of Lipofectamine 

2000 was added to 190 µl of Opti-MEM and also left for 5 minutes. The transfection 

reagent and the DNA mixture were then combined, mixed gently, and left for 30 

minutes at room temperature to allow DNA-liposome complexes to form. During this 

time, cells were washed twice with Opti-MEM. 2.4 ml of Opti-MEM was then added to 

the DNA-Lipofectamine mix and then subsequently added to the appropriate dish, 

incubated for 6 hours at 37 C. After this time fresh DMEM supplemented with 8% 

(v/v) FCS was then added to the transfected cells and incubated at 37 C, before being 

harvested at the appropriate times. Constructs used in this study are listed in Table 2.2. 

Table 2.2. Plasmids used in this study 

Plasmid Vector Tag From 

Ad12 E4orf6 pcDNA3 HA T. Dobner 

Ad12 E4orf6 pGEX 4T-1 GST PCR from cDNA 

Ad5 E4orf6 pcDNA3 HA T. Dobner 

Ad12 E4orf3 pcDNA3 HA T. Dobner 

Ad5 E4orf3 pCMV HA T. Dobner 
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Cul2 pcDNA3 HA P. Branton 

Cul5 pcDNA3 HA P. Branton 

TopBP1 pcDNA3 myc J. Chen 

TopBP1 2-258 pBIND GAL4 I. Morgan 

TopBP1 258-914 pBIND GAL4 I. Morgan 

 TopBP1 789-1435 

 
pBIND GAL4 I. Morgan 

TopBP1 1169-1435 pBIND GAL4 I. Morgan 

 

2.2.4. RNA interference  

All small interfering (si)RNAs used in this study are displayed in Table 2.3. siRNA 

transfections were performed on HeLa cells that were grown to 40% confluency on 6 

cm dishes. 20 µl of Oligofectamine (Invitrogen) was mixed with 8 µl of siRNA (40 µM 

stock) in 972 µl of Opti-MEM medium and left for 30 minutes at room temperature to 

form oligofecatmine-siRNA complexes. During this time, cells were washed twice with 

Opti-MEM. 1 ml of Opti-MEM was then added to the Oligofectamine-siRNA mix and 

then subsequently added to the appropriate dish, incubated for 6 hours at 37 C, before 

being replaced with fresh DMEM supplemented with 8% (v/v) FCS. Cells were then 

incubated in humidified incubators at 37 C in 5% (v/v) CO2. Any subsequent infection 

or transfection was carried out 48 hrs post-RNAi treatment.  

Table 2.3. siRNAs used in this study 

Target Sense sequence Supplier 

control/non-

silencing 
Proprietary Qiagen 
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Cul2 

5’ GGAAGUGCAUGGUAAAUUU 3’ 

5’ CAUCCAAGUUCAUAUACUA 3’ 

5’ GCAGAAAGACACACCACAA 3’ 

5’ UGGUUUACCUCAUAUGAUU 3’ 

Dharmacon 

Cul5 

5’ GACACGACGUCUUAUAUUA 3’ 

5’ GCAAAUAGAGUGGCUAAUA 3’ 

5’ UAAACAAGCUUGCUAGAAU 3’ 

5’ CGUCUAAUCUGUUAAAGAA 3’ 

Dharmacon 

Elongin C 5’ AAACCAAUGAGGUCAAUUU 3’ Dharmacon 

RBX1 5’ GAAGCGCUUUGAAGUGAAA 3’ Dharmacon 

WDR62 5’ GGAAGUCUCUCAGUGCUCU 3’ Ambion 

ATRIP 5’ GGUCCACAGAUUAUUAGAU 3’ Ambion 

 

2.2.5. Ultra Violet irradiation and Ionizing Radiation treatment 

Prior to ultra-violet (UV) irradiation, medium was removed from the cells, and cells 

were washed twice with PBS. The cells were then mock-irradiated, or irradiated at the 

required dose of UV light from a 254 nm UV light source. The cells were then 

reincubated with the original medium and incubated at 37 C. In the case of ionizing 

radiation (IR) treatment, cells were either mock-irradiated, or irradiated with ionizing γ-

rays from a 
137

Cs source at a dose rate of 2.5 Gy/min. 

2.2.6. Drug treatment 

Where indicated, cells were treated with caffeine at a final concentration of 5 mM to 

inhibit caffeine-sensitive kinases, proteasome inhibitor MG132 (N-carbobenzoxy-L-

leucinyl-L-leucinyl-L-leucinal) at a final concentration of 10 µM, or the DNA 

damaging agent, hydroxyurea (HU) at a final concentration of 1 mM.  

 



 
 

75 
 

2.2.7. Flow cytometric analysis. 

Flow cytometry was used to assess the cell cycle distribution of UV-irradiated HeLa 

cells transfected with non-silencing or WDR62 siRNA. Cells were harvested by 

trypsinisation at appropriate times post UV-irradiation, washed twice with ice-cold 

PBS, before being resuspended in 600 µl of ice cold PBS. Cells were then fixed by 

adding ice cold ethanol up to a final total volume of 2 ml whilst placed on slow vortex 

to avoid cell clumping, and then stored at -20 C. 

On the day of analysis cells were pelleted at 1600 rpm for 5 minutes and then washed 

twice in 10 ml of ice-cold PBS to dilute the excess ethanol. Cells were then 

permeabilized in ice-cold PBS with 0.25% (v/v) Triton X-100 for 15 minutes with 

agitation at 4 C, then rinsed with 10 ml of PBS with 1% (w/v) Bovine Serum Albumin 

(BSA), before being incubated with an anti-phosphohistone H3 (Ser10) polyclonal 

antibody diluted in PBS with 1% (w/v) BSA for 1 hour at room temperature. Samples 

were then washed twice with PBS containing 1% (w/v) BSA and then incubated with 

an Alexa-488 anti-Rabbit antibody diluted in PBS containing 1% (w/v) BSA for 30 

minutes in the dark. Cells were then washed again once in PBS containing 1% (w/v) 

BSA and once with PBS alone before being resuspended in 1 ml of PBS containing 25 

µg/ml propidium iodide and 0.1 mg/ml RNAse A, and then left in the dark for a further 

30 minutes. Cell cycle analysis was carried out using a BD Accuri C6 flow cytometer. 

2.2.8. Colony survival assays 

Cell sensitivity to DNA damaging agents following the siRNA-mediated knockdown of 

WDR62 was measured in HeLa cells by the loss of colony forming ability. Cells were 

plated at a low density on 6 cm dishes in triplicate and then mock treated or treated with 

appropriate dose of the DNA damaging agent. The cells were then incubated for 14 



 
 

76 
 

days in a humidified incubator at 37 C supplied with 5% (v/v) CO2 to allow the 

colonies to develop. Cells were fixed and stained with a 50% ethanol solution 

containing 2% (v/v) methylene blue. Experiments were repeated three times to ensure 

reproducibility.  

 

2.3. PROTEIN BIOCHEMISTRY TECHNIQUES 

2.3.1. Preparation of total cell lysates 

Cell culture medium was removed from cells and then washed twice in ice-cold saline. 

Cells were then lysed in buffer containing 9 M urea, 50 mM Tris (pH 7.3), and 0.15 M 

β-mercaptoethanol. Cells were detached from the tissue culture dish using a plastic 

scraper, and then sonicated for 20 seconds on ice, at setting 4, using a Misonix microsin 

ultrasonic cell disruptor. Lysates were then spun down at 13000 rpm and then 

transferred to fresh tubes for protein determination or stored at -80 C. 

2.3.2. Protein concentration quantification 

Protein concentrations were determined by Bradford assay (Bio-Rad) using 6 standards 

using known quantities of BSA diluted in deionised H20 ranging from 0-30 µg/ml. 10 

µl of each standard was added to separate well of a flat bottomed 96 well microplate. 5 

µl of protein lysate was added to 45 µl of deionised H20, of which 10 µl was added to a 

well. Standards and lysates were measured in quadruplicates. Bradford reagent (Bio-

Rad) was diluted 1:4 with deionised H20, of which 200 µl was added to each well and 

mixed by gently pipetting. Protein concentrations were calculated by generation of a 

standard curve using a microplate reader that measures absorbance at a wavelength of 

595 nm. 
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2.3.3. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

Protein samples or cell lysates were separated according to their size by SDS-PAGE. 

Polyacrylamide gels were made using a 30% (w/v) Acrylamide/Bis-acrylamide (37.5:1) 

stock solution (Severn Biotech Ltd).  Gels were prepared in the presence of 100 mM 

Tris, 100 mM Bicine, 0.1% (v/v) SDS and 0.3% (v/v) TEMED.  Large proteins were 

separated on 6-8% (w/v) acrylamide gels, whereas small proteins were separated on 10-

12% (w/v) acrylamide gels. Ammonium persulphate was added to a final concentration 

of 0.06% (w/v) to initiate acrylamide polymerization. Gel apparatus was assembled as 

per the manufacturer’s instructions (Hoeffer Scientific), and run in buffer containing 

100 mM Tris, 100 mM Bicine, and 0.1% (v/v) SDS. Protein samples were diluted in an 

equal volume of Laemmli sample buffer (Bio-Rad), boiled for 5 minutes at 95 C, and 

then loaded onto the gel. Gels were generally run over night at a constant current which 

was dependent on the size of the proteins of interest. 

2.3.4. Staining of the polyacrylamide gels. 

Following electrophoresis, gels were stained with 0.1% (w/v) Coomassie Brilliant Blue 

R-250 (Sigma) in 20% (v/v) methanol, 10% (v/v) glacial acetic acid in water, and left 

on a shaker at room temperature for 20 minutes. Stained gels were then destained in 

10% (v/v) glacial acetic acid and 20% (v/v) methanol in water until protein bands were 

clearly visible. 

2.3.5. Detection of radioactive proteins by fluorography 

Following sufficient destaining, stained gels were immersed in Amplify™ reagent 

(Amersham Bioscience) for 2 hours at room temperature with agitation. Gels were then 
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dried under a vacuum at 80 C for 2 hrs before being exposed for autoradiography at -

20 C for the appropriate time.  

2.3.6. In vitro GST-protein binding assays 

L--[
35

S]-methionine-labelled proteins were expressed individually in vitro using a 

TNT T7-Coupled Reticulocyte Lysate System (Promega) according to the 

manufacturer’s guidelines. Typically 10 l [
35

S]-labelled proteins were incubated with 

10 g GST-fusion proteins for 1 hr on ice followed by equalisation of the volumes by 

adding the appropriate amount of GST lysis buffer. Protein complexes were then 

isolated by incubation with glutathione-agarose beads (Sigma) for 1 hr at 4 C with 

rotation followed by the beads being washed three times with GST lysis buffer and 

twice in GST wash buffer. GST-protein complexes were then isolated by addition of 

GST elution buffer (25 mM reduced glutathione in 50 mM Tris (pH 8.0)), before 

addition of SDS-PAGE sample buffer. After separation by SDS-PAGE, [
35

S]-labelled 

proteins were visualised by fluorography and autoradiography.  

2.3.7. Mass spectrometry 

Gel slices were excised under sterile conditions. Slices were washed with 400 μl of 

50% (v/v) acetonitrile and 50 mM ammonium bicarbonate by agitation for 1 hour at 37 

°C. Proteins were then reduced in 250 μl of a solution containing 50 mM dithiothrietol 

(DTT), 10% (v/v) acetonitrile and 50 mM ammonium bicarbonate for 1 hour at 56 °C. 

Proteins were then alkylated using a solution containing 200 mM iodoacetamide, 10% 

(v/v) acetonitrile, and 50 mM ammonium bicarbonate and incubated for 1 hour in the 

dark at room temperature. 
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Proteins were then washed by agitation for 30 minutes in a buffer containing 10% (v/v) 

acetonitrile and 40 mM ammonium bicarbonate. Gel slices were then dried by rotary 

evaporation and proteins were then digested by rehydration of the gel slice in modified 

trypsin overnight at 37 °C (50 μl of 12.5 μg/ml; Sigma-Aldrich).  The digested proteins 

were eluted from the gel slice with a buffer containing 3% (v/v) formic acid, 10% (v/v) 

acetonitrile and 40 mM ammonium bicarbonate. Peptides were then separated using a 

Bruker AmaZon ion trap mass spectrometer, and processed and analyzed by the 

ProteinScape central bioinformatic platform. 

 

2.4. IMMUNOCHEMISTRY TECHNIQUES 

2.4.1. Antibodies 

All antibodies used in this study are displayed in Table 2.4 

Table 2.4. Antibodies used in this study 

Antigen Antibody Origin Use Supplier 

Ad12E1A 13 Mouse  WB In-house 

Ad12E1B54K XPH9 Mouse 
WB, IF, 

IP 
In-house 

Ad5E1A M73 Mouse WB Ed Harlow 

Ad5E1B55K 2A6 Mouse  
WB, IF, 

IP 
Arnold Levine 

ATM 11G12 mouse WB, IP In-house 

ATR N-19 Goat WB Santa Cruz 

ATRIP BL733 Rabbit WB Gene Tex 
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Chk1 G-4 Mouse WB Santa Cruz 

Cul2 Ab1870 Rabbit WB Abcam 

Cul5 a302-173a rabbit  WB Bethyl 

Cyclin B1 V152 mouse WB CR-UK 

DNA ligase IV LIGIV Rabbit WB  
Stephen 

Jackson 

Flag Anti-Flag M2 Mouse  WB, IF Stratagene 

H2AX 07-627 Rabbit WB Millipore 

HA 
Anti-HA 

12CA5 
Mouse WB, IF Sigma-Aldrich 

Mre11 12D7 Mouse WB, IF GeneTex 

NBS1 1C3 Mouse WB GeneTex 

p53 DO-1 Mouse WB, IF David Lane 

p-Chk1 S345 133D3 Rabbit WB Cell Signalling 

PML PG-M3 Mouse IF Santa Cruz 

PML H-238 Rabbit IF Santa Cruz 

p-ATM 10H11.E12 mouse WB Cell Signaling 

p-RPA S468 A300-245 Rabbit  WB Bethyl 

p-SMC1 S966 A300-050A Rabbit WB Bethyl 

p-TIF1β S824 5824 Rabbit WB Bethyl 

RAD9 M-389 Rabbit WB Santa Cruz 

RPA70 Ab-1 Mouse WB Santa Cruz 

RPA32 Ab-2 Mouse WB, IF Calbiochem 

RPA32 ab10359 Rabbit IF Abcam 
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2.4.2. Immunoprecipitation 

Cells were washed twice in saline before addition of 1 ml ice-cold immunprecipitaion 

(IP) buffer (20 mM Tris–HCl (pH 7.5), 150 mM NaCl, 1
 

mM 

ethylenediaminetetraacetic acid (EDTA- pH 8.0), 1% (v/v) Nonidet P-40, 25 mM NaF 

and 25 mM β-glycerophosphate). Cell lysates were then homogenised or sonicated on 

ice followed by centrifugation at 40000 rpm for 30 minutes at 2 C to remove cell 

debris. Appropriate antibodies were then added to cell lysates and incubated overnight 

SMC1 A300-055A Rabbit WB Bethyl 

TIF1β A300-274A Rabbit WB, IF Bethyl 

Timeless anti-Tim Rabbit WB, IF 

(Yoshizawa-

Sugata and 

Masai 2007) 

Tipin anti-Tipin Rabbit WB, IF 

(Yoshizawa-

Sugata and 

Masai 2007) 

TopBP1 (5H)52 Rabbit WB, IF Iain Morgan 

WDR62 A301-559A Rabbit WB, IF Bethyl 

β-actin AC-74 Mouse WB Sigma-Aldrich 

γ-H2AX JBW301 Mouse WB, IF Millipore 

Mouse IgG 
Anti-mouse-

HRP 
Goat WB Dako 

Rabbit IgG 
Anti-rabbit-

HRP 
Swine WB Dako 

Rabbit IgG 
Alexa Fluor® 

488 anti-rabbit 
Goat IF Invitrogen 

Rabbit IgG 
Alexa Fluor® 

555 anti-rabbit 
Goat IF Invitrogen 

Mouse IgG 
Alexa Fluor® 

488 anti-mouse 
Goat IF Invitrogen 
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with rotation at 4 C to form antigen-antibody complexes. The next day, 30 µl of 

Protein G-sepharose (Sigma-Aldrich) was added to each sample and incubated for a 

further 2 hours at 4 C with rotation. Immunocomplexes bound to the beads were then 

spun down at 4000 rpm and washed 5 times in ice cold IP buffer followed by addition 

of 30 µl Laemmli sample buffer to elute the proteins. Samples were then boiled and 

spun down in preparation for SDS-PAGE and Western blotting. 

2.4.3. Western blotting 

Following electrophoresis, proteins were transferred onto a nitrocellulose membrane 

(PALL) using a Hoeffer Scientific transfer system. Nitrocellulose membrane was 

soaked in blotting buffer (50 mM Tris, 190 mM glycine, 20% (v/v) methanol) before 

being laid on top of the gel. The gel and nitrocellulose was then sandwiched between 

two pieces of pre-soaked Whatman 3 MM blotting filter paper and two blotting 

sponges, before being closed in a plastic cassette and placed into Hoeffer transblot 

electrophoresis apparatus that was filled with blotting buffer with the nitrocellulose 

facing the anode. Electro transfer was performed at 280 mA for 6 hours. Upon 

completion of the transfer, the membranes were stained for 2 minutes with a solution 

containing 0.1% (w/v) Ponceau S (Sigma-Aldrich) and 3% (w/v) trichloroacetic acid 

and then rinsed with deionised water several times to detect protein bands. The stain 

was then removed by washing with 0.1% (v/v) Tween 80 in Tris-buffered saline (TBS) 

containing 150 mM NaCl and 20 mM Tris-HCl (TBST), pH 7.3. 

The membranes were then blocked in 5% (w/v) dried-milk powder in TBST for 40 

minutes at room temperature with agitation, and then incubated with the appropriate 

antibody diluted in TBST containing 5% (w/v) milk overnight at 4 C with agitation. 

The membranes were then washed in TBST 3 times for 10 minutes per wash, before 
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being incubated at room temperature for 1 hour with the appropriate horseradish 

peroxidase-conjugated secondary antibody (Dako) diluted in TBST containing 5% 

(w/v) milk. The membranes were then washed again in TBST 3 times for 10 minutes 

per wash, followed by antigens being visualised by enhanced chemiluminescence 

(ECL, Amersham Pharmacia) reagents and autoradiography film (Kodak). 

2.4.4. Immunofluorescence 

Cells were grown on 12-well multispot microscope glass slides (Hendley-Essex) at a 

density of 2 x 10
4
 cells/well. The slides were washed twice in PBS followed by 

incubation in pre-extraction buffer (10 mM PIPES [piperazine-N,N′-bis(2-

ethanesulfonic acid)] pH 6.8, 20 mM NaCl, 300 mM sucrose, 3 mM MgCl2, 0.5% (v/v) 

Triton X-100) for 5 minutes, and then fixed in 4% (w/v) paraformaldehyde in PBS for 

10 minutes. Cells were then washed again in PBS before being blocked in 10% (v/v) 

FCS in PBS for 45 minutes at room temperature. Cells were then incubated with 

appropriate primary antibody diluted in 10% (v/v) FCS in PBS for 2 hours at room 

temperature, after which cells were washed a further three times in PBS before being 

incubated with appropriate fluorescent secondary antibody diluted in 10% (v/v) FCS in 

PBS for 1 hour at room temperature in the dark. Cells were then washed again three 

times in PBS and mounted in Vectashield mounting medium (Vector Laboratories) 

containing 4’,6-diamidino-2-phenylindole (DAPI), and protected with 20-70 mm glass 

coverslips (Menzel-Gläser). Cells were viewed on an LSM 510 Meta confocal laser 

sanning microscope (Carl Zeiss), with a UVA 364 nm laser, and visible line 488 and 

543 nm lasers. 
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2.5. MOLECULAR BIOLOGY TECHNIQUES 

2.5.1. Preparation of media and plates 

Luria broth (LB) was made with 10 g/L bactotryptone (Difco), 5 g/L bacto-yeast extract 

(Difco) and 10 g/L NaCl (pH 7.2) in water. LB-agar was made by adding 15 g/L to LB. 

Broth and agar were sterilized by autoclaving at 121 C and 15 psi for 30 minutes. 

When needed, the LB-agar was melted down to liquid form and then 100 µg/ml of 

ampicillin was added to it once it was cooled down to approximately 50 C. LB-agar 

was then aliquoted onto plates and left to cool inside a fume hood before being stored at 

4 C until required for bacterial transformations. Prior to use, plates were dried for 30 

minutes in a fume hood. 

2.5.2. Transformation of bacteria 

Bacterial transformations were carried out in DH5α competent cells for plasmid 

production, or in BL21 competent cells to generate recombinant proteins. Typically, 50 

ng of DNA was added to a 25 µl aliquot of the appropriate bacteria. Samples were 

incubated on ice for 30 minutes followed by heat shock at 42 C for 1 minute, and then 

cooled for 5 minutes on ice. 300 µl of super optimal catabolite (SOC) medium 

(Invitrogen) was then added to the samples before incubation for 1 hour at 37 C with 

shaking at 220 rpm. Cells were then pelleted at 13000 rpm, resuspended in 280 µl of 

LB, and then spread onto LB-agar plates containing ampicillin. Plates were then air-

dried and then incubated overnight at 37 C. 

2.5.3. Small scale DNA preparation 

Initially, 5 ml of LB, supplemented with 100 µg/ml ampicillin, was inoculated with a 

single bacterial colony containing the desired plasmid and then incubated overnight at 
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37 C with shaking at 200 rpm. The following morning cells were pelleted by 

centrifugation at 3000 rpm and then resuspended in 250 µl of P1 buffer (Qiagen) and 

transferred to 1.5 ml microfuge tubes. The cells were then lysed for 5 minutes 

following addition of 250 µl of P2 buffer, which was then neutralised by adding 350 µl 

of N3 buffer. The solution was centrifuged at 13000 rpm for 10 minutes, and then the 

supernatant was transferred to a QIAprep column followed by further 1 minute 

centrifugation at 13000 rpm to adsorb the DNA. The column was then washed with 750 

µl of PE buffer, before addition of 50 µl of nuclease-free water (Ambion) and 

centrifugation to elute the DNA. DNA concentration was measured using a 

BioPhotometer (Eppendorf), and then stored at -20 
o
C. 

