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Abstract

Reservoir computing (RC) refers to a new class of state-space models with a fixed state

transition structure (the “reservoir”) and an adaptable readout from the state space.

The reservoir is supposed to be sufficiently complex so as to capture a large number of

features of the input stream that can be exploited by the reservoir-to-output readout

mapping. The field of RC has been growing rapidly with many successful applications.

However, RC has been criticised for not being principled enough. Reservoir construction

is largely driven by a series of randomised model building stages, with both researchers

and practitioners having to rely on a series of trials and errors. Echo State Networks

(ESNs), Liquid State Machines (LSMs) and the back-propagation decorrelation neural

network (BPDC) are examples of popular RC methods. In this thesis we concentrate on

Echo State Networks, one of the simplest, yet effective forms of reservoir computing.

Echo State Network (ESN) is a recurrent neural network with a non-trainable sparse

recurrent part (reservoir) and an adaptable (usually linear) readout from the reservoir.

Typically, the reservoir connection weights, as well as the input weights are randomly

generated. ESN has been successfully applied in time-series prediction tasks, speech

recognition, noise modelling, dynamic pattern classification, reinforcement learning, and

in language modelling, and according to the authors, they performed exceptionally well.

In this thesis, we propose simplified topologies of the original ESN architecture and

we experimentally show that a Simple Cycle Reservoir (SCR) achieved comparable per-

formances to ‘standard’ ESN on a variety of data sets of different origin and memory
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structure, hence, most tasks modelled by ESNs can be handled with very simple model

structures. We also proved that the memory capacity of linear SCR can be made arbi-

trarily close to the proven optimal value (for any recurrent neural network of the ESN

form).

Furthermore, we propose to extend the simple cycle reservoir (SCR) with a regular

structure of shortcuts (Jumps) - Cycle Reservoir with Jumps (CRJ). In the spirit of SCR

we keep the reservoir construction simple and deterministic. We show that such a simple

architecture can significantly outperform both the SCR and standard randomised ESN.

Prompted by these results, we investigate some well known reservoir characterisations,

such as eigenvalue distribution of the reservoir matrix, pseudo-Lyapunov exponent of

the input-driven reservoir dynamics, or memory capacity and their relation to the ESN

performance.

Moreover, we also design and utilise an ensemble of ESNs with diverse reservoirs

whose collective readout is obtained through Negative Correlation Learning (NCL) of

ensemble of Multi-Layer Perceptrons (MLP), where each individual MPL realises the

readout from a single ESN. Experimental results on three data sets confirm that, compared

with both single ESN and flat ensembles of ESNs, NCL based ESN ensembles achieve

better generalisation performance.

In the final part of the thesis, we investigate the relation between two quantitative

measures suggested in the literature to characterise short term memory in input driven

dynamical systems, namely the short term memory capacity spectrum and the Fisher

memory curve.

iii



Acknowledgements

I would like to thank my supervisor Dr Peter Tino, for introducing me to this area of

research “Reservoir Computing”, and for valuable advice and support during my PhD

study.

I would also like to thank my thesis group members, Dr Richard Dearden and Dr Iain

Styles for sharing their knowledge in the area of Machine Learning and Neural Networks.

Special acknowledgement is given to the examiners of the thesis, Prof. Colin Fyfe

and Dr. John Bullinaria, for agreeing to be the examiners of my PhD Viva.

I also thank all the staff in the Department of Computer Science at The University of

Birmingham. A great deal of thanks goes to my colleagues: Zaid Al-Zobaidi, Mohammed

Wasouf, Saeed Alghamdi, Adnan Alrashid, and Hasan Qunoo. They made the daily grind

of being a research student so much fun.

I also wish to express my gratitude to all of the people mentioned and not mentioned

above for reading through numerous drafts of this thesis. They will be missed and I wish

them all a very happy and successful life and career.

Finaly and most important, I am deeply grateful to my parents, my sister, and my

brothers Ahmad, Omar, and Mohammed - for sharing, motivating and inspiring me in

good and bad moments.

iv



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Publications from the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Research Context 8

2.1 Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Feedforward Neural Network . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Recurrent Neural Network . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Problems of gradient based algorithms . . . . . . . . . . . . . . . . 15

2.2 Echo State Network (ESN) . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Offline (Batch) Training . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Online Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Short Term Memory Capacity of ESN . . . . . . . . . . . . . . . . . 19

2.3 Lyapunov Exponent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Negative Correlation Learning (NCL) . . . . . . . . . . . . . . . . . . . . . 21

2.5 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

v



2.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Minimum Complexity Echo State Network 28

3.1 Simple Echo state network reservoirs . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Reservoir Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.2 Input Weight Structure . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.4 Further Simplifications of Input Weight Structure . . . . . . . . . . 44

3.2.5 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Short-term Memory Capacity of SCR Architecture . . . . . . . . . . . . . . 48

3.3.1 Notation and auxiliary results . . . . . . . . . . . . . . . . . . . . . 50

3.3.2 Proof of theorem 3.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.3 Empirical Memory Capacity . . . . . . . . . . . . . . . . . . . . . . 56

3.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Cycle Reservoir with Regular Jumps 60

4.1 Cycle Reservoir with Jumps . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.2 Experimental tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.2.1 System Identification . . . . . . . . . . . . . . . . . . . . . 65

vi



4.2.2.2 Time Series Prediction . . . . . . . . . . . . . . . . . . . . 66

4.2.2.3 Speech Recognition . . . . . . . . . . . . . . . . . . . . . . 67

4.2.2.4 Memory and Non-linear mapping task . . . . . . . . . . . 70

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Reservoir Characterisations . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.1 EigenSpectra of Dynamic Reservoirs . . . . . . . . . . . . . . . . . 77

4.4.2 Memory Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.2.1 Direct Memory Capacity Estimation for Linear Reservoirs 80

4.4.2.2 The Effect of Shortcuts in CRJ on Memory Capacity . . . 84

4.4.3 Lyapunov Exponent . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Negatively Correlated Echo State Networks 91

5.1 Ensembles of ESNs using NCL . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Short Term Memory Quantifications in Input-Driven Linear Dynamical

Systems 98

6.1 Fisher Memory Curve (FMC) . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Relation between short term memory capacity and Fisher memory curve . 100

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

vii



6.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7 Conclusions and Future Work 106

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2.1 Reservoir characterisations . . . . . . . . . . . . . . . . . . . . . . . 111

7.2.2 Input weight and reservoir structures . . . . . . . . . . . . . . . . . 112

7.2.3 Negative Correlation Learning through time . . . . . . . . . . . . . 113

7.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A Experimental Setup and Detailed Results 114

B Selected model representatives 119

Bibliography 128

viii



List of Figures

2.1 An example of the topology of the Multi-layer Perceptron- MLP . . . . . . 10

2.2 An example of Recurrent Neural Network- RNN . . . . . . . . . . . . . . . 12

2.3 An example of a simple RNN (left) and the unfolded feedforward version

of the same network (right). . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Echo state network (ESN) Architecture . . . . . . . . . . . . . . . . . . . . 16

3.1 (A) Delay Line Reservoir (DLR). (B) Delay Line Reservoir with feedback

connections (DLRB). (C) Simple Cycle Reservoir (SCR). . . . . . . . . . . 30

3.2 A fragment of the laser dataset. . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 A sample of the input s(t) and output d(t) signals of the non-linear com-

munication channel dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Test set performance of ESN, SCR, DLR, and DLRB topologies with tanh
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Hénon Map dataset for internal nodes with tanh transfer function f . . . . 117

A.11 Test set performance of ESN, SCR, DLR, and DLRB topologies on the

Non-linear Communication Channel dataset for internal nodes with tanh

transfer function f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.12 Test set performance of ESN, SCR, DLR, and DLRB topologies on the

Isolated Digits dataset for internal nodes with tanh transfer function f . . 117

A.13 Test set performance of SCR topology on the 20th order NARMA dataset

using three different ways of generating pseudo-randomised input sign pat-

terns: initial digits of π and Exp; symbolic dynamics of logistic map. . . . 118

A.14 Test set performance of SCR topology on the laser dataset using three

different ways of generating pseudo-randomised input sign patterns: initial

digits of π and Exp; symbolic dynamics of logistic map. . . . . . . . . . . . 118

A.15 Test set performance of SCR topology on the Hénon Map dataset using
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Chapter 1

Introduction

A large number of models designed for time series processing, forecasting or modelling

follow a state-space formulation. At each time step t, all ‘relevant’ information in the

driving stream processed by the model up to time t is represented in the form of a state

(at time t). The model output depends on the past values of the driving series and is

implemented as a function of the state - the so-called read-out function. The state space

can take many different forms, e.g. a finite set, a countably infinite set, an interval etc. A

crucial aspect of state-space model formulations is an imposition that the state at time t+1

can be determined in a recursive manner from the state at time t and the current element

in the driving series (state transition function). Depending on the application domain,

numerous variations on the state space structure, as well as the state-transition/readout

function formulations have been proposed.

One direction of research into a data-driven state space model construction imposes a

state space structure (e.g. an N -dimensional interval) and a semi-parametric formulation

of both the state-transition and readout functions. The parameter fitting is then driven

by a cost functional E measuring the appropriateness of alternative parameter settings for

the given task. Recurrent neural networks (RNNs) are examples of this type of approach

(Atiya and Parlos, 2000). If E is differentiable, one can employ the gradient of E in
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the parameter fitting process. However, there is a well known problem associated with

parameter fitting in the state-transition function (Bengio et al., 1994): briefly, in order

to ‘latch’ an important piece of past information for the future use, the state-transition

dynamics should have an attractive set. In the neighbourhood of such a set the derivatives

vanish and hence cannot be propagated through time in order to reliably bifurcate into a

useful latching set.

A class of approaches referred to as reservoir computing (RC) try to avoid this prob-

lem by fixing the state-transition function - only the readout is fitted to the data (Luko-

sevicius and Jaeger, 2009; Schrauwen et al., 2007b). The state space with the associated

state transition structure is called the reservoir. The reservoir is supposed to be suffi-

ciently complex so as to capture a large number of features of the input stream that can

potentially be exploited by the readout. Echo State Networks (ESNs) (Jaeger, 2001), Liq-

uid State Machines (LSMs) (Maass et al., 2002) and the back-propagation decorrelation

neural network (BPDC) (Steil, 2004) are examples of popular RC models.

These models differ in how the fixed reservoir is constructed and what form the readout

takes. For example, echo state networks (ESN) (Jaeger, 2001) typically have a linear read-

out and a reservoir formed by a fixed recurrent neural network type dynamics. Liquid state

machines (LSM) (Maass et al., 2002) also mostly have a linear readout (some cases have

Multilayer Feedforward Neural Network (FFNN) readout of spiking or sigmoid neurons)

and the reservoirs are driven by the dynamics of a set of coupled spiking integrate-and-fire

neuron models. Back-propagation decorrelation neural network (BPDC) (Steil, 2004) is

an online RNN learning algorithm uses the idea of Atiya and Parlos efficient version of

gradient descent RNN learning algorithm (Atiya and Parlos, 2000) by adapting only the

output weights, the input and hidden (reservoir) weights are remain constant. Fractal

prediction machines (FPM) (Tino and Dorffner, 2001) have been suggested for processing

symbolic sequences. Their reservoir dynamics is driven by fixed affine state transitions

over an N -dimensional interval. The readout is constructed as a collection of multinomial

distributions over next symbols. Many other forms of reservoirs can be found in the liter-
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ature (e.g. (Jones et al., 2007; Deng and Zhang, 2007; Dockendorf et al., 2009; Bush and

Anderson, 2005; Ishii et al., 2004; Schmidhuber et al., 2007; Ajdari Rad et al., 2008)).

However, exactly what aspects of reservoirs are responsible for their often reported su-

perior modelling capabilities (Jaeger, 2001, 2002a,b; Jaeger and Hass, 2004; Mass et al.,

2004; Tong et al., 2007) is still unclear. In this thesis we concentrate on Echo State Net-

works, one of the simplest, yet effective forms of reservoir computing.

Roughly speaking, Echo State Network (ESN) (Jaeger, 2001, 2002a,b; Jaeger and Hass,

2004) is a recurrent neural network with a non-trainable sparse recurrent part (reservoir)

and a simple linear readout. Connection weights in the ESN reservoir, as well as the input

weights are randomly generated from a uniform distribution.

1.1 Motivation

Echo State Network (ESN) has been successfully applied in time-series prediction tasks

(Jaeger and Hass, 2004), speech recognition (Skowronski and Harris, 2006), noise mod-

elling (Jaeger and Hass, 2004), dynamic pattern classification (Jaeger, 2002b), reinforce-

ment learning (Bush and Anderson, 2005), and in language modelling (Tong et al., 2007).

A variety of extensions/modifications of the classical ESN can be found in the lit-

erature, e.g. intrinsic plasticity (Schrauwen et al., 2008b; Steil, 2007), refined training

algorithms (Jaeger and Hass, 2004), training with Neuroscale (Wang and Fyfe, 2011),

leaky-integrator reservoir units (Jaeger et al., 2007a), support vector machine (Schmid-

huber et al., 2007), setting the reservoir weights using Self-Organizing Maps (SOM) and

Scale-Invariant Maps (SIM) (Basterrech et al., 2011), filter neurons with delay&sum read-

out (Holzmann and Hauser, 2009), pruning connections within the reservoir (Dutoit et al.,

2009) etc. There have also been attempts to impose specialised interconnection topologies

on the reservoir, e.g. hierarchical reservoirs (Jaeger, 2007), small-world reservoirs (Deng

and Zhang, 2007) and decoupled sub-reservoirs (Xue et al., 2007).
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However, there are still serious problems preventing ESN to become a widely accepted

tool:

1. There are properties of the reservoir that are poorly understood (Xue et al., 2007),

2. specification of the reservoir and input connections require numerous trials and even

luck (Xue et al., 2007),

3. strategies to select different reservoirs for different applications have not been de-

vised (Ozturk et al., 2007),

4. imposing a constraint on spectral radius of the reservoir matrix is a weak tool to

properly set the reservoir parameters (Ozturk et al., 2007),

5. the random connectivity and weight structure of the reservoir is unlikely to be

optimal and does not give a clear insight into the reservoir dynamics organisation

(Ozturk et al., 2007).

Indeed, it is not surprising that part of the scientific community is sceptical about ESNs

being used for practical applications (Prokhorov, 2005).

The above problems have been the main motivation of this research.

1.2 Contributions

Typical model construction decisions that an ESN user must make include: setting the

reservoir size; setting the sparsity of the reservoir and input connections; setting the ranges

for random input and reservoir weights; and setting the reservoir matrix scaling parameter

α. The dynamical part of the ESN responsible for input stream coding is treated as a black

box which is unsatisfactory from both theoretical and empirical standpoints. First, it is

difficult to put a finger on what it actually is in the reservoir’s dynamical organisation
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that makes ESN so successful. Second, the user is required to tune parameters whose

function is not well understood.

Simple reservoir topologies have been proposed as an alternative to the randomised

ESN reservoir - e.g. ‘feedforward’ reservoirs with tape delay connections (Cernansky

and Makula, 2005), reservoir with diagonal weight matrix (self-loops) (Fette and Eggert,

2005).

According to the above discussion and current issues, this thesis provides the following

contributions:

• It investigates systematically the reservoir construction of Echo State Network

(ESN). This thesis proposes two very simple deterministic ESN organisation (Sim-

ple Cycle reservoir (SCR) in Chapter 3 and Cycle Reservoir with Jumps (CRJ)

in Chapter 4). Simple Cycle reservoir (SCR) is sufficient to obtain performances

comparable to those of the classical ESN as shown in Section 3.2. While Cycle

Reservoir with Jumps (CRJ) significantly outperform the those of the classical ESN

as illustrated in Section 4.2.

• It studies and discusses three reservoir characterisations - short-term memory ca-

pacity (MC) ( Chapter 3 and 4), eigen-spectrum of the reservoir weight matrix

(Chapter 4), and Lyapunov Exponent (Chapter 4) with their relation to the ESN

performance.

• It designs and utilises an ensemble of ESNs with diverse reservoirs whose collective

readout is obtained through Negative Correlation Learning (NCL) of ensemble of

Multi-Layer Perceptrons (MLP), where each individual MPL realises the readout

from a single ESN (chapter 5).

• It investigates the relation between two quantitative measures characterising short

term memory in input driven dynamical systems, namely the short term memory

capacity (MC), and the Fisher memory curve (FMC) (chapter 6).
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1.3 Thesis Organisation

The remainder of this thesis is organised as follows:

• Chapter 2 gives a broad description of the research context and explains the research

questions answered by the thesis.

• Chapter 3 presents a simple deterministically cyclic reservoir that shown perfor-

mance competitive with standard Echo State Network (ESN).

• Chapter 4 introduces a novel simple deterministic reservoir model, Cycle Reser-

voir with Jumps (CRJ), with highly constrained weight values, that has superior

performance to standard ESN.

• Chapter 5 applies Negative Correlation learning (NCL) to an Ensemble of ESN.

• Chapter 6 investigates the relation between two quantitative measures characterising

short term memory in input driven dynamical systems.

• The Conclusions and Future work are drawn in Chapter 7.

1.4 Publications from the Thesis

Some of the material presented in this thesis were published in the following papers:

Journal publications:

1. Rodan, A. and Tino, P. (2011). Minimum Complexity Echo State Network,

IEEE Transactions on Neural Networks (TNN), 22(1): 131–144. (c) IEEE.
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2. Rodan, A. and Tino, P.(2012). Simple Deterministically Constructed Cycle

Reservoirs with Regular Jumps. Neural Computation, 24(7): 1822–1852. (c) MIT

Press.

Refereed conference publications:

1. Rodan, A. and Tino, P. (2010). Simple Deterministically Constructed Recur-

rent Neural Networks, In Intelligent Data Engineering and Automated Learning

(IDEAL 2010), Lecture Notes in Computer Science, LNCS 6283, Springer-Verlag,

pp. 267–274.

2. Rodan, A. and Tino, P. (2011). Negatively Correlated Echo State Networks, In

19th European Symposium on Artificial Neural Networks (ESANN 2011), Bruges,

Belgium.

3. Tino, P. and Rodan, A. (2012). Short Term Memory Quantifications in Input-

Driven Linear Dynamical Systems, In 20th European Symposium on Artificial Neu-

ral Networks (ESANN 2012), Bruges, Belgium.
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Chapter 2

Research Context

This chapter presents in Section 2.1 an overview of Artificial Neural Network covering

the most popular learning algorithms. Section 2.2 introduces the Echo Sate Network

(ESN), a special type of Recurrent Neural Network (RNN), and one of the simplest, yet

effective Reservoir Computing methods. Section 2.3 describes Lyapunov Exponent (LE),

one of the characterisation used in the literature to quantify the dynamic properties for

a reservoir. Section 2.4 gives an overview of Negative Correlation Learning (NCL), an

ensemble learning approach used for Neural Networks. Section 2.5 explains the research

questions answered by this work and the motivation behind each of them. Finally, this

chapter is summarised in section 2.6.

2.1 Artificial Neural Network

The human brain has the ability to perform multi-tasking. These tasks include controlling

the human body temperature, controlling blood pressure, heart rate, breathing, and other

tasks that enable human beings to see, hear, and smell and so on. The brain can perform

these tasks at a rate that is far less than the rate at which the conventional computer can

perform the same tasks (Haykin, 1999). The cerebral cortex of the human brain contains
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over 20 billion neurons with each neuron linked with up to 10,000 synaptic connections

(Haykin, 1999). These neurons are responsible for transmitting nerve signals to and

from the brain. Very little is known about how the brain actually works but there are

computer models that try to simulate the same task that the brain carries out. These

computer models are called Artificial Neural Networks, and the method by which the

Neural Network is trained is called a Learning Algorithm, which has the duty of training

the network and modifying weights in order to obtain a desired response.

The neuron (node) of a neural network is made up of three components:

1. synapse (connection link) which is characterised by its own weight,

2. An adder for summing the input signal, which is weighted by the synapse of the

neuron, and

3. An activation function to compute the output of this neuron.

The main Neural Network architectures are Feedforward Neural Network (FFNN) and

the Recurrent Neural Network (RNN).

2.1.1 Feedforward Neural Network

The most common and well-known Feedforward Neural Network (FFNN) model is called

Multi-Layer Perceptron (MLP). Let a MLP with K input units, N internal (hidden) units,

and L output units, where s = (s1, s2..., sK)T , x = (x1, x2..., xN)T , and y = (y1, y2..., yL)T ,

be the inputs of the input nodes, the outputs of the hidden nodes, and outputs of the

output nodes respectively. bj and bl are the biases in the input and output layers. A three

layer MLP are shown in Figure 2.1.
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V 

x 

 Input unit
     s output unit

       y 

    N hidden units

W 

 bj

 bl

Figure 2.1: An example of the topology of the Multi-layer Perceptron- MLP

In the forward pass the activations are propagated from the input layer to the output

layer. The activations of the hidden nodes are the weighted inputs from all the input

nodes plus the bias bj . The activation of the jth hidden node is denoted as netj , and

computed according to:

netj =
K
∑

i=1

Vjisi + bj , (2.1)

In the hidden layer, the corresponding output of the jth node (e.g. xj) is usually calculated

based on a sigmoid function as follows:

xj =
1

(1 + e−netj )
, (2.2)

The outputs of the hidden layer (x1, x2..., xN ) are used as inputs to the output layer.

