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Abstract 

Real-time systems are amongst the most safety critical systems involving computer 

software and the incorrect functioning of this software can cause great damage, up to 

and including the loss of life. If seems sensible therefore to write real-time software in a 

way that gives us the best chance of correctly implementing specifications. Because of 

the high level of functional programming languages, their semantic simplicity and their 

amenability to formal reasoning and correctness preserving transformation it thus seems 

natural to use a functional language for this task. 

This thesis explores the problems of applying functional programming languages to 

real-time by defining the real-time functional programming language Ruth. 

The first part of the thesis concerns the identification of the particular problems 

associated with programming real-time systems. These can broadly be stated as a 

requirement that a real-time language must be able to express facts about time, a feature 

we have called time expressibility. 

The next stage is to provide time expressibility within a purely functional 

framework. This is accomplished by the use of timestamps on inputs and outputs and by 

providing a real-time clock as an input to Ruth programs. 

The final major part of the work is the construction of a formal definition of the 

semantics of Ruth to serve as a basis for formal reasoning and transformation. The 

framework within which the formal semantics of a real-time language are defined 

requires time expressibility in the same way as the real-time language itself. This is 

accomplished within the framework of domain theory by the use of specialised domains 

for timestamped objects, called herring-bone domains. These domains could be used as 

the basis for the definition of the semantics of any real-time language. 
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" ... What I want to establish is how accurate Ruth's time sense is. Some 

dragons don't have any at all". 

"Ruth always knows when he is", Jaxom replied with quick pride. "I'd say 

he had the best time memory on Pern" 

Anne McCaffrey, "The White Dragon" 
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Chapter 1 : Defining The Problem: Real-Time 
Systems And The Requirements For 
A Real-Time Programming Language. 

1.1 Introduction 

Real-time systems are amongst the most safety critical systems involving computer 

software. The incorrect functioning of real-time software can cause great damage, up to 

and including the loss of life. It seems sensible therefore, to write real-time software in a 

way that gives us the best chance of correctly implementing specifications. Because of 

the high level of functional programming languages, their semantic simplicity and their 

amenability to formal reasoning and transformation it thus seems natural to use a 

functional language for this task. However the functional style seems to have made little 

headway amongst real-time programmers and the question must be asked whether this is 

due to a basic unsuitability of the functional style of programming for writing real-time 

software. 

The first functional programming language was LISP [McCarthy 60], yet despite 

functional languages' relatively long history it is only in recent times that they have been 

regarded as a practical approach to solving real programming problems. Two major 

reasons have been advanced for this: first, a belief that such languages were, by their 

very nature, unsuited to solving many classes of programming problems; second, the 

difficulty of producing efficient implementations of functional languages on traditional 

von Neumann machines. Because of the nature of the computing industry the second of 

these has always been considered the most important: ease of writing, debugging and 

maintaining software has always come a poor second to the speed at which software 

executes on the hardware. 

This ordering of priorities is beginning, albeit slowly, to change because of the 

rapidly rising cost of software production and the equally rapid fall in the cost of 

hardware. Even so, efficiency considerations will always be important, particularly in 



the area which concerns this work : that of real-time systems. However, functional 

languages need not be less efficient than traditional imperative ones. There is a growing 

interest in forms of computing engine different from the traditional sequential computer 

because of an effect which has been called the von Neumann bottleneck [Backus 78]. 

This phrase refers to the fact that the speed of a processor is limited by the speed with 

which it can communicate (both data and instructions) with its memory. 

If the speed with which one processor may execute a particular task is limited, then 

the obvious way to improve performance is to use more than one processor to execute 

the task co-operatively (so called parallel processing). To fully exploit the potential of 

parallel processing systems all of the available processors must be kept busy all of the 

time, or in other words the task must be partitioned into as many sub-tasks as there are 

processors. This can be difficult with traditional, imperative, languages, such as Pascal 

and Fortran, which are based on the von Neumann model of executing operations 

sequentially, each operation making some change to the state of the machine. The result 

of the computation is the final state of the machine. Functional languages, on the other 

hand exhibit the property of referential transparency. The following definition of 

referential transparency is given in [Stoy 77]. 

"The only thing that matters about an expression is its value, and any expression can 

be replaced by any other equal in value. Moreover, the value of an expression is, 

within certain limits, the same whenever it occurs." 

Functional languages do not have the notion of a state which can be changed. A 

functional program is simply an expression defining the value of the output of the 

program as a function of its inputs. Because of referential transparency the order in 

which different parts of a functional program are evaluated cannot change the value of its 

result. In particular, different sub-expressions of the program may be evaluated at the 

same time. Thus the potential for parallel evaluation is much easier to realise with a 

functional language than with an imperative one. 

It seems reasonable to hope that by using parallel computer architectures specifically 
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designed for evaluating functional languages (e.g. ALICE [Darlington & Reeve 81], 

GRIP [Peyton Jones 85]) it will soon be possible for a functional program to exceed the 

performance of an imperative program running on a von Neumann machine. 

Assuming this to be the case it would seem that the only barrier to the use of 

functional languages for real-time systems work is that of suitability. In other words, 

how easy is it to express solutions to real-time problems in a functional language : do the 

difficulties outweigh the advantages? This work attempts to answer this question by 

presenting the functional real-time programming language Ruth, first introduced in 

[Harrison 87], giving a full denotational semantics for it, and demonstrating its utility. 

The fust task is to determine what a real-time system is, and in particular what makes 

real-time systems different from other systems. This issue is addressed in the next 

section of this chapter which introduces a classification of real-time systems so as to 

specify exactly what application area Ruth is directed towards. Following on from this 

Section 1.3 derives some basic requirements for a real-time programming language. The 

fmal section of this chapter summarises these requirements and presents and overview of 

the remainder of the work. 

11 



1.2 What Is A Real-Time System? 

A real-time system can be classified as one in which when events occur is as 

important as what events occur. By an event we mean an interaction between the system 

and its environment. Typical events could be : the input of a value from a keyboard; the 

output of a control signal to an actuator; or the ticks of a real-time clock. The correctness 

of a real-time system depends not only upon the values of its inputs and outputs and 

their relative ordering but also upon their absolute position in time. The situation is very 

well summarised in [Young 82] : 

"In its broadest sense, the term real-time can be used to describe any information 

processing activity or system which has to respond to externally generated input 

stimuli within a finite and specifiable delay." 

A real-time system can only be considered to be behaving correctly if it interacts with 

its environment within specified periods of time, or in other words within its time 

windows (cf. [Faustini & Lewis 86]). The use of the phrase time windows emphasises 

that systems which interact with their environment too early are just as much in error as 

those which interact too late. Usually the lower limit of a time window is defined by the 

arrival of some input from the environment and we are interested only in the upper limit 

of the window: the time taken by the system to react to the input event (the deadline). 

However the lower limit of a time window is not always fixed in this way and it would 

be unwise to forget this. For example a rocket engine may be required to cut out 30 

seconds after take off. If the engine cuts out too soon the rocket may fail to reach escape 

velocity. 

Real-time systems vary from broad systems in which the time windows are large 

compared to the speed of a software implementation (e.g. electronic timetabling systems) 

to narrow systems in which the time windows are small (e.g. signal processing). The 

width of a system's time windows is not the whole story however. A further criterion is 

the likely consequence of a system's failure to respond to events within its time 
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windows. A disk head controller may have only micro-seconds to position the heads on 

the correct track to access a particular block. If the controller fails to meet this deadline, 

so that the block has already passed under the heads before they are in position, then the 

consequences are not serious: the controller need only wait for the disk to complete 

another revolution before it can access the block. On the other hand it may take a nuclear 

power station many minutes to become unstable; any control signals during that time 

could restabilise the situation but if none are forthcoming the reactor will become critical, 

with disastrous results. Clearly, the disk head controller is the narrower of the two 

problems but it is much more important that we meet the time windows in the nuclear 

power station controller. This is the traditional classification of real-time systems into 

hard systems which must always meet their time windows to avoid disaster (such as the 

nuclear power station controller) and soft systems which can tolerate a certain amount of 

failure (such as the disk head controller). (e.g. [Shin 87]) 

As Le Lann argues [Le Lann 83], the major difference between what are commonly 

called real-time systems (the hard end of the range) and conventional data processing 

systems (the soft end) is the degree to which they can tolerate failures to meet time 

windows. Whereas we prefer a conventional, soft system to produce some result even if 

it takes longer than expected, a hard real-time system must produce its outputs within a 

particular window or not at all. Conversely if a conventional system produces a result 

earlier than expected this is a benefit; in a real-time system it may well be a disaster as the 

external environment may not be ready to receive it. 

narrow 

process control 

soft hard 

data processing 

broad 

1 . 1 : A classification of real-time systems 
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Thus we have the classification shown in Fig. 1. 1. At the top right are the hard, 

narrow problems, such as physical process control. At the bottom left are the soft, broad 

problems such as conventional data processing. Of course this classification should not 

be taken as totally definitive but with some reservations we can take Fig. 1.1 to be a 

reasonable view of the situation. 

In the main, problems towards the bottom and left of the diagram are assumed to 

have no real-time aspects. The windows are so wide (i.e. from now to eventually) 

and/or the consequences of failure so slight (i.e. try again later) that there is no need to 

complicate matters by considering when as well as what. Problems towards the top and 

right of the diagram are usually handled by custom built electronics. The windows are so 

narrow (i.e. micro-seconds) that no software system can be expected to cope without 

generating more window violations than the environment can tolerate. It is problems 

between these two extremes in which we are mostly interested since these are the 

systems which are amenable to software monitoring and/or control, provided that the 

software is written with timing requirements in mind. In the rest of this work this is the 

type of system we shall call a real-time system. 
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1.3 Requirements For A Real-Time Programming Language 

For a software system to take account of timing requirements essentially requires 

two things: that the system be able to specify when it wishes events to happen and that it 

be able to detect when events have (or have not) happened. This obviously requires that 

a real-time programming language possesses features allowing it to express real-time 

information. It must be able to express such things as "turn on the fuel injector 20 

milliseconds after the engine is switched on" and "if an acknowledgement is not received 

before a timeout signal abort the communication". Such time expressibility is one of 

the most important requirements for a real-time programming language. 

The time windows constraining a real-time system are usually fixed by its need to 

interact with physical hardware. As pointed out in [Le Lann 83] interactions between 

software and hardware in real-time systems (called events above) are usually not 

transparently recoverable. Incorrect events cannot be simply "rolled-back" and forgotten 

about as they will have produced (potentially disastrous) reactions from the physical 

hardware (such as moving a control surface on an aircraft). In non real-time systems the 

user's response to incorrect events is simply to try again but in a real-time system this is 

usually impossible because of the changes to the environment caused by such events. 

The requirement that real-time systems interact correctly with their environment is no 

different from the requirement for conventional systems, although the failure of a 

real-time system to meet this requirement is usually much more dangerous. 

Consequently, language features aiding the writing of correct non real-time software 

should be equally effective in the real-time domain. [Young 82] gives a set of desirable 

features for a real-time language, such as strong typing, data abstraction and modular 

structure which are equally applicable to any programming language. He also makes the 

point that languages should be as simple as possible since simple languages are easier to 

learn and programs written in them are easier to understand and reason about. 

The major benefit of the use of language features like strong typing, data abstraction 

and modular structure is that they support structured programming techniques which 
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tend to make programs easier to develop, debug and maintain. They also make it easier 

for the compiler to detect syntactic and static semantic errors. However, there are limits 

to the errors that can be detected automatically at compile time. Logical errors may only 

become apparent at run-time when it may be too late to correct them. 

One way in which this situation can be improved is by formal transformation and 

reasoning. By formal transformation we mean the ability to write simple and clear 

algorithms which are inefficient to execute on a computer, and then automatically 

transform them into semantically equivalent, complex, obscure, but efficient, versions 

for execution (e.g. [Darlington 82], [Burstall & Darlington 77]). Another great aid to 

detecting logical errors is the ability to formally reason and to prove facts about 

programs. Formal transformation and proof must be based on a formally defined 

semantics, which consequently is also one of our requirements for a real-time 

programming language. 

At present program proving is a lengthy and complex task, even for small programs, 

and even the most rigorously proven program is still vulnerable to hardware failure. It is 

usually impossible to completely prove a piece of software correct and equally 

impossible to completely test it, but, as pointed out above, incorrect software behaviour 

could be disastrous. Real-time programmers are thus forced to program in a very 

defensive manner, particularly in respect of meeting time windows, since it is often 

better to produce the wrong answer at the right time, or no answer at all, than to produce 

the right answer at the wrong time. If there is the slightest doubt as to whether a program 

will meet its deadlines then it is rewritten, and in most real-time systems the time-critical 

part of the software can be expected to complete its tasks in as little as half the time 

available to it. Even so, a real-time system is usually written in such a way that an 

imminent failure to meet a time deadline will be detected and recovery action taken. This 

requires that the system be able to monitor its own progress in time towards these 

deadlines: the system must have knowledge of the passage of real time. 

16 



The essential requirements for a real-time language are thus: 

(i) The ability to defme that a particular event should take place at a particular time. 

(ii) The ability to detect when an event occurs, and, by extension, the ability to 

detect whether or not a particular event occurs at a particular time. 

(iii) The ability to detect and recover from errors, particularly timing errors. 

(iv) A formal semantics allowing transformation and proof techniques to be applied 

to programs. 

The first two of these requirements are what we have called time expressibility and 

are specific to real-time languages. The third requirement essentially means that the 

language must support what we have referred to as defensive programming. The major 

use of defensive programming in real-time systems is to ensure that deadlines are met. 

Consequently the detection and correction of timing errors is the ability we shall be most 

interested in. Once again, this ability is specific to real-time languages and is another 

aspect of time expressibility. Thus the fIrst three requirements may be coalesced into one 

: that a real-time language have good time expressibility. 

The fInal requirement, for a formal semantics, is applicable to both real-time and non 

real-time languages. However, because of the safety critical nature of most real-time 

systems, its importance in the real-time domain cannot be overstressed. Although 

completely proving programs correct from such a semantics is probably infeasible at 

present, the safety critical parts of programs could be proven, thus increasing confIdence 

in the reliability of the program. Further, the use of transformation techniques cannot be 

justified without such a semantics. 
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1.4 Conclusion 

Real-time systems are usually safety critical systems in that the actions they take are 

generally not recoverable : once something has been done it cannot be undone. Since 

real-time software is often used to control aircraft, power stations and the like, the 

correctness of real-time software can be a matter of life and death. The use of functional 

languages is an aid to the production of correct software because of their relative 

simplicity and amenability to formal proof and transformation. However there seems to 

be a belief that functional languages are not suitable for writing real-time software. This 

work attempts to disprove this by defining, and demonstrating the utility of, Ruth, a 

functional language for writing real-time software. 

A real-time problem can be classified as one in which when events occur is as 

important as what events occur. The importance of when events occur in a real-time 

system has two major implications : the system must specify when it wishes events to 

occur and it must be able to detect when events have (or have not) occurred. Thus, the 

design of Ruth must incorporate features allowing it to handle real-time information: 

Ruth must have what we have called time expressibility. 

The advantages of formal reasoning and transformation in aiding the production of 

correct software have been noted above. Without a semantic defmition of a programming 

language formal reasoning and transformation are impossible. Consequently a complete 

formal definition of Ruth will be a major part of this work. 

Software engineering issues such as strong typing, modular structure and 

information hiding are also important in the design of a real-time language. However 

they are equally important in the design of non real-time languages and consequently 

have been addressed in the design of several functional languages already (e.g. HOPE 

[Burstall et. al. 80], [Sannella 81], Miranda [Turner 85] and Haskell [Hudak et. al. 89]). 

The problems of incorporating software engineering and structured programming into 

functional languages have been, and will continue to be, extensively researched. In 

contrast, time expressibility and the semantics of real-time languages have been largely 

ignored. Consequently it is these issues which will be the major concern of this work. 
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The next chapter of this thesis contains a survey of the way in which the problems of 

time expressibility and formal semantics for real-time have been tackled in three different 

programming paradigms: the imperative, dataflow and functional paradigms. From this 

basis the concepts underlying the constructs of the language Ruth will be distilled; Ruth 

itself is described in Chapter 3. Chapters 4 and 5 introduce the semantic definition of 

Ruth which is based on the denotational framework (e.g. [Stoy 77], [Schmidt 86]). 

Chapter 6 demonstrates the utility of Ruth for writing real-time systems by the 

construction of a reasonably substantial example: an interactive computer game. Finally, 

in Chapter 7, we look at what has been achieved and attempt to answer the initial 

question: is the functional style of programming suitable for solving real-time problems 

or not? 
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Chapter 2 : A Survey Of Different Approaches To 
Real-Time Language Design 

2.1 Introduction 

The purpose of this chapter is to compare how three different language paradigms, 

imperative, functional and dataflow, solve the special problems associated with the 

programming of real-time systems which were discussed in the opening chapter of this 

thesis. The comparison will concentrate on the time expressibility offered by languages 

within the three paradigms and on the existence of formal semantic models, since, as 

commented at the end of Chapter 1, these are areas which have received little attention in 

the past. 

The next section of this chapter concerns imperative languages, in particular Ada, 

thus allowing the evaluation of current industrial practice with respect to time 

expressibility and formal semantics. Section 2.3 concerns an area of current research : 

real-time languages based on the dataflow model. Section 2.4 assesses real-time and 

related work in functional programming to determine what basis exists from which to 

construct Ruth. The concluding section of this chapter brings together these different 

strands to determine what problems remain with the application of the functional style to 

real-time programming. 



2.2 The Imperative Approach 

Most computer programming languages are imperative. A program written in such a 

language is a sequence of commands telling the computer how to change its state so as to 

arrive at the final solution. Imperative languages directly model the workings of the von 

Neumann computer, indeed their basic, sequential style of execution was derived from 

it. 

Because of its adoption as the required implementation language for real-time 

systems by the US Department of Defense and the UK Ministry of Defence probably the 

most important imperative real-time language is the language Ada [USDOD 83]. Since 

the defence industry is the world's major producer and consumer of real-time software it 

seems likely that Ada will be the major language used in real-time work for the 

foreseeable future. 

Ada's time expressibility is based upon the predefined package CALENDAR which 

provides the type TIME and operations to manipulate that type, including a CLOCK 

primitive which returns a representation of the current time in seconds. Ada also supplies 

the del.ay primitive to suspend execution of a task for (at least) a given period. The 

example below is taken from [USDOD 83] and causes an event to be repeated at 

intervals of not less than INTERVAL seconds. 

decl.are 

use CALENDAR; 

-- INTERVAL is a global constant 

NEXT TIME 

begin 

l.oop 

TIME := CLOCK + INTERVAL; 

del.ay NEXT_TIME - CLOCK; 

-- some event 

NEXT TIME := NEXT TIME + INTERVAL; 

end l.oop ; 

end; 

(2.1) 

The interval between occurrences of the event is only approximately equal to INTERVAL 
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because the delay primitive only guarantees a minimum waiting time. In the example 

above the task could be kept waiting for much longer than INTERVAL if other tasks are 

sharing the same physical processor. There is no way of specifying in Ada that an event 

must occur at a particular time. It is straightforward to specify that it must not occur 

before a particular time, but the Ada programmer has no control over how long after 

this time the event occurs. 

Events are detected in Ada via the rendezvous mechanism. A real-time program 

written in Ada is composed of one or more tasks, or processes, running in parallel. 

Communication between tasks, and thus between an Ada program and its environment, 

is via the rendezvous mechanism: a task may call an entry in another task and then wait 

until the called task is willing to accept the call. When the call is accepted the tasks are 

said to have rendezvoused and, after the code associated with the entry has been 

executed, the tasks part and continue their independent execution. 

A task may accept anyone of a number of calls from other tasks by using a select 

construct. The example below will accept the events INC, DEC and CLEAR, each of which 

causes the value of the variable count to be changed in the obvious way. 

select (2.2) 

accept INC; 

count .= count + 1; . 

or 

accept DEC; 

count := count - 1; 

or 

accept CLEAR; 

count := 0; 

end select; 

Whenever another task (or the hardware environment) issues a call to either INC, DEC or 

CLEAR a rendezvous takes place and the count variable is updated. If there is a call to 

more than one event already present when the select statement starts executing then an 

arbitrary event is accepted. If there are no calls waiting then the select waits until a call 

occurs. 
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The behaviour of select when there are no calls waiting initially is an example of 

what we shall call implicit time determinance. In this situation select accepts the 

first call that arrives after it starts executing. The choice of which call to accept appears 

non-detenninate from the text of the program but is not so if the implicit argument to the 

select, time, is taken into account. Non-determinance is a powerful tool for abstracting 

away from irrelevant details; however it seems somewhat bizarre to use 

non-detenninance to abstract away from timing information in a real-time program, 

particularly since timing information constitutes half, and probably the more important 

half, of the information available. 

A further problem with select is its behaviour if there are calls already waiting 

when it starts execution. In this case the called task decides to accept an arbitrary call and 

the basis for this decision is not defined by the language. Once again this abstraction 

seems somewhat bizarre in a real-time language. If the programmer does not know 

which call will be accepted then he has no alternative but to program defensively to 

ensure that the correct priority in accepting calls will be adopted. 

Ada allows programs to detect the non occurrence of an event by a particular time via 

the selective wait construct. 

select 

or 

accept MESSAGE; 

delay 10*MILLI SECONDS; 

TIMEOUT; 

end select; 

(2.3) 

If the MESSAGE event occurs within 10 milliseconds of the start of execution of the 

select then TIMEOUT is avoided. Obviously, by using the CLOCK primitive, absolute 

times can be referenced in the delay as well as relative times as above. 

The CLOCK primitive also allows Ada programs to monitor their progress in time and 

thus to check whether deadlines are going to be met. An alternative approach is offered 

by the timed entry call which allows a calling task to abort a call if it is not accepted by a 

certain time. 

23 



se1ect 

MESSAGE; 

or 

de1ay lO*MILLI_SECONDS; 

TIMEOUT; 

end se1ect; 

(2.4) 

IT the entry call MES SAGE is not accepted within 10 milliseconds of the start of execution 

of the se1ect then TIMEOUT results. By using either of these methods an Ada program 

can detect, and thus recover from, timing errors. 

Ada is an important, probably the most important, real-time programming language 

because of its adoption by the US Department of Defense and UK Ministry of Defence 

as the standard implementation language for real-time applications and any realistic 

survey of real-time languages must reflect this. 

In many ways Ada can be regarded as the epitome of a language supporting 

structured programming. It is strongly typed with a very rich type scheme and the 

package construct allows good data abstraction and modular programming. Because Ada 

was designed to fulfil all the US DoD's software requirements, and not just those in the 

real-time domain, it is a very large and complex language. The complexity of Ada has 

made the definition of a formal semantics and the production of transformation rules 

very difficult (e.g. [Bjorner & Oest 80]). One of the major problems which anyone 

attempting a semantics for Ada has to address is the use of the implicit time determinate 

se1ect construct. A more serious criticism of Ada is that its time expressibility is 

seriously flawed. Detecting that an event has not occurred by a particular time is fairly 

straightforward as is the detection and recovery from potential and/or actual timing 

errors. However, there is no way to specify that an event must occur at a particular time. 

For a real-time language not to have this basic capability is a serious design flaw. 

These problems are not specific to Ada but appear, to a greater or lesser extent, in 

most imperative languages used for real-time programming (e.g. CORAL-66 [MoD 70], 

and Modula-2 [Wirth 83]). In the next section we shall look at a group of languages 

which are based not on the von Neumann model but upon the dataflow model of 

computation. 
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2.3 The Dataflow Approach 

2.3.1 Lucid 

The dataflow language Lucid [Ashcroft & Wadge 76,77,80], [Wadge & Ashcroft 

85] is both a programming language and a notation for formal reasoning. The basic 

principle of Lucid, in keeping with the dataflow model, is that identifiers and constants 

in Lucid do not denote single values but infinite, indexed streams of values or 

histories. For example, the constant 1 in Lucid denotes the history < 1, 1, 1, 1, ... >. 

The identifier x denotes a history containing successive values for x and is often written 

<xo' xl' x2' ... >. Operators in Lucid work pointwise upon histories, for example 

Let x = <0,2,4,6,8,10, ... > (2.5) 

and y <1,3,5,7,9,11, ... > 

then x + y <xo + YO,xl + Yl' X2 + Y2' ... > 

<1,5,9,13,17,21, ... > 

For constructing histories from other histories Lucid has the £by (followed by) 

operator which is similar to Cons in functional languages. £by constructs a new history 

by adding the first element of its first history argument to the front of its second history 

argument. 

Let x = <0,2,4,6,8,10, ... > (2.6) 

and Y <1,3,5,7,9,11, ... > 

then x £by Y = < 0 , 1, 3 , 5, 7 , 9, 11, ... > 

The first element of a history can be discarded via the next operator. 

Let x = <0,2,4,6,8,10, ... > (2.7) 

then next (x) = <2,4,6,8,10, ... > 

Lucid is a referentially transparent language. Lucid programs are simply functions 

from input histories to output histories. Consequently it has a simple formal semantics 

which allows relatively easy reasoning and transformation. 
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2.3.2 Real-time Lucid 

The basic Lucid paradigm has been extended in many directions. Indeed Lucid is not 

just one language but a family of languages and, as might be expected, the area of 

real-time programming has not escaped the attention of the Lucid community. Real-time 

Lucid [Faustini & Lewis 85, 86], adds time expressibility to basic Lucid by associating 

with each value history (that is each identifier or constant's history) a time window 

history defining when elements in the value history should be computed. Each element 

of a value history's window history is a pair [1, u] ; the nth element of the value history 

must not be produced before the time specified by the 1 value of the nth element of the 

window history, but must be produced before (or at) the time specified by the u value of 

the nth element of the window history. Windows are associated with value histories via 

the @ operator. 

Let x = <0,2,4,6,8, ... > 

then x @ [x, next (x) ] 

(2.8) 

= <0,2,4,6,8, ... > @ <[0,2], [2,4], [4,6], [6,8], [8,10] ... > 

The first element of x must be produced between 0 and 2 (inclusive), the second 

between 2 and 4, and so on. The window associated with an output value denotes the 

ranges within which each element of the output value's history is to be delivered to the 

external environment. The window associated with an input value denotes the ranges 

within which the real-time Lucid program will sample the input line. 

Only input and output value histories are given "real" window histories by the 

programmer. Histories which are purely internal to the program are given the default 

window history in which all elements are [-00, +00], indicating that the values may be 

produced at any time that is consistent with the input/output windows. 

The time window mechanism is a very powerful one since it allows the real-time 

Lucid programmer to directly express facts about the required temporal behaviour of his 

real-time system. For example, that the value x is to be output (i.e. the event denoted by 

x is to occur) every 10 time units ±3 time units would be expressed as overleaf. 
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x @ [index*10 - 3, index*10 + 3] 

where 

index 1 fby index+1 i 

(2.9) 

The fIrst output of x is in the window [7, 13] , the next within [1 7 , 23] and so on. If it 

were required that x be output exactly every 10 time units then a point window could be 

used. 

x @ [index*10, index*10] 

where 

index 1 fby index+1 i 

(2.10) 

The nth output of x is in the window [n * 1 0, n * 1 0] . Since the earliest the output can be 

produced (i.e. the event the output denotes can occur) is n * 1 0 and the latest it can be 

produced is n*10 then it must be produced (the event must occur) at exactly n*10. 

For detecting when an event occurs real-time Lucid supplies the time primitive. 

Let x be as defined in (2. 10) above (2.11) 

then time (x) = <10, 20, 30, 40, .. > 

The problem with time is that its result cannot be determined from the text of the 

program unless (as above) it is only applied to a value associated with a point window. 

Otherwise the nth element of the history returned by time may be anywhere between the 

nth element of the corresponding 1 and u histories. 

Let x be as defined in (2. 9) above (2 .12) 

then time (x) = <10±3, 2 0±3, 30±3, 40±3, .. > 

Since the result of time may be used as a normal value in a real-time Lucid program this 

non-determinance makes a formal semantics difficult to construct, though work on such 

a semantics is in progress. In fact, time is another example of implicit time 

determinance; if we knew when results were computed it would be totally determinate. 

Detection of the non-occurrence of an event by a particular time depends on the 
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meaning real-time Lucid actually gives to input and output time windows. As mentioned 

earlier, the window associated with an input value denotes the ranges within which the 

real-time Lucid program should sample the input line. If no value is present on the input 

line during a particular range (i.e. the input event has not occurred) then the program is 

supplied with a time fault value, written tf. 

Time faults are detected via the boolean operator istf. In the following example let 

i be an input of "blip" values denoting that an event has occurred, and let us assume 

that the fIrst four its are actually available to be input at times 0, 3, 4 and 7. 

Let w = [index,index+2] 

and index = 1 fby index+1 

index 

1 

2 

3 

4 

w 

[1,3] 

[2,4] 

[3,5] 

[4, 6] 

time (i) 

° 
3 

4 

7 

i @ w 

tf 

blip 

blip 

tf 

(2.13) 

istf (i @ w) 

true 

false 

false 

true 

The time fault at index=l in i @ w is caused by the input i arriving too soon; the time 

fault at index=4 is caused by it arriving too late. 

Also as mentioned earlier the window associated with an output value denotes the 

ranges within which each element of the output value's history is to be delivered to the 

external environment. Time faults are inserted into output histories whenever the 

program fails to produce the desired value within the specified window. This is a simple 

form of timing error detection and recovery. Were the language to allow windows to be 

associated with internal values as well as input/output values the situation could be 

greatly improved by adding a supervisor to each output to detect when time faults are 

about to occur and take corrective action. An example of this is shown overleaf. 
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out @ wI (2.14) 

where 

out If istf(temp) 

Then default value 

Else temp ; 

temp "expression" @ w2 

wI [0, (index * 4) + 1] 

w2 = [0, (index * 4) ] ; 

index 1 fby 1 + index ; 

If the result, temp, is not computed by the time specified in the "timeout" window w2 

then a default value is substituted for output within the (wider) window wI. There seems 

no reason why windows could not be associated with internal values in this way. 

However, as real-time Lucid stands, the programmer has no option but to assume that 

the environment will correctly handle any time fault values produced. 

The production of time faults on an input history can be determined from the time the 

inputs occur and the specification of the time window associated with the input. The 

production of time faults on an output can be determined from the time the outputs are 

produced and the specification of the time window associated with the output. Thus the 

production of time faults is another example of implicit time determinance. If the time at 

which inputs and outputs occur is taken into account then time fault production is 

determinate; if not it is non-determinate, making reasoning and transformation of 

programs very difficult. 

The time expressibility of real-time Lucid is very good. Time windows are a direct 

model of the real-time requirements for a program. The programmer can specify when 

events should occur, either at a point in time or within a range of times. By using the 

time operator the programmer can also detect when events actually did occur. However 

the result produced by time cannot be determined from the text of a program unless it is 

applied to events associated with point windows. The time fault mechanism allows the 

detection of the non-occurrence of an event and supplies a rudimentary form of timing 

error recovery. 
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Although Lucid has a fully fonnal semantics and proof system associated with it 

[Ashcroft & Wadge 76] there is, at present, no fully fonnal semantics for real-time 

Lucid. This may well be due to the complexity of defining both the time primitive and 

the time fault mechanism. Unless a semantics is given some explicit notion of real time 

both these features will be non-determinate, making the specification of a semantics 

much more complex. 

2.3.3 LUSTRE 

Real-time Lucid allows the user to specify when, within a range, interactions with 

the environment must occur. This is done by associating a window history with each 

value history. An alternative approach would be to have the indexes in the value history 

actually specify a fixed time for such interaction. In other words, that the nth element in 

an input (output) history be input (output) at time n. 

This is the approach taken by the language LUSTRE ([Bergerand et. al. 85, 86], 

[Caspi et. al. 87]) which shares the Lucid view of values as histories, but interprets the 

position of an element in a history as defining the time at which the event it denotes 

occurs. Thus the time expressibility in LUSTRE is based totally upon the position of 

elements within histories. 

The real-time interpretation of history positions has one major consequence. 

Consider the following LUSTRE expression in which in is an input history and out an 

output history. 

out in + 1 (2.15) 

As in all Lucid-like languages the nth element of the out history is obtained by adding 1 

to the nth element of the in history. However, in order to be consistent with the meaning 

of an element's position the nth element of in must be input at time n and the nth element 

of out must be output at time n. In other words input and output must be simultaneous 

and thus the addition must take zero time. This is the called the strong synchrony 

hypothesis: all operators are assumed to react instantly to their inputs. On the surface the 
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strong synchrony hypothesis seems unrealistic as it requires computers to be infinitely 

fast. In fact, all that is required is that the computer is fast enough that the external 

environment does not notice that it is not infmitely fast. For example, a video game may 

be receiving input from a user every tenth of a second; provided the system reacts to that 

input within, say, a fiftieth of a second, the user will never notice that the system is not 

responding to his input "at the same time" as he is providing it. In other words, provided 

that the problem is sufficiently broad compared to the speed of the software the strong 

synchrony hypothesis will cause no problems. 

Instead of fby and next LUSTRE provides the operators -> and pre. The major 

reason for this change is that Lucid's next is non-causal. That is, the result of 

next (input) could not be decided from the values input at time n, the system would 

have to wait until time n +1 to obtain the nth element of the next (input) history. This 

obviously violates the strong synchrony hypothesis. pre and -> are causal operators: 

their result element at time n can always be determined with information available at time 

n. 

Let x = <0,2, 4, 6, 8, ... > 

and y 

then 

pre (x) 

<1,3,5,7,9, ... > 

<Nil,0,2,4,6,8, ... > 

x -> Y = <0,3,5,7,9, ... > 

(2.16) 

pre inserts Nil at the start of its history argument, thus acting as a delaying operator. 

-> replaces the first element of its second argument history with the first element of its 

first argument history. Note the following equivalences between Lucid and LUSTRE 

operators. 

x fby next (y) 

x fby y 

~ x -> Y (2.17) 

~ x -> pre (y) 

In LUSTRE the position of an element in a history denotes the time at which the 

event it denotes occurs. Thus the event denoted by the nth element in a history occurs at 

time n, or in other words at the nth "tick" of what LUSTRE calls the basic clock. 
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LUSTRE also allows values to have their timing dependent on clocks other than the 

basic clock. A user defined clock is simply a boolean valued history, a tick being the 

element true and a "non-tick" being denoted by false. The basic clock is thus the value 

history denoted by true. For example a clock ticking at half the rate of the basic clock is 

defined below. 

c = true -> not(pre(c» (2.18) 

<true, false, true, false, ... > 

For any value history x and clock c the operation x when c masks off all elements of 

x for which the corresponding element of c is false. Thus, the result of x when c is a 

value whose clock is c rather than the basic clock. 

x c Y = x when c (2.19) 

0 true Yo = 0 

1 false 

2 true Yl 2 

3 false 

4 true Y2 3 

5 false 

6 true Y3 = 5 

Events in the history y occur at ticks 0, 2, 4, and 6 of the basic clock. The value of y at 

basic clock tick 5 has no more meaning than the value of x at basic clock tick 1. 5. Y 

does not exist at basic clock tick 5 any more than x exists between basic clock ticks. 

Since clocks are simply boolean valued histories the LUSTRE programmer can treat 

them in the same way as any other value which gives a very expressive notion of time. 

In particular a clock must itself have a basic clock, thus allowing hierarchies of clocks 

based upon each other to be constructed. For example, assuming that the basic clock 

ticks every millisecond, a clock that ticks every second can be defined as below. 

count 

second 

o -> If pre (count) ~ 999 

Then 0 

Else pre (count) + 1 ; 

If count ~ 999 Then true Else false 
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Since count is clocked on the basic, millisecond, clock second will be true every 1000 

milliseconds, or in other words, every second. In the same way a minute clock could be 

based upon second, an hour upon minute and so on. To define that an event computed 

by the expression E should occur every second (i.e. that E is based upon the second 

clock rather than on the basic, millisecond, clock) the LUSTRE programmer writes 

E when second (2.21) 

At all times other than when second is t rue the value of E is "masked off". Thus E 

when second only has a value at exactly one second intervals. 