2.5.4. Large scale DNA preparation  

Initially, 5 ml of LB, supplemented with 100 µg/ml ampicillin, was inoculated with a 

single bacterial colony containing the desired plasmid and then incubated 6-8 hours at 

37 C with shaking at 200 rpm. The culture was then added to a flask containing 250 ml 

of LB supplemented with 100 µg/ml ampicillin, and then incubated overnight at 37 C 

with shaking at 200 rpm. Cells were then pelleted the next day at 6000 rpm for 10 

minute at 4 C, and then resuspended in 12 ml of resuspension buffer followed by being 

lysed with 12 ml of lysis buffer (Sigma). The lysis reaction was stopped after 5 minutes 

by the addition of 5 ml of neutralisation buffer, with the resulting cell lysis suspension 

then being added to 9 ml of binding solution and poured into a filter syringe and left to 

stand for 5 minutes. During this time, 12 ml of binding buffer was added to the binding 

column and spun at 3000 x g for 2 minutes to prepare it for DNA adsorption. The 

contents of the syringe was then added to binding column and centrifuged at 3000 x g 

for 2 minutes, and then the column was washed with wash buffer 1 and 2. The DNA 
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bound to the column was then eluted with 3 ml of elution buffer, before being 

precipitated with 0.7 volumes of room temperature isopropanol and 0.1 volumes of 3M 

Sodium Acetate pH 5.5 at 13000 x g for 30 minutes at 4
 o
C. The pellet was then washed 

twice with 70 % ethanol, centrifuged at 13000 x g for 10 minutes at 4 
o
C, air dried, and 

then resuspended carefully in nuclease-free water (Ambion). DNA concentration was 

measured using a BioPhotometer (Eppendorf), and then stored at -20 
o
C. 

2.5.5. PCR of gene sequences flanked by restriction sites 

25 pmol of the appropriate forward and reverse primers containing the desired 

restriction sites (Alta Biosciences Ltd- see Table 2.4) was mixed with 10-100ng of 

template DNA, 5µl of 10X buffer, 1µl of dNTPs (10mM), 1µl of pfu DNA polymerase 

(2.5 U/µl) (Promega), and SDW up to total volume of 50µl. This was then incubated at 

95 
o
C for 5 minutes in a thermal cycler (GeneAmp PCR Systems 9600), before addition 

of DNA polymerase (Roche). The reaction solutions were mixed and placed back in the 

thermal cycler and subjected to the following conditions: 1 cycle of 95 
o
C for 5 

minutes, 55 
o
C for 2 minutes, 72 

o
C for 2 minutes; 15-30 cycles of 95 

o
C for 1 minute, 

55 
o
C for 30 seconds, 72 

o
C for 1 minute/Kb; and 1 cycle of 72 

o
C for 7 minutes. The 

resulting DNA products were resolved by agarose gel electrophoresis and purified 

using a Qiagen gel extraction kit as described below.  

2.5.6. Ligation 

In order to generate GST-fusion proteins, the gene of interest was cloned into pGEX 

4T-1. Ligation reactions were made up in a 30 µl volume containing 1 unit of T4 DNA 

ligase, 3 µl of 10X buffer, 20 ng of vector cut with the appropriate restriction enzymes, 

500 ng-2 µg of digested insert, and sterile deionized water, and then incubated 

overnight at 16 
o
C. The reactions were heated at 65 

o
C for 15 minutes the following 
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morning, before being placed on ice for 5 minutes. The ligation mix was then added to 

25 µl of DH5α cells, and transformed as previously described. The resulting DNA was 

purified using a Qiagen miniprep kit and sequenced.  

2.5.7. Agarose gel electrophoresis 

Agarose gels were prepared by dissolving agarose in 50 ml of TBE (100mM Tris, 

100mM Boric Acid, 2mM EDTA, pH 8.3) to a final concentration of 1 % (w/v) . The 

agarose was dissolved by heating the mixture to boiling. This was then allowed to cool 

before adding ethidium bromide to a final concentration of 0.5 µg/ml. Samples were 

then diluted with 6X loading buffer (30 % (v/v) of glycerol, 0.25 % (v/v) of 

bromophenol blue in a 10 mM Tris-HCl, 1 mM EDTA, pH 8 solution) and then loaded. 

Gel electrophoresis was carried out in 1X TBE for upto 1 hour at 60 V. DNA was 

visualized with a UV transilluminator.  

2.5.8. Gel extraction of DNA 

DNA generated by PCR was resolved by agarose gel electrophoresis prior to 

purification. The bands were excised and the DNA was purified using QIAquick gel 

extraction kit (Qiagen) as per the manufacturer’s instructions. 

2.5.9. Sequencing 

Sequencing was performed to validate the DNA sequence of the coding regions 

generated by PCR. Each reaction was carried out using Big Dye 
TM

 terminator V3.1 

cycle sequencing kit (Applied Biosystems) in a volume of 20 µl containing 4µl of 5X 

buffer, 5pmol of primer (see Table 2.3 for primers used), 1µl of terminator ready 

reaction mix (Big Dye™ terminator V3.1), and 200ng-500ng of DNA. Reaction 

solutions were placed in a thermal cycler (GeneAmp PCR Systems 9600) for the 
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sequencing reaction for a total of 25 cycles using the following conditions: 96 
o
C for 10 

seconds, 50 
o
C for 5 seconds, and 60 

o
C for 4 minutes. The PCR products were 

precipitated by incubating them with 80 µl of 75 % isopropanol at room temperature 30 

minutes, before being pelleted at 13000 rpm for 20 minutes. The pellet was then rinsed 

with 200µl of 75 % isopropanol, centrifuged for a further 5 minutes, and then air dried 

at 90
 o

C to remove the residual isopropanol.  10µl of formamide was then added to the 

mixture and heated for 5 minutes at 95 
o
C, quenched on ice, and briefly centrifuged 

before loading in a 3130xl Genetic Analyzer (Applied Biosystems) for sequencing. 

Sequences were analysed using the NCBI nucleotide-nucleotide BLAST analysis 

obtained online at http://www.ncbi/nlm/nih.org. 

Table 2.5. Primers used in this study 

Primer Sequence 

pGEX 4-T1 

forward 
5’ GGGCTGGCAAGCCACGTTTGGTG 3’ 

pGEX 4-T1 

Reverse 
5’ CCGGGAGCTGCATGTGTCAGAGC 3’ 

Eco RI Ad12 

E4orf6 

forward 

5’ ATAGCGAATTCATGCAGCGCGACAGACGGTATCGC 3’ 

 

Xho I Ad12 

E4orf6 

reverse 

5’ ATCATCTCGAGTCAGTGTCCATCAGCCGCCCAAGG 3’ 

 

 

2.5.10. Production of recombinant proteins from bacteria 

Plasmids encoding glutathione S-transferase upstream of the region of interest were 

used to transform BL21 bacteria as previously described. Colonies from successful 

transformations were picked and used to inoculate 20 ml of LB broth supplemented 

with 100 µg/ml ampicillin, and incubated overnight at 37 
o
C with shaking at 200 rpm. 

http://www.ncbi/nlm/nih.org
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The next morning, the cultures were added to 500 ml of LB medium supplemented with 

100 µg/ml ampicillin and incubated at 37 
o
C with shaking at 200 rpm for a further 2.5 

hours or until the cultures had reached the optimal density of A600 = ~0.6. At this 

point, isopropyl β-D-1-thiogalactopyranoside (IPTG; Sigma) was added to a final 

concentration of 1 mM to induce protein production. Cultures were incubated for a 

further 3 hours at 30 
o
C with shaking at 200 rpm, before being pelleted at 6000 rpm for 

10 minutes at 4 
o
C, and then stored at -80 

o
C until required for the next stage of 

purification. 

In order to purify the GST-fusion proteins, bacteria were thawed and resuspended in 20 

ml of ice-cold GST lysis buffer (1 mM EDTA (pH 8) and 1 % Triton X-100 (v/v) in 

PBS), before being sonicated on ice 3 times for 45 seconds each time. The lysates were 

then centrifuged for 20 minutes at 20000 rpm at 4 
o
C, with the resulting supernatant 

being transferred in to a fresh tube and incubated with glutathione-agarose beads at 4 

o
C for 1 hour with rotation. The beads were collected by centrifugation at 3000 rpm, 

before being washed three times in lysis buffer and twice in wash buffer (1 mM EDTA 

(pH 8) in PBS). GST-fusion proteins were then released following incubation of the 

glutathione-agarose beads in GST elution buffer (25 mM glutathione, 50mM Tris-HCl, 

pH 8.0) for 2 hours with rotation at 4 
o
C. Meanwhile, dialysis tubing was hydrated in a 

warm solution of 3 % (w/v) NaHCO3, 2 mM EDTA pH 8.0 for 20 minutes to chelate 

metal ions.  The beads were then remove by centrifugation  at 1500 rpm for 3 minutes 

at 4 
o
C, with the resulting supernatant containing eluted GST-fusion protein being 

transferred to the dialysis tubing. The supernatant was then subjected to overnight 

dialysis at 4
o
C in 5L of 25 mM Tris pH 8.0, 100 mM NaCl, 1 mM DTT (Sigma) and 10 

% (v/v) glycerol. The following morning, dialysis tubing that contained the GST 

proteins was placed in fresh dialysis buffer for an additional 6h. GST-fusion proteins 
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were then collected, protein concentration was determined, and the purity of the 

proteins was assessed by SDS-PAGE electrophoresis and Coomassie blue staining. 

Purified proteins were stored in aliquots at −80 
o
C.  

2.5.11. In vitro transcription/translation (IVT) 

L--[
35

S]-methionine-labelled proteins were expressed using a TNT T7 Coupled 

Reticulocyte Lysate System (Promega) as per the manufacturer’s instructions. Briefly, 

the reaction was carried out in a volume of 50 µl containing 25 µl rabbit reticulocyte 

lysate, 0.5 µg plasmid DNA, 2 µl reaction buffer, 1 µl T7 polymerase, 1 µl amino acid 

mix (minus methionine), 2 µl [
35

S]-methionine (1000Ci/mmol at 10mCi/ml; Perkin 

Elmer) and 1 µl RNase inhibitor (Roche Diagnostics Ltd), and Nuclease-free water. 

The reaction was carried out 30 
o
C for 90 minutes, before being centrifuged and stored 

at –80 
o
C until required. The efficiency of translation was assessed by fluorography 

following SDS-PAGE. 

 

2.6. STATISTICAL ANALYSIS 

To determine whether results were statistically significant, a two-tailed T-test was 

performed, which is typically used to establish whether the difference between two 

means is significant, or not. Probability (P) values are depicted in the Figure legends 

where appropriate. The test equation is as shown below, where x-bar = mean; 


d = the 

standard deviation (S.D) of the difference between the means. 

T = x-bar
1
 – xbar

2 


d
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3.1. INTRODUCTION 

ATM and ATR are kinases that function as key transducers of signals initiated in 

response to DNA damage. ATM is activated through its recruitment to sites of DNA 

damage by the MRN complex (Kim et al. 2006). ATM responds primarily to DSB, and 

controls processes such as apoptosis and activation of cell cycle checkpoints through its 

ability to phosphorylate downstream effector proteins, such as Chk2, BRCA1, and p53 

(Shiloh 2003). In contrast, ATR responds to ssDNA that occurs as intermediates during 

the processing of damaged DNA, or during DNA replication in S-phase. The ATR 

cognate binding partner, ATRIP, in conjunction with the 9-1-1, replicative sliding 

clamp complex, serves to recruit ATR to RPA-coated ssDNA (Petermann and 

Caldecott 2006). Once recruited to ssDNA, ATR directs the phosphorylation of a 

number of downstream effector proteins such as Chk1, RPA32, SMC1, and Rad9 in 

order to regulate pathways that prevent further origin firing, block cell cycle 

progression, stabilize stalled replication forks and facilitate replication fork restart 

(Cimprich and Cortez, 2008). There are other proteins in addition to ATRIP that 

participate in the activation of the ATR pathway, such as TopBP1. TopBP1 is a 

multifunctional BRCT-containing protein, which is involved in transcriptional 

regulation, DNA replication, and checkpoint signalling (Garcia et al. 2005). The latter 

function may primarily be due to the ability of TopBP1 to directly activate ATR by 

stimulating its kinase activity through interactions with both ATR and ATRIP 

(Kumagai et al. 2006; Mordes and Cortez 2008). In support of this idea, TopBP1 has 

been shown to be essential for certain ATR-dependent signalling events, including 

Chk1 and Nbs1 phosphorylation (Kumagai et al. 2006).  
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Viruses have evolved a number of mechanisms in order to negate and/or selectively 

activate genotoxic stress response pathways in order to facilitate the replication of their 

genomes efficiently in host cells (Weitzman et al. 2004; Lilley et al. 2007). Upon 

entering the nucleus, the linear dsDNA adenovirus genome has the potential to mimic a 

DNA DSB, whilst adenoviral DNA replication generates ssDNA intermediates. As 

such, both of these processes are capable of eliciting cellular DDR pathways which 

have the potential to limit adenovirus replication. A fully functioning DDR system is, 

therefore detrimental to adenovirus replication (Weitzman et al. 2004; Lilley et al. 

2007).  

Adenoviruses have therefore evolved to inactivate proteins involved in DDR signalling 

pathways, principally by targeting them for proteasome-mediated degradation. The first 

protein to be identified as a genuine target for Ad-mediated degradation, was p53 in a 

study which showed that the Ad early region proteins, E1B-55K and E4orf6 function in 

concert to recruit p53 to a CRL complex containing Cul5, RBX1, and Elongins B and 

C, whereupon it is ubiquitylated and targeted for proteasomal degradation (Querido et 

al. 2001; Harada et al. 2002). Other DNA damage proteins targeted by E1B-55K and 

E4orf6 for degradation include; DNA ligase IV, Mre11, and BLM (Stracker et al. 2002; 

Liu et al. 2005; Baker et al. 2007; Orazio et al. 2011).  

It has been determined that the E1B-55K/E4orf6-dependent degradation of MRN is 

sufficient to prevent ATM but not ATR activation during infection (Stracker et al. 

2002; Blackford et al. 2008; Carson et al. 2009; Karen et al. 2009). Moreover, our 

laboratory has shown recently that different Ad species differentially regulate ATR 

activity during infection (Blackford et al. 2008). Specifically, Ad12 infection results in 

ATR activation and the ATR-dependent hyperphosphorylation of RAD9 and RPA32, 
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whilst Ad5 infection does not readily activate ATR (Blackford et al. 2008). 

Interestingly, however, both of these virus serotypes inhibit ATR-dependent Chk1 

phosphorylation, suggesting that full ATR activation is prevented by both viruses, but 

by different strategies. Until recently, it was not clear how Ad5 prevents ATR 

activation, but now it has been shown that the E4orf3-mediated relocalization and 

immobilization of MRN subunits to aggresomes is required to inhibit ATR activation 

during Ad5 infection (Carson et al. 2009). Interestingly, although the E1B-55K/E4orf6-

mediated degradation of p53 and the MRN complex appears to be conserved between 

Ad5 and Ad12 (Stracker et al. 2005; Blackford et al. 2008), the E4orf3-mediated 

inactivation of ATR is specific to group C adenoviruses, including Ad5 (Carson et al. 

2009). Other human adenoviruses such as Ad12 lack a key isoleucine residue in their 

E4orf3 proteins required for MRN relocalization (Carson et al. 2009); however, as ATR 

is not fully activated during Ad12 infection, this implies that this serotype must have 

evolved other means of inactivating ATR. Given all of these findings, the principal aim 

of the study described in this chapter therefore was to investigate how Ad12 inhibits the 

ATR-dependent activation of Chk1 during infection. 
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3.2. RESULTS 

3.2.1. TopBP1 is degraded during Ad12 but not Ad5 infection 

The MRN complex is targeted for proteasomal degradation by adenoviral proteins E1B-

55K and E4orf6 in order to inhibit ATM signalling during adenovirus infection 

(Stracker et al. 2002). We hypothesised therefore that Ad12 might target components of 

the ATR signalling pathway for proteasomal degradation as a means of inactivating the 

ATR pathway during infection. To investigate this, we mock-infected or infected HeLa 

cells with wt Ad5 or wt Ad12 at an m.o.i of 10 p.f.u./cell and then harvested cell lysates 

at intervals over a 48 hour period. The protein lysates were then quantified and 

subjected to SDS-PAGE. Following transfer to nitrocellulose, levels of proteins 

involved in ATR signalling pathways were assessed by Western blotting (Fig. 3.1). 

In accordance with previous findings we observed that both Mre11 and DNA ligase IV 

were targeted for degradation during both Ad5 and Ad12 infection. Interestingly 

however, we observed that the protein levels of TopBP1 were decreased 24 hours post 

Ad12 infection, yet TopBP1 levels remained constant during Ad5 infection (Fig. 3.1). 

We noted however, that the protein levels of ATR, ATRIP, and RPA70 remained 

constant during infection (Fig. 3.1). Consistent with previous findings by our 

laboratory, ATR targets RPA32 and Rad9 were phosphorylated following Ad12, but 

not Ad5 infection (Blackford et al. 2008). These data suggest that TopBP1 might be a 

target for proteasomal degradation during Ad12 infection (Fig. 3.1) 

Given that previous research has shown that Ad5 promotes the proteasome-mediated 

degradation of Mre11 (Stracker et al. 2002), DNA ligase IV (Baker et al. 2007), and 

p53 (Querido et al. 2001), we decided to investigate if the decrease in levels of TopBP1 

observed post Ad12 infection was also proteasome-dependent. HeLa cells were 
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therefore, mock-infected or infected with wt Ad12, whereafter treated cells were 

incubated in the presence or absence of proteasome inhibitor, MG132. The cells were 

then harvested at intervals over a 48 hour time course post infection; lysates were then 

subjected to SDS-PAGE and protein levels of TopBP1 and Mre11 were assessed by 

Western blotting (Fig. 3.2). The levels of both Mre11 and TopBP1 were substantially 

greater in the Ad12-infected cells treated with MG132 than in Ad12-infected cells that 

were not treated with the proteasome inhibitor (Fig. 3.2). Taken together, these results 

suggest that TopBP1 is specifically targeted for degradation by Ad12 in a proteasome-

dependent manner. 

3.2.2. TopBP1 is relocalized to viral replication centres in Ad-infected cells 

Our laboratory and others have previously shown that components of the ATR 

signalling pathway ATRIP, RPA32, Rad9, Rad17, and E1B-AP5, are relocalized to 

VRCs in Ad-infected cells (Stracker et al. 2005; Blackford et al. 2008). Given that 

TopBP1 appears to be differentially regulated by Ad5 and Ad12, and the fact that these 

two serotypes also differentially regulate other components of the ATR signalling 

pathway, we investigated the cellular localization patterns of TopBP1 in Ad5- and 

Ad12-infected cells using immunofluorescent confocal microscopy. HeLa cells were 

therefore seeded onto glass slides and grown for 24 hours prior to mock-infection or 

infection by wt Ad5 or wt Ad12 at an m.o.i of 10 p.f.u./cell. The cells were then 

harvested 24 and 48 hours post infection by treatment with a pre-extraction buffer and 

fixation in 4% (v/v) PFA in PBS. Fixed cells were then stained with an antibody against 

TopBP1, as well as antibodies against RPA32 and DBP, which served as markers for 

VRCs. Finally, the  
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 ATR

 RPA70

 ATRIP

Ad5

0 24 48

Ad12

 TopBP1

 RPA32

 pRPA32

 RAD9

 pRAD9

 Mre11

0 24 48 Hours post-

infection

 DNA LIGASE IV

 β-Actin

Fig. 3.1. Effect of Ad infection on expression levels of proteins involved in 

ATR activation. HeLa cells were mock-infected or infected with the indicated 

viruses at an m.o.i of 10 p.f.u./cell. Cells were harvested and prepared for Western 

blotting at the indicated time-points using the appropriate antibodies. 
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 β-Actin

+ DMSO
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+ MG132

 Mre11

 TopBP1
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Fig. 3.2. Effects of the proteasome inhibitor MG132 on TopBP1 expression 

levels in Ad12-infected cells. HeLa cells were mock-infected or infected with Ad12 

at an m.o.i of 10 p.f.u./cell, and subsequently incubated in the presence or absence of 

10 μM MG132. Cells were harvested and prepared for Western blotting at the 

indicated time-points, and Mre11 was used as a positive control. 
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cells were mounted in a DAPI-containing medium to stain the DNA, and visualized 

using a LSM510 Meta confocal laser scanning microscope.  

In the mock-treated cells we found that both TopBP1 and RPA32 were diffusely 

localised in the nucleoplasm, yet excluded from nucleoli (Fig. 3.3A). In contrast, 

TopBP1 was found to co-localize with RPA32 at VRCs at 15 and 24 hours post Ad5 

infection, as well as with DBP at 24 hours post infection (Fig. 3.3B-C and Fig. 3.4). We 

also observed TopBP1 co-localization with RPA32 at VRCs at early times post Ad12 

infection (Fig. 3.3D), however the staining of TopBP1 foci became distinctively weaker 

at later times, and TopBP1 did not co-localize with RPA32 at VRCs at this time (Fig. 

3.3E). This was consistent with our Western blot analysis in Fig. 3.1. These data 

indicate that TopBP1 is recruited to VRCs during Ad12 infection prior to degradation.  

It has previously been shown that during Ad5 infection, E1B-55K and E4orf3 relocalize 

MRN and p53 to nuclear track-like structures and cytoplasmic aggresomes prior to 

degradation by E1B-55K and E4orf6 (Evans and Hearing 2005; Liu et al. 2005). 

Therefore, to determine if TopBP1 localizes to nuclear track-like structures or 

cytoplasmic aggresomes during infection, we carried out a similar experiment to that 

outlined above, where HeLa cells were infected with either Ad5 or Ad12 and then 

harvested and fixed, 15 hours post infection. Cells were subsequently stained with an 

antibody against TopBP1, as well as antibodies against PML and γ-Tubulin, which 

served as markers for nuclear tracks and cytoplasmic aggresomes, respectively. This 

experiment revealed that TopBP1 is not relocalized to nuclear track like structures in 

Ad5- or Ad12-infected cells (Fig. 3.5A-B), and neither is it relocalized to cytoplasmic 

aggresomes in Ad12-infected cells (Fig. 3.5C). These data suggest that TopBP1 

degradation by Ad12 is mechanistically different to the degradation of MRN and p53 

by Ad5.  