The activation of the output nodes (y1, y2..., yL) is also defined as the weighted inputs

from all the hidden nodes plus the bias bl, where Wlj is the connection weight from the
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jth hidden node xj to the lth (linear) output node:

yl =
N
∑

j=1

Wljxj + bl, (2.3)

The backward pass starts by propagating back the error between the current output yl

and the teacher output ŷl in order to modify the network weights and the bias values. The

MLP network is attempted to minimise the Error (E) via the the classical Backpropagation

(BP) training algorithm (Rumelhart et al., 1986), where for each epoch the Error (E) is

computed as:

E =
P
∑

e=1

L
∑

l=1

|ye
l − ŷe

l |2, (2.4)

where P is the number of patterns.

In MLP all the network weights and bias values are assigned random values initially,

and the goal of the training is to find the set of network weights that cause the output of

the network to match the teacher values as closely as possible.

MLP has been successfully applied in a number of applications, including regression

problems (Brown et al., 2005.), classification problems (Mckay and Abbass, 2001), or

time series prediction using simple auto-regressive models (Liu and Yao, 1999), where the

output depends only on the current input (static). However, there are many tasks that

need memory (activities on the context neurons) and their current input depends on the

previous inputs to the network (dynamics), not only on the current input, so it is difficult

to perform these tasks using MLP.

2.1.2 Recurrent Neural Network

Recurrent Neural Network (RNN) (also called Feed-Back Neural Network), is a natural

extension of FFNN that contains at least one feedback connection (recurrent or cycle
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connection), where an output can be put back into the network to serve as an additional

input, which keeps the past information in the unit activation.

Discrete-time Recurrent Neural network (Figure 2.2) is a dynamic neural network with K

input units, N internal (hidden) units, and L output units acting in discrete-time steps.

Note that there is another type of RNN that works continuously in terms of time steps.

The activation of the input, internal, and output units at time step t are denoted by:

s(n) = (s1(t), ..., sK(t))T , x(t) = (x1(t), ..., xN(t))T , and y(t) = (y1(t), ..., yL(t))T respec-

tively. The connections between the input units and the internal units are given by an

N×K weight matrix V , connections between the internal units are collected in an N×N

weight matrix W , and connections from internal units to output units are given in L×N

weight matrix U .

    N internal units

W 

x(t) 

U V 

K Input unit
     s(t) 

L output unit
       y(t) 

Figure 2.2: An example of Recurrent Neural Network- RNN

For Discrete-time RNN the hidden units are updated according to:

x(t + 1) = f(s(t + 1), x(t)), (2.5)
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where f is the activation function (typically nonlinear, tanh or some other sigmoidal

function); Note that sometimes the output y(t) is also feedback into the hidden layer, in

that case we would have:

x(t + 1) = f(s(t + 1), x(t), y(t)), (2.6)

The output is computed as:

y(t) = g(x(t)), (2.7)

where g is the nonlinear output function (typically also tanh or some other sigmoidal

function).

Compared with FFNN, RNNs offer more expressive power to approximate nonlinear

dynamical systems including regression, classification, learning of context free language,

and speech recognition. In RNN all connection weights V , W , and U are adapted using

the following popular methods:

• Backpropagation Through Time (BPTT): is an adaptation of the well known

Backpropagation learning method (Rumelhart et al., 1986) known from training

FeedForward Neural Networks (FFNN), which is the most commonly method used

for training Neural Networks. The main idea of BPTT which was proposed first by

Werbos (1990), is to ’unfold’ the RNN in time, by creating a multilayer feedforward

neural network (FFNN) for each time a sequence is processed. Figure 2.3 shows

an example of a simple RNN (figure 2.3 left) with its unfolded feedforward version

(figure 2.3 right). The training data consists of a number of input-output pairs which

is divided into epochs, each epoch has its start time tstart and its end time tend. The

forward pass of training one epoch consists of updating the multilayer (“unfolded”)

feedforward network from the first layer x(tstart) to the last layer x(tend). Assume

that the error of the current output, the teacher output and the current output
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at time t are denoted by: E(t), y(t) and ŷ(t) respectively, then the error to be

minimised is:

E(tstart, tend) =
∑

t=tstart,...,tend

‖ŷ(t)− y(t)‖2. (2.8)

Furthermore, a single backward pass through t = tend, ..., tstart is performed to com-

pute the values of the local error gradients which is derived the same way as in

standard Backpropagation learning, except that the errors are added in each layer.

Finally, the corresponding weights across the layers are updated using the gradient

of the error.

x1(2)

x1(3)

x1(4)

x1(T)

x2(1)

x2(2)

x2(3)

x2(4)

x2(T)

x1(t) x2(t)

W21

W11 W22

W12

W11

W11

W11

W22

W22

W22
W21

W21

W21

W12

W12

W12

x1(1)

Figure 2.3: An example of a simple RNN (left) and the unfolded feedforward version of

the same network (right).

• Real-time Recurrent Learning (RTRL): is an online gradient-descent method

described by Williams and Zipser (1989). It computes the exact gradient error at

time step t, then it uses this result to compute the forward or the future derivatives at

time t+1 in a recursive way. Instead of creating a duplicate multi-layer feedforward

neural network (FFNN) as in BPTT. RTRL uses a fixed number of parameters to
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record training information of the past time, so all the network weights V , W , U

are adapted as the new training patterns are introduced.

• Extended Kalman Filter (EKF): is a state estimation technique for nonlinear

dynamics and nonlinear measurement equations, derived by linearising the well-

known Kalman filter (KF) around the current state estimation. Training neural

network by Kalman Filter was first proposed by Singhal and Wu (1989). It was

found that EKF-based weight trajectory smoothing training methods gives the best

results and outperform the common gradient based algorithms.

2.1.3 Problems of gradient based algorithms

There are still several limitations for using BPTT, like slow convergence, difficulty with

local optima, and high computational cost of O(TN2) for each epoch, which make it not

suitable for real-time computations with recurrent neural networks. On the other hand,

RTRL also suffers from high computational cost of O(N4) for each update step for the

network weights, so this algorithm is only useful for online training when small network

size is sufficient to solve a given problem. It has been also demonstrated very early that

gradient based algorithms face the problem of learning dependencies which require long-

range memory (Bengio et al., 1994). To (at least partially) overcome this problem long

short-term memory (LSTM) networks is proposed in (Gers et al., 1999).

An alternative new paradigm referred to as reservoir computing (RC) avoids the problems

of gradient based algorithms like slow and difficult progress by designing and training

RNN without modifying the transient dynamics of the recurrent network. Echo State

Networks (ESNs) (Jaeger, 2001), Liquid State Machines (LSMs) (Maass et al., 2002) and

the back-propagation decorrelation neural network (BPDC) (Steil, 2004) are the most

popular examples of this new paradigm.

In this work we concentrate on Echo State Networks, one of the simplest, yet effective
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form of reservoir computing.

2.2 Echo State Network (ESN)

An echo state network is a recurrent discrete-time neural network with K input units,

N internal (reservoir) units, and L output units. The activation of the input, inter-

nal, and output units at time step t are denoted by: s(t) = (s1(t), ..., sK(t))T , x(t) =

(x1(t), ..., xN (t))T , and y(t) = (y1(t), ..., yL(t))T respectively. The connections between

the input units and the internal units are given by an N × K weight matrix V , con-

nections between the internal units are collected in an N × N weight matrix W , and

connections from internal units to output units are given in L×N weight matrix U .

K Input  un i ts
     s( t )  

 Dynamica l  Reservo i r
     N in ternal  un i ts
            x( t )

L  output  un i ts
       y( t )  

V U 
W  

Figure 2.4: Echo state network (ESN) Architecture

The internal units are updated according to:

x(t + 1) = f(V s(t + 1) + Wx(t) + z(t + 1)), (2.9)
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where f is the reservoir activation function (typically tanh or some other sigmoidal func-

tion); z(t+1) is an optional uniform i.i.d. noise. In this ESN model, there are no feedback

connections from the output to the reservoir and no direct connections from the input to

the output.

The linear readout is computed as:

y(t + 1) = Ux(t + 1). (2.10)

The reservoir activation vector x is extended with a fixed element accounting for the

bias term. Elements of W and V are fixed prior to training with random values drawn

from a uniform distribution over a (typically) symmetric interval, where only the output

connection weights U are adapted using any linear regression method.

In order for ESN to “work”, the reservoir with weights W should have the “Echo State

Property” (ESP). ESP says that the reservoir state is an “echo” of the entire input history

and the reservoir will wash out any information from initial conditions. To account

for ESP, the eigenvalues of W should lie inside the unit circle by scaling the reservoir

connection weights W as W ← αW/|λmax|, where |λmax| is the spectral radius, which is

the largest among the absolute values of the eigenvalues of W and 0 < α < 1 is a scaling

parameter.

ESN memoryless readout can be trained both offline (Batch) and online by minimising

a given loss function. In most cases we evaluate the model performance via Normalised

Mean Square Error (NMSE):

NMSE =
〈‖ŷ(t)− y(t)‖2〉
〈‖y(t)− 〈y(t)〉‖2〉 , (2.11)

where ŷ(t) is the readout output, y(t) is the desired output (target), ‖.‖ denotes the

Euclidean norm and 〈·〉 denotes the empirical mean.
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2.2.1 Offline (Batch) Training

In the offline (batch) training mode one first runs the network on the training set, and

subsequently computes the output weights that minimise the NMSE. In summary, the

following steps are performed:

1. Initialise W with a scaling parameter α < 1 and run the ESN on the training set.

2. Dismiss data from initial washout period and collect the remaining network states

x(t) row-wise into a matrix x, where in case of direct input-output connections, the

matrix x collects inputs s(t) as well.

3. The target values from the training set are collected in a vector y.

4. The output unit weights are computed using one of the following four methods:

• Singular value Decomposition (SVD): SVD of an M × N matrix x is of the form

x = P.S.QT , where T denotes transpose operation, P and Q are M ×M and N ×N

orthonormal matrices respectively, and S is an M ×N diagonal matrix containing

singular values δ11 ≥ δ22 ≥ ... ≥ δNN ≥ 0. Output weights U are found by solving

x.U = y.

• Pseudoinverse Solution: The output weights U are computed by multiplying the

pseudoinverse of x with y and transposing the result, that is, U = (x†.y)T .

• Wiener-Hopf Solution: The output weights U are computed by U = M−1.D where

M = xT .x is the correlation matrix of the reservoir states and D = xT .y is the

cross-correlation matrix of the states vs. the target (desired) outputs.

• Ridge Regression: The Output weights U are computed as

U = (xT x + λ2I)−1 xT y, (2.12)
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where I is the identity matrix and λ > 0 is a regularisation factor determined on a

hold-out validation set .

SVD, Pseudoinverse and Wiener-Hopf methods are, in principle, similar and equivalent

to each other, if x is full rank (number of reservoir units). If this is not the case, i.e. the

matrix M of the Wiener-Hopf solution is ill-conditioned, the Pseudoinverse and SVD is

numerically stable, while Wiener-Hopf solution is not.

2.2.2 Online Training

Standard recursive algorithms, such as Recursive Least Squares (RLS), for NMSE min-

imisation can be used in online readout training. In RLS, after the initial washout period

the output weights U are recursively updated at every time step t:

k(t) =
φ(t− 1) x(t)

xT (t) φ(t− 1) x(t) + γ
(2.13)

φ(t) = γ−1(φ(t− 1)− k(t) xT (t) φ(t− 1)) (2.14)

U(t) = U(t− 1) + k(t) [y(t)− ŷ(t)] (2.15)

where k stands for the innovation vector; y and ŷ correspond to the desired and calculated

(readout) output unit activities; φ is the error covariance matrix initialised with large

diagonal values. ‘Forgetting parameter’ 0 < γ < 1 is usually set to a value close to 1.0.

In this work γ is set on a hold-out validation set.

2.2.3 Short Term Memory Capacity of ESN

Jaeger (2002a) quantified the inherent capacity of recurrent network architectures to rep-

resent past events through a measure correlating the past events in an i.i.d. input stream
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with the network output. In particular, assume that the network is driven by a univariate

stationary input signal s(t). For a given delay k, we consider the network with optimal

parameters for the task of outputting s(t− k) after seeing the input stream ...s(t− 1)s(t)

up to time t. The goodness of fit is measured in terms of the squared correlation coeffi-

cient between the desired output (input signal delayed by k time steps) and the observed

network output y(t):

MCk =
Cov2(s(t− k), y(t))

V ar(s(t)) V ar(y(t))
, (2.16)

where Cov denotes the covariance and V ar the variance operators. The short term mem-

ory (STM) capacity is then given by (Jaeger, 2002a):

MC =
∞
∑

k=1

MCk. (2.17)

Jaeger (2002a) proved that for any recurrent neural network with N recurrent neu-

rons, under the assumption of i.i.d. input stream, the STM capacity cannot exceed N ,

where N is the number of reservoir units.

2.3 Lyapunov Exponent

The ‘edge of chaos’ is a regime of a dynamical system so that it operates at the boundary

between the ‘chaos’ and ‘order’. In this regime, the dynamical system can demonstrate

a high computational power (Bertschinger and Natschlager, 2004; Legenstein and Maass,

2005), where the effect of the input on the reservoir states does not die quickly (Legenstein

and Maass, 2005). However, this does not universally imply that such reservoirs are

optimal (Legenstein and Maass, 2007). The ‘edge of chaos’ can be numerically calculated

for biological reservoirs by computing the pseudo-Lyapunov Exponent (LE) (Verstraeten

et al., 2007). LE is one of the characterisation used in the literature to quantify the

dynamic properties for a reservoir and it can be determined by computing the Jacobian
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matrix Jf(x) of the reservoir derivative states x (Verstraeten et al., 2010):

Jf(x) =

( ∂f1

∂x1

(x)... ∂f1

∂xN
(x)

∂fN

∂x1

(x)... ∂fN

∂xN
(x)

)

, (2.18)

where f is the dynamic function (see eq. 2.9), ∂ is the partial derivative, and x =

[x1x2...xN ] is the states for all the reservoir units. Jf (x) can be simplified as (Verstraeten

et al., 2010):

Jf(x) = diag[1− x2
1(t), 1− x2

2(t), 1− x2
N (t)]W, (2.19)

where diag[] presents the diagonal matrix with the diagonal values. From this, the kth

LE λk can be approximated as log(
M
∏

t=1
(rk)

1

t ), where M is the number of time steps, and

rk is the kth eigenvalue spectrum of the Jacobian matrix Jf(x) (Verstraeten et al., 2010).

A note of caution is needed here: The largest exponents thus collected are then used

to produce an estimate of the average exponential divergence rate of nearby trajectories

along the input-driven reservoir trajectory. Even though for input-driven systems this is

only a heuristic measure, where deep results of autonomous systems theory e.g. linking

positive Lyapunov exponents to topological entropy (Pesin Theorem) no longer apply, nor

do apply traditional notions of ‘chaos’ and ‘order’ developed in the context of autonomous

systems, it nevertheless proved useful in suggesting the ‘optimal’ reservoir configuration

across several tasks (Verstraeten et al., 2007).

2.4 Negative Correlation Learning (NCL)

It has been extensively shown that ensemble learning can offer a number of advantages

over a single learning machine (e.g. neural network) training. It has a potential to e.g.

improve generalisation and decrease the dependency on training data (Brown and Yao,

2001). One of the key elements for building ensemble models is the “diversity” among

individual ensemble members. Negative correlation learning (NCL) (Liu and Yao, 1999)
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is an ensemble learning technique that encourages diversity among ensemble members

through their negative correlation, while keeping the training error small. It has been

successfully applied to training Multi Layer Perceptron (MLP) ensembles in a number of

applications, including regression problems (Brown et al., 2005.), classification problems

(Mckay and Abbass, 2001), or time series prediction using simple auto-regressive models

(Liu and Yao, 1999).

In NCL, all the individual networks are trained simultaneously and interactively

through the correlation penalty terms in their error functions. The procedure has the

following form: Given a set of M networks and a training input set s, the ensemble

output F (t) is calculated as a flat average over all ensemble members Fi(t),

F (t) =
1

M

M
∑

i=1

(Fi(t)). (2.20)

In NCL the penalised error functional to be minimised reads:

Ei =
1

2
(Fi(t)− y(t))2 + λpi(t), (2.21)

where

pi(t) = (Fi(t)− F (t))
∑

i6=j

(Fj(t)− F (t)), (2.22)

and λ > 0 is an adjustable strength parameter for the negative correlation enforcing

penalty term pi. It can be shown that

Ei =
1

2
(Fi(t)− y(t))2 − λ(Fi(t)− F (t))2. (2.23)

Note that when λ = 0, we obtain a standard de-coupled training of individual ensem-

ble members. Standard gradient-based approaches, which have been described in section

2.1.2, can be used to minimise E by updating the parameters of each individual ensemble
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member.

2.5 Research Questions

This Section explains the research questions answered by this work and the motivation

behind each of them. More detailed motivations for the way to tackle/solve each ques-

tion/problem are given in each one of the Sections related to the proposed solutions.

• What is the minimal complexity of the reservoir topology and parametri-

sation so that performance levels comparable to those of standard reser-

voir computing models, such as ESN, can be recovered?, and What degree

of randomness (if any) is needed to construct competitive reservoirs?

Echo State Network (ESN) is a recurrent neural network (RNN) with a non-trainable

fixed sparse recurrent layer (reservoir), where the connection weights in the ESN reservoir,

as well as the input weights are randomly generated. So, it is important to investigate the

reservoir construction of Echo State Network (ESN). In particular, Section 3.2 shows that

very simple ESN organisation is sufficient to obtain performances comparable to those of

the classical ESN, where for a variety of tasks it is sufficient to consider:

1. a simple fixed non-random reservoir topology with full connectivity from inputs to

the reservoir

2. a single fixed absolute weight value r for all reservoir connections and

3. a single weight value v for input connections, with (deterministically generated)

aperiodic pattern of input signs.

The results shown in Section 3.2.3 indicate that comparable performances of Simple

Cycle Reservoir (SCR) topology can be obtained without any stochasticity in the input
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weight generation by consistent use of the same sign generating algorithm across a variety

of data sets.

• If simple competitive reservoirs constructed in a completely deterministic

manner exist, how do they compare in terms of memory capacity with

established models such as recurrent neural networks? and, What is the

memory capacity of such simplified reservoirs?

Jaeger (2002a) proved that the inherent capacity ( Short term memory capacity (STM))

for any recurrent neural network with N recurrent neurons, under the assumption of i.i.d.

input stream, cannot exceed N , where N is the number of reservoir units.

We prove in Section 3.3 (under the assumption of zero-mean i.i.d. input stream) that the

Short term memory (STM) capacity of linear Simple Cycle Reservoir (SCR) architecture

with N reservoir units can be made arbitrarily close to N .

• Can the extending of the Simple Cycle Reservoir (SCR) introduced in

Section 3.1 with a regular structure of shortcuts (Jumps) by keeping the

reservoir construction simple and deterministic, significantly outperform

the standard randomised ESN?

In chapter 3 we argue that randomisation and trail-and-error construction of reser-

voirs may not be necessary. Very simple, cyclic, deterministically generated reservoirs are

shown to yield performance competitive with standard ESN on a variety of data sets of

different origin and memory structure.

In particular, Section 4.1 introduces a novel simple deterministic reservoir model,

Cycle Reservoir with Jumps (CRJ), with highly constrained weight values, that has su-

perior performance to standard ESN on a variety of temporal tasks of different origin

and characteristics. It seems that the long-held belief that the randomised generation

of reservoirs is somehow crucial for allowing a wide variety of dynamical features in the
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reservoir may not be true.

• Are reservoir characterisations, such as memory capacity, eigenvalue dis-

tribution of the reservoir matrix or pseudo-Lyapunov exponent of the

input-driven reservoir dynamics related to ESN model performance?

In Section 3.3 (under the assumption of zero-mean i.i.d. input stream) the MC of

linear SCR architecture with N reservoir units can be made arbitrarily close to N . In

particular, MC = N − (1 − r2N), where r ∈ (0, 1) is the single weight value for all

connections in the cyclic reservoir. In Section 4.4.2 we present a new framework for

determining short term memory capacity of linear reservoir models to a high degree of

precision. Using the framework we study the effect of shortcut (jumps) connections in

the CRJ reservoir topology on its memory capacity. Due to cross-talk effects introduced

by the jumps in CRJ, the MC contributions start to rapidly decrease earlier than in the

case of SCR, but unlike in SCR, the decrease in MCk in CRJ is gradual, enabling the

reservoir to keep more information about some of the later inputs.

Furthermore, it has been also been suggested that a uniform coverage of the unit disk

by such eigenvalues can lead to superior model performances. We show in Section 4.4.1

that this is not necessarily so. Despite having highly constrained eigenvalue distribution

the CRJ consistently outperforms ESN with much more uniform eigenvalue coverage of

the unit disk. Moreover, unlike in the case of ESN, pseudo-Lyapunov exponents of the

selected ‘optimal’ CRJ models are consistently negative (see Section 4.4.3).