By constructing and using clocks in this way it is simple for a LUSTRE programmer 

to defme exactly when events should occur. If the clock upon which the event is based is 

true then the event occurs and if it is false then the event does not occur. This also 

makes the detection of the non-occurrence of an event simple. If an event does not occur 

at or before time n then the clock on which that event is calculated will be false Up to 

time n. For example, assume that the value history denoting the event we are interested 

in is based on the clock c. The following code fragment detects whether or not the event 

occurs at n millisecond intervals. 

count 

status 

o -> If c Then 0 E1se pre (count) + 1 ; 

If count;::: n Then "timeout" E1se "ok" ; 

(2.22) 

Since c is based upon the basic, millisecond, clock, n successive false values mean 

that n milliseconds have passed without the event occurring. Thus status becomes 

"t ime 0 u t ". This example serves to illustrate one minor inconvenience caused 

LUSTRE's implicit notion of time. There is no way of talking about time directly, but 

only as the number of t rue ticks on a particular clock. Whether this inconvenience 

would cause problems when writing large systems is an area for further research. 

A much more serious problem is caused by the strong synchrony hypothesis itself. 

This hypothesis is a very powerful one for the specification of real-time systems: it 

allows the user to ignore the time delays inherent in computation and concentrate on the 

requirements of the external environment. However there are problems with actually 
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implementing real-time systems in a language such as LUSTRE because of the 

underlying assumption of infinite execution speed. 

Provided the problem is sufficiently broad, or in other words that the implementation 

of the language is sufficiently fast, strong synchrony poses no difficulties. Efficient 

implementations of LUSTRE are possible by compiling the control structure of a 

program into a finite state automaton [Caspi et. al. 87], although there are problem with 

distributing such implementations across parallel architectures. But even the most 

efficient implementation will eventually prove too slow to cope with the deadlines 

required by a particular environment. Because of strong synchrony LUSTRE has no 

way of coping with such situations; in fact there is no concept in the language or its 

underlying proof scheme of a timing error. Since all operations take zero time there is no 

way in which a value can take too long to compute. 

LUSTRE thus fails our third requirement: it cannot detect and recover from timing 

errors. Nonetheless, for a large class of real-time system in which software is so much 

faster that its environment that timing errors will not occur languages based on strong 

synchrony provide an elegant and expressive vehicle for implementation. 

A fully formal semantics exists for LUSTRE, including a clock semantic~ allowing 

reasoning about temporal behaviour. (See [Caspi et. al. 87] for an introduction). Since 

LUSTRE, like Lucid, is referentially transparent and totally determinate this semantics is 

fairly simple and formal reasoning and transformation are relatively straightforward. 

Other data flow based languages employing the strong synchrony hypothesis include 

SIGNAL ([Le Guernic et. al. 85, 86], [Le Guemic & Benveniste 87]) which has a much 

richer clock semantics associated with it than LUSTRE, and the imperative language 

ESTEREL ([Berry & Cosserat 84], [Berry et. al. 86, 87a, 87b], historically the first 

synchronous language. The synchronous languages offer a simple, and very expressive, 

model of time. However this model depends on an assumption, the strong synchrony 

hypothesis, which cannot be sustained in the real world and which makes the 

construction of defensive programs impossible. 

In the next section we shall go on to look at our particular area of interest, functional 

languages. 
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2.4 The Functional Approach 

The major area of interest for this work is that of functional languages. In Chapter 1 

we commented that there were two main reasons why functional languages had not been 

used in the real-time field: their perceived inefficiency and the assumption of their basic 

unsuitability. The efficiency of functional languages may soon equal, and may 

eventually surpass, that of imperative languages, not least because referential 

transparency increases the possibilities for parallel execution of functional programs. 

The problem, then, seems to be that functional languages are not considered suitable for 

real-time programming. 

Functional languages offer many advantages over imperative ones, particularly in 

safety critical areas such as real-time, because they are referentially transparent and 

totally determinate. This greatly aids reasoning about programs and the production of 

transformation rules (e.g. [Backus 78], [Burstall & Darlington 77], [Darlington 82]). 

The simpler the semantics of a language the easier it is to understand programs written in 

it and the more confidence a user will have that they are correct. Finally, functional 

languages, having a higher level of abstraction than imperative ones, are in general more 

concise. In general, shorter programs are easier to read and understand 

2.4.1 Streams and non-determinance 

There has been little research on real-time programming with functional languages 

but quite a substantial body of research has been carried out into the related area of 

systems programming with functional languages (e.g. [Abramsky & Sykes 85], 

[Henderson 82], [Holmstrom 83], [Jones 84a, 84b], [Jones & Sinclair 89], [Stoye 86], 

[Turner 87]). The major difference between systems programming and real-time 

programming is that the former only requires knowledge of the relative ordering of 

events whilst the latter requires knowledge of their absolute position in time (what we 

have referred to as time expressibility). To support systems programming two basic 

ideas have been used: stream processing and implicit time determinance. We shall refer 
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to these languages as the implicit time detenninate languages. 

Streams are a common way in which functional languages model input and output to 

and from a program's environment (e.g. [Ida & Tanaka 83,84]). For example, the 

following function takes an input stream of integers as its argument and increments each 

element by one to produce the output stream. 

output 

where 

f(input) 

f = lambda (in) . Stream_Cons (Head(in) +1, f(Tail(in») 

endwhere 

(2.23) 

Note that Stream_cons is a head strict operator: it fully evaluates Head(in) +1 before 

consing it to the front of the rest of the output but does not attempt to evaluate 

f (Tail (in» before performing the cons. Streams are very similar to Lucid histories 

save that the programmer must explicitly construct streams and reference their elements 

in his program. In Lucid this is implicit so that (2.23) would be written 

output input + 1 (2.24) 

Implicit time determinance is used to decide between events (such as keyboard 

inputs) on the basis of which happens first. What is at issue is the temporal ordering of 

these events and not, as would be the case in real-time, exactly when the events actually 

occur. The constructs used vary but, in general, can all be reduced to the amb operator 

fIrst used in [McCarthy 63]. McCarthy states that amb is a purely non-determinate binary 

operator, returning either of its arguments at random. However, when used in the 

implicit time determinate languages amb is always assumed to return the first of its 

arguments that completes evaluation. Only if both arguments are already completely 

evaluated when amb is applied is the choice potentially non-determinate and in fact, even 

in this case, the choice is usually implemented as a fully determinate one : an 

implementation of amb usually polls its arguments in order to check whether their 

evaluation has completed; the first arguments polled will be returned and polling is 

always carried out in the same order. 

The following example shows implicit time determinate amb being used to defIne the 
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function merge which interleaves two input streams, il and i2, in the order in which 

the elements of those streams are computed (so called timewise merge). 

merge 

lambda (il,i2). 

altl amb alt2 

where 

altl = If il = Nil 

Then i2 

Else Stream_Cons(Head(il),merge(Tail(il),i2) ; 

alt2 If i2 = Nil 

Then il 

Else Stream_Cons(Head(i2),merge(il,Tail(i2» ; 

endwhere 

(2.25 ) 

Here Nil is the usual empty stream marker. altl and alt2 cannot determine whether 

their respective input streams are Nil until either a stream input or the Nil marker is 

input. If a Nil is input then the alternate stream is returned; if a stream input is found 

then it can be returned and the merge continued. 

In fact timewise merge and implicit time determinate amb are basically equivalent 

operators since amb can be trivially implemented using merge. 

amb lambda (vl,v2). (2.26) 

Head(merge(Stream_Cons(vl,Nil), Stream_Cons(v2,Nil») 

Generally speaking all the implicit time determinate languages use either amb- or 

merge-like operators. 

The basic problem with the use of amb in functional programs is its non-determinate 

semantics. Non-determinance is difficult to deal with theoretically since expressions 

denote sets of potential results and a powerdomain treatment is required (e.g. [Apt & 

Plotkin 81], [Apt & Olderog 83], [Broy 82]); this makes proof and transformation very 

difficult. Further non-determinance also loses referentially transparency: evaluations of 

1 amb 2 do not always produce the same result as evaluations of 1 amb 2; this makes 

programs difficult to understand and familiar transformation rules ([e.g. Darlington 82]) 
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are not valid. 

In cases where non-determinance is required this is something that programmers 

must learn to live with, but in systems programming, and by extension, real-time 

programming, non-determinate behaviour is not the property that is required. In 

general programmers do not require amb to be non-determinate, they require that it return 

the first of its arguments to become evaluated. However, because most language 

semantics abstract away from time, language definers are usually reduced to defining 

amb as a non-determinate operator and making vague, natural language, statements about 

its real-time properties. 

2.4.2 Herring-bone domains and ART 

By considering time within a language's semantics it is simple to give a perfectly 

determinate definition of ambo In [Broy 83] the language ART (Applicative language for 

Real-Time programming) is given a denotational semantics in just this way. Each 

element of the domain of values computed by programs (including ..1, the undefined 

value) is given a timestamp denoting when it was computed (or in the case of ..1 that it 

has not been computed by this time). Instead of expressions evaluating to simple values, 

they evaluate to a pair <t, v> where v is the data value and t is the time at which it is 

computed. For example < 10, t rue> denotes that the boolean value t rue which was 

computed at time 10 whereas <10, ..1> denotes a value that has not been computed at time 

10. 

Fig 2 .27 overleaf is a diagram of the domain of booleans timestamped in just this 

fashion. The shape of this diagram leads us to call such domains herring-bone domains. 

In a sense time can be said to "flow" up a herring-bone domain; as computation proceeds 

the semantic timestamps of..1 values become greater and greater until eventually the value 

is computed and the semantic timestamp becomes fixed, or, if the value is never 

computed, the <00,..1> element (undefined at time infinity) results. As commented in 

[Broy 83] it is a pleasing feature of herring-bone domains that the non-terminating 

computation is not modelled by the weakest element, < 0, ..1>, as is usual in normal 
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domains, but by the "permanently undefined" element, <00,1.>. In the non real-time 

domain any program which has not yet produced results conveys the same amount of 

information as any other. When dealing with real-time a program which has produced no 

results at time 10 conveys more information than a program which has produced no 

results at time 5 : the behaviour of the program between times 5 and 10 is now known. 

< 0,1.> denotes a computation which has not yet begun, and has thus produced no 

results; <00,1.> denotes a computation which produces no results even after infinite time. 

Clearly <00,1.> is the element which represents non-termination in a herring-bone 

domain. 

<00, 1. > 

• 

• 

• 

<2,true>~ ~<2'falSe> 

<2, 1. > 

<l,trUe>~ ~<l'falSe> 

<1, 1. > 

<o,true>~ ~<O'falSe> 

<0, 1. > 

Fig 2.27 : The herring-bone domain of boolean values 

Using herring-bone domains a determinate definition of arab is quite straightforward. 

<t1,Vl> amb <t 2,v2> 

<t 1 + 1, v 1> 

<t2 + 1, v 2> 

<min(t1,t2) + 1, 1.> 

if v 1 ::1= 1. and t 1 ~ t 2 

if v 2 ::1= 1. and t 1 > t 2 

otherwise 

(2.28) 

Note that we do not assume the strong synchrony hypothesis here: to allow for the time 

taken for the amb to be evaluated we increment the timestamp of the result by one. The 
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same approach is taken in the semantics of ART. If only one of amb's arguments is 

defined (* J...) then that argument is selected. If both arguments are defined then amb 

selects the one with the lower timestamp, or the left argument if the timestamps are 

equal. If neither argument is defined then the result of the amb is still undefined at the 

minimum of tl and t2 (plus one to allow for the amb). This is because min (t1f t 2 > is 

the last time about which we have certain knowledge. If tl is less than t2 then Vl may 

become defined before t 2 . Likewise, if t2 is less than tl then V2 may become defined 

before t 1 . Consequently all we can safely say is that the result of the amb is definitely 

undefined at min (tI f t2> +1. 

amb is not an ART primitive, instead the related operator before which returns true 

if its first argument is computed before its second, is used. The definition of before is 

given later in this section. 

Although amb can now be given a determinate semantics we should note that it is not 

sufficiently discriminating for use in a real-time language and that additional operators 

will be required. amb can determine which of two events happens first, it cannot 

determine when events actually occur and this is a basic requirement for a functional 

programming language. The means by which amb was given a determinate definition, 

the herring-bone domains, will, however, prove very useful in this work since they 

provide a straightforward way for a denotational semantics to express information about 

time and a formal semantics was also a fundamental requirement for the language. A 

fuller explanation of herring-bone domains and their properties will be given in Chapter 

4 where they will form the basis for the full semantic defmition of the language Ruth. 

The other fundamental requirement was that a real-time language should have good 

time expressibility. The implicit time determinate languages, with one exception which 

will be discussed later, have no time expressibility. This is un surprising since they were 

not designed with real-time problems in mind. ART was designed as a real-time 

language and has two primitives which deal with time information. The delay primitive, 

shown overleaf, delays the computation of its first argument until, at least, the time 

specified by its second argument. 
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let x = <t1,v1> 

and y <t 2 , v 2> 

then delay x for y 

(2.29) 

A more mnemonic syntax for this construct might be delay x until y. Note that the 

timestamp of the result is incremented by one to allow for the time taken to evaluated the 

delay. The result of the delay becomes available at V2 provided that V2 is greater than 

tl and t 2, the times at which the two arguments to delay are computed. Otherwise it 

becomes available immediately execution of the delay is completed. Thus, so long as V2 

denotes a time later than tl and t 2, the ART programmer can use delay to define when 

events are to occur. Unfortunately ART supplies no operations which can detect when a 

value is computed so that there is no way to check on the relative values of V2' tl and 

t 2. Consequently, using delay to specify when events are to occur is unreliable; an 

event cannot occur until the values defining it are computed and if this is later than the 

time the event was due then the event will not occur on time. 

As mentioned above, instead of amb ART uses the operator before which tests 

which of its two arguments became defined with the lower timestamp (i.e. soonest). 

<t1,Vl> before <t2,v2> 

<t1 + 1, true> 

<t2 + 1, false> 

<min(t1,t2) + 1, ~> 

if v 1 :1= ~ and t 1 ~ t 2 

if v 2 :1= ~ and t 1 > t 2 

otherwise 

(2.30) 

before, like amb, can detect the relative ordering of events and by using a combination 

of before and delay timing errors can also be detected. 

If timeout before result (2.31) 

Then timeout 

Else result 

where 

timeout delay default value for deadline 

result . .. , 

endwhere 

If result is not computed before timeout then default_value will be returned. 

timeout will not be computed until at least deadline but it may well be computed much 
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later than this, for example if evaluation of the above code starts so close to deadline 

that default_value cannot be computed in the remaining time. Once again, the use of 

delay is problematic because a programmer cannot be sure when it will delay its result 

until. 

Since the semantics of ART define exactly when results are produced from 

expressions there is a solution to this problem: the result of a delay can be determined 

by mathematically analysing the program containing it. Thus, although a program cannot 

detect at run time whether or not time deadlines will be met, since ART has no primitive 

for detecting when values are actually computed, deadline failures can be proven not to 

occur in a program from the semantics of the language. 

However, ART's assumption that it is possible to give a fixed duration for each 

machine operation may be no more realistic than the strong synchrony hypothesis due to 

the variability in the duration of operations which normally occurs in a computer. For 

example, the time a processor takes to perform a multiplication often depends on the size 

of the numbers being multiplied. In functional languages there are even more problems 

due to storage management which could affect the duration of any operation. Further, on 

any system which allows several computations to timeshare a single processor there is 

scheduling to consider. One possible solution could be to give a maximum duration for 

each operation which allows for all these factors. However this implies that all 

occurrences of this operation will take that maximum time; these operation durations 

could be very large giving upper bounds which are too weak for real-time programming. 

Both LUSTRE and ART make assumptions about the real-time properties of their 

implementations, assumptions that are probably unrealistic. This approach is in contrast 

to that of languages like Ada which assume no real-time properties of implementations. 

Instead, in line with the defensive programming philosophy, they provide primitives to 

allow programs to monitor their own progress in time by referencing a real-time clock. 

In Ada this is done via the CLOCK primitive supplied by the CALENDAR package. In the 

implicit time determinate language PFL [Holmstrom 83] the value of current time can be 

obtained by evaluating the primitive time which takes no arguments and returns a 

representation of the current time in seconds. However, since time takes no arguments 
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but will return a different result each time it is evaluated it is non referentially 

transparent, although it can be given a fully determinate definition using herring-bone 

domains. 

2.4.3 Real-time clocks in functional programming languages 

A referentially transparent way of providing access to a real-time clock in a 

functional language, suggested in [Burton 88], is to treat clock values as a lazily 

evaluated input stream. Whenever the program wishes to know the time it references the 

head of the clock stream. The system then instantiates the head of the clock to the current 

time. Any subsequent reference to the head of the clock will obtain the same value so 

this preserves referential transparency. For example, the program below waits until 1 0 0 0 

time units after the start of execution before echoing its input. 

output 

where 

wait (input,lOOO,clock) 

wait = lambda (i,t,clock). 

If t ~ Head(clock) 

Then i 

Else wait(i,t,Tail(clock» ; 

endwhere 

(2.32 ) 

Note that after it is used each clock value is discarded, by taking clock'S tail, since it 

no longer denotes the current value of time. 

In the last section of this chapter we shall bring together what we have learned about 

different approaches to real-time programming. From these alternative approaches, and 

from what we have discovered in this section about the remaining problems in applying 

functional languages to real-time programming, we shall select the basic characteristics 

of the language Ruth. 
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2.5 Conclusion 

In this chapter we have examined the time expressibility offered by a range of 

real-time languages. Broadly we can identify two types of approach: the pragmatic, 

defensive approach and the theoretical, optimistic approach. 

The defensive languages, typified by Ada, assume nothing about the real-time 

behaviour of a particular language implementation and give no guarantees that specified 

deadlines will be met. When working with such languages programmers must program 

in a very defensive manner: if there is the slightest doubt as to whether software will 

meet its constraints then it is rewritten. Defensive languages provide facilities to allow 

software to monitor its own progress in time so as to detect, and recover from, failures 

to meet deadlines. This usually involves writing a large amount of error handling code 

which (hopefully) is never executed. Most, if not all, languages used industrially for 

real-time work are defensive in nature. 

The optimistic approach, typified by LUSTRE, assumes a particular real-time 

behaviour from language implementations. In LUSTRE's case the assumption is that of 

strong synchrony: that machine operations take negligible time and thus specified 

deadlines will always be met. LUSTRE thus provides no support for the detection of, 

and recovery from, failures to meet deadlines since such failures are assumed not to 

occur. Programs written in LUSTRE concentrate upon specifying the temporal 

behaviour required rather than on how that behaviour is to be achieved. 

One of the advantages often cited for functional languages is that they allow the 

programmer to concentrate upon specifying what result is required rather than how that 

result is to be achieved; at first glance LUSTRE extends that benefit to temporal 

behaviour. However, how to produce the required result automatically from a functional 

program is a well understood problem; to guarantee the temporal behaviour implicit in a 

LUSTRE program is not. A programmer could write programs for which correct 

temporal behaviour requires that the implementation be able to perform, for example, 

multiplications in negligible time. 

The other optimistic language we considered, ART, does not assume strong 

synchrony; instead the assumption is that the exact time taken for any machine operation 
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is known. Thus temporal behaviour can be predicted from the semantics of the language. 

This is not as strong an assumption as strong synchrony but may be equally unrealistic 

due to the variability of duration of machine operations. Furthermore, proving the 

temporal behaviour of a program from the semantics of language is a complex task for 

all but the most trivial of programs, and is very error prone without substantial machine 

assistance and checking. 

In the future machine performance may improve to such an extent that the strong 

synchrony hypothesis is viable for all but the narrowest of real-time problems. Equally, 

machine assisted program proving may also become possible. Until then we are forced 

onto the defensive: real-time programs must be able to monitor their own progress in 

time and must also be able to detect and recover from failures to meet deadlines. 

The implicit time determinate functional languages examined in Section 2.4 modelled 

events as elements of infinite streams. This seems the obvious approach for functional 

languages and is the approach we shall follow in Ruth. To allow Ruth to specify when 

events are to occur, and to detect when events have occurred, we shall associate with 

each stream element a time value, or timestamp, and will refer to such timestamped 

streams as channels. By testing timestamp values a program can detect when events 

occur. This approach is similar to that taken by real-time Lucid save the channels have 

single valued timestamps rather than time windows. The use of single valued timestamps 

avoids implicit time determinance in the detection of when events occur. In common 

with all implicit time determinate operators, real-time Lucid's time primitive can be 

given a determinate definition via herring-bone domains; however, and once again in 

common with all implicit time determinate operators, its result cannot be predicted from 

the text of a program without a great deal of semantic analysis. Although using single 

values is less convenient than time windows we believe that easier understanding of a 

program's real-time behaviour more than compensates for this. 

Partly for the same reason, but mostly because implicit time determinate operators 

like amb are not sufficiently discriminating for a real-time language, we shall extend our 

test on channel timestamps to detect when events have not occurred: if the timestamp of 
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a message in a channel is not less than a certain number then the event did not occur by 

the time denoted by that number. 

As a consequence of our adoption of the defensive approach Ruth will provide 

access to a real-time clock input stream to allow programs to monitor their progress in 

time and so detect and recover from failures to meet deadlines. 

Once again it must be emphasised that Ruth is a language concerned mostly with 

time expressibility, software engineering issues having been tackled in some detail 

elsewhere. Many real-time systems are programmed as sets of parallel processes, both 

for reasons of program design and hardware structure. Rather than invest time and effort 

in examining the issues this raises for language design Ruth will directly borrow, and 

simplify, the occam [INMOS 84] model of a static set of processes communicating along 

point to point channels. 
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Chapter 3 . The Language Ruth 

3.1 Introduction: Configurations, Processes And Channels 

In this chapter we introduce the language Ruth. It is assumed that the reader is 

familiar with functional programming languages and thus the presentation will be fairly 

informal. The semantics of Ruth are outlined in the next two chapters and fully formally 

in Appendices 1 and 2. The complete syntactic definition of Ruth is given in Appendix 

3. 

The first step of the presentation is to introduce the model of the real world which 

Ruth assumes. We shall do this by informally specifying a real-time system and 

showing how it would be implemented as a set of independent, communicating Ruth 

processes. Consider the following system :-

System 

kbl ... ... --.. ... .. .. kbs ... .. scrl 

Merge ... Supervisor .... 
... ... ... ... ... .... ,.. kb2 scr2 

System takes two keyboard inputs, kbl and kb2, and produces output to two screens, 

scrl and scr2. System comprises two processes: Merge and Supervisor. Process 

Merge takes kbl and kb2 as input and merges them into kbs, on the basis of time of 

arrival of each message. Such timewise merges are fairly common in real-time systems, 

we have already given an implicit time determinate specification of one in (2.25). 

Supervisor takes kbs as input and echoes its contents to both scrl and scr2. There is 

no timing restriction on Me rge save that it execute as fast as possible, however, 



Supervisor must echo every message received on kbs to serl and ser2 within ten 

time units of its arrival at Supervisor. Whenever Supervisor receives a message 

which it cannot echo within this deadline it discards the message and sends 't ime 

fault' upon serl and ser2. Whenever Supervisor has to wait for messages on kbs it 

sends 'waiting' upon serl and ser2. 

A Ruth program is a set of processes executing in parallel and communicating via 

streams of timestamped messages, or channels. The set of processes and their 

configuration is fixed at compile time. Ruth does not allow processes to be dynamically 

created and/or destroyed at run time. To implement System in Ruth requires a 

configuration of two processes, Merge and Supervisor, communicating by the 

inter-process channel kbs. System also has four environment-process channels, kbl, 

kb2, serl and ser2, carrying the keyboard inputs and screen outputs. In Ruth this is 

expressed using the Configuration construct. 

Configuration System 

Output serl,ser2 

Input 

Is 

end. 

kbl, kb2 

serl, ser2 

kbs 

Supervisor (kbs) 

Merge (kbl, kb2) 

(3.1) 

A channel is an infinite stream of timestamped data values, or messages, each 

message denoting an event in the system. Each channel in a configuration must have a 

unique producing process, or be an input from the external environment, but may be 

consumed by any number of processes, including its producer, and/or the environment 

(though System does not contain an example of this). Each process defines a mapping 

from a tuple of input channels to a tuple of output channels. A process may have any 

number of input channels, including none at all; a process may also have any number of 

output channels, but must have at least one. 

Channel timestamps are represented by non-negative integers. This seems natural in 

digital computers which can only represent discrete values accurately. We assume that 

the timestamps on channel messages represent values in real-time with an error of ±1/2 a 
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tick. Provided the duration of a tick in discrete time is small enough we can treat 

timestamps as accurate representation of the continuous values. We shall assume that 

this is the case. 

The timestamp of a channel message is interpreted as denoting the time at which the 

message will become available for use (i.e. will arrive) at its destination. Each message 

in the screen output channels scrl and scr2 has a timestamp denoting when the 

message should appear on the screen, that is, when the event corresponding to the 

message should occur. The timestamps on the messages in kbl and kb2 denote the time 

at which the keystroke was made, that is, when the keyboard event occurred. 

A consequence of this interpretation of channel timestamps is that we must view the 

occurrence of the keystroke and the arrival of the message denoting that event at Merge 

as being simultaneous: channel communication is assumed to be infinitely fast. For an 

inter-process channel, particularly if the two processes are executing on the same 

physical processor, communication delays are likely to be small enough to ignore. 

However environment-process channels are likely to be carried by relatively long wires 

(e.g. of the order of a metre or more in an embedded system) and this will cause 

significant delay. One possible approach would be to add fixed amounts to the 

timestamps of environment-process channel messages to cope with the maximum 

possible delay. However, as with machine operations, such a maximum delay is difficult 

to specify and may cause large overheads if it is overestimated. In this work, for 

simplicity, we shall assume that all communication delays are negligible, whilst being 

aware that this is not entirely satisfactory and is an area requiring further work. 

Note that although a message's timestamp denotes the earliest time at which its 

receiving process can use it there is no reason that the message will be used at that time. 

A process may choose to keep messages waiting until it is ready to deal with them, as, 

for example, Supervisor will do if Merge produces messages too quickly. We assume, 

however, that the environment never keeps messages waiting but reacts to them as soon 

as they arrive. 

Given this interpretation of message timestamps the detection of events and when 

they occur simply requires a test on the value of a channel message's timestamp. 

However, as we shall see in Section 3.3, the detection of the non-occurrence of an event 
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is not quite that straightforward, although basically, it is still a test on the timestamps of 

channel messages. 

Returning to our example, System, we see that process Merge takes kbl and kb2 as 

input channels and produces channel kbs as its output. In Ruth this is written 

Process Merge (3.2) 

Input kbl, kb2 

Clock c 

Is Expression 

Unlike a configuration definition, a process definition does not name its output channels 

but does name a clock, in this case c. A unique clock is automatically supplied to each 

Ruth process at run-time, to provide real-time information, and the Clock keyword 

allows the programmer to provide a name by which the clock is referred to in 

Expression. Expression may be any Ruth expression and is called the process 

expression; it defines a mapping from the tuple of input channels listed after Input, 

and the named clock, to the tuple of output channels. In other words Expression 

defines a function from the input channels and the clock to the output channels: the 

process function. Of course, a Configuration or a Process definition is not a Ruth 

expresslOn. 

For simplicity we shall assume that there is no clock skewing between processes. If 

the processes are all executing on a single physical processor then they will all use the 

same physical clock and thus clock skewing cannot occur. If different physical 

processors are being used then skewing will almost certainly occur. [Lamport 78] gives 

an algorithm by which physical clocks on different processors can be synchronised, 

within certain fixed limits, by sending timestamped messages between the processors. 

The size of the limits depend on the frequency with which messages are exchanged and 

the communication delays involved. By using Lamport's algorithm, or something 

similar, it is possible to make clock skewing invisible to the Ruth programmer and 

consequently in the rest of this work we shall assume it does not occur. 

In this section we have been concerned with laying the basic framework of a Ruth 

program as a static configuration of parallel processes communicating via channels, each 
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process defining a function from its (possibly empty) tuple of input channels and clock 

input to its tuple of output channels. A channel is produced by exactly one process but 

may be consumed by any number of processes, including its producer. The timestamps 

on channel messages denote when the message will arrive at its destination, thus 

allowing the programmer to define when events are to occur and, by testing timestamp 

values, to determine when events did occur. 

In the next section we shall briefly introduce the standard functional part of Ruth. 

Section 3.3 discusses channels and, in particular, the way in which Ruth programs 

detect the non-occurrence of an event. Section 3.4 concerns real-time clocks and how 

they are used. In Section 3.5 we show how Ruth can be used to solve real-time 

problems by completing the definition of the fairly simple System, given above. 
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3.2 The Standard Subset Of Ruth 

The primitive, or atomic, data objects used in Ruth programs are strings, integers 

and booleans. Strings are delimited by , and " for example 'This is a valid 

s t ring'. The usual arithmetic operations on integers are provided : addition (+), 

subtraction (-), multiplication (*), division (I) and modulus (\); and the usual testing 

operators: greater/less than (», greater/less than or equal to (~). Equality (=) and non 

equality (~) are defined on all atomic objects. On booleans Ruth provides the usual 

operators, And, Or and Not. 

Ruth also provides the traditional If ... Then ... Else construct, for example 

If (a + b ~ 27) Or (c \ d * 4) 

Then 'OK' 

Else 'Not OK' 

Functions are denoted in Ruth by lambda abstractions 

lambda (a, b, c) . a + b - c 

and function application is by juxtaposition as usual 

( lambda ( a , b, c ) . a + b - c) ( 4 , 5 , 6 ) 

Identifiers can be associated with values via where definitions. 

a + b + (a/b) where a 27 b 32 ; endwhere 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

where does not allow recursive definitions, for this purpose the whererec (where 

recursive) construct is provided. 

fact(3) 

whererec 

fact = lambda (n). If n 

endwhererec 

(3.7) 

o Then 1 Else n * fact (n-l) ; 
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For data structuring purposes Ruth uses the LISP notion of the s-expression. Any 

atomic value (Le. a string, integer or boolean) is an s-expression; the primitive operator 

Cons pairs together two s-expressions to produce a new s-expression and the primitive 

operators Head and Tail return the first and second elements of a consed pair 

respectively. 

Cons ('Hello', 5) 

Head (['Hello', 5]) 

[ , Hello', 5] 

'Hello' 

Tail (['Hello', 5]) 5 

(3.8) 

The empty s-expression is denoted by the keyword Nil and the predicate isNil has 

the obvious meaning. A further predicate, Atom tests whether or not an s-expression is 

an atomic value. Note that in LISP Nil is an atom whereas in Ruth it is not. 

isNil (5) 

isNil (['Hello', 5]) 

isNil (Nil) 

Atom (5) 

Atom (['Hello', 5]) 

Atom (Nil) 

false 

false 

true 

true 

false 

false 

(3.9) 

The semantics of Ruth given in Chapter 5 assume a normal order evaluation strategy 

such as is provided by the technique of lazy evaluation (e.g. [Henderson & Morris 76], 

[Friedman & Wise 76]). Consequently whererec can be used to define infinite data 

structures. 

This completes our survey of the standard functional subset of Ruth. The 

assumption throughout this section has been that the reader is familiar enough with 

functional programming languages to require nothing more detailed. 

In the next section we shall look at the first major step in providing Ruth with time 

expressibility : the introduction of timestamped streams of data values allowing Ruth 

programs both to determine when events took place and to define when events should 

take place. 
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3.3 Channels, Timestamps, And The Ready Test 

In Section 3.1 we introduced the notion of a channel : an infinite stream of 

messages denoting events. The data value in a message defines what the event is and the 

timestamp when the event is to occur. 

In Ruth the timestamps in channel messages are represented by non-negative 

integers and only atomic data objects are allowed as message data values. The major 

reason for this restriction is that of efficiency and simplicity of communication. Since the 

semantics of Ruth assume normal order evaluation data structures are only evaluated as 

far as is necessary to produce the immediately required result. Any s-expression may 

contain evaluated and unevaluated parts. The unevaluated parts are represented by, 

potentially very large, "recipes" for computing their values. If s-expressions are allowed 

as message data values an implementation must either traverse their whole structure and 

compute the values of all the recipes, or must transmit the recipes as part of the message. 

Either strategy would be a significant overhead, both in time and complexity. By 

restricting message data values to be atomic objects Ruth avoids this problem since an 

atomic object is either totally defined or totally undefined, it contains no recipes. If the 

atomic object is defined it is transmitted; if it is undefined the recipe representing it is 

forced and the resulting atomic object is transmitted. 

We shall denote channel messages by enclosing them between" {" and"} "; for 

example It, a} denotes the atom a stamped with the time t. 

A channel is a head-strict, infinite, stream of messages. That is to say that Ruth 

insists that the first, or head, message in a channel must be completely evaluated to 

construct the channel so as to avoid the problems with partially evaluated messages 

outlined above. However the sending of the head message in a channel is totally 

unaffected by the contents of the rest, or tail, of the channel, and thus the tail need not be 

evaluated for the head message to be sent. 

Channels will be delimited by " [" and"] ", for example the channel whose first 

message is {O, 'Hello'} and whose subsequent messages form the channel rest will 
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be written 

[{O,'Hello'}, rest] (3.10) 

There is one further important property of Ruth channels : the times denoted by the 

timestamps in channel messages must be strictly increasing. The interpretation of a 

channel is that it is an ordered sequence of messages, each of which denotes an event in 

the system and the implication of channels being head-strict objects is that their messages 

are produced in the order they occur in the channel. In other words we require that the 

fIrst message in a channel denotes an event which occurs earlier than the events denoted 

by the messages in the remainder of the channel. 

To ensure this we place an incremental interpretation upon channel timestamps. Let 

the fIrst message in a channel be {t1 , al}' the second {t2 , a2}' and so on. The time at 

which the event denoted by {t l' a l} occurs is t 1; the time at which the event denoted by 

{ t 2 , a 2} occurs is t 1 +t 2 + 1. In general, if the time denoted by the timestamp of the nth 

message is Tn then the time denoted by the timestamp of the n + 1 th message is 

Tn+tn+l +1. Note that the +1 ensures that zero valued timestamps still denote a later time 

than their predecessor. For convenience, the Ruth programmer will use absolute time 

values for timestamps; the incremental interpretation of timestamps is simply a notational 

convenience when expressing the semantics of the language. 

The data value part of the first message in a channel is referenced by the Ruth 

primitive HeadCh (head channel) and the Time primitive returns the timestamp of the 

first message, that is, when the event it denotes occurs. The tail of the channel is 

returned by the primitive TailCh (tail channel). 

HeadCh ([{t,a}, rest]) = a (3.11) 

Time ( [ {t, a }, re s t] ) t 

TailCh ( [{t,a}, [{t',a'}, rest'] ]) [ { t +t ' + 1 , a'}, re s t ' ] 

Note the required adjustment to the timestamp of the tail of the channel made in the 

calculation of TailCh. 
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The Ruth channel constructor is called ConsCh (cons channel). ConsCh takes as 

arguments an atomic data value and a number, together defining a message, which it 

adds at the head of the channel which is its third argument. 

ConsCh (a, t, ch) 

[{t,a}, (t ~ t' ~ 1., [{t'-t-1, a'}, rest] ) ] 

where 

[{t',a'}, rest] ch, 

(3.12) 

Here 1. denotes the undefined value. The message to be added to ch must have a lower 

timestamp than that at the head of ch since the ordering of channel messages is identical 

to the ordering of the events they denote in time. If this is not the case then a channel 

containing only the new message results; ch is "ignored" since it is inconsistent with the 

new message. Note that the timestamp of the head message of ch is adjusted in line with 

the incremental interpretation of channel timestamps when the result channel is 

constructed. 

There is one other important restriction on channel construction which (3.12) above 

does not mention. Since message timestamps denote the time at which the message must 

be available at its destination it is obviously an error to add a message with timestamp t 

to a channel at a real-time later than t as there is no way that the message can be 

delivered on time. Ruth programmers must program in a defensive way, by using the 

clock inputs to monitor programs' progress in time, so as to detect situations where this 

might occur and take corrective action. 