 
 

100 
 

 

 

                     

 

 

 

RPA32 TopBP1 Merge
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RPA32 TopBP1 Merge

Ad5 (15 h) Ad5 (15 h) Ad5 (15 h)
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RPA32 TopBP1 Merge

Ad12 (24 h) Ad12 (24 h) Ad12 (24 h)

Fig. 3.3 TopBP1 is relocalized to viral replication centres in Ad-infected cells. 
HeLa cells were grown on glass coverslips and mock-infected (A) or infected with 

Ad5 (B-C) or Ad12 (D-E) at an m.o.i of 10 p.f.u./cell. At the appropriate time, cells 

were treated with a pre-extraction buffer and then fixed in 4% (w/v) 

paraformaldehyde and stained for TOPBP1 (red), RPA32 (green) and DAPI (blue). 

Images were visualized by confocal microscopy. Colocalization of proteins is 

shown in yellow. 
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Fig. 3.4 Localization of TopBP1 with DBP in Ad5-infected cells at viral 

replication centres. HeLa cells were grown on glass coverslips and infected with 

Ad5 at an m.o.i of 10 p.f.u./cell, treated with a pre-extraction buffer before being 

fixed in 4% paraformaldehyde and stained for TopBP1 (red), 2A6 E1B-55K, and 

DBP (both green) and DAPI (blue). Images were visualised by confocal 

microscopy. Colocalization is shown in yellow. 
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Fig. 3.5. TopBP1 is not relocalized to PML-containing nuclear tracks (A and 

B) or cytoplasmic aggresomes (C) in Ad5- or Ad12-infected cells. HeLa cells 

grown on glass coverslips were either mock-infected or infected with Ad5 or Ad12 

at an m.o.i of 10 p.f.u./cell. 15 hours post-infection cells were treated with a pre-

extraction buffer before being fixed in 4% (w/v) paraformaldehyde and stained for 

TopBP1 (red), γ-Tubulin (green) and DAPI (blue). Images were visualised by 

confocal microscopy. Colocalization is shown in yellow. 
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3.2.3. RBX1 and Elongin C are essential for the Ad12-mediated degradation of p53 

and TopBP1. 

During Ad5 infection, the viral proteins E1B-55K and E4orf6 function in concert to 

recruit p53 to an E3 ligase complex containing the cellular proteins Cul5, RBX1, and 

Elongins B and C, where it is ubiquitylated, and targeted for proteasome-mediated 

degradation (Querido et al. 2001; Harada et al. 2002). To determine if Ad12 similarly 

utilizes this complex to promote the degradation of TopBP1, we initially carried out a 

series of RNA interference experiments targeting Elongin C and RBX1 as these 

proteins are components of CRL5 complex (Petroski and Deshaies 2005).  

To do this, HeLa cells were initially transfected with either non-silencing siRNA 

oligonucleotides, or specific Elongin C, or RBX1 siRNA oligonucelotides in order to 

knock-down the expression of Elongin C or RBX1 proteins. Cells were infected 48 

hours post knock-down with wt Ad12 at an m.o.i of 10 p.f.u./cell, and harvested at the 

appropriate times post-infection. Lysates were then subjected to SDS-PAGE and 

protein levels of p53, TopBP1, Elongin C, and RBX1 were assessed by Western 

blotting. Consistent with previous findings, both p53 and TopBP1 were targeted for 

proteasomal degradation by Ad12 in cells treated with non-silencing siRNAs (Fig. 

3.6A). Consistent with the previously identified role for a CRL in the Ad-mediated 

degradation of p53, we observed that p53 was not targeted for degradation in Ad12-

infected cells where Elongin C had been knocked down by RNAi, demonstrating that 

the activity of the CRL was compromised (Fig. 3.6A). Moreover, we also determined 

that TopBP1 was not targeted for proteasomal-mediated degradation by Ad12, in cells 

where Elongin C had been knocked down by RNAi (Fig. 3.6A). Similarly, TopBP1 was 

not targeted for degradation by Ad12, in cells that were treated with RBX1 siRNA (Fig. 
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3.6B). Taken together, these data suggest that like p53, TopBP1 may also be targeted 

for degradation during Ad12 infection by a cellular CRL complex. 

3.2.4. Ad5 and Ad12 utilize different Cullin containing ubiquitin ligase complexes to 

promote the degradation of cellular proteins during infection 

As Elongin C and RBX1 are components of both Cul5 and Cul2 ubiquitin ligases 

(Petroski and Deshaies 2005), we wanted to determine whether Ad12 utilizes the CRL5 

complex, or CRL2 complex to promote the degradation of TopBP1. To do this, we 

transfected specific Cul2 or Cul5 siRNA oligonucelotides into HeLa cells in order to 

specifically inhibit the expression of Cul2 or Cul5 proteins. Alternatively, cells were 

transfected with non-silencing siRNA to serve as a control. Cells were then infected 

with wt Ad5 or wt Ad12 at an m.o.i of 10 p.f.u./cell, 48 hours post-transfection and 

harvested at the appropriate time. Protein lysates were then subjected to SDS-PAGE 

and protein levels of TopBP1, Cul2, and Cul5 were assessed via Western blotting (Fig. 

3.7). We also assessed the level of p53 to gauge adenovirus ubiquitin ligase activity 

during infection.  

Initial Western blot analysis determined that Cul2 and Cul5 expression was reduced 

significantly following treatment with the appropriate siRNA oligonucleotides (Fig. 

3.7). In agreement with previous reports, we found that p53 levels were stabilized in 

Ad5-infected cells depleted of Cul5. Interestingly however, p53 was still degraded in 

Ad12 infected cells depleted of Cul5 (Fig. 3.7). As expected, TopBP1 was not degraded 

in Ad5-infected cells in which Cul5 was knocked down, but it was still degraded in 

Ad12-infected cells in which Cul5 was knocked down (Fig. 3.7). As anticipated both 

p53 and TopBP1 were also degraded in Ad12-infected cells treated with control siRNA 

(Fig. 3.7). Intriguingly, TopBP1 and p53 were not degraded following Ad12 infection 
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of cells that were depleted of Cul2 (Fig. 3.7) These data suggest that in contrast to Ad5, 

Ad12 utilizes CRL2 to promote p53 and TopBP1 degradation during infection rather 

than a CRL5. 

CRLs are activated during a process known as Neddylation in which a ubiquitin-like 

protein NEDD8 becomes conjugated to the Cullin subunit of CRLs (Petroski and 

Deshaies 2005). Cullin activation can be visualised by SDS-PAGE as an increase in 

molecular weight. Seeing as Ad5 and Ad12 target different CRLs, we hypothesized that 

these viruses may differentially neddylate Cul2 and Cul5 during infection. To this end, 

we mock-infected or infected HeLa cells with wt Ad5 or wt Ad12 at an m.o.i of 10 

p.f.u./cell, and then harvested at intervals over a 48 hour period. The lysates were then 

subjected to SDS-PAGE and levels of Cul2, Cul5 and TopBP1 were analyzed by 

Western blotting with Mrell degradation by both virus serotypes being used as a 

control.  

Consistent with earlier findings we observed that 16 hours post-infection, both TopBP1 

and Mre11 were degraded in Ad12-infected cells, and Mrell was also degraded in Ad5-

infected cells, whereas TopBP1 was not (Fig. 3.8). Interestingly, when we examined the 

neddylation patterns of Cul2 and Cul5 during Ad12 and Ad5 infection, we observed 

distinct differences (Fig. 3.8). In Ad5-infected cells we found that Cul5 is converted 

into its neddylated, high molecular weight form after 16 hours post infection, whereas 

in contrast to this, Cul2 is increasingly deneddylated 24 hours post Ad5 infection (Fig. 

3.8). Consistent with the different requirements for Cul2 and Cul5 during adenovirus 

infection, the opposite neddylation/deneddylation pattern was observed in Ad12-

infected cells (Fig. 3.8). Indeed, Cul2 became increasingly converted to its neddylated 

state following Ad12 infection (Fig. 3.8). Interestingly, the Cul5 neddylation levels 

were not altered appreciably following Ad12 infection (Fig. 3.8). Taken together, these  
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Fig. 3.6. Elongin C (A) and RBX1 (B) are required for p53 and TopBP1 

degradation in Ad12-infected cells. HeLa cells were transfected with the indicated 

siRNAs, before being mock-infected or infected with Ad5 or Ad12 at an m.o.i of 10 

p.f.u./cell 48h later. Cells were harvested and prepared for Western blotting at the 

indicated time points using the appropriate antibodies. 



 
 

107 
 

 

 

 

  

     

 

 

 

 

 

 

 

  

 p53

 TopBP1

Hours post-

infection
Ad5

0    24   48

Control siRNA Cul2 siRNA Cul5 siRNA

Ad12

0    24   48

Ad5

0    24   48

Ad12

0    24   48

Ad5

0    24   48

Ad12

0    24   48

 Cul5

 Cul2

 Cul2-NEDD8

 Cul5-NEDD8

Fig. 3.7. Cul2 is required for the Ad12-mediated degradation p53 and TopBP1. 

HeLa cells were transfected with the indicated siRNAs, before being mock-infected 

or infected with Ad5 or Ad12 at an m.o.i of 10 p.f.u./cell 48hrs later. Cells were 

harvested and prepared for Western blotting at the indicated time points using the 

appropriate antibodies. 
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p.f.u./cell. Cells were harvested and prepared for Western blotting analysis at the 

indicated time points using the appropriate antibodies 
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data suggest that Ad5 promotes the neddylation of the CRL5 complex to facilitate the 

degradation of p53, whereas Ad12 promotes the neddylation and activation of the 

CRL2 complex to degrade both p53 and TopBP1. 

3.2.5. Ad12 E4orf6  promotes the degradation of TopBP1 independently of E1B-55K 

It is known that adenovirus proteins E4orf6 and E1B-55K function in concert to 

facilitate degradation of target proteins such as p53 and components of the MRN 

complex (Querido et al. 2001; Stracker et al. 2002). Therefore, we wanted to determine 

if Ad12 utilizes both of these proteins to promote degradation of TopBP1. To this end, 

we infected HeLa cells with wt Ad12 or an Ad12 E1B deletion mutant Ad12 hr703 at 

an m.o.i of 10 p.f.u./cell. We then harvested the cells at appropriate intervals over a 48 

hour period. Protein lysates were then quantified and subjected to SDS-PAGE. TopBP1 

and Mre11 were then analyzed by Western blotting (Fig. 3.9). Consistent with previous 

reports, Mre11 was degraded by wt Ad12, whilst the E1B-55K deletion mutant virus 

hr703 was unable to promote Mre11 degradation (Fig. 3.9). Interestingly, TopBP1 was 

degraded following infection with both wt Ad12, and the Ad12 E1B-55K mutant, hr703 

virus (Fig. 3.9). These data suggest that unlike Mre11, the Ad12-mediated degradation 

of TopBP1 degradation occurs independently of E1B-55K. Thus, TopBP1 degradation 

by Ad12 is mechanistically different to Ad12-mediated degradation of MRN and p53. 

On the basis of these results, we considered the possibility that Ad12 E4orf6 alone may 

be able to promote degradation of TopBP1. To test this hypothesis we transfected 

pcDNA3 plasmid alone, or pcDNA3 plasmids expressing Ad12 E4orf6 or Ad5 E4orf6 

into HeLa cells. Cells were then harvested 24 hours post-transfection. Protein lysates 

were then quantified and subjected to SDS-PAGE; the protein levels of TopBP1, p53, 

and Mre11 were assessed by Western blotting (3.10). As expected the levels of p53 and 
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Mre11 were not affected by the expression of Ad12 E4orf6 or Ad5E4orf6 (Fig. 3.10). 

Interestingly, expression of Ad12 E4orf6 promoted a significant decrease in the levels 

of TopBP1 when compared to the levels of TopBP1 in cells expressing Ad5 E4orf6 or 

the empty vector (Fig. 3.10). These data are consistent with our hypothesis suggesting 

that Ad12 E4orf6 alone can promote the degradation of TopBP1.  

Given these findings, and those suggesting that the Ad-mediated degradation of 

TopBP1 was proteasome-dependent, we wanted to investigate whether the Ad12 

E4orf6-mediated reduction of TopBP1 levels was also proteasome-mediated. We 

therefore transfected HeLa cells with pcDNA3 alone or pcDNA3 expressing Ad12 

E4orf6. Following transfection cells were treated with 10µM proteasome inhibitor 

MG132 or DMSO (control), and harvested 24 hours post transfection. Following 

protein quantification, lysates were subjected to SDS-PAGE and protein levels of 

TopBP1 were assessed by Western blotting, with Cyclin B1 being used as a positive 

control for MG132 activity (Fig. 3.11). As expected, MG132 treatment stabilized the 

levels of Cyclin B in both pcDNA3 and pcDNA3-E4orf6 transfected cells (Fig. 3.11). 

Consistent with the idea that E4orf6 promotes the proteasome-mediated degradation of 

TopBP1, treatment with MG132 inhibits the E4orf6-mediated degradation of TopBP1 

(Fig. 3.11). These data suggest that the Ad12 E4orf6-mediated reduction in TopBP1 

levels is proteasome-dependent. Interestingly, we also observed that the levels of Ad12 

E4orf6 were elevated in the presence of the proteasome inhibitor, suggesting Ad12 

E4orf6 itself is also a substrate for the proteasome (Fig. 3.11) 

Given these findings, and the fact that E4orf6 recruits the CRL as it has been found to 

contain motifs termed BC boxes, that bind to elongins B and C (Cheng et al. 2007), we 

considered the possibility that Ad12 E4orf6 alone is able to recruit a CRL2 complex to 

promote the degradation of TopBP1. To this end we transfected non-silencing siRNA 
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or specific Cul2 siRNA oligonucelotides into HeLa cells in order to specifically inhibit 

the expression of Cul2 proteins. 48 hours post-knockdown cells were transfected with 

pcDNA3 plasmid alone, or pcDNA3 plasmid expressing Ad12 E4orf6. 24 hours post-

transfection lysates were harvested, quantified, and subjected to SDS-PAGE; protein 

levels of TopBP1, and Cul2 were assessed by Western blotting (Fig. 3.12).  

As expected, TopBP1 was degraded by Ad12 E4orf6 in cells that were treated with 

non-silencing siRNA. Interestingly however, Ad12 E4orf6 did not promote degradation 

of TopBP1 in cells that were depleted of Cul2 by siRNA (Fig. 3.12). Taken together, 

these results provide evidence that Ad12 E4orf6 alone can promote the proteasome-

mediated degradation of TopBP1 in a Cul2-dependent manner. 

3.2.6. Ad12 E4orf6 binds to TopBP1 and interacts selectively with Cul2 

As Ad12 E4orf6 promotes the proteasome-mediated degradation of TopBP1 

independent of E1B-55K, we considered the possibility that Ad12 E4orf6 might also 

function as a substrate adaptor, and directly bind to TopBP1. To test this hypothesis, we 

initially performed a GST pulldown assay by incubating 10 µl of in vitro-translated, full 

length [
35

S]-TopBP1 with 10 µg of GST-Ad12 E4orf6, or 10 µg GST (Fig. 3.13A) 

Glutathione-agarose was used to isolate the protein complexes, which were then 

washed and selectively eluted with glutathione before being separated by SDS-PAGE, 

and visualised by fluorography and autoradiography. Consistent with our hypothesis 

that Ad12 E4orf6 also serves as a substrate adaptor, we found that Ad12 E4orf6 binds 

directly to TopBP1 (Fig. 3.13A). Given this finding, we next attempted to identify the 

region of the TopBP1 to which Ad12 E4orf6 bound (Fig. 3.13B). GST pulldowns  
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Fig. 3.9 TopBP1 degradation by Ad12 is independent of E1B-55K. HeLa cells 

were mock-infected or infected with wt Ad12 or the E1B-55K mutant virus hr703 

at an m.o.i of 10 p.f.u./cell. Cells were harvested and prepared for Western blotting 

at the indicated times. Mre11 was used as a positive control 
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Fig. 3.10. Ad12 E4orf6 is necessary and sufficient for TopBP1 degradation. 

HeLa cells were transfected with pcDNA3-Ad12-E4orf6, pcDNA3-Ad5-E4orf6, or 

pcDNA3 vector alone and harvested for Western blotting 24 h later. Mre11 and p53 

were used as controls.  
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Fig. 3.11. Ad12 E4orf6-mediated degradation of TopBP1 is proteasome-

dependent. HeLa cells were transfected with pcDNA3-Ad12-E4orf6 or pcDNA3 

vector alone in the presence or absence of 10 μM MG132, added 6h after 

transfection. Cells were harvested for Western blotting 24h later. Cyclin B1 levels 

were used as a positive control for proteasome inhibition. 
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Fig. 3.12 Ad12 E4orf6-mediated degradation of TopBP1 is Cul2-dependent. 

HeLa cells treated with nonsilencing or Cul2 siRNAs 48h earlier were transfected 

with pcDNA3-Ad12-E4orf6 or pcDNA3 vector alone, before being harvested for 

Western blotting 24h later 

 



 
 

116 
 

revealed that the binding site(s) on TopBP1 for E4orf6 were extensive; binding site(s) 

extended between amino acids 2-1168 (Fig. 3.13B).  

As we have provided evidence to show that Ad12 selectively recruits CRL2 complexes 

to facilitate the degradation of TopBP1, and that the Ad12E4orf6-mediated degradation 

of TopBP1 requires Cul2, we wanted to establish whether or not Ad12 E4orf6 interacts 

with Cul2. To this end we performed GST pulldown analyses. We incubated 10 µl of 

[
35

S]-Cul2 or 10 µl of [
35

S]-Cul5 with 10 µg of GST-Ad12 E4orf6 or GST (Fig. 3.14). 

Glutathione-agarose was used to isolate the protein complexes, which were washed and 

selectively eluted with glutathione before being separated by SDS-PAGE, and then 

visualized by fluorography and autoradiography. These analyses revealed that Ad12 

E4orf6 had a much greater propensity to bind Cul2 (Fig 3.14A) than Cul5 (Fig 3.14B), 

consistent with our observations that Ad12 E4orf6-mediated degradation of TopBP1 is 

Cul2-dependent (Fig. 3.14). 

As we determined that Ad12 E4orf6 associates selectively with Cul2 in vitro we next 

decided to establish whether Ad12 E4orf6 has a similar propensity to bind Cul2 in vivo 

(Fig. 3.15). To do this we initially transfected HeLa cells with p-Bind alone, or 

pcDNA3-HA-Ad12 E4orf6. Twenty four hours post transfection we harvested cellular 

lysates and performed a co-immunoprecipitation assay. Lysates were incubated with an 

anti-HA antibody, where after antibody complexes were isolated on protein-sepharose, 

subjected to SDS-PAGE, and Western blotting for Cul2 (Fig. 3.15A). This experiment 

revealed that Ad12 E4orf6 bound to Cul2 in vivo (Fig. 3.15A). 

To address whether Ad12 E4orf6 similarly associates with Cul2 during Ad12 infection, 

we used an Ad12 mutant virus that expresses FLAG-tagged E4orf6 (Blackford et al. 

2010) We infected A549 cells with this mutant virus at an m.o.i of 10 p.f.u./cell, and 
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then harvested them in NETN lysis buffer 24 hours later. We then performed co-

immunoprecipitation assays as described in Fig. 3.15A, before performing SDS-PAGE 

and Western blot analysis (Fig. 3.15B). Consistent with the transfection studies, we 

found that Cul2 associated with Ad12 E4orf6 in cells infected with FLAG-Ad12 (Fig. 

3.15B). As our data suggests that Ad5 utilizes CRL5 during infection and Ad12 utilizes 

CRL2, we next performed co-immunoprecipitation assays to gauge the relative binding 

capacities of Ad5 and Ad12 E4orf6 Cul2 and Cul5 respectively during infection (Fig. 

3.15C). To this end we infected A549 cells with wt Ad5 or FLAG-Ad12 at an m.o.i of 

10 p.f.u./cell. We then harvested the cells in NETN lysis buffer and 

immunoprecipitated anti-FLAG or anti-Ad5 E4orf6 as described previously. Cells were 

then subjected to SDS-PAGE and Western blot analysis. Interestingly, these analyses 

revealed that Ad12 E4orf6 binds exclusively to Cul2 during infection, whereas Ad5 

E4orf6 binds exclusively to Cul5 (Fig. 3.15C). Taken together, these data suggest that 

suggest that Ad12 E4orf6 uses CRL2 to degrade both TopBP1 and p53 during 

infection, whereas Ad5 E4orf6 utilizes CRL5 to degrade p53 during infection. These 

data also provides evidence to show that Ad12 E4orf6 can function as substrate adaptor 

for TopBP1 to recruit it directly to CRL2 for polyubiquitylation and degradation by the 

proteasome.  

3.2.7. Ad12 E4orf6 inhibits ATR-dependent phosphorylation of Chk1 in response to 

replication stress 

It has recently been determined in our laboratory that Ad12 infection results in the 

partial activation of the ATR-dependent DNA damage response (Blackford et al. 2008). 

However, despite this Ad12-infected cells fail to properly phosphorylate and activate  
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Fig. 3.13 Ad12 E4orf6 associates with TopBP1 in vitro through at least two 

binding sites. GST-Ad12 E4orf6 or GST alone was incubated with [35
S
]-

methionine-labeled TopBP1 (A) or [35
S
]-methionine–labelled TopBP1 fragments 

fused to Gal4-DBD (B). Following pull-downs and SDS/PAGE, radiolabeled 

proteins were identified by fluorography and autoradiography 
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Fig. 3.14 Ad12 E4orf6 associates with Cul2 in vitro. GST-Ad12 E4orf6 or GST 

alone was incubated with [35S]-methionine–labeled Cul2 (A) or Cul5 (B). Protein 

complexes were isolated using glutathione–Sepharose beads, eluted with 

glutathione, and separated by SDS/PAGE. Radiolabeled proteins were identified by 

fluorography and autoradiography. 
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Fig. 3.15 Ad12 E4orf6 associates with Cul2 in vivo.  HeLa cells were transfected 

with pcDNA3-Ad12-E4orf6 (A); A549 cells were either mock-infected or infected 

with FLAG-Ad12 (B). Cells were harvested and subjected to IP–Western blot 

analyses with the appropriate antibodies 24h later. Ad5 and Ad12 E4orf6 target 

different Cullins in vivo (C). A549 cells were mock-infected or infected with wt 

Ad5 or FLAG-Ad12. Cells were harvested 24h after infection and subjected to IP–

Western blot analyses with the appropriate antibodies. 
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Chk1, a known downstream effector kinase of the ATR pathway (Blackford et al. 