• Can the use of Negative Correlation Learning (NCL) for state space

modelling such as recurrent neural network (RNN) achieve better gen-

eralisation performance?
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There have been studies of simple ESN ensembles (Schwenker and Labib, 2009), or

Multi-Layer Perceptron (MLP) readouts (Babinec and Pospichal, 2006; Bush and Ander-

son, 2005), but to the best of our knowledge, this is the first study employing a NCL style

training in ensembles of state space models, such as ESNs, where in comparison with both

single ESN and flat ensembles of ESNs, Section 5.3 shows that NCL based ESN ensembles

achieve better generalisation performance. The last research question answered by the

thesis is:

• Is there any relationship between two of the main well known measures

used to characterise short term memory in input driven dynamical sys-

tems, namely the short term memory capacity spectrum and the Fisher

memory curve?

In Section 6.2, we show that under some assumptions, the two measures can be

interpreted as squared ‘Mahalanobis’ norms of images of the input vector under the

system’s dynamics and that MCk > ǫ J(k), for all k > 0. Even though MCk and

J(k) map the memory structure of the system under investigation from two quite

different perspectives, they can be closely related.

2.6 Chapter Summary

We have introduced the research context for this work, where in Section 2.1 we had an

overview about Artificial Neural Network covering some of the most important learning

algorithms. In Section 2.2 we gave a detailed description of Echo State Network (ESN)

which is a special type of RNN, and one of the simplest, yet most effective reservoir

Computing methods, that we will use as a baseline model for our work throughout the

thesis. Section 2.3 described Lyapunov Exponent (LE), one of the characterisation used

in the literature to quantify the dynamic properties for a reservoir. Section 2.4 presented

an overview about Negative Correlation Learning (NCL), which will be used to design
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an ensemble of ESNs with diverse reservoirs whose collective readout is obtained through

NCL of ensemble of Multi-Layer Perceptrons (MLP). Finally, Section 2.5 presented the

research questions answered by the thesis.
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Chapter 3

Minimum Complexity Echo State

Network

In this chapter we would like to systematically investigate the reservoir construction of

Echo State Network (ESN); namely we show that in fact a very simple ESN organisation

is sufficient to obtain performances comparable to those of the classical ESN. We argue

that for a variety of tasks it is sufficient to consider:

1. a simple fixed non-random reservoir topology with full connectivity from inputs to

the reservoir ,

2. a single fixed absolute weight value r for all reservoir connections and

3. a single weight value v for input connections, with deterministically generated

“pseudo-random” aperiodic pattern of input signs.

The rest of the chapter is organised as follows. Section 3.1 presents our simplified reservoir

topologies. Experimental results are presented in Section 3.2. We analyse both theoret-

ically and empirically the short term memory capacity (MC) of our simple reservoir in

Section 3.3. Finally, this chapter is summarised in Section 3.4.

28



3.1 Simple Echo state network reservoirs

To simplify the reservoir construction, we propose several easily structured topology tem-

plates and we compare them to those of the classical ESN. We consider both linear

reservoirs that consist of neurons with identity activation function, as well as non-linear

reservoirs consisting of neurons with the commonly used tangent hyperbolic (tanh) activa-

tion function. Linear reservoirs are fast to simulate but often lead to inferior performance

when compared to non-linear ones (Verstraeten et al., 2007).

3.1.1 Reservoir Topology

We consider the following three reservoir templates (model classes) with fixed topologies

Figure. 3.1 :

• Delay Line Reservoir (DLR) - composed of units organised in a line. Only elements

on the lower sub-diagonal of the reservoir matrix W have non-zero values Wi+1,i = r

for i = 1...N − 1, where r is the weight of all the feedforward connections.

• DLR with feedback connections (DLRB) - the same structure as DLR but each

reservoir unit is also connected to the preceding neuron. Nonzero elements of W are

on the lower Wi+1,i = r and upper Wi,i+1 = b sub-diagonals, where b is the weight

of all the feedback connections.

• Simple Cycle Reservoir (SCR) - units organised in a cycle. Nonzero elements of W

are on the lower sub-diagonal Wi+1,i = r and at the upper-right corner W1,N = r.

3.1.2 Input Weight Structure

The input layer is fully connected to the reservoir and all input connections have the same

absolute weight value v > 0; the sign of each input weight is determined randomly by
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Figure 3.1: (A) Delay Line Reservoir (DLR). (B) Delay Line Reservoir with feedback
connections (DLRB). (C) Simple Cycle Reservoir (SCR).

a random draw from Bernoulli distribution of mean 1/2 (unbiased coin). The value v is

chosen on the validation set.

3.2 Experiments

3.2.1 Datasets

We use a range of timeseries covering a wide spectrum of memory structure and widely

used in the ESN literature (Schrauwen et al., 2008b; Cernansky and Tino, 2008; Jaeger,

2001, 2002a, 2003; Jaeger and Hass, 2004; Verstraeten et al., 2007; Steil, 2007). For each

data set, we denote the length of the training, validation and test sequences by Ltrn, Lval

and Ltst, respectively. The first Lwash values from training, validation and test sequences

are used as the initial washout period.

NARMA System

The Non-linear Auto-Regressive Moving Average (NARMA) system is a discrete time

system. This system was introduced in (Atiya and Parlos, 2000). The current output

depends on both the input and the previous output. In general, modelling this system is
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difficult, due to the non-linearity and possibly long memory.

- fixed order NARMA time series: NARMA systems of order O = 10, 20 given by equations

3.1, and 3.2, respectively.

y(t + 1) = 0.3y(t) + 0.05y(t)
9
∑

i=0

y(t− i) + 1.5s(t− 9)s(t) + 0.1, (3.1)

y(t + 1) = tanh(0.3y(t) + 0.05y(t)
19
∑

i=0

y(t− i)

+ 1.5s(t− 19)s(t) + 0.01), (3.2)

where y(t) is the system output at time t, s(t) is the system input at time t (an i.i.d

stream of values generated uniformly from an interval [0, 0.5]) (Atiya and Parlos, 2000;

Jaeger, 2003).

-random 10th order NARMA time series: This system is generated by:

y(t + 1) = tanh(αy(t) + βy(t)
9
∑

i=0

y(t− i) + γs(t− 9)s(t) + ϕ), (3.3)

where α, β, γ and ϕ are assigned random values taken from ±50% interval around their

original values in eq. (3.1) (Jaeger, 2003). Since the system is not stable, we used a non-

linear saturation function tanh (Jaeger, 2003). The input s(t) and target data y(t) are

shifted by -0.5 and scaled by 2 as in (Schrauwen et al., 2008b). The networks were trained

on system identification task to output y(t) based on s(t), with Ltrn = 2000, Lval = 3000,

Ltst = 3000 and Lwash = 200.

Laser Dataset

The Santa Fe Laser dataset (Jaeger et al., 2007a) is a cross-cut through periodic to chaotic

intensity pulsations of a real laser. A fragment of the laser dataset is presented in figure

3.2. The task is to predict the next laser activation y(t + 1), given the values up to time
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Figure 3.2: A fragment of the laser dataset.

t; Ltrn = 2000, Lval = 3000, Ltst = 3000 and Lwash = 200.

Hénon Map

Hénon Map dataset (Henon, 1976) is generated by:

y(t) = 1− 1.4y(t− 1)2 + 0.3y(t− 2) + z(t), (3.4)

where y(t) is the system output at time t, z(t) is a normal white noise with standard

deviation of 0.05 (Slutzky et al., 2003). We used Ltrn = 2000, Lval = 3000, Ltst = 3000

and Lwash = 200. The dataset is shifted by -0.5 and scaled by 2. Again, the task is to

predict the next value y(t + 1), given the values up to time t.

Non-linear Communication Channel

The dataset was created as follows (Jaeger and Hass, 2004): first, an i.i.d. sequence d(t)

of symbols transmitted through the channel is generated by randomly choosing values

from {−3,−1, 1, 3} (uniform distribution). Then, d(t) values are used to form a sequence
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Figure 3.3: A sample of the input s(t) and output d(t) signals of the non-linear commu-
nication channel dataset.

q(t) through a linear filter

q(t) =0.08d(t + 2)− 0.12d(t + 1) + d(t) + 0.18d(t− 1)

− 0.1d(t− 2) + 0.09d(t− 3)− 0.05d(t− 4)

+ 0.04d(t− 5) + 0.03d(t− 6) + 0.01d(t− 7). (3.5)

Finally, a non-linear transformation is applied to q(n) to produce the signal s(t) :

s(t) = q(t) + 0.0036q(t)2 − 0.11q(t)3. (3.6)

A sample of the input s(t) and output d(t) signals are presented in figure 3.3. Fol-

lowing (Jaeger and Hass, 2004), the input s(t) signal was shifted +30. The task is to

output d(t − 2) when s(t) is presented at the network input. Ltrn = 2000, Lval = 3000,
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Ltst = 3000 and Lwash = 200.

IPIX Radar

The sequence used by Xue et al. (2007) contains 2000 values with Ltrn = 800, Lval =

500, Ltst = 700 and Lwash = 100. The target signal is the sea clutter data (the radar

backscatter from an ocean surface). The task was to predict y(t + 1) and y(t + 5) (1 and

5 step ahead prediction) when y(t) is presented at the network input.

Sunspot series

The dataset contains 3100 sunspots numbers from Jan 1749 to April 2007, where Ltrn =

1600, Lval = 500, Ltst = 1000 and Lwash = 100. The task was to predict the next value

y(t + 1) based on the history of y up to time t.

Non-linear System with Observational Noise

This system was studied in (Gordon et al., 1993.) in the context of Bayesian Sequential

State estimation. The data is generated by:

s(t) = 0.5s(t− 1) + 25
s(t− 1)

1 + s2(t− 1)
+ 8 cos(1.2s(t− 1)) + w(t), (3.7)

y(t) =
s2(t)

20
+ v(t), (3.8)

where the initial condition is s(0) = 0.1; w(t) and v(t) are zero-mean Gaussian noise terms

with variances taken from {1, 10}, i.e. (σ2
w, σ2

v) ∈ {1, 10}2. Ltrn = 2000, Lval = 3000,

Ltst = 3000 and Lwash = 200. The task was to predict the value y(t+5), given the values

from t− 5 up to time t presented at the network input.
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Isolated Digits

This dataset is a subset of the TI46 dataset which contains 500 spoken Isolated Digits

(zero to nine), where each digit is spoken 10 times by 5 female speakers. These 500 digits

are randomly split into training (Ntrn = 250) and test (Ntst = 250) sets. Because of

the limited amount of data, model selection was performed using 10-fold cross-validation

on the training set. The Lyon Passive Ear model (Lyon, 1982) is used to convert the

spoken digits into 86 frequency channels. Following the ESN literature using this dataset,

the model performance will be evaluated using the Word Error Rate (WER), which is

the number of incorrect classified words divided by the total number of presented words.

The 10 output classifiers are trained to output 1 if the corresponding digit is uttered

and -1 otherwise. Following (Schrauwen et al., 2007a) the temporal mean over complete

sample of each spoken digit is calculated for the 10 output classifiers. The Winner-Take-

All (WTA) methodology is then applied to estimate the spoken digit’s identity. We use

this data set to demonstrate the modelling capabilities of different reservoir models on

high-dimensional (86 input channels) time series.

3.2.2 Training

We trained a classical ESN, as well as SCR, DLR, and DLRB models (with linear and

tanh reservoir nodes) on the time series described above with the NMSE to be minimised.

For each model we calculate the average NMSE (in case of Isolated Digits dataset, word

error Rate (WER) was used) over 10 simulation runs. The model fitting was done using

both offline (Batch) and online training.

• For offline training we used ridge regression, where the regularisation factor λ was

tuned per reservoir and per dataset on the validation set. We also tried other forms

of offline readout training, such as wiener-hopf methodology (e.g. (Ozturk et al.,

2007)), pseudoinverse solution (e.g (Jaeger, 2001)), and singular value decomposition
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(e.g. (Cernansky and Tino, 2008)), which we described in detail in section 2.2.1.

Ridge regression led to the best results.

• For online training we used RLS with forgetting factor of γ = 0.9999995 (Jaeger,

2003), and we add uniform noise z(t) to the updated internal unit activations

(Jaeger, 2003), where the noise level (a form of regularisation) was optimised per

reservoir and per dataset using the validation set.

Our experiments are organised along five degrees of freedom:

1. Reservoir topology.

2. Reservoir activation function.

3. Input weight structure.

4. Readout learning.

5. Reservoir size.

3.2.3 Results

For each data set and each model class (ESN, DLR, DLRB, SCR) we picked on the

validation set a model representative to be evaluated on the test set. Ten randomisations

of each model representative were then tested on the test set.

• For the DLR, DLRB and SCR architectures the model representatives are defined

by the method of readout learning, the input weight value v and the reservoir

weight r (for DLRB network we also need to specify the value b of the feedback

connection). The randomisation was performed solely by randomly generating the

signs for individual input weights, the reservoir itself was intact. Strictly speaking

we randomly generated the signs for input weights and input biases. However, as

36



usual in the neural network literature, the bias terms can be represented as input

weights from a constant input +1.

• For the ESN architecture, the model representative is specified by readout learning,

input weight scaling, reservoir sparsity and spectral radius of the weight matrix.

Input weights are (as usual) generated randomly from a uniform distribution over

an interval [−a, a].

For each model setting (e.g. for ESN - readout learning, input weight scaling, reservoir

sparsity and spectral radius), we generate 10 randomised models and calculate their av-

erage validation set performance. The best performing model setting on the validation

set is then used to generate another set of 10 randomised models that are fitted on the

training set and subsequently tested on the test set. More details about the experiments,

such as the chosen readout learning method, input and reservoir weights, spectral radius

of the reservoir weight matrix ect. can be found in Appendix A Tables A.1 and A.2.

Figures 3.4, 3.5, 3.6 and 3.7(A) show the average test set NMSE (across ten randomi-

sations) achieved by the selected model representatives. Figure 3.4 presents results for

the four model classes using non-linear reservoir on the laser, Hénon Map and Non-linear

Communication Channel datasets. On those time series, the test NMSE for linear reser-

voirs were of an order of magnitude worse than the NMSE achieved by the non-linear ones.

While the ESN architecture slightly outperforms the simplified reservoirs on the laser and

Hénon Map time series, for the Non-linear Communication Channel the best performing

architecture is the simple delay line network (DLR). The SCR reservoir is consistently the

second-best performing architecture. The differences between NMSE of ESN and SCR

on the Non-linear Communication Channel for all reservoir sizes (N = 50, 100, 150, 200)

are statistically significant at 95% significance level (p values were smaller than 0.05).

For reservoir sizes N = 100 and N = 200, the significance of the differences was high

(p ≈ 0.0006 and p ≈ 0.00007, respectively). Note that the Non-linear Communication

Channel can be modelled rather well with a simple Markovian delay line reservoir and no
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Figure 3.4: Test set performance of ESN, SCR, DLR, and DLRB topologies with tanh
transfer function on the laser, Hénon Map, and Non-linear Communication Channel
datasets.
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Figure 3.5: Test set performance of ESN, SCR, DLR, and DLRB topologies with tanh
transfer function on 10th-order, random 10th-order and 20th-order NARMA datasets.
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Figure 3.6: Test set performance of ESN, SCR, DLR, and DLRB topologies with linear
transfer function on 10th-order, random 10th-order and 20th-order NARMA datasets.
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Figure 3.7: Test set performance of ESN, SCR, DLR, and DLRB topologies on the Isolated
Digits (speech recognition) task using two ways of generating input connection sign
patterns; using random generation (i.i.d. Bernoulli distribution with mean 1/2) (A), and
initial digits of π (B). Reservoir nodes with tanh transfer function f were used.
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complex ESN reservoir structure is needed. Non-linearity in the reservoir activation and

the reservoir size seem to be two important factors for successful learning on those three

datasets. The differences in the results of ESN and SCR on laser, Hénon Map datasets

were not statistically significant.

Figure 3.5 and 3.6 present results for the four model classes on the three NARMA time

series, namely fixed NARMA of order 10, 20 and random NARMA of order 10. Figure 3.6

shows that the performance of linear reservoirs do not improve with increasing reservoir

size. Interestingly, within the studied reservoir range (50-200), linear reservoirs beat the

non-linear ones on 20-th order NARMA. The situation changes for larger reservoir sizes.

For example, non-linear ESN and SCR reservoirs of size 800 lead to the average NMSE

of 0.0468 (std 0.0087) and 0.0926 (std 0.0039), respectively. For all NARMA series (see

Figure 3.5), the SCR network is either the best performing architecture or is not worse

than the best performing architecture in a statistically significant manner, where in case

of 20-th order NARMA with reservoir sizes of N = 50 and N = 100, SCR beats ESN at

significance levels greater than 99%. It also beats ESN with reservoir size of N = 150

at significance level greater that 96%. Note that NARMA time series constitute one of

the most important and widely used benchmark datasets used in the echo state network

literature (e.g. (Schrauwen et al., 2008b; Cernansky and Tino, 2008; Jaeger, 2001, 2002a,

2003; Jaeger and Hass, 2004; Verstraeten et al., 2007; Steil, 2007)).

The results for the high-dimensional data set Isolated Digits are presented in figure

3.7(A). Except for the reservoir size 50, the performances of all studied reservoir models

are comparable but not statistically significance (see table A.12 in [Appendix A]). When

compared to ESN, the simplified reservoir models seem to work equally well on this high

dimensional input series.

For IPIX Radar, Sunspot Series and Non-linear System with Observational Noise the

results are presented in tables 3.1 and 3.2, respectively. On these data sets, the ESN

performance did not always monotonically improve with the increasing reservoir size.
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That is why for each data set we determined the best performing ESN reservoir size on

the validation set (N = 80, N = 200, N = 100 for IPIX Radar, Sunspot Series and

Non-linear System with Observational Noise, respectively). The performance of the other

model classes (DLR, DLRB and SCR) with those reservoir sizes was then compared to

that of ESN. In line with most RC studies using the Sunspot data set (e.g. (Schwenker and

Labib, 2009)), we found that linear reservoirs were on a par and sometimes better (within

the range of reservoir sizes considered in our experiments) with the non-linear ones. For

all three data sets, the SCR architecture perform better than standard ESN, where the

differences are in most cases highly statistical significant at levels greater than 99.8% (p

values were smaller than 0.002). Except for Non-linear System with Observational Noise

dataset when the variance σ2
v = 1, the differences in the results were not statistically

significant.

Table 3.1: Mean NMSE for ESN, DLR, DLRB, and SCR across 10 simulation runs (stan-
dard deviations in parenthesis) on the IPIX Radar and Sunspot series. The results are
reported for prediction horizon h and models with nonlinear reservoirs of size N = 80
(IPIX Radar) and linear reservoirs with N = 200 nodes (Sunspot series).

Data h ESN DLR DLRB SCR

1 0.00115 (2.48E-05) 0.00112 (2.03E-05) 0.00110 (2.74E-05) 0.00109 (1.59E-05)
Radar 5 0.0301 (8.11E-04) 0.0293 (3.50E-04) 0.0296 (5.63E-04) 0.0291 (3.20E-04)

Sunspot 1 0.1042 (8.33E-5) 0.1039 (9.19E-05) 0.1040 (7.68E-05) 0.1039 (5.91E-05)

Table 3.2: Mean NMSE for ESN, DLR, DLRB, and SCR across 10 simulation runs (stan-
dard deviations in parenthesis) on the Nonlinear System with Observational Noise data
set. Reservoirs had N = 100 internal nodes with tanh transfer function f .

var w var v ESN DLR DLRB SCR

1 1 0.4910 (0.0208) 0.4959 (0.0202) 0.4998 (0.0210) 0.4867 (0.0201)

10 1 0.7815 (0.00873) 0.7782 (0.00822) 0.7797 (0.00631) 0.7757 (0.00582)

1 10 0.7940 (0.0121) 0.7671 (0.00945) 0.7789 (0.00732) 0.7655 (0.00548)

10 10 0.9243 (0.00931) 0.9047 (0.00863) 0.9112 (0.00918) 0.9034 (0.00722)

Ganguli, Huh and Sompolinsky (Ganguli et al., 2008) quantified and theoretically

analysed memory capacity of non-autonomous linear dynamical systems (corrupted by a
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Gaussian state noise) using Fisher information between the state distributions at distant

times. They found that the optimal Fisher memory is achieved for so called non-normal

networks with DLR or DLRB topologies and derived the optimal input weight vector for

those linear reservoir architectures. We tried setting the input weights to the theoretically

derived values, but the performance did not improve over our simple strategy of randomly

picked signs of input weights followed by model selection on the validation set. Of course,

the optimal input weight considerations of (Ganguli et al., 2008) hold for linear reservoir

models only. Furthermore, according to (Ganguli et al., 2008), the linear SCR belongs to

the class of so called normal networks which are shown to be inferior to the non-normal

ones. Interestingly enough, in our experiments, the performance of linear SCR was not

worse than that of non-normal networks.