Note that the possibility that a message might be computed with an out of date 

timestamp can only be expressed in a semantic model which allows the expression of 

timing information. Consch will be fully specified when the semantics of Ruth are given 

in Chapter 5. 

In Section 3.1 we commented that Ruth processes map tuples of input channels into 

tuples of output channels. In Ruth tuples are constructed by listing their component 

channels between" {" and"}" and channels are selected from tuples via the! operator, 

overleaf. 
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{ ch1 , •.. , chn } ! m (3.13) 

(1 ~ m ~ n ~ chm, .1..) 

Note that the channels in a tuple are numbered from 1. 

We have now introduced enough of Ruth to allow us to write programs which can 

define when events are to occur and respond to when events do occur. For example, the 

process Merge from Section 3.1 requires that two input channels be merged into one 

output channel on the basis of when the input messages arrive: a timewise merge. A 

Ruth function for such a merge is given below. 

merge 

lambda (ch1, ch2). 

If Time(ch1) ~ Time(ch2) 

Then ConsCh(HeadCh(ch1), Time(ch1)+d, 

merge (TailCh(ch1), ch2) ) 

Else ConsCh(HeadCh(ch2), Time(ch2)+d, 

merge (ch1, TailCh(ch2» ) 

where 

d = ...; -- a non-negative integer constant 

endwhere 

(3.14) 

In Ruth "--" denotes the start of a comment and comments are terminated by the end of 

the line. Each time a message is produced by merge its timestamp is increased by d so 

that merge must process messages within d time units of their arrival to avoid channel 

construction errors. 

The question is, will this definition of me rge evaluate fast enough to meet this 

requirement? The answer is almost certainly not. The expression 

Time (ch1) ~ Time(ch2) (3.15 ) 

cannot be evaluated unless the first message in both ch1 and ch2 is available. However 

all we are trying to determine is which of the two channels produces a message first. If 

ch 1 has produced a message and ch2 has not then (3. 15) is obviously t rue and we 

need not wait for ch2. In many situations we certainly would not want to wait for ch2 to 

produce a message, for example, if chl carried messages from a smoke detector and ch2 
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carried messages from a keyboard. It highly likely that if a smoke detector has sensed 

the presence of smoke it will be a considerable time before another key is pressed on the 

keyboard. We would wish to pass on the smoke detector signal immediately and not 

have to wait for a keyboard input. Having to wait for both channels to produce a 

message before deciding between them will almost certainly ensure that the delay of d 

time units will be exceeded. 

In fact, timewise merging is just a specific case of one of our requirements for a 

real-time language: the ability to detect that an event has not occurred. Having to wait 

until an event does occur in order to detect that it did not occur by a particular time is 

clearly undesirable; a check for an event at time t should produce a result at, or as close 

as possible, to time t. Since Ruth timestamps denote the actual times that events occur 

such a test is trivial to define: the Ready test. 

Ready ([{t,a},rest], n) t ~ n (3.16) 

The advantage of using Ready over using the Time function is that we can rely on 

the timestamps denoting the actual real-time at which the channel's messages become 

available to the Ready. An evaluation of the expression Ready ( [ {t, a} , rest] , n) can 

return a result immediately if the channel ch already has a message available. If there is 

no message currently available in ch then evaluation need only be suspended till after the 

time denoted by n; after n has passed there is no way that a message with a timestamp 

less than or equal to n can appear in ch : the Ready test evaluates to false. Note that this 

timeout ability can only be defined in a semantic model containing timing information 

and this is done in Chapter 5. 

U sing Ready we can rewrite me rge as shown overleaf. 
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merge (3.17) 

lambda (ch1, ch2, n). 

If Ready(ch1,n) 

Then If Ready(ch2,n) 

Then If Time(ch1) ~ Time (ch2) Then ans1 Else ans2 

Else ans1 

Else If Ready(ch2,n) Then ans2 Else merge (ch1, ch2, n+k) 

where 

ans1 = ConsCh(HeadCh(ch1), Time(ch1)+d, 

merge(TailCh(ch1), ch2, n+k) ; 

ans2 ConsCh(HeadCh(ch2), Time(ch2)+d, 

d 

k 

endwhere 

; 

merge (ch1, TailCh(ch2), n+k) ) ; 

a non-negative integer constant 

a non-negative integer constant 

Here k is a constant detennining the sampling rate of merge, that is, how often merge 

checks for messages. If the sampling rate is too slow (i.e. k > d) then we will certainly 

violate the timing requirement by keeping a message waiting for longer than d time units. 

However the sampling rate must not be faster than the underlying implementation of 

merge can cope with. If each evaluation of merge takes i time units and i > k then the 

value of n is going to fall further and further behind the current time and the timing 

requirement will eventually be violated. Thus, the correct value for k is in the range i to 

d. Obviously, in the case where d < i there is no possibility of satisfying the timing 

requirement. The value of d is known but detennining that of i is more problematical, 

given the problems of predicting the exact timing behaviour of a computer. 

Although, without knowing the value of i, we cannot justify ourselves formally, we 

can pragmatically argue that our new version of merge has a much better chance of 

satisfying the timing requirement since it will not waste time waiting for unavailable 

messages, and thus its value for i will be lower. 

In many cases we require that the program be able to detect at run time if it is likely 

to fail to meet its deadlines and take remedial action. This is only possible if the program 

knows what the current time is. Channels are little help in this: although a channel 

timestamp denotes when a message arrives at its destination it does not denote when the 
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message is finally referenced. A process may leave its inputs queued for some time 

before referencing them, so that the timestamps will bear little connection to the current 

time. In the next section we consider the clock inputs which are supplied to Ruth 

programs and show how they can be used to provide reference to the real-time. 
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3.4 Clocks And "Real" Real-Time 

In the semantics given in Chapter 5 every Ruth program is supplied with a tree of 

time values (or clock) as suggested in [Burton 88] and each Ruth process is given a 

different sub-tree of the clock so that each process has a unique notion of the current 

time. The only reason for using a tree in preference to a linear list for clocks is so that 

unique sub-trees can be easily extracted in the semantics to allow for time independent 

evaluation of sub-expressions; operationally a process will simply build a list of values 

read from its processor's physical clock and thus to the Ruth programmer a clock is just 

a list of time values. 

A clock tree is composed of a node holding a non-negative integer denoting the 

current time and two sub-trees containing the times of future events. As the tree is 

(lazily) evaluated each of the nodes is instantiated with the value of system time at the 

time at which the node is instantiated, thus giving programs reference to the current 

time. We shall denote a clock as a triple enclosed between " [" and "] ", for example 

[t, 1, r] denotes the clock with node value t and sub-trees 1 and r. 

Since clock nodes will be instantiated in order (i.e. parent node, then child nodes) 

the values held in the child trees' nodes must denote times later than the parent's node 

value. To ensure this clock node values are given the same incremental interpretation 

as was given to channel timestamps. The number in the root node of a clock tree, say t, 

denotes the current time; the times in the roots of its immediate children, say tl and t r , 

denote the times t+tl +1 and t+tr+1 respectively. In general, if the time denoted by 

node in a clock tree is T and the node values of its immediate child trees are t 1 and t p 

then the times denoted by the child node values are T+t1 +1 and T+tr+1 respectively. As 

with channels, the Ruth programmer will deal only with absolute time values, the 

incremental representation of clock times is merely a notational convenience. 

The Ruth primitives for accessing clock trees are the functions HeadClk and 

TailClk which are defined overleaf. (The names were chosen to emphasise the point 

that to a Ruth expression a clock is just a list of time values). 
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HeadClk ([ t , 1 , r]) 

TailClk ([t, 1, r]) = 
t 

[ t +t 1 + 1 , 11 ' r 1 ] 

where 

(3.18) 

TailClk simply returns the left child of the clock tree, so treating the clock as a simple 

list. There is no Ruth primitive for constructing clock trees : they are purely inputs to the 

program, the programmer cannot build his own. Obviously the programmer should be 

careful that HeadClk is not supplied with a clock which has already had its node value 

instantiated since, if that were the case, the value returned by HeadClk would not 

represent the current real-time. 

With HeadClk and TailClk we can write functions which explicitly respond to the 

passage of time. In the last section we gave a version of merge which scanned its input 

channels every k time units. We pointed out that determining what the value of k should 

be is difficult : too large and messages will be kept waiting too long; too small and 

merge would not be able to execute fast enough. By using the clock input to return the 

current value of time we can remove the need for k altogether and simply check the input 

channels "now". 

merge (3.19) 

lambda (ch1, ch2, clk). 

If Ready(ch1,now) 

Then If Ready(ch2,now) 

Then If Time(ch1) ~ Time(ch2) Then ans1 Else ans2 

Else ans1 

Else If Ready(ch2,now) Then ans2 Else merge (ch1,ch2,tclk) 

where 

ans1 = ConsCh(HeadCh(ch1), Time(ch1)+d, 

ans2 

merge(TailCh(ch1), ch2, tclk) 

ConsCh(HeadCh(ch2), Time(ch2)+d, 

; 

merge (ch1, TailCh(ch2), tclk) ) ; 

d ; -- a non-negative integer constant 

now HeadClk(clk) 

tclk TailClk(clk); 

endwhere 
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By using the clock input clk to provide values for the current time this version of merge 

is effectively parametrised with its speed of execution. This is a better implementation of 

our original specification for the Merge process from Section 3.1 in which we stated that 

the only timing requirement for Merge was that it execute "as fast as possible". However 

merge has a stronger timing requirement than executing as fast as it possibly can: it 

cannot delay an input message by more than d time units or a channel construction error 

will be produced. That restriction can be easily removed to produce a me rge function 

that exactly meets the specification for process Merge. 

merge (3.20) 

lambda (ch1, ch2, clk). 

If Ready(ch1,now) 

Then If Ready(ch2,now) 

Then If T~(ch1) ~ T~(ch2) Then ans1 Else ans2 

Else ans1 

Else If Ready (ch2, now) Then ans2 Else merge (ch1,ch2,tclk) 

where 

ans1 = ConsCh(HeadCh(ch1), now + delta, 

merge(TailCh(ch1), ch2, tclk) ; 

ans2 ConsCh(HeadCh(ch2), now + delta, 

merge (ch1, TailCh(ch2), tclk) ) ; 

delta ; -- a non-negative integer constant 

now HeadClk(clk) 

tclk TailClk(clk) 

endwhere 

In (3. 19) OUtput messages were timestamped with the time they arrived at merge plus 

d. Here output messages are timestamped with the current time plus delta. It would be 

tempting to timestamp output messages with the current time alone but this would be an 

error. The clock must be instantiated to produce the timestamp before the message can be 

sent and thus, even assuming no transmission delays, the timestamp must be out of date 

before the message arrives at its destination. The delta value is used to allow for the 

unavoidable delay between channel construction and message arrival. 

In real-time programs it is a common operation to timewise merge two or more 

channels and apply some function to the resulting channel. In the case of (3.20) the 
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function applied is the identity function. It would be useful to include a higher-order 

function which would take as arguments a tuple of channels and a function and would 

apply the function to the timewise merge of the channels. This is only one example of 

the way in which higher-order functions, in this context often called I/O combinators, 

can be used to aid the writing of clear, concise functional programs. For further details 

see [Thompson 86], [Bird & Wadler 88] and [Jones & Sinclair 89]. 

This completes the informal description of Ruth. In the next section we shall 

complete our implementation of System from Section 3.1. This will serve two purposes 

: to show that Ruth can be used to solve real-time problems, even though the problem 

itself is somewhat trivial; and, more importantly, to further illuminate the language itself. 
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3.5 A Worked Example 

In Section 3.1 we gave an informal specification of the simple real-time system 

pictured below. 

System 

kbl .. .. .. .. .. kbs .. serl 
Merge .. Supervisor 

kb2 ... ... ---.. .. ser2 

The purpose of this system is to send all messages received from kbl and kb2 to 

both serl and ser2. Messages are to be sent to serl and ser2 in the order they arrived 

at kbl and kb2, to ensure which they are timewise merged by the process Merge. The 

only timing restriction on Merge is that it process messages as fast as possible. Process 

Supervisor takes the merged channel produced by Merge and sends it to both serl and 

ser2. The timing restriction upon Supervisor is that it must pass on all the messages 

on kbs within ten time units of their arrival and any message which cannot be output 

within this deadline results in the message' time fault' being output. There is no 

restriction on how often Supervisor checks for messages in kbs, but whenever a check 

is made and no message is present the message' waiting' must be output. 

The skeleton Ruth program to implement System is as follows 

Process Merge Input kbl, kb2 Clock elkl Is 

Process Supervisor Input kbs Clock elk2 Is 

Configuration System 

Output serl,ser2 

Input kbl, kb2 

Is serl, ser2 

kbs 

end. 

Supervisor (kbs) 

Merge (kbl, kb2) 
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We ftrst deftne the process and then the way in which they are configured to form 

System. In (3.20) we gave a deftnition of a timewise merge of the form required for 

process Merge. Thus the complete definition of Merge is 

Process Merge 

Input kbl, kb2 

Clock elk 

Is {merge (kbl, kb2, elk) } 

whererec 

merge = lambda (chI, eh2, elk) ... ; -- As (3.20) 

endwhererec 

(3.22) 

Notice that the call of merge function is enclosed between" {" and "}" thus embedding 

its result channel into a tuple. This is required because Ruth processes produce tuples as 

their results. Note also that Ruth is a case sensitive language: there is no confusion 

between the process Merge and the function merge. 

The skeleton for Supervisor is 

Process Supervisor 

Input kbs 

Clock elk 

Is {out, out 

whererec 

out = supervisor(kbs, elk) 

endwhererec 

(3.23) 

Since Supervisor sends the same output channel to both serl and ser2 the result 

of the application of the function supervisor is simply given twice in the output tuple. 

The function supervisor is defined overleaf. 
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supervisor (3.24) 

lambda (kbs, clk). 

If Ready(kbs, now) 

Then If next out - 10 > Time(kbs) 

Then ConsCh(1time fault 1, next_out, rest) 

Else ConsCh(HeadCh(kbs), next_out, rest) 

Else ConsCh(1 waiting 1, next_out, supervisor (kbs, tclk» 

whererec 

now 

tclk 

next out 

delta 

HeadClk(clk) ; 

TailClk(clk) 

now + delta 

; -- a non-negative integer constant 

rest supervisor(TailCh(kbs), tclk) ; 

tclk TailClk(clk) ; 

endwhererec 

Note the use of delta to allow for the delay between constructing the channel and the 

message being sent. If the fIrst message on the channel arrives before next _ ou t - 10, 

Supervisor cannot meet its deadline and the 1time fault 1 message will be sent 

instead. 

As suggested by its name, Supervisor acts as a simple output supervisor for 

System, detecting, and recovering from, timing errors caused either by the lack of input 

from the keyboards (1waiting1) or through its own failure to execute quickly enough 

(1 time fault 1). More complex strategies could easily be defined. For example, in 

certain cases a large backlog of messages may build up on kbs because Merge is 

producing messages faster than Supervisor can consume them, and sending a time 

fault message for each message in the queue which could not be delivered in time could 

cause Supervisor to fall further and further behind. A more sophisticated approach 

would be to remove all messages from the queue which arrived before next_out - 10, 

since these messages can defInitely not be delivered in time, and only produce one 'time 

fault 1 message. The function discard removes all messages in a channel with 

timestamps less than, or equal to, a given value. discard is defmed overleaf. 
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discard 

= lambda (ch, t). 

If Ready(ch, t) 

Then discard (TailCh (ch) , t) 

Else ch 

(3.25) 

To implement our more sophisticated recovery strategy we simply replace the Then 

branch of the inner If ... Then ... Else of (3 . 24) , which tests whether a message can 

be output within the deadline, by 

ConsCh('time fault', next_out, 

supervisor(discard(kbs,next_out - 10), tclk» 

(3.26) 

More complicated systems could easily be defined. For example, we might extend 

our requirement that Supervisor delay messages by no more than ten time units to the 

whole of System. This would involve using the me rge function from (3. 19) , and 

allowing, say, five time units for Merge and five for Supervisor. 

The purpose of this section was to show how Ruth programs can be used to 

implement real-time systems. Although the problem chosen was a very simple one it 

does exhibit the essential feature of a real-time system: the necessity to meet deadlines. 

A more complex problem, an interactive computer game, is the subject of Chapter 5. 
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3.6 Conclusion 

A Ruth program is a static configuration of processes communicating with each 

other, and with the external environment, via infinite streams of timestamped messages, 

or channels. A process is a function from a tuple of input channels and a real-time clock 

to a tuple of output channels. Each channel in a configuration is produced by a single 

process, or by the external environment, but may be consumed by any number of 

processes, including its producing process, and/or the external environment. A channel 

message denotes an event in the real-time system; its data value denotes what the event is 

and its timestamp when the event is to occur. 

Ruth programmers can define when events are to happen by setting the timestamps 

in messages, and can detect when events occurred by checking timestamp values. 

However, checking message timestamps requires that a message be available to check, 

and so detecting that an event has not occurred cannot be done by simply checking a 

message's timestamp since, until the event does occur, the message will not exist. Ruth 

provides a primitive which will timeout messages: the Ready test. Although Ready 

appears to the Ruth programmer to be a simple test on message timestamps it relies upon 

the fact that message timestamps define when messages become available to allow it to 

return false if a message does not arrive by the specified time. In this way Ruth 

programs can also detect the non-occurrence of an event as well as its occurrence. 

The remaining requirement is for a formal semantics allowing reasoning and 

transformation with Ruth programs. In the next chapter we construct a denotational 

semantics for Ruth based on the herring-bone domains introduced in Chapter 2. 
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Chapter 4 : Semantic Domains For Real-Time 
Programming 

4.1 Introduction 

It was noted in the last chapter that to define the semantics of Ruth requires a 

semantic model which incorporates timing information. In Chapter 2 we saw just such a 

model: the denotational semantics based upon herring-bone domains used in [Broy 83] 

to specify the semantics of the language ART. 

Just as timestamps can be used to allow programmers to specify timing information 

in programs they can be used to add timing information to a semantics. The example 

given in Chapter 2 was of a herring-bone domain of booleans which can be represented 

diagrammatically as 

<00, 1.. > 

• 

• 

• 

<2,true> 

'" <2, 

<l,true>~ ~<l'false> 

<1, 1.. > 
<o,true>~ ~<O'false> 

<0, 1.. > 

When discussing herring-bone domains we shall observe the following convention: 

given a domain D (for example BOOL) the herring-bone domain which is constructed 

from it will be written as W) (e.g. ~~). For the domain BOOL, the set of elements in the 

corresponding herring-bone domain ~~ is 



{<t.b> I t E NUM,b E BOOL} u {<=,~>} (4.1) 

For the definition of BOOL, the primitive domain of booleans, the reader is referred to 

Appendix 1. In (4. 1) NUM is the set of non-negative integers which is used in preference 

to NUN, the primitive domain of non negative integers, since it does not contain a ~ 

element and this avoids the possibility of ~ time values. 

The ordering required on §@@~, as can be seen from the diagram, is 

V t 1 , t2 E NUM, b 1 , b 2 E BOOL (4.2) 

<t1 , b 1 > !; <t2, b 1> <=> (t 1 t2 /\ b 1 !;BOOL b 2) V 

(t 1 ~ t2 /\ b 1 = ~) 

A herring-bone domain, such as §@@~, contains a chain of elements of the form 

(4.3) 

which, for obvious reasons, we shall refer to as its spine. Computation of an element of 

a herring-bone domain can be viewed as the production of increasing elements of the 

spine (i.e. undefined elements with greater and greater semantic timestamps) until the 

value becomes defined and the semantic timestamp becomes fixed, or, if computation of 

the value never terminates, the <=, ~> element eventually results. The interpretation of 

elements in a herring-bone domain is thus as follows :-

<t, ~> denotes that computation of the value has not been completed by time t. 

<t, v> where vt~ denotes that computation of the value v was completed at time t. 

<=, ~> denotes that computation of the value is never completed. 

In the ordering defined by (4.2) non-~ data values are incomparable unless they are 

paired with identical timestamps. On the surface this seems an unusual ordering; a more 

natural ordering might be thought to be that specified in (4. 4) below 

V tl't2 E NUM, bl' b 2 E BOOL 

<tl'b1 > !; <t2,b1> <=> (t 1 ~ t2 /\ b 1 !;BOOL b 2) 

and <t1, ~> !; <=, ~> 
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but this is not the case. One of the major reasons for using herring-bone domains is to 

defme the timeout properties of the Ready teSt. The ordering chosen for §@@~ will carry 

over into all other herring-bone domains, including @~, the herring-bone domain of 

channels, which is defined later in this chapter. Assuming @~ is ordered by analogy 

with (4. 4) we have the following situation 

a) Ready «10, [msg,rest]>, 10) = true (4.5) 

b) Ready «11, [msg,rest]>, 10) = false 

and, since <10, [msg, rest] > b; <11, [msg, rest] >, for Ready to be monotonic 

requires that true b; false which is clearly undesirable. As will be seen in Section 4.3 

this is a somewhat simplistic picture of the semantics of the Ready test but the general 

principle holds: the ordering from (4.4) would make the Ready test non-monotonic. 

Because of the required ordering, and because of the <oo,.l> "top" element, §@@~ 

cannot be directly constructed as a product of the NUM and BOOL domains. [Broy 83] 

makes no mention of how herring-bone domains might be constructed but by using 

lifted domains (e.g. [Cartwright & Donahue 82]) to model the semantic timestamps a 

definition can be given and this is done in the next section. 

The purpose of this section was to introduce herring-bone domains and to outline 

some of their properties. The way in which herring-bone domains can be constructed is 

shown in the next section and the remaining sections of this chapter contain the 

definitions of the domains required to define the semantics of Ruth. 

Once again it is assumed that the reader has a reasonable knowledge of denotational 

semantics and domain theory (see [Stoy 77], [Schmidt 86] for details) and so the 

approach will be fairly informal. This is to avoid obscuring the discussion with fine 

mathematical detail in the hope of more clearly exposing the underlying concepts. 

Appendix 1 contains the fully formal definitions of the domains shown in this chapter. 
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4.2 Herring-Bone Domain Construction 

Before defining the domains to be used in giving the semantics of Ruth we must 

first show how herring-bone domains can be defined using the standard operators of 

domain theory. To illustrate the approach the definition of rn@@~ introduced in the last 

section will be given initially; the approach will then be generalised to any cpo. 

The definition uses the standard domain operators ffi (coalesced sum) and 1- (domain 

lifting) which are defined in Appendix 1. The following constructors and selectors are 

used on sum domains. 

The coalesced sum of two domains A and B is written A ffi B 

Constructors : 1-

Selectors: 

such that 

inA A ~ A ffi B where inA (1-A ) = 1-

inB B ~ A ffi B where inB (1-B ) 1-

(Cases x of isA (a) ~ elf isB (b) ~ e2 ) 

(Cases inA(a) of isA(x) ~ elf isB(y) ~ e2) 

= (/\.(x).el) (a) 

(Cases inB(b) of isA(x) ~ elf isB(y) ~ e2) 

= (A(y) .e2 ) (b) 

(Cases 1- of isA(x) ~ elf isB(y) ~ e2) 

= 1-

(4.6) 

inA, inB, isA and isB are often called domain injection and projection functions; where 

it would cause no confusion they will be omitted from semantic equations. A further 

notational convenience is the introduction of an else clause to the Cases notion defmed 

above. 

such that 

(Cases x of isA(a) ~ elf else ~ e2) 

(Cases inA (a) of isA(x) ~ elf else ~ e 2) 

= (A(X) .el) (a) 

(Cases inB(b) of isA(x) ~ elf else ~ e 2 ) 

= e 2 

(Cases 1- of isA (x) ~ el f else ~ e 2 ) 

= 1-
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The constructors and selectors used with lifted domains are as follows 

For any domain A the lifted domain is written A .1 (4.8) 

Constructor: ..1 

lift A ~ A.l 

Selector: by pattern matching on lift (a) elements. 

Having introduced the necessary notation the definition of §@@~ can now be given. 

§@@~ BOOL ffi §@@~.l (4.9) 

This defmition does not directly mention semantic timestamps, instead they are modelled 

via the lifted domain §@@~ .1 

<0,.1> is modelled by .1 

<0, true> 

<O,false> 

<1,..1> 

<l,true> 

<l,false> 

<2,.1> 

<00,1> 

• 

• 

• 

inBOOL(true) 

inBOOL(false) 

in§@@~.l (lift (.i) ) 

in§@@~.l(lift(inBOOL(true») 

in§@@~.l(lift(inBOOL(false») 

in§@@~ .1 (lift (in§@@~ .1 (lift (.i) ) ) ) 

<00,1> 

• 

• 

• 

(4.10) 

<2.true>", /<2. false> lift(lift(true)) lift (lift (false)) 

,,/ 
<2,1> lift (lift (1) ) 

<1. true>", / <1. false> lift (true) lift (false) 

\/ 
<1,1> lift (1) 

<o.true>~ /<0. false> 

<0,1> 

true false 

\/ 
1 
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The number of times an element of §@@~ has been lifted into §@@~.l models the 

semantic timestamp to be associated with it. The "top" element <00,1..> is thus modelled 

by the limit of the spine elements of §@@~ : that is, by 

u{ (},,(x) .in§@@~.l(lift(x»)t <-i) I t~O} 
where, for any function, f 

fO (x) = x 

f t +1 (x) = f (ft (x) ) 

(4.11) 

For reasons of space <00, 1..> was used to represent this limit element in the diagram 

given in (4. 10) above. 

This isomorphism is proved in Appendix 1. The approach generalises in the obvious 

way to any non-recursively defined domain as shown below. 

For any domain expression E and domain D such that D is defined 

by D = E and E does not refer to D, the herring-bone domain 

corresponding to D is defined by @ = E E!3 IID.l 

(4.12) 

Elements of domains defined as specified in (4.12) have exactly one semantic 

timestamp. When dealing with infinite structures like channels an infinite number of 

timestamps will be required, one for each message in the channel. In domain theory 

domains containing infinite and potentially infinite structures are defined by means of 

recursive definitions; for example the domain of head-strict infinite lists of non negative 

numbers could be defined 

LIST NUM ® LIST.l (4.13) 

Here ® is the coalesced product domain operator which is defined in Appendix 1; 

elements of product domains will be denoted by listing their components between " [" 

and "] ", for example [6, lift (.i)] is an element of LIST. To form the herring-bone 

domain ~~§rg a semantic timestamp must be included for each [number, list] pair in a 

list and this is achieved by the following definition 

(4.14) 
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Note that this definition has the same fonn and interpretation as (4. 9) in that the 

semantic timestamps are modelled by the number of times a particular element has been 

lifted into ~~§~ -1' However the recursive use of ~~§~ in (NUM ® ~~§~ -1) means that a 

semantic timestamp is associated with every [number, list] pair. Thus elements of 

~~§~ have the following structure: 

(4.15) 

The use of ® in the definition of ~~§~ ensures that if the number is undefined then 

the whole list is undefined. However the tail of the list is lifted so that if it is the weakest 

element in ~~§~, <0,1.>, this does not cause the whole channel to be <0,1.>. This is 

required for the head-strictness of lists : if the first element is undefined then the whole 

list is undefined; however, provided the first element is defined the list can always be 

constructed whatever the value of its tail. It is important that there should be no 

confusion between this use of domain lifting and its use on the right hand side of EB to 

fonn the herring-bone domain. 

Note that (4. 14) is very similar to the definition of @~, the domain of channels, 

given later in this chapter. 

Generalising this to any recursive or non-recursive domain, a herring-bone domain 

can be constructed as follows : 

Given a domain definition D = F (D), where F (D) is a domain 

expression which mayor may not refer to D, the corresponding 

herring-bone domain l]) is defined l]) = F (!Ql) EB l])-1 

(4.16) 

(4.12) is simply a special case of (4.17). The constructors used for a herring-bone 

domain are 

NUM x F (l]) ~ l]) 

~l]) 

(4.17) 

Of course (4.17) does not actually construct a herring-bone domain with numerical 

timestamps, but a domain which is isomorphic to this. The isomorphism was shown for 
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the §@@~ domain in (4. 1 0) and (4. 11) above, and is proved in Appendix 1; its 

essential feature is that the numeric timestamps in the herring-bone domain are modelled 

as injections into a lifted domain as follows : 

V t E NUM, fd E F (lID) , fd *- -LF (19)) 

<t, fd> = (},,(x) .inlID.l(lift (x»)t (inF(lID) 

<t,-L> (A(x) .inlID.l(lift (x»)t (-L) 

<oo,-L> U{ (A (x) . inlID.l (lift (x) ) ) t (-L) 

where, for any function f 

fO (x) = x 

ft+l (x) = f (ft (x) ) 

(4.18) 

(fd) ) 

I t ~ O} 

Isomorphism is a strong enough property for us to assume that domains defined using 

(4 .16) are actually the required herring-bone domains. 

The selector used for herring-bone domains is as follows 

(OO§'lS@I!ID. <t, v> \13~'lS!ID. <t', -L> ~ el' <t', fd ,> ~ e2) 

such that 

(OO§'lS@I!ID. <t, -L> ~~'lS!ID. <t', -L> ~ e l , <t', fd' > ~ e 2) 

= (A(t') .el ) (t) 

(OO§'lS@I!ID. <t, fd> ~~'lS!ID. <t', -L> ~ e l , <t', fd ,> ~ e 2) 

= (A(t',fd').e2) (t,d) where fd *- -L 

(4.19) 

Although herring-bone domains are defined recursively as a sum of their basis domains 

(i.e. F (lID») and the lifted herring-bone domain itself (i.e. lID.l ), the constructors and 

selectors defined above still use the <t, d> notation introduced in Chapter 2. It is both 

more convenient and more intuitive to refer to the semantics timestamps directly as 

numbers rather than as a number of domain lifts and injections. <00, -L> is used to 

construct the limit of the spine elements of a herring-bone domain since it is convenient 

to have a way of expressing non-termination directly. However, no case for <00, -L> is 

required in the OO§'lS@I!ID. ••• ~~'lS!ID. ••• selector since, by continuity, the result of applying 

the selector to <00, -L> is the limit of the results of applying it to all the spine elements. 

Note the potential for the ~§'lS@I!ID. ••• ~~'lS!ID. ••• selector to be used in a 

non-monotonic fashion because it explicitly tests for the spine elements. The only place 

77 



in which such a test is required is to define the timeout behaviour of Ready when it is 

applied to <t, 1.> channels; in all other cases it will be sufficient to map <t, 1.> elements 

to <t, 1.> as is done by the «< ••. ~ notation defined below. 

«< <t,v> 

such that 

<t ' , fd ,> ~ e ~ 

«< <t, v> : <t', fd ,> ~ e ~ 

(~'i.S@!lli <t, v> 'l9~'i.Slli 

<t' ,1.> ~ <t' ,1.>, 

(4.20) 

<t' , fd' > ~ (~'i.S@!lli (A(t',fd') .e) (t',fd') ) 'l9~'i.S~ 

max NUM x NUM ~ NUM 

<t" , 1.> ~ <max (t ' , t") , 1.> , 

<t",v"> ~ <max(t' ,ttl) ,v"> 

max A (t 1 ,t2). (t 1 > t2 ~ tl' t 2) 

Only the case for which the data value part of the herring-bone domain element is non-1. 

is given in the «g ••• ~ notation, all <t, 1.> elements are mapped to <t, 1.>. Furthermore, 

the notation ensures that, for arbitrary v, the result for <t, v> is not weaker than that for 

<t, ..1>. Therefore the «g ••• ~ notation cannot be used non-monotonically and so 

preserves the monotonicity of functions which use it to access herring-bone domains. 

Where there is no possibility of confusion we shall abbreviate the «g ••• ~ notation as 

follows: 

«g <t, v> ~ e ~ 

such that 

«g <t, v> ~ e ~ «g <t, v> 

(4.21) 

<t,v> ~ e ~ 

In essence, what the «g ••• ~ notation ensures is that the result of a function on an 

element of a herring-bone domain cannot be available until the element itself becomes 

available; in other words, that time cannot flow backwards. It is a pleasing attribute of 

herring-bone domains that mono tonicity of functions can be interpreted in this way. 
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4.3 Definitions Of The Domains Required For The Semantics 

Of Ruth 

4.3.1 ~: The domain of expressible values 

The most important domain used in the semantic definition of Ruth is the 

herring-bone domain of expressible values, W~, since this domain contains all possible 

results of evaluating a Ruth expression. 

(S-EXP EF> FUNC EF> TUPLE EF> @~~ EF> @~) EF> W~ 1. (4.22) 

Apart from the recursive reference to W~~ 1. required to construct the herring-bone 

domain W~ is the coalesced sum of the domains S-EXP (the domain of s-expressions), 

FUNC (functions), TUPLE (tuples), @~~ (clocks) and @m~ (channels), each of which 

will be defined later in this section. Note that the domains of clocks and channels are 

themselves herring-bone domains. The semantic timestamps in @~~ will be used to 

represent the time values in a clock and those in ~ to represent the values of the user 

defined message timestamps in channels. 

Note also that the use of the coalesced sum operator in (4. 22) results in the 

weakest, <0, .1>, elements of @~~ and @m~ being identified with the weakest, .1, 

element of S-EXP EF> FUNC EF> TUPLE EF> @~~ EF> @m~rn. This could be seen as 

undesirable since even a zero semantic timestamp conveys some information which 

should not be lost, but in fact, as will be seen later, this is not the case. 

4.3.2 S-EXP : The domain of s-expressions 

The first domain to be defined is that of s-expressions. As was seen in Chapter 3 

s-expressions are made up of atoms, that is, of booleans, integers and strings. Thus we 

have the domain of atoms, ATOM. 

ATOM = BOOL EF> INT EF> STRING (4.23) 
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The primitive domains of booleans (BOOL), integers (INT), and strings (STRING) are the 

usual, flat, cpos. A further component of the s-expression domain is the primitive cpo 

NIL which contains, besides .1, the element Nil which is used to denote the empty list. 

The definition of S-EXP is thus 

S-EXP 

PAIR 

§=§~ 

= NIL ffi ATOM ffi PAIR 

(§=§~ x §=§~)~ 

S-EXP ffi §=§~ ~ 

(4.24) 

Here x is the product operator on domains and is defined in Appendix 1. The domain 

PAIR contains pairs of s-expressions constructed via the Cons primitive. Note that PAIR 

is actually composed of a pair of herring-boned s-expression domains. Note also that the 

pair is lifted to avoid identifying the pair [< 0 , .1>, < 0 , .1> ] with the .1 element of S - EXP . 

Both these actions are taken because s-expressions are lazily evaluated in Ruth: the 

elements of a consed pair need not be evaluated in order for the Cons to be evaluated. 

Even if the elements of a Con sed pair are undefined the Cons itself may be performed 

and thus [< 0,.1>, < 0, .1>] is distinct from .1 in S -EXP. Further, since under a lazy 

strategy the elements of a Cons are not evaluated at the same time as the Cons itself, 

semantic timestamps are required for these elements; hence the herring-boned domain 

§=§~ must be used. 

4.3.3 FUNC : The domain of functions 

The semantic timestamp added to elements of FUNC when they are embedded in ~ 

denotes when the function is available to be applied to its arguments (operationally, 

when the code corresponding to the function is loaded from memory). The function 

space domain F on elements of the expressible values domain W&J1 is 

(4.25) 

Note that F contains only single argument functions whilst Ruth allows any (finite) 

number of arguments to functions. This gives the following definition 
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F W~ ~ (F ffi W~) (4.26) 

There is one further consideration. In Ruth both lambda expressions and process 

definitions produce elements of the function space. A function may be applied several 

times during the evaluation of a program, and thus at several different real times. This is 

represented in the semantics of Ruth by supplying a function with a clock argument 

from which it obtains the times at which its results become available. 