2008). As it is known that TopBP1 is specifically required to facilitate the 

phosphorylation of Chk1 through its ability to regulate the activation of ATR at sites of 

DNA damage, it might be expected that Ad12 E4orf6 inhibits the ATR-dependent 

phosphorylation of Chk1 during Ad12 infection by promoting the degradation of 

TopBP1. We hypothesised therefore that Ad12 E4orf6 could possibly inhibit ATR 

activation and subsequent downstream Chk1 phosphorylation in the absence of viral 

infection. To test this hypothesis we transfected HeLa cells with either Ad5 or Ad12 

E4orf6, and then subsequently treated them with hydroxyurea (HU; a known activator 

of ATR) to activate ATR and promote a Chk1 phosphorylation. Cells were harvested 

24 hours post-transfection, and then subjected to SDS-PAGE, followed by Western blot 

analysis to assess the levels of TopBP1 and phosphorylated Chk1. Consistent with our 

previous data, TopBP1 was degraded in cells expressing Ad12 E4orf6, but not 

Ad5E4orf6 (Fig. 3.16). Interestingly, we found that levels of phosphorylated Chk1 were 

reduced significantly in cells expressing Ad12 E4orf6 when compared to cells 

expressing Ad5 E4orf6 or the empty vector following exposure to HU (Fig. 3.16). 

These data indicate that, in the absence of other viral proteins, Ad12 E4orf6 is able to 

inhibit the ATR-dependent phosphorylation and activation of Chk1, most likely by 

promoting the specific degradation of the ATR activator, TopBP1. 

3.2.8. TopBP1 degradation in Ad12-infected cells does not require its binding to 

ATRIP 

Since it is known that TopBP1 recruitment to ATRIP is essential for full activation of 

ATR (Mordes et al. 2008), we next investigated whether TopBP1 association with 

ATRIP is essential for the degradation of TopBP1 during wt Ad12 infection. In this 

regard U2OS cells lines stably expressing siRNA-resistant wt ATRIP, ATRIP-Δtop (an 
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ATRIP species that does not bind TopBP1), and an empty vector control cell line were 

obtained from Prof. David Cortez, Vanderbilt University. In order to determine whether 

Ad-mediated degradation of TopBP1 necessitates TopBP1 association with ATRIP, 

these cells were transfected with control siRNAs and siRNAs targeting endogenous 

ATRIP, and then infected with wt Ad12 48 hours later. Protein lysates were harvested 

24 hours post transfection, quantified, and then subjected to SDS-PAGE, followed by 

Western blot analysis to assess the levels of TopBP1 and Mrell (positive control). 

These analyses revealed that Ad12 promoted the degradation of TopBP1 in cells 

expressing either a wt ATRIP species, or an ATRIP species that was no longer able to 

bind TopBP1 (Fig. 3.17). Mre11 was similarly degraded in cells expressing wt ATRIP 

or ATRIP-Δtop. Taken together these data indicate that the Ad12-mediated degradation 

of TopBP1 is not dependent upon its recruitment to ATR-ATRIP complexes.  

 

 

 

 

 

 

  



 
 

123 
 

                                   

 

 

 

                                   

 

                                    

  

TopBP1

pCHK1

CHK1

ATRIP

HA-Ad5/12-E4orf6

HU (h)−       2        4 −       2       4 −        2        4  

pcDNA3 Ad5 E4orf6 Ad12 E4orf6











Fig. 3.16 Ad12 E4orf6 inhibits ATR signaling in response to replication stress. 

HeLa cells were transfected with pcDNA3-Ad12-E4orf6, pcDNA3-Ad5-E4orf6 or 

pcDNA3 vector alone. After 24 h, cells were mock-treated or treated with HU for 

the indicated times, before being harvested forWestern blotting analysis. 
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Fig. 3.17 TopBP1 degradation Ad12 infected cells is independent of its binding 

to ATRIP. U2OS cells stably expressing siRNA-resistant wild-type ATRIP (wt), 

ATRIP-Δtop, or an empty vector (vector) were transfected with either non-

silencing (non sil) siRNA control or siRNA targeting ATRIP to deplete endogenous 

ATRIP. Cells were subsequently infected with Ad12 (at 10 p.f.u./cell). Cells were 

harvested 24h after infection and subjected to IP–Western blot analyses with the 

appropriate antibodies. 
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3.3. DISCUSSION 

Both Ad12 and Ad5 are known to inhibit the ATM-dependent DDR by degrading the 

MRN complex in an E1B-55K/E4orf6 dependent manner (Carson et al. 2003). 

However, Ad5 and Ad12 only partially inhibit the ATR pathway (Blackford et al. 

2008). Both Ad12 and Ad5 inhibit Chk1 phosphorylation although they utilize different 

strategies. E4orf3-mediated inactivation of ATR is specific to group C adenoviruses, 

that includes Ad5, whereas other human adenoviruses such as Ad12 lack a key 

isoleucine residue in their E4orf3 proteins required for MRN relocalization (Carson et 

al. 2009). The aim of the work presented in this chapter was to investigate the 

mechanism by which Ad12 inhibits the ATR-dependent activation of Chk1 during 

infection. In the study described here we have provided evidence to show that Ad12 

targets the ATR activator TopBP1 for proteasomal degradation by a novel mechanism 

in order to negate Chk1 phosphorylation.  

We determined Ad12, but not Ad5, promotes the specific proteasome-mediated 

degradation of TopBP1 during infection (Fig. 3.1-3.2). These findings are interesting 

because unlike Mrell, p53, and DNA Ligase IV, which are degraded by both Ad5 and 

Ad12, TopBP1 degradation occurs only in Ad12-infected cells, suggesting that this 

phenomenon maybe restricted to group A adenoviruses, which incidentally happens to 

be the most onocogenic. This however awaits clarification.  

We strengthened these findings using immunofluorescent confocal microscopy. We 

showed that TopBP1 localizes at VRCs in both Ad5- and Ad12-infected cells at early 

times post-infection (Fig. 3.3-3.4). These findings are consistent with previous studies 

indicating that other components of the ATR signalling pathway: ATRIP, RPA32, 

Rad9, Rad17, and E1B-AP5, are all relocalized to VRCs in Ad-infected cells (Stracker 
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et al. 2005; Blackford et al. 2008). Confocal microscopy also revealed that TopBP1 is 

degraded at later times post infection in Ad12, but not Ad5 infected cells (Fig. 3.3). 

Furthermore we also determined that TopBP1 is not relocalized to nuclear track like 

structures in Ad5 or Ad12 infected cells (Fig. 3.5A-B), and neither is it relocalized to 

cytoplasmic aggresomes in Ad12 infected cells (Fig. 3.5C). This is interesting because 

in contrast to previous research where it has been reported that p53 and MRN are 

relocalized to nuclear track like structures and cytoplasmic aggresomes by E1B-55K 

and E4orf3, before being targeted for degradation by E1B-55K and E4orf6 (Evans and 

Hearing 2005; Liu et al. 2005), we have shown that TopBP1 is relocalized to viral 

replication centres in Ad infected cells prior to degradation. These data suggest that 

TopBP1 degradation by Ad12 is mechanistically different to the degradation of MRN 

and p53 by Ad5.  

It is known that during Ad5 infection, the viral proteins E1B-55K and E4orf6 function 

in concert to recruit p53 to an E3 ligase complex containing the cellular proteins Cul5, 

RBX1, and elongins B and C, where it is then ubiquitylated, targeting it for subsequent 

proteasome mediated degradation (Querido et al. 2001; Harada et al. 2002; Blanchette 

et al. 2004). RBX1 and elongin C are subunits for both Cul2 and Cul5 containing 

CRLs. Using RNA interface we have determined that elongin C and RBX1 are both 

required for the Ad12 mediated degradation of both p53 and TopBP1 (Fig. 3.6A-B). 

Given these findings we initially assumed that Ad12 most likely utilizes the same CRL 

complex to degrade TopBP1 and p53 that Ad5 does during infection to facilitate the 

degradation of p53. However, when used RNA interferace to silence Cul5 expression 

we found that this had no effect on the Ad12-mediated degradation of both TopBP1 and 

p53 (Fig. 3.7). Interestingly, we instead determined that Ad12 hijacks CRL2 to promote 

degradation of both of these proteins (Fig. 3.7), providing the first evidence to show 
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that adenoviruses can use different CRLs to degrade host proteins. It is becoming 

increasingly apparent that like adenovirus, many other viruses target CRLs during 

infection. The HIV-1 protein Vif utilizes a Cul5 CRL to promote ubiquitylation and 

subsequent proteasomal degradation of APOBEC3G (Yu et al. 2003), whereas HPV16 

protein E7 is associated with an enzymatically active Cul2 ubiquitin ligase complex 

that is required to facilitate degradation of the Retinoblastoma tumour suppressor (Huh 

et al. 2007). These are just a couple of examples of viruses hijacking CRLs, however it 

has not been shown before that two viruses from the same family can indeed use 

different CRLs to degrade host proteins as demonstrated in this study. 

We went on to substantiate these findings by studying the neddylation patterns of Cul2 

and Cul5 during Ad infection. Neddylation is the process in which a ubiquitin-like 

protein NEDD8 becomes conjugated to the Cullin subunit of CRLs causing them to 

become activated (Petroski and Deshaies 2005). Our data indicate that during Ad5 

infection, Cul5 becomes increasingly neddylated whereas Cul2 is progressively 

deneddylated (Fig. 3.8). In contrast, Cul2 becomes increasingly neddylated in Ad12-

infected cells whereas Cul5 neddylation is not altered appreciably (Fig. 3.8), further 

suggesting that adenoviruses also differentially regulate Cullin activity during infection. 

It is unclear as to how adenovirus regulates Cullin activation and it would therefore be 

interesting to determine this, especially as it has recently been reported that BPLF1, the 

Epstein-Barr-virus-encoded member of the large tegument proteins of herpesviruses 

protease family, is a deneddylase that regulates virus production by modulating the 

activity of CRLs (Gastaldello et al. 2010). BPLF1 hydrolyses NEDD8 conjugates in 

vitro, acts as a deneddylase in vivo, and binds to Cullins and stabilizes CRL substrates 

(Gastaldello et al. 2010). 



 
 

128 
 

Previous studies have determined that E4orf6 protein is responsible for recruiting the 

CRL to the substrate that is to be targeted for degradation by adenovirus, and it is 

understood that this recruitment occurs through its motifs termed BC boxes through 

which it binds to the scaffold proteins elongins B and C (Blanchette et al. 2004; Cheng 

et al. 2007). Given that we had already shown that Ad5 and Ad12 target different CRL 

during infection, we hypothesized that Ad5 and Ad12 E4orf6 proteins might selectively 

bind to Cul5 and Cul2 respectively. Indeed we confirmed our hypothesis by showing 

that Ad5 E4orf6 binds Cul5 and Ad12 E4orf6 binds Cul2 in vitro (Fig. 3.14A-B). We 

then went onto show through co-immunoprecipitation studies that Ad12 E4orf6 

selectively associates with Cul2 in vivo, and that Ad5 E4orf6 selectively associates with 

Cul5 in vivo (Fig. 3.15C). This result was surprising given that Ad5 and Ad12 E4orf6 

proteins show 50% identity and 74% similarity, and it would therefore be useful in the 

future to clarify what determines the Cullin binding selectivity of Ad5 and Ad12 E4orf6 

proteins, as this may shed light on how CRLs are regulated in both uninfected and 

infected cells.  

It is known that the early adenoviral proteins E1B-55K and E4orf6 function in concert 

to promote the proteasomal degradation of a number of proteins involved in the DNA 

damage response pathways. These include p53, DNA ligase IV, Mre11, and BLM 

(Querido et al. 2001; Stracker et al. 2002; Liu et al. 2005; Baker et al. 2007; Orazio et 

al. 2011). Given our findings indicating that Ad12 promotes the degradation of 

TopBP1, we hypothesized that these two proteins would also play a crucial role in 

degrading TopBP1. However when we infected cells with a mutant Ad12 E1B deletion 

virus, that does not express E1B-55K, we found that TopBP1 was still degraded unlike 

Mre11 which was stabilized. These data suggested that E1B-55K is not required for 

TopBP1 degradation (Fig. 3.9). Indeed we went onto provide evidence suggesting that 
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Ad12 E4orf6 alone can promote the degradation of TopBP1 (Fig. 3.10). We also went 

onto show that the Ad12 E4orf6 mediated degradation of TopBP1 was proteasome 

dependent and that it also required a CRL2 (Fig. 3.11-3.12). These data suggest provide 

substantial evidence to indicate that E4orf6 is solely required to promote TopBP1 

degradation during Ad12 infection. 

To expand upon these findings, we wanted to confirm that Ad12 E4orf6 also serves as a 

substrate adaptor and binds to TopBP1 directly. We therefore carried out GST pull 

down assays with Ad12 E4orf6 and radiolabelled full length TopBP1 as well as 

TopBP1 fragments. This study confirmed that Ad12 E4orf6 binds directly to TopBP1 

through extensive binding sites (Fig. 3.13A-B). We additionally went onto confirm by 

GST pull down and co-immunoprecipitation assays that Ad12 E4orf6 interacts with 

Cul2 both in vitro and in vivo (Fig. 3.14-15). These studies clearly indicated that Ad12 

E4orf6 is functionally distinct from Ad5 E4orf6 in its abilities to direct protein 

ubiquitylation, and also that it does not require any other virally encoded proteins to 

degrade TopBP1. It is also relevant to note that Ad12 E4orf6 is the only viral protein 

currently known to promote degradation of TopBP1, however it is not the only viral 

protein to interact with it as it has been shown that HPV16 E2 interacts functionally 

with TopBP1 (Boner et al. 2002), where TopBP1 has been proposed to act as the 

chromatin receptor for HPV16 E2 during HPV genome segregation at mitosis 

(Donaldson et al. 2007). It is yet to be determined if the E2 interaction with TopBP1 

affects ATR damage signalling pathways. 

In this study we also demonstrated that degradation of TopBP1 in Ad12-infected cells 

does not require its binding to ATRIP. TopBP1 binds to the ATR binding partner 

ATRIP, an interaction that is essential for ATR activation. Cortez et al constructed a 

stable cell line that expresses siRNA-resistant wt ATRIP and siRNA resistant ATRIP-
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top, which is a mutant ATRIP that fails to bind TopBP1, and an empty vector control 

(Mordes et al. 2008). We depleted these cells of endogenous ATRIP by RNA 

interference, and infected them with wt Ad12 and found that TopBP1 is still degraded 

after infection, showing that TopBP1 degradation is independent of its binding to 

ATRIP (Fig. 3.17). These data suggest that Ad effectively negates TopBP1-dependent 

activation of ATR/ATRIP complexes by promoting TopBP1 degradation and 

circumventing its recruitment to ATR/ATRIP. 

 

It has been shown that TopBP1 directly activates ATR by stimulating its kinase activity 

via interactions with both ATR and ATRIP (Kumagai et al. 2006; Mordes and Cortez 

2008). Furthermore, TopBP1 has been shown to be essential for certain ATR-dependent 

signalling events, including Chk1 and NBS1 phosphorylation (Kumagai et al. 2006). 

Since we have previously observed that cellular infection with both adenovirus 

serotypes 5 and 12 results in a failure to activate Chk1, it is likely that the functional 

consequences of Ad12 E4orf6 targeted degradation of TopBP1 is to block the 

activation of Chk1. Indeed, our data in which expressing E4orf6 in cells in the absence 

of any other viral proteins resulted in defective HU-induced phosphorylation of Chk1 

would support this hypothesis (Fig. 3.16). The underlying reason for viral inactivation 

of Chk1 remains unclear but it is likely that some aspect of Chk1 function, be it its 

ability to regulate host cell or viral DNA replication or cell cycle checkpoint activation, 

is not conducive for completion of the viral life cycle.  

Adenovirus is not the only virus in which ATR activation is inhibited during infection. 

It had initially been suggested that HSV-1 infection disrupts the ATR pathway by a 

mechanism that prevents the recruitment of repair factors, spatially uncouples ATRIP 

from ATR and sequesters ATRIP and endogenous hyperphosphorylated RPA within 
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virus-induced nuclear domains containing molecular chaperones and components of the 

ubiquitin proteasome (Wilkinson and Weller 2006). However, a more detailed 

investigation conducted by the same lab has now reported that the ATR-ATRIP 

interaction remains intact during infection, though it is functionally inactive (Mohni et 

al. 2010). Furthermore, Immunofluorescent confocal microscope studies have revealed 

that ATRIP and RPA are recruited, along with ICP8, to prereplicative, stage II 

microfoci during infection, although, interestingly, RPA that is phosphorylated, and 

hence activated, by ATR in response to HU-treatment, is excluded from these sites 

(Mohni et al. 2010). It is interesting to note that a study has shown that ATR signalling 

has no effect on Ad5 DNA replication, and it therefore remains unclear as to why ATR 

activation is detrimental to viral replication (Lakdawala et al. 2008). ATM and ATR 

phosphorylate a number of proteins required mainly for checkpoint activation, 

apoptosis, and DNA repair, however they also target proteins involved in RNA 

metabolism which includes splicing (Matsuoka et al. 2007). During infection, 

adenovirus utilizes the host cell transcription and splicing machinery to produce viral 

proteins, and interestingly it has been reported that ATM can inhibit protein synthesis 

(Braunstein et al. 2009). It is however possible that adenovirus has evolved to prevent 

activation ATM and ATR which could technically inhibit late viral protein expression, 

and limit the production of viral progeny.  

In conclusion, we have described a mechanism by which Ad12 degrades TopBP1 

during infection in order to negate Chk1 phosphorylation and activation. We have 

shown that Ad12 E4orf6 binds directly to TopBP1, and also recruits CRL2, where 

TopBP1 is then targeted for proteasomal degradation. Thus, we have demonstrated that 

Ad12 E4orf6 has a novel role as substrate adaptor and can function independent of 

Ad12 E1B-55K, which may have important ramifications for understanding the role of 
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E4orf6 during viral infection and the processes of Ad-mediated cellular transformation 

and oncogenesis. In this study we have also provided evidence to show that Ad5 and 

Ad12 target different CRLs during infection, further highlighting that closely related 

human adenovirus species have evolved different strategies to counteract host cell DNA 

damage signalling pathways activated during infection. It is becoming increasingly 

clear that viruses have evolved a number of mechanisms in order to negate and/or 

selectively activate the genotoxic stress response pathways in order to facilitate the 

replication of their genomes efficiently in host cells. It is important to investigate the 

mechanisms by which viruses modulate these pathways in order to gain a more 

complete understanding of how these pathways function at the molecular level. 
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4.1. INTRODUCTION 

It is known that adenovirus promotes the degradation of a number of proteins involved 

in DDR pathways during infection. The primary mechanism by which adenovirus 

accomplishes this involves adenovirus oncoproteins E1B-55K and E4orf6. E1B-55K 

acts as the substrate adaptor to recruit the target proteins to a Cullin-containing E3 

ligase complex that has been hijacked by E4orf6, whereupon the protein is 

polyubiquitylated and targeted for proteasomal degradation. As described in chapter 3, 

it is now our understanding that E4orf6 alone can promote the degradation of the ATR 

activator, TopBP1, by directly interacting with it and recruiting it to a CRL2 complex, 

independent of E1B-55K, in Ad12-infected cells (Blackford et al. 2010). Interestingly, 

work from our laboratory has also shown that E4orf3 can degrade TIF1γ in Ad5- and 

Ad12- infected cells, independently of E1B-55K/E4orf6 and Cullin-containing E3 

ligases (Forrester et al. 2012). 

Research from our laboratory has shown that Ad5 and Ad12 infection inhibits Chk1 

phosphorylation in response to genotoxic stress (Blackford et al. 2008). Ad5 utilizes the 

Ad oncoprotein E4orf3, which relocalizes and immobilises MRN subunits prior to 

degradation by E1B-55K/E4orf6 to inhibit Chk1 phosphorylation, whilst Ad12 utilizes 

E4orf6 to promote the degradation of TopBP1 (Blackford et al. 2010). The mechanism 

by which ATR contacts and phosphorylates Chk1 is unclear. TopBP1 is known 

however, to be essential for certain ATR-dependent signalling events, including Chk1 

and NBS1 phosphorylation (Kumagai et al. 2006). TopBP1 stimulates ATR kinase 

activity via interactions with both ATR and ATRIP (Kumagai et al. 2006; Mordes and 

Cortez 2008). Another protein that has been shown to play a crucial role in the 

phosphorylation of Chk1 is the mediator protein, Claspin. Claspin was initially 
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discovered in Xenopus egg extracts as a Chk1-interacting protein; immunodepletion of 

Claspin from egg extracts inhibits the ATR-mediated phosphorylation of Chk1 

(Kumagai and Dunphy 2000). Furthermore, Claspin has been found to contain a 57 

amino acid domain that is the Chk1-binding domain, and phosphorylation of Claspin at 

two sites within this domain is responsible for recruiting Chk1 to Claspin in response to 

DNA replication stress or DNA damage (Chini and Chen 2003). Claspin has also been 

shown to interact with Timeless, a protein that has been shown to play a role in Chk1 

phosphorylation (Gotter et al. 2007). Timeless has been shown to interact with Chk1, 

ATR and ATRIP in response to DNA damaging agents HU and UV light (Unsal-

Kacmaz et al. 2005). Furthermore, it has also been shown that depletion of Timeless by 

siRNA reduces phosphorylation of Chk1 in HU-treated cells (Unsal-Kacmaz et al. 

2005). Akin to the ATR-ATRIP interaction, Timeless is found associated with its 

cognate-interacting partner, Timeless- Interacting protein, Tipin (Gotter 2003; Chou 

and Elledge 2006). RPA2 has been shown to interact with the Timeless-Tipin complex 

in response to DNA damage, and functions to stabilize Timeless-Tipin complexes and 

Claspin onto RPA-coated ssDNA, which in turn promotes the Claspin-mediated 

phosphorylation of Chk1 (Unsal-Kacmaz et al. 2007; Kemp et al. 2010).  