3.2.4 Further Simplifications of Input Weight Structure

The only random element of the SCR architecture is the distribution of the input weight

signs. We found that any attempt to impose a regular pattern on the input weight signs

(e.g. a periodic structure of the form +−+−..., or +−−+−−... etc.) led to performance

deterioration. Interestingly enough, it appears to be sufficient to relate the sign pattern

to a single deterministically generated aperiodic sequence. Any simple pseudo-random

generation of signs with a fixed seed is fine. Such sign patterns worked universally well

across all benchmark data sets used in this study. For demonstration, we generated the

universal input sign patterns in two ways:

1. the input signs are determined from decimal expansion d0.d1d2d3... of irrational

numbers (in our case π (PI) and e (EX)). The first N decimal digits d1, d2, ..., dN are

thresholded at 4.5, e.g. if 0 ≤ dn ≤ 4 or 5 ≤ dn ≤ 9, then the n-th input connection

sign (linking the input to the n-th reservoir unit) will be − or +, respectively,

2. (Log) - the input signs are determined by the first N iterates in binary symbolic
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dynamics of the logistic map f(x) = 4x(1−x) in a chaotic regime (initial condition

was 0.33, generating partition for symbolic dynamics with cut-value at 1/2).

The results shown in figures 3.8 (NARMA, laser, Hénon Map and Non-linear Com-

munication Channel data sets), 3.7(B) (Isolated Digits), and tables 3.3 and 3.4 (IPIX

Radar, Sunspot, and Non-linear System with Observational Noise), indicate that compa-

rable performances of our SCR topology can be obtained without any stochasticity in

the input weight generation by consistent use of a deterministically generated ’pseudo-

random’ aperiodic input signs across a variety of data sets. The results of ESN and

deterministic SCR on the 20-th order NARMA and Non-linear Communication Channel

data sets are statistically significant with significance levels greater than 99%. Detailed

results are presented in tables A.13 : A.16 [Appendix A].

Table 3.3: NMSE for ESN (mean across 10 simulation runs, standard deviations in paren-
thesis) and SCR topologies with deterministic input sign generation on the IPIX Radar
and Sunspot series. The results are reported for nonlinear reservoirs of size N = 80 (IPIX
Radar) and linear reservoirs with N = 200 nodes (Sunspot series).

Dataset prediction horizon ESN SCR-PI SCR-EX SCR-Log

1 0.00115 (2.48E-05) 0.00109 0.00109 0.00108
IPIX Radar 5 0.0301 (8.11E-04) 0.0299 0.0299 0.0297

Sunspot 1 0.1042 (8.33E-5) 0.1063 0.1065 0.1059

Table 3.4: NMSE for ESN (mean across 10 simulation runs, standard deviations in paren-
thesis) and SCR topologies with deterministic input sign generation on the Nonlinear
System with Observational Noise. Nonlinear reservoirs had N = 100 nodes.

var w var v ESN SCR-PI SCR-EX SCR-Log

1 1 0.4910 (0.0208) 0.5011 0.5094 0.5087

10 1 0.7815 (0.00873) 0.7910 0.7902 0.7940

1 10 0.7940 (0.0121) 0.7671 0.7612 0.7615

10 10 0.9243 (0.00931) 0.8986 0.8969 0.8965

We tried to use these simple deterministic input sign generation strategy for the

other simplified reservoir models (DLR and DLRB). The results were consistent with our
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Figure 3.8: Test set performance of SCR topology using four different ways of generating
pseudo-randomised sign patterns; using initial digits of π , and Exp ; logistic map trajec-
tory, and random generation (i.i.d. Bernoulli distribution with mean 1/2). The result are
reported for 20th NARMA, laser, Hénon Map, and Non-linear Communication Channel
datasets. Reservoir nodes with tanh transfer function f were used.
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findings for the SCR. We also tried to simplify the input weight structure by connecting

the input to a single reservoir unit only. However, this simplification either did not

improve (e.g. NARMA dataset), or deteriorated the model performance (e.g. laser or

Hénon Map).

3.2.5 Sensitivity Analysis

We tested the sensitivity of the model performance on 5-step ahead prediction with respect

to variations in the (construction) parameters. The reservoir size is N = 100 for NARMA

and Laser data sets; and N = 80 for the IPIX Radar data set.

In the case of ESN we varied the input scaling, as well as the spectral radius and

connectivity of the reservoir matrix. In figures 3.9(A), 3.10(A) and 3.11(A) we show how

the performance depends on the spectral radius and connectivity of the reservoir matrix.

The input scaling is kept fixed at the optimal value determined on the validation set.

Performance variation with respect to changes in input scaling (while connectivity and

spectral radius are kept fixed at their optimal values) are reported in table 3.5.

For the SCR and DLR models figures 3.9(C,D), 3.10(C,D) and 3.11(C,D) illustrate

the performance sensitivity with respect to changes in the only two free parameters - the

input and reservoir weights v and r, respectively.

In the case of DLRB model, figures 3.9(B), 3.10(B) and 3.11(B) present the perfor-

mance sensitivity with respect to changes in the reservoir weights r and b, while keeping

the input weight fixed to the optimal value.

All the studied reservoir models show robustness with respect to small (construction)

parameter fluctuations around the optimal parameter setting.
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(A) (B)

(C) (D)

Figure 3.9: Sensitivity of ESN (A), DLRB (B), DLR (C), and SCR (D) topologies on
the 10th order NARMA dataset. The input sign patterns for SCR, DLR, and DLRB
non-linear reservoirs were generated using initial digits of π.

(A) (B)

(C) (D)

Figure 3.10: Sensitivity of ESN (A), DLRB (B), DLR (C), and SCR (D) topologies on the
laser dataset. The input sign patterns for SCR, DLR, and DLRB non-linear reservoirs
were generated using initial digits of π.

3.3 Short-term Memory Capacity of SCR Architec-

ture

Jaeger (2002a) proved that for any recurrent neural network with N recurrent neurons,
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Figure 3.11: Sensitivity of ESN (A), DLRB (B), DLR (C), and SCR (D) topologies on
the IPIX Radar dataset. The input sign patterns for SCR, DLR, and DLRB non-linear
reservoirs were generated using initial digits of π.

under the assumption of i.i.d. input stream, the Short-term memory (STM) Capacity

cannot exceed N . We prove (under the assumption of zero-mean i.i.d. input stream)

that the STM capacity of linear SCR architecture with N reservoir units can be made

arbitrarily close to N . Since there is a single input (univariate time series), the input

matrix V is an N -dimensional vector V = (V1, V2, ..., VN)T .

Consider a vector rotation operator rot1 that cyclically rotates vectors by 1 place to the

right, e.g. rot1(V ) = (VN , V1, V2, ..., VN−1)
T . For k ≥ 1, the k-fold application of rot1 is

denoted by rotk. The N ×N matrix with k-th column equal to rotk(V ) is denoted by Ω,

e.g. Ω = (rot1(V ), rot2(V ), ..., rotN(V )).

Theorem 3.3.1 Consider a linear SCR network with reservoir weight 0 < r < 1 and an

input weight vector V such that the matrix Ω is regular. Then the SCR network memory

capacity is equal to

MC = N − (1− r2N).
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Table 3.5: Best connectivity and spectral radius for ESN with different input scaling for
10th order NARMA, laser and IPIX Radar datasets.

Data set Inp Con Spec NMSE

10th 0.05 0.18 0.85 0.1387 (0.0101)
order 0.1 0.18 0.85 0.1075 (0.0093)

NARMA 0.5 0.18 0.85 0.2315 (0.0239)
1 0.18 0.85 0.6072 (0.0459)

0.05 0.08 0.99 0.2738 (0.0128)
Laser 0.1 0.08 0.99 0.1827 (0.0222)

0.5 0.08 0.99 0.1058 (0.0070)
1 0.08 0.99 0.0983 (0.0064)

0.05 0.2 0.7 0.0297 (0.00043)
IPIX 0.1 0.2 0.7 0.0311 (0.00087)
Radar 0.5 0.2 0.7 0.0341 (0.0010)

1 0.2 0.7 0.0378 (0.0014)

3.3.1 Notation and auxiliary results

We consider ESN with linear reservoir with cycle topology (SCR). The reservoir weight is

denoted by r. Since we consider a single input, the input matrix V is an N -dimensional

vector V1..N = (V1, V2, ..., VN)T . By VN..1 we denote the ‘reverse’ of V1..N , e.g. VN..1 =

(VN , VN−1, ..., V2, V1)
T .

Consider a vector rotation operator rot1 that cyclically rotates vectors by 1 place to

the right, e.g. given a vector a = (a1, a2, ..., an), rot1(a) = (an, a1, a2, ..., an−1). For k ≥ 0,

the k-fold application of rot1 is denoted by rotk, where rot0 is the identity mapping.

The N ×N matrix with k-th column equal to rotk(VN..1) is denoted by Ω, e.g.

Ω = (rot1(VN..1), rot2(VN..1), ..., rotN(VN..1)).

We will need a diagonal matrix with diagonal elements 1, r, r2, ..., rN−1:

Γ = diag(1, r, r2, ..., rN−1).
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Furthermore, we will denote the matrix ΩT Γ2 Ω by A,

A = ΩT Γ2 Ω

and (provided A is invertible)

(rot
k(mod)N

(V1..N))T A−1 rot
k(mod)N

(V1..N), k ≥ 0,

by ζk.

Lemma 3.3.2 If Ω is a regular matrix, then ζN = 1 and ζk = r−2k, k = 1, 2, ..., N − 1.

Proof: Denote the standard basis vector (1, 0, 0, ..., 0)T in ℜN by e1. It holds:

rotk(V1..N) = ΩT rotk(e1), k = 1, 2, ..., N − 1.

This can be easily shown, as ΩT rotk(e1) selects the (k + 1)st column of ΩT ((k + 1)st

row of Ω), which is formed by (k + 1)st elements of vectors rot1(VN..1), rot2(VN..1), ...,

rotN (VN..1). This vector is equal to the k-th rotation of V1..N .

It follows that for k = 1, 2, ..., N − 1,

(rotk(V1..N))T Ω−1 = (rotk(e1))
T

and so

ζk = (rotk(V1..N))T A−1 rotk(V1..N)

= (rotk(V1..N))T Ω−1 Γ−2 (Ω−1)T rotk(V1..N)

= (rotk(e1))
T Γ−2 rotk(e1).

= r−2k.
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3.3.2 Proof of theorem 3.3.1

Given an i.i.d. zero-mean real-valued input stream s(..t) = ... s(t−2) s(t−1) s(t) emitted

by source P , the activations of the reservoir units at time t are given by

x1(t) = V1 s(t) + r VN s(t− 1) + r2 VN−1 s(t− 2) + r3 VN−2 s(t− 3) + ...

... +rN−1 V2 s(t− (N − 1)) + rN V1 s(t−N) + rN+1 VN s(t− (N + 1)) + ...

+ r2N−1 V2 s(t− (2N − 1)) + r2N V1 s(t− 2N) + r2N+1 VN s(t− (2N + 1)) + ...

x2(t) = V2 s(t) + r V1 s(t− 1) + r2 VN s(t− 2) + r3 VN−1 s(t− 3) + ...

+ rN−1 V3 s(t− (N − 1)) + rN V2 s(t−N) + rN+1 V1 s(t− (N + 1)) + ...

+ r2N−1 V3 s(t− (2N − 1)) + r2N V2 s(t− 2N) + r2N+1 V1 s(t− (2N + 1))

+ r2N+2 VN s(t− (2N + 2)) + ...

...

xN (t) = VN s(t) + r VN−1 s(t− 1) + r2 VN−2 s(t− 2) + ... + rN−1 V1 s(t− (N − 1))

+ rN VN s(t−N) + rN+1 VN−1 s(t− (N + 1)) + ... + r2N−1 V1 s(t− (2N − 1))

+ r2N VN s(t− 2N) + r2N+1 VN−1 s(t− (2N + 1))

+ r2N+2 VN−2 s(t− (2N + 2)) + ...

For the task of recalling the input from k time steps back, the optimal least-squares

52



readout vector U is given by

U = R−1pk, (3.9)

where

R = EP (s(..t))[x(t)xT (t)]

is the covariance matrix of reservoir activations and

pk = EP (s(..t))[x(t)s(t− k)].

The covariance matrix R can be obtained in an analytical form. For example, because

of the zero-mean and i.i.d. nature of the source P , the element R1,2 can be evaluated as

follows:

R1,2 = EP (s(..t))[x(t)xT (t)]

= E[ V1 V2 s2(t) + r2 VN V1 s2(t− 1) + r4 VN−1 VN s2(t− 2) + ...

+ r2(N−1) V2 V3 s2(t− (N − 1)) + r2N V1 V2 s2(t−N)

+ r2(N+1) VN V1 s2(t− (N + 1)) + ... + r2(2N−1) V2 V3 s2(t− (2N − 1))

+ r4N V1 V2 s2(t− 2N) + ... ]

= V1 V2 V ar[s(t)] + r2 VN V1 V ar[s(t− 1)] + r4 VN−1 VN V ar[s(t− 2)] + ...

... + r2N V1 V2 V ar[s(t−N)] + ...

= σ2 (V1V2 + r2VNV1 + r4VN−1VN + ... + r2(N−1)V2V3 + r2NV1V2 + ...)

= σ2 (V1V2 + r2VNV1 + r4VN−1VN + ... + r2(N−1)V2V3)
∞
∑

j=0

r2Nj . (3.10)

where σ2 is the variance of P .

The expression (3.10) for R1,2 can be written in a compact form as

R1,2 =
σ2

1− r2N
(rot1(VN..1))

T Γ2 rot2(VN..1). (3.11)
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In general,

Ri,j =
σ2

1− r2N
(roti(VN..1))

T Γ2 rotj(VN..1), i, j = 1, 2, ..., N, (3.12)

and

R =
σ2

1− r2N
ΩT Γ2 Ω. (3.13)

By analogous arguments,

pk = rk σ2 rot
k(mod)N

(V1..N). (3.14)

Hence, the optimal readout vector reads (see (3.9)):

U = (1− r2N) rk A−1 rot
k(mod)N

(V1..N). (3.15)

The ESN output at time t is

y(t) = x(t)T U

= (1− r2N) rk x(t)T A−1 rot
k(mod)N

(V1..N).

Covariance of the ESN output with the target can be evaluated as:

Cov(y(t), s(t− k)) = (1− r2N) rk Cov(x(t)T , s(t− k)) A−1 rot
k(mod)N

(V1..N)

= r2k (1− r2N) σ2 (rot
k(mod)N

(V1..N))T A−1 rot
k(mod)N

(V1..N)

= r2k (1− r2N) σ2 ζk.
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Variance of the ESN output is determined as:

V ar(y(t)) = UT E[x(t) x(t)T ] U

= UT R U

= pT
k R−1 pk

= r2k (σ2)2 (rot
k(mod)N

(V1..N))T R−1 rot
k(mod)N

(V1..N)

= Cov(y(t), s(t− k)). (3.16)

We can now calculate the squared correlation coefficient between the desired output

(input signal delayed by k time steps) and the network output y(n):

MCk =
Cov2(s(t− k), y(t))

V ar(s(t)) V ar(y(t))

=
V ar(y(t)

σ2

= r2k (1− r2N ) ζk.

The memory capacity of the ESN is given by

MC = MC≥0 −MC0,

where

MC≥0 =
∞
∑

k=0

MCk

= (1− r2N)

[

N−1
∑

k=0

r2k ζk +
2N−1
∑

k=N

r2k ζk +
3N−1
∑

k=2N

r2k ζk + ...

]

= (1− r2N)

[

N−1
∑

k=0

r2k ζk

] [

∞
∑

k=0

r2k

]

=
N−1
∑

k=0

r2k ζk.
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Hence,

MC =
N−1
∑

k=0

r2k ζk − (1− r2N)ζ0

= ζ0 [1− (1− r2N)] +
N−1
∑

k=1

r2k ζk

= ζ0 r2N +
N−1
∑

k=1

r2k ζk

= ζN r2N +
N−1
∑

k=1

r2k ζk

=
N
∑

k=1

r2k ζk.

By lemma 3.3.2, r2k ζk = 1 for k = 1, 2, ..., N − 1, and r2N ζN = r2N . It follows that

MC = N − 1 + r2N .

3.3.3 Empirical Memory Capacity

We empirically evaluated the short-term memory capacity (MC) of ESN and our three

simplified topologies. The networks were trained to memorise the inputs delayed by k =

1, 2, ..., 40. We used one input node, 20 linear reservoir nodes, and 40 output nodes (one for

each k). The input consisted of random values sampled from a uniform distribution in the

range [-0.5, 0.5]. The input weights for ESN and our simplified topologies have the same

absolute value 0.5 with randomly selected signs. The elements of the recurrent weight

matrix are set to 0 (80% of weights), 0.47 (10% of weights), or -0.47 (10% of weights),

with 0.2 reservoir weights connection fraction and spectral radius λ = 0.9 (Ozturk et al.,

2007). DLR and SCR weight r was fixed and set to the value r = 0.5. For DLRB r = 0.5

and b = 0.05. The output weights were computed using pseudo-inverse solution. The

empirically determined MC values for ESN, DLR, DLRB and SCR models were (averaged

over 10 simulation runs, standard dev. in parenthesis) 18.25 (1.46), 19.44 (0.89), 18.42
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(0.96) and 19.48 (1.29), respectively. Note that the empirical MC values for linear SCR

are in good agreement with the theoretical value of 20− (1− 0.540) ≈ 19.

3.3.4 Discussion

Jaeger (2002a) argues that if the vectors W iV , i = 1, 2, ..., N , are linearly independent,

then the memory capacity MC of linear reservoir with N units is N . Note that for the

SCR reservoir

rotk(V ) =
W kV

rk
, k = 1, 2, ..., N,

and so the condition that W iV , i = 1, 2, ..., N , are linearly independent directly translates

into the requirement that the matrix Ω is regular. As r → 1, the MC of SCR indeed ap-

proaches the optimal memory capacity N . According to Theorem 3.3.1, the MC measure

depends on the spectral radius of W (in our case, r). Interestingly enough, in the verifica-

tion experiments of (Jaeger, 2002a) with a reservoir of size N = 20 and reservoir matrix

of spectral radius 0.98, the empirically obtained MC value was 19.2. Jaeger commented

that a conclusive analysis of the disproportion between the theoretical and empirical val-

ues of MC was not possible, however, he suggested that the disproportion may be due

to numerical errors, as the condition number of the reservoir weight matrix W was about

50. Using our result, MC = N − (1− r2N) with N = 20 and r = 0.98 yields MC = 19.4.

It is certainly true that for smaller spectral radius values, the empirically estimated MC

values of linear reservoirs decrease, as verified in several studies (e.g. (Verstraeten et al.,

2007)), and this may indeed be at least partially due to numerical problems in calculat-

ing higher powers of W . Moreover, empirical estimates of MC tend to fluctuate rather

strongly, depending on the actual i.i.d. driving stream used in the estimation (see e.g.

(Ozturk et al., 2007)). Even though Theorem 3.3.1 suggests that the spectral radius of

W should have an influence on the MC value for linear reservoirs, its influence becomes

negligible for large reservoirs, since (provided Ω is regular) the MC of SCR is provably

bounded within the interval (N − 1, N).
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Memory capacity MC of a reservoir is a representative member from the class of

reservoir measures that quantify the amount of information that can be preserved in the

reservoir about the past. For example, Ganguli, Huh and Sompolinsky (Ganguli et al.,

2008) proposed a different (but related) quantification of memory capacity for linear

reservoirs (corrupted by a Gaussian state noise). They evaluated the Fisher information

between the reservoir activation distributions at distant times. Their analysis shows that

the optimal Fisher memory is achieved for the reservoir topologies corresponding e.g. to

our DLR or DLRB reservoir organisations. Based on the Fisher memory theory, the opti-

mal input weight vector for those linear reservoir architectures was derived. Interestingly

enough, when we tried setting the input weights to the theoretically derived values, the

performance in our experiments did not improve over our simple strategy for obtaining

the input weights. While in the setting of (Ganguli et al., 2008), the memory measure

does not depend on the distribution of the source generating the input stream, the MC

measure of (Jaeger, 2002a) is heavily dependent on the generating source. For the case of

i.i.d. source (where no dependencies between the time series elements can be exploited by

the reservoir) the memory capacity MC = N−1 can be achieved by a very simple model:

DLR reservoir with unit weight r = 1, one input connection with weight 1 connecting

the input with the 1st reservoir unit, and for k = 1, 2, ..., N − 1 one output connection of

weight 1 connecting the (k +1)-th reservoir unit with the output. The linear SCR, on the

other hand, can get arbitrarily close to the theoretical limit MC = N . In cases of non

i.i.d. sources, the temporal dependencies in the input stream can increase the memory

capacity beyond the reservoir size N (Jaeger, 2002a).

3.4 Chapter Summary

Throughout this chapter, Simple Echo Sate Network (ESN) Architectural Designs have

been introduced. It has also been presented that for a variety of tasks it is sufficient to

consider:
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1. a simple fixed non-random cycle reservoir topology with full connectivity from inputs

to the reservoir (SCR) ,

2. a single fixed absolute weight value r for all reservoir connections and

3. a single weight value v for input connections, with deterministically generated

“pseudo-random” aperiodic pattern of input signs.