FUNC @~~ F (4.27) 

When an element of FUNC is applied to a clock the result is an element of F 

"parameterised" with its evaluation time. This use of clocks is called clock-driven timing 

and will be discussed in some detail in the next chapter. 

4.3.4 TUPLE: The domain of tuples 

TUPLE is similar to the domain PAIR defined above in that it contains herring-bone 

sub-domains. Each channel in a tuple may be evaluated independently of any other, and 

of construction of the tuple itself, and consequently each channel requires a separate 

semantic timestamp. 

TUPLE = O~~~.l ® TUPLE) EiJ NIL 

§~~ = @rnlM:i EiJ §~~.l 

(4.28) 

Note the use of the NIL domain to mark the end of a tuple. Also note that elements of the 

§~§~ domain are identical in structure to elements of @ID&rn embedded in W~ : they 

comprise an element of @.IWm1 with an extra semantic timestamp added. 

The use of ® in the equation defining TUPLE ensures that tuples must have a finite 

length; however ® has the effect of coalescing the least, <0, .1>, elements of its argument 

domains into one least element in the TUPLE domain. We wish to distinguish between a 

tuple containing a < 0, .1> member of §~§~ and a totally undefined tuple and so each 

member of §IT!!§~ is lifted to add a new least element which can be coalesced into the 
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least element of TUPLE. 

Elements of the tuple domain will be constructed by listing them between "{" and 

" } " as below 

{ } 

{ , ... , 
such that 

{ } = inNIL (Nil) 

{ell,e12,···,elm} 

~ TUPLE 

~ TUPLE 

(4.29) 

Selection from elements of the tuple domain will be by pattern matching on 

{ell' e12' ... , elm} structures. 

4.3.5 @~gs : The domain of clocks 

There are two uses for @~gs in the semantics of Ruth. Firstly, its elements are used 

to support clock-driven timing; secondly, @~gs is embedded into W~ and its elements 

used to provide Ruth programmers with real-time clocks. We shall refer to these two 

types of clocks as semantic and program clocks respectively. In the last chapter it was 

assumed that a clock tree contained numbers. In fact clocks are defined using a 

herring-bone domain, the semantic timestamps being used to represent the real-time 

values. 

(4.30) 

A clock of the form <tc '.1> contains no information beyond that its next time value will 

be no less than tc' Once the sub-clocks become defined, that is once the clock is of the 

form <t c ' [lcf rc] >, the value of tc is fixed and denotes the first time value on the 

clock. Because of this interpretation of @~gs elements the weakest clock, <0, .1>, 

conveys no useful information. Thus, although the use of Ef> in (4.3 0) means that the 

weakest element of@~gs x @~, [<0,.1>,<0,.1>], will be identified with the weakest 

element of @~gs, <0, .1>, this loses no information. 

When @~gs is embedded into W&~ to provide program clocks an extra semantic 
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timestamp is added to each clock. Thus, a clock of the form <t c ' [Ic' rc J > becomes a 

program clock of the form <t, <t c ' [Ic' rc J> > when embedded into W&~. It is 

important that the difference between the meanings of t and tc is clear. The semantic 

timestamp on elements of W~, such as t, denote when values are computed; in the case 

of clocks when, for example, the result of a TailClk or an identifier reference to the 

clock is evaluated. The timestamps within clocks, such as t c ' denote actual values of 

real-time independent of when those values become available to the Ruth program. We 

shall refer to these values as clock timestamps and note that there need be no connection 

between clock timestamps and semantic timestamps, for example if a clock has already 

had its clock timestamps instantiated when it is accessed. 

When a clock of the form <tc ' .1> is embedded into W~ it becomes a program clock 

of the form <t, <tc'.1> >. Since <0,.1> is the weakest element of @~~ the use of EB in 

the definition of W~ (4.22) causes <0,.1> to be identified with the weakest element of 

S-EXP EB FUNC EB TUPLE EB @~~ EB @rn&m. Thus, when the <0,.1> clock is embedded 

into W&~ to form a program clock a <t,.1> element of W&~, for some semantic 

timestamp t, results. Once again however, since a < 0,.1> clock contains no useful 

information this causes no problems. 

A final point to note about clocks is that the incremental interpretation of clocks 

mentioned in the last chapter still holds. Given a clock tree <t c' [1 c' r c J > the time 

denoted by its root tc is tc; the times denoted by the roots of Ic and r c, say tl and tr 

are tl +tc+1 and tr+tc+1 respectively. 

4.3.6 @rn&m: The domain of channels 

A channel is a head-strict list of timestamped atomic values, or messages. The 

domain ~ is thus defined (c.f. (4.14)) 

(4.31) 

The timestamps of messages in channels are supplied by the programmer in the ConsCh 

construct. In the herring-bone domain @lIll.mJ the message timestamps are represented by 
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the semantic timestamps. Thus, where in Chapter 3 we wrote [{ 10, 'Hello' } , rest] 

for the channel containing the message' Hello' at (user defined) time 10, followed by 

the channel rest, we now write <10, [ 'Hello' , lift (rest) ] >. 

As with clocks the incremental interpretation of channel timestamps mentioned in the 

last chapter still holds. Given a channel <t, [a, lift (rest) ] > the actual time denoted 

by its first timestamp t is t; the time denoted by the first timestamp in rest, say tr is 

t+tr+1. 

Also as with @~~, when @~ is embedded into W~ an extra timestamp is added. 

Thus the channel <t, [a, lift (rest)] > becomes <tv' <t, [a, lift (rest)] », and the 

channel <t, ~> becomes <tv' <t, ~». Once again it is important to be clear about the 

difference in the meanings of tv and t. The semantic timestamp, tv' denotes the time at 

which the channel is computed, that is, the time at which the result of a ConsCh, TailCh 

or identifier reference to a channel is evaluated. The t values, one for each channel 

message, denote the user defined timestamps for each message, and will be referred to 

as message timestamps in the rest of this work. 

The final point to note is the treatment of the <0 , ~> element of ©ffl&m when @~ is 

embedded into WlNf!J. Because of the use of Ef> in (4. 22) this element is identified with 

the ~ element of S-EXP Ef> FUNC Ef> TUPLE Ef> @~~ Ef> @~ and thus a <t,~> element 

ofw&~, for some semantic timestamp t, results. Just as with @~~ however no useful 

information is lost; a <0, ~> channel is a channel whose first message cannot have a 

timestamp of less than 0, which is something which is trivially true for all channels. 

4.3.7 ENV: The domain of environments 

The final domain required is ENV, the domain of mappings from syntactic identifiers 

to elements of~. 

ENV Id ~ (UNDEF Ef> W~) (4.32) 
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Here Id is the syntactic domain of identifiers and UNDEF is the primitive domain 

containing the elements {l., Undef} which is used to indicate that an identifier is not 

defined in a particular environment. The constructors and selectors for ENV are 

Constructors : 

o 

& 

Selector: 

Id x W~ 

ENV x ENV 

~ENV 

~ENV 

~ENV 

[ ] ENV x Id ~ UNDEF EB W~ 

such that 0 [I] 

= inUNDEF (Undef) 

[I ~ v] [I'] 

= (I = I' ~ inW~(v), inUNDEF(Undef) ) 

(Pl & P2) [I] 

(Cases P2[I] of 

isUNDEF (Undef) ~ Pl [I] 

else ~ P2[I] 

(4.33) 

In (4.33) P is used to denote an environment and this convention will be followed in the 

rest of this work. 
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4.4 Conclusion 

This chapter has concerned the semantic domains required to specify the language 

Ruth. The first section explored the elements and ordering required for herring-bone 

domains and explained the real-time interpretation of herring-bone domain elements. 

Section 4.2 showed how herring-bone domains could be constructed from any domain 

by a simple syntactic transformation of that domain's definition. Following this Section 

4.3 gave the definitions of the particular domains required to specify the semantics of 

Ruth, both herring-bone and otherwise. 

Having specified the domains required, the next chapter outlines the semantics of 

Ruth. 
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Chapter 5 . The Semantic Definition Of Ruth 

5.1 Introduction 

In this chapter we shall use the domains defmed in Chapter 4 to outline the semantics 

of Ruth. Domain injection and projection functions have been omitted where this causes 

no confusion. The fully formal definition of Ruth can be found in Appendix 2. 

The semantics of Ruth presented here will be based upon the herring-bone domains 

defined in the last chapter. Using herring-bone domains allows us to determine when 

values are evaluated since the information is contained in their timestamps. The first 

question to be answered is : how are the semantic timestamps to be paired with data 

values determined? In other words, assuming that the time at which the sub-expressions 

of an expression produced their results is known, when will the expression produce its 

result? 

In Chapter 2 we saw two possible approaches to this problem. The strong 

synchrony hypothesis, used in LUSTRE, is an example of what we shall refer to as 

data-driven timing. Since all machine operations are assumed to take zero time the time 

at which an expression produces a result is totally determined by when the input data 

required by that expression becomes available. An alternative approach, which we shall 

call delay-driven timing, was used in specifying the semantics of the language ART: 

all machine operations are assumed to take a fixed, and specifiable, amount of time to 

perform. 

Data-driven timing gives us a very simple abstraction from implementation details 

and makes the semantics easy to work with. Unfortunately it is not a very accurate 

model of the real world since it implies that computers are infinitely fast and so gives no 

real information about real-time behaviour. 

On the other hand delay-driven timing requires that exact durations for every 

machine operation be specified and this can be difficult due to the variability of operation 

durations that usually occurs in a computer. It may be possible to put upper bounds on 



these durations but these upper bounds will usually be much larger than the average 

operation times, and, since any implementation will be constrained to take the specified 

amount of time to perform each operation, this will waste valuable computing time. 

Further, to give a delay-driven semantics to a language forces the specification of many 

low level details, for example the order of evaluation of function arguments, and, in a 

lazily evaluated language, when recipes are to be updated with with their values. Finally, 

the machine operation times specified in a delay-driven semantics will be implementation 

dependent: a particular delay-driven semantics will only apply to the language when it is 

executed by a particular implementation on a particular processor. 

These problems with delay-driven timing are essentially caused by its prescriptive 

nature. They can be avoided by specifying a more descriptive semantics : instead of 

specifying exactly how long each machine operation is to take the semantics of Ruth will 

be parametrised with a clock from which the times at which expressions produce results 

will be read. This provides a higher level of abstraction than delay-driven timing since 

such things as evaluation orders need not be specified. Yet it allows the real world to be 

more accurately modelled than is possible with data-driven timing; by constraining the 

values read from the semantic clocks in certain ways we can express data dependency, 

for example that the result of an addition cannot be available until after the two operands 

are computed. We shall call this approach clock-driven timing. 

For example, assume that the semantics are parametrised with the clock c. The 

logical And of two booleans could be defmed as overleaf 
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a f te r W&.ThJ x @~ ~ W&.ThJ 

after 

A(v,c) . 

~ c : <tc ' [lc,rc ]> 

~ ~ v : <t,d> 

~ (tc > t ~ <tc'v>, after«t,d>,from(lc,tc ) 

from : @~gs x NUM ~ @~gs 

from = A(c,n). ~ c : <tc ' [lc,rc ]> ~ <tc+n+1, [lc,rc ]> ~ 

The function after models the passage of time during execution of an operation which 

in a delay-driven semantics is achieved by simply adding a fixed amount to the value's 

semantic timestamp. When supplied with a <semantic timestamp, data value> pair 

after returns a pair comprising the data value with a semantic timestamp read from the 

clock but constrained to be strictly greater than its original semantic timestamp. We shall 

refer to this process as ageing. Note the use of the from function to take account of the 

incremental interpretation of clock values. 

In the rest of this chapter we shall use herring-bone domains and clock-driven timing 

to specify the semantics of Ruth. In the next section we lay the foundations for this 

specification by defining some useful semantic functions. Section 5.3 outlines the 

semantics of the standard non real-time subset of Ruth and Section 5.4 covers the 

semantics of those parts of Ruth which have been added to cope with real-time systems: 

clocks, channels and, in particular, the Ready test. 
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5.2 Useful Semantic Functions 

The semantics of Ruth expressions are defined using the evaluation function tv 

which has the following signature 

(5.2) 

Here Exp is the domain of syntactic expressions. tv also takes as arguments an 

environment, and a clock to facilitate clock-driven timing. The environment holds 

identifier/value bindings and, as can be seen from (4. 33) , if a particular identifier is not 

bound in an environment the Undef value results. Rather than deal with Undef values 

explicitly in the semantics the function lookup is used. 

lookup 

lookup 

ld x ENV ~ W~ (5. 3) 

A(l,P) . 

(Cases P[l] of 

isUNDEF(Undef) ~ <~,~> 

isW~ «t, v» ~ <t, v> 

If the identifier is undefined in the environment the <~, ~> element results. 

Operationally, if an expression attempts to reference an undefined identifier then the 

expression will never produce a result: the program will crash. 

When writing the semantic equations it will frequently be necessary to extract 

sub-clocks from the clock supplied to tv to allow for the independent evaluation of 

sub-expressions. For this purpose the extract function will be used. 

extract 

extract 

A(c,n) . 

~ c : <t,[l,r]> 

~ (n ~ 0 ~ from(l,t), extract(from(r,t),n-l) ) 

(5.4) 

For the remainder of this work we adopt the following notational conventions: 
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VeE @~, n E NUM en denotes extraet(e,n) 

VeE @~, n E NUM, P E ENV, En E Exp 

<tn,vn> denotes ~ [En] P en 

(5.5) 

It will often prove useful to ensure that all the timestamps in a clock are greater than a 

specific time and this is done by the ageing function eloekafter. 

eloekafter (5.6) 

eloekafter ~(e,n). from(e,n) 

This completes the definitions of "utility" functions used in specifying the semantics of 

Ruth. 

91 



5.3 The Standard Subset Of Ruth 

5.3.1 Constants and identifiers 

The simplest Ruth expression is the constant integer, boolean or string expression, 

for example 10, true or 'A string'. Taking booleans as an example: 

~ [true ] p c after «O,true>, c) 

~ [ false] p c after«O,false>, c) 

(5.7) 

When a constant is evaluated the result is available almost immediately; operationally a 

single "load constant" instruction is usually the most that will be required. Thus the 

semantic timestamp of the result of a constant reference is taken to be the ftrst time on the 

clock c. Rather than deal with the clock explicitly the after function is used; giving the 

value argument to after a semantic timestamp of 0 ensures that the first time in the 

clock will be returned. This technique for avoiding explicitly dealing with the clock in 

semantic equations will be used wherever possible in this work. 

Identifter reference is defmed as follows 

~ [ I ] P c after(lookup(I,p), c) (5.8) 

Note the ageing of the result to allow for the time taken to look up the identifier in the 

environment; operationally to load the required value from memory. 

5.3.2 Binary Operations 

In Section 5.1 the semantics of the boolean And operator were given informally 

(5 • 1) as an example of the semantics of binary operators in Ruth. Using the apparatus 

introduced in Section 5.2 the definition can now be given in a more formal manner and 

this is done overleaf. 
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tv [ EI And E2 ] P c 

= after ( 

~ <t l , vI> 

~ ~ <t 2 , v 2> ~ <max (t l , t 2), vI A v 2> ~ 

~, 

extract (c, 0» 
where 

tv [ EI ] P extract (c,l) 

tv [ E2 ] P extract (c,2) 

or, written in tenns of the conventions given in (5.5) 

after ( 

~ <tl'vI > 

~ ~ <t2 , v 2> ~ <max (t l , t 2), vI A V2> ~ 

~, 

(5.9) 

(5.10) 

Note that in this definition a different sub-clock is used to evaluate each of the 

arguments, EI and E2. Thus the semantics place no restriction on the order in which the 

arguments to binary operations are evaluated, though they must obviously be evaluated 

before the result is produced. 

Equation (5.10) allows sequential or parallel evaluation but, by using the clockafter 

function, it is simple to specify strictly sequential evaluation. 

tv [ EI And E2 ] P c 

after ( 

~ <tl'vI > 

~ ~ <t2,v2> ~ <t2, VI Av2> ~ 

~, 

co) 

where 

tv [ EI ] P cI 

~ [ E2 ] P clockafter(c2,tl ) 

(5.11) 

Using clockafter to provide a clock which only contains time values bigger than the 

time of evaluation of EI specifies that the evaluation of E2 must be perfonned with a 
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semantic clock which only contains times later than t 1 , the time at which evaluation of 

El was completed. This does not force an implementation to evaluate El and E2 

sequentially but operationally it would appear that the simplest way to ensure that 

evaluation of E2 is performed with times strictly greater than tl would be to evaluate 

them sequentially. 

Although indicating desired evaluation orders in this way is simple, evaluation order 

is outside the scope of the descriptive semantics being constructed here. Consequently 

equation (5. 10) will be taken to be that defining the semantics of boolean And 

Note that although only the And primitive has been considered here all the other 

binary operations in Ruth (Le. boolean Or, equality and the arithmetic operators) are 

defined in the same way as And with the relevant operator being substituted for 1\ in 

(5 . 10) . Their definitions can be found in Appendix 2. 

5.3.3 If ... Then ... Else ... 

€v [ If El Then E2 Else E3 ] P c 

~ <tl'vl> 

-7 (v1 -7 €v [E2 ] P clockafter (c2 ,t1 ), 

€v [E3 ] P clockafter(c3 ,t1 ) 

where 

(5.12) 

Note the use of clockafter to specify that evaluation of the Then and Else expressions 

should not be begun until after the boolean value defined by El has been evaluated and a 

decision between Then and Else can be made. If clockafter were omitted an 

implementor of Ruth would have the freedom to evaluate E 1, E2 and E3 in parallel; since 

the result of either E2 or E3 will not be required some of this work would be discarded. 

When working with real-time systems it seems undesirable to allow processing 

resources to be consumed by work which may be unnecessary since this may result in 
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deadlines not being met; this is prevented by the use of clockafter. 

5.3.4 Function definition and application 

When FUNC, the domain of functions, was defined in the last section, we saw that 

Ruth functions take a semantic clock as an implicit argument; this clock is supplied 

when the function is applied and is used to facilitate clock-driven timing. 

~ [ lambda (Io ... I n). E ] P c 

after«O,f>,c) 

where 

(5.13) 

f = AOe·AOO • ••• AOn·E;[E] (P & [Io ~ °0 ] & ••. & [In ~ On]) 0e 

Here 0e is the place holder for the semantic clock argument and the expression E will be 

evaluated using the clock to be supplied as its semantic clock upon function application. 

Note that the result of the lambda expression is assumed to be available at the fIrst time 

on the clock c, or in other words at some time after its evaluation is begun. 

~ [ E1 (E 2 · .. En ) ] P c 

~ <t1, f1> 

~ f1 clockafter(co,t1) <t2,v2> ... <tn,vn> 

(5.14) 

When a function is applied the semantic clock supplied to it is constrained by the use of 

clockafter to contain times strictly greater than the time at which the function is 

evaluated; operationally, evaluation of the function body cannot take place until the code 

for the function body is loaded from memory. Note that each of the "real" (i.e. explicitly 

user defined) arguments is evaluated with a unique clock; thus function arguments may 

be evaluated in parallel or not, as an implementor wishes. Also note that the semantic 

timestamps of the "real" arguments have no bearing upon when evaluation of the 

function body starts. Operationally this is in line with lazy evaluation: the time of 

availability (semantic timestamp) of the result of a function application will only depend 
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on the times of availability of those arguments required to produce that result. If an 

argument is referenced its semantic timestamp will be taken into account in the semantic 

timestamps of the result of any expression referring to it. If the identifier is not 

referenced then its semantic timestamp is irrelevant to the result of the function 

application. 

5.3.5 Identifier definitions 

Identifiers in Ruth are defined by being bound to the value of an expression by a 

where or whererec construct. 

~ [ E where D endwhere ] p C 

= ~[E] (~[D] P cl) Co 

~ [ E whererec D endwhererec ] p C 

£v[E] pI Co 

where 

pI = fix (AP" . P & ~[D] P" C l ) 

(5.15) 

Here fix is the usual fixed point function and is defined in Appendix 1, D is a member 

of Dec, the syntactic domain of declarations, and CD is the meaning function for 

declarations which is defmed 

cD[r=E;D]pC 

c
D
[]pc=0 

(5.16) 

Note that each declaration in a list of declarations is evaluated using a unique clock, thus 

allowing for them to be evaluated in parallel if desired. 

96 



5.3.6 S-expression manipulation 

Atomic and Nil valued s-expressions have a straightforward semantics and the 

reader is referred to Appendix 2 for details. Our interest here is focused upon 

s-expressions which are consed pairs. 

~ [ Cons (E l , E2 ) ] P c (5.17) 

= after«O,lift([<t l ,vl>,<t2,v2>]»,co) 

The time at which El and E2 are evaluated has no bearing upon when the s-expression is 

evaluated because of lazy evaluation and thus the fIrst value from the clock provides the 

semantic timestamp for the pair. Note that because the head and tail of the pair may be 

independently evaluated they retain their own semantic timestamps in the consed pair. 

When Head or Tail is applied to the pair these semantic timestamps are used to defIne 

when the result is becomes available. 

~ [ Head (E l ) ] P c 

after ( 

egg <tl'vl > 

~ (Cases vl of 

lift([<tH,sH>,<tT,sT>])~ <max(tl,tH),sH> 

else ~ <00,1-> 

~, 

(5.18) 

The result of the Head becomes available after the maximum of tl and t H; operationally 

the result of a Head cannot be available until both the Cons and the head element itself 

have been evaluated. Note that if the argument to Head is not a pair the non-terminating 

computation, <00,1->, results. Tail is similar and its definition is given overleaf. 
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~ [ Tail (E1 ) ] P c 

after ( 

~ <tl'v1> 

-7 (Cases v 1 of 

lift([<tH,sH>,<tT,sT>])-7 <max(t1,tT),sT> 

else -7 <00,1..> 

~, 

(5.19) 

This completes the definitions of the standard subset of Ruth. The next section gives 

the specification of the semantics of those parts of the language directly concerned with 

the programming of real-time systems. 
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5.4 The Real-Time Subset Of Ruth 

5.4.1 Channel construction and reference 

When dealing with channels in the semantics of Ruth we will normally be dealing 

with elements of @ffi&.rn embedded in w&.~, that is, with objects of the form 

<tv' <tch ' [a, lift (ch) ]» and <tv,<tch,-i». Here tv is the semantic timestamp and, 

in the fITst case, tch is the message timestamp of the fIrst message a, and in the second a 

denotation of a time by which the channel has not yet produced a message. 

As was commented in Chapter 4 there need be no connection between the values of 

tv and t ch' For example, a process references a channel from another process, or from 

the external environment, via the corresponding identifIer given in its Input list. In this 

case the value of tv denotes when the receiving process has identifIed which channel it is 

attempting to access. Obviously this is totally independent of t ch' the time at which the 

sending process puts the first message in the channel. A simpler case is that a channel 

may be be created much earlier than the timestamp on its first message. Finally, the 

ageing of the results of, for example, references to identifiers bound to channels in 

environments, will result in the value of tv growing larger without changing that of t ch' 

However there is one point at which it is desirable to enforce a relationship between 

tv and tch and that is when channels are created via a ConsCh. The required relationship 

is that tv be no bigger than t ch' or in other words that the channel has not been created 

after the time denoted by its first message timestamp. The desired interpretation of 

message timestamps in channels is that they denote the time at which the message 

containing them is first available to be referenced. Clearly any channel which is created 

at time tv cannot be referenced before tv and therefore neither can any of its messages. 

It is clearly nonsense to allow a program to decide at time 10 (tv) that it will produce a 

message at time 5 (t ch)' 

Thus to allow a channel to be created of the form 

(5.20) 

would obviously be undesirable since the message cannot be used until after tv (and 
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thus after t ch)' Of course after a channel has been constructed no such restriction can be, 

or should be, enforced for the reasons given above. After a channel has been constructed 

the desired restriction is simply that the channel message cannot be referenced before 

time t ch; when the message actually is referenced is the responsibility of whatever is 

receiving the channel. The implicit assumption is that external hardware devices will 

always use messages as soon as they receive them. 

Operationally a ConsCh can be viewed as constructing its result in two parts: fIrstly, 

the atomic data value and the numerical timestamp arguments are evaluated to form the 

initial message; after the message is sent the third argument is evaluated to provide the 

rest of the channel. The defmition of ConsCh given below is also partitioned in this way: 

( 5 .21) below defInes how the first message of the channel is evaluated; the rest of the 

channel, denoted by rest in (5.21) is dealt with in (5.22). 

~ [ ConsCh (E l , E2 , E3 ) ] P c 

after ( 

~ <t l , vl> 

~ ~ <t 2,v2> ~ (v2 :$; t ~ <00,1->, <t,ch» ~ 

~, 

where 

<t,ch> 

(5.21) 

Note that unless the timestamp value, V2' denotes a time at or after completion of the 

ConsCh the <00,1-> element of W~ results. 

rest <t"-(v2+1),v"> 

where 

<t",v"> ~ <t3, v3> 

(5.22) 

~ ~ v3 <t',[a',lift(ch')]> 

~ (t'~t3 A t' > V2 

~ <t', [a',lift(ch')]>, <00,1-> 

Note that E3 evaluates to an element of @rn&m embedded in W~ and not merely an 
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element of ©~. IT the timestamp of the fIrst message in V3' t', is no bigger than V2 or 

is less than t 3 then the value of rest is the <00,..1> element of @J"M\m. t' must be bigger 

than V2 to maintain the restriction that message timestamps in a channel must be strictly 

increasing. t3 is the time at which the channel denoted by E3 was referenced by the 

ConsCh, which will be after the time at which the channel was first created because of 

ageing. IT t' is smaller than t3 then at least the fIrst message in the channel will not be 

available for use at the time denoted by its timestamp. Finally, note that the value of the 

fIrst message timestamp in rest is adjusted in line with the incremental interpretation of 

message timestamps. 

Channels are referenced via HeadCh, Time and TailCh. 

~ [ HeadCh (E 1 ) ] P c 

after ( 

~ <tl'v1> 

<t, [a,lift(ch)]> ~ <max(t1,t),a> ~ 

(5.23) 

The result of a HeadCh becomes available after the maximum of the semantic timestamp 

and the message timestamp of the fIrst message in the channel. Operationally the result 

of a HeadCh cannot become available until both the channel has been computed and it has 

produced a message. The definition of Time is similar. 

~ [ Time (E1 ) ] P c 

after ( 

~ <tl'vl> 

<t, [a,lift(ch)]> ~ <max(t1,t),t> ~ 

(5.24) 

TailCh is slightly more complex since the first message timestamp in the tail of the 

channel must be replaced with the time it actually represents under the incremental 

interpretation of message timestamps. 
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~ [ TailCh (E1) ] P c 

after ( 

~ <t1, v1> 

~, 

<t, [a, lift (ch) ] > 

~ <max(t1,t), <t'+t+l,v'> > 

where 

<t',v'> = ~ ch : <t r , [ar,lift(chr )]> 

~ <t r , [arT lift (chr ) ] > 

(5.25) 

The time at which the result of a TailCh becomes available is after the maximum of the 

semantic timestamp of the channel and the first message timestamp in the channel. 

Operationally, the ftrst message in a channel cannot be discarded until both the channel 

has been identifted and its ftrst message received. 

5.4.2 The Ready test 

One reason for using herring-bone domains was to enable the Ready function to be 

specifted as a non-blocking test on a channel. The basic principle is that if a channel is 

undeftned at a time greater than the Ready test is checking for then Ready can timeout the 

channel. It must be remembered that the Ready test is a test upon user defined message 

timestamps and not upon the semantic timestamps. If a Ready test is supplied with a 

<t, 1.> element of W~ it cannot timeout on the basis of t since t has no connection with 

the values of the message timestamps. Operationally a <t, 1.> element of W~~ 

corresponds to the situation that the expression identifying which channel is to be tested 

has not yet been evaluated. Clearly a Ready test cannot timeout the channel if it has not 

yet even identified which channel it is testing. 

The definition of Ready is given overleaf and can most easily be explained by 

considering each labelled case of the ~\5@Jli1 ... ~~\5li1 ... construct in tum. 
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~ [ Ready (E l , E2 ) ] P c 

after 

(i) 

(ia) 

(ib) 

( ii) 

(iia) 

(iib) 

~ <t l , v l > 

~ ~ <t2,v2> 

>>> 

~, 

~ (~'If,@lID. v l ~~{5.lID. 

<t,.1> 

~ (t > v 2 

~<max(tl,t2,v2),false>, 

<max(t l ,t2,t),.1> 

<t, [a, lift (ch) ] > 

~ (t > v 2 

~<max(tl,t2,v2),false>, 

<max(t 1 ,t2,t),true> 

(5.26) 

(i) The channel is <t,.1> : no message has been produced up to time t, though a 

message could still be produced at time t. There are two sub-cases to consider. 

(ia) t > V2 : the channel did not produce a message before, or at, the time being 

tested for and consequently the channel can be timed out and the result of 

the Ready test is false. The result is produced at some time after the 

maximum of the time at which the two arguments to the Ready test are 

calculated and the time which is being tested for since, operationally, Ready 

cannot return a result until its arguments have been calculated and the 

timeout time has passed. 

(ib) t ~ V2 : the channel has not yet produced a message but it cannot be timed 

out since the testing time has not yet passed. The result of the Ready test is 

thus undefined with a semantic timestamp after the maximum of the time at 

which the two arguments to the Ready test are calculated and the time by 

which the channel has not produced a message. 

(ii) The channel is <t, [a, lift (ch)] > : a message has been produced at time t. 
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Once again there are two sub-cases to consider. 

(iia) t > V2 : the channel did not produce the message before, or at, the time 

being tested for. The result is identical to that for case (ia) since the 

channel will be timed out by the Ready test. 

(iib) t ~ V2 : the channel produced the message before, or at, the time being 

tested for. The result of the Ready test is true at the maximum of the time at 

which the two arguments to the Ready test are calculated and the time at 

which the message arrived since, operationally, Ready will return a result as 

soon as its arguments have been calculated and the message arrives. 

(ia) and (iia) are the most interesting since they show how the non-blocking, 

timeout behaviour of Ruth is specified in the semantics. 

5.4.3 Tuple construction and reference 

The only other channel operators are those connected with tuples. Tuple construction 

is defined as follows. 

~ [ {E1 ... En} ] P c (5.27) 

after«O, {<t1,ch1>, ... , <tn,chn>}>, cO) 

The times at which the channels are identified have no bearing on when the tuple is 

actually constructed. The result of a tuple construction becomes available at the first time 

read from the clock; operationally at some time after evaluation of the tuple 

construction commences. 

Elements of a tuple are referenced via the ! operator which is defined overleaf. 
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~ [ El ! E2 ] P c 

after ( 

~ <tl'v1> 

~ ~ <t2,v2> : <t2,i> 

>>> 

~, 

~ (1 ~ i ~ m ~ <max(tl,t2,ti),chi>,<~,~» 

where 

{<t1,ch1>, ... , <tm,chm>} v
1 

(5.28) 

The result of a tuple reference becomes available at some time after the tuple is 

constructed and the channel being referenced is identified. Note that tuple elements are 

indexed from one and if the index number defined by E2 is not within the required range 

the result is <~, ~>. 

5.4.4 Process definition and application 

The major reason for considering process definition and application here is to show 

how the semantics of Ruth correctly specifies the essential real-time requirement of the 

language: that message timestamps denote the earliest time at which messages become 

available for use at their destinations. Such a check was used in the definition of ConsCh 

and, since a new message in a channel is available for use within the process perfonning 

the ConsCh as soon as the ConsCh is completed, that check is sufficient to ensure the 

real-time requirement provided the channel is never communicated to another process. If 

the channel being constructed is being communicated to another process then simply 

checking when the channel is constructed will not be sufficient. 

To illustrate this consider the following process definition. 

Process P Input I Clock c Is {I} ; (5.29) 

When I is constructed in its origin process its message timestamps will be checked to 

ensure that its messages can be delivered to P within the deadlines they denote. P simply 

passes I on unchanged so that there is a possibility these deadlines will have passed 
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before I'S messages can be delivered to their ultimate destination. A check must be made 

in p to ensure this does not occur and the obvious place to make this check is when a 

message is transmitted from p to another process. In the semantics this is modelled in the 

definition of process application via the function filter (see (5.32) below). 

Firstly, let us consider process definition which is defined using the semantic 

function t; (evaluate process). 

Proe ~ ENV 

ep [Process I Input 11 " .In Clock Ie Is E ] 

[I ~ <O,f>] 

where 

f = AOse ·A01 , ... AOn.AOpe . 

(5.30) 

Ev[E] ([11 ~ D1 ] & ••• & [In ~ Dn] & [Ie ~ Dpe]) Dse 

Here P roc is the syntactic domain of process definitions. Evaluation of a process 

definition results in an environment in which the process function it denotes is bound to 

the process's name. Because we wish to store the process function in an environment 

we must turn it into an element of W~ by adding a semantic timestamp of 0 indicating 

that the process function is defined at the start of evaluation of the program. 

Operationally a process function is loaded before the program begins to run and 

therefore is available for access at time o. Dse and Dpe denote that two clocks are required 

as arguments to the process function: Dse is the semantic clock which is used to provide 

timing information to the semantics of the process function; Dpe is the program clock 

which supplies timing information to the Ruth process itself. These two clocks will be 

provided when the process function is applied. 

Process application is defined overleaf using the semantic function epA (evaluate 

process application). 
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Pr-App ~ ENV ~ @~ ~ ENV 

epA [ 11 ... Im = I (I 1 ... I n) ] P c 

[1 1 ~ <0,ch1 >] & ... & [1m ~ <O,chm>] 

where 

(5.31) 

chj = ~ <tj,ch j > ~ filter(chj,O,clockafter(cj,max(t',t j ») ~ 
<t', {<t1 ,ch1>, ... , <tm,chm>}> 

= ~ lookup ( I, P) : <t, f> 

~f sc i 1 ... i n <O,pc> 

where 

i k = lookup(Ik,P) 

sc = extract (co'O) 

pc = extract (co,l) 

Here Pr-App is the syntactic domain of process applications. The process function is 

retrieved from the environment produced by (5.3 0) and applied to its input channels. 

The process application also extracts two sub-clocks from Co (converting one of them 

into an element of W~, for use as the program clock, by adding a semantic timestamp of 

0) for the process function to use as its semantic and program clocks. Each of the output 

channels is stored in environment which results from the process application. This 

environment is referenced by the definition of process configurations, given in Appendix 

2, to produce the result of a Ruth program. In order to store the channels in an 

environment they must be embedded in W~ and this requires the addition of an extra 

semantic timestamp. The value of this extra semantic timestamp is ° since the channels 

can be identified by their destination processes as soon as the program starts running. 

The earliest the process will be able to output any message is t ' , the time at which 

the tuple of output channels is constructed. Consequently, when the real-time constraint 

on each output channel's messages is checked by the function filter the starting time 

for the checking is max (t ' , t j) ; t j is the time at which the process identifies the output 

channel j. filter is defined overleaf. 
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filter 

filter 

@~ x NUM x @~ ~ ~ (5.32) 

A(ch,n,c) .<t-n,v> 

where 

<t,v> ~ c : <tc ' [lc' rc] > 

~ ~ ch : <t, [a, lift (rest) ] > 

~ (t c ~ t + n 

}}) 

~<t + n, [a,lift(rest')]>, <~,~> 

where 

rest' filter (rest,t+n+l, 

from(lc,t c ) ) 

Each message timestamp is checked to ensure that it denotes a time greater than the 

current time by testing it against the first time in the clock. Note the use of the argument 

n to handle the incremental nature of channel timestamps. n denotes the value that must 

be added to the fIrst message timestamp in the channel to provide the actual time that it 

denotes; thus n is initially o. If the actual time denoted by the fIrst message timestamp in 

the channel is no less than the current time, t c ' then the first message in the channel may 

be output; otherwise the <~, ~> channel results. 