Thus, TopBP1, Claspin, Timeless and Tipin play an essential role in the ATR-

dependent phosphorylation of Chk1. As adenovirus oncoproteins often target multiple 

components in the same signalling pathway, other components of the ATR signalling 

pathway were considered viable targets for adenovirus. Therefore, the aim of the study 

described in this chapter was to investigate if adenovirus targets other known proteins 

in the ATR pathway, to specifically prevent Chk1 activation. 
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4.2. RESULTS 

4.2.1. Timeless and Tipin are degraded during Ad12, but not Ad5 infection. 

As described in chapter 3, Ad12 targets the ATR activator, TopBP1 for proteasomal 

degradation in order to inhibit ATR activation during infection (Blackford et al. 2010). 

We hypothesized therefore that adenovirus might also target other proteins involved in 

the ATR signalling pathway during infection. To investigate this possibility we mock-

infected, or infected, HeLa cells with wt Ad5 or wt Ad12 at an m.o.i of 10 p.f.u./cell 

and then harvested cells at intervals over a 48 hour period. The protein lysates were 

then quantified by Bradford assay and subjected to SDS-PAGE. Following transfer to 

nitrocellulose, levels of proteins involved in Chk1 phosphorylation pathway were 

assessed by Western blotting (Fig. 4.1). 

In accordance with previous research we observed that both Mre11 and p53 were 

degraded in adenovirus-infected cells (Fig. 4.1). Furthermore, and in agreement with 

the data presented in chapter 3, we confirmed that TopBP1 is degraded in Ad12-

infected cells (Fig. 4.1). Interestingly, we found that Timeless, and Tipin levels were 

decreased 48 hours post Ad12-infection, but remained unaffected in Ad5-infected cells 

(Fig. 4.1). The reduction in Tipin and Timeless levels was observed later during 

infection, relative to the Ad12-mediated degradation of TopBP1, but paralleled the 

Ad12-mediated degradation of p53 (Fig. 4.1). However, Claspin levels remained 

unaffected in both Ad5- and Ad12- infected cells (Fig. 4.1). These data suggest that like 

TopBP1, the ATR activator proteins Timeless and Tipin might be targeted by Ad12 for 

degradation during infection. 
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Fig. 4.1. Effect of Ad5 and Ad12 infection on the expression levels of 

proteins involved in Chk1 phosphorylation. HeLa cells were mock-

infected or infected with the indicated viruses at an m.o.i of 10 p.f.u./cell. 

Cells were harvested and prepared for Western blotting at the indicated 

time points using the appropriate antibodies (h.p.i., hours post-infection). 
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4.2.2. Ad12 utilizes a Cul2-containing ubiquitin ligase complex to degrade the 

Timeless-Tipin complex. 

During Ad12 infection, it is postulated that the oncoprotein E4orf6 recruits E1B-55K 

binding proteins, and TopBP1 to an E3 ligase complex containing the cellular proteins 

Cul2, RBX1, and elongins B and C, where they are ubiquitylated, and targeted for 

proteasome-mediated degradation (Blackford et al. 2010). To determine if Ad12 

utilizes CRL2 to degrade Timeless and Tipin we transfected specific Cul2 or Cul5 

siRNA oligonucelotides into HeLa cells in order to specifically knockdown the 

expression of Cul2 or Cul5 proteins. Alternatively, cells were transfected with non-

silencing siRNA to serve as a control. Cells were then infected with wt Ad5 or wt Ad12 

at an m.o.i of 10 p.f.u./cell 48 hours post-transfection, and harvested at the appropriate 

times post-infection. Protein lysates were then quantified and subjected to SDS-PAGE; 

the protein levels of TopBP1, Cul2, and Cul5 were assessed by Western blotting (Fig. 

4.2). Initial Western blot analyses indicated that the knockdown was successful, and 

that Cul2 and Cul5 expression was reduced significantly following treatment with the 

appropriate siRNA oligonucleotides (Fig. 4.2). In agreement with previous research, as 

well as data presented in chapter 3, we observed that p53 was not targeted for 

degradation in Ad5-infected cells depleted of Cul5, or in Ad12-infected cells depleted 

of Cul2 (Fig. 4.2). Consistent with data presented in Chapter 3, TopBP1 was stabilized 

in Ad12-infected cells depleted of Cul2 (Fig. 4.2). In accordance with our earlier 

findings, Timeless and Tipin were not degraded in Ad5-infected cells, but were 

degraded in Ad12-infected cells depleted of Cul5 or treated with control siRNA (Fig. 

4.2). Interestingly however, and akin to p53, Timeless and Tipin were not degraded 

following Ad12 infection of HeLa cells that were depleted of Cul2 (Fig. 4.2). Taken 

together these data suggest that Ad12 utilizes a CRL2 complex to facilitate the  
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Fig. 4.2. Cul2 is required for the Ad12-mediated degradation of Timeless and 

Tipin. HeLa cells were transfected with the indicated siRNAs, before being mock-

infected or infected with Ad5 or Ad12 at an m.o.i of 10 p.f.u./cell 48hrs later. Cells 

were harvested and prepared for Western blotting at the indicated time points using 

the appropriate antibodies (h.p.i. hours post infection). 
 

h.p.i. 
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degradation of Timeless and Tipin during infection. 

4.2.3. Timeless and Tipin are degraded independently of E1B-55K. 

Given the ever increasing complexity of Ad-mediated degradation of cellular 

substrates, we wanted to establish the relative contributions of Ad E1B-55K, E1B-55K-

E4orf6, E4orf6 and E4orf3 in the degradation of Timeless and Tipin. We initially 

investigated therefore, whether E1B-55K plays a role in the degradation of Timeless 

and Tipin. To this end we infected HeLa cells with wt Ad5 and an Ad5 E1B-55K 

deletion mutant, Ad5 dl1520, and wt Ad12 and the Ad12 E1B-55K deletion mutants, 

Ad12 hr703 and Ad12 dl620 at an m.o.i of 10 p.f.u./cell. We then harvested the cells at 

appropriate intervals over a 72 hour period. Protein lysates were then quantified, 

subjected to SDS-PAGE and protein levels assessed by Western blot (Fig. 4.3). 

Initial Western blot analysis confirmed that cells were infected by either wt virus as 

confirmed by the presence of both E1B-55K and E1A, or mutant virus as confirmed by 

the absence of E1B-55K, and the presence of E1A (Fig. 4.3). In agreement with 

previous research, Mre11 was degraded in cells infected with either wt Ad5 or wt Ad12, 

but remained stable in cells infected with viruses lacking E1B-55K (Fig. 4.3). In 

agreement with data presented in chapter 3, TopBP1 was degraded in wt Ad12-infected 

cells and in cells infected with mutant viruses Ad12 dl620, and hr703, but not in wt 

Ad5- or Ad5 dl1520-infected cells (Fig. 4.3).  

Consistent with the Ad5 data presented in Fig. 4.1, neither Timeless nor Tipin were 

degraded in either wt Ad5-infected cells or cells infected with Ad5 dl1520 (Fig. 4.3). 

Significantly, Timeless and Tipin were degraded following infection with either wt  

 



 
 

141 
 

 

 

 

 

 

 

 

 

 

 

 

 

Timeless

Tipin

24      48     72     24     48     72     24     48     72 24     48    72  24     48     72     24  48     72 

Mock Ad5 wt dl1520 dl620 hr 703Ad12 wt

Actin

E1B 55k

TopBP1

Mre11

E1A















Fig. 4.3. Timeless and Tipin degradation by Ad12 is independent of E1B-

55K. HeLa cells were mock-infected or infected with wt Ad5 or Ad5 E1B 

deletion mutant, Ad5 dl1520, or with wt Ad12 or Ad12 deletion mutants Ad12 

hr703 and Ad12 dl620 at an m.o.i of 10 p.f.u./cell. Cells were harvested and 

prepared for Western blotting at the indicated times. Mre11 was used as a 

positive control. (h.p.i., hours post infection). 
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Ad12, or Ad12 E1B-55K deletion mutants (Fig. 4.3). These data suggest that the Ad12-

mediated degradation of Timeless and Tipin occurs independently of E1B-55K. 

4.2.4. Ad12 E4orf3 alone is sufficient to promote the degradation of Timeless, Tipin 

and TopBP1. 

Given that Ad12 does not utilize E1B-55K to degrade Timeless and Tipin, we next 

considered the possibility that either Ad12 E4orf3 or Ad12 E4orf6 could promote the 

degradation of Timeless and Tipin. We therefore transfected pcDNA3 plasmid alone, or 

pcDNA3 plasmids expressing Ad12 E4orf6, Ad5 E4orf6, Ad12 E4orf3, Ad5 E4orf3 

into HeLa cells. Cells were then harvested 24 hours post transfection and protein 

lysates were then quantified and subjected to SDS-PAGE; the protein levels of 

TopBP1, p53, Timeless, and Tipin were then assessed by Western blotting (Fig. 4.4).  

As expected the levels of p53 were not affected by the expression of any of the Ad 

oncoproteins expressed in this experiment (Fig. 4.4). Consistent with previous findings, 

the levels of TopBP1 decreased appreciably in cells expressing Ad12 E4orf6 (Fig. 4.4). 

Interestingly, TopBP1 levels also decreased appreciably in cells expressing Ad12 

E4orf3 (Fig. 4.4). Significantly however, Timeless and Tipin protein levels were only 

reduced following Ad12 E4orf3 expression; Ad12 E4orf6 expression did not affect 

Timeless and Tipin protein levels (Fig. 4.4). These data suggest that Ad12 E4orf3 

alone, is sufficient to promote the Ad12-mediated degradation of Timeless, Tipin, and 

TopBP1. 

4.2.5. Ad12 E4orf3 mediated degradation of Timeless, Tipin, and TopBP1 is 

proteasome dependent.  

Given that Ad12 E4orf6 promotes the proteasome-dependent degradation of TopBP1  
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Fig. 4.4. Ad12 E4orf3 is necessary and sufficient for TopBP1, Timeless and 

Tipin degradation. HeLa cells were transfected with pcDNA3-Ad12-E4orf6, 

pcDNA3-Ad5-E4orf6, pCMV-Ad5-E4orf3, pCMV-Ad12-E4orf3 or pcDNA3 

vector alone and harvested for Western blotting 24 h later.  
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(Blackford et al. 2010), and E4orf3 promotes the proteasome dependent degradation of 

TIF1γ (Forrester et al. 2012), we hypothesized that the Ad12 E4orf3-mediated decrease 

in levels of TopBP1, Timeless, and Tipin was proteasome-dependent. To test this 

hypothesis we transfected HeLa cells with pcDNA3 alone or pcDNA3 expressing Ad12 

E4orf3. Following transfection cells were treated with 10µM proteasome inhibitor, 

MG132 or DMSO (control), and harvested 24 hours post-transfection. Following 

protein quantification, lysates were subjected to SDS-PAGE and protein levels of 

TopBP1 were assessed by Western blotting, with cyclin B1 being used as a positive 

control for MG132 activity (Fig. 4.5).  

Consistent with the idea that E4orf3 promotes the proteasome-mediated degradation of 

these proteins, treatment with MG132 inhibits the E4orf3-mediated degradation of 

TopBP1, Timeless, and Tipin (Fig. 4.5). These data suggest that the Ad12 E4orf3- 

mediated reduction in these protein levels are proteasome-dependent. 

4.2.6. E4orf3 does not relocalize Timeless and Tipin to nuclear tracks. 

One of the most recognised functions of E4orf3 is that it recruits both viral and cellular 

proteins to elongated nuclear track-like structures during infection. E1B-55K, PML, 

TIF1α and TIF1γ all colocalize with E4orf3 in nuclear tracks (Carvalho et al. 1995; 

Doucas et al. 1996; Leppard and Everett 1999; Yondola and Hearing 2007). We 

therefore hypothesized that Timeless and Tipin may also be recruited to these nuclear 

tracks. To this end we transfected HeLa cells with either pcDNA3 expressing Ad5 HA- 

tagged E4orf3, or pcDNA3 expressing Ad12 HA-tagged E4orf3. Cells were then 

seeded onto glass slides. The cells were then harvested at the appropriate time by 

treatment with a pre-extraction buffer and fixation in 4% (w/v) paraformaldehyde. 

Fixed cells were then co-stained for Tipin and E4orf3, Timeless and E4orf3, and TIF1γ  
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Fig. 4.5. The Ad12 E4orf3-mediated degradation of TopBP1, Timeless and 

Tipin is proteasome-dependent. HeLa cells were transfected with pCMV-Ad12-

E4orf3 or pcDNA3 vector alone in the presence or absence of 10 μM MG132, 

added 6h after transfection. Cells were harvested for Western blotting 24h later. 

Cyclin B1 levels were used as a positive control for proteasome inhibition. 
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and E4orf3, using the appropriate antibodies. Cells were mounted in DAPI to stain 

DNA and visualised using a confocal microscope. 

Consistent with the Western blot data, cells that were transfected with Ad12 HA-E4orf3 

showed decreased levels of both Timeless and Tipin when compared to cells that were 

not transfected (cf Fig. 4.6B and D). In contrast, there were no observable differences in 

the levels of both Timeless and Tipin in cells transfected with Ad5 E4orf3 when 

compared to cells that were not expressing Ad5 E4orf3 (cf Fig. 4.6A and C). These data 

strengthen our previous findings demonstrating that Ad12 E4orf3, but not Ad5 E4orf3 

is able to promote degradation of both Timeless and Tipin. Consistent with previous 

studies from our laboratory (Forrester et al. 2012) this experiment also revealed that 

both Ad5 and Ad12 HA-E4orf3 were able to recruit TIF1γ to nuclear tracks (Fig. 4.7A 

and Fig. 4.8A). Interestingly, some Ad5 E4orf3 expressing cells displayed a 

cytoplasmic staining pattern reminiscent of aggresomes; TIF1 colocalized with Ad5 

E4orf3 within these sites (Fig. 4.7B). Consistent with the view that Ad5 Eorf3 does not 

promote the degradation of Timeless or Tipin, neither Timeless nor Tipin were 

recruited to cytoplasmic aggresomes with E4orf3 (Fig. 4.7, C and D). Further co-

staining revealed that Timeless and Tipin do not colocalize with Ad12 E4orf3 at 

nuclear tracks or cytoplasmic aggresomes (Fig. 4.8). 

4.2.7. Ad12 E4orf3 inhibits the ATR-dependent phosphorylation of Chk1 in response 

to replication stress 

Our laboratory has shown previously that Ad12 infection results in the partial activation 

of the ATR-dependent DDR by promoting the phosphorylation of Rad9 and RPA32, 

however, despite this, ATR is not able to phosphorylate and activate Chk1 in Ad12- 

infected cells (Blackford et al. 2008). In chapter 3 we described how E4orf6 inhibits 
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Fig. 4.6. Ad12 E4orf3 is required for Ad12-mediated Timeless and Tipin  

degradation. HeLa cells were transfected with Ad5 or Ad12 HA-tagged E4orf3 plasmid 

DNA and harvested after 24 hours. Cells were then treated with a pre-extraction buffer 

before being fixed in 4% (w/v) paraformaldehyde and stained for E4orf3 (anti HA 

green), Tipin (A and B, red), Timeless (C and D, red) and DAPI (blue). Images were 

visualised by confocal microscopy and colocalization of proteins is shown in the right-

hand merged column. Arrows indicate transfected cells, showing reduction in Timeless 

and Tipin staining. 

 

 

 



 
 

148 
 

 

 

 

 

 

 

E4orf3 TIF1

merge

merge

merge

E4orf3

E4orf3

Tipin

Timeless

Ad5

Ad5

Ad5

Ad5

Ad5

Ad5

Ad5

Ad5

Ad5

Ad5 Ad5 Ad5

E4orf3 TIF1 merge

A

B

C

D

Fig. 4.7. Ad5 E4orf3 does not recruit Timeless and Tipin to nuclear tracks.  

HeLa cells were transfected with Ad5 HA-tagged E4orf3 plasmid DNA and 

harvested after 48 hours. Cells were then treated with a pre-extraction buffer before 

being fixed in 4% (w/v) paraformaldehyde and stained for E4ORF3 (anti HA 

green), TIF1-γ (A and B, red), Tipin (C, red), Timeless (D, red) and DAPI (blue). 

Images were visualised by confocal microscopy and colocalization of proteins is 

shown in the right-hand merged column. Arrows indicate colocalization of E4orf3 

and TIF1 
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Fig. 4.8. Ad12 E4orf3 does not recruit Timeless and Tipin to nuclear tracks.  

HeLa cells were transfected with Ad12-HA-tagged E4orf3 plasmid DNA and 

harvested after 48 hours. Cells were then treated with a pre-extraction buffer before 

being fixed in 4% (w/v) paraformaldehyde and stained for E4orf3 (A-C; anti HA 

green) TIF1γ (A; red) Tipin (B; red), Timeless (C; red) and DAPI (A-C; blue). 

Images were visualised by confocal microscopy and colocalization of proteins is 

shown in the right-hand merged column. Arrows indicate colocalization of E4orf3 

and TIF1 
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Chk1 phosphorylation by promoting the proteolysis of TopBP1, a protein that is known 

to be specifically required for the ATR-dependent phosphorylation, and activation of 

Chk1. Timeless and Tipin are proteins that found in a complex together that play an 

important role in maintain genome integrity. One mechanism by which these proteins 

accomplish this is by playing a vital role in the activation of Chk1 (Yoshizawa-Sugata 

and Masai 2007). Given that we have shown that Ad12 E4orf3 promotes the 

degradation of Tipin, Timeless and TopBP1, we hypothesized that Ad12 E4orf3 could 

also potentially inhibit ATR activation and subsequent downstream Chk1 

phosphorylation in the absence of viral infection.  

To test this hypothesis we transfected HeLa cells with either Ad5 or Ad12 E4orf3, and 

24 hours post-transfection treated the cells with the replication inhibitor, HU, to 

activate ATR and promote Chk1 phosphorylation. Cells were harvested at appropriate 

times post-treatment, and then subjected to SDS-PAGE, followed by Western blot 

analysis to assess the levels of TopBP1 and phosphorylated, activated Chk1. Consistent 

with our previous data, TopBP1 was degraded in Ad12 E4orf3-expressing cells, but 

was not degraded in cells expressing Ad5 E4orf3 (Fig. 4.9). Interestingly, we found that 

levels of phosphorylated, activated Chk1 were reduced considerably, following 

exposure to HU, in cells expressing Ad12 E4orf3 when compared to cells transfected 

with the empty vector alone (Fig. 4.9). Consistent with previous observations Ad5orf3 

also inhibited Chk1 phosphorylation and activation in HU-treated cells (Fig. 4.9; 

Carson et al. 2009). These data indicate that, in the absence of other viral proteins, 

Ad12 E4orf3 and Ad5 E4orf3 are able to inhibit the ATR-dependent phosphorylation 

and activation of Chk1. In consideration of the data presented herein, it is likely that 

Ad12 E4orf3 inhibits CHK1 activation by promoting the specific degradation of the 

ATR activators, TopBP1, Timeless and Tipin, whilst Ad5 E4orf3 prevents Chk1 
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activation by promoting the relocalization of MRN to nuclear tracks (Carson et al. 

2009). 
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Fig. 4.9. Ad12 E4orf3 inhibits ATR signalling in response to replication 

stress. HeLa cells were transfected with pCMV-Ad12-E4orf3, pCMV-Ad5-

E4orf3 or pcDNA3 vector alone. After 24 h, cells were mock-treated or treated 

with HU for the indicated times, before being harvested for Western blotting 

analysis. 

  

  

  



 
 

153 
 

4.3. DISCUSSION 

Adenoviruses have evolved a number of strategies to inactivate and evade host cell 

defence mechanisms in order to promote viral replication. One such mechanism is to 

inactivate the DDR which would normally be activated during infection due to the 

production of single-stranded viral DNA replication intermediates, and the recognition 

of the linear double-stranded viral DNA genome as a double-strand break. In order to 

bypass the host cell response, adenovirus has been shown to promote the degradation of 

proteins involved in the DDR pathway. Up until recently it was our understanding that 

the viral oncoproteins E1B-55K and E4orf6 function in concert to promote the 

degradation of the target proteins, such as p53 and the MRN complex, by recruiting 

them to a CRL5 complex and stimulating their degradation by the proteasome (Querido 

et al. 2001; Carson et al. 2003). However, as described in chapter 3, it is now evident 

that E4orf6 alone is able to promote the degradation of TopBP1, independently of E1B-

55K, by recruiting it to a CRL2 complex (Blackford et al. 2010). Furthermore, work 

presented in this thesis determined that Ad12 inhibited the ATR-dependent activation 

of Chk1, at least in part, by stimulating TopBP1 proteolysis (Blackford et al. 2010).  

The mechanism by which Chk1 phosphorylation occurs is unclear, however research 

has shown that the Timeless-Tipin complex plays a key role. It has been suggested that 

Tipin binds to the RPA2 subunit of RPA which then allows for the Timeless-Tipin 

complex, and then Claspin, to associate with ATR at sites of damage, which in turn 

allows for Chk1 recruitment, and phosphorylation by ATR (Kemp et al. 2010). The aim 

of the work presented in this chapter was to further investigate the mechanism by which 

Ad12 inhibits the ATR-dependent activation of Chk1 during infection. In the study 

described here we have provided evidence to show that Ad12 targets a number of 
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proteins for degradation, involved in regulating the ATR-dependent phosphorylation, 

and activation, of Chk1. 

We initially determined that both Timeless and Tipin are degraded in Ad12-infected 

cells but not in Ad5-infected cells, whereas Claspin levels remained unaffected (Fig. 

4.1). These findings are interesting as it appears that Ad5 and Ad12 differentially 

regulate proteins involved in the phosphorylation of Chk1, further suggesting that this 

phenomenon maybe restricted to group A adenoviruses as discussed in chapter 3. It is 

interesting that adenovirus does not target Claspin for degradation as the HPV E7 

oncoprotein has previously been shown to bypass the G2/M checkpoint by accelerating 

the proteasome-mediated degradation of Claspin (Spardy et al. 2009). These 

observations highlight once again that although different viruses target the same DDR 

signalling pathways in order to promote replication, the mechanisms they employ can 

be very different. 