A simple deterministically constructed cycle reservoir (SCR) is comparable to the standard

echo state network methodology. The (short term) memory capacity of linear cyclic

reservoirs can be made arbitrarily close to the proved optimal value.
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Chapter 4

Cycle Reservoir with Regular Jumps

In chapter 3 we argued that randomisation and trail-and-error construction of reservoirs

may not be necessary. Very simple, cyclic, deterministically generated reservoirs were

shown to yield performance competitive with standard ESN on a variety of data sets of

different origin and memory structure. We also proved that the memory capacity of linear

Simple Cycle reservoir (SCR) can be made arbitrarily close to the proven optimal value

(for any recurrent neural network of the ESN form). In this chapter we propose to extend

SCR model in three aspects:

1. We introduce a novel simple deterministic reservoir model, Cycle Reservoir with

Jumps (CRJ), with highly constrained weight values, that has superior performance

to standard ESN on a variety of temporal tasks of different origin and characteristics.

2. We elaborate on the possible link between reservoir characterisations, such as eigen-

value distribution of the reservoir matrix or pseudo-Lyapunov exponent of the input-

driven reservoir dynamics, and the model performance. It has been suggested that a

uniform coverage of the unit disk by such eigenvalues can lead to superior model per-

formances. We show that despite highly constrained eigenvalue distribution, CRJ

consistently outperform ESN (that have much more uniform eigenvalue coverage of
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the unit disk). Also, unlike in the case of ESN, pseudo-Lyapunov exponents of the

selected ‘optimal’ CRJ models are consistently negative.

3. We present a new framework for determining short term memory capacity of linear

reservoir models to a high degree of precision. Using the framework we study the

effect of shortcut connections in the CRJ reservoir topology on its memory capacity.

In this chapter we extend the Simple Cycle Reservoir (SCR) introduced in chapter

3, with a regular structure of shortcuts (Jumps) - Cycle Reservoir with Jumps (CRJ).

In the spirit of SCR we keep the reservoir construction simple and deterministic. Yet,

it will be shown that such an extremely simple regular architecture can significantly

outperform both SCR and standard randomised ESN models. Prompted by these results,

we investigate some well known reservoir characterisations, such as eigenvalue distribution

of the reservoir matrix, pseudo-Lyapunov exponent of the input-driven reservoir dynamics,

or memory capacity and their relation to the ESN performance.

The chapter is organised as follows. Section 4.1 presents our proposed model - CRJ.

Experimental results are presented and discussed in Sections 4.2 and 4.3, respectively.

Section 4.4 investigates three reservoir characterisations (eigen-spectrum of the reservoir

weight matrix, short term memory capacity and pseudo-Lyapunov exponent) in the con-

text of reservoir models studied in this work. Finally, this chapter is summarised in section

4.5.

4.1 Cycle Reservoir with Jumps

In chapter 3 we proposed a Simple Cycle Reservoir (SCR) with performance competitive

to that of standard ESN. Unlike ESN, the construction of SCR model is completely

deterministic and extremely simple. All cyclic reservoir weights have the same value; all

input connections also have the same absolute value. Viewing reservoir interconnection
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topology as a graph, the SCR has a small degree of local clustering and a large average

path length. In contrast, ESN (a kind of random network) has small degree of local

clustering and small average path length. It has been argued that reservoirs should

ideally have small clustering degree (sparse reservoirs) (Jaeger and Hass, 2004) so that

the dynamic information flow through the reservoir nodes is not ‘too cluttered’. Also

a small average path length, while having longer individual paths within the reservoir,

can allow for representation of a variety of dynamical time scales. We propose a Cycle

Reservoir with Jumps (CRJ) which, compared with SCR leads to slightly higher degree

of local clustering while achieving much smaller average path length.

The CRJ model has a fixed simple regular topology: the reservoir nodes are connected

in a uni-directional cycle (as in SCR) with bi-directional shortcuts (jumps) (Fig. 4.1).

All cycle connections have the same weight rc > 0 and likewise all jumps share the same

weight rj > 0. In other words, non-zero elements of W are:

• the ‘lower’ sub-diagonal Wi+1,i = rc, for i = 1...N − 1,

• the ‘upper-right corner’ W1,N = rc and

• the jump entries rj. Consider the jump size 1 < ℓ < ⌊N/2⌋. If (N mod ℓ) = 0,

then there are N/ℓ jumps, the first jump being from unit 1 to unit 1+ℓ, the last one

from unit N + 1− ℓ to unit 1 (see Figure 2 (A)). If (N mod ℓ) 6= 0, then there are

⌊N/ℓ⌋ jumps, the last jump ending in unit N +1−(N mod ℓ) (see Figure 2 (B)). In

such cases, we also consider extending the reservoir size by κ units (1 ≤ κ < ℓ), such

that (N +κ) mod ℓ = 0. The jumps are bi-directional sharing the same connection

weight rj .
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Figure 4.1: An example of CRJ reservoir architecture with N = 18 units and jump size

ℓ = 3 (A) and ℓ = 4 (B).

As with the SCR model, in the CRJ model we use full input-to-reservoir connectivity

with the same absolute value v > 0 of the connection weight. We showed in section 3.2.4

that an aperiodic character of signs of the input weights in V = (V1, V2, ..., VK) is essential

for the SCR model. Conversely, in this chapter we use the same method for obtaining

the input weight signs, universally across all data sets. In particular, the input signs are

determined from decimal expansion d0.d1d2d3... of an irrational number - in our case π.

The first N decimal digits d1, d2, ..., dN are thresholded at 4.5, i.e. if 0 ≤ dn ≤ 4 and

5 ≤ dn ≤ 9, then the n-th input connection sign (linking the input to the n-th reservoir

unit) will be − and +, respectively. The values v, rc, and rj are chosen on the validation

set.

4.2 Experiments

In this section we test and compare our simple CRJ reservoir topology with standard ESN

and SCR on a variety of timeseries tasks widely used in the ESN literature and covering a

wide spectrum of memory structure (Schrauwen et al., 2008b; Cernansky and Tino, 2008;
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Jaeger, 2001, 2002a, 2003; Jaeger and Hass, 2004; Verstraeten et al., 2007; Steil, 2007).

4.2.1 Experimental Setup

For each data set and each model class (ESN, SCR, and CRJ) we picked on the validation

set a model representative to be evaluated on the test set. The readout mapping was

fitted both using offline (Ridge Regression) and online (RLS) training. Then, based on

validation set performance, the offline or online trained readout was selected and tested

on the test set. We present the results for three reservoir sizes N = 100, 200, 300.

• For RLS training we add noise to the internal reservoir activations where the noise

is optimised for each dataset and each reservoir size using a validation set (Wyffels

et al., 2008).

• For SCR architecture the model representative is defined by the absolute input

weight value v ∈ (0, 1] and the reservoir cycle connection weight rc ∈ (0, 1].

• For the CRJ architecture the model representative is defined by the absolute input

weight value v ∈ (0, 1], the reservoir cycle connection weight rc ∈ (0, 1], the jump

size 1 < ℓ < ⌊N/2⌋ and the jump weight rj ∈ (0, 1].

• For the ESN architecture, the model representative is specified by the reservoir

sparsity, spectral radius λ of the reservoir weight matrix, input weight connectivity

and input weight range [−a, a].

For ESN we calculated out-of sample (test set) performance measures over 10 simula-

tion runs (presented as mean and StDev). The selected SCR and CRJ representatives are

evaluated out-of-sample only once, since their construction is completely deterministic.

The only exception is the speech recognition experiment - due to limited test set size,

following (Verstraeten et al., 2007), a 10-fold cross-validation was performed (and paired

t-test was used to assess statistical significance of the result).
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Details of the experimental setup, including ranges for cross-validation based grid

search on free-parameters, are presented in Table 4.1. Detailed parameter settings of the

selected model representatives can be found in Appendix B.

Table 4.1: Summary of the experimental setup. Grid search ranges are specified in MAT-

LAB notation, i.e. [s : d : e] denotes a series of numbers starting from s, increased by

increments of d, until the ceiling e is reached.

Reservoir topologies ESN, SCR and CRJ

Readout learning RLS with dynamic noise injection, Ridge Regression

ESN (random weights with spectral radius α in [0.05 : 0.05 : 1] ,

Reservoir matrix and connectivity con in [0.05 : 0.05 : 0.5])

CRJ and SCR (rc in [0.05 : 0.05 : 1], rj in [0.05 : 0.05 : 1] )

jump size 1 < ℓ < ⌊N/2⌋, where N is the reservoir size.

reservoir size N in [100 : 100 : 300]

input scale v (for SCR and CRJ) and a (for ESN) from [0.01 : 0.005 : 1]

input sign generation SCR and CRJ: thresholded decimal expansion of π

readout regularisation reservoir noise size (RLS), regularisation factor (ridge regression)

10q, q = [−15 : 0.25 : 0]

4.2.2 Experimental tasks

4.2.2.1 System Identification

As a System Identification task, we considered a 10th order NARMA system (Atiya and

Parlos, 2000) which we described in detail in section 3.2.1.
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NARMA sequence has a length of 8000 items where the first 2000 were used for

training, the following 5000 for validation, and the remaining 2000 for testing. The first

200 values from the training, validation and test sequences were used as the initial washout

period.

The results are presented in Table 4.2. Even though SCR is slightly inferior to the

standard ESN construction, the simple addition of regular shortcuts (jumps) to the SCR

leads to a superior performance of CRJ topology, where for reservoir size N = 100 the CRJ

model is significantly superior to ESN at (p ≈ 0.000042). For reservoirs with N = 200 and

N = 300 neurons CRJ beats ESN at significance level 99.9%. Note that the significance

levels where determined for CRJ by performing a different NARMA dataset at each run.

Table 4.2: Test Set NMSE Results of ESN, SCR, and CRJ Reservoir Models on the 10th

Order NARMA System. Reservoir Nodes with tanh Transfer Function were Used.

reservoir model N = 100 N = 200 N = 300

ESN 0.0788 (0.00937) 0.0531 (0.00198) 0.0246 (0.00142)

SCR 0.0868 0.0621 0.0383

CRJ 0.0619 0.0196 0.0130

4.2.2.2 Time Series Prediction

The Santa Fe Laser dataset (Jaeger et al., 2007a) is a cross-cut through periodic to chaotic

intensity pulsations of a real laser. The task was to predict the next value y(t + 1). The

dataset contains 9000 values, the first 2000 values were used for training, the next 5000

for validation, and the remaining 2000 values was used for testing the models. The first

200 values from training, validation and testing sequences were used as the initial washout

period.

The results are shown in Table 4.3. Again, ESN and SCR are almost on-par, with
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SCR slightly inferior. However, the CRJ topology can outperform the other architectures

by a large margin.

Table 4.3: Test Set NMSE Results of ESN, SCR, and CRJ Reservoir Models on the Santa

Fe Laser Dataset. Reservoir Nodes with tanh Transfer Function were Used.

reservoir model N = 100 N = 200 N = 300

ESN 0.0128 (0.00371) 0.0108 (0.00149) 0.00895 (0.00169)

SCR 0.0139 0.0112 0.0106

CRJ 0.00921 0.00673 0.00662

Figures 4.2 and 4.3 present one step-ahead prediction for laser time series using CRJ

with reservoir size 200. Figure 4.2(A) shows the prediction curve, where it can be shown

that it is difficult to predict the values when there is a cross-cut in the dataset (t in [70,80]).

Figure 4.2(B) shows prediction error which is the difference between the predicted and

target outputs. Moreover, figure 4.3(A) shows Predicted output and figure 4.3(B) presents

traces of some selected units.

4.2.2.3 Speech Recognition

For this task we used the Isolated Digits dataset which is described in detail in chapter 3

Section 3.2.1. The dataset contains 500 spoken digits; because of the limited test set size,

10-fold cross-validation was performed (Verstraeten et al., 2007) and paired t-test was

used to assess whether the perceived differences in model performance are statistically

significant. Following the ESN literature using this dataset, the model performance will

be evaluated using the Word Error Rate (WER). We use this data set to demonstrate

the modelling capabilities of different reservoir models on high-dimensional (86 input

channels) time series.
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Figure 4.2: Single step-ahead prediction for laser time series using CRJ with reservoir size
200, prediction curve (A), and prediction error(B).
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reservoir size 200.
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The results confirming superior performance of the simple CRJ model are shown in

Table 4.4. For reservoir size N = 100 the CRJ model is significantly superior to ESN at

the confidence level 96%. For reservoirs with N = 200 and N = 300 neurons CRJ beats

ESN at significance levels greater than 99%.

Table 4.4: WER Results of ESN, SCR, and CRJ Models on the Isolated Digits (Speech

Recognition) Task. Reservoir Nodes with tanh Transfer Function f were Used.

reservoir model N = 100 N = 200 N = 300

ESN 0.0296 (0.0063) 0.0138 (0.0042) 0.0092 (0.0037)

SCR 0.0329 (0.0031) 0.0156 (0.0035) 0.0081 (0.0022)

CRJ 0.0281 (0.0032) 0.0117 (0.0029) 0.0046 (0.0021)

4.2.2.4 Memory and Non-linear mapping task

The last task, used in (Verstraeten et al., 2010), is a generalisation of the delay XOR-task

used in (Schrauwen et al., 2008a). It allows one to systematically study two characteristics

of reservoir topologies: memory and the capacity to process non-linearities in the input

time series. The memory is controlled by the delay d of the output, and the ‘degree

of non-linearity’ is determined by a parameter p > 0. The input signal s(t) contains

uncorrelated values from a uniform distribution over the interval [−0.8, 0.8]. The task is

to reconstruct a delayed and non-linear version of the input signal:

yp,d(t) = sign[β(t− d)] · |β(t− d)|p, (4.1)

where β(t− d) is the product of two delayed successive inputs,

β(t− d) = s(t− d) · s(t− d− 1).
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The sign and absolute values are introduced to assure a rotationally symmetric output

even in the case of even powers (Verstraeten et al., 2010). Following (Verstraeten et al.,

2010), we considered delays d = 1, ..., 15 and powers p = 1, ..., 10 with a total of 150

output signals yp,d (realised as 150 readout nodes). The main purpose of this experiment

is to test whether a single reservoir can have rich enough pool of internal representations

of the driving input stream so as to cater for the wide variety of of outputs derived from

the input for a range of delay and non-linearity parameters.

We used time series of length 8000, where a new time series was generated in each of

10 runs. The first 2000 items were used for training, the next 3000 for validation, and the

remaining 3000 for testing the models. The first 200 values from training, validation and

test sequences were used as the initial washout period. As in (Verstraeten et al., 2010),

we used reservoirs of size 100 nodes.

Figure 4.4 illustrates the NMSE performance for ESN (A) , SCR (B) and CRJ (C).

Shown are contour plots across the two degrees of freedom – the delay d and the non-

linearity parameter p. We also show difference plots between the respective NMSE values:

ESN - SCR(D), ESN - CRJ (E) and SCR - CRJ (F). When the task becomes harder (non-

linearity and delay increase - upper-right corner of the contour plots) the performance of

the simple reservoir constructions, SCR and CRJ, is superior to that of standard ESN.

Interestingly, the simple reservoirs seem to outperform ESN by the largest margin for

moderate delays and weak non-linearity (small values of p). We do not have a clear

explanation to offer but note that our later studies in section 4.4.2 show that, compared

with ESN, the SCR and CRJ topologies have a potential for greater memory capacity.

This seems to be reflected most strongly if the series is characterised by weak non-linearity.
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Figure 4.4: Memory and Non-Linear Mapping Task. Shown are NMSE Values for ESN
(A), SCR (B) and CRJ (C). We also Show Difference Plots Between the Respective NMSE
Values: ESN - SCR (D), ESN - CRJ (E) and SCR - CRJ (F).
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4.3 Discussion

The experimental results clearly demonstrate that our very simple deterministic reser-

voir constructions have a potential to significantly outperform standard ESN randomised

reservoirs. We propose that instead of relying on unnecessary stochastic elements in reser-

voir construction, one can obtain superior (and sometimes superior by a large margin)

performance by employing the simple regular unidirectional circular topology with bi-

directional jumps with fixed cycle and jump weights. However, it is still not clear exactly

what aspects of dynamic representations in the reservoirs are of importance and why. In

later sections we concentrate on three features of reservoirs - eigenspectrum of the reser-

voir weight matrix, (pseudo) Lyapunov exponent of the input-driven reservoir dynamics

and short term memory capacity - and discuss their relation (or lack of) to the reservoir

performance on temporal tasks.

Moreover, besides the symmetric bi-directional regular jumps (CRJ), we considered

uni-directional jumps (both in the direction and in the opposite direction to the main

reservoir cycle), as well as jumps not originating/ending in a regular grid of ‘hub-like’

nodes. For example, when a jump lands in unit n, the next jump originates in unit n + 1

etc. In all cases, compared with our regular CRJ topology, the performance was slightly

worse. However, when allowing for two different weight values in the bidirectional jumps

(one for forward, one for backward jumps) (CRJfb), the performance improved slightly

but not significantlyover CRJ (see table 4.5).
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Table 4.5: NMSE for CRJ topologies using bi-directional jumps-CRJ , feedforward jumps-

CRJf , backward jumps-CRJb, or feedforward & backward jumps-CRJfb on the laser time

series using reservoir sizes of N = 200, 500.

CRJ model N = 200 N = 500

CRJ 0.00673 0.00526

CRJfb 0.00638 0.00509

CRJf 0.00681 0.00512

CRJb 0.00645 0.00523

Our framework can be extended to more complex regular hierarchical reservoir con-

structions. For example, we can start with a regular structure of relatively short ‘lower

level’ jumps in the style of CRJ topology. Then another layer of longer jumps over the

shorter ones can be introduced etc. We refer to this architecture as Cycle Reservoir

with Hierarchical Jumps (CRHJ). Figure 4.5 illustrates this idea on a 3-level hierarchy of

jumps. As before, the cycle weights are denoted by rc. The lowest level jump weights are

denoted by rj1, the highest by rj3 . On each hierarchy level, the jump weight has a single

fixed value.

Table 4.6: Test Set NMSE Results of Deterministic CRHJ Reservoir Model on the Santa

Fe Laser Dataset and NARMA System. Reservoir Nodes with tanh Transfer Function

were Used.

Dataset N = 100 N = 200 N = 300

laser 0.00743 0.00594 0.00581

NARMA 0.0662 0.0182 0.0133

As an illustrative example, in Table 4.6 we show test set results for 3-level jump

hierarchies with jump sizes 4, 8 and 16. We used the same jump sizes for both laser and
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NARMA data sets. The weights rc, rj1, rj2, rj3 ∈ [0.05, 1) were found on the validation

set. In most cases the performance of reservoirs with hierarchical jump structure slightly

improves over the CRJ topology (see Tables 4.2 and 4.3). Detailed parameter settings of

the selected model representatives can be found in Appendix B table B.3. However, such

more complex reservoir constructions, albeit deterministic, diverge from the spirit of the

simple SCR and CRJ constructions. The potential number of free parameters (jump sizes,

jump weights) grows and the simple validation set search strategy can quickly become

infeasible.
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Figure 4.5: Reservoir Architecture of Cycle Reservoir with Hierarchical Jumps (CRHJ)
with Three Hierarchical Levels. Reservoir Size N = 18, and the Jump Sizes are ℓ = 2 for
Level 1 , ℓ = 4 for Level 2, and ℓ = 8 for Level 3.

The CRHJ structure differs from hierarchically structured randomised reservoir mod-

els proposed in the RC community (Jaeger, 2007; Triefenbach et al., 2010), where the

reservoir structures are obtained by connecting (possibly through trained connections)

different smaller reservoirs constructed in a randomised manner.

Our CRJ reservoirs can also be related to the work of (Deng and Zhang, 2007) where

massive reservoirs are constructed in a randomised manner so that they exhibit small-

world and scale-free properties of complex networks. We refer to this model as the small

world network reservoir (SWNR). We trained such SWNR architecture on the laser and

NARMA datasets, since for reasonable results the SWNR model needed to be of larger
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size, we conducted the comparative experiments with reservoirs of size N = 500. The

results (across 10 randomised SWNR model construction runs) for laser and NARMA

data sets are presented in Table 4.7 . The performance was always inferior to our simple

deterministically constructed CRJ reservoir. Detailed parameter settings of the selected

model representatives can be found in Appendix B table B.2.

Finally, we mention that in the context of the work presented in this chapter, the

work done in the complex network community, relating dynamics of large networks with

different degrees of constrained interconnection topology between nodes, may be of in-

terest. For example, Watts and Strogatz (1998) consider collective dynamics of networks

with interconnection structure controlled from completely regular (each node on a ring

connects to its k nearest neighbours), through “small-world” (for each node, with some

probability p links to the nearest neighbours are rewired to any randomly chosen node on

the ring), to completely random (p=1). However, such studies address different issues from

those we are concerned with in this work: first, our reservoirs are input-driven; second,

our interconnection construction is completely deterministic and regular; and third, the

dynamics of CRJ is given through affine functions in every node, put through a saturation

sigmoid-type activation functions.

Table 4.7: Test Set NMSE Results of ESN, SWNR, Deterministic SCR and Deterministic

CRJ reservoir Model on the Santa Fe Laser Dataset and NARMA System. Reservoir Size

N = 500 and Reservoir Nodes with tanh Transfer Function were Used.