5.4.5 Program clocks 

As with the channel domain @m~, the clock domain @~~ is embedded in the 

domain of expressible values W~~ and thus a clock has two types of timestamp, the 

semantic timestamp denoting when the clock is identifIed and the "clock" timestamps 

denoting the time values in the clock. There need be no connection between the semantic 

timestamp associated with a clock and the first clock timestamp since the clock may 

already have been instantiated by previous references to it. 
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Ruth has two operators on program clocks: HeadClk and TailClk. 

~ [ HeadClk (E 1 ) ] P c 

after( 

~ <tl'v1> 

<t, [l,r]> ~ <max (tl't) ,t> ~ 

~, 

(5.33) 

The time of availability of a clock reference must be after the maximum of the time of 

availability of the clock and the actual time value read from it. This models the fact that a 

value read from a clock is out of date as soon as it is obtained. A real-time programmer 

should never fall into the trap of assuming that a value read from a clock denotes the 

current value of real-time; it denotes what the real-time was at some point in the (more or 

less) recent past when the clock was actually referenced. In Ruth this situation can be 

made worse by references to clocks which have already had their values instantiated, and 

so contain values for times from the past. The conclusion must be that real-time 

programmers in general, and Ruth programmers in particular, should treat real-time 

clock values with extreme caution. 

~ [ TailClk (E 1 ) ] P c 

after( 

~ <t1,v1> 

~, 

(5.34) 

Note here that the "tail" of the clock has a time of availability after the maximum of the 

identification time of the whole clock and the first clock timestamp. Note also that the 

value in the root of the left sub-tree must be adjusted to be the time it actually denotes 

under the incremental interpretation of clock values before this sub-tree is returned as the 

result. 
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5.5 Conclusion 

The purpose of this chapter has been to give a definition of the semantics of Ruth. 

Such a semantics requires the use of a model that allows timing infonnation to be 

expressed and, following [Broy 83], we chose to use a denotational semantic model 

based upon herring-bone domains. An important consideration in specifying the 

semantics of a real-time language is how to model the durations of machine operations. 

The method chosen here was that of clock-driven timing because it offers a way of 

modelling operation durations and data dependencies without the necessity of specifying 

low-level operational detail. 

Without herring-bone domains it would have been impossible to define the 

non-blocking nature of the Ready test; the best that could have been done would have 

been to use implicit time detenninance and natural language. The same is true of the 

real-time restrictions upon channel construction and channel messages crossing process 

boundaries. 

In the next chapter we turn from the theoretical issues which have occupied Chapters 

4 and 5 towards the more practical concern of using Ruth to program a real-time system, 

in this case a real-time computer game. 
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Chapter 6 . Using Ruth: A Real-Time Computer 
Game 

6.1 Introduction 

Real-time computer games are a type of real-time system which are often ignored by 

researchers in the area. This is perhaps surprising since they are very useful vehicles for 

testing out different approaches to the problem of constructing real-time software. In a 

real-time computer game we are faced with the usual problem in real-time systems of 

making events happen at the right time. Although the deadlines within which a game 

must react are relatively large, because games interact with humans and not machinery, 

the consequences of failure to meet deadlines could be disastrous : noticeable delays will 

dissuade people from playing the game. 

Whilst computer games impose the same type of real-time constraints as other 

real-time systems, they do have the advantage of being simpler to construct and test than 

others. For example an engine controller program would require the software designer to 

have information about the workings of the engine being controlled. A computer game 

controls only very simple hardware (i.e. input keys, a screen and a loud speaker) and, 

in a lot of cases, a standard VDU meets all the hardware requirements. 

The game we shall consider in this chapter is called Minesweep and the complete 

text of the program is given in Appendix 4. The major area of interest is in seeing how 

Ruth copes with the real-time requirements of the game and consequently this 

implementation abstracts away from issues such as driving the screen display in favour 

of concentration on the real-time issues. 

In the next section we shall describe the game and in Sections 6.3 through 6.6 the 

Ruth program which implements it. Finally, we relate what we have learned about Ruth 

from the exercise. 



6.2 Minesweep 

Minesweep is played on a fifteen by fifteen square board. We refer to the positions 

on the board as cells. There are three states which a cell may be in : null (indicated on the 

board by '-'); mine ('*'); and scoring ('1' to '9'). A typical board is shown below. 

- 4 (6.1) 
* - - - -

- 3 - - 8 - - - * 

6 * - - - - 2 
- - - - - - 8 

1 3 - - - - - - 9 @ * - -
* - - - - -

- 7 - 3 
- - - 9 

- - - - 5 
6 * - - - - * - - -
- - - 2 - - - -

* - - - - - - - - - 3 

Initially all the cells on the board are null. The player starts the game on the top,left 

hand corner cell and then moves around the board either horizontally or vertic all y, 

scoring points by landing on the numbered cells. If the player, indicated by '@' in the 

diagram above, moves one cell to his left he will score nine points. However if he 

moves one cell to his right the game will be over since that cell is a mine and will "blow 

up" any player who lands on it. If the player moves one cell up or down nothing 

happens since these cells are in the null state. 

To make the game a little more difficult the cells periodically change state. Initially 

the interval between changes of cell state (that is, between the occurrence of one state 

change and the next) is (about) 20 seconds; this value is referred to as the period. In 

order to prevent all the cells changing simultaneously a random factor of + half the 

period is added. Thus, initially, a cell will change state at random intervals of 20 + 10 

seconds (i.e. between 10 and 30 seconds). Each time a cell changes state it decreases its 

period by 0.25 seconds down to a limit of 2.5 seconds. Thus the longer the game 

continues the faster the cells change state until they reach the limiting period of 2.5 ± 

1.25 seconds between state changes. 

If the player is on a cell which changes state he is unaffected. That is, if the cell 

becomes a scoring one he does not score any points and if it becomes a mine he is not 
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blown up. The player must move onto a cell for its current state to have any effect on the 

progress of the game. 

A cell may change into anyone of the three states at random; its current state has no 

bearing on what it's next state will be. (Note that a cell's new state may be the same as 

it's previous state). There is always a SO% chance that a cell will be a scoring one but the 

chance of a cell being a mine (referred to as the danger) varies as the game progresses. 

Initially there is only a S% danger but this increases by O.S% each time the cell changes 

state until it reaches a limit of 40%. Consequently the chances of a cell being null are 

initially 4S% but this declines to a limit of 10% as the game proceeds. 

It only remains to specify the implementation's real-time performance requirements. 

A player may make moves as rapidly as he wishes, however the implementation need 

only respond to player moves at 0.2 second intervals; any extra moves will be queued. 

Thus the fastest the player can move on the screen is five times a second. Assuming that 

the player does not make more than five moves a second the response time to moves (the 

time between his making a move and that move appearing on the screen) should be 

O.OOS seconds. If the response time is large enough for the player to notice it this will 

detract from his enjoyment of the game; O.OOS seconds should be a small enough delay. 

Of course, in a real-time system it is impossible to guarantee that specified deadlines 

will be met and recovery action in the case of failure must also be specified. In this case 

a failure to meet the O.OOS second window should result in the move appearing on the 

screen as soon as possible after that time. Although failure to meet the deadline is 

undesirable not displaying the move at all would be worse : a system which responds 

erratically to player inputs is bad enough, one which discards player moves whenever 

convenient would be disastrous. 

Finally there is the obvious real-time constraint that cell state changes should appear 

on the screen at the time specified by the cell. However, in cases where this deadline is 

not met the state change will be ignored. Since a cell's new state may be the same as its 

old state anyway this is an acceptable situation. Rather than display a state change later 

than the time specified, the system assumes that no change of state occurred. 
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6.3 Overview of the implementation 

6.3.1 System Configuration 

The obvious way to implement the Minesweep board is as a set of processes, one 

for each cell. The first thing we note is that there are 225 cells on the Minesweep 

board. To avoid having to list all 225 cell processes and their associated channels we 

shall restrict this implementation to only 4 cells; this restriction does not effect the 

complexity of the system, merely the amount of processes and channels that must be 

listed in the configuration. 

The overall structure of the system is as below. 

Minesweep 

keyboard keyboard Validate f val f val 
- -

Process 

Monitor score 

Process 

Cell 
Process n -

rnd n rnd n f cell n f cell n 
- - - -

In the above diagram the boxes represent processes and the arrows channels. Instead 

of explicitly including all four cell processes and their input and output channels a single 

Cell Process_n box (for 1 ~ n ~ 4) is shown; in the same way the fat arrows 

represent the inputs and output channels, rnd _nand f _ cell_ n for each cell process. 
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This system configuration is thus 

Configuration Minesweep 

Output score, f_cell_l, f_cell_2, f_cell_3, f_cell_4, f val 

Input keyboard, rnd_l, rnd_2, rnd_3, rnd 4 

Is 

score 

f cell 1 = Cell Process (rnd_l) ; 

f cell 2 Cell Process (rnd_2) ; 

f cell 3 Cell Process (rnd_3) ; 

f cell 4 = Cell Process (rnd_4) ; 

f val Validate Process (keyboard) 

end. 

6.3.2. System inputs and outputs 

(6.2) 

The Minesweep configuration takes the player's moves as input, via channel 

keyboard, in the form of ASCII characters, and produces six channels: an f_cell_n 

channel for each cell carrying the cell's state changes; score, which carries integers 

representing the player's score so far; and f _val carrying integers representing the cell 

the player has just moved to. We shall assume the existence of a hardware "process" 

which will display the original state of the screen (all cells null, score 0 and the player on 

the top left cell) and will then display the output from score and f_cell_n on the screen 

in the required format at the times denoted by the message timestamps. This hardware 

process will also display the player character, '@', on the cell indicated by the messages 

in f _val; it is also assumed that the hardware process will never overwrite the player 

character with a cell state in the case where the cell changes state whilst the player is on 

it. 

It is simple to implement any screen driver we might require in Ruth but this would 

unnecessarily add to the complexity of our system so we shall not do so here. 

The tables below define the input and output formats. Table (6.3) defines the 
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characters the Minesweep system will receive from channel keyboard and the player 

moves they denote; table (6.4) defines the integers sent on the f _ cell_ n channels and 

the cell states they denote. 

Ascn Character 

u 

d 

1 

r 

Integer 

-1 

-2 

1 to 9 

Player Move 

One cell upwards 

One cell downwards 

One cell left 

One cell right 

Cell State 

Null 

Mine 

Scoring cell 

(6.3) 

(6.4) 

The system also takes four channels rnd _ n (1 ~ n ~ 4) containing random integers 

in the range 1 to 1000. These are used to generate the cell state changes and the random 

part of the cells' periods; the rnd channels are assumed to be always Ready, that is, 

always able to provide a message. Effectively the rnd channels produce messages in a 

demand driven manner. 

Finally, the end of the game, (when the player lands on a mine) is signalled to the 

external world by the sending of a -1 message on channel score. 

6.3.3.System processes 

Validate_Process takes the player's moves from channel keyboard, checks that 

he is not trying to move off the board and limits him to one move every fifth of a 

second. Assuming the move is a valid one the player's new position is sent to the 

external world and to Monitor_Process along the f_val channel. The player's position 

is represented by a number between 1 and 4 which identify cells as shown below 

1 2 
3 4 
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f_cell_n carries the state changes of cell n. Each Cell_Process computes a new 

state at intervals defined by its period and communicates them along f_cell_n to the 

external world and to Monitor_Process. As mentioned in Section 6.2 the value of each 

cell's period is reduced after each state change until a limit is reached, the input channel 

rnd _ n being used to generate the variations in the value of the period. 

The purpose of Monitor_Process is two-fold. Firstly, it takes the cell states and the 

player position as inputs from channels f_cell_n and f_val and uses this information 

to calculate the player's score which it communicates to the external world via channel 

score; secondly, it detects when the player moves onto a mine cell and sends a -Ion 

score to indicate that the game is over. 

As usual all of the processes also take a real-time clock as an input, though this is not 

shown on the diagram. It is assumed that in this system time is measured in 

milliseconds. 

The next four sections outline the actual Ruth code which implements the processes 

outlined above. The complete text of the Minesweep program can be found in 

Appendix 4. 
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6.4 The Validate Process 

6.4.1 Overview 

keyboard --..-t~ Validate 
Process 

.. ... f val 

Validate_Process is the simplest process in the Minesweep system. It receives 

the player's moves on keyboard, checks that they are valid, and if so sends the new 

player position to the external world and to Monitor Process on f val. 

Validate_Process will delay each move made by the player until at least 200 

milliseconds after the previous move. This enforces the restriction that player moves are 

only responded to at fifth of a second intervals. The structure of Validate_Process is 

Process Validate Process 

Input keyboard 

Clock c 

Is { Time_Check (output, c) } 

whererec 

output 

startyos 

Validate (keyboard, startyos, first_move) 

1 ; first move = 0 ; 

Time Check = lambda (output, c) .... ; 

Validate = lambda (kb, pos, next_move). ; 

endwhererec ; Validate Process 

(6.5) 

Note that the single output channel from Validate_Process is enclosed between' {' 

and '}' to embed it in a tuple. 

Validate Process is made up of the functions Time_Check and Validate. 

Validate takes as its arguments the keyboard input, the player's starting position (cell 

1) and the next time at which the player is allowed to make a move (initially 0). 

Validate checks that the player is not trying to move off the board and ensures there is 

a 200 millisecond gap between messages. The result of Va 1 i da t e is a list of 
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[playeryosition, time_of_move] pairs to be sent as channel messages in f_val. 

The output supervisor T ime _Check takes this list as an input argument and checks it 

to ensure that time_of_move is late enough to be used as a messages timestamp, (i.e. 

that the time it is to denote has not already passed so that the message will be timed out). 

If time_of_move is late enough for the message to be sent this is done, if not the 

message is sent with time_of_move replaced by a timestamp large enough to avoid 

timeout. Time_Check is a simple example of defensive programming: if Validate 

misses a deadline Time_Check takes correcting action. 

6.4.2 The Validate function 

Validate passes the keyboard input onto the function Check_and_Move for 

checking; the result returned by Check_and _Move being the number of the cell that the 

player is on after the move is completed (if the move is invalid Check _ and_Move returns 

the current position). Check_and_Move is straightforward and will not be further 

discussed here; the reader is referred to Appendix 4 for details. 

Function Validate is thus 

Validate ( 6 . 6) 

lambda (kb, pos, next_move). 

If newyos = pos 

Then Validate (TailCh(kb), pos, move_time + interval) 

Else Cons (Cons(new~os, move_time), 

Validate(TailCh(kb),new~os, 

move time + interval)) 

whererec 

comp_delay 

newyos 

move 

move time 

5 ; interval = 200 ; 

Check and Move (move, pos) 

HeadCh (kb) ; 

If T~ (kb) + comp_delay < next move 

Then next move 

Else T~ (kb) + comp_delay; 

endwhererec ; -- Validate 

next move is the earliest time at which the next player move can be output from 
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Val ida t e _P roc e s s and is 200 milliseconds after the last output from 

Validate_Process. If the player attempts to move to another cell within 200 

milliseconds of his last move Validate_Process will not forward the move until 

next_move, effectively restricting the player to one move in every 200 millisecond 

period. 

comp_delay allows for the time between Validate_Process receiving the player's 

move and being able to output the new position on f_ val. When specifying the 

Minesweep system 5 milliseconds were allowed for this. If, in a particular case, more 

that 5 milliseconds elapse so that move _time is not a valid timestamp this will be 

detected by Time_Check and the appropriate action taken. 

It is because of this uncertainty about the validity of move _time as a message 

timestamp that Validate returns a list of pairs instead of a channel. If a channel were 

used there is a potential for it to be timed out and no more player moves would be 

processed. Instead the process is written defensively: channels are only constructed 

after their message timestamps' validity has been checked; this is done by the output 

supervisor Time_Check. 

6.4.3. The Time Check function 

Time_Check checks each of the potential message timestamps in the list produced by 

Validate against the current time read from the clock c, replaces those that are too early 

to be used as message timestamps and constructs a channel of player positions to be sent 

to the screen driver and to Monitor_Process. The Ruth code for Time_Check is given 

overleaf. 
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Time Check 

= lambda (output, c). 

If out time ~ soonest 

Then ConsCh (out_data, out_time, 

Time_Check (Tail (output) , TailClk(c))) 

Else ConsCh (out_data, soonest, 

Time Check (Tail (output) , TailClk(c))) 

whererec 

out time Tail(Head(output)) ; 

out data Head(Head(output)) ; 

soonest HeadClk (c) + check_delay ; 

check_delay 1; 

endwhererec; Time Check 

(6.7) 

Note the use of check_delay to allow for the time taken after the clock is read to 

construct the channel and to output the message. Even when timestamps are checked as 

above it is impossible to guarantee that messages will be sent: there may be a longer 

delay than allowed for by check_delay before an attempt is made to output the message 

so that a timeout will occur. However the situation is not as bad as it might appear since 

Time_Check is a fairly small and simple function and we can be fairly certain that 

timeouts will not occur. 

The bigger the value of check_delay the more probable that timeouts will not occur, 

but, on the other hand, the earlier that Validate will have to produce a result to avoid 

Time_Check taking its error recovery action. The compromise taken here is that 

Validate should produce its result with 20% of its allotted time (i.e. 1 millisecond) 

remaining to allow time for T ime _Check to operate. Of course, this is just an informed 

estimate of the amount of time that will be required for Time_Check, and will be 

modified if it proves to be too big or too small. Estimating delay values in this way is 

common practice in the real-time field. 

Time_Check is a passive output supervisor in that it waits for Validate to produce 

messages for output and then checks them for validity. In Time_Check messages which 

have missed deadlines are simply re-timestamped, though other strategies, for example 

discarding any incorrect messages, are obviously possible. However, all a passive 

121 



output supervisor can ensure is that messages which have missed deadlines are not sent 

(i.e. that events do not occur at the wrong time). In many cases it is desirable to send a 

message to meet every deadline, even if the message does not denote the required event, 

and this requires an active output supervisor. An active output supervisor monitors the 

process's output, waiting for the deadline and sending a default message if the "real" 

message is not produced by the deadline. This ensures that an event will occur at the 

required time, even if the event is not the exact event required. 

An active output supervisor is not required in the case of Validate_Process since 

failures to meet deadlines are not very serious: processing player input is a soft real-time 

problem. However it would be straightforward to provide Validate_Process with an 

active output supervisor by passing f_val to process Active. 

Process Active 

Input f val 

Clock c 

Is Check(f_val, c, 0) 

whererec 

Check 

lambda (f_val, c, last_output). 

If Ready (f_val, last_output + allowed interval) 

(6.8) 

Then ConsCh (HeadCh(f_val), out_time, 

Check(TailCh(f_val),TailClk(c),Time(f_val))) 

Else ConsCh (default, out_time, 

Check(f_val,TailClk(c),out_time)) 

whererec 

out time HeadClk(c) + check_delay 

default 

allowed interval 

check_delay 

. .. , 

1000 ; 

5 ; 

endwhererec ; -- Check 

endwhererec; -- Active Process 

The Check function monitors the f _val channel and if too great a time elapses between 

messages (in this case 1000 milliseconds) assumes that a timeout has occurred and sends 

the default message. Otherwise received messages are passed on unchanged, apart 

from having their timestamps updated. 
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After a timeout has occurred process Check simply carries on monitoring f_val 

although once a Ruth channel message has been timed out the channel will never contain 

any more messages. What we would prefer in such situations is that Check be able to 

send a message to the timed out process instructing it to reinitialise itself. Unfortunately, 

it is likely that any process which has had a channel message timed out has itself crashed 

and would thus not respond to such an instruction. The obvious solution is to simply 

create a new instance of the process but Ruth does not allow dynamic process creation. 

This restriction should be removed in later versions of the language and dynamic process 

creation is discussed further in the conclusion of this chapter and in Chapter 7. 
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6.5 The Cell Processes 

6.5.1 Overview 

rnd ~ Cell 
---tII .. L... _____ ;---II.~ f cell _ Process 

Each cell process periodically calculates a new state and communicates it to the 

external world and to Monitor_Process via its f_cell channel. The frequency with 

which new states are computed depends upon the cell's period value and upon a random 

number input from channel rnd. The period value is decremented after each new state is 

computed until it reaches a limit of 2500 milliseconds; thus as the game progresses the 

cells change state faster and faster. 

The states computed also depend on a random number read from rnd. If that value is 

500 (50%) or over the cell will be a scoring one; otherwise the chance that the new state 

will be mine or null depends on the cell's danger value, the higher the danger the more 

chance that the new state will be mine. The danger value is incremented after each state 

change, up to a limit of 400 (40%). 

Process Cell Process 

Input rnd 

Clock c 

Is { Time_Check (output, c) } 

whererec 

( 6 . 9) 

output = Cell (rnd, 0, init_state, init_danger, init_period) 

Time Check lambda (output, c) .... 

init state null ; null = -1 ; mine = -2 

init _danger 50 limit _danger 400 inc _danger 

inityeriod 20000; limityeriod 2500; decyeriod 

Cell = lambda (rnd, last_out, state, danger, period) .... 

Calculate State = lambda (n,danger) ... , 

endwhererec ; -- Cell Process 
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Cell_Process is similar in structure to Validate_Process. The list produced by Cell 

is checked for the validity of its time values by the passive output supervisor 

Time_Check. It is unlikely that timing errors will occur because the fastest a cell need 

ever produce messages is once every 1250 milliseconds; nonetheless the check is 

included for safety. 

6.5.2 The Cell function 

Cell takes as arguments the channel rnd, last_out, the time of the last state 

change, the current value of the state and the current values of danger and period and 

produces as its result a list of [state, time_of_change] pairs. 

Cell 

lambda (rnd, last_out, state, danger, period). 

If new state = state 

Then Cell (TailCh(TailCh(rnd», out_time, state, 

new_danger, new-period) 

Else Cons (Cons (new_state, out_time), 

(6.10) 

Cell (TailCh(TailCh(rnd», out_time, new_state, 

new_danger, new-period» 

whererec 

out time 

new state 

new-period 

new_danger 

last_out + period + 

«HeadCh(rnd) - 500) * period) / 1000 ; 

Calculate State(HeadCh(TailCh(rnd»,danger) 

If (period - dec-period) ~ limit-period 

Then limit-period 

Else period - dec_period ; 

If (danger + inc_danger) ~ limit_danger 

Then limit_danger 

Else danger + inc_danger 

endwhererec ; -- Cell 

The Cell function uses the Calculate_State function to produce the new states 

and builds them into a list of [state, time of change] pairs. Calculate_State is 

straightforward and will not be discussed further; the reader is referred to Appendix 4 
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for details. Note that both the time of the next state change and the new state depend on a 

random number input. Note also the limiting of the values of the danger and period to 

limit_danger and limityeriod respectively. 

6.5.3 The Time_Check function 

The Time_Check function used in the cell processes is almost identical to that used in 

Validate_Process; the only difference being the action taken when a timing error is 

encountered. 

Time Check 

lambda (output, c). 

If out time ~ soonest 

Then ConsCh (out_data, out_time, 

Time_Check (Tail (output) , TailClk(c») 

Else Time Check (Tail(output), TailClk(c» 

whererec 

out time Tail(Head(output» 

out data Head(Head(output» 

soonest HeadClk (c) + check_delay 

check_delay 250; 

endwhererec; Time Check 

(6.11) 

Whenever the Cell function defines a state change to occur at a time that is too early for 

Cell_Process to be sure of sending the message in time the state change is simply 

discarded. Since it is always possible for the cell's new state to be the same as its old 

state this is a safe strategy for error recovery. 

The smallest interval between two successive state changes is 1250 milliseconds and 

consequently we would expect timing errors to be infrequent. In Validate_Process 

20% of the available computation time was assumed to be reserved for the Time_Check 

function; here 20% of the minimum available time is allocated to T ime _Check and thus 

check_delay is 250 milliseconds. As with the check_delay value used in Time_Check 

in Validate this value is an informed estimate based on real-time domain experience. 
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6.6 The Monitor Process 

6.6.1 Overview 

f val 

f cell n 

Monitor 
Process score 

Monitor_Process takes as input the player's moves from Validate_Process (via 

f_val) and the state changes from each each Cell_Process (via the f_cell_n 

channels). Each time the player moves it calculates his new score and, if the score has 

changed, sends the new score along channel score. If the player moves onto a mine cell 

Monitor_Process infonns the external world by sending -1 along score. 

Process Monitor Process 

Input f_cell_1, f_cell_2, f_cell_3, f_cell_4, f val 

Cl.ock c 

Is { Time_Check (output, c) } 

whererec 

output 

inputs 

Monitor (inputs,init_state,init-player-pos,init_score) 

Scan and Sort (f_cell_1, f_cell_2, f_cell_3, f_cell_4, 

f_val, in it scan) ; 

in it score o init-player-pos 1 

init scan 200 ; scan interval 200 ; 

mine -2 ; null -1 ; 

in it state Cons(null,Cons(null,Cons(null,Cons(null,Nil)))); 

Time Check l.ambda (output, c) .... ; 

Scan and Sort l.ambda (f_cell_1, f_cell_2, f_cell_3, f_cell_4, 

f_val, scan_time) . . .. , 

Monitor = l.ambda (inputs, state, player-pos, score) .... 

endwhererec; Monitor Process 

Monitor Process operates III much the same way as Validate Process and 
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Cell_Process in that it uses a passive output supervisor Time_Check to check a list of 

[score, time] pairs before converting them into channel messages. The input channels 

to Monitor_Process are timewise merged into the list inputs by the function 

Scan_and_Sort; thus the earlier a message arrives at Monitor_Process the earlier it 

appears in inputs. This simplicity in ensuring that events are processed in the order 

they occur is a major advantage of the explicit timestamps used by Ruth. 

The list of [score, time] pairs is produced by the function Monitor which takes as 

its arguments the list inputs, the state of the board (initially all the cells are null), the 

player's current position (initially on cell 1) and the current score (initially 0). Monitor 

works down the inputs list processing each message, and thus each event in the 

system, in the order in which they occurred. Each cell state change message results in 

Monitor updating its state value; each player move results in the score being updated 

if the player moved onto a scoring cell, the sending of -1 if the player moved onto a 

mine, and no message at all if the cell is null. 

6.6.2 Getting the inputs 

The Scan and Sort function operates in exactly the way its name implies. - -

Periodically it scans all the input channels and builds a list of all the messages that 

arrived since the last scan. Scan_and_Sort assumes that only one message can have 

arrived from each of the other processes since the last scan. In order to ensure this 

Scan_and_Sort must scan the channels at least every 200 milliseconds. This is the 

smallest possible interval between messages on f _val. None of the other channels will 

produce messages as fast as this so this is the limiting case. 

The general principle behind Scan_and_Sort is that all the input messages available 

at this scan time are collected into an event_list which is then sorted by order of 

occurrence of the events they denote (earliest ftrst). The resulting list is appended to the 

list resulting from recursively applying Scan_and_Sort to the input channels with the 

messages already received removed. Thus the result of Scan_and_Sort is a list 

containing all the events reported to Monitor_Process in order of their occurrence : a 
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timewise merge of its inputs. 

Scan_and_Sort 

= lambda (f_cell_l, f_cell_2, f_cell_3, f_cell_4, f_val, 

scan_time) . 

Append(Quicksort(event list Nil) - , , 
Scan_and_Sort(new f cell l,new f cell 2 -- - -- -' 

(6.12) 

new_f_cell_3,new_f_cell_4, 

new_f_val,scan_time + scan_interval» 

whererec 

event list 

Get Events ({f_cell_l, f_cell_2, f_cell 3, 

f_cell_4, f_val}, 5, scan_time» ; 

new f cell 1 New Chan (f_ cell 1, 
- scan_time) ; 

new f cell 2 New Chan (f cell 2, scan _time) - -

new f cell 3 New Chan (f cell 3, scan_time) - -
new f cell 4 New Chan (f cell 4, scan_time) ; - -
new f val = New Chan (f _val, scan_time) 

endwhererec ; Scan and Sort 

Here Append is the usual function for appending two lists and Quicksort performs 

a quicksort on the event_list according to the timestamps of the messages. Function 

New_Chan simply returns the TailCh of its channel argument if it is Ready at the time 

denoted by its second argument. Thus it discards all messages which have been 

incorporated in event_list in this scan. For the text of these functions the reader is 

referred to Appendix 4. 

Because all the events are combined into one list they must be tagged to show their 

origin. Thus every element of event_list is a pair comprising an origin tag and the 

event itself. To tag the events we use the index of their origin channel in the list of inputs 

to Monitor_Process, starting at 1. Thus f_val events are tagged 5. Note that the event 

itself is a pair whose fIrst element is a new cell state or the cell that the player has moved 

to, and whose second element is the timestamp of the message. The tagging is 

performed by the function Get_Event when it reads the messages from the input 

channels. 
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Get Events 

lambda (chs, n, t). 

If n < 1 

Then Nil 

Else If Ready(chs!n, t) 

(6.13) 

Then Cons(Cons(n, event), Get Events (chs, n-1, t) ) 

Else Get Events (chs, n-1, t) ; 

where 

event = Cons(HeadCh(chs!n), T~(chs!n) ) ; 

endwhere ; -- Get Events 

Get_Events collects the messages which have arrived since the last scan; 

Quicksort sorts these messages into order of arrival. Since there are so many input 

channels it is clearer and simpler to separate these two operations from each other than to 

combine them into one function as is done be the timewise merge functions seen earlier. 

6.6.3 The Monitor function 

The Monitor function works down the list of events inputs, processing the events 

in tum and updating the score and state of the cells in accordance with each event. 

Monitor 

lambda (inputs, state, player~os, score) . 

score out 

whererec 

event 

event_type 

event data 

event time 

out time 

comp_delay 

score out 

Head(inputs) ; 

Head (event) ; 

Head(Tail(event» ; 

Tail(Tail(event» 

event time + comp_delay 

50 ; 

; 

endwhererec ; -- Monitor 

(6.14) 

Monitor takes the first event in the list of events inputs and decomposes it into 
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event_type, event_data and event_time. event_type is the tag attached to the 

event by Scan_and_Sort and so denotes the origin of the event message. event_data 

is the data part of the message denoting a new position if the event came from the player 

and a new state if the event originated from a cell. event_time is the time the event 

occurred. 

The updated score is output at out_time which is 50 milliseconds after the event 

actually occurred. This allows for the time involved in processing the message within 

Monitor_Process, though if 50 milliseconds proves to be too short a time the output 

supervisor will trap the error. 

score out is calculated as follows 

score out If Lookup (new_state,new-player-pos) 

Then Cons (Cons(-l,out_time), Nil) 

Else If new score * score 

mine 

Then Cons (Cons(new score,out_time), rest) 

Else rest score out 

(6.15) 

rest Monitor(Tail(inputs),new_state,new-player-pos,new_score) 

new score = ... ; 

new-player-pos = 

new state = ... ; 

Lookup = lambda (table, n) .... ; 

Here new score is the the updated value of score, new-player-pos is the new player 

position and new_state is the new cell state list. If the event was a player move then 

new state will have the same value as state; if the event was a cell state change then 

new_score and new_player-pos will have the same values as score and player_pos 

respectively. Lookup returns the nth element of the list table. These definitions are 

straightforward and the reader is referred to Appendix 4 for details. 

Note that if the player lands on a mine, so ending the game, the pair [-1, out_time] 

is produced followed by Nil. Since the game is over Monitor processes no more 

events. 
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6.6.4 The Time_Check function 

The output supervisor for Monitor_Process is similar to that for the other two 

process, the only difference once again being its behaviour in the advent of timing 

errors. 

Time Check 

= lambda (output, c). 

If out time ~ soonest 

Then ConsCh (out_data, out_time, 

Time_Check (Tail(output), TailClk(c))) 

Else ConsCh (-1, soonest, stop) 

whererec 

out time 

out data 

soonest 

stop 

check_delay 

endwhererec 

Tail(Head(output)) ; 

Head(Head(output)) ; 

HeadClk (c) + check delay 

ConsCh (-1, 0, stop) ; 

10 ; 

Time Check 

(6.16) 

When a timing error is detected Time_Check terminates the game. A more sophisticated 

strategy, such as sending the score as soon as possible in a similar way to 

Validate_Process, is obviously possible. However, since Monitor_Process is the 

most important process in the Minesweep system we choose to regard any timing 

failures within it a fatal errors. The most useful course of action would be to 

pre-emptively reinitialise the whole system but Ruth provides no primitive for 

pre-empting processes. 

Instead Monitor_Process produces the -1 message, so ending the game, and 

ceases to process messages. There is no elegant way of terminating a channel in Ruth 

since it is slightly unusual for a real-time system ever to terminate. The only way to 

achieve the desired effect is with the recursive definition of stop above which will 

produce a timeout error since it attempts to use a zero timestamp. Note that 20% of the 

available computation time (i.e. 10 milliseconds) is reserved for Time_Check.This 

ensures, as far as is possible in a real-time system, that the -1 message will not be timed 

out but will be received by the external world. Once again, the value chosen for 
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check_delay is an infonned estimate and may change as a result of experiences running 

the implementation. 

The total delay between messages reaching Monitor_Process and the production of 

a message in response is 50 milliseconds. Thus when the player makes a move any 

change in his score will not be visible to him for 55 milliseconds: a 50 millisecond delay 

in Monitor_Process and a 5 millisecond delay in Validate_Process. As far as the 

player is concerned his moves occur when he presses one of the lUI, 'd', 'I' or 'f 'keys; 

as far as Monitor_Process and the external world are concerned the player actually 

makes his move 5 milliseconds after a key is pressed, and he is not credited with any 

score for the move for a further 50 milliseconds. However, as far as the user is 

concerned, cell state changes occur when they appear upon the screen and thus, to the 

user, there seems to be an unfair delay in processing his moves. 

A partial solution to this problem would be to delay cell state changes by 5 

milliseconds in the Scan and Sort function. Thus the state of the board held in 

Monitor would always be consistent with a 5 millisecond delay on both the player 

moves and the cell state changes and the player would not find himself moving onto a 

mine cell which was not a mine when he made the move. Unfortunately this would be 

inconsistent with what actually appeared on the screen as a cell would appear to change 

state 5 milliseconds before the new state had any affect on the progress of the game. 

There is no total solution to this problem since it is caused by the player's perception 

of reality : a cell changes state when the new state appears on the screen; the player 

moves when he presses a key. Such problems with the perception of when events occur 

are common to real-time systems and derive from the fact that it takes time for a 

computer to process its inputs and produce its outputs. There is no way that a real-time 

program can ever have a totally up to date picture of the external world and this is 

something that the real-time programmer must learn to live with. 

This completes the definition of the Minesweep implementation. To see how it all 

fits together the reader is once again referred to Appendix 4 where the full text of the 
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implementation is given. 

In the next, concluding, section of this chapter we shall examine and evaluate our 

solution to the problem of implementing the Minesweep specification. 
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6.7 Conclusion 

The purpose of this chapter has been to evaluate the suitability of the language Ruth 

for implementing real-time systems by applying it to a substantial real-time problem. The 

problem chosen was the real-time computer game Minesweep. Computer games 

exhibit fairly complex real-time behaviour but have the advantage of requiring no 

specialist knowledge to implement and/or explain. 

The emphasis has been upon the real-time problems posed by Minesweep and the 

suitability of Ruth for expressing solutions to these problems. Consequently we have 

abstracted away from several non real-time issues: for example how the screen is to be 

driven and where the random number inputs are generated. 

It could well be argued that we have been somewhat pedantic in specifying real-time 

behaviour in the Minesweep program. A computer game interfaces to a human as 

opposed to machinery and human reaction times are very slow in comparison to a 

machine's. (i.e. seconds rather than milliseconds). Thus a real implementation of 

Minesweep could probably dispense with the Quicksort function in Scan_and_Sort 

and simply treat all the events detected in a scanning phase as happening simultaneously. 

This strategy would, however, lead to several discrepancies in the real-time behaviour of 

the system. For example Monitor_Process could receive two messages in a scan: the 

player moves off cell n, and cell n changes state from a scoring cell to a mine. If both 

events are assumed to occur simultaneously then the game is over since the player has 

landed on a mine. However the player could have moved onto the cell before the cell 

changed state in which case his score should be increased by the relevant amount. 