We described in chapter 3 how adenovirus utilizes different Cullin Ring Ligases during 

infection to promote the degradation of its target proteins. We showed that Ad12 

utilizes CRL2, whereas Ad5 utilizes CRL5. Given these findings we reasoned that 

Ad12 might utilize CRL2 to degrade Timeless and Tipin. We observed that both 

Timeless and Tipin were degraded in Ad12-infected cells treated with control siRNA or 

depleted of Cul5 (Fig. 4.2). However in Ad12-infected cells depleted of Cul2, both 

Timeless and Tipin levels remained unchanged (Fig. 4.2). These data showed that like 

TopBP1, the Ad12-mediated degradation of Timeless and Tipin requires Ad12 to hijack 

the CRL2 complex. Work detailed in this chapter is the first report demonstrating that a 

virus, and more specifically a viral protein, can inactivate ATR signalling pathways by 

targeting Timeless and Tipin for proteasome-dependent degradation. Interestingly, 

however, Timeless and Tipin have recently been shown to be required for episomal 
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maintenance of latent Epstein Barr Virus-EBV (Leman et al., 2010; Dheekollu and 

Lieberman, 2011). The ability of Timeless and Tipin to stabilize replication forks is 

utilized specifically by EBV in order to promote viral replication (Leman et al. 2010; 

Dheekollu and Lieberman 2011). Timeless-Tipin complexes associate with the EBV-

encoded nuclear antigen 1 (EBNA1) at viral origins of plasmid replication (OriP) to 

promote viral replication, such that depletion of Timeless inhibits OriP-dependent viral 

DNA replication and causes complete loss of the closed-circular form of EBV episomes 

in latently infected B lymphocytes, as well as DSB accumulation at OriP region 

(Dheekollu and Lieberman 2011). Given these findings it will be interesting to see if 

other viruses use, or, inactivate Timeless-Tipin complexes in order to promote viral 

replication. 

E1B-55K has historically been shown to act as the substrate adaptor, whilst E4orf6 

recruits the Cullin Ring Ligase to promote degradation of its cellular target. However, it 

is becoming increasingly evident that adenoviruses can utilize different viral 

oncoproteins to promote degradation of cellular proteins. Indeed, Ad12 E4orf6 alone is 

able to promote the proteasomal degradation TopBP1 (chapter 3) and both Ad5 and 

Ad12 E4orf3 are able to promote the degradation of TIF1γ in an E4orf6/E1B-55K-

independent fashion (Forrester et al. 2012). Following infection with E1B-55K deletion 

mutants, we observed that both Timeless and Tipin levels were still reduced following 

infection with Ad12 E1B mutants, suggesting that like TopBP1, degradation of both of 

these proteins occurs in an Ad12 E1B-55K-independent manner (Fig. 4.3). Subsequent 

studies determined that both Timeless and Tipin were targeted for degradation by Ad12 

E4orf3, but not by Ad12 E4orf6, whilst TopBP1 was targeted for degradation by both 

Ad12 E4orf3 and Ad12 E4orf6 (Fig. 4.4 and Fig. 4.6). The use of the proteasome 

inhibitor, MG132, established that E4orf3 targeted Timeless and Tipin for proteasomal 
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degradation (Fig. 4.5).  Together, these data show that Ad12 E4orf3 is able to promote 

the proteasome-mediated degradation of Timeless, Tipin, and TopBP1, independently 

of E1B-55K and E4orf6 expression. The ability of Ad12 E4orf3 and Ad12 E4orf6 to 

independently target TopBP1 emphasizes that there is at least some functional 

redundancy in the ability of Ad oncoproteins to engage the ubiquitin-proteasome 

pathway and inactivate DDR pathways. In this regard it will be interesting to compare 

at the whole proteome level, the proteins targeted for degradation specifically by E1B-

55K/E4orf6, E1B-55K, E4orf6, and E4orf3. It will also be interesting to see if 

E4orf3/E4orf6 and E1B-55K/E4orf3 complexes can similarly activate the ubiquitin-

proteasome pathway to promote degradation of cellular substrates.  

The Ad12 E4orf3-dependent reduction in levels of both Timeless and Tipin was also 

observed using immunofluorescent confocal microscopy (Fig. 4.6). The most 

recognised function of E4orf3 is its ability to relocalize proteins to elongated nuclear 

tracks, examples include PML, p53, TIF1α, TIF1γ, and the MRN complex (Carvalho et 

al. 1995; Araujo et al. 2005; Stracker et al. 2005; Yondola and Hearing 2007; Forrester 

et al. 2012). The relocalization of Mre11 into nuclear tracks is an essential step for its 

Ad5-mediated degradation (Araujo et al. 2005; Liu et al. 2005). Here we were able to 

replicate previous observations from our laboratory by showing that TIF1γ colocalizes 

with both Ad12 and Ad5 E4orf3 at nuclear tracks in transfected cells (Fig. 4.7A-B and 

Fig. 4.8A). Given the known role of E4orf3 in nuclear-track formation we reasoned that 

Ad12 E4orf3 might also organise Timeless and Tipin in to nuclear tracks prior to 

degradation. However, we observed that neither Timeless nor Tipin localized at these 

nuclear tracks, suggesting that the Ad12 E4orf3-mediated degradation of TIF1γ, and 

Timeless and Tipin occur by different mechanisms (Fig. 4.7 C-D and Fig. 4.8B). 

Indeed, E4orf3-dependent TIF1γ degradation occurs independently of Cullin Ring 
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Ligases, whereas CRL2 complexes are required for the Ad12 E4orf3-dependent 

degradation of Timeless and Tipin (Fig. 4.2; (Forrester et al. 2012). It has been 

proposed by many laboratories that Cullin Ring ligases are required for the Ad-

mediated degradation of Mre11, whilst our laboratory suggest that other E3 ligases 

might be required for Mre11 degradation (e.g. Stracker et al., 2005; Forrester et al. 

2011). Irrespective of the E3 ligase(s) required for Mre11 degradation, it is not 

immediately clear why Timeless and Tipin do not colocalize with E4orf3 within 

nuclear tracks. It is possible that the pool of Ad12 E4orf3 that associates with Timeless 

and Tipin does not localize to nuclear tracks, or that Tipin and Timeless associate only 

transiently with E4orf3 in these structures. 

E4orf3 is also able to inactivate the DDR independently of E1B-55K and E4orf6 by 

relocalizing the MRN complex into nuclear tracks, and this action of E4orf3 appears to 

be conserved between group C, D, and E serotypes, as Ad4 and Ad12 lack a key 

isoleucine residue in their E4orf3 proteins that is required to relocalize MRN (Stracker 

et al. 2005; Forrester et al. 2011) It has been proposed that the Ad5-mediated 

inactivation of Chk1 during infection is a consequence of the MRN relocalization into 

nuclear tracks (Carson et al. 2009). Both Ad5 and Ad12 infection results in inactivation 

of Chk1, but it was unclear how Ad12 achieved this (Blackford et al. 2008). In chapter 

3 we described mechanistically how Ad12 E4orf6 inactivates Chk1. Work detailed in 

this chapter extends these findings to show that Ad12 E4orf3 can also inhibit Chk1 

presumably through its ability to target Timeless and Tipin as well as TopBP1.  

It has been shown that E4orf3 and E4orf6 can compensate for each other’s defects as 

they have been shown to be functionally redundant, such that both proteins are involved 

in inhibiting adenovirus DNA concatamer formation, promoting late viral protein 

synthesis, promoting late viral mRNA export, augmenting viral DNA replication, and 
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shutting-off host protein synthesis, although they do carry out these functions by 

different mechanisms (Halbert et al. 1985; Huang and Hearing 1989; Weiden and 

Ginsberg 1994). Here we have shown that both proteins also function to inhibit Chk1 

activation during Ad12 infection by similar mechanisms, as they both recruit CRL2 to 

target TopBP1 and Timeless and Tipin for degradation. E4orf6 contains 3 functional 

BC boxes, which are required for recruitment of CRL complexes to facilitate 

degradation of its cellular substrates that include p53 and BLM (Querido et al. 2001; 

Cheng et al. 2007; Orazio et al. 2011) Ad12 E4orf3 possesses a putative BC box motif 

and a Cullin 2 box (amino acids 23-58) but the functional activity of these sites remains 

to be elucidated. It will be of interest to establish whether these domains are required 

for engaging with Elongins B and C and Cullin 2, respectively, to promote Tipin and 

Timeless degradation, or the degradation of other proteins. 

In conclusion, we have identified a novel mechanism through which Ad12 inhibits the 

ATR-dependent phosphorylation and activation of Chk1. Ad12 E4orf3 utilizes CRL2 to 

promote the degradation of TopBP1, Timeless and Tipin, independently of Ad12 

E1B55K and E4orf6. Moreover, Ad12 E4orf3-mediated degradation is mechanistically 

different to Ad12 E4orf3-mediated degradation of TIFγ as it is not organized into 

nuclear tracks, and requires a Cullin-containing Ring Ligase. 
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5.1. INTRODUCTION  

Viruses are intracellular parasites that hijack host cell functions in-order to facilitate 

viral genome replication and the production of new virions. They have therefore 

evolved a number of mechanisms that function to negate the activation of antiviral 

responses, yet keep the host cell alive long enough to produce viral progeny (Blackford 

and Grand 2009). DNA tumour viruses express early region genes, the protein products 

of which serve to disrupt key cellular processes, such as apoptosis and cell cycle 

checkpoint activation, in the host cell in order to promote viral replication. Given these 

properties a number of viral early gene products have transforming capabilities, and as 

such, it has been highly beneficial to study the function of viral oncogenes and the 

proteins that they encode in order to increase our understanding of the molecular basis 

of these fundamental cellular pathways.   

Ad E1B-55K is a multifunctional protein that uses a number of different mechanisms to 

facilitate viral replication during infection. A number of the functions carried out by 

E1B-55K have been shown to require E4orf6. Together they have been shown to 

assemble a Cullin-containing E3 ubiquitin ligase complex, where E1B-55K acts a 

substrate adaptor to recruit a number of cellular proteins for proteasomal degradation 

(Querido et al. 2001; Stracker et al. 2002; Liu et al. 2005; Baker et al. 2007; Dallaire et 

al. 2009; Orazio et al. 2011). Through their ability to recruit the CRL5 complex, Ad5 

E1B-55K and E4orf6 also cooperate to inhibit host cell nuclear mRNA export, and 

promote viral late nuclear mRNA export to the cytoplasm during the late phase of 

infection (Woo and Berk 2007).  

E1B-55K also has functions independent of E4orf6. The transcription factor, Daxx is 

degraded in an E1B-55K-dependent manner and, E4orf6-independent manner, during 
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Ad5 infection (Schreiner et al. 2010). E1B-55K also plays a major role in the 

transformation of mammalian cells together with E1A and E1B-19K, but independent 

of E4orf6, though E4orf6 expression does improve transformation frequency 

(Jochemsen et al. 1982; Gallimore et al. 1985; Moore et al. 1996; Nevels et al. 1999). It 

has been shown that Ad5 E1B-55K promotes transformation by binding with high 

affinity to p53, where it blocks its transcriptional activation properties and sequesters it 

into aggresomes (Yew and Berk 1992). More recently it has been determined that Ad5 

E1B-55K promotes the SUMOylation of p53, and sequesters it in PML nuclear bodies 

before facilitating its nuclear export into cytoplasmic aggresomes (Pennella et al. 2010). 

Given the ability of Ad oncoproteins to target cellular tumour suppressor gene products, 

many researchers have strived to identify novel, cellular Ad oncoprotein-interacting 

proteins using a wide range of techniques; binding proteins have been identified using 

conventional immunoprecipitation-Western blotting analyses (Baker et al. 2007; 

Blackford et al. 2010), utilizing human mutated cell lines (Stracker et al. 2002), and 

performing immunoprecipitation assays coupled to mass spectrometry screening 

(Querido et al. 2001; Harada et al. 2002; Forrester et al. 2012). Research from our 

laboratory has used mass spectrometry to identify novel Ad12 E1B-55K interactors, 

such as the TIF1 family of proteins (Forrester et al. 2012). This screening method also 

isolated other potential Ad12 E1B-55K interacting proteins (Forrester, 2011; PhD 

Thesis, The University of Birmingham); one of these proteins was WDR62. 

WDR62 was first described in 2010 when it was found to interact with, and potentiate, 

JNK kinase activity, and play a possible role in mRNA homeostasis after stress 

(Wasserman et al. 2010). It was then later discovered that mutation of the WDR62 gene 

is the second most common cause of MCPH (Nicholas et al. 2010). WDR62 has been 

identified as a centrosomal protein, whilst mutated WDR62 forms identified in MCPH, 
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fail to localize at mitotic spindle poles (Nicholas et al. 2010).  The functions of WDR62 

are relatively unknown as it has only recently been discovered. Given that other 

centrosomal proteins MCPH1, and Pericentin have been shown to play a role in the 

ATR signalling pathway (Alderton et al. 2006; Griffith et al. 2008), and that WDR62 

was identified as a potential E1B-55K-interacting protein, we hypothesized that 

WDR62 might also play a role in the DDR pathway. Therefore, the aims of the study 

described in this chapter were to: confirm the interaction between WDR62 and E1B-

55K; investigate the consequence of the interaction during infection; investigate a 

potential role for WDR62 in the DDR.  
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5.2. RESULTS 

5.2.1. WDR62 interacts with both Ad12 E1B-55K and Ad5 E1B-55K in vivo. 

To determine whether Ad12 E1B-55K interacts with WDR62 in vivo, we performed 

immunoprecipitation-Western blot analyses using Ad12 E1-transformed cells. We 

therefore harvested cellular lysates from Ad12 E1-transformed HER2 and HER10 cells 

and immunoprecipitated Ad12 E1B-55K and interacting proteins using the anti-Ad12 

E1B-55K mAb, XPH9. We collected immunocomplexes on Protein G-sepharose, 

separated immunoprecipitates by SDS-PAGE, and performed Western blots for 

WDR62 (Fig. 5.1).  Western blotting revealed that WDR62 co-precipitated with Ad12 

E1B-55K from both Ad12 E1-transformed HER2 and HER10 cells (Fig. 5.1. A and B). 

To extend these findings we also investigated whether Ad5 E1B-55K similarly 

interacted with WDR62. To do this we harvested Ad5 E1-transformed HEK 293 cells, 

and HER 911 cells and performed immunoprecipitation-Western blot analyses using 

the anti-Ad5 E1B-55K mAb, 2A6. These analyses revealed that Ad5 E1B-55K also 

interacts in vivo, with WDR62 (Fig. 1 C and D), though Ad12 E1B-55K appeared to 

bind to a greater proportion of the WDR62 cellular pool, than Ad5 E1B-55K (Fig. 1). 

5.2.2. WDR62 protein levels are not affected during adenovirus infection. 

The Ad E1B-55K-interacting proteins p53, Mre11, DNA ligase IV and BLM are all 

degraded during adenovirus infection (Querido et al. 2001; Stracker et al. 2002; Baker 

et al. 2007; Orazio et al. 2011). Given that we have substantiated earlier findings and 

established that WDR62 is also an Ad E1B-55K-interacting protein, we wanted to 

determine whether WDR62 was also targeted for degradation during infection. Hence, 

we mock-infected, or, infected HeLa cells with wt Ad5 or wt Ad12 at an m.o.i of 10 
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Fig. 5.1. WDR62 and E1B-55K interact in Ad E1-Transformed cell lines.  

E1B-55K was immunoprecipiated from (A) Ad12 HER2 (B) Ad12 HER10 (C) 

Ad5 HEK 293 and (D) Ad5 HER 911 cells. Immunocomplexes were isolated on 

protein-G Sepharose, subjected to SDS-PAGE, and WDR62 and Ad E1B-55K 

detected by Western blotting. 
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p.f.u./cell and then harvested cells at intervals over a 48 hour period. The protein 

lysates were then quantified, subjected to SDS-PAGE, and protein levels were assessed 

by Western blotting (Fig. 5.2). 

In accordance with previous research, we observed that both Mre11 and p53 were 

degraded in adenovirus-infected cells (Fig. 5.2). Furthermore, we confirmed that 

TopBP1 is degraded in Ad12-infected cells in agreement with data presented in Chapter 

3 (Fig. 5.2). In contrast to Mre11, p53 and TopBP1, the expression levels of WDR62 

remained constant in Ad5- and Ad12- infected cells (Fig. 5.2), Interestingly, however, it 

appeared that WDR62 had reduced mobility on SDS-PAGE at 48 hours post-infection 

(Fig. 5.2). This apparent increase in molecular weight was more evident in Ad12-

infected cells, than Ad5-infected cells (Fig. 5.2). Taken together these data indicate that 

WDR62 is not targeted for degradation during Ad infection, but might be subject to 

post-translational modification.  

5.2.3. E1B-55K colocalizes with WDR62 during interphase and mitosis in Ad-

transformed cells. 

WDR62 is a centrosomal protein that localizes at spindle poles during mitosis, and at 

microtubule-organizing centres in interphase cells (Nicholas et al. 2010). As we had 

confirmed the interaction between E1B-55K and WDR62 by immunoprecipitation-

Western blot analyses, we wanted to determine the localization of E1B-55K-WDR62 

complexes within the cell using immunofluorescent confocal microscopy. To this end, 

Ad5 E1-transformed HEK293 cells were seeded onto glass slides and grown for 24 

hours before being fixed with 4% (w/v) PFA. Fixed cells were then co-stained for Ad5 

E1B-55K and WDR62, mounted in a DAPI-containing medium to stain the DNA and 

visualized using a confocal microscope (Fig. 5.3). In interphase cells, WDR62 was 
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Fig. 5.2. Effect of Ad infection on the protein levels of WDR62. HeLa cells were 

mock-infected, or, infected with wt Ad5 or wt Ad12 at an m.o.i of 10 p.f.u./cell. 

Cells were harvested at the appropriate times post-infection and subject to Western 

blotting using the appropriate antibodies. 

h.p.i. 
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localized predominantly in a single discrete location and appeared as multiple distinct 

foci within this area (Fig. 5.3). Interestingly, E1B-55K also localized at this site but 

appeared to have a more homogeneous staining pattern, with the strongest E1B-55K 

staining appearing to encapsulate WDR62 (Fig. 5.3). As WDR62 localizes specifically 

at spindle poles during mitosis, we also investigated whether E1B-55K co-localized 

with WDR62 at these sites. Interestingly, our analyses revealed that a proportion of 

E1B-55K was always found associated with WDR62 at both spindle poles in mitotic 

cells, although the majority of E1B-55K was located in cytoplasmic aggresomes; 

WDR62 was not however found associated with aggresomes  (Fig. 5.3). 

5.2.4. E1B-55K colocalizes with WDR62 in Ad-infected cells  

To extend these observations we next investigated the localization of E1B-55K and 

WDR62 in Ad-infected cells. To do this we seeded HeLa cells on glass coverslips and 

then infected them with either wt Ad5 or wt Ad12 at an m.o.i of 10 p.f.u./cell. Cells 

were fixed, co-stained with anti-E1B-55K and anti-WDR62 antibodies, mounted in a 

DAPI-containing solution and visualized by confocal microscopy (Fig. 5.4). In 

agreement with previous studies, WDR62 localized at the spindle poles in mock-

infected mitotic cells (Fig. 5.4A) and as multiple, punctuate foci in discrete locations in 

interphase cells (Fig. 5.4B). Akin to Ad E1-transformed cells, we observed that E1B-

55K formed discrete structures with, and around, WDR62 in both wt Ad5- and wt 

Ad12- infected cells (Fig. 5.4 C and D). Consistent with the ability of Ad to promote S-

phase arrest in infected cells we did not observe any E1B-55K mitotic staining in either 

wt Ad5-, or wt Ad12- infected cells (data not shown). Taken together, these data 

suggest that Ad E1B-55K colocalizes with WDR62 in both Ad-transformed and Ad- 
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Fig. 5.3. E1B-55K co-localizes with WDR62 at centrosomes in Ad5 E1-

transformed cells. Ad5 E1-transformed cells were grown on glass coverslips, treated 

with a pre-extraction buffer before being fixed in 4% (w/v) paraformaldehyde and 

stained for WDR62 (red), E1B-55K (green) and DAPI (blue). Images were visualized 

by confocal microscopy and colocalization of proteins is depicted by the arrowheads 

in the right-hand merged column (yellow). Inter, interphase; prometa, prometaphase. 
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Fig. 5.4. E1B-55K co-localizes with WDR62 in Ad-infected cells. HeLa cells were 

grown on glass coverslips and (A-B) mock-infected or infected (C) Ad5 (D) or Ad12 

at an m.o.i of 10 p.f.u./cell, treated with a pre-extraction buffer before being fixed in 

4% (w/v) paraformaldehyde and stained for WDR62 (red), E1B-55K (green) and 

DAPI (blue). Images were visualized by confocal microscopy and colocalization of 

proteins is evident in the right-hand merged column (yellow). 
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infected cells and supports earlier observations indicating that these proteins associate 

specifically in Ad-transformed cells. 

5.2.5. WDR62 regulates RPA32 phosphorylation during adenovirus infection. 

Our laboratory has previously reported that E1B-AP5 has a role in ATR signalling 

pathways during Ad infection, and that it is required for the ATR-dependent 

phosphorylation of RPA32 in response to adenovirus infection (Blackford et al. 2008). 

Given the role of E1B-55K-binding proteins in the DDR we wanted to examine if 

WDR62 might also play a role in RPA32 phosphorylation during adenovirus infection. 

Given the role of E1B-55K in promoting degradation we also wished to establish 

whether WDR62 participated in the E1B-55K-dependent degradation of known 

adenovirus targets. We therefore, transfected specific WDR62 siRNA oligonucelotides 

into HeLa cells in order to specifically ablate the expression of WDR62. Alternatively, 

cells were transfected with non-silencing siRNA for comparison. Cells were infected 

with wt Ad5 or wt Ad12 at an m.o.i of 10 p.f.u./cell at 48 hours post-transfection and 

harvested at the appropriate time post-infection. Protein lysates were then subjected to 

SDS-PAGE and protein levels, and phospho-protein levels, of the relevant proteins 

were assessed by Western blotting (Fig. 5.5). Initial Western blot analysis indicated that 

WDR62 knockdown was successful, and WDR62 expression was reduced significantly 

following treatment with the appropriate siRNA oligonucleotides (Fig. 5.5). WDR62 

knockdown did not however affect Ad infection, as E1A and E1B-55K proteins were 

expressed to similar levels in the absence, or presence, of WDR62 (Fig. 5.5). In 

agreement with our earlier results, we observed that the WDR62 protein levels 

remained constant in Ad-infected cells treated with non-silencing siRNA, as well as 

observing the same apparent increase in molecular weight, 48 hours post-infection (Fig. 