Dataset ESN SWNR SCR CRJ

laser 0.00724 (0.00278) 0.00551 (0.00176) 0.00816 0.00512

NARMA 0.0104 (0.0020) 0.052 (0.0089) 0.0216 0.0081
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4.4 Reservoir Characterisations

There has been a stream of research work trying to find useful characterisations of reser-

voirs that would correlate well with the reservoir performance on a number of tasks. For

example, (Legenstein and Maass, 2007) introduce a ‘kernel’ measure of separability of dif-

ferent reservoir states requiring different output values. Since linear readouts are used, the

separability measure can be calculated based on the rank of the reservoir design matrix

(reservoir states resulting from driving the reservoir with different input streams). In the

same vein, Bertschinger and Natschlager (2004) suggested that if a reservoir model is to

be useful for computations on input time-series, it should have the “separation property”

- different input time series which produce different outputs should have different reservoir

representations. When linear readouts are used, this typically translates to ‘significantly’

different states. Moreover, it is desirable that the separation (distance between reservoir

states) increases with the difference of the input signals.

In what follows we examine three other reservoir characterisations suggested in the

literature, namely - eigenspectrum of the reservoir weight matrix (Ozturk et al., 2007),

(pseudo) Lyapunov exponent of the input-driven reservoir dynamics (Verstraeten et al.,

2007) and short term memory capacity (Jaeger, 2002b).

4.4.1 EigenSpectra of Dynamic Reservoirs

Several studies have attempted to link eigenvalue distribution of the ESN reservoir matrix

W with the reservoir model’s performance. First, in order to account for echo state

property, the eigenvalues of W need to lie inside the unit circle. Ozturk, Xu and Principe

(Ozturk et al., 2007) proposed that the distribution of reservoir activations should have

high entropy. It is suggested that the linearised ESN designed with the recurrent weight

matrix having the eigenvalues uniformly distributed inside the unit circle creates such

an activation distribution (compared to other ESNs with random internal connection
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weight matrices). In such cases, the system dynamics will include uniform coverage of

time constants (related to the uniform distribution of the poles) (Ozturk et al., 2007).

However, empirical comparison of this type of reservoir with the standard ESN is still

lacking (Lukosevicius and Jaeger, 2009).

It has been also suggested that sparsity of reservoir interconnections (non-zero entries

in W ) is a desirable property (Jaeger and Hass, 2004). On the other hand, (Zhang and

Wang, 2008) argue that sparsely and fully connected reservoirs in ESN have the same

limit eigenvalue distribution inside the unit circle. Furthermore, the requirement that the

reservoir weight matrix be scaled so that the eigenvalues of W lie inside the unit circle

has been criticised in (Verstraeten et al., 2006), where the experiments show that scaling

with a large spectral radius seemed to be required for some tasks. On the other hand,

smaller eigenvalue spread is necessarily for stable online training of the readout (Jaeger,

2005).

Our experimental results show that the simple CRJ and regular hierarchical CRHJ

reservoirs outperform standard randomised ESN models on a wide variety of tasks. How-

ever, the eigenvalue spectra of our regularly and deterministically constructed reservoirs

are much more constrained than those of the standard ESN models. Figure 4.6 shows

the eigenvalue distribution of representatives of the four model classes - ESN, SCR, CRJ,

and CRHJ - fitted on the isolated digits dataset in the speech recognition task. Clearly

the coverage of the unit circle by the ESN eigenvalues is much greater than in the case of

the three regular deterministic reservoir constructions. While the ESN eigenvalues cover

the unit sphere ‘almost uniformly’, the SCR, CRJ, and CRHJ eigenvalues are limited to

a circular structure inside the unit disk. The eigenvalues of SCR must lie on a circle by

definition. On the other hand, the eigenvalue structure of CRJ and CRHJ can be more

varied. However, the eigenvalue distributions of CRJ and CRHJ reservoirs selected on

datasets used in this study were all highly constrained following an approximately cir-

cular structure. This poses a question as to what aspects of eigenvalue distribution of
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the reservoir matrix are relevant for a particular class of problems. We suspect that the

non-linear nature of the non-autonomous reservoir dynamics may be a stumbling block

in our efforts to link linearised autonomous behaviour of reservoirs with their modelling

potential as non-linear non-autonomous systems.
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Figure 4.6: Eigenvalue Distribution for ESN, SCR, CRJ and CRHJ Reservoirs of N = 300
Neurons Selected on the Isolated Digits Dataset in the Speech Recognition Task (and
Hence Used to Report Results in Table 4.4).

4.4.2 Memory Capacity

Another attempt at characterisation of dynamic reservoirs is in terms of their (short-term)

memory capacity (MC) (Jaeger, 2002a). It quantifies the ability of recurrent network

architectures to encode past events in their state space so that past items in an i.i.d.
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input stream can be recovered (at least to certain degree).

Consider a univariate stationary input signal s(t) driving the network at the input layer.

For a given delay k, we construct a network with optimal parameters for the task of

outputting s(t−k) after seeing the input stream ...s(t−1)s(t) up to time t. The goodness

of fit is measured in terms of the squared correlation coefficient between the desired output

(input signal delayed by k time steps) and the observed network output y(t) see eq.(2.16),

and the short term memory (STM) capacity is then given by eq.(2.17).

Traditionally, memory capacity has been estimated numerically by generating long

input streams of i.i.d data and training different readouts for different delays k from 1

up to some upper bound kmax. Typically, due to short-term memory of reservoir models,

kmax is of order 102. We will later show that such empirical estimations of MCk, even for

linear reservoirs, are inaccurate, especially for larger values of k.

Jaeger (2002a) proved that for any recurrent neural network with N recurrent neu-

rons, under the assumption of i.i.d. input stream, MC cannot exceed N . We proved in

section 3.3 (under the assumption of zero-mean i.i.d. input stream) that MC of linear

SCR architecture with N reservoir units can be made arbitrarily close to N . In particular,

MC = N − (1 − r2N), where r ∈ (0, 1) is the single weight value for all connections in

the cyclic reservoir. In order to study the memory capacity structure of linear SCR and

the influence of additional shortcuts in CRJ, we first present a novel way of estimation of

MCk directly from the reservoir matrix.

4.4.2.1 Direct Memory Capacity Estimation for Linear Reservoirs

Given a (one side infinite) i.i.d. zero-mean real-valued input stream s(..t) = ... s(t −

3) s(t− 2) s(t− 1) s(t) emitted by a source P , the state (at time t) of the linear reservoir
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with reservoir weight matrix W and input vector V is

x(t) =
∞
∑

ℓ=0

s(t− ℓ) W ℓ V

For the task of recalling the input from k time steps back, the optimal least-squares

readout vector U is given by eq.(3.9).

Then the covariance matrix can be evaluated as

R = EP (s(..t))







(

∞
∑

ℓ=0

s(t− ℓ) W ℓ V

)

·




∞
∑

q=0

s(t− q) W q V





T






= EP (s(..t))





∞
∑

ℓ,q=0

s(t− ℓ) s(t− q) W ℓ V V T (W q)T





=
∞
∑

ℓ,q=0

EP (s(..t))[s(t− ℓ) s(t− q)] W ℓ V V T (W T )q

= σ2
∞
∑

ℓ=0

W ℓ V V T (W T )ℓ, (4.2)

where σ2 is the variance of the i.i.d. input stream.

Analogously,

p(k) = EP (s(..t))

[

∞
∑

ℓ=0

s(t− ℓ) s(t− k) W ℓ V

]

=
∞
∑

ℓ=0

EP (s(..t))[s(t− ℓ) s(t− k)] W ℓ V

= σ2 W k V. (4.3)

Provided R is full rank, by (3.9), (4.2) and (4.3), the optimal readout vector U (k) for

delay k ≥ 1 reads

U (k) = G−1 W k V, (4.4)
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where

G =
∞
∑

ℓ=0

W ℓ V V T (W T )ℓ. (4.5)

The optimal ‘recall’ output at time t is then

y(t) = xT (t) U (k)

=
∞
∑

ℓ=0

s(t− ℓ) V T (W ℓ)T G−1 W k V, (4.6)

yielding

Cov(s(t− k), y(t)) =
∞
∑

ℓ=0

EP (s(..t))[s(t− ℓ) s(t− k)] V T (W ℓ)T G−1 W k V

= σ2 V T (W k)T G−1 W k V. (4.7)

Since for the optimal recall output Cov(s(t− k), y(t)) = V ar(y(t)) by eq.(3.16),

we have

MCk = V T (W k)T G−1 W k V. (4.8)

Two observations can be made at this point. First, as proved by Jaeger (2002a),

MCk constitute a decreasing sequence in k ≥ 1. From (4.8) it is clear that MCk scale

as ‖W‖2k, where ‖W‖ < 1 is a matrix norm of W . Second, denote the image of the

input weight vector V through k-fold application of the reservoir operator W by V (k),

i.e. V (k) = W k V . Then the matrix G =
∑∞

ℓ=0 V (ℓ) (V (ℓ))T can be considered a scaled

‘covariance’ matrix of the iterated images of V under the reservoir mapping. In this

interpretation, MCk is nothing but the squared ‘Mahalanobis norm’ of V (k) under such

covariance structure,

MCk = (V (k))T G−1 V (k)

= ‖V (k)‖2G−1 . (4.9)
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We will use the derived expressions to approximate the memory capacity of different

kinds of (linear) reservoirs to a much greater degree of precision than that obtained

through the usual empirical application of the definition in (2.16) - first generate a long

series of i.i.d. inputs and drive with it the reservoir; then train the readout to recover the

inputs delayed by k time steps; finish by numerically estimating the statistical moments

in (2.16) using the target values (delayed inputs) and their estimates provided at ESN

output.

We will approximate G =
∑∞

ℓ=0 V (ℓ) (V (ℓ))T by a finite expansion of the first L terms

Ĝ(L) =
L
∑

ℓ=0

V (ℓ) (V (ℓ))T . (4.10)

We have

‖V (ℓ)‖2 ≤ ‖W ℓ‖F · ‖V ‖2

≤
√

N · ‖W ℓ‖2 · ‖V ‖2

≤
√

N · ‖W‖ℓ2 · ‖V ‖2

=
√

N · (σmax(W ))ℓ · ‖V ‖2, (4.11)

where ‖ · ‖2 and ‖ · ‖F is the (induced) L2 and Frobenius norm, respectively, and σmax(W )

is the largest singular value of W . Furthermore,

‖V (ℓ) (V (ℓ))T‖2 = ‖V (ℓ)‖22

≤ N · (σmax(W ))2ℓ · ‖V ‖22,

and so, given a small ǫ > 0, we can solve for the number of terms L(ǫ) in the approximation

(4.10) of G so that the norm of contributions V (ℓ) (V (ℓ))T , ℓ > L(ǫ), is less than ǫ. Since
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σmax(W ) < 1,

‖
∞
∑

ℓ=L(ǫ)

V (ℓ) (V (ℓ))T‖2 ≤
∞
∑

ℓ=L(ǫ)

‖V (ℓ) (V (ℓ))T‖2

≤ N ‖V ‖22
∞
∑

ℓ=L(ǫ)

(σmax(W ))2ℓ

= N ‖V ‖22
(σmax(W ))2L(ǫ)

1− (σmax(W ))2
, (4.12)

we have that for

L(ǫ) >
1

2

log ǫ (1−(σmax(W ))2)
N ‖V ‖2

2

log σmax(W ))
, (4.13)

it holds

‖
∞
∑

ℓ=L(ǫ)

V (ℓ) (V (ℓ))T‖2 ≤ ǫ,

and so with L(ǫ) terms in (4.10), G can be approximated in norm up to a term < ǫ.

4.4.2.2 The Effect of Shortcuts in CRJ on Memory Capacity

In section 3.3 we proved that the ‘k-step recall’ memory capacity MCk for the SCR with

reservoir weight r ∈ (0, 1) is equal to

MCk = r2k (1− r2N) ζ
k mod N

,

where ζj = r−2j, j = 0, 1, 2, ..., N − 1. It follows that for k ≥ 1,

MCk = r2k (1− r2N) r−2 (k mod N)

= (1− r2N) r2 [k−(k mod N)]

= (1− r2N) r2N (k div N), (4.14)

where div represents integer division. Hence, for linear cyclic reservoirs with reservoir

weight 0 < r < 1, MCk is a non-increasing piecewise constant function of k, with blocks
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of constant value

MCqN+j = (1− r2N) r2Nq, q ≥ 0, j ∈ {0, 1, ..., N − 1}. (4.15)

In order to study the effect of reservoir topologies on the contributions MCk to

the memory capacity MC, we first selected three model class representatives (on the

validation set) with N = 50 linear unit reservoirs on the system identification task (10-

th order NARMA), one representative for each of the model classes ESN, SCR and CRJ

(jump length 4). Linear and non-linear reservoirs of size 50 had similar performance levels

on the NARMA task. To make the MCk plots directly comparable, we then re-scaled

the reservoir matrices W to a common spectral radius ρ ∈ (0, 1). In other words, we are

interested in differences in the profile of MCk for different reservoir types, as k varies. Of

course, for smaller spectral radii, the MC contributions will be smaller, but the principal

differences can be unveiled only if the same spectral radius is imposed on all reservoir

structures.

The memory capacity of the reservoir models was estimated through estimation of

MCk, k = 1, 2, ..., 200, in two ways:

1. Empirical Estimation: The i.i.d. input stream consisted of 9000 values sampled

from the uniform distribution on [−0.5, 0.5]. The first 4000 values were used for

training, the next 2000 for validation (setting the regularisation parameter of Ridge

regression in readout training), and the remaining 3000 values was used for testing

the models (prediction of the delayed input values). After obtaining the test out-

puts, the memory capacity contributions MCk were estimated according to (2.16).

This process was repeated 10 times (10 runs), in each run a new input series has

been generated. Final MCk estimates were obtained as averages of the MCk esti-

mated across the 10 runs. This represents the standard approach to MC estimation

proposed by Jaeger (2002a) and used in the ESN literature (Fette and Eggert, 2005;
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Ozturk et al., 2007; Verstraeten et al., 2007; Steil, 2007).

2. Theoretical Estimation: The MC contributions MCk were calculated from (4.8),

with G approximated as in (4.10). The number of terms L has been determined

according to (4.13), where the precision parameter ǫ was set to ǫ = 10−60.

Figures 4.7(A) and (B) present theoretical and empirical estimates, respectively, of

MCk for ρ = 0.8. Analogously, Figures 4.7(C) and (D) show theoretical and empirical es-

timates of MCk for ρ = 0.9. The direct theoretical estimation (Figures 4.7(A,C)) is much

more precise than the empirical estimates (Figures 4.7(B,D)). Note the clear step-wise

behaviour of MCk for SCR predicted by the theory (eq. (4.15)). As predicted, the step

size is N = 50. In contrast, the empirical estimations of MCk can infer the first step at

k = 50, but lack precision thereafter (for k > 50). Interestingly, SCR topology can keep

information about the last N−1 i.i.d. inputs to a high level of precision (MCk = 1−r2N ,

k = 1, 2, ..., N − 1), but then loses the capacity to memorise inputs more distant in the

past in a discontinuous manner (jump at k = N = 50). This behaviour of MCk for SCR

is described analytically by eq. (4.15). In contrast, as a consequence of ‘cross-talk’ effects

introduced by jumps in CRJ, the MC contributions MCk start to rapidly decrease earlier

than at k = N , but the reservoir can keep the information about some of the later inputs

better than in the case of SCR (roughly for 50 ≤ k ≤ 60). In the case of ESN, the MCk

values decrease more rapidly than in the case of both SCR and CRJ. Using the standard

empirical estimation of MCk, such a detailed behaviour of memory capacity contributions

would not be detectable. To demonstrate the potential of our method, we show in Figures

4.8(A,B) theoretically determined graphs of MCk for delays up to k = 400 using ρ = 0.8

(A) and ρ = 0.9 (B).
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Figure 4.7: Theoretical (A,C) and Empirical (B,D) k-Delay MC of ESN (dotted line),
SCR (solid line), and CRJ (dashed line) for Delays k = 1, ..., 200. The Graphs of MCk

are shown for ρ = 0.8 (A,B) and ρ = 0.9 (C,D).
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Figure 4.8: Theoretical k-Delay MC of ESN (dotted line), SCR (solid line), and CRJ
(dashed line) for Delays k = 1, ..., 400. The Graphs of MCk are shown for ρ = 0.8 (A)
and ρ = 0.9 (B).
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4.4.3 Lyapunov Exponent

Verstraeten et al. (2007) suggest to extend numerical calculation of the well known Lya-

punov exponent characterisation of (ergodic) autonomous dynamical systems to input-

driven systems. The same idea occurred previously in the context of recurrent neural

networks for processing symbolic streams (Tabor, 2002). While the reservoir is driven by

a particular input sequence, at each time step the local dynamics is linearised around the

current state and the Lyapunov spectrum is calculated. In our experiments the selected

ESN configurations in the laser, NARMA and speech recognition tasks all led to pseudo-

Lyapunov exponents ranging from 0.35 to 0.5. As in Verstraeten et al. (2007), the found

exponents are positive, suggesting local exponential divergence along the sampled reser-

voir trajectories, and hence locally expanding systems (at least in one direction). For our

simple reservoir architectures, SCR and CRJ, the selected configurations across the data

sets also lead to similar pseudo-Lyapunov exponents, but this time in the negative range.

For example the CRJ exponents ranged from -0.4 to -0.25. All exponents for the selected

architectures of both SCR and CRJ were negative, implying contractive dynamics.

To study the pseudo-Lyapunov exponents of the selected reservoir architectures along

the lines of (Verstraeten et al., 2007), for each data set, the reservoir matrix of each

selected model representative from ESN, SCR and CRJ was rescaled so that the spectral

radius ranged from 0.1 to 2. The resulting pseudo-Lyapunov exponents are shown in

Figure 4.9 for the NARMA (A), laser (B), and speech (C) data sets. The vertical lines

denote the spectral radii of the selected ‘optimal’ model representatives and black markers

show the corresponding exponents. Interestingly, for all data sets, the pseudo-Lyapunov

exponent lines of ESN are consistently above the SCR ones, which in turn are above

those of CRJ. This ranking holds also for the selected model representatives on different

tasks. Our results show that a reservoir model can have superior performance without

expanding dynamics. In fact, in our experiments the CRJ reservoir achieved the best

results while having on average contractive dynamics along the sampled trajectories and
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the least pseudo-Lyapunov exponent.

4.5 Chapter Summary

In this chapter, first, we have introduced a novel simple deterministic reservoir model,

Cycle Reservoir with Jumps (CRJ, see section 4.1), that has superior performance to

standard ESN on a variety of temporal tasks of different origin and characteristics (see

section 4.2). We also investigated three reservoir characterisations (eigen-spectrum of the

reservoir weight matrix, short term memory capacity and pseudo-Lyapunov exponent) in

the context of reservoir models studied in this work. In section 4.4.1 we showed that for a

superior model performance it is not necessary to have a uniform coverage of eigenvalues

on the unit disk. Despite having highly constrained eigenvalue distribution, the CRJ

consistently outperforms ESN that has more uniform eigenvalue coverage of the unit disk.

Furthermore, in section 4.4.2 we presented a new framework for determining short

term memory capacity of linear reservoir models to a high degree of precision. Using this

framework, we studied the effect of shortcut (jumps) connections in the CRJ reservoir

topology on its memory capacity. Due to cross-talk effects introduced by the jumps in

CRJ, the MC contributions start to rapidly decrease earlier than in the case of SCR, but

unlike in SCR, the decrease in MCk in CRJ is gradual, enabling the reservoir to keep

more information about some of the later inputs.

Finally, unlike in the case of ESN, pseudo-Lyapunov exponents of the selected ‘opti-

mal’ CRJ models are consistently negative (see Section 4.4.3).
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Chapter 5

Negatively Correlated Echo State

Networks

In this chapter we apply the idea of Negative Correlation learning (NCL) to the ensemble

of Echo State Networks (ESNs). Each ESN operates with a different reservoir, possibly

capturing different features of the input stream. On each reservoir we build a non-linear

readout mapping. Crucially, the individual readouts of the ensemble are coupled together

by a diversity-enforcing term of the NCL training, which may have a potential to stabilise

the overall collective ensemble output. The chapter is organised as follows. Section 5.1

presents our model, Ensemble of ESNs using NCL. Experiments and Results are presented

and discussed in Sections 5.2 and 5.3, respectively. Finally, this chapter is summarised in

section 5.4

5.1 Ensembles of ESNs using NCL

Negative Correlation Learning (NCL) has been successfully applied to training MLP en-

sembles (Brown et al., 2005.; Brown and Yao, 2001; Liu and Yao, 1999; Mckay and Abbass,
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2001). In NCL, all the individual networks are trained simultaneously and interactively

through the correlation penalty terms in their error functions.

To apply NCL to ensembles of ESN, we replace the linear readouts of individual

standard ESN with non-linear Multi-Layer Perceptron (MLP). To exploit the power of

negative correlation the ensemble members should be non-linear models. Negatively cor-

related linear mappings cannot implement the idea of globally correct mappings by all

ensemble members, while being locally diverse.