Although it is very unlikely that the player would notice any discrepancies in the 

real-time behaviour of a Minesweep implementation given the very small (to a human) 

time periods involved, in a narrow real-time system such discrepancies would be 

"noticed", and could have disastrous effects. To maintain consistency of real-time 

behaviour requires that the real-time language used be able to detect exactly when events 

occurred or did not occur, and the ability to specify exactly when events should occur: 

in other words time expressibility. By checking the timestamps on channel messages 
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using Ready and Time the Minesweep program maintains the consistency of its 

real-time behaviour. 

The Minesweep program also exhibited the use of defensive programming 

techniques in Ruth : each process's output was checked by the Time_Check passive 

output supervisor. However a passive output supervisor is not a total solution to the 

defensive programming problem since it can only prevent incorrect messages being 

output; it cannot output default messages to ensure that deadlines are always met. 

Although it is possible to write active output supervisor processes in Ruth there is no 

way in the functional framework for such a process to preempt a rogue process and 

force it to take corrective action. The obvious solution is simply to create a new version 

of the process and ignore the rogue but Ruth does not allow dynamic process creation. 

In the next chapter we shall look at a way in which this situation could be improved. 

Ruth's insistence on the explicit naming of all channels and processes in a 

configuration causes problems with handling large numbers of processes and channels. 

This led us to restrict the Minesweep board to only four cells. 

The handling of channels within the language generally is definitely an area which 

could be greatly improved. The only data structure available for use with channels is the 

tuple and a tuple can only be constructed by listing all its elements. There is no operation 

like Cons on s-expressions which would allow us to add channels to tuples and thus we 

cannot write recursive functions that "map" down tuples to produce other tuples. This 

restriction was particularly felt in Monitor_Process, for example in the separate 

definitions of new f cell 1 through new_f_val in Scan_and_Sort. - - -

The problems mentioned above are largely peripheral to the central goal of Ruth 

which was to prove that there is no reason why a purely functional language could not 

be used for writing real-time systems. The Minesweep program suggests that we have 

succeeded in this aim. Although certain features of the language could be improved those 

dealing with specifically with real-time (channels, clocks and their associated operations) 

are more than adequate for dealing with real-time systems. 
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In the final chapter of this thesis we shall make a fuller review of what has been 

achieved in this work. In particular we will consider future directions for the work, both 

in terms of language improvements and theoretical issues. 
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Chapter 7 · Review, Assessment And Future Work 

7.1 Review 

7.1.1 What is a real-time system ? 

A real-time problem can be classified as one in which when events occur is as 

important as what events occur. A further refinement can be made along two axes : the 

amount of time a system has to react to an event and the scale of damage if these 

deadlines are not met. The importance of when things happen in a real-time system has 

two major implications : the system must specify when it wishes events to happen and it 

must be able to detect when events have happened. Thus, any language used for the 

implementation of real-time systems must have what we have called time expressibility : 

the ability to express facts about time. 

The timing constraints inherent in real-time programming also have a major impact 

on the type of algorithms that are used. Real-time programmers tend to program in a 

very defensive manner: if there is the slightest doubt as to whether a program will meet 

its constraints then it is rewritten. In most real-time systems the time-critical part of the 

software can be expected to complete its tasks in as little as half the time available to it. 

Even so, individual processes in a real-time system are usually written in such a way that 

the failure of another process to meet its time constraints can be recovered from. This 

usually involves writing a large amount of error handling code which (hopefully) is 

never executed. 

7.1.2 Current approaches to real-time language design 

In Chapter 2 we looked at three different approaches to real-time language design, 

imperative, dataflow and functional, and examined their relative merits in terms of time 



expressibility and defensive programming. As a result of this survey two general types 

of approach were identified: the pragmatic, defensive approach exemplified by 

languages such as Ada, and the theoretical, optimistic approach exemplified by 

LUSTRE. 

The defensive languages assume nothing about the real-time characteristics of a 

particular language implementation and give no guarantees that deadlines will be met. 

Instead facilities are provided to support defensive programming: software can monitor 

its own progress in time and take recovery action if deadlines are not met. 

The optimistic languages assume a particular real-time behaviour from language 

implementations. For example LUSTRE assumes the strong synchrony hypothesis : 

machine operations take negligible time and deadlines are always met. Thus LUSTRE 

provides no support for detecting and recovering from timing errors; the focus is upon 

specifying the temporal behaviour required rather than whether that behaviour can be 

achieved. The other optimistic language considered, ART, assumes merely that the exact 

time taken for each machine operation is known and thus that temporal behaviour can be 

predicted from the semantics of the language. Although this is not as strong an 

assumption as strong synchrony it may well be equally unrealistic for many, more 

complex, language operations; also, determining the real-time behaviour of a program 

requires that the complete program be proved from the semantics which is a lengthy and 

potentially error prone task at present. 

Given that the strong synchrony hypothesis is unrealistic when working with 

real-time systems, and that the current state of the art of program proving is not generally 

practical, we are forced onto the defensive. The basic principles of the language Ruth 

are thus those of a defensive language: nothing is assumed about an implementation's 

real-time characteristics and the language provides facilities for monitoring progress in 

time and detecting and recovering from timing errors. 
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7.1.3 The language Ruth 

A Ruth program comprises a static set of processes communicating via streams of 

(numerically) timestamped atomic messages, in which each message denotes an event in 

the system. Such streams are called channels in Ruth and each process is a function 

mapping a tuple of input channels to a tuple of output channels. 

The timestamp on a channel message defines when the message is required to arrive 

at its intended destination (either another process or the external world) so giving the 

Ruth programmer the ability to specify when events happen. For simplicity, we have 

assumed no communications delays on channels and no clock skewing between 

processes. 

A process also takes a real-time clock stream as input. As the program executes the 

values in the clock stream are (lazily) instantiated with the current value of real-time, thus 

allowing the programmer access to real-time information. This approach was first 

suggested in [Burton 88]. 

In order to detect the occurrence of an event Ruth supplies an operation for testing 

the timestamp of the first message in a channel against an integer value: the Ready test. 

Ready is a predicate which returns t rue if the timestamp of the first message in the 

channel is less than or equal to the number being tested against and false otherwise. 

The most important requirement of Ready is that it should be non-blocking, that is, that 

the event need not have happened (there need be no message in the channel) for Ready to 

return a result. In real-time systems the non-occurrence of an event by a particular time 

carries (almost) as much information as its occurrence and Ready must be able to detect 

this situation. 

7.1.4 Herring-bone domains and clock-driven timing 

To give a formal definition of operations such as Ready requires that the semantic 

model used be able to express facts about time. The herring-bone domains used in [Broy 

83] to give the semantics of ART are just such a model and they were used to provide a 
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framework for the semantic defmition of Ruth. 

When dealing with the semantics of real-time programming languages one of the 

most important things that must be defined is when expressions produce results. In the 

semantics of Ruth these times depended upon values read from a clock, an approach we 

called clock-driven timing. Clock-driven timing gives a higher level of abstraction than 

using fixed durations for each machine operation (delay-driven timing) since there is no 

need to fix such things as evaluation orders. Yet it more accurately models the real world 

than assuming no delays at all (data-driven timing). Moreover, by constraining the 

values read from the semantic clocks in certain ways data dependencies can be expressed 

(e.g. the result of an addition cannot be available until after the two numbers to be added 

are computed) without defining low level implementation details. 

7.1.5 Conclusion 

The next section of this chapter assesses the merits and failings of Ruth as a 

real-time programming language and suggests several improvements. Section 7.3 

outlines a prototype implementation for the language. In Section 7.4 the focus is upon 

theoretical issues and in particular upon what kinds of formal reasoning and 

transformation are possible with real-time software. Based on this Section 7.5 indicates 

a possible direction for future work. 
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7.2 Ruth As A Real-Time Programming Language 

7.2.1 Time expressibility 

Our primary goal with Ruth was to produce a purely functional programming 

language for writing real-time software. The essential feature of a real-time language is 

its time expressibility, that is, the data types for representing temporal information and 

the operations on those data types. In Ruth time is represented by the integer values of 

channel timestamps and clock times. In general this method has proved highly effective: 

channel timestamps allow the Ruth programmer to detect when events happen and to 

specify when events should happen in a simple and elegant way. By treating a real-time 

clock as an input stream Ruth allows access to the current time in a purely functional 

manner. 

One restrictive feature of the channeVtimestamp model is the fact that a programmer 

must always specify a timestamp even when he does not care when the message is 

delivered, provided that it will be delivered eventually. In real-time systems there is often 

a need to handle "don't care" outputs, for example the logging of errors in an engine 

control system. The only timing restriction is that all errors should be logged 

"eventually" . 

[Harrison 87] proposed that "don't care" output could be expressed by supplying a 

complete clock as the second argument to ConsCh. Operationally the intention was that 

the clock should be instantiated at the moment the message is sent, thus avoiding 

timeouts. This was abandoned because there seemed to be no way of providing a 

semantic definition for it within the semantic model being used. According to this model 

a program is supplied with clock tree as an input and nothing can be assumed about the 

values contained in that tree. 

A better approach is simply to allow Ruth processes to produce lazy streams of 

(untimestamped) atoms as output as well as channels. No timestamps are specified since 

the programmer does not care when the atoms in the streams arrive at their destinations. 
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This has the disadvantage that a receiving process could not use Time or, more 

importantly, Ready on such an input stream. The view taken here is that if the time at 

which a particular atom is produced is of no importance to the producer of the atom then 

it has no importance to the consumer. If this is not the case then a channel should be 

used. 

If a Ruth process fails to meet a time deadline this is treated as a fatal error. In other 

words, if an attempt is made either to construct a channel with a message timestamp that 

is less than the current value of time, or to send an out of date channel message to 

another process, then a timeout occurs and the <00,..L> element of ~ results. 

An alternative approach would be to replace the erroneous message with a "time 

fault" message as is done in real-time Lucid. This has the obvious advantage that the 

process which produced the late message is not assumed to be fatally flawed and may go 

on to produce further (hopefully) on-time messages. The only disadvantage is that we 

cannot predict from the semantics when a message will be replaced by a time fault. In a 

channel construction such replacement depends upon when the channel is constructed 

and at a process boundary it depends upon when the attempt is made to output the 

message. In the semantics both of these times are read from the semantic clock and we 

have no information about the values in clocks. On the other hand the robustness of 

Ruth programs would be markedly improved by the introduction of time faults since the 

process producing the time fault could be informed of this by the process receiving it, 

and could thus take correcting action. For this reason time faults are a necessary addition 

to Ruth. 

A problem which which occurred when writing the Minesweep program was that 

of finite channels. Normally a real-time program is never expected to terminate, but to go 

on producing results "for ever" and consequently it was felt there was no need to 

consider a means for signalling the end of a channel. Even if all real-time programs 

never terminate, and the Minesweep program shows that this is not true, there is still a 

use for a channel terminator, particularly if Ruth were to allow dynamic process creation 

(see below). 
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To allow the programmer to tenninate a channel Ruth should provide a primitive 

such as End_Chan below 

End Chan (n) <n, End> (7 .1) 

and the definitions of HeadCh, TailCh, Time and Ready would be augmented in the 

obvious way. 

7.2.2 Defensive programming and dynamic process creation 

As was seen in the Minesweep program it is simple to write passive output 

supervisors in Ruth to support defensive programming. However passive output 

supervisors have an important weakness : they can only react to incorrect message 

timestamps to prevent timeouts, they cannot send messages to ensure deadlines are met. 

The latter requires an active output supervisor. 

In Ruth an active output supervisor would be written as a process which acts as a 

watchdog on a producing process's output channel(s). When a deadline is not met a 

default message would be inserted. Once such a situation has occurred it is frequently 

the case that some form of re-initialisation of the producing process is required. Since 

there is no way to preempt a process in a functional language, and thus force it to 

reinitialise, the obvious technique would be to create a new version of the producing 

process and rely on the underlying implementation to "garbage collect" the original. 

Unfortunately dynamic process creation is not allowed in Ruth so this strategy cannot be 

used. This is a serious weakness of Ruth. 

The process structuring facilities in Ruth were influenced strongly by those of 

occam. This was largely for reasons of simplicity since our primary concern was the 

features of the language supporting its time expressibility and not the process structure. 

Consequently a Ruth program is a static configuration of processes, and processes are 

distinct from functions. 

In retrospect there seems no reason why a process should not be treated as a function 
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which produces tuples of channels as results. The language semantics already treats 

processes in just this way. Instead of a Ruth program being a configuration of processes 

it would be itself a process whose process expression was allowed to define and apply 

other processes. 

7.2.3 Clock skewing and communication delays 

Throughout this work we have made two simplifying assumptions which are not 

justified in the real world. Firstly, that the real-time clocks on different physical 

processors will always be synchronised (Le. there will be no clock skewing); and 

secondly, that channel communication is instantaneous. Before Ruth could be used on 

real world problems these assumptions must be discharged. 

Clock skewing between processors can be dealt with at the implementation level via 

methods such as Lamport's algorithm [Lamport 78] mentioned in Chapter 3. Any 

realistic implementation of Ruth on a distributed set of processors would have to use 

such an algorithm. 

Channel communication delays are slightly more complex to handle. Unpredictable 

communication delays are a fundamental problem in real-time programming to which 

there seems no obvious solution. Once again it seems that the real-time programmer is 

forced onto the defensive. Programs must be written in such a way that messages will 

reach their destinations on time in all but the worst situations. When a message does fail 

to meet its time deadlines a real-time program must be able to recover. 

It should be noted that the use of the filter function in the definition of process 

application could be interpreted as modelling unpredictable communication delays. 

filter uses the clock values to denote the time that messages become available at their 

destinations. Although we have assumed that this is the same as the time at which the 

message leaves its source this assumption has no bearing on filter which reads the 

time values it checks against directly from a semantic clock about whose values we have 

no information. It could equally well be assumed that the times read from the clock 
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denote only the arrival time of the message, which is strictly greater than the sending 

time. 

7.2.4 Conclusion 

In this section we have looked at Ruth as a programming language and have found it 

wanting in several respects. For Ruth to be regarded as useful in the real world the 

improvements mentioned in this section, and possibly several others, would have to be 

made. It should be noted however that we have found Ruth IS underlying notion of 

real-time systems as a set of real-time processes communicating via streams of 

times tamped messages to be a simple, powerful and elegant modeL This model forms 

the basis of the language STRuth which is introduced in Section 7.5. 
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7.3 Outline Implementation 

This section outlines a possible prototype implementation for Ruth. The intention is 

to show that there is no conceptual difficulty in producing an implementation for Ruth; 

no implication that this approach is the optimal one is intended. 

7.3.1 Overview 

A Ruth program is a configuration of several processes executing in parallel. We 

propose that each process should be mapped onto one of a set of processing agents 

which will execute it. Each agent thus has two tasks: to execute its Ruth process and to 

communicate the process's results to other agents and to the outside world. We shall 

assume that agents execute Ruth processes via lazy SECD machines ([Landin 64], 

[Henderson 80], [Henderson et. al. 83]). Channels are implemented as head-strict 

streams of <timestamp, atom> pairs and the Ruth SECD machine is extended to allow 

for multiple I/O channels along the lines of [Jones 84a, 84b]. 

The system will be implemented in occam and will run on one transputer [INMOS 

87]. Thus each agent (and therefore each Ruth process) is implemented as one occam 

process. The implementation is restricted to one transputer to avoid the problem of clock 

skewing and message transmission delays. 

Agents will communicate via occam channels; each occam channel will carry one 

Ruth channel. We shall refer to these occam channels as pipes. occam channels may be 

either soft channels linking different occam processes on the same chip via on-chip 

memory locations, or hard channels linking occam processes with the external 

environment via the transputer's communication links. Channels between Ruth 

processes will be implemented as soft occam channels; channels between Ruth 

processes and the external environment will be implemented as hard occam channels. 

A Ruth channel has exactly one source process, though it may be consumed by any 

number of destination processes. However, since channels are implemented as occam 
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channels, and since an occam channel has exactly one source and one target process, this 

prototype implementation imposes the added restriction that each Ruth channel may only 

be consumed by one destination process. 

An agent executes a Ruth process via a series of transitions, each of which has two 

phases : an execution phase and a communication phase. In the execution phase the 

agent will perform an SECD machine transition and in the communication phase it will 

send and receive messages to and from other agents and the external environment. 

Agents perform this cycle asynchronously; two agents cannot transfer messages between 

themselves unless both agent is in its communication phase. 

The state of an agent can be represented as a tuple of the form 

A : [M, I, 0, T] (7 .2) 

Here A is the agent number (1 ~ A ~ Number of agents). M is the SECD machine 

executing the Ruth process. I is a list of lists, one list for each input pipe; each list 

contains messages that have been received by the agent but not yet read by the Ruth 

process. 0 contains an entry for each output pipe; at the end of an execution phase each 

entry contains the timestamped message (if any) produced by the last execution phase for 

output on that output pipe. Messages are sent to their destinations in the communication 

phase immediately following the execution phase that produces them, and are then 

removed from o. Consequently, at the end of a communication phase there will be no 

messages stored in o. The receiving agent has the responsibility for storing messages 

until they can be dealt with. Finally, T is the agent's integer value for the current time; T 

is incremented at the end of each communication phase from the processor's hardware 

clock by amounts which depend on that clock (and thus on the speed of the 

implementation). 

The working of the execution phase is essentially identical to that given in [Jones 

84a]. Three points should be noted: 

(i) As in any functional language implementation the cell space must be allocated 
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dynamically and periodically garbage collected. It would be possible to use 

traditional mark-sweep garbage collection on an agent's cell space but this 

would produce unpredictable (and fairly large) delays on agent operations 

which is highly undesirable in a real-time system. Instead an incremental, 

copying method such as that of [Baker 78] or the more efficient [Liebermann 

and Hewitt 83] will be used. 

(li) Instead of performing I/O directly with the external environment an SEeD 

machine executing a Ruth process will perform I/O via it's agent's I and 0 

registers. Instead of reading input directly from I/O devices the SEeD machine 

reads messages from the I register. Thus, the SEeD machine instruction INPUT 

is modified to read its result from the relevant I register entry, instead of 

directly from the external world. Similarly, instead of sending output directly to 

I/O devices the SEeD machine instruction OUTPUT sends messages to the 

relevant 0 register. 

The INPUT instruction is a blocking input: if there are no messages in the 

relevant I register when the SEeD machine executes an input instruction then 

the execution phase terminates and the communication phase is entered. When 

the communication phase ends the INPUT instruction is re-tried.This cycle 

continues until a message is put in the relevant I register. The OUTPUT 

instruction always succeeds in placing its argument in the relevant 0 register. 

(iii) Program clocks are implemented as head-strict streams of integers; the values in 

the stream are instantiated with the value of T whenever the SEeD machine M 

executes a HEADCLK instruction. 

Apart from a brief discussion in Section 7.3.3 on the implementation of the Ready test 

the execution phase will not concern us further here. For further details the reader is 

referred to [Jones 84a, 84b]. 
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7.3.2 The communication phase 

The input and output registers are of the form 

I 

(pk,mk ) ) 

(pj,lj» 

(7 .3) 

Each (pi, mi) pair in the list 0 denotes that the timestamped message mi is to be sent 

along the pipe pi in the next communication phase. If there is no message to be 

transmitted for an output pipe pi then mi is Nil. Each (Pi' Ii) pair in the list I denotes 

that the list of timestamped messages Ii have been received along the pipe Pi and have 

not yet been read by the agent's SEeD machine, M. If there are no messages received 

from Pi which have not been read by M then Ii is Nil. 

Note that it is the responsibility of the receiving agent to buffer messages if a sending 

agent is producing messages faster than a receiving agent wishes to read them. Thus I 

must store a list of messages for each input pipe. 0 need only store a single message per 

output pipe since each execution phase cannot produce more than one message per 

channel (see [Jones 84a] for details), and these messages are immediately forwarded to 

their destinations. 

A further responsibility of a receiving agent is to check that the timestamps on 

incoming messages are not out of date. Each of the messages sent to an agent A is 

checked against the current time T when it is received. If a message has a timestamp less 

than than the value of T then it is out of date and a timeout error has occurred. Instead of 

appending the message to the relevant Ii an error value is appended indicating that a 

timeout has occurred. All further messages in this pipe will be ignored by agent A. 

When giving the semantics of Ruth the check on message timestamps is performed 

by an application of the f i I te r function in the sending process. In this prototype 

implementation the check is actually performed in the receiving process. This allows for 

easier handling of communication delays in future multi-processor implementations and 

is no more complex than performing the check in the sending process. 

To give a flavour of how channel communication proceeds in the communication 
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phase consider two agents Al and A2" At the start of a communication phase Al wishes to 

send the message d with timestamp t along the pipe p to A2• For simplicity, assume that 

Al is executing a Ruth process with only one output channel, and thus that p is the only 

pipe in AI'S output register. Similarly, assume that the Ruth process being executed by 

agent A2 has only one input channel, and thus, that p is the only pipe in A2 's input 

register. We shall also assume that Al receives no input messages during this 

communication phase and that A2 sends no output messages. 

At the start of the communication phase the states of Al and A2 are 

( (p,(t,d))), T1] (7 • 4) 

( (p,l) ), 

Here 1 is the list of messages which A2 has received on pipe p which have not yet been 

read by the Ruth process being executed by M2. If T2 is no later than t then the message 

(t, d) is appended to 1 since it has arrived at A2 in time. Otherwise 1 records that (t, d) 

is an out of date message by appending error to the message list for p in A2 " Any 

further messages received on p will be ignored so that the Ruth process being executed 

by A2 will receive no more messages from A2 after the timeout. 

Thus, at the end of the communication phase, the agent's states are 

where 

append 

(p,append(l,(t,d))) ),°2 , 

(p,append(l,error)) ),°2 , 

lambda (l,m). 

If 1 = error 

Then error 

Else If IsNil(l) 

Then Cons(m, Nil) 

Else Cons (Head(l) , append(Tail(l), m)) 

(7 .5) 

T 2 +02 ] iff T2 $ t 

T 2 +°2 ] otherwise 

Tl and T2 are incremented by 01 and 02 respectively, thus modelling the passage of time 

as execution proceeds. 01 and 02 will probably not be the same since the time Al takes to 
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send the message and remove it from 0 will probably be different to the time taken by A2 

to receive the message and store it in I. 

This simple case generalises in a fairly straight forward way to cases involving 

several messages and agents. 

As mentioned above both Al and A2 must be in a communication phase for a message 

to transferred between them. An attempt to send a message from an 0 register blocks an 

agent: Al cannot proceed with its next execution phase until A2 has received the (t, d) 

message. Thus Al must wait for A2 to enter its communication phase. An attempt to input 

a message to an I register does not block and agent: Al can simply scan for inputs and if 

none are available it proceeds. The INPUT SEeD machine instruction ensures that an 

attempt by a Ruth process to read a message from a channel will always be blocked until 

a message has arrived. An agent must, however, be able to scan for input messages in a 

non-blocking manner so that the Ready test can be successfully implemented (see 

Section 7.3.3 below). In the worst case a source agent may enter its communication 

phase and try to send a message just after the destination agent has completed its scan. 

The source agent will be delayed through the rest of the destination agent's 

communication phase and the following execution phase before it can send the message 

and proceed. 

An agent must scan its inputs and send its outputs in parallel to avoid deadlock. For 

example, if agent Al attempts to send a message to agent A2 and A2 attempts to send a 

message to A 1• Both agents are attempting to send messages and thus, unless they are 

scanning for inputs in parallel with this, deadlock will occur. 

7.3.3 Implementing the Ready test 

As mentioned above, an SEeD machine executing a Ruth process performs all its 

I/O with its agents I and 0 registers. To implement the Ruth Ready test requires the 

addition of an extra instruction, READY, to the SEeD machine given in [Jones 84a, 84b]. 

The READY instruction tests whether a channel contains a message by the current time 
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which is held in the T register. The test is petfonned on the entry in the agent's I register 

corresponding to the channel being tested. Assume that this entry is (p,l) and that the 

current value of the agent's time register is T. Let the result of the READY instruction be 

denoted by r. 

r = If ISNil(l) Or (1 error) (7 . 6) 

Then false 

Else If timestamp > T 

Then false 

Else true 

where 

timestamp Head (Head (1) ) ; 

If an out of date message has been received on p then any subsequent Ready test is 

false. If 1 is Nil the Ready test is also false since any further messages on p must 

have timestamps greater than T or they will cause a timeout error. This allows the ability 

of the Ready test to timeout messages to be implemented. Finally, if there is a message 

in 1 then the result of Ready can be determined from its timestamp. 

7.3.4 Conclusion 

In this section we have outlined a possible implementation for Ruth. The purpose 

was to show that such an implementation presents no major difficulties and the two-level 

approach chosen was dictated by simplicity and ease of explanation. A more 

sophisticated implementation using some of the techniques detailed in [Peyton Jones 87] 

would almost certainly prove more efficient. An efficient implementation of Ruth is not, 

however, the purpose of this work. 
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7.4 Theoretical Issues 

One of the major reasons for giving a formal semantics for a programming language 

is to facilitate formal reasoning and correctness preserving transformation. In this section 

we examine just what kind of reasoning and transformation is possible in a real-time 

context. 

7.4.1 Reasoning with real-time programs 

Consider the following Ruth function defmition. 

f lambda (n). ConsCh ('Any', n + 10, f(n + 10)) (7 .7) 

In the absence of timeouts the expression f ( 0) would produce the channel 

<10, ['Any', <20, ['Any', < ... >]>]> (7 .8) 

but if a timeout occurs at any point the remainder of the channel will be <00, ~>. Whether 

or not a timeout occurs depends on the values held in the semantic clock about which we 

have no information. A similar effect is caused by the filter function at process 

boundaries. 

Since the message timestamps in a channel denote exactly when the messages will 

arrive at their destinations we have the situation that in the absence of timeouts it is 

possible to prove not just what data values are produced by a Ruth program but also 

when those values will be produced. If a timeout does occur then no further messages 

will be produced. 

It might appear that we are able to prove a form of partial correctness : the right 

messages will be produced at the right time or no messages will be produced at all. 

However this is not the whole story. In a real-time system a failure to produce results 

conveys (almost) as much information as the results themselves and it is to detect such 

situations that Ruth has the Ready test. 

Consider two possible evaluations of f (0) : (i) in which the fIrst message is timed 
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out and (ii) in which the fIrst message is not timed out. 

(i) Ready (f(0),15) true if no timeout occurs (7 • 9) 

(li) Ready (f(0),15) false if timeout occurs 

Since the occurrence of a timeout depends upon the values in the semantic clock there is 

no way in which the result of a Ready test can be predicted from the text of a Ruth 

program. 

Were the Ready test to be removed from Ruth we would at least have the ability to 

prove partial correctness: that if any answers are produced they will be the "correct" 

ones. It would, however, be impractical to omit the Ready test from Ruth for reasons 

mentioned above. 

If it were possible to predict when timeouts would occur we would have a total 

solution to the problem: the results of a Ruth program could be predicted from the text 

of the program. The major advantage of clock-driven timing is also its major 

disadvantage: all the information about time is abstracted in to the semantic clocks 

leaving us no way of reasoning about the occurrence of timeouts. 

7.4.2 Correctness preserving transformation with real-time programs 

The basis for formal transformation of program is the notion of referential 

transparency : equivalent expressions can be interchanged at will. Consider the 

following two expressions 

(i) 4 (7.10) 

(li) 2 + 2 

Suppose the result of (i) is <t1, 4> for some time t 1, and the result of (ii) is <t2 , 4> for 

some time t 2. It can be seen from the semantics that t1 and t2 will be different: t1 will 

be the first time value in the semantic clock used to evaluate the expression whereas t2 

will be read from the ath sub-clock of that clock and must therefore be bigger than t 1. 

Under a non real-time semantics (i) and (ii) would be considered equivalent since the 

155 



data value part of their result is all that is considered: the classical notion of referential 

transparency abstracts from the real-time aspect. Paraphrasing [Stoy 77] we can better 

express classical referential transparency as follows. 

The only thing that matters about an expression are its data value and its semantic 

timestamp value, and any expression can be replaced by any other with equal data 

value. 

The addition of the consideration of time to the definition of classical referential 

transparency has made explicit what was previously implicit : that for most 

computational purposes two expressions are equivalent if they compute the same data 

value, regardless of when they compute it. We shall refer to this interpretation of 

classical referential transparency as data referential transparency (DRT). 

A more "hard-line" interpretation of referential transparency is what we shall call 

real-time referential transparency (RRT) which is defined as follows. 

The only thing that matters about an expression are its data value and its semantic 

timestamp value, and any can expression can be replaced by any other with equal 

data value and semantic timestamp value. 

Under RRT only totally identical expressions whose evaluations are carried out at the 

same time can be considered to be equivalent. Consequently RRT is not a useful basis 

for program transformation since one of the major reasons for transforming programs is 

to make them execute faster: to change the values of the semantic timestamps. DRT, on 

the other hand, is the basis for many transformation systems on non-real time languages; 

for a survey see [Partsch & Steinbruggen 83]. 

Some transformation systems (e.g. [Sherlis 80]) guarantee the preservation of total 

correctness: if evaluation of expression E terminates with the result v then evaluation of 

the transformed version of E, E T, will also terminate with the result v. Other systems 

(e.g. [Darlington 82]) guarantee to preserve only partial correctness: if evaluation of 
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expression E tenninates with the result v then if evaluation of the transformed version of 

E, E
T

, also tenninates it will do so with the result v. 

In a real-time semantics total correctness preservation is expressed as data total 

correctness (DTC) preservation, and partial correctness preservation is expressed as 

data partial correctness (DPC) preservation. 

Definition: Data total correctness preservation. 

Let E be a Ruth Expression and let ET be E transformed by some 
transfonnation T. 

If ~ [ E ] P c = <t,v> and ~ [ ET ] P c = <tT,vT> 

Then the transfonnation T preserves DTC iff v = v T 

Definition: Data partial correctness preservation. 

Let E be a Ruth Expression and let ET be E transformed by some 

transfonnation T. 

If ~ [ E ] P c = <t,v> and ~ [ ET ] P c = <tT,vT> 

Then the transformation T preserves DPC iff v !;;;; v T or v T !;;;; v 

(7.11) 

The question is, can DTC or DPC preservation be used as a basis for program 

transfonnation in real-time systems? Let ch be an output channel from a Ruth process p 

and let chT the corresponding output channel from the transformed process pT. If the 

transfonnation from p to p T preserves DPC then either ch is a prefix of ch T, or ch T is a 

prefix of ch. If the transfonnation from p to pT preserves DTC then ch is identical to 

ChT. 

The problem with DPC preservation is the same problem as was encountered in the 

last section on fonnal reasoning: Ready's ability to detect the timing out of a message 

due to a non-tenninating, or simply too slow, computation. By transforming a process 

or a channel construction it is possible to introduce, or to remove, time outs and thus 

potentially change the data value part of the result of a Ready test. 

Once again, if the Ready test is removed from Ruth then DPC preservmg 

transfonnation becomes possible. Indeed, a transformation technique which preserves 

classical partial correctness would also preserve DPC when used with Ruth programs. 

However removing the Ready test would remove most of Ruth's power as a real-time 
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language. Furthennore DPC preservation is not acceptable in real-time systems because 

it allows for timeouts to be introduced by transfonnations. In non real-time situations a 

tardy computation can be aborted and another attempt made. Real-time systems do not 

allow second attempts. 

The same problem exists for DTC as for DPC : the introduction and/or removal of 

timeouts must be avoided. The situation is more serious than for DPC. Even if the 

Ready test were removed from Ruth DTC preserving transfonnation is difficult since a 

transfonnation which preserves classical total correctness may not preserve DTC. 

Although the transfonned expression will terminate provided the original terminated it 

may take a different amount of time to do so. Thus timeouts may be introduced or 

removed and thus DTC will not be preserved. 

Simply being able to predict the occurrence of timeouts would solve these problems 

since transfonnations which introduced or removed timeouts could be identified and thus 

DTC preservation could be guaranteed. Because channel message timestamps are part of 

the data that would be preserved, we would thus gain the ability to transfonn programs 

and still preserve their real-time behaviour. 

7.4.3 Conclusions 

The biggest problem with fonnal reasoning and transfonnation of Ruth programs is 

the combination of clock-driven semantics and channel message timeouts. Clock-driven 

semantics allows abstraction away from low-level detail but this abstraction makes it 

impossible to reason about the values of semantic timestamps save in the most general 

tenns. In particular, it is impossible to predict when timeouts will occur at channel 

construction or process boundaries. 

Ruth's time expressibility is based upon user-defined timestamps to identify when 

events will, or did, occur, and upon a detenninate Ready test for detecting the 
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occurrence or non-occurrence of an event. Thus, in the absence of timeouts, the 

real-time behaviour of a Ruth program is totally defined by, and can therefore be proved 

from, the program's text. Also, DTC preserving transformation is sufficient to preserve 

the real-time behaviour of a Ruth program. 

Most other real-time languages use implicit don't care/don't know timestamping to 

identify when events should/did occur, and implicit time determinate operators to detect 

the non-occurrence of events. By don't care timestamping we mean that an event will 

occur as soon as possible, and by don't know times tamping we mean that the system 

does not know when an event occurred save that it occurred before the current time. The 

real-time behaviour of a program written in such a language is totally defined by the 

speed at which it is executed. The way this would be modelled semantically depends 

upon whether a clock- or delay-driven semantics is used. Using a clock-driven 

semantics timestamps would depend on the (unknown) values in the semantic clock. 

U sing a delay-driven semantics timestamps would depend upon the 8 values specified 

for the operations required to compute data values. 

If a delay-driven semantics is specified then it is possible to prove the real-time 

behaviour of a language using don't care/don't know timestamping, though performing 

such a proof ,is probably impractical for all but the most trivial programs. If a 

clock-driven semantics is given proof of real-time behaviour is impossible. This is 

slightly worse than with Ruth for which, even using a clock-driven semantics, it is 

possible to prove a program's real-time behaviour assuming the absence of timeouts. 

For either a delay-driven or clock-driven semantics DTC preserving transformation 

will not, in general, preserve the real-time behaviour of a language using don't 

care/don't know timestamping. In this context DTC preserving transformation will only 

guarantee to preserve the data values computed, not the times at which they are 

computed. This is much worse than with Ruth for which DTC preserving 

transformation will preserve real-time behaviour. 

Thus, Ruth offers certain advantages for formal reasoning and transformation over a 

traditional real-time language with time expressibility based on don't care/don't know 
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timestamping. To a large extent, however, these advantages require that timeouts be 

detectable from the text of a Ruth program. In the absence of timeouts the real-time 

behaviour of a Ruth program is totally determined by its text, and this behaviour will not 

be changed by a DTC preserving transformation since such a transformation will neither 

introduce, nor remove, timeouts. The remaining problem is then to detect timeouts 

within Ruth programs. If a Ruth program can be proved timeout free then its real-time 

behaviour is guaranteed. If both the source and result expressions of a classical total 

correctness preserving transformation can be proved timeout free then the transformation 

has preserved DTC. 

A possible approach to this problem is simply to assume that timeouts do not occur. 

The real-time behaviour specified by programs can be proven modulo this assumption. 

Classical total correctness preserving transformations can be applied to programs since, 

in the absence of timeouts, they will preserve DTC, and thus real-time behaviour. The 

transformations used will be go-Jaster transformations : transformations which produce 

an expression which computes the same result as the original expression but with a 

lower semantic timestamp value (i.e. the transformed expression produces a result 

faster). By applying go-faster transformation the hope is that the potential for the 

occurrence of timeouts will be removed. 

Of course, this is a totally heuristic method since, under a clock-driven semantics, 

there is no way in which go-faster transformations can be identified. Equally, there is no 

certainty that the program which results from transformation is timeout free anyway. 

The situation can be improved by giving a delay-driven semantics for Ruth. To 

avoid problems caused by the possible variability in duration of language operations the 

O-values chosen will be the maximum that the relevant operation can take. Consequently, 

this approach is called defensive delay-driven timing. Any putative implementation of 

Ruth which did not guarantee to exactly conform to these 8-values would not be a valid 

implementation of the language. 