5.5). Mre11, p53 and TopBP1 were degraded in Ad5- and/or Ad12- infected cells 



 
 

171 
 

treated with non-silencing siRNA, or depleted of WDR62, suggesting that WDR62 

does not participate in the Ad-mediated degradation of these proteins (Fig. 5.5). In 

agreement with earlier observations, RPA32 is phosphorylated in both Ad5- and Ad12- 

infected cells that were treated with non-silencing siRNA (Fig. 5.5). Interestingly, 

however, the Ad-induced phosphorylation of RPA32 was reduced appreciably in cells 

depleted of WDR62 (Fig. 5.5). These data suggest that like E1B-AP5, WDR62 might 

function in ATR signalling pathways during Ad infection, to promote the 

phosphorylation of RPA32. 

5.2.6. WDR62 is required for efficient ATR signalling in response to DNA damage 

ATR responds to single-stranded DNA that occurs as intermediates during the 

processing of UV-damaged DNA or, during DNA replication during S-phase. Ss-DNA 

becomes coated with RPA which is required to recruit ATR-ATRIP to sites of DNA 

damage and promote subsequent activation of the cell cycle checkpoint signalling 

pathways which lead to cell cycle arrest, DNA repair or apoptosis (Bartek et al. 2004). 

Because we have provided evidence of a possible role for WDR62 in the 

phosphorylation of RPA32, we next investigated a more general role for WDR62 in 

mediating ATR-dependent phosphorylation events initiated in response to DNA 

damage. To do this HeLa cells were transfected with specific WDR62 siRNA 

oligonucelotides in order to ablate the expression of WDR62 proteins. Alternatively, 

cells were transfected with non-silencing siRNA to serve as a control. 48 hours post-

transfecton, these cells were exposed to UV irradiation in order to activate ATR, and 

then subjected to SDS-PAGE, followed by Western blotting (Fig. 5.6).  

Initial observations revealed that the siRNA-mediated knockdown of WDR62 was 

successful (Fig. 5.6). Interestingly, we found that the UV-induced, and ATR-dependent 
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phosphorylation of Chk1 was reduced dramatically in WDR62-knockdown cells 

relative to non-silencing controls (Fig. 5.6). In agreement with these findings we also 

found that the UV-induced phosphorylation of RPA32 was also reduced in WDR62-

knockdown cells relative to non-silencing controls (Fig. 5.6).  Interestingly, however, 

WDR62 knockdown did not significantly affect H2AX phosphorylation in response to 

UV irradiation (Fig. 5.6). In order to expand on these findings we next investigated 

whether WDR62 was required for ATR-dependent signalling events in response to 

replication stress. We therefore treated WDR62-knockdown cells, and non-silencing 

control cells with HU, in order to promote replication stress, and then examined, at 

appropriate times post-treatment, ATR-dependent phosphorylation events. Consistent 

with the UV irradiation studies, WDR62 knockdown, reduced considerably the ability 

of ATR to phosphorylate both Chk1 and RPA32 (Fig. 5.7). These results, suggest, that 

like E1B-AP5, WDR62 is integral to ATR signalling activated in response to UV 

irradiation, or replication stress. 

5.2.7. WDR62 is not required for ATM signalling in response to DNA damage 

As we had demonstrated previously that E1B-AP5 was required for ATR signalling but 

not ATM signalling, we next investigated whether WDR62 was required for ATM 

activation and ATM-dependent phosphorylation events in response to IR.  We therefore 

treated WDR62-knockdown cells and non-silencing controls with IR, and at the 

appropriate times post-treatment harvested cells and subjected protein lysates to SDS-

PAGE and Western blotting (Fig. 5.8). Interestingly, although WDR62 expression was 

efficiently reduced following siRNA treatment, WDR62 knockdown, relative to 

controls, did not affect the IR-induced activation and autophosphorylation of ATM on 

S1981 (Fig. 5.8). Consistent with this observation, WDR62 knockdown did not affect 

the ATM-dependent phosphorylation of KAP1 (TIF1β), MRN component, NBS1, or 
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cohesin component, SMC1 (Fig. 5.8). Taken together these data indicate that WDR62 

is not required for ATM signalling.  

5.2.8. WDR62 is required for cell survival following exposure to UV irradiation and 

treatment with HU, but not in response to IR 

Mutations in DNA damage proteins like ATR often cause cells to display increased 

sensitivity to genotoxic agents which include UV or IR, although this may not always 

be detectable (Cliby et al. 1998; O'Driscoll et al. 2003). Given that we have shown that 

WDR62 is required for efficient activation of the ATR signalling pathway, we wanted 

to examine the ability of WDR62-depleted cells to recover from treatment with DNA 

damage agents. To do this, we performed colony survival assays using HeLa cells that 

were treated with either control siRNA, or WDR62 siRNA, and then exposed to 

varying doses of UV, HU, or IR. Briefly, HeLa cells treated with either control siRNA 

or WDR62 siRNA were plated at a low density, exposed to the indicated doses of the 

appropriate genotoxic agent, and then left to grow in a humidified incubator set at 37 

°C and supplied with 5% (v/v) CO2 for 14 days. Cells were then stained with a 50% 

(v/v) ethanol solution containing 2% (w/v) methylene blue. Cell sensitivity to DNA 

damaging agents following silencing of WDR62 was measured by determining the 

colony forming ability (i.e. cell survival) of control and knockdown cells treated with 

the various genotoxic agents (Fig.s. 5.9-5.11).  

Initial Western blot analysis revealed that the knockdown was successful, and that 

WDR62 expression was reduced significantly following treatment with the appropriate 
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Fig. 5.5. WDR62 is required for RPA32 phosphorylation during adenovirus 

infection. HeLa cells were transfected with the indicated siRNAs, and subsequently 

mock-infected or infected with wt Ad5 or wt Ad12 at an m.o.i of 10 p.f.u./cell, 48 

hours post-transfection. Cells were harvested at the specific times post-infection and 

then subjected to SDS-PAGE and Western blotting using the appropriate antibodies. 
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Fig. 5.6. WDR62 is required for ATR-dependent phosphorylation events in 

response to UV irradiation. HeLa cells were transfected with the indicated 

siRNAs, before being UV-irradiated at 20 J/m
2
, 48 hours later. Cells were then 

harvested at the indicated time-points, and then subjected to SDS-PAGE and 

Western blotting using the appropriate antibodies. 
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Fig. 5.7. WDR62 is required for ATR-dependent phosphorylation events in 

response to replication stress. HeLa cells were transfected with the indicated 

siRNAs, before being treated with HU, 48 hours later. Cells were then harvested at 

the indicated time-points, and then subjected to SDS-PAGE and Western blotting 

using the appropriate antibodies. 



 
 

177 
 

                          

 

                           

 

 

 

 

 

WDR62

Kap1 

NBS1

Actin 

Phos-ATM 

ATM 

Hrs post IR 

Phos-NBS1

SMC1 

Phos-Kap1 

Phos-SMC1 

0  ½   1   2     4      0    ½    1     2   4

Non sil

siRNA

WDR62 

siRNA























Fig. 5.8. WDR62 is not required for ATM-dependent phosphorylation events in 

response to IR. HeLa cells were transfected with the indicated siRNAs, before 

being treated with 10 Gy of IR 48hrs later. Cells were then harvested at the 

indicated time-points, and then subjected to SDS-PAGE and Western blotting using 

the appropriate antibodies. 
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siRNA oligonucleotides (Fig.s. 5.9B, 5.10B, 5.11B). As anticipated, cells depleted of 

WDR62 showed significant increased sensitivity to the proapoptotic effects of UV and 

HU when compared to cells that expressed endogenous, WDR62 (Fig.s. 5.9 and 5.10). 

This was evident even at low doses of UV and HU (Fig.s. 5.9 and 5.10). Consistent 

with the Western blot analyses, cells exposed to IR showed no increased sensitivity, 

relative to control cells, when WDR62 was depleted by RNAi (Fig. 5.11).  These data 

demonstrate that loss of WDR62, sensitizes cells to DNA damage-induced killing in 

response to UV and HU, and suggest that ATR-mediated repair functions are abrogated 

in WDR62-knockdown cells.  In agreement with previous findings these data also 

indicate that ATM repair functions remain intact in cells depleted of WDR62. Together, 

these findings substantiate our previous data and indicate that WDR62 might have an 

important role in the ATR signalling pathway in response to DNA damage.  

5.2.9. WDR62 is required for efficient activation of the G2-M DNA damage 

checkpoint. 

Chk1-dependent phosphorylation of cdc25 in response to DNA damage is a vital 

process required for G2-M checkpoint arrest (Sanchez et al. 1997). As we had shown 

earlier that Chk1 phosphorylation, and hence activation, was abrogated in WDR62-

depleted cells challenged with UV or HU (Fig.s. 5.6 and 5.7), we wanted to establish 

whether the G2-M checkpoint was also affected by WDR62 knockdown. To investigate 

this possibility we quantified the number of cells in mitosis in control cells, and 

WDR62-knockdown cells, prior to, and following exposure to UV irradiation. Briefly, 

HeLa cells were transfected with non-silencing, or WDR62 siRNA 72 hours prior to 

UV irradiation. Cells were then harvested by trypsinization at appropriate times post- 
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Fig. 5.9. WDR62 depletion sensitizes cells to UV irradiation. HeLa cells were 

transfected with the indicated siRNAs, before being plated at low density 48 hours 

later. Cells were then irradiated with the indicated doses of UV irradiation and left 

to grow. Colonies were then counted 14 days later. (A) Graph indicating % cell 

survival of control, and WDR62-knockdown cells following exposure to specific 

doses of UV. (B) Western blot analysis showing efficiency of WDR62 knockdown. 

(C) Representative Figure showing methylene-blue stained cells following 14 days 

growth post UV-irradiation. non. sil., non-silencing. This assay was performed three 

times in triplicate. Error bars are mean +/- S.D. *P<0.05,  ** P<0.01. 
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Fig. 5.10. WDR62 depletion sensitizes cells to HU treatment. HeLa cells were 

transfected with the indicated siRNAs, before being plated at low density 48 hours 

later. Cells were then treated with the indicated doses of HU and left to grow. 

Colonies were then counted 14 days later. (A) Graph indicating % cell survival of 

control, and WDR62-knockdown cells following exposure to specific doses of HU. 

(B) Western blot analysis showing efficiency of WDR62 knockdown. (C) 

Representative Figure showing methylene-blue stained cells following 14 days 

growth post HU-treatment. non. sil., non-silencing. This assay was performed three 

times in triplicate. Error bars are mean +/- S.D. *P<0.05,  ** P<0.01. 
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Fig. 5.11. WDR62 depletion does not sensitize cells to IR irradiation. HeLa cells 

were transfected with the indicated siRNAs, before being plated at low density 48 

hours later. Cells were then irradiated with the indicated doses of IR and left to 

grow. Colonies were then counted 14 days later. (A) Graph indicating % cell 

survival of control, and WDR62-knockdown cells following exposure to specific 

doses of IR. (B) Western blot analysis showing efficiency of WDR62 knockdown. 

(C) Representative Figure showing methylene-blue stained cells following 14 days 

growth post IR-treatment. non. sil., non-silencing. This assay was performed twice, 

in triplicate.  
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irradiation, and fixed by the addition of 70% (v/v) ice-cold ethanol. To determine the 

number of cells in mitosis we quantified the number of phosphohistone H3 Ser10 (pH3) 

positive cells by FACS analysis. Cells were therefore incubated with an anti-pH3 

polyclonal antibody, followed by incubation with an anti-Rabbit, Alexa-488 secondary 

antibody, in the dark. Cells were then resuspended in 1 ml of PBS containing 25 µg/ml 

propidium iodide and 0.1 mg/ml RNAse A, and incubated in the dark again. Cell cycle 

analysis was then performed using a BD Accuri C6 flow cytometer (Fig. 5.12-5.13).  

These analyses revealed that UV irradiation activated a more robust G2-M checkpoint 

response in control cells, relative to WDR62-knockdown cells, 2 hours post-irradiation; 

there were more mitotic cells in WDR62-knockdown cells than control cells (Fig. 5.12 

B). Indeed, analysis of the numbers revealed that there were 1.6-fold more WDR62-

depleted cells, than control cells, in mitosis 2 hours post-irradiation (Fig. 5.13). Further 

analysis revealed that 4 hours post-irradiation the G2-M checkpoint was still enforced 

in control cells (Fig. 5.12C). Interestingly, however the maintenance of the G2-M 

checkpoint in WDR62-knockdown cells was severely compromised (Fig. 5.12C);  there 

were 7.6-fold more mitotic cells in WDR62-knockdown cells, relative to control cells, 4 

hours post-irradiation (Fig. 5.13). The differences between control cells and WDR62 

cells were statistically significant (Fig. 5.13). Western blot analysis revealed WDR62-

knockdown cells were successfully depleted of WDR62 following treatment with 

appropriate siRNAs (Fig. 5.13B). These data suggest that WDR62 is required for both 

induction, and maintenance of the G2-M checkpoint, and provides further evidence to 

indicate that WDR62 participates in ATR signalling pathways in response to DNA 

damage. 
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Fig. 5.12. WDR62 is required for efficient activation of the G2-M DNA damage 

checkpoint. HeLa cells were transfected with the indicated siRNAs, before being 

irradiated with 20 J/m
2 

of UV. Cells were stained with 25 g/ml propidium iodide 

(inset profile) and an anti-pH3 antibody, and examined by flow cytometry. The cell 

cycle distribution is shown by histogram and dot plot. The % of pH3 positive cells 

(boxed cells in dot plot) is indicated in each panel. (A) cell cycle profile of control 

and WDR62 knockdown cells, prior to UV irradiation. (B) cell cycle profile, 2 

hours post-treatment. (C) cell cycle profile, 4 hours post-treatment. 



 
 

184 
 

 

0

20

40

60

80

100

120

140

0 2 4

%
 c

e
lls

 in
 m

it
o

ts
is

Time post UV exposure (Hours)

Non Sil SiRNA

WDR62 SiRNA

1.6 fold 

change

7.6 fold 

change

WDR62

n
o

n
. s

il. S
iR

N
A

W
D

R
6
2
 S

iR
N

A

b-actin





**

*

 

 

Fig. 5.13. WDR62 is required for efficient activation of the G2-M DNA damage 

checkpoint. HeLa cells were transfected with the indicated siRNAs, before being 

irradiated with 20 J/m
2 

of UV. Cells were stained with 25g/ml propidium iodide 

and pH3 antibody, and examined by flow cytometry. Quantification of the cells in 

mitosis are presented. The number of cells in mitosis for each condition at time 

zero, was given an arbitrary value of 100%. (A) Graph indicating % of control, and 

WDR62-knockdown cells in mitosis following exposure to specific doses of UV. 

(B) Western blot analysis showing efficiency of WDR62 knockdown This assay 

was performed three times, in triplicate. *P<0.05,  ** P<0.01. 
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5.2.10. WDR62 is required for the centrosome cycle 

Cell lines expressing mutant ATR have been shown to display an abnormal mitotic 

phenotype, such that cells progressing into mitosis have supernumerary centrosomes 

that leads to abnormal mitoses and aneuploidy (i.e. >2 centrosomes;(Alderton et al. 

2004). Furthermore, cells expressing mutant centrosomal proteins MCPH1 and 

Pericentrin, which have been shown to play a role in ATR signalling, also display 

supernumerary centrosomes (Alderton et al. 2006; Griffith et al. 2008). We therefore 

hypothesized that mitotic cells depleted of WDR62 might also contain supernumerary 

centrosomes, and hence we performed immunofluorescent confocal microscopy to 

investigate this possibility. HeLa cells were therefore treated with non-silencing siRNA 

or WDR62 siRNA for 48 hours, and then seeded onto glass slides and grown for an 

additional 24 hours. The cells were then harvested by treatment with a pre-extraction 

buffer and fixation in 4% (w/v) PFA, chapter 2. Fixed cells were then stained with 

antibodies against WDR62 and γ-tubulin, in order to visualise centrosomes. Finally, the 

cells were mounted in a DAPI-containing medium to stain the DNA and visualized 

using a confocal microscope. Cells with supernumerary centrosomes were quantified by 

counting mitotic cells (i.e. prophase to metaphase) with greater than 2 γ-tubulin foci 

(Fig. 5.14 A-E). Interestingly, we found that there was a statistically significant 2.7-fold 

increase in the number of WDR62-depleted mitotic cells containing supernumerary 

centrosomes, when compared to control cells that still express endogenous WDR62 

(Fig. 5.14). These analyses suggest that akin to ATR, and other proteins in the ATR 

signalling pathway that function to control centrosome duplication, WDR62 also 

participates in this biological process. 
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Fig. 5.14. WDR62 is required for centrosome duplication. HeLa cells were 

transfected with the indicated siRNAs, and then grown on glass coverslips, treated 

with a pre-extraction buffer before being fixed in 4% (w/v) paraformaldehyde and 

stained for WDR62, γ-tubulin, and DAPI. Cells with >2 centrosomes were counted. 

This assay was performed three times counting at least 250 cells for each 

experiment. *P<0.05.   
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5.2.11. Mass spectrometric analysis of WDR62-binding proteins 

In an attempt to identify potential novel WDR62-interacting proteins, UV-irradiated 

and non-irradiated HeLa cells were harvested in NETN lysis buffer, and incubated with 

anti-IgG control, or anti-WDR62 antibody to immunoprecipitate WDR62 and 

associated proteins from the cell lysate. These immunoprecipitates were then incubated 

with Protein G-sepharose to isolate immunocomplexes, which were then separated by 

SDS-PAGE. The gels were then stained with Coomassie Brilliant Blue G-250 solution 

to visualise protein bands. Given that there were no clear differences in the protein 

bands between the control and positive lanes, we excised multiple sections of the gel, 

and then treated them with modified trypsin that cleaves C-terminal arginine or lysine 

residues. The Bruker AmaZon ion trap ETD-enabled mass spectrometer was used to 

analyze peptides, which were then identified by the ProteinScape bioinformatic 

platform. 

This screen identified WDR62 and a number of potential interacting proteins for 

WDR62 both in the absence and presence of UV (Table 5.1). As only one or two 

peptides were identified for each potential interacting protein, these interactions need to 

be validated by other methods. However, given that proteins like RPA70, ATR, DNA-

PK and BRCA1 were pulled down in this screen, it gives some credence to our data 

which suggests that WDR62 plays a role in DNA damage signalling.  
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Protein MW ( kDa ) 
Number of  

peptides 

Mascot  

score 

Sequence  

coverage 

- UV 

WDR62 165.9 74 4312.3 36.4% 

APC2 243.8 1 58.7 1% 

KU70 69.8 2 56.3 4.9% 

PCNT 377.8 2 52.7 0.5% 

BRCA2 384 2 51.9 0.6% 

SMC1 143.1 1 32.6 1.3% 

PIAS1 71.8 1 28.6 1.4% 

XRCC1 69.5 1 28.6 1.4% 

BLM 158.9 1 28.4 1.2% 

CYCLIN D1 33.7 1 25.4 4.7% 

MCM6 92.8 1 25 2.7% 

+UV 

WDR62 165.9 39 2160 20.4% 

DNA - PKcs 468.8 1 67.2 0.7% 

HUWE1 481.6 2 51.3 0.6% 

CYCLIN D1 33.7 2 50.8 4.7% 

RPA70 68 1 28.9 2.6% 

FANCA 163 1 28.4 0.6% 

ATR 301 1 28.4 0.4% 

MCM4 96.5 1 26.1 1.7% 

PML 97 1 26 2.9% 

PER2 136.5 1 25.8 1.0% 

AP - 1 35.7 1 25.2 6.3% 

BRCA1 207 1 25.2 0.6% 

Table 5.1. Mass spectrometric identification of WDR62 and WDR62-interacting 

proteins from anti-WDR62 immunoprecipitates. HeLa cells were either mock 

treated (-UV) or treated with UV irradiation (10 J/m
2
) and allowed to recover for 1 

hour. Cell lysates were prepared and WDR62 and interacting proteins were identified 

by mass spectrometry following their immunoprecipitation with an anti-WDR62 

antibody and isolation upon SDS-PAGE. 
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5.3. DISCUSSION 

As viruses have evolved a number of strategies to negate the host cell activation of 

antiviral responses, they have served as useful models to enhance our understanding of 

fundamental cellular functions (Blackford and Grand 2009). Adenovirus E1B-55K is a 

multifunctional oncoprotein which has been shown to bind to a number of cellular 

proteins involved in the DDR, such as p53, Mrell, DNA ligase IV, and BLM (Querido 

et al. 2001; Stracker et al. 2002; Baker et al. 2007; Orazio et al. 2011). Mass 

spectrometry data from our laboratory identified a number of novel interacting proteins 

for Ad12 E1B-55K, one of which was the centrosomal protein, WDR62. Given that 

other centrosomal proteins, MCPH1, and Pericentrin, have been shown to play a role in 

ATR signalling after DNA damage, we hypothesised that WDR62 might play a role in 

DNA damage signalling. The aim of the work presented in this chapter was to confirm 

the interaction between E1B-55K, and investigate its potential role in viral infection, 

and its role in the DDR pathway. In the study described here we provide evidence to 

show that WDR62 binds to E1B-55K in vivo, and is required for efficient ATR 

signalling in response to genotoxic stress.  

In addition to demonstrating that E1B-55K does indeed bind to WDR62 in vivo in Ad 

E1-transformed cells (Fig. 5.1), we went on to show that E1B-55K co-localizes with 

WDR62 at centrosomes in Ad5 E1-transformed cells, which is interesting given that 

E1B-55K has not previously been described to localize at centrosomes (Fig. 5.3-5.4). 

This is also the first time that E1B-55K has been shown to interact with a centrosomal 

protein.  Unfortunately, the commercial antibody available for WDR62 is very weak for 

immunoprecipitation assays, hence we were unable to perform the reciprocal WDR62 

immunoprecipitation and E1B-55K Western blot, or identify strong interactors using 
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mass spectrometry (Table 5.1). One of the future directives would be to produce both 

mouse monoclonal and rabbit polyclonal antibodies against WDR62 to analyze its 

biological functions in greater detail; this is considered in chapter 6.  

A large number of proteins that interact with E1B-55K have been shown to be targeted 

for proteasomal degradation during Ad infection (Querido et al. 2001; Stracker et al. 