The training of negatively correlated ensemble of M ESNs consists of first, driving the

individual ESN reservoirs with the input stream and collecting the reservoir states xi(t) =

(xi
1(t)......x

i
N (t)), where xi(t) is the reservoir activation vector of the i-th ESN, i =

1, 2, ..., M , at time t. Each ESN i has N reservoir units with reservoir weight matrix

W i and input matrix V i.

Each reservoir state can be updated and collecting according to:

xi(t) = f(V is(t) + W ixi(t− 1)), (5.1)

where f is the reservoir activation function (tanh in this study).

We then use the reservoir states xi(t) as an input for the MLP readouts Fi (see figure

5.1). The readout is computed as:

Fi(x
i(t)) = g(xi(t)), (5.2)

where g is the non-linear MLP readout function. The readout mapping can be trained in

an offline or online mode by minimising the Mean Square Error,

MSE = 〈(Fi(x
i(t))− y(t))2〉, (5.3)

where Fi(x
i(t)) is the readout output of the i-th MLP, y(t) is the desired output (target),
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and 〈·〉 denotes the empirical mean. The readout MLPs had a single hidden layer of

logistic sigmoid units (the hidden layer size was determined through cross-validation) and

were trained using NCL.

ESN ReservoirESN ReservoirESN Reservoir

s(t)
V

V 2

M

MLP MLP MLP
2 M

F
F F

W W W

1

1 2 M

M
2

1

1V

F

Figure 5.1: Ensemble of ESN with MLP readouts.

The ensemble output F (t) is calculated as a flat average over all ensemble members

Fi(x(t)),

F (t) =
1

M

M
∑

i=1

(Fi(x
i(t))). (5.4)

In NCL the penalised error functional to be minimised reads:

Ei =
1

2
(Fi(x

i(t))− y(t))2 + λpi(x
i(t)), (5.5)

where

pi(x
i(t)) = (Fi(x

i(t))− F (t))
∑

i6=j

(Fj(x
j(t))− F (t)), (5.6)

and λ > 0 is an adjustable strength parameter for the negative correlation enforcing

penalty term pi. It can be shown that:
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Ei =
1

2
(Fi(x

i(t))− y(t))2 − λ(Fi(x
i(t))− F (t))2. (5.7)

Note that when λ = 0, we obtain a standard de-coupled training of individual en-

semble members. Standard gradient-based approaches can be used to minimise E by

updating the parameters of each individual ensemble member.

We remark that in contrast to standard NCL, in ensemble of ESNs, the maps Fi each

receive a different input xi(t) that provide diverse representations of the common input

stream ...s(t−1)s(t) observed up to time t. However, one can treat the reservoir activations

xi(t) as internal representations of the i-th ensemble model receiving the common input

s(t). From this point of view, all the ensemble models receive the same input, as is the

case in the standard NCL.

5.2 Experiments

We employ three timeseries used in the Echo state Network (ESN) literature and intro-

duced in section 3.2.1 to evaluate our proposed Ensemble of ESN, 10th order NARMA sys-

tem (Verstraeten et al., 2007), Laser Dataset (Steil, 2007), and Sunspot series (Schwenker

and Labib, 2009). For each data set, we denote the length of the training, validation and

test sequences by Ltrn, Lval and Ltst, respectively. The first Lwash values from training,

validation and test sequences are used as the initial washout period. In what follows we

briefly introduce the data sets.
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5.2.1 Datasets

10th order NARMA system

y(t + 1) = 0.3 y(t) + 0.05 y(t)
9
∑

i=0

y(t− i) + 1.5 s(t− 9) s(t) + 0.1, (5.8)

The networks were trained on system identification task to output y(t) based on s(t),

with Ltrn = 2000, Lval = 3000, Ltst = 3000 and Lwash = 200.

Chaotic Laser Dataset

The time series is a cross-cut through periodic to chaotic intensity pulsations of a real

laser. The task is to predict the next laser activation y(t+1), given the values up to time

t; Ltrn = 2000, Lval = 3000, Ltst = 3000 and Lwash = 200.

Sunspot series

This dataset contains 3100 sunspots numbers from Jan 1749 to April 2007, where Ltrn =

1600, Lval = 500, Ltst = 1000 and Lwash = 100. The task was to predict the next value

y(t + 1) based on the history of y up to time t.

5.2.2 Experimental setup

The ensemble used in our experiments consists of M = 10 ESNs with MLP readouts. In

all experiments we use ESNs with reservoirs of N = 100 units. Hence, each individual

MLP readout has 100 inputs. We used NCL training of readouts via gradient descent on

E with learning rate η = 0.1. The output activation function of the MLP readout was

linear for NARMA task and sigmoid logistic for the laser and sunspot tasks.
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We optimised the penalty factor λ and the readout complexity (number of hidden

nodes in Fi) using the validation set, λ was varied in the range [0, 1] (step size 0.1) (Brown

and Yao, 2001). The number of hidden nodes was varied from 1 to 20 (step 1).

The single ESN model architecture described by hyperparameters such as input

weight scale, spectral radius and reservoir sparsity, was determined on the validation

set. Linear readout was trained via ridge regression (Wyffels et al., 2008).

The performance of this model was determined in 10 independent runs (e.g. 10

realisations of ESN based on the best performing hyperparameters).

For ensemble ESN (Ens-ESN-MLP), we used the 10 ESN reservoirs generated in the

single ESN experiment as the ensemble members. Due to random initialisation of MLP

readouts, we report the average performance (plus the minimum, maximum and standard

deviation values) over 10 random initialisations of MLPs.

5.3 Results

Table 5.1 summarises the results of the single ESN model, Negatively Correlated ensemble

of ESNs and independent ensemble of ESNs (λ = 0) for the three time series considered

in this chapter. To assess the improvement achieved by using a genuine NCL training vs.

independent training of ensemble members (λ = 0), the MLP readouts were initialised

with the same weight values in both cases. In all datasets, the ESN ensemble trained

via NCL outperformed the other models, with the most significant performance gain

for NARMA and Sunspots tasks (confidence level 99.9%). For the laser dataset the

significance level was greater than 98%.

Note that the two ESN ensemble versions we study share the same number of free

parameters, with the sole exception of the single diversity-imposing parameter λ in NCL

based learning. The single ESN has been used as a natural baseline against which to
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compare the ensemble performance.

Table 5.1: Performance of the single ESN model and the ESN ensemble models
Dataset Test ESN Ens-ESN-MLP Ens-ESN-MLP

linear regression Indep. learning NCL

MSE 0.00102 0.000795 0.000297
NARMA STD 0.000101 0.0000142 0.0000237

Min 0.000865 0.000768 0.000270
Max 0.00118 0.000810 0.000349

MSE 0.000197 0.000187 0.000138
Laser STD 0.0000724 0.00000767 0.00000205

Min 0.0000998 0.000172 0.0000987
Max 0.000315 0.000197 0.000170

MSE 0.00163 0.00136 0.00115
Sunspots STD 0.000122 6.385E-06 1.054E-05

Min 0.00143 0.00136 0.00110
Max 0.00191 0.00138 0.00116

5.4 Chapter Summary

In this chapter we proposed an ensemble of Echo State Networks (ESNs) with diverse

reservoirs whose collective read-out is obtained through Negative Correlation Learning

(NCL) of ensemble of Multi-Layer Perceptrons (MLP), where each individual MPL realises

the readout from a single ESN. Experimental results on three data sets confirm that,

compared with both single ESN and flat ensembles of ESNs, NCL based ESN ensembles

achieve better generalisation performance.
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Chapter 6

Short Term Memory Quantifications

in Input-Driven Linear Dynamical

Systems

Input driven dynamical systems play an important role as machine learning models when

data sets exhibit temporal dependencies, e.g. in prediction or control. In an attempt

to characterise dynamic properties of such systems, measures have been suggested to

quantify how well past information can be represented in the system’s internal state. In

this chapter we investigate two such well known measures, namely the short term memory

capacity spectrum MCk (Jaeger, 2002a) see section 2.2.3, and the Fisher memory curve

J(k) (Ganguli et al., 2008). The two quantities map the memory structure of the system

under investigation from two quite different perspectives. So far their relation has not

been closely investigated. In this work we take the first step to bridge this gap and show

that under some conditions MCk and J(k) can be closely related.
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6.1 Fisher Memory Curve (FMC)

Memory capacity MC of a reservoir is one way of quantifying the amount of information

that can be preserved in the reservoir about the past inputs. In (Ganguli et al., 2008)

Ganguli, Huh and Sompolinsky proposed a different quantification of memory capacity

for linear reservoirs corrupted by a Gaussian state noise. In particular, it is assumed that

the dynamic noise z(t) is a memoryless process of i.i.d. zero mean Gaussian variables

with co-variance ǫI (I is the identity matrix). Then, given an input driving stream

s(..t) = ... s(t−2) s(t−1) s(t), the dynamic noise induces a state distribution p(x(t)|s(..t)),

which is a Gaussian with covariance (Ganguli et al., 2008)

C = ǫ
∞
∑

ℓ=0

W ℓ(W T )ℓ. (6.1)

The Fisher memory matrix quantifies sensitivity of p(x(t)|s(..t)) with respect to small

perturbations in the input driving stream s(..t) (parameters of the recurrent network are

fixed),

Fk,l(s(..t)) = −Ep(x(t)|s(..t))

[

∂2

∂s(t − k)∂s(t− l)
log p(x(t)|s(..t))

]

and its diagonal elements J(k) = Fk,k(s(..t)) quantify the information that x(t) retain

about a change (e.g. a pulse) entering the network k time steps in the past. The collection

of terms {J(k)}∞k=0 was termed Fisher memory curve (FMC) and evaluated to (Ganguli

et al., 2008)

J(k) = V T (W T )kC−1W kV. (6.2)

Note that, unlike the short term memory capacity, the FMC does not depend on the input

driving stream.
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6.2 Relation between short term memory capacity

and Fisher memory curve

We first briefly introduce some necessary notation. Denote the image of the input weight

vector V through k-fold application of the reservoir operator W by V (k), i.e. V (k) = W k V .

Define A = 1
ǫ
C −G, where

G =
∞
∑

ℓ=0

V (ℓ) (V (ℓ))T . (6.3)

Provided A is invertible, denote G (A−1 + G−1) G by D. For any positive definite matrix

B ∈ R
n×n we denote the induced norm on R

n by ‖ · ‖B, i.e. for any V ∈ R
n, ‖V ‖2B =

V T BV . We are now ready to formulate the main result.

Theorem: Let MCk be the k-th memory capacity term (2.16) of network (2.10) with no

dynamic noise, under a zero-mean i.i.d. input driving source. Let J(k) be the k-th term

of the Fisher memory curve (6.2) of network (2.10) with i.i.d. dynamic noise of variance

ǫ. If D is positive definite, then

MCk = ǫ J(k) + ‖V (k)‖2D−1 (6.4)

and MCk > ǫ J(k), for all k > 0.

Proof: Given an i.i.d. zero-mean real-valued input stream s(..t) = ... s(t−2) s(t−1) s(t)

of variance σ2 emitted by a source P , the state at time t of the linear reservoir (under no

dynamic noise (ǫ = 0)) is

x(t) =
∞
∑

ℓ=0

s(t− ℓ) W ℓ V =
∞
∑

ℓ=0

s(t− ℓ) V (ℓ).

For the task of recalling the input from k time steps back, the optimal least-squares
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readout vector U is given by eq.(3.9):

Provided R is full rank, the optimal readout vector U (k) for delay k ≥ 1 reads

U (k) = G−1 V (k). (6.5)

The optimal ‘recall’ output at time t is then y(t) = xT (t) U (k), yielding

Cov(s(t− k), y(t)) = σ2 (V (k))T G−1 V (k). (6.6)

Since for the optimal recall output Cov(s(t− k), y(t)) = V ar(y(t)) (Jaeger, 2002a),

we have

MCk = (V (k))T G−1 V (k). (6.7)

The Fisher memory curve and memory capacity terms (6.2) and (6.7), respectively have

the same form.

The matrix G =
∑∞

ℓ=0 V (ℓ) (V (ℓ))T can be considered a scaled ‘covariance’ matrix

of the iterated images of V under the reservoir mapping. Then MCk is the squared

‘Mahalanobis norm’ of V (k) under the covariance structure G,

MCk = (V (k))T G−1 V (k)

= ‖V (k)‖2G−1 . (6.8)

Analogously, J(k) is the squared ‘Mahalanobis norm’ of V (k) under the covariance C

of the state distribution p(x(t)|s(..t)) induced by the dynamic noise z(t),

J(k) = (V (k))T C−1 V (k)

= ‖V (k)‖2C−1 . (6.9)
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Denote the rank-1 matrix V V T by Q. Then by (6.1),

1

ǫ
C = A + G,

where

A =
∞
∑

ℓ=0

W ℓ (I −Q) (W T )ℓ.

It follows that ǫC−1 = (A + G)−1 and, provided A is invertible (and (A−1 + G−1) is

invertible as well), by matrix inversion lemma,

ǫC−1 = G−1 −G−1 (A−1 + G−1)−1 G−1.

We have

J(k) = (V (k))T C−1 V (k)

=
1

ǫ
MCk −

1

ǫ
(V (k))T D−1 V (k),

where

D = G (A−1 + G−1) G.

Since G and A are symmetric matrices, so are their inverses and hence D is also a

symmetric matrix. Provided D is positive definite, it can be considered (inverse of a)

metric tensor and

MCk = ǫ J(k) + ‖V (k)‖2D−1 .

Obviously, in such a case, MCk > ǫ J(k) for all k > 0.

From (6.4) we have

∞
∑

k=0

MCk = ǫ
∞
∑

k=0

J(k) +
∞
∑

k=0

‖V (k)‖2D−1 .
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If the input weight vector V is a unit vector (‖V ‖2 = 1) and the reservoir matrix W is

normal (i.e. has orthogonal eigenvector basis), we have
∑∞

k=0 J(k) = 1 (Ganguli et al.,

2008). In such cases
∑∞

k=0 MCk = N , implying

∞
∑

k=0

‖V (k)‖2D−1 = N − ǫ. (6.10)

As an example of metric structures underlying the norms in (6.4), (6.8) and (6.9), we show

in figure 6.1 covariance structure of C (ǫ = 1), G and D corresponding to a 15-node linear

reservoir. The covariances were projected onto the two-dimensional space spanned by the

1st and 14th eigenvectors of C (rank determined by decreasing eigenvalues). Reservoir

weights were randomly generated from a uniform distribution over an interval symmetric

around zero and then W was normalised to spectral radius 0.995. Input weights were

generated from uniform distribution over [−0.5, 0.5].

6.3 Discussion

We investigated the relation between two quantitative measures suggested in the literature

to characterise short term memory in input driven dynamical systems, namely the short

term memory capacity spectrum MCk and the Fisher memory curve J(k), for time lags

k ≥ 0. J(k) is independent of the input driving stream s(..t) and measures the ‘inherent’

memory capabilities of such systems by measuring the sensitivity of the state distribution

p(x(t)|s(..t)) induced by the dynamic noise with respect to perturbations in s(..t), k time

steps back. On the other hand MCk quantifies how well the past inputs s(t− k) can be

reconstructed by linearly projecting the state vector x(t). We have shown, that under

some assumptions, the two quantities can be interpreted as squared ‘Mahalanobis’ norms

of images of the input vector under the system’s dynamics and that MCk > ǫ J(k), for

all k > 0. Even though MCk and J(k) map the memory structure of the system under
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investigation from two quite different perspectives, they can be closely related.

6.4 Chapter Summary

In this chapter we first presented in section 6.1 a review about a quantitative measure

suggested in the literature to characterise short term memory in input driven dynamical

systems, namely the Fisher memory curve J(k). We have shown in section 6.2, that the

short term memory capacity spectrum MCk and the Fisher memory curve J(k) can be

interpreted as squared ‘Mahalanobis’ norms of images of the input vector. Finally, in

section 6.3 we discussed that they can be closely related.
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Figure 6.1: Covariance structure of C (A), G (B) and D (C) for a 15-node linear reservoir
projected onto the 1st and 14th eigenvectors of C. Shown are iso-lines corresponding to
0.5, 1, 1.5, ..., 3 standard deviations.
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Chapter 7

Conclusions and Future Work

This chapter presents the general conclusions and gives directions for future work.

7.1 Conclusions

Reservoir Computing (RC) models are dynamical models for processing time series that

make a conceptual separation of the temporal data processing into two parts:

1. representation of temporal structure in the input stream through a non-adaptable

dynamic “reservoir”, and

2. a memoryless easy-to-adapt readout from the reservoir.

The field of reservoir computing has been growing rapidly with dedicated special

sessions at conferences and special issues of journals (Jaeger et al., 2007b). It has been

widely believed that randomised construction of reservoirs is desirable. Reservoir comput-

ing has been successfully applied in many practical applications (Jaeger, 2001, 2002a,b;

Jaeger and Hass, 2004; Mass et al., 2004; Tong et al., 2007). However, reservoir com-

puting is sometimes criticised for not being principled enough (Prokhorov, 2005). There
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have been several attempts to address the question of what exactly is a ‘good’ reser-

voir for a given application (Hausler et al., 2003; Ozturk et al., 2007), but no coherent

theory has yet emerged. The largely black box character of reservoirs prevents us from

performing a deeper theoretical investigation of the dynamical properties of successful

reservoirs. Reservoir construction is often driven by a series of (more-or-less) randomised

model building stages, with both the researchers and practitioners having to rely on a

series of trials and errors. Sometimes reservoirs have been evolved in a costly and difficult

to analyse evolutionary computation setting (Bush and Anderson, 2005; Ishii et al., 2004;

Schmidhuber et al., 2007; Ajdari Rad et al., 2008).

In chapter 3 we argued that randomisation in reservoir construction may not be

necessary. Besides eliminating the problem of non-transparency and trail-and-error con-

struction of standard randomised ESN, the simple deterministically constructed SCR

topologies were shown to yield comparable results to ESN on a variety of temporal tasks.

On a number of widely used time series benchmarks of different origin and char-

acteristics, as well as by conducting a theoretical analysis we have shown in chapter 3

that:

1. A very simple cycle topology of reservoir is often sufficient for obtaining perfor-

mances comparable to those of ESN. Except for the NARMA datasets, nonlinear

reservoirs were needed.

2. Competitive reservoirs can be constructed in a completely deterministic manner:

The reservoir connections all have the same weight value. The input connections

have the same absolute value with sign distribution following one of the universal

deterministic aperiodic patterns.

3. The memory capacity of linear cyclic reservoirs with a single reservoir weight value

r can be made to differ arbitrarily close to the proved optimal value of N , where N

107



is the reservoir size. In particular, given an arbitrarily small ǫ ∈ (0, 1), for

r = (1− ǫ)
1

2N ,

the memory capacity of the cyclic reservoir is N − ǫ.

The simple deterministic nature of our SCR model enabled us to calculate analytically

its memory capacity; obtaining such a result for standard ESN is not possible, since:

• for standard ESN one could only calculate the mean memory capacity (with respect

to randomisation of ESN construction)

• closed form equality is very difficult to obtain for reservoirs with a range of possible

recurrent/input weight values.

Compared with traditional ESN, recent extensions and reformulations of reservoir

models often achieved improved performances (Steil, 2007; Xue et al., 2007; Deng and

Zhang, 2007), at the price of even less transparent models and less interpretable dynam-

ical organisation. We stress that the main purpose of the work in chapter 3 is not a

construction of yet another reservoir model achieving an (incremental or more substan-

tial) improvement over the competitors on the benchmark data sets. Instead, we would

like to propose as simplified as possible reservoir construction, without any stochastic

component, that while competitive with standard ESN, yields transparent models, more

amenable to theoretical analysis than the reservoir models proposed in the literature so

far.

Such reservoir models can potentially help us to answer the question just what is it in

the organisation of the non-autonomous reservoir dynamics that leads to often impressive

performances of reservoir computation. Our simple deterministic SCR model introduced

in chapter 3 can be used as a a useful baseline in future reservoir computation studies.

It is the level of improvement over the SCR baseline that has a potential to truly unveil
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the performance gains achieved by the more (and sometimes much more) complex model

constructions.

However, in chapter 4 we extended our work in several aspects:

1. We introduced a novel simple deterministic reservoir model, Cycle Reservoir with

Jumps (CRJ) with highly constrained weight values, that has superior performance

to standard ESN on four temporal tasks of different origin and characteristics.

2. We studied the effect of eigenvalue distribution of the reservoir matrix on the model

performance. It has been suggested that a uniform coverage of the unit disk by such

eigenvalues can lead to superior model performances. We showed that this is not

necessarily so. Despite having highly constrained eigenvalue distribution the CRJ

consistently outperformed ESN with much more uniform eigenvalue coverage of the

unit disk.

3. We presented a new framework for determining short term memory capacity MC

of linear reservoir models to a high degree of precision. Using the framework we

showed the effect of shortcut connections in the CRJ reservoir topology on its mem-

ory capacity. Due to cross-talk effects introduced by the jumps in CRJ, the MC

contributions start to rapidly decrease earlier than in the case of SCR, but unlike in

SCR, the decrease in MCk in CRJ is gradual, enabling the reservoir to keep more

information about some of the later inputs.