The advantage of a defensive delay-driven semantics is that timeouts can always be 

predicted and thus DTC preserving, go-faster transformations identified. A disadvantage 
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of a defensive delay-driven timing semantics is the difficulty of choosing the correct 

a-values. If these values are too small the language may be difficult to implement; too 

large and the language may be too slow to be useful. A further disadvantage is that a 

defensive delay-driven semantics must specify evaluation strategy in some detail. For 

example, if a lazy evaluation mechanism is used then the exact way in which recipes are 

updated with their values must be specified in the high level semantics. Also, to prevent 

a-values becoming too large an incremental garbage collection mechanism must be used 

and multi-programming cannot be allowed. 

The next section outlines a compromise in which as few as possible of the constructs 

of a language need be given a defensive delay-driven semantics in order to guarantee 

real-time behaviour. By restricting the set of constructs chosen to those for which a 

fixed, and small, a-value can be guaranteed it is hoped that the problems mentioned 

above will be minimised. 

161 



7.5 A Language Based On Explicit Timeouts 

7.5.1 Introduction 

As was seen in the Minesweep program, real-time software often has the following 

structure: 

loop 

Get inputs ; 

Compute outputs ; 

Send outputs ; 

endloop 

(7 .12) 

that is, an infinite sequence of I/O interactions and computation steps. The Minesweep 

program contained output supervisors to provide the following, defensive, behaviour : 

start algorithm ; 

if algorithm produces result within tl of starting 

then ok 

else interrupt algorithm and return default value 

(7 . 13) 

If t 1 time units have passed and the algorithm has not yet produced a result then it is 

pre-emptively interrupted and a default constant is returned instead. 

The underlying concept here is that the programmer expects that each interaction step 

will take a fixed, and known, amount of time, whereas each computation step may take 

an indefinite amount of time, depending upon the parameters of the computation and the 

current state of the machine. Consequently, to ensure that time deadlines are met a means 

of preempting a computation step and taking recovery action is required. 

In this section we introduce a programming language which allows real-time 

programs to be written in the style outlined above. The language is called STRuth, 

which stands for "Sequential, Timeout Ruth" since it provides explicitly sequential 

constructs and a facility for preemptive timeouts, and is an attempt to put into practice the 
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lessons learned from Ruth. 

7.5.2 The language STRuth 

In the same way as real-time programs can be divided into interactions and 

computations STRuth is divided into a behavioural and a computational language. As 

noted above even a functional program tends to interact with its environment in a 

sequential manner and it therefore seems sensible to provide sequential primitives to 

allow this. The notation we shall use here, whilst appearing very similar to traditional 

imperative language notation, is in fact no more than a syntactic transformation of purely 

functional combinators such as those used in [Thompson 86] and [Jones & Sinclair 89]. 

The most important feature of the behavioural language is that each of its constructs 

takes a fixed amount of time to execute.Thus a defensive delay-driven timing semantics 

can be given for the behavioural language and formal reasoning and transformation is 

possible with it. 

All interaction with the environment, and the times at which it occurs, is expressed in 

the behavioural language. Thus the computational language need have no notion of time 

expressibility; in particular, the Ready test and channel primitives are not required. A 

traditional functional language, such as Haskell [Hudak et. al. 89], is thus perfectly 

adequate for the task. Operations in the computational language are not expected to take a 

fixed amount of time to execute; instead the behavioural language provides facilities for 

tardy computations to be timed out. Since fixed 8-values need not be specified, a 

clock-driven timing semantics is appropriate for the computational language. 

The simple, and somewhat contrived, program overleaf repeatedly reads an integer 

from the input channel inl, a boolean from the input channel in2, and the current time 

from the pre-defined input channel time. If the input boolean is true then the integer 

and the time are output on output channel outl, otherwise they are output on output 

channelout2. 
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chan input in1, in2 ; output out1, out2 ; 

var x,y : integer; b : bool ; 

behaviour 

l.oop true do 

in1 ? x ; in2 ? b 

if b then 

out1 

el.se 

out2 

endif 

endl.oop 

endprog 

I y ; out1 

y ; out2 

time ? Y ; 

x 

x 

(7.14) 

The example contains all of the behavioural constructs allowed in STRuth apart 

from assignment: identifier reference, loop, if-then-else, input and output. Since a fixed 

duration is guaranteed for identifier reference, input, output and assignment, a fixed 

duration can be guaranteed for any loop or if-then-else, and thus for any complete 

STRuth program. 

A STRuth assignment is of the form 

v : = "computational language expression" (7.15) 

Obviously, once the computational language expression has produced a value it takes a 

fixed, and specifiable, time to bind that value to v. However, there is no way of 

determining how long a computational language expression may take to evaluate.To 

ensure that deadlines are not missed the programmer is allowed to specify the completion 

time for any assignment. If the assignment is not completed by that time then an interrupt 

occurs and recovery action can be taken. 

x .- E timeout 800 ; (7 . 16) 

An attempt is made to evaluate the computational language expression E. If this 

evaluation is not completed and its result successfully bound to x within 800 time units 
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of the start of the assignment then an interrupt occurs and execution of the assignment 

terminates with the value bound to x unchanged (i.e. the same as before the assignment 

started). 

If timeout 800 were omitted then as much time as required would be taken for E, 

and the result would be bound to x with no possibility of timeout. In this case there is no 

way of determining when the assignment takes place. 

A similar approach can be taken to the problem of guaranteeing that input/output 

interactions terminate within a fIxed time. 

in ? x timeout 800 ; (7.17) 

If a message is not available on channel in within 800 time units of the start of execution 

of the input then an interrupt occurs and execution of the input terminates with the value 

bound to x unchanged. 

7.5.3. Formal semantics 

The meaning of a STRuth program is defined via the evaluation function tp which 

has the following signature. 

PROG ~ ENV ~ NOM ~ @~~ ~ ENV (7.18) 

Here PROG is the syntactic domain of STRuth programs. A STRuth program is a 

mapping from an initial environment, the current time represented as a positive integer 

and a clock, to a final environment. The clock argument is not used by tp but is passed 

to the meaning function tv which defines the semantics of a computational language 

expression. 

(7.19) 

Exp is the syntactic domain of computational language expressions. A computational 
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language expression is a mapping from an environment and a clock to an expressible 

value. 

The semantics of a simple assignment are as follows 

t; [ x := El ; P ] p t c (7.20) 

= ~ <tl,Vl > : ~ [ El ] p clockafter(co,t) 

~ ep [ p ] (P & [x ~ <tl,Vl >]) (t l + 0assign) C l 

»> 

P, the remainder of the program, is executed with an environment in which x is bound to 

the value obtained by evaluating the computational expression E l . Evaluation of El does 

not begin until after t; there is no guarantee of when evaluation of El terminates. 0assign 

is the time taken after El has been evaluated to bind its result to x; execution of p does 

not begin until tl + Oassign' 

To give the semantics of an assignment which may be timed out requires the use of 

~§'lS@ll:21 ••. ~A'lSl:21 ••• notation rather than the more secure ~ ... ID since timeout 

behaviour must be specified (c.f. the definition of Ready in Chapter 5). 

t; [ x := El t~out 800 ; p ] p t c 

(~'lS@ll:21 <t l , VI> ~A'lSl:21 

<tl,..l> ~ ((t l + 0assign) ~ (t + 800) 

~ <tl'..l>, 

t; [ p ] P (t + 800) cl 

<tl'Vl> ~ ((t l + 0assign) ~ (t + 800) 

(7.21) 

~ t; [ p ] (P & [x ~ <tl'vl >]) (t + 800) c l ' 

t; [ P ] P (t + 800) cl 

where 

<tl,vl > = ~ [ El ] p clockafter(co,t) 

Note that here we have been a little simplistic in that we have assumed that the timeout 

time is the fixed constant, 800, rather than a value computed during execution of the 
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program. The general principle holds good however: if the value of E I can be computed 

in time for its result to be bound to x by absolute time t + 800 then this is done. 

Otherwise an interrupt will occur and the binding for x will be left unchanged. In either 

case execution of P, the rest of the program, will not begin until t + 800. STRuth 

takes a defensive view: since there is no way to predict when evaluation of EI will 

tenninate, all that can be guaranteed is that the assignment will terminate by the interrupt 

time, t + 800. Even if evaluation of EI terminates quickly enough for the assignment to 

be completed before t + 800 the program must still wait until t + 800 before starting 

P. This may seem excessively severe but is the only way to guarantee the real-time 

behaviour of a timed out assignment. 

The semantics for an input are similar. 

t; [ in ? x timeout 800 ; p ] p t C 

(~'G@~ <t l + BId' vI> ~~'G~ 

<t' ,1..> ~ «t' + Bassign) ~ (t + 800) 

~ <t' ,1..>, 

t; [ p ] p (t + 800) cI 

< t', [a, rest] > 

~ «t' + Bassign) ~ (t + 800) 

(7.22) 

~ t;[p] (p& [x~<t',a>]) (t+800) clf 

t; [ p ] P (t + 800) cI 

where 

lookup(in,p) 

There is no identification timestamp associated with the channel bound to the identifier 

in. Identification timestamps were required for Ruth channels because a channel could 

be the result of an arbitrarily lengthy computation. In STRuth the only way to reference 

a channel is via an identifier reference as above. Identifier reference has a fixed overhead 

(BId above) so no identification timestamp is required. 

167 



7.5.4 Conclusion 

The principles behind STRuth are that to give a delay-driven semantics for a 

complete real-time programming language is difficult, and that such a semantics is 

probably impractical to work with at present. Instead, a clock-driven semantics is used 

for most of STRuth and the use of defensive delay-driven semantics is restricted to a 

small subset. Programs written in STRuth guarantee either to interact with their 

environments at the correct times, or with the correct data values. In the absence of a 

complete delay-driven semantics it is impossible for a language to guarantee both. 

STRuth accepts that fact and provides programmers with the ability to decide which 

aspect of correctness is the more important. If correct data values are more important, 

then a combination of inputs, simple assignments and outputs suffices. If deadlines must 

be met, then STRuth provides an explicit timeout construct to prevent computations 

from overrunning. An alternative may be substituted for the timed out computation and 

the deadline still met. 

The work presented here is of a very preliminary nature. Nonetheless, it seems likely 

that this approach will prove valuable in the production of reliable real-time software, 

and represents the most promising route for further research. For further information 

about STRuth the reader is referred to [Harrison & Nelson 89]. 
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7.6 Conclusion 

This thesis has explored the application of functional programming techniques to 

real-time programming via the design of the real-time functional programming language 

Ruth. Many existing real-time languages have poor facilities for time expressibility and 

programmers often rely upon their intuitive knowledge of how a von Neumann 

processor works to ensure that things happen at the right times. Moreover, implicit time 

determinate operators are usually used to allow for non-blocking tests for input. Neither 

of these approaches is possible within a functional language and we were forced to 

evolve new methods. Time expressibility was provided via timestamps and real-time 

clock streams, and non-blocking test for input via the Ready test which is a determinate 

test on user-defined message timestamps. 

The major part of this work is the semantic definition of Ruth using herring-bone 

domains and clock-driven timing. An exploration of a framework within which the 

real-time characteristics of computer programming languages could be expressed was 

not the original intention but, in retrospect, has probably proven the most interesting 

result of this work, and probably the most useful. 

Ruth is by no means a perfect real-time programming language and, as we have 

seen, certain difficulties exist in formal reasoning and transformation of Ruth programs. 

These difficulties are a direct consequence of working within the real-time domain: since 

when values are computed is a part of the result of a real-time program is comes as no 

surprise that this information must be supplied by giving a defensive delay-driven 

semantics to the language. Unfortunately giving a defensive delay-driven semantics for a 

language is a difficult task. The explicit message timestamps used in Ruth programs 

limit these problems but do not totally solve them. STRuth extends the explicit 

specification of timing requirements in programs to a limited set of language operations. 

It is hoped that a compromise can be reached in which the real-time behaviour of 

programs can be guaranteed without the need to specify a defensive delay-drive 

semantics for all language constructs. 
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Appendix 1 : Formal Presentation Of The Semantic 
Domains 

AI.I The Foundations 

In this section we define the primitive domains and orderings, domain constructors 

the orderings they impose, and constructors and selectors for the constructed domains. 

Firstly the primitive domains 

Definition: Primitive Domains 

INT 

NUM 

BOOL 

STRING 

NIL 

UNDEF 

NUM 

Integers: {..i, ... , -2, -1, 0, 1, 2, ... } 

Integers ~ 0 : {..i, 0, 1, 2, ... } 

Booleans : {..i, true, false} 

Symbolic strings: {..i, a, ab, abc, ... } 

End of list marker: {..i, Nil} 

Identifier not defmed indicator: {..i, Undef} 

Set of integers ~ 0 : {O, 1, 2, ... } 

All primitive domains except NUM have the following ordering 

x !; y <=> (x = ..i) v (x = y) 

(AI. 1) 

and thus are pointed flat cpos. NUM is a set with no..i element and thus has the ordering 

x!;y<=>x=y 

Before proceeding we shall define the syntax of the boolean choice primitive to be used. 

Definition: Choice Primitive 

For any domain D 

~ , ) (BOOL x D x D) 

such that 

(..i ~ d l , d 2 ) ..i 

(true ~ d l , d 2 ) d l 

(false ~ d l , d 2 ) d 2 

(AI. 2) 

~D 

The definitions of the domain constructors to be used, he orderings the constructors 



impose on the constructed domains, and constructors and selectors for elements of the 

constructed domains are given below. 

Definition: Lifted Domain 

For any domain A 

Elements: A..i {lift(a) I a E A} U {.1} 

Ordering: x b..i Y ¢:::} (x .i) v 

(x 

Constructor : .1 

lift A ~ A..i 

Selector: By pattern matching on lift (a) elements 

Definition: Sum Domain 

For any two domains A and B 

(AI. 3) 

(Al . 4) 

Elements: A + B {inA(a) I a E A} U {inB(b) I b E B} U {.1} 

Ordering: x bA+B Y ¢:::} (x = .i) v 

(x=inA(ax) A y=inA(ay) A ax bA a y ) v 

(x=inB(bx ) A y=inB(by ) A b x bB by) 

Constructors: .1 ~ A+B 

Selectors: 

such that 

inA A ~ A+B 

inB B ~ A+B 

(Cases x of isA(a) ~ elf isB(b) ~ e2) 

(Cases inA(a) of isA(x) ~ elf isB(y) ~ e2) 

= (ldx) .el) (a) 

(Cases inB(b) of isA(x) ~ elf isB(y) ~ e2) 

= (I..(y) .e2) (b) 

(Cases .1 of isA (x) ~ elf isB (y) ~ e2) 

= .1 
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and also 

such that 
(Cases x of isA(a) ~ elf else ~ e 2 ) 

(Cases inA (a) of isA(x) ~ e l , else ~ e 2 ) 

= (Jdx) .e l ) (a) 

(Cases inB(b) of isA(x) ~ e l , else ~ e 2 ) 

= e 2 

(Cases .i of isA (x) ~ elf isB (y) ~ e 2 ) 

= .i 

Definition : Product Domain 

For any two domains A and B 

Elements: A x B { [a, b] I a E A, b E B} 

Ordering: [ a , b ] !; AxB [a', b '] <=> [ a !; A a'] A [ b !; B b'] 

Constructor: [ , ] AxB~AxB 

Selectors: By pattern matching on [ a, b] elements 

Definition: Coalesced Sum Domain 

For any two domains A and B 

Elements: A Ef> B {inA(a) 

{inB(b) 

{.i } 

a E A, a :f. .i} u 

b E B, b :f. .i} u 

Ordering: x !;AEeB y <=> (x = .i) v 

(x=inA (ax) A y=inA (ay ) A ax 

(x=inB (bx ) A y=inB (by) A b x 

Constructors : .i ~ A Ef> B 

inA A ~ A Ef> B where inA (.iA) .i 

inB : B ~ A Ef> B where inB (.iB) .i 
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Selectors: 

such that 

and also 

such that 

(Cases x of isA(a) ~ e l , isB (b) ~ e 2 ) 

(Cases inA(a) of isA(x) ~ el' isB(y) ~ e2) 

= (A(X) .el) (a) 

(Cases inB(b) of isA(x) ~ el' isB(y) ~ e2) 

= (A(y) .e2) (b) 

(Cases ~ of isA(x) ~ e l , isB(y) ~ e2) 

= ~ 

(Cases x of isA(a) ~ e l , else ~ e 2 ) 

(Cases inA (a) of isA(x) ~ el' else ~ e 2 ) 

= (A(x) .el) (a) 

(Cases inB(b) of isA(x) ~ el' else ~ e 2 ) 

= e 2 

(Cases ~ of isA (x) ~ elf else ~ e 2 ) 

= ~ 

Definition: Coalesced Product Domain 

For any two domains A and B 

(AI. 7) 

Elements: A ® B {[a,b] I a E A, a :t ~, b E B, b :t ~} U {~} 

Ordering: 

Constructor : 

Selectors: 

x !;A®B Y ¢::> (x = ~) v 

[ , 

(x=[a,b] A y=[a',b'] A 

a !;A a' A b!;B b') 

~A®B 

A x B ~ A ® B where [~A,b] 

where [a, ~B] ~ 

By pattern matching on [a,b] elements 

Definition: Function Space 

For any two domains A and B 

Elements: A~B {f I a E A, f(a) E B, f continuous} 

Ordering: f !;A~B g ¢::> VaEA, f (a) !;B g (a) 

Constructor: Ax.e E A ~ B 

Selector: ( ) (A ~ B) x A ~ B 
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A1.2 Herring-Bone Domains 

This section concerns the construction of herring-bone domains. Firstly, the 

isomorphism between §@@~, the herring-bone domain of booleans and ~§@@~, the 

domain constructed using domain lifting is proven. The rule for constructing a 

herring-bone domain from any arbitrary domain is then given. 

The herring-bone domain of booleans is defined as follows :-

Definition: Herring-bone domain of booleans 

Elements: 

Ordering: 

For the domain of booleans, BOOL, the corresponding 

herring-bone domain is §@@~. 

{<t,b> I t E NUM, b E BOOL} U {<~,~>} 

'If tl't2 E NUM, bl' b 2 E BOOL 

<t 1 , b 1 > ~ <t2 , b 1 > ¢=> (t 1 

Constructors : 

Selectors: 

<, > 

<~, ~> 

NUM x BOOL ~ §@@~ 

~ §@@~ 

(~'\S@~ <t, v> ~~'\S~ <t', ~> ~ e 1 , <t', b ,> ~ e 2 ) 

such that 
(~'\S@~ <t, ~> ~~'\S~ <t', ~> ~ elf <t', b' > ~ e2) 

= (A(t') .el) (t) 

(~'\S@~ <t, b> ~~'\S~ <t', ~> ~ e 1 , <t', b' > ~ e2) 

= (A(t',b') .e2) (t,b) where b :1= ~ 
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Proposition: 

The domain ~@@~ is isomorphic to the domain ~~ defined by 

~@@~ = BOOL <11 ~~@@~.l as follows 

V t E NUM, b E BOOL, b :I; .i : 

<t,b> = (A(X) .in~~@@~.l(lift(x»)t (inBOOL (b» 

<t,.i> = (A(X) .in~@@~.l(lift(x»)t (.i) 

<oo,.i> = U { (A (x). in~~@@~.l (lift (x) ) ) t (.i) I t ~ O} 

where, for any function f 

fO(x) = x 

f t +1 (x) = f (ft (x) ) 

(Al.IO) 

The proof is in two parts. Firstly, fixed-point induction is used to prove the isomorphism 

for the finite elements of ~@@~ and ~~@@~. The second part of the proof concerns the 

infinite elements of the two domains. The only infinite element of ~§@@~ is the least 

upper bound of the chain of spine elements of ~@~, 

U{ (A(x). in~~@@~.l(lift (x»)t (.i) I t ~ O} ~@@~, <oo,.i>, 

It is proved that the only infinite element of ~@@~, <oo,.i>, is the least upper bound of the 

chain of spine elements of §@@~, 

U{ <t,.i> I t E NUM}. 

This completes the proof of isomorphism. 

We first define two functions, enlift and delift as follows. 

Definition: Projection functions enlift and delift. 

enlift 

enlift 

A (b) . 

(~'l5@~ b ~A'l5~ 

<t,.i> 

~ (t 0 ~.i, in~~@@~.l (lift (enlift «t-I, .i» ) ) 

<t,torf> 

~ (t = 0 ~ inBOOL (torf), 

in~@@~.l(lift(enlift«t-I,torf»» 
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delift 

delift 

A (lb) . 

(lb = 1. 

-7 <0,1.>, 

(Cases lb of 

is§@@~ (b) 

-7 <O,b> 

is~@@~ .1 (lift (lb ' ) ) 

-7 <t+l, lb"> 

where 

<t,lb"> delift (lb ' ) 

enlift must be proven to be monotonic as it uses ~1S@~. 

Proposition: enlift is monotonic. 

Proof 

Base case: 

'V b 1, b 2 E BOOL <0, b 1> !;; <0, b 1> ¢::> b 1 !;; b 1 

enlift«0,b1» inBOOL(b1) 

enlift«0,b2» inBOOL(b2) 

::::) 'V bl'b2 E BOOL <0,b1> !;; <0,b1> ¢::> 

enlift«0,b1» !;; enlift«0,b2» 

Induction step : Assume that for <t1,b1>,<t2,b2> E §@@~, 

<t1,b1> !;; <t2,b2> ::::) enlift«t1,b1» !;; enlift«t2,b2» 

<t1+l,b1> !;; <t2+1,b2> 

enlift«t1+l,b1» in~§@@~.l(lift(enlift«tl,bl»)) 

enlift«t2+1,b2» in~§@@~.l(lift(enlift«t2,b2»)) 

(Al.12) 

enlift «t1 +1,b1» !;; enlift «t2+1,b2» by induction hypothesis 

'V <tl' b 1>, <t2, b 2> E §@@~, 

<t1,b1> !;; <t2,b2> ::::) enlift«t1,b1» !;; enlift«t2,b2» 

enlift is monotonic 
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For the fmite elements of §@X9)~ and ~~ to be isomorphic we require that 

V lb E ~@@~, lb :;: U { (I\, (x). in~@@~ 1. (lift (x» ) t <-l) I t ~ O} 

enlift(delift(lb» = lb 

and 

V b E m@@~, b :;: <00,1..> 

delift(enlift(b» b 

Proposition: V lb E ~§@@~, (A1.13) 

Proof 

lb :;: U{ (A(x). in~§@@~1.(lift (x»)t (1..) I t ~ OJ, 

enlift(delift(lb» = lb 

Base cases: 

delift(1..) = <0,1..> 

enlift«O,1..» = 1.. 

enlift(delift( inBOOL(true) » 

enlift(delift( inBOOL(false) » 

inBOOL(true) 

inBOOL(false) 

Induction step: Assume that for lb E ~~, enlift (delift (lb) ) lb 

enlift(delift( in~§@@~1.(lift(lb» » 

enlift«t"+l,lb"» where <t",lb"> delift(lb) 

in~§@@~ 1. (lift (enlift «t", lb"» ) ) 

where <t",lb"> = delift(lb) 

in~§@@~1.( lift(enlift(delift(lb» ) 

in~§@@~1.( lift (lb) ) by induction hypothesis 

~ V lb E ~m@@~, 

lb:;: U{ (A(X). in~§@@~1.(lift(x»)t (1..) I t ~ OJ, 

enlift(delift(lb» = lb 
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Proposition: \;f <t,b> E );l@@~, <t,b> ::1= <00,1..>, 

delift(enlift«t,v») = <t,v> 

Proof 

Base cases: 

enlift«O,1..» = 1.. 

delift(1..) = <0,1..> 

delift(enlift«O,b») 

delift( inBOOL(b) 

<O,b> 

Induction step: Assume that for <t,b> E );l@@~, <t,b> ::1= <00,1..>, 

delift(enlift«t,b») = <t,b> 

delift(enlift«t+l,b») 

delift(in~);l@@~~(lift(enlift«t,b»))) 

<t'+l,b'> where <t',b'> = delift(enlift«t,b») 

<t, b> by induction hypothesis 

~ \;f <t, b> E );l@@~, <t, b> ::1= <00,1..>, 

delift(enlift«t,b») = <t,b> 

~ The finite elements of );l@@~ and );l@@~ are isomorphic. 

(A1.14) 

The only infinite element of );l@@~ is <00,1..>. The only infinite element of ~);l@@~ is 

U{ (},,(x). in~@~~(lift(x)))t (1..) I t ~ o}.Theinfiniteelementof~§@@~is 

the least upper bound of the set of spine elements (i.e. those elements of ~);l@@~ formed 

by applying the lifting operator to 1.. some finite number of times). 

From the ordering on );l@@~ we see that <00,1..> is an upper bound of the set of spine 

elements in );l@@~ since 

\;f t E NUM, <t,1..> C <00,1..> 
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Moreover, it must be the least upper bound, as shown by the following 

Proposition : <00, .1> (Al. 15) 

Proof 

Assume ::3 <t',.1> E ~@@~, such that 

V <t,.1> E ~@@~ <t,.1> ~ <t',.1> and <t',.1> ~ <00,.1> 

Either 

1. t'ENUM 

=>t'+l E NUM 

=> <t ' + 1,.1> E ~@@~ 

=> <t ' ,.1> ~ <t' + 1,.1> from the ordering on BOOL. 

or: 

2. t' = 00 

=> <t' ,.1> <00,.1> 

=> <00,.1> is the least upper bound of the spine elements of ~@@~. 

Since the finite elements of ~@@~ and ~~@@~ are isomorphic, and since the infinite 

element of ~@@~ corresponds to the infinite element of ~~@@~, ~@@~ and ~~@@~ are 

isomorphic. 

The herring-bone domain construction can be generalised to an arbitrary domain as 

follows: 

Definition: General Herring-Bone Domains (A1.16) 

Given a domain definition D = F (D), where F (D) is a domain 

expression which mayor may not refer to D, let the corresponding 

herring-bone domain be rID = F (rID) EEl rID 1-

Constructors : 

<_, >: NUM x F (rID) ~ rID 

<00, .1> : ~ rID 
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Selectors: 

(~'lS@~ <t,v> ~~'lS~ <t',~> ~ e l , <oo,~> ~ e2' <t',fd'> ~ e 3 ) 

such that 

(~'lS@~ <t,~> ~~'lS~ <t',~> ~ elf <oo,~> ~ e2' <t',fd'> ~ e3) 

= (I,,(t') .el) (t) 

(~'lS@~ <oo,~> ~~'lS~ <t',~> ~ elf <oo,~> ~ e2' <t',fd'> ~ e3) 

= e 2 

(~'lS@~ <t,fd> ~~'lS~ <t',~> ~ el' <oo,~> ~ e 2 , <t',fd'> ~ e 3 ) 

= (A,(t',d') .e3 ) (t,fd) where fd 1:- ~ 

and: 

~ <t,v> <t ' , fd ,> ~ e ~ 

such that 

~ <t, v> : <t', fd ,> ~ e ~ 

(~'lS@~ <t, v> ~~'lS~ 

<t' ,~> ~ <t' ,~>, 

<t',fd'> ~ (~'lS@~ (A,(t',fd') .e) (t',fd') ) ~~'lS~ 

<t" , ~> ~ <max (t ' , t") , ~> , 

<t",v"> ~ <max(t',t"),v"> 

and also: 

~ <t,V> ~ e ~ 

such that 

~ <t,v> ~ e ~ 

= ~ <t, v> : <t, v> ~ e ~ 

180 



Al.3 Non-Primitive Domain Definitions 

This section contains the definition of the non-primitive domains used in the 

semantics of Ruth. Note that unless the ordering, constructor(s) and selector(s) are 

explicitly given for a domain the standard ordering, constructor(s) and selector(s) 

implied its defining equation are assumed. 

Definition: Environments 

Let Id be the syntactic domain of identifiers. 

ENV = Id ~ (UNDEF EJj W~) 

Constructors : 

(0 

& 

Selector: 

Id x W~ 

ENV x ENV 

~ENV 

~ENV 

~ENV 

[ ] ENV x Id ~ UNDEF EJj W~ 

such that (0 [I] 

= inUNDEF (Undef) 

[I ~ v] [II] 

= (I = II ~ inW~(v), inUNDEF(Undef) ) 

(pI & p2) [I] 

(Cases P2[I] of 

isUNDEF (Undef) ~ Pl [I] 

else ~ P2 [I] 

Definition: Atoms 

ATOM = BOOL EJj INT EJj STRING 

Definition: Clocked Functions 

FUNC @~ ~ F 

F W~ ~ (F EJj W~) 
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Definition: Tuples 

TUPLE = (~~1. ® TUPLE) $ NIL 

~IT!J~ = ©~ $ §IT!J~1. 

Constructors : 

{ } 

{ , ... , 
such that 

{ } = inNIL (Nil) 

{ell' e12 , ... , elm} 

~ TUPLE 

~ TUPLE 

in§IT!J~ 1. ®IOTUPLE ( [lift (ell) , {e12 , ••• , elm} ] ) 

(AI. 20) 

Selector: Using pattern matching on { ell' e 1 2 , ••• , elm} structures 

Definition: Input/Output Tuples 

IOTUPLE = (©~1. ® IOTUPLE) $ NIL 

Constructors : 

{ { } } ~ IOTUPLE 

{{ , ... , }} 

such that 

(©m~ x ... x ©~) ~ IOTUPLE 

{ { }} = inNIL (Nil) 

{ {ch1 , ch2 , ••• , chm} } 

= in©~1.®IOTUPLE([lift(ch1)' {{ch2 , ... ,chm}}]) 

(AI.21) 

Selector: Using pattern matching on {{ ch1 , ch2 , ••• , chm}} structures 

Definition: S-expressions 

S-EXP 

PAIR 

NIL $ ATOM $ PAIR 

(§=§~ x §=~~)1. 

S-EXP $ §=~~ 1-

Definition: Clocks 

(AI.22) 

(AI. 23) 
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Definition: Channels (Al.24) 

(ATOM ® ~.L) EEl @rnRm.L 

Definition: Expressible values (A1.25) 

W~ = ( S - EXP EEl FUNC EEl TUPLE EEl @~gs EEl ~) EEl WlM1.L 
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Appendix 2 : Formal Presentation Of The 
Semantics of Ruth 

A2.1 Syntactic Domains 

Definition: The Syntactic Domains 

Pr E Prog 

C E Conf 

P E Proc 

PA E Pr-App 

B E Bool 

N E Int 

Y E String 

I E Id 

E E Exp 

D E Dec 

A2.2 Abstract Syntax 

Definition: Abstract Syntax 

Pr .. = P ... P C 

Programs 

Process Configurations 

Processes 

Process Applications 

Booleans 

Integers 

Symbolic Strings 

Identifiers 

Syntactic Expressions 

Declarations 

C .. = Configuration I Output 1 ... 1 Input 1 ... 1 

Is PA ... PA 

P .. = Process I Input 1 ... 1 Clock I 

Is E 

PA .. = 1. .. 1 I (1. .. 1) 

E : := Y I B I N I I E + E E - E 

E E I E i= E E ~ E E ~ E 

Nil isNil (E) Cons (E E) 

ConsCh (E E E) I HeadCh (E) 

Ready (E E) I {E ... E} I E ! E 

TailClk(E) I E And E I E Or E 

E * E E / E 

E < E E > E 

I Head (E) Tail 

Time (E) I TailCh 

HeadClk (E) I 

Not E I 

(A2 . 1) 

(A2.2) 

E \ E I 

Atom (E) 

(E) I 

(E) I 



If E Then E Else E I E where D endwhere I 

E whererec D endwhererec I lambda (I ... I) E I E (E ... E) 

D ::= I E D I 

A2.3 Semantic Domains 

Definition: The Semantic Domains (A2 .3) 

i,n E INT As defined by (A1. 1) 

t,n E NUM As defined by (A1. 1) 

b E BOOL As defined by (A1.1) 

Y E STRING As defined by (A1. 1) 

NIL As defined by (A1. 1) 

UNDEF As defined by (A1. 1) 

NUM As defined by (A1. 1) 

P E ENV As defined by (A1. 17) 

a E ATOM As defined by (A1.18) 

f E FUNC As defined by (A1.19) 

tp E TUPLE As defined by (A1. 20) 

IOTUPLE As defined by (A1.21) 

s E S-EXP As defined by (A1. 22) 

s E §=ml~ As defined by (A1. 22) 

c E @~gs As defined by (A1.23) 

ch E @~ As defined by (A1. 24) 

<t,v> E W~ As defined by (A1. 25) 
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A2.4 Semantic Functions 

Definition : The Meaning Functions 

epr Prog ~ @~~ ~ IOTUPLE ~ IOTUPLE 

ec Conf ~ ENV ~ @~ ~ IOTUPLE ~ IOTUPLE 

ep Proe ~ ENV 

epA Pr-App ~ ENV ~ @~~ ~ENV 

tv Exp ~ ENV ~ @~~ ~W~ 

eD Dec ~ ENV ~ @~~ ~ENV 

ey Symbol ~ STRING 

eB Bool ~ BOOL 

~ Int ~ INT 

In defining these functions we will find the following functions useful. 

Definition: Environment lookup function 

lookup 

lookup 

Id x ENV ~ W~ 

A(I,P) . 

(Cases P[I] of 

isUNDEF (Undef) ~ <oo,~> 

isW~(lift«t,v» ~ <t,v> 

Definition: Clock Extraction Function 

extract 

extract 

A(e,n) . 

~ e <t, [1, r] > 

(A2 .4) 

(A2 .5) 

(A2 . 6) 

~ (n ~ 0 ~ from(l,t), extraet(from(r,t),n-l» ) 

from @~~ x NUM ~ @~~ 

from A(e,n). ~ e : <tc ' [lc,rc]> ~ <tc+n +1 , [lc,rc ]> ID 
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The following convention is used with extract: 

v C E @~, n E NUM, C n denotes extract (c,n) 

Definition: Ageing Functions 

after 

after 

A(V, c). 

~ c : <te , [Ie' re] > 

~ ~ v : <t,d> 

(A2 .7) 

~ (te > t ~ <te,v>, after«t,d>,from(le,te ) 

clockafter 

clockafter 

@~ x NUM ~ @~gs 

A(c,n). from(c,n) 

Definition: f il ter Function (A2 .8) 

filter 

filter 

@illlM1 x NUM x @~gs ~ @ffiRm 

A(ch,n,c) .<t-n,v> 

where 

<t,v> ~ c : <te , [Ie' re] > 

~ «< ch : <t, [a, lift (rest) ] > 

~ (te ::;; t + n 

»> 

~<t + n, [a,lift(rest')]>, <~,~> 

where 

rest' filter (rest,t+n+l, 

from(le,t e ) ) 

In Appendix 1 we defined Cases ... of ... selectors for sum domains. In 

certain situations we would prefer to be able to test if an element is in a particular 

sub-domain and project from that sub-domain directly, without using the cases notation. 

The functions defined overleaf allow this. 
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Definition : W~ sub-domain accessing functions out X and 

checkX. 

v X E {S-EXP, FUNC, TUPLE, @~, ~} 

outX S-EXP EEl FUNC EEl TUPLE EEl @~ EEl @rnRm ~ x 

checkX S-EXP EEl FUNC EEl TUPLE EEl @~~ EEl @rnRm ~ BOOL 

outX 

= A (v) • 

(v = 1.. ~ .i, 

(Cases v of 

isX(x) ~ x 

else ~ 1.. 

checkX 

A (v) . 

(v = .i ~ .i, 

(Cases v of 

isX (x) ~ true 

else ~ false 

Definition: S-EXP sub-domain accessing functions outX and 

checkX. 

v X E {NIL, ATOM, PAIR} 

S-EXP ~ X outX 

checkX S-EXP EEl FUNC EEl TUPLE EEl @~~ EEl @rnRm ~ BOOL 

outX 

A (s) • 

(s = 1.. ~ .i, 

(Cases s of 

isX(x) ~ x 

else ~.i 
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checkX 

A (v) . 