2002; Liu et al. 2005; Baker et al. 2007; Dallaire et al. 2009; Schreiner et al. 2010; 

Orazio et al. 2011; Forrester et al. 2012). The E1B-55K-binding protein, WDR62 was 

not however targeted for degradation during infection (Fig. 5.2). Instead, levels were 

more comparable to those seen for other E1B-55K interacting proteins such as E1B-

AP5 and TIF1β (Blackford et al. 2008; Forrester et al. 2012). Interestingly, there 

appeared to be an increase in the molecular weight of WDR62 48 hours post-infection, 

suggesting that it had undergone a post translational modification (Fig. 5.2). E1B-55K 

has been shown to promote the SUMOylation of p53 (Muller and Dobner 2008), 

though whether WDR62 is SUMOylated, or subject to another form of post-

translational modification, during infection requires further investigation. Identification 

of this modification might give greater insight into WDR62 function. 

Our laboratory has previously reported that E1B-AP5 has role in the DDR and that it is 

also required for RPA32 phosphorylation in response to adenovirus infection 

(Blackford et al. 2008). Using RNA interference we have determined that like E1B-

AP5, WDR62 is also required for efficient RPA32 phosphorylation during adenovirus 

infection (Fig. 5.5). We then went onto investigate a possible role for WDR62 in the 

DNA damage response pathway by exposing cells treated with control siRNA, or 

WDR62 siRNA to a range of genotoxic agents, and then observing DDR pathway 

activation and phosphorylation of DDR proteins. Interestingly, we found that WDR62 

was essential for efficient phosphorylation and activation of Chk1 and RPA32 in 
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response to UV- or HU- induced DNA damage (Figs. 5.6-5.7). However, in contrast, 

WDR62 depletion did not appear to have a significant impact on the DNA damage 

response to IR (Figs. 5.8).  

Cells expressing mutant ATR have been shown to display increased sensitivity to 

exposure with UV and IR irradiation (Wright et al. 1998). Furthermore cells are also 

hypersensitive to exposure to genotoxic agents when they harbour mutations in other 

DDR genes, for example ATM or XPA (Sancar et al. 2004). Given that we had provided 

evidence for a potential role of WDR62 in the DNA damage response, the possibility 

that WDR62 depletion may sensitize cells to UV, HU, or IR exposure was examined. 

Interestingly, we found that cells depleted of WDR62 were indeed hypersensitive to 

UV irradiation, as well as HU treatment, further substantiating our idea that WDR62 

plays a role in the ATR signalling pathway (Fig. 5.9-5.10). In contrast, however we 

found that depletion of WDR62 did not increase the sensitivity of cells to IR exposure 

(Fig. 5.11), which was interesting given that molecular cross talk between ATM and 

ATR has been shown to occur (Cuadrado et al. 2006).  

The Chk1 kinase is required for G2-M checkpoint arrest in response to DNA damage 

(Sanchez et al. 1997). Given that we had shown that cells depleted of WDR62 were not 

able to phosphorylate Chk1 in response to DNA damage, we also examined the G2-M 

checkpoint in WDR62-depleted cells in response UV irradiation. As expected, we 

found that the G2-M checkpoint control was significantly abrogated in cells depleted of 

WDR62 (Fig. 5.12-5.13). A similar phenotype is displayed when another protein 

involved in the ATR signalling pathway, TopPB1, is depleted from cells, that are then 

exposed to genotoxic agents (Yamane et al. 2003). TopBP1 has been shown to be 

essential for certain ATR-dependent signalling events, including Chk1 and NBS1 

phosphorylation (Kumagai et al. 2006). Given that like TopBP1, WDR62 depletion 
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inhibits Chk1 phosphrylation and subsequent G2-M checkpoint control, our data 

indicates that WDR62 functions in the ATR signalling pathway. It is also interesting to 

note that Chk1 has been observed to localize to the centrosome, and this localization is 

increased after DNA damage due to phosphorylation at Ser317 and Ser345 (Niida et al. 

2007). Given these observations, it would be interesting to establish whether WDR62 

interacts with TopBP1 and/or Chk1 in vivo, or localizes with these proteins at 

centrosomes. 

Cell lines expressing mutant ATR have been shown to display an abnormal mitotic 

phenotype;  cells have supernumerary centrosomes in mitosis (Alderton et al. 2004). 

Given that we have provided evidence to show that WDR62 may play a role ATR 

signalling pathways in response to DNA damage, and also the fact that WDR62 is a 

centrosomal protein, we examined the centrosome cycle in cells depleted of WDR62. 

Here we observed that WDR62-depleted mitotic cells did indeed display an increase in 

cells that had supernumerary centrosomes (Fig. 5.14). MCPH1, like WDR62 is a 

centrosomal protein, where mutations in the genes encoding these proteins lead to 

primary microcephaly. Interestingly MCPH1 has been found to play a role in the ATR 

signalling pathway, whereby MCPH1-mutant cell lines also have defective UV-induced 

G2-M checkpoint arrest, as well as containing supernumerary centrosomes in mitosis 

(Alderton et al. 2006). Also, another centrosomal protein Pericentrin has also been 

found to play a role in ATR signalling (Griffith et al. 2008). Mutations in this protein 

give rise to Seckel syndrome which is an autosomal recessive disorder characterized by 

growth retardation, severe proportionate short stature and marked microcephaly 

(Griffith et al. 2008). Furthermore, cells that express mutated Pericentrin also have 

defective UV-induced G2-M checkpoint arrest, as well as containing mitotic 

supernumerary centrosomes (Griffith et al. 2008). Thus it appears that like other 
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centrosomal proteins, WDR62 also functions in ATR signalling pathways. Given these 

similarities with Pericentrin and MCPH1, it would also be interesting to establish the 

relationship between WDR62 and these proteins. 

In this regard we attempted to identify novel WDR62-interacting proteins in both non-

stressed cells, and in response to genotoxic stresses that activate the ATR pathway. To 

do this we performed mass spectrometric analyses following the immunoprecipitation 

of WDR62 from non-stressed and UV-irradiated cells. In addition to identifying 

WDR62, we identified a limited number of potential interacting proteins, which include 

RPA70, ATR, DNA-PK and BRCA1 (Table 5.1). However, given that the WDR62 

antibody was not particularly good for immunoprecipitation, this mass spectrometric 

data is not definitive, and needs to be repeated with other anti-WDR62 antibodies to 

substantiate these findings. 

In conclusion, the studies detailed in this Chapter, have identified novel functions of a 

cellular E1B-55K interacting protein, and give further credence to the importance of 

studying the biological functions of adenovirus oncoproteins. Specifically, we 

identified WDR62 as a new E1B-55K interacting protein, and provided considerable 

evidence to suggest that it functions in ATR signalling pathways activated in response 

to DNA damage.  
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6.1. ROLE FOR AD12 E4ORF6 AS A NEGATIVE REGULATOR OF 

ATR 

The adenovirus oncoprotein, E4orf6 functions to regulate viral DNA replication, late 

mRNA export, and host-cell shutoff (Halbert et al. 1985). In addition to these roles, 

E4orf6 is also essential for negating the host cell DDR, which is required to prevent 

concatenation of the Ad genome (Weiden and Ginsberg 1994; Stracker et al. 2002). The 

majority of the functions carried out by E4orf6 require the protein to function in concert 

with E1B-55K, the most well-known example of which is to promote the degradation 

of cellular proteins involved in DDR pathways. In chapter 3 we described a novel 

mechanism where Ad12 E4orf6 was able to promote the proteasome-mediated 

degradation of TopBP1 in an Ad12 E1B-55K-independent manner. TopBP1 is essential 

for the ATR-dependent phosphorylation and activation of Chk1 in response to DNA 

damage (Kumagai et al. 2006). Our laboratory has previously shown that ATR is 

differentially activated by Ad5 and Ad12 during infection (Blackford et al. 2008). The 

mechanism by which Ad5 inhibits Chk1 phosphorylation has been shown to be as a 

result of the relocalization of MRN into nuclear tracks by Ad5 E4orf3, but Ad12 E4orf3 

proteins are unable to carry out this function (Stracker et al. 2005; Carson et al. 2009). 

In chapter 3 we determined that Ad12 inhibits Chk1 activation by promoting the 

degradation of the ATR activator, TopBP1. 

We have shown that the Ad12 E4orf6-mediated degradation of TopBP1 inhibits Chk1 

phosphorylation in response to genotoxic stresses that normally activate the ATR 

signalling pathway. It is unclear however, as to how Chk1 inactivation is beneficial for 

Ad12 infection, and it would therefore be of great interest to identify a separation-of-

function TopBP1 mutant that is resistant to Ad12 E4orf6-mediated degradation, but still 
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retains its ability to activate ATR. We could then examine how ATR and Chk1 

activation is detrimental to Ad12-infected cells, by determining its effects on Ad12 

viral DNA replication, viral mRNA synthesis, viral early and late protein synthesis, 

viral genome packaging and the production of new productive virions. Furthermore, 

TopBP1 functions in other cellular processes such as DNA replication where it 

functions as a modulator G1/S transition (Kim et al. 2005). It would therefore be 

interesting to see if other functions of TopBP1 are detrimental for Ad12 infection, by 

overexpressing a non-degradable TopBP1 mutant and inhibiting Chk1 activation with a 

Chk1 inhibitor such as 7-hydroxystaurosporine (UCN-01), and then observing any 

affects upon Ad12 infection (Busby et al. 2000).  

Adenovirus, HPV, HSV, EBV, and SV40 are just a few examples of DNA viruses that 

affect ATM/and or ATR signalling pathways during infection, as a result of the host 

cell recognising viral DNA as damaged cellular DNA, or potentially, due to deliberate 

activation by the virus or viral proteins (Turnell and Grand 2012). For instance, 

adenovirus partially activates the ATR signalling pathway, whilst SV40 activates the 

ATR signalling pathway, and SV40 LTag binds directly to RPA70 which is required 

for initiation of SV40 viral genome replication (Dornreiter et al. 1992; Melendy and 

Stillman 1993). Moreover, HSV-1 was originally shown to attenuate ATR activation by 

disrupting the association between ATR-ATRIP, although a more recent study has now 

shown that this complex does, in actual fact, remain intact, and instead ATR-ATRIP are 

sequestered to replication compartments where they are functionally inactivated 

(Wilkinson and Weller 2006; Mohni et al. 2010).  Given that adenovirus has been 

shown to activate some components of the ATR signalling pathway, as well as 

recruiting ATR, ATRIP, Rad9, RPA, Rad17, TopBP1, and E1B-AP5 to VRCs, it would 

be interesting to investigate if, and how this is beneficial for the virus (Carson et al. 
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2003; Blackford et al. 2008; Carson et al. 2009). One approach would be to deplete 

cells of these proteins and investigate the consequences of their inactivation upon viral 

infection as outlined above. 

In chapter 3 we also described for the first time that adenovirus differentially regulates 

Cullin ring ligases during infection. We showed that Ad5 activates and utilizes CRL5 to 

promote the degradation of p53, and inactivates CRL2, as is evident by its neddylation 

patterns. In contrast Ad12 increasingly activates a CRL2 and utilizes it to degrade both 

p53 and TopBP1. Furthermore, other viruses have been shown to target Cullin ring 

ligases during infection to facilitate the degradation of cellular proteins, however, it has 

not been shown before that two viruses from the same family can use different Cullin 

ring ligases to degrade host proteins as demonstrated in this study. As different Ads 

promote the selective activation of Cullin ring ligases through their ability to interact 

with these complexes and promote Cullin neddylation it would be interesting to 

establish whether E4orf6 also interacts with, and activates the NEDD8 -activating 

enzymes, and -conjugating enzymes responsible for this modification. 

In the study described in chapter 3 we have also described a novel role for Ad12 E4orf6 

as both a Cullin ring ligase recruiter and, a substrate adapter, by showing that this 

oncoprotein can bind directly to TopBP1 and recruit it to a CRL2, which then 

ubiquitylates TopBP1 targeting it for proteasomal degradation. E4orf6 has not been 

shown to interact directly with many cellular proteins, and instead interaction occurs 

mainly via E1B-55K, although E4orf6 is able to bind directly to p53 to repress its 

transcriptional activity (Dobner et al. 1996). Most of the studies carried out on the 

function of E4orf6 are from the Ad5 serotype, for which there is a panel of monoclonal 

antibodies. The novel function of Ad12 E4orf6 that we have described appears to be 

restricted within the group A viruses, as Ad5 E4orf6 is unable to degrade TopBP1. It 
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would therefore be interesting to confirm which Ad types are able to degrade TopBP1. 

It would also be interesting to make and characterize monoclonal and polyclonal 

antibodies raised against Ad12 E4orf6 protein, in order to identify novel Ad12 E4orf6-

interacting proteins by Mass spectrometry. As E4orf6 can promote the degradation of 

cellular proteins, it would be prudent to do these analyses in the absence and presence 

of the proteasome inhibitor, MG132. Once identified, the role of novel Ad12 E4orf6 

proteins in ATM and ATR pathways, and other DDR pathways should be examined, as 

well as determining whether Ad12 E4orf6 also promotes their degradation. 

We have shown that Ad12 E4orf6 alone is able to inhibit Chk1 phosphorylation and 

activation, which might have some benefit for anti-cancer therapies. In this regard it has 

been proposed that in normal cells harbouring wt p53, Chk1 inactivation does not 

hinder chemotherapeutic p53-dependent G1 arrest, whilst Chk1 inactivation in tumour 

cells that lack a functional p53, and hence a G1/S checkpoint, will undergo mitotic 

catastrophe and cell death (Chen et al. 2006; Xiao et al. 2006). Given these 

observations it would be extremely interesting to explore whether we could engineer an 

Ad12 E4orf6 mutant that retained its ability to inhibit Chk1, yet was unable to repress 

p53 function (assuming that like Ad5 E4orf6, Ad12 E4orf6 has this property). If this 

mutant could be made it might promote the selective killing of cancer cells in 

combination with other therapeutics. 

 

6.2. ROLE FOR AD12 E4ORF3 AS A NEGATIVE REGULATOR OF 

ATR 

The adenovirus E4orf3 oncoprotein shares functionally redundancy with E4orf6, such 

that these proteins perform overlapping functions (Halbert et al. 1985). In chapter 4 we 
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presented evidence to indicate that Ad12 E4orf3, like Ad12 E4orf6, can independent of 

Ad12 E4orf6 and E1B-55K, promote the proteasome-mediated degradation of TopBP1; 

Ad12 E4orf3 and Ad12 E4orf6 differ in some regards, however as Ad12 E4orf3 can 

promote the degradation of Timeless and Tipin, whereas Ad12 E4orf6 cannot. The 

resultant effect of Ad12 E4orf3 and E4orf6 expression is to inhibit the ATR-dependent 

activation of Chk1, as TopBP1, Timeless and Tipin are all essential for Chk1 

phosphorylation and activation in response to DNA damage (Unsal-Kacmaz et al. 2005; 

Unsal-Kacmaz et al. 2007; Kemp et al. 2010).  

Ad12 E4orf3 utilizes CRL2 to degrade to TopBP1, Timeless and Tipin. It would be 

interesting to confirm if, like Ad12 E4orf6, Ad12 Eorf3 does indeed interact directly 

with CRL2 using co-immunoprecipitation assays. Interestingly, Ad12 E4orf3, like 

Ad12 E4orf6 contains a BC-box motif, as well as a Cul2-box motif, though whether 

these are functional remains to be determined. It would be interesting to mutate these 

motifs and establish if they are required to degrade TopBP1, Timeless and Tipin.  

In chapter 4 we showed that the Ad12 E4orf3-mediated degradation of these three 

proteins occurs independently of Ad12 E1B-55K and Ad12 E4orf6. Our laboratory has 

shown that both Ad12 and Ad5 E4orf3 are able to degrade TIF1γ, which also occurs 

independently of other viral proteins, however there are a few differences between this 

study and the study presented in chapter 4 (Forrester et al. 2012). Firstly, the ubiquitin 

ligase required for the degradation of TIF1γ is unknown, whereas we have shown here 

that CRL2 is required for TopBP1, Timeless and Tipin degradation. Secondly, TIF1γ is 

reorganized into nuclear tracks by E4orf3 prior to degradation, but this is not the case 

for TopPB1, Timeless or Tipin. Finally, degradation of TIF1γ occurs in both Ad5- and 

Ad12- infected cells, whereas degradation of the three proteins described in this study 

appears to be specific to Ad12. It would be interesting to determine if Ad12 E4orf3 is 
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able to bind directly to TopBP1, Timeless and Tipin, as well as confirming if the 

degradation of these proteins is conserved between group A adenoviruses.  

Most of the work to date that has contributed to our understanding of the functions of 

the E4orf3 protein has come from studying the Ad5 serotype. The data presented in 

chapter 4 further highlights the differences between functions of the E4orf3 protein 

from the two different serotypes Ad5 and Ad12. Ad5 and Ad12 E4orf3 proteins are 

only 45% identical and share 69% similarity at the amino acid level, therefore it would 

be beneficial to study the Ad12 E4orf3 protein in more depth as it may reveal novel 

functions of this protein, and give further insight into Ad E4orf3 function per se. 

Firstly, we would need to produce and characterize monoclonal and polyclonal 

antibodies raised against the Ad12 E4orf3 protein. Using these antibodies we could 

then identify possible novel Ad12 E4orf3-interacting proteins by Mass spectrometry 

and investigate their roles in Ad infection, and in the DDR pathway. 

It would also be of interest to determine, more generally, the role of Ad12 E4orf3 and 

Ad12 E4orf6 in promoting proteasome-mediated degradation, to see if there are other 

substrates targeted by these proteins. To do this we could generate adenovirus vectors 

expressing either Ad12 E4orf3 or Ad12 E4orf6, and assess, by Stable Isotope Labelling 

by Amino acids in Cell Culture (SILAC) the proteome levels, of cellular proteins using 

mass spectrometry, before and after expression of these proteins. This would help 

identify novel proteins that are targeted for degradation by these proteins, and which 

might function in DDR pathways. 
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6.3. A ROLE FOR WDR62 IN THE DNA DAMAGE RESPONSE  

Viral oncoproteins have been shown to interact with a number of cellular proteins, most 

commonly tumour suppressors and crucial cell cycle regulators. Indeed, the p53 tumour 

suppressor gene product, p53 was originally identified as a viral oncoprotein-interacting 

protein (Lane and Crawford 1979; Linzer and Levine 1979; Whyte et al. 1988) . E1B-

55K itself interacts with a wide range of proteins which include p53, the MRN 

complex, DNA ligase IV, TIF1γ, BLM and Daxx (Sarnow et al. 1982; Liu et al. 2005; 

Baker et al. 2007; Schreiner et al. 2010; Orazio et al. 2011; Forrester et al. 2012). It is 

therefore of great value to study the biological functions of proteins that have been 

identified as novel cellular interactors of E1B-55K. Our laboratory identified WDR62 

as a potential E1B-55K-interacting protein using an immunoprecipitation/mass 

spectrometry approach. In chapter 5 we confirmed the E1B-55K/WDR62 interaction in 

vivo using Ad5- and Ad12- E1 transformed cells. 

The fate of many E1B-55K interactors, is proteasome-mediated degradation, however 

we observed that WDR62 in not a target for Ad-mediated degradation using Western 

blotting and immunofluorescence. Instead, E1B-55K forms structures that encapsulate 

WDR62 foci in interphase cells. Furthermore, at late times after infection there is an 

increase in the molecular weight of the WDR62 protein which is indicative of a post-

translational modification. Recent evidence has shown for the first time that WDR62 

does indeed undergo a post-translational modification by JNK, such that 

phosphorylated WDR62 is required to maintain metaphase spindle organization during 

mitosis (Bogoyevitch et al. 2012). There is also evidence to suggest that E1B-55K can 

engage with cellular E3 SUMO ligase activity (Muller and Dobner 2008), and it would 

therefore be interesting to investigate if WDR62 is subject to post-translational 
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modification following Ad infection, either by SUMOylation or phosphorylation, and 

determine the consequences of WDR62 modification upon its role in DDR pathways.  

E1B-55K interacts with a number of proteins involved in many cellular processes, 

including the DDR, and it is therefore easy to postulate that novel interactors may 

function in one of these pathways. There are also numerous examples of centrosomal 

proteins that have been shown to function in the DDR pathways. One such example is 

MCPH1, which is mutated in primary autosomal microcephaly, and has been 

implicated as a possible tumour suppressor, where it functions in both ATM and ATR 

signalling pathways in response to DNA damage (Rai et al. 2006). Indeed, in chapter 5 

we presented evidence to indicate that WDR62 is required for phosphorylation of ATR 

targets in response to DNA damage, and is also required for efficient G2/M damage 

checkpoint activation. Further work revealed that cells depleted of WDR62 also 

displayed increased sensitivity to genotoxic stress. Using Mass spectrometry, we 

attempted to identify novel WDR62-interacting proteins; using this approach we 

putatively identified amongst others, ATR, RPA70, BRCA1, DNAPK and cyclin D1 as 

WDR62-interacting proteins. Other studies have shown that MCPH1 co-localizes with 

ATR and RPA in response to UV-induced DDR, and is essential for the ATR-mediated 

phosphorylation of RPA (Rai et al. 2006). Furthermore, MCPH1 has been shown to act 

as a transcriptional regulator of BRCA1 and Chk1, and is thus required for the 

regulation of the intra-S and G2/M DNA damage checkpoints (Xu et al. 2004; Alderton 

et al. 2006). It would therefore be interesting to investigate further whether WDR62 

interacts with MCPH1 and also functions in these processes. For this it would be 

extremely beneficial to create a new panel of anti-WDR62 antibodies as the current, 

commercially available antibody, although it appears to immunoprecipitate WDR62, 

does not co-precipitate many other proteins. By creating a GST-WDR62 construct we 
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could generate anti-WDR62 mouse monoclonal and rabbit polyclonal antibodies. We 

could then use these antibodies for immunoprecipitation and binding assays to re-

evaluate the WDR62 interactome and define the role of these proteins in the DDR and 

cell cycle checkpoints. It would also be intriguing to see if we could reverse the 

phenotype that is observed when cells are depleted of WDR62 and subjected to 

genotoxic stress agents by making a wt WDR62-siRNA resistant construct, and then 

transfecting it into cells depleted of WDR62. Furthermore, it would also be interesting 

to examine whether WDR62 functions to promote Ad replication by determining the 

effects of WDR62 knockdown on all aspects of Ad replication, as described above. In 

conclusion, the studies presented in this thesis further highlight the importance of 

studying adenoviruses in the 21
st
 century, and that investigation into adenovirus 

oncoprotein function still has much to offer in terms of understanding the molecular 

basis of fundamental cellular processes.   
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