4. Through the study of pseudo-Lyapunov exponents we showed that even though

(unlike ESN) the simple CRJ reservoirs have (average) contractive dynamics, they

achieved consistently the best performance. This poses a interesting open question

as to whether and in what contexts the “edge-of-chaos” hypothesis can be applied

to reservoir computations.
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We believe that if given a choice whether to construct a model in a randomised or

completely deterministic manner, having guarantees of ‘similar’ performance levels, it is

more advisable to go for the latter. Besides the advantages mentioned above, in our

framework the important elements of the model structure have a chance to emerge.

For example, we show that even though simple unidirectional cycle with fixed weight (SCR

model) is already competitive, adding regular bidirectional shortcuts (of the same weight)

originating and ending in few higher-clustering coefficient nodes (CRJ model), brings po-

tentially huge performance improvements (and sometimes significantly beats ESN). Such

an insight could not be obtained using traditional randomised reservoir generation. This

opens new research questions as to exactly why such a jump modification has this ef-

fect. Such focused research program would not originate from studies consistently using

randomised reservoir constructions. On the other hand, using randomised reservoir con-

struction can have beneficial effects on model evaluation - in contrast to deterministically

constructed reservoirs, one may need a smaller pool of different tasks to get the same

statistical significance.

We propose that in order to quantify the benefit of the potentially complex current

or future reservoir formulations, such models should be compared with our simple, de-

terministically constructed CRJ model that, as shown in chapter 4, has a potential to

significantly outperform the traditional ESN.

In chapter 5, we have empirically demonstrated that coupling ESN models through

negatively correlated non-linear readouts can lead to performance improvements over the

simple ESN ensemble. In contrast to traditional negatively correlated ensembles, the

readouts receive different inputs. However, when considering our model as ensemble of

ESNs, each receiving the same input stream, the reservoir activations represent internal

feature representations of the inputs and the model can be viewed as a novel generali-

sation of NCL to state space models. There have been studies of simple ESN ensembles

(Schwenker and Labib, 2009), or Multi-Layer Perceptron (MLP) readouts (Babinec and
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Pospichal, 2006; Bush and Anderson, 2005), but to the best of our knowledge, this is the

first study employing a NCL style training in ensembles of state space models, such as

ESNs.

Finally, in Chapter 6 , we have shown that under some assumptions, the two quan-

tities measures suggested to characterise short term memory in input driven dynamical

systems, namely the short term memory capacity spectrum MCk and the Fisher memory

curve J(k) can be interpreted as squared ‘Mahalanobis’ norms of images of the input vec-

tor under the system’s dynamics, and that even though MC and FMC map the memory

structure of the system from two quite different perspectives, they can be linked by a

close relation.

7.2 Future Work

Several future work directions arise to extend the results of this work. Here we will

introduce some ideas we are planning to explore in our future research work.

7.2.1 Reservoir characterisations

It seems that characterisations of reservoirs in terms of memory capacity, eigenvalue de-

composition of the reservoir weight matrix or pseudo-Lyapunov exponents, cannot easily

capture what makes reservoirs great temporal modelling tools. Reservoirs are non-linear

non-autonomous dynamical systems that are difficult to characterise by linearisation tech-

niques (eigenspectrum), or methods not directly representing task-related useful temporal

structure in the input driving stream (memory capacity). Theory and practice of deep

reservoir characterisations that can be directly linked to their performance is an open

problem for future work.

Moreover, in contrast to the complex trial-and-error ESN construction, our simple
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approach (Simple Cycle Reservoir (SCR)) introduced in Chapter 3 leaves the user with

only two free parameters to be set, r and v. This not only considerably simplifies the

ESN construction, but also enables a more thorough theoretical analysis of the reservoir

characterisations. The doors can be open for a wider acceptance of the ESN methodology

amongst both practitioners and theoreticians working in the field of time series mod-

elling/prediction. In addition, our simple deterministically constructed reservoir models

( SCR and CRJ) can serve as useful baselines in future reservoir computing studies. The

simple nature of our SCR reservoir can enable a systematic study of the short-term Mem-

ory Capacity (MC) measure for different kinds of input stream sources and this is a

matter for future work.

7.2.2 Input weight and reservoir structures

Even though the theoretical analysis of the Simple Cycle Reservoir (SCR) introduced

in Chapter 3 has been done for the linear reservoir case, the requirement that all cyclic

rotations of the input vector need to be linearly independent seem to apply to the non-

linear case as well. Indeed, under the restriction that all input connections have the same

absolute weight value, the linear independence condition translates to the requirement

that the input sign vector follows an aperiodic pattern. Of course, from this point of

view, a simple standard basis pattern (+1,-1,-1,...,-1) is sufficient. Interestingly enough,

we found out that the best performance levels were obtained when the input sign pattern

contained roughly equal number of positive and negative signs. At the moment we have

no satisfactory explanation for this phenomenon and we leave it as an open question for

future work.

Moreover, for the moment in the case of bi-directional regular jumps (CRJ), we don’t

have an explanation for why we need to start from the same landing jump n not from the

next unit n + 1 for the landing jump to achieve better results, and we leave this as an

open question for future work.
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7.2.3 Negative Correlation Learning through time

Negative Correlation Learning (NCL) is a successful ensemble technique by inducing di-

versity among ensemble members explicitly. This has been verified in several studies on

static data (no dependencies of inputs through time). In chapter 5, we designed a Nega-

tively Correlated Ensemble of Echo state Networks, where Negative correlation learning

achieved useful results, and as a future work, it is good to extend the idea to input depen-

dencies through time, so we can train an Ensemble of Recurrent Neural Networks (RNNs)

using BPTT or RTRL , where all the individual RNNs are trained simultaneously and

interactively through the correlation penalty terms in their error functions.

7.3 Chapter Summary

We have drawn the conclusions in section 7.1, where these conclusions are discussed in

details. Several research directions were given in section 7.2.
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Appendix A

Experimental Setup and Detailed

Results

General description of the experimental setup used in section 3.2 is summarised in table

A.1, with details on selected model parameters for different data sets presented in ta-

ble A.2. Detailed results including standard deviations across repeated experiments (as

described in chapter 3 section 3.2) are shown in tables A.3 : A.16.

Table A.1: Experimental Setup

NARMA (of different orders), Santa Fe Laser,
Datasets Hénon Map, Nonlinear Communication Channel,

Sunspots, IPIX Radar, Nonlinear System with Observational Noise, and Isolated Digits
Model class topologies ESN, DLR, DLRB, and SCR

Readout learning RLS with dynamic noise injection , and Ridge Regression
ESN: (random weights with spectral radius α = [0.05 : 0.05 : 1] ,

Reservoir weights and connectivity con = [0.05 : 0.05 : 0.5])
DLR, DLRB , and SCR: (r = [0.05 : 0.05 : 1], b = [0.05 : 0.05 : 1] )

where b ∈ 1 − r < b < 1/(4r)
reservoir sizes [50 : 50 : 200] In case of IPIX Radar and sunspots N = 80 and N = 200, respectively.
input scale [0.01 : 0.005 : 1]

input sign generation (1) random draw from Bernoulli distribution (mean=1/2),
(2) decimal expansion of irrational numbers (π and e),

(3) binary symbolic dynamics of the logistic map
noise size for RLS [0 : 10−0.25 : 10−15]

generalisation factor for Ridge regression [0 : 10−0.25 : 10−15]
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Table A.2: Selected Model Parameters Based on the Validation Set Performance
Dataset Item ESN DLR DLRB SCR

Input weight connection uniform over (-0.1,0.1) ±0.1 ±0.1 ±0.1
NARMA reservoir weights α = 0.95 r=0.8 r=0.8, b=0.05 r=0.8
N = 100 Sparseness of W 0.1 - - -

Input weight connection uniform over (-1,1) ±0.6 ±0.6 ±0.6
Laser reservoir weights α = 0.95 r=1 r=1, b=0.01 r=1

N = 100 Sparseness of W 0.5 - - -

Input weight connection uniform over (-1,1) ±0.95 ±0.95 ±0.95
Hénon Map reservoir weights α = 0.3 r=0.95 r=0.95, b=0.05 r=0.95

N = 100 Sparseness of W 0.5 - - -

Nonlinear Input weight connection uniform over (-0.025,0.025) ±0.025 ±0.025 ±0.025
Communication Channel reservoir weights α = 0.5 r=0.95 r=0.95, b=0.05 r=0.95

N = 100 Sparseness of W 0.2 - - -

Input weight connection uniform over (-1,1) ±1 ±1 ±1
Sunspots reservoir weights α = 0.75 r=0.3 r=0.3, b=0.1 r=0.3
N = 200 Sparseness of W 0.2 - - -

Nonlinear System Input weight connection uniform over (-0.1,0.1) ±0.025 ±0.025 ±0.025
with Observational Noisy reservoir weights α = 0.65 r=0.65 r=0.65, b=0.2 r=0.65

N = 100 Sparseness of W 0.2 - - -

Input weight connection uniform over (-0.04,0.04) ±0.04 ±0.04 ±0.04
IPIX Radar reservoir weights α = 0.7 r=0.65 r=0.6, b=0.05 r=0.65

N = 80 Sparseness of W 0.13 - - -
Input weight connection uniform over (-1,1) ±1 ±1 ±1

Isolated Digits reservoir weights α = 1 r=0.1 r=0.1, b=0.05 r=0.1
N = 100 Sparseness of W 0.8 - - -

Table A.3: Test set performance of ESN, SCR, DLR, and DLRB topologies on the 10th

order NARMA dataset for internal nodes with tanh transfer function f .
reservoir Size ESN DLR DLRB SCR

50 0.166 (0.0171) 0.163 (0.0138) 0.158 (0.0152) 0.160 (0.0134)

100 0.0956 (0.0159) 0.112(0.0116) 0.105 (0.0131) 0.0983 (0.0156)

150 0.0514 (0.00818) 0.0618 (0.00771) 0.0609 (0.00787) 0.0544 (0.00793)

200 0.0425 (0.0166) 0.0476 (0.0104) 0.0402 (0.0110) 0.0411 (0.0148)

Table A.4: Test set performance of ESN, SCR, DLR, and DLRB topologies on the 10th

order NARMA dataset for internal nodes with linear transfer function f .
reservoir Size ESN DLR DLRB SCR

50 0.1601 (6.108E-04) 0.1606 (8.342E-05) 0.1602 (3.889E-04) 0.1603 (1.196E-04)

100 0.1602 (4.152E-04) 0.1607 (6.574E-05) 0.1600 (2.916E-04) 0.1603 (6.940E-05)

150 0.1603 (3.401E-04) 0.1607 (3.760E-05) 0.1599 (2.715E-04) 0.1603 (2.167E-05)

200 0.1604 (3.612E-04) 0.1606 (6.437E-05) 0.1599 (3.930E-04) 0.1603 (2.610E-05)
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Table A.5: Test set performance of ESN, SCR, DLR, and DLRB topologies on the 10th

order random NARMA dataset for internal nodes with tanh transfer function f .
reservoir Size ESN DLR DLRB SCR

50 0.131 (0.0165) 0.133 (0.0132) 0.130 (0.00743) 0.129 (0.0111)

100 0.0645 (0.0107) 0.0822 (0.00536) 0.0837 (0.00881) 0.0719 (0.00501)

150 0.0260 (0.0105) 0.0423 (0.00872) 0.0432 (0.00933) 0.0286 (0.00752)

200 0.0128 (0.00518) 0.0203 (0.00536) 0.0201 (0.00334) 0.0164 (0.00412)

Table A.6: Test set performance of ESN, SCR, DLR, and DLRB topologies on the 10th

order random NARMA dataset for internal nodes with linear transfer function f .
reservoir Size ESN DLR DLRB SCR

50 0.1497 (3.033E-04) 0.1502 (3.916E-04) 0.1501 (2.178E-04) 0.1501 (2.574E-04)

100 0.1499 (2.219E-04) 0.1500 (2.232E-04) 0.1496 (1.912E-04) 0.1501 (2.557E-04)

150 0.1499 (2.782E-04) 0.1502 (3.264E-04) 0.1498 (2.170E-04) 0.1501 (3.706E-04)

200 0.1500 (3.217E-04) 0.1502 (1.753E-04) 0.1497 (1.820E-04) 0.1501 (1.466E-04)

Table A.7: Test set performance of ESN, SCR, DLR, and DLRB topologies on the 20th

order NARMA dataset for internal nodes with tanh transfer function f .
reservoir Size ESN DLR DLRB SCR

50 0.297 (0.0563) 0.232 (0.0577) 0.238 (0.0507) 0.221 (0.0456)

100 0.235 (0.0416) 0.184 (0.0283) 0.183 (0.0196) 0.174 (0.0407)

150 0.178 (0.0169) 0.171 (0.0152) 0.175 (0.0137) 0.163 (0.0127)

200 0.167 (0.0164) 0.165 (0.0158) 0.160 (0.0153) 0.158 (0.0121)

Table A.8: Test set performance of ESN, SCR, DLR, and DLRB topologies on the 20th

order NARMA dataset for internal nodes with linear transfer function f .
reservoir Size ESN DLR DLRB SCR

50 0.1446 (9.922E-04) 0.1441 (1.624E-04) 0.1428 (3.668E-04) 0.1439 (8.446E-04)

100 0.1437 (3.866E-04) 0.1430 (1.133E-04) 0.1426 (4.284E-05) 0.1431(7.762E-05)

150 0.1434 (4.601E-04) 0.1430 (5.243E-05) 0.1426 (4.636E-05) 0.1430 (3.017E-05)

200 0.1433 (3.787E-04) 0.1430 (4.148E-05) 0.1426 (5.896E-05) 0.1430 (3.620E-05)
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Table A.9: Test set performance of ESN, SCR, DLR, and DLRB topologies on the laser

dataset for internal nodes with tanh transfer function f .
reservoir Size ESN DLR DLRB SCR

50 0.0184 (0.00231) 0.0210 (0.00229) 0.0215 (0.00428) 0.0196 (0.00219)

100 0.0125 (0.00117) 0.0132 (0.00116) 0.0139 (0.00121) 0.0131 (0.00105)

150 0.00945 (0.00101) 0.0107 (0.00114) 0.0112 (0.00100) 0.0101 (0.00109)

200 0.00819 (5.237E-04) 0.00921 (9.122E-04) 0.00913 (9.367E-04) 0.00902 (6.153E-04))

Table A.10: Test set performance of ESN, SCR, DLR, and DLRB topologies on the Hénon

Map dataset for internal nodes with tanh transfer function f .
reservoir Size ESN DLR DLRB SCR

50 0.00975 (0.000110) 0.0116 (0.000214) 0.0110 (0.000341) 0.0106 (0.000185)

100 0.00894 (0.000122) 0.00982 (0.000143) 0.00951 (0.000120) 0.00960 (0.000124)

150 0.00871 (4.988E-05) 0.00929 (6.260E-05) 0.00893 (6.191E-05) 0.00921 (5.101E-05)

200 0.00868 (8.704E-05) 0.00908 (9.115E-05) 0.00881 (9.151E-05) 0.00904 (9.250E-05)

Table A.11: Test set performance of ESN, SCR, DLR, and DLRB topologies on the Non-

linear Communication Channel dataset for internal nodes with tanh transfer function

f .
reservoir Size ESN DLR DLRB SCR

50 0.0038 (4.06E-4) 0.0034 (2.27E-4) 0.0036 (2.26E-4) 0.0035 (2.55E-4)

100 0.0021 (4.42E-4) 0.0015 (1.09E-4) 0.0016 (1.07E-4) 0.0015 (1.23E-4)

150 0.0015 (4.01E-4) 0.0011 (1.12E-4) 0.0011 (1.08E-4) 0.0012 (1.23E-4)

200 0.0013 (1.71E-4) 0.00099 (6.42E-5) 0.0010 (7.41E-5) 0.0010 (7.28E-5)

Table A.12: Test set performance of ESN, SCR, DLR, and DLRB topologies on the

Isolated Digits dataset for internal nodes with tanh transfer function f .
reservoir Size ESN DLR DLRB SCR

50 0.0732 (0.0193) 0.0928 (0.0177) 0.1021 (0.0204) 0.0937 (0.0175)

100 0.0296 (0.0063) 0.0318 (0.0037) 0.0338 (0.0085) 0.0327 (0.0058)

150 0.0182 (0.0062) 0.0216 (0.0052) 0.0236 (0.0050) 0.0192 (0.0037)

200 0.0138 (0.0042) 0.0124 (0.0042) 0.0152 (0.0038) 0.0148 (0.0050)
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Table A.13: Test set performance of SCR topology on the 20th order NARMA dataset

using three different ways of generating pseudo-randomised input sign patterns: initial

digits of π and Exp; symbolic dynamics of logistic map.
reservoir Size ESN SCR-PI SCR-Ex SCR-Log

50 0.297 (0.0563) 0.233 (0.0153) 0.232 (0.0175) 0.196 (0.0138)

100 0.235 (0.0416) 0.186 (0.0166) 0.175 (0.0136) 0.169 (0.0172)

150 0.178 (0.0169) 0.175 (0.00855) 0.158 (0.0103) 0.156 (0.00892)

200 0.167 (0.0164) 0.166 (0.00792) 0.157 (0.00695) 0.155 (0.00837)

Table A.14: Test set performance of SCR topology on the laser dataset using three

different ways of generating pseudo-randomised input sign patterns: initial digits of π

and Exp; symbolic dynamics of logistic map.
reservoir Size ESN SCR-PI SCR-Ex SCR-Log

50 0.0184 (0.00231) 0.0204 0.0187 0.0181

100 0.0125 (0.00117) 0.0137 0.0153 0.0140

150 0.00945 (0.00101) 0.0115 0.0111 0.0126

200 0.00819 (5.237E-04) 0.00962 0.00988 0.0107

Table A.15: Test set performance of SCR topology on the Hénon Map dataset using

three different ways of generating pseudo-randomised input sign patterns: initial digits of

π and Exp; symbolic dynamics of logistic map.
reservoir Size ESN SCR-PI SCR-Ex SCR-Log

50 0.00975 (0.000110) 0.00986 0.00992 0.00998

100 0.00894 (0.000122) 0.00956 0.00985 0.00961

150 0.00871 (4.988E-05) 0.00917 0.00915 0.00920

200 0.00868 (8.704E-05) 0.00892 0.00883 0.00898

Table A.16: Test set performance of SCR topology on the Non-linear Communication

Channel dataset using three different ways of generating pseudo-randomised input sign

patterns: initial digits of π and Exp; symbolic dynamics of logistic map.
reservoir Size ESN SCR-PI SCR-Ex SCR-Log

50 0.0038 (4.06E-4) 0.0036 (1.82E-04) 0.0026 (6.23E-05) 0.0033 (1.09E-04)

100 0.0021 (4.42E-4) 0.0016 (7.96E-05) 0.0017 (1.04E-04) 0.0015 (8.85E-5)

150 0.0015 (4.01E-4) 0.0012 (7.12E-05) 0.0011 (6.10E-05) 0.0012 (4.56E-05)

200 0.0013 (1.71E-4) 0.00088 (2.55E-05) 0.00090 (3.05E-05) 0.00093 (3.33E-05)
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Appendix B

Selected model representatives

In this appendix we show detailed parameter settings of the selected model representatives

for our experiments in chapter 4. Details of parameter values of models used in section 4.2

are provided in Table B.1. Table B.2 reports parameters for models used in comparison

experiment with SWNR (section 4.3). Finally, we report parameter values of the selected

hierarchical extension (CRHJ) of the CRJ model in Table B.3 (section 4.3).
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Table B.1: Parameter Values for the Selected ESN, SCR and CRJ Model Representatives

with Reservoir Sizes of N

Dataset ESN SCR CRJ

laser con = 0.2, λ = 0.95, v = 0.85, rc = 0.7 v = 0.9, rc = 0.7,

N = 200 a = 1 rj = 0.4, ℓ = 5

NARMA con = 0.15, λ = 0.85, v = 0.05, rc = 0.8 v = 0.05, rc = 0.7,

N = 200 a = 0.1 rj = 0.5, ℓ = 5

speech con = 0.4, λ = 0.95, v = 1, rc = 0.95 v = 1, rc = 0.9,

N = 200 a = 1 rj = 0.4, ℓ = 13

memory and nonlinear

mapping task con = 0.2, λ = 0.95, v = 0.025, rc = 0.7 v = 0.025, rc = 0.8,

N = 100 a = 0.05 rj = 0.3, ℓ = 24

Table B.2: Parameter Values for the Selected ESN, SWNR, SCR and CRJ Model Repre-

sentatives (Reservoir Size N = 500).

Dataset ESN SWNR SCR CRJ

laser con = 0.15, λ = 0.9, λ = 5.5, v = 0.7, rc = 0.75 v = 0.7, rc = 0.75,

a = 1 a = 1 rj = 0.15, ℓ = 10

NARMA con = 0.2, λ = 0.95, λ = 2, v = 0.05, rc = 0.8 v = 0.1, rc = 0.8,

a = 0.1 a = 0.2 rj = 0.5, ℓ = 21
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Table B.3: Parameter Values for the Selected CRHJ Model Representative (Reservoir Size

N = 100).

Dataset CRHJ

NARMA v = 0.05, rc = 0.6, rj1 = 0.05, rj2 = 0.4, rj3 = 0.25

laser v = 1, rc = 1, rj1 = 0.55, rj2 = 0.4, rj3 = 0.1
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