(v = 1.- ~ 1.-, 

(Cases v of 

isS-EXP(s) ~ (Cases s of 

isX (x) ~ true 

else ~ false 

else ~ false 

v X E { INT, BOOL, STRING} 

S-EXP ~ X outX 

checkX S-EXP E9 FUNC E9 TUPLE E9 @~~ E9 @rnRm ~ BOOL 

outX 

A (v) . 

(v = .1 ~ .1, 

(Cases v of 

isATOM(a) ~ (Cases a of 

isX (x) ~ x 

else ~.1 

else ~ .1 

checkX 

A (v) • 

(v = .1 ~ .1, 

(Cases v of 

isS-EXP(s) 

else 

~ (Cases s of 

isATOM (a) 

else 

~ false 
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else ~ false 

~ false 



Definition: F EB W~ sub-domain accessing functions out X and 

checkX. 

v X E {F, W~} 

outX 

checkX 

out X 

A (v) . 

FEBW~~x 

F EB W~ ~ BOOL 

(v = 1.. ~ 1.., 

(Cases v of 

isx(x) ~ x 

else ~ 1.. 

checkX 

A (v) . 

(v = 1.. ~ 1.., 

(Cases v of 

isX (x) ~ true 

else ~ false 

Definition: Maximum function 

max INT x INT ~ INT 

Note that max generalises to any number of arguments as below. 

(A2.10) 

(A2 .11) 

max (il' max (i 2 , ... , max (im- 1 , i m) ••• )) 
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For completeness we also include the definition of the Least Fixed Point operator fix. 

Definition: The Fixed Point operator fix 

For any domain 0 the least fixed point of the continuous functional 

F : 0 ~ 0 exists and is defined to be fix (F) where 

fix (0 ~ 0) ~ (0 ~ 0) 

fix 

where 

FO (x) = x 

Fn+1 (x) = F (Fn (x) ) 

A2.5 Semantic Equations 

The usual convention is followed : 

co [p Pk C] C {{ ch1 , .,. chn }} c'Pr l' •. 

ee[C] p c {{chl' .. , chn }} 

where 

ee [ Configuration I Output 11 ... Im Input 1 1 " .In 

Is Pa1 ... Pak ] p c {{ch1 , ... , chn }} 

{{ch1, ... , chm}} 

where 

ch j = ~ lookup(Ij,pc) : <t,v> 

~ (check@rnRm(v) ~ out~(v), <oo,~» 

~ 

(A2.12) 

(A2.13) 

(A2.14) 

Pc 
pI 

fix (Ap".p I & epA[pa O] p" Co & •• , & ePA[pak] P" ck 

p & [11 ~ <0,in@~(ch1»] & ... & 

[In ~ <0, in@rnRm(chn ) >] 
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C p [ Process I Input 1 1 ... I n Clock Ic Is E ] 

[I ~ <O,f>] 

where 

f = inFUNC(AOsc.inF(AOo .... inF(AOpc . 

inW~(tv[E] ([1 1 ~ 01] & & [In ~ On] & 

[Ic ~ 0pc]) 0sc ) ) ... » 

(A2.1S) 

(A2 .16) 

[11 ~ <0, in@mmIi(ch1»] & ••• & [1m ~ <O,in@mmIi(chm»] 

where 

chj = ~ <tj,ch j > 

~ filter(out@mmIi(chj),O,clockafter(cj,max(t',t j ») 

<t', inTUPLE ({<t1, ch1>, ... , <tm, chm>}) > 

~ lookup(I,P) : <t,v> 

~ (checkFUNC (v) 

~ outW~(outF( ... outF( f i1 ) ... in ) pc ), 

tv [ Y ] P c 

<t, {<oo,.1>, ... , <oo,.1>} > 

where 

i k = lookup(Ik,p) 

f = outFUNC(v1) extract (co'O) 

pc = in@~~«O,extract(co,l») 

= after«O,inS-EXP(inATOM(inSTRING(Cy[Y]»», c) 

tv [ B ] P c 

= after«O,inS-EXP(inATOM(inBOOL(CB[B]»», c) 

tv [ N ] P c 

= after«O,inS-Exp(inATOM(inINT(~[N]»», c) 

tv[I]pC 

= after(lookup(I,P), c) 
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(A2.18) 

(A2 .19) 

(A2.20) 



~ [ El + E2 ] P c 

after ( 

~ <t1,v1 

~ ~ <t 2,v2> 

(A2 .21) 

~ (checkINT(v1 ) A checkINT(V2) 

~<max(tl,t2),inS-EXP(inATOM(inINT(res))», 

~, 

co) 

where 

<00,1..> 

res = outINT(outATOM(outS-EXP(v1 ))) + 

outINT(outATOM(outS-EXP(v2))) 

The definitions of - (A2 .22) , * (A2. 23) , / (A2. 24) and \ (A2. 25) can be obtained by 

substituting the relevant operator for + in the definition of res in (A2. 21) • 

~ [ El = E2 ] P c 

after ( 

~ <t 1 , vl> 

~ ~ <t2,v2> 

(A2 .26) 

~ (checkATOM(v1) A checkATOM(v2) 

~<max(tl,t2),inS-EXP(inATOM(inBOOL(res))», 

~, 

co) 

where 

<00,1..> 

res = outATOM(outS-EXP(v1)) outATOM(outS-EXP(V2))) 

The definition of 1= (A2 . 27) can be obtained by substituting 1= for = in the definition of 

res in (A2. 26) • 
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~ [ El $ E2 ] P c 

after ( 

~ <t 1 , v 1> 

~ ~ <t 2 ,v2> 

(A2.28) 

~ (checkINT(v1) A checkINT(v2) 

~<max(tl,t2),inS-EXP(inATOM(inBOOL(res»», 

<oo,-L> 

~, 

res = outINT(outATOM(outS-EXP(v1») $ 

outINT(outATOM(outS-EXP(v2») 

The definitions of~ (A2 .29), < (A2. 30) and> (A2. 31) can be obtained by substituting 

the relevant operator for $ in the definition of re s in (A2. 28) • 

~ [ ATOM (E1 ) ] P c 

after ( 

(A2.32) 

~ <t 1 , v 1> 

~, 

~ (checkS-EXP (vl) 

~ <t1,inS-EXP(inATOM(inBOOL(checkATOM(v1»»>, 

<oo,-L> 

The definition of IsNil (A2 .33) can be obtained by substituting checkNil for 

checkAtom in (A2. 32) • 

~ [ Nil ] P c (A2.34) 

= after«O,inS-EXP(inNIL(Nil»>, c) 
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~ [ Cons (E1 E2 ) ] P c 

after«O,inS-EXP(inPAIR(lift([sl,s2]»»'co) 

where 

sl = «< <t1,vl> 

~ (checkS-EXP(v1) ~ <t1,outS-EXP(v1», <~,~» 

S2 «< <t 2,v2> 

(A2 .35) 

~ (checkS-EXP(v2) ~ <t2,outS-EXP(v2», <~,~» 

>}> 

~ [ Head (E1) ] P c 

after ( 

«< <tl'v1> 

~, 

~ (checkS-EXP (v1) 

~ (Cases outS-EXP(v1) of 

isPAIR(lift([<tH,sH>,<tT,sT>]» 

~ <max(t1,tH),inS-EXP(sH» 

else ~ <~,~> 

) , 
<~,~> 

~ [ Tail (E1 ) ] P c 

after ( 

~ <t1,v1> 

~, 

~ (checkS-EXP (v1) 

~ (Cases outS-EXP(vl) of 

isPAIR(lift([<tH,sH>,<tT,sT>]» 

else ~ <~,~> 

) , 

<~,~> 
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~ [ ConsCh(E1 , E 2 , E3 ) ] P c 

after ( 

~ <t1, v 1> 

~ ~ <t 2 , v 2> 

~, 

co) 

where 

~ (checkATOM(v1) A checkINT(V2) 

~ (i2 ~ t ~ <00,-1>, <t,ch», <00,-1> 

al outATOM(outS-EXP(v1») 

i2 outINT(outATOM(outS-EXP(v2») 

(A2.38) 

<t,ch> = after«max(tl,t2),in@~«i2' [al,lift(rest)]»>,co) 

rest 

<t"-(i2+1),v"» 

where 

<t",v"> «< <t3,v3> 

~ (check@~(v3) 

~ ~ out@~(v3) : <t', [a',lift(ch')]> 

~ (t' ~t 3 At' > i 2 

~ <t', [a',lift(ch')]>,<oo,-1> 

»> 

~ [ HeadCh (E 1) ] P c 

after ( 

«< <t1, vl> 

~ (check@~(vl) 

~, 

~ (~out~(vl) : <t, [a,lift(ch)]> 

~ <max(t1,t),inS-EXP(inATOM(a»> 

) , 
<00,-1> 

~, 
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~ [ Time (E1 ) ] P c 

= after ( 

~ <t1 , v 1> 

~ (check@~ (vl) 

~ (~out@~(vl) : <t, [a,lift(ch)]> 

(A2 .40) 

~ <max(t1,t),inS-EXP(inATOM(inINT(t»» 

~, 

~ 

) , 

<00,.1> 

~ [ TailCh (E1) ] P c 

after ( 

~ <tl'v1> 

~ (check@~(vl) 

~ ~ out@~ (v1) : <t, [a, lift (ch) ] > 

~, 

~, 

<00,.1> 

~ <max(t1,t), in@~«t'+t+1,v'»> 

where 

<t'V'> ~ ch : <t r , Ear' lift (chr ) ] > 

~ <t r , Ear' lift (chr ) ] > 
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after 

~ <t1 , V 1> 

~ ~ <t 2 , V 2 > 

~, 

~ (check@~(vl) A checkINT(v2 ) 

~ (~'iS@~ out~(Vl) ~~'iS~ 

<t,-1> 

~ (t > i2 

~ <max(t 1,t2,i2 ) ,ff>, 

<max (t 1 ' t 2 ' t) ,-1> 

<t, [a, lift (ch) ] > 

~ (t > i2 

) , 

<00,-1> 

) , 

~ <max(t1,t2,i2 ) ,ff>, 

<max(t 1,t2,t),tt> 

i2 = outINT (outATOM(outS-EXP (v2 ) )) 

tt = inS-EXP (inATOM(inBOOL (true)) ) 

ff = inS-EXP (inATOM(inBOOL (false) )) 

(A2 0 42) 

~ [ {E1o 00 En} ] P c (A2043) 

after«O,inTUPLE({<t1,ch1>, 0 0 0' <tn,chn>}», cO) 

~ <tk,vk> :<t,v> 

~ (check@~(v) ~ <t,out@~(v»,<oo,-1» 
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~ [ El ! E2 ] P c 

after ( 

~ <t1 , v 1> 

~ ~ <t2,v2> : <t2,i> 

~ (checkTUPLE(v1) A checkINT(v2) 

~ (1 ~ i ~ m 

):» 

~, 

~ [ HeadClk (E1) ] P c 

after ( 

~ <t1 , v 1> 

~ (check@~gs (v1 ) 

~<max(tl,t2,ti),chi>,<=,~», 

<=,~> 

where 

{<tl, chl>, ... , <tffi, chffi>} v 1 

~ ~ out@~gs(vl) : <t, [1, r] > 

(A2 . 44) 

(A2 .45) 

~ <max(t1,t),inS-EXP(inATOM(inINT(t»» 

~, 

~ [ TailClk (E1) ] P c 

after ( 

~ <tl'vl> 

~ (check@~gs(vl) 

~ ~ out@~gs (vl) : <te , [le' re] > 

~ <max(t1,t e ), from(l e ,te » 

~, 

~, 
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~ [ El And E2 ] P c 

after ( 

~ <t 1 , v 1> 

~ ~ <t2 ,v2> 

(A2 .47) 

~ (checkBOOL(v1 ) A checkBOOL(v2) 

~<max(tl,t2),inS-EXP(inATOM(inBOOL(res»», 

<00,.1> 

~, 

res = outBOOL(outATOM(outS-EXP(Vl») A 

outBOOL(outATOM(outS-EXP(V2») 

The definition of Or (A2 . 48) can be obtained by substituting v for A in the definition of 

re S in (A2. 47 ) . 

~ [ Not El ] P c 

after ( 

~ <t1, vl> 

~ (checkS-EXP (v1) 

~ <tl'inS-EXP(inATOM(inBOOL(res» », <00,.1> 

~, 

co) 

where 

res = ~ outBOOL(outATOM(outS-EXP(v1») 
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tv [ If El Then E2 Else E3 ] P c 

~ <t l , v l > 

~ (checkBOOL (vl ) 

) , 
~, 

where 

b 

~ (b ~ tv [E2] p clockafter(c2,t l ), 

tv [E3] p clockafter(c3,t l ) 

) , 

after (tv [E l ] P c l ' co) 

outBOOL(outATOM(outS-EXP(vl ))) 

tv [ E where D endwhere ] p c 

tv[E] (Bn[D] p c l ) Co 

tv [ E whererec D endwhererec ] p c 

tv[E] pI Co 

where 

pI = fix (AP" . P & Bn[D] P" Cl) 

tv [ lambda (1 0 " .In ) E ] P c 

after«O,f>, c) 

where 

f = inFUNC (AOc . inF (Aao .... inF(Aan . 

(A2.50) 

(A2.51) 

(A2.52) 

(A2.53) 

inW~(tv[E] (P & [10 ~ 00] & ••• & [In ~ On]) 0c ) 

) ... ) ) 

(A2 . 54) 

~ <t l , vl> 

~ (checkFUNC (vl) 

~outW~(outF( ... outF( f <t2,v2> ) ... ) <tn,vn», 

~, 

where 

<tl,vl> = after (tv [E l ] P c lf co) 

f outFUNC(vl ) clockafter(co,t l ) 
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CD [ I = ED] P C (A2.55) 

= [I ~ ~[E] P CO] & ~[D] P cl 

(A2 .56) 
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Appendix 3 . The Syntax of Ruth 

A3.1 Introduction 

This appendix gives the syntax of Ruth in Extended Backus-Naur Formalism 

(EBNF). The syntactic rules are of the following form 

Non Terminal .. = Syntactic_Expression 

" I " is used to seperate alternatives in Syntactic Expressions, "[" and"] " enclose an 

optional term and "{" and"} " enclose a term which may be repeated any number of 

times (including none). Terminal symbols will be enclosed by " and". 

A3.2 Syntactic Equations 

Program 
::= Process Definition n.n , Process Definition n_ .. , } Configuration 

Process Definition 
.. = "Process" Process Name 

"Input" Chan_List 
"Clock" Ident 
"Is" Process_Expression 

Configuration 
"Configuration" Ident 
"Output" Chan_List 
"Input" Chan_List 
"Is" Process_Application 
"end. " 

Process_Application 

n.n , Process_Application 

::= Chan_List "=" Process Name [ "(" Chan List ")" ] 

Process_Expression 
: : = Expression 

" . " , 

Expression 
.. = Lambda _ Exp 

Expression 

I Function_Application I If_Exp I Tuple_Exp 
"where" Definition_List "endwhere" I 

Expression "whererec" 
Simple_Exp 

Definition List "endwhererec" I 



Lambda_Exp 
: : = "lambda" "(" Ident List ") " " " Expression 

Function_Application 
- Predefined Function_Application I 

User_Defined_Function Application 

If_Exp 

.. = "If" Expression "Then" Expression "Else" Expression 

Tuple_Exp 
::= "{n 

Simple_Exp 
::= Basic_Exp 

Definition List 
::= Definition 

Definition 

" . " , Definition List 

: : = Ident "=" Expression 

Predefined_Function_Application 
.. = "Atom"" (n Expression ")" 

"isNil" "(" Expression ")" 

" . " , 

"Cons" "(n Expression "," Expression ")" I 
"Head" "(n Expression ")" I 
"Tail" "(" Expression ")" I 
"ConsCh" "(" Expression ",n Expression 
"HeadCh" "(" Expression ")n I 
"Time" "(" Expression ")" I 
"TailCh" "(" Expression ")" 

" " , 

"Ready" "(n Expression "," Expression ")" I 
"HeadClk" "(" Expression ")" I 
"TailClk" "(" Expression ")" 

User Defined_Function_Application 
.. = Function Name" (" Exp_List n)" 

Basic_Exp 
· . = [ " +" I " - "] term { Add _ Op term } 

term 
::= factor 

factor 

Expression ")" I 

Atom I "(" Expression ")" I "Not" factor I "Nil" 

Atom 
· .= Number I Boolean I " , " Symbol " , " 

Number 
::= Digit {Digit} 

Boolean 
: : = true I false 

Symbol 
::= Character {Character} 

Chan List 
· .= Chan Name "," Chan Name 
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EXP_List 
: : = Expression " " , Expression } 

Ident List 
- Ident 

Ident 
- Alpha 

Chan Name 
::= Ident 

Process Name 
::= Ident 

Function Name 
.. = Ident 

Alpha 

" " , Ident } 

Alpha_Numeric " " 

.. = "a" ... "z" I "A" ... "Z" 

Digit 
"0" ... "9" 

Character 
Any printable ASCII Character 

Alpha_Numeric 
: := Alpha I Digit 

Rel_Op 
::= "<" "~" I ">" I "~,, "=" I ":;t:" 

Add_Op 
::= "+" I "-" I "Or" 

. -= n*" I "I" I "\" "'" I "And" 
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Appendix 4· The Minesweep Program 

Process Validate Process 
Input keyboard 
Clock c 
Is { Time Check (output, c) } 
whererec 
output Validate (keyboard, start-pos, first_move) 

start-pos 
c omp_de lay 

1 ; first move 
5 ; interval 

o ; 
200 

Time Check 
lambda (output, c). 
If out time ~ soonest 
Then ConsCh (out_data, out_time, 

Time_Check (Tail (output) , TailClk(c») 
Else ConsCh (out_data, soonest, 

whererec 
out time 
out data 
soonest 
check_delay 
endwhererec 

Validate 

Time_Check (Tail(output), TailClk(c») 

Tail(Head(output» ; 
Head(Head(output» ; 
HeadClk (c) + check_delay ; 
1 ; 

Time Check 

lambda (kb, pos, next_move). 
If new-pos = pos 
Then Validate (TailCh(kb), pos, move_time + interval) 
Else Cons (Cons(new-pos, move_time), 

Validate(TailCh(kb),new-pos,move_time+interval» 
whererec 
new-pos 
move 
move time 

endwhererec 

Check and Move 

Check_and_Move (move, pos) ; 
HeadCh ( kb) ; 
If Time (kb) + comp_delay < next move 
Then next move 
Else Time (kb) + comp_delay 

Validate 

lambda (m, pos). 
If m = 'u' And y > 1 
Then ((y-2) * array_width) + x 
Else If move 'd' And Y < array_height 

Then (y * array_width) + x 
Else If m = '1' And x > 1 

Then ((y-1) * array_width) + x-1 
Else If m = 'r' And x < array_width 

Then ((y-1) * array_width) + x+1 
Else pos 

whererec 
x 
y 
array_width 
array_height 
endwhererec 

endwhererec 

((pos-1) \ array_width) + 1; 
((pos-1) I array_width) + 1; 
2; 
2; 

Check and Move 

Validate Process 



Process Cell Process 
Input rnd 
Clock c 
Is { Time_Check (output, c) 
whererec 

output = Cell (rnd, 0, init_state, init_danger, init~eriod); 

Time Check 
lambda (output, c). 
If out time ~ soonest 
Then ConsCh (out_data, out_time, 

Time_Check (Tail(output), TailClk(c))) 
Else Time_Check (Tail(output), TailClk(c)) 
whererec 
out time 
out data 
soonest 
check_delay 

Tail(Head(output)) ; 
Head(Head(output)) 
HeadClk (c) + check_delay 
250 ; 

endwhererec ; -- Time Check 

in it state = null ; 

init_danger 
init~eriod 

50 limit_danger 
20000; limit~eriod 

null = -1; mine = -2 ; 

Cell 

400; inc danger 
2500; dec~eriod 

lambda (rnd, last_out, state, danger, period). 
If new state = state 

5 ; 
250 

Then Cell (TailCh(TailCh(rnd)), out_time, state, new_danger, 
new~eriod) 

Else Cons (Cons (new_state, out_time), 
Cell (TailCh(TailCh(rnd)), out_time, new_state, 

new_danger, new~eriod)) 
whererec 
out time last_out + period + 

((HeadCh(rnd) - 500) * period) / 1000 ; 
new state Calculate_State(HeadCh(TailCh(rnd)),danger) 
new_period If (period - dec~eriod) ~ limit~eriod 

Then limit~eriod 
Else period - dec~eriod ; 

new_danger If (danger + inc_danger) ~ limit_danger 
Then limit_danger 
Else danger + inc_danger ; 

endwhererec ; -- Cell 

Calculate State 
lambda (n,danger). 
If n > 500 
Then n \ 10 
Else If n < danger 

Then mine 
Else null ; 

endwhererec ; -- Cell Process 
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,~--~~-
Process Monitor Process 

Input f_cell_l, f_ce 1 1_2 , f_cell_3, f_cell_4, f val 
Clock c 
Is { Time Check (output, c) 
whererec 

output = Monitor (inputs, init_state, init-player-pos, init_score) 

init score o ; init-player-pos = 1 ; 

init state 
null 

= ConS(null,Cons(null,Cons(null,ConS(null,Nil)))) 
= -1 ; mine = -2 ; 

Time Check 
lambda (output, c). 
If out time ~ soonest 
Then ConsCh (out_data, out time, 

Time_Check (Tail(output), TaiIClk(c))) 
Else ConsCh (-1, soonest, stop) 
whererec 
out time 
out data 
soonest 
stop 
check_delay 
endwhererec ; 

Tail (Head (output) ; 
Head (Head (output) ; 
HeadClk (c) + check_delay ; 

= ConsCh (-1, 0, stop) 
10 ; 

Time Check 

inputs Scan and Sort (f_cell_l, f_cell_2, f_cell_3, f_cell_4, 
f_val, init_scan) 

whererec 
in it scan 200 ; 
scan interval 200; 
Scan and Sort - -

lambda (f_cell_l, f_cell 2, f cell 3, f_cel1_4, f_val, 
scan_time) . 

Append (Quicksort (event_list, Nil), 
Scan and Sort (new_f_cell_l, new_f_cell_2, 

new_f_cell_3, new_f_cell_4, 
new_f_val, 
scan time + scan_interval) 

whererec 
event list 

Get Events ({f_cell_l, f_cell_2, f_cell_3, 
f_cell_4, f_val}, 5, scan_time)) 

new f cell 1 New Chan (f_ cell -
new f cell 2 New Chan (f cell -
new f cell 3 New Chan (f cell - -
new f cell 4 New Chan (f cell -
new f val New Chan (f_val, 
endwhererec ; -- Scan and Sort 

Append = lambda (11, 12) 
If 11 = Nil 
Then 12 

1, check time) 
_2, check _time) 

3, check_time) ; -
4, check time) ; 

-
scan _time) 

Else Cons (Head(ll) , Append (Tail(ll), 12)) 
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Quicksort 
= lambda (evll, ev12). 

If isNil (evll) 
Then ev12 
Else Quicksort (sooner, 

Cons(Head(evll),Quicksort (later,evl2» 
whererec 
sooner 
later 

Sooner(Tail(Tail(Head(evll»), Tail(evll» 
Later (Tail(Tail(Head(evll»), Tail(evll» 

Sooner 
lambda (time, evl). 
If isNil(evl) 
Then Nil 
Else If time < Tail(Tail(Head(evl») 

Then Sooner(time, Tail(evl» 
Else Cons (Head(evl) ,Sooner(time,Tail(evl»); 

Later 
lambda (time, evl). 
If isNil(evl) 
Then Nil 
Else If time ~ Tail(Tail(Head(evl») 

Then Later(time, Tail(evl» 
Else Cons(Head(evl),Later(time,Tail(evl»); 

endwhererec; -- Quicksort 

Get Events 
lambda (chs, n, t). 
If n < 1 
Then Nil 
Else If Ready(chs!n, t) 

Then Cons(Cons(n, event), 
Get_Events (chs, n-l, t) ) 

Else Get Events (chs, n-l, t) ; 
where 
event = Cons (HeadCh(chs!n), T~(chs!n) 
endwhere ; -- Get Events 

New Chan 

endwhererec 

lambda (ch, t). 

If Ready(ch, t) 
Then TailCh(ch) 
Else ch ; 

inputs 
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Monitor 
lambda (inputs, state, player-pos, score) 

score out 
whererec 
event 
event_type 
event data 
event time 
out time 
comp_delay = 

score out 

Head(inputs) ; 
Head (event) ; 
Head(Tail(event)) ; 
Tail(Tail(event)) ; 
event time + comp_delay 
50 ; 

If Lookup (new_state, new-player_pos) 
Then Cons (Cons (-1, out_time), Nil) 
Else If new score # score 

mine 

Then Cons (Cons (new_score, out_time) , rest) 
Else rest ; -- score out 

rest = Monitor (Tail (inputs) ,new_state,new_player-pos, new_score ) ; 

new score If event_type = 5 
Then If cell value > 0 

Then score + cell value 
Else score 

Else score 
where 
cell value = Lookup (state, event data) 
endwhere ; new score 

new-player-pos = If event_type = 5 
Then event data 
Else player-pos ; 

new state 

Lookup 

If event_type ~ 4 
Then Update (state, event_type, event data) 
Else state 
whererec 
Update = lambda (st, n, d). 

If n ~ 1 
Then Cons (d,Tail (st)) 
Else Cons (Head(st), 

Update (Tail(st), n-1, d)) 

endwhererec ; -- new state 

lambda (table, n). 
If n ~ 1 
Then Head(table) 
Else Lookup (Tail(table), n-1) ; 

endwhererec ; -- Monitor 

endwhererec ; -- Monitor Process 
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Configuration Minesweep 
Output score, f_cell_l, f_cell_2, f_cell_3, f_cell_4, f val 
Input keyboard, rnd_l, rnd_2, rnd_3, rnd_4 
Is 
score = Monitor Process (f cell 1,f cell 2,f_cell_3,f_cell_4,f_val); 

f cell 1 Cell Process (rnd_l) ; 

f cell 2 Cell Process (rnd_2) - -
f cell 3 Cell Process (rnd_3) ; 

f cell 4 Cell Process (rnd_4) ; 

f val Validate Process (keyboard) ; -
end. 

211 



References 

[Abram sky & Sykes 85] 

A virtual machine for applicative multiprogramming 
S. Abramsky and R. Sykes 

Functional Programming Languages and Computer Architectures 

Springer-Verlag LNCS 201, 1985 

[Apt & Plotkin 81] 

A cook's tour of countable non determinism 

K.R. Apt and G. Plotkin 

8th International Colloquium on Automata, Languages and Programming 

Springer-Verlag LNCS 115. 

[Apt & Olderog 83] 

Proof rules and Transformations dealing with fairness 

K.R. Apt and E-R. Olderog 

Science o/Computer Programming No.3, pp 65-100.1983 

[Ashcroft & Wadge 76] 

LUCID - A Formal System for Writing and proving programs 

E.A. Ashcroft and W.W. Wadge 

SIAM Journal o/Computing Vol. 5, No.3. Sept 1976 

[Ashcroft & Wadge 77] 

LUCID, a NonProcedural Language with Iteration 

E.A. Ashcroft and W.W. Wadge 

Communications o/the ACM Vol. 20, No.7. July 1977 

[Ashcroft & Wadge 80] 

Some common misconceptions about Lucid 

E.A. Ashcroft and W.W. Wadge 

ACM SIGPLAN Notices Vol. 15, No. 10. Oct 1980 

[Backus 78] 
Can Programming be Liberated from the von Neumann style? A 

functional style and its Algebra of Programs 

J. Backus 
Communications o/the ACM Vol. 21, No.8. August 1978 



[Baker 78] 

List Processing in Real Time on a Serial Computer 
H.G. Baker 

Communications of the ACM Vol. 21 No.4 April 1978 

[Bergerand et. al. 85] 

Outline of a Real-Time Data Flow Language 

J.L. Bergarand, P. Caspi, D. Pilaud, N. Halbwachs and E. Pilaud 

Proceedings IEEE Real-Time Systems Symposium 

San Diego, California December 1985. 

[Bergerand et. al. 86] 

Automatic Control Systems Programming using a Real Time 

Declarative Language 

J.L. Bergarand, P. Caspi, N. Halbwachs and J.A. Plaice 

IFACIIFIP Symposium on Software for Computer Control {SOCOCO 86} 

Graz (Austria) May 1986 

[Berry & Cosserat 84] 

The ESTEREL Synchronous Programming Language and its 

Mathematical Semantics 

G. Berry and L. Cosserat 

Proceedings Seminar on Concurrency, Carnegie-Mellon University 

Pittsburg 1984. 

Springer-Verlag LNCS 197 

[Berry et. al. 86] 

Synchronous Programming of Reactive Systems 

G. Berry, P. Couronne and G.Gonthier 

Proceedings France-Japan Artificial Intelligence and Computer Science 

Symposium 

Institute for New Generation Computer Technology, October 1986 

[Berry et. al. 87a] 

Synchronous Programming of Reactive Systems: An Inroduction to 

ESTEREL 

G. Berry, P. Couronne and G.Gonthier 

INRIA Rapports de Recherche No. 647. March 1987 

213 



[Berry et. al. 87b] 

The ESTEREL v2.2 System Manuals 

G. Berry, P. Couronne and G.Gonthier 

Rapports Technique ENSPMP /INRIA May 1987 

[Bird & Wadler 88] 

Introduction to Functional Programming 

R. Bird and P. Wadler 

Prentice-Hall International 1988 

[Bjorner & Oest 80] 

Towards a Formal Description of Ada 

Eds : D. Bjorner and O.N. Oest 

Springer-Verlag LNCS 98 

[Broy 82] 

A Fixed point approach to Applicative Multiprogramming 

M. Broy 

Theoretical Foundations of Programming M ethodolo gy 

Eds. M. Broy and G. Schmidt 

D. Reidel Publishing Company 1982 

[Broy 83] 

Applicative Real-Time Programming 

M. Broy 

Proceedings IFIP 1983 

North-Holland Information Processing 1983. 

[Burstall & Darlington 77] 

A Transformation System for Developing Recursive Programs 

R.M. Burstall and J. Darlington 

Journal of the ACM Vol. 24, No.1. January 1977 

[B urstall et. al. 80] 

HOPE: An Experimental Applicative Language 

R.M. Burstall, D.B. MacQueen and D.T. Sane1la 

Report CRS-62-80 May 1980 

Dept. of Computer Science, University of Edinburgh. 

214 



[Burton 88] 

Nondeterminism with referential transparency in Functional 
Programming Languages 

F.W. Burton 

The Computer Journal Vol. 31, No.3. 1988 

[Cartwright & Donahue 82] 

The Semantics of Lazy {and Industrious} Evaluation 

R. Cartwright and J. Donahue 

Proceedings 1982 Symposium on Lisp and Functional Programming 

Pittsburg 1982 

[Caspi et. al. 87] 

LUSTRE: A Declarative Language for Programming Synchronous 
Systems 

P. Caspi, D. Pilaud, N. Halbwachs and J.A. Plaice 

Conference Record o/the 14th Annual ACM Symposium on Principles of 

Programming Languages 

January 1987 

[Darlington & Reeve 81] 

Alice, a multiprocessor reduction machine for the parallel evaluation 

of applicative languages 

J. Darlington and M. Reeve 

Internal Report, Dept of Computing Science, Imperial College 1981. 

[Darlington 82] 

Program Transformation 

J. Darlington 

Functional Programming and its Applications 

Eds. J. Darlington, P. Henderson and D.A. Turner 

Cambridge University Press 1982 

[Faustini & Lewis 85] 

A Declarative Language for the Specification of Real Time Systems 

A.A. Faustini and E.B. Lewis 

Proceedings IEEE Real-Time Systems Symposium 

San Diego, California. December 1985. 

215 



[Faustini & Lewis 86] 

Toward a Real-Time Dataflow Language 

A.A. Faustini and E.B. Lewis 

IEEE Software January 1986 

[Friedman & Wise 76] 

Cons should not evaluate its arguments 

D.P. Friedman and D.S. Wise 

Automata Languages and Programming Third International Colloquium 

Eds. S. Michaelson and R. Milner 

Edinburgh University Press 1976 

[Harrison 87] 

RUTH: A Functional Language for Real-Time Programming 

D. Harrison 

Proceedings Parallel Architectures and Languages Europe 

Eindhoven, June 1987 

Springer-Verlag LNCS 259 

[Harrison & Nelson 89] 

A Real-Time Language Based on Explicit Timeouts 

D. Harrison an S . Nelson 

University of Stirling, Department of Computing Science 

Technical Report 1989 

[Henderson & Morris 76] 

A Lazy Evaluator 

P. Henderson and J.H. Morris 

Conference Record of the 3rd Annual ACM symposium on Principles of 

Programming Languages 

January 1976 

[Henderson 80] 

Functional Programming: Application and Implementation 

P. Henderson 

Prentice-Hall Internationa11980 

216 



[Henderson 82] 

Purely Functional Operating Systems 

P. Henderson 

Functional Programming and its Applications 

Eds. J. Darlington, P. Henderson and D.A. Turner 

Cambridge University Press 1982 

[Henderson et. al. 83] 

The LispKit Manual 

P. Henderson, G.A. Jones and S.B. Jones 

Oxford University Computing Laboratory 

Programming Research Group Monograph 32 

[Holmstrom 83] 

PFL : A Functonal Language for Parallel Programming 

S. Holmstrom 

Proceedings Declarative Programming Workshop 

University College London II-13th April 1983 

[Hudak et.al. 89] 

Report on the Functional Programming Language Haskell 

P. Hudak (Editor), P. Wadler, Arvind, B. Boutel, J. Fairbairn, J. Fasel, J. Hughes, 

T. Johnsson, D. Kieburtz, S. Peyton Jones, R. Nikhil, M. Reeve, D. Wise and 

J. Young 

University of Glasgow, Department of Computing Science, 

Research Report CSC/89/R5 March 1989 

[Ida & Tanaka 83] 

Functional Programming with Streams 

T. Ida and J. Tanaka 

Proceedings IFIP 1983 

North-Holland Information Processing 1983 

[Ida & Tanaka 84] 

Functional Programming with Streams - Part IT 

T. Ida and J. Tanaka 

New Generation Computing 2, pp 261-275.1984 

[!NMOS 84] 

OCCAM Programming Manual 

Inmos Ltd. 
Prentice-Hall International Series in Computer Science 1984 

217 



[INMOS 87] 

Preliminary Data: IMS T414 Transputer 

Inmos Ltd. 1987 

[Jones 84a] 

Abstract Machine Support for Purely Functional Operating Systems 
S.B. Jones 

University of Stirling, Department of Computing Science 

Technical Report T.R.15. September 1984 

[Jones 84b] 

A Range of Operating Systems Written In A Purely Functional Style 

S.B. Jones 

University of Stirling, Department of Computing Science 

Technical Report T.R.16. September 1984 

[Jones & Sinclair 89] 

Functional Programming and Operating Systems 

S.B. Jones and A.F. Sinclair 

The Computer Journal Vol. 32, No.2. Feb. 1989 

[Lamport 78] 

Time, Clocks and the Ordering of Events in a Distributed System 

L. Lamport 

Communications o/the ACMVol. 21, No.7. July 1978 

[Landin 64] 

The Mechanical evaluation of Expressions 

P.J. Landin 

The Computer Journal Vol. 6 pp308-320. 1964 

[Le Guernic et. al. 85] 

SIGNAL: A Data Flow Oriented Language for Signal Processing 

P. Le Guernic, A. Benveniste, P. Bournai and T. Gautier 

IRISA Internal publication 246. January 1985 

[Le Guernic et. al. 86] 

SIGNAL - A Data Flow-Oriented Language for Signal Processing 

P. Le Guernic, A. Benveniste, P. Bournai and T. Gautier 

IEEE Transactions on Acoustics, Speech and Signal Processing Vol. ASSP-34, 

No.2. April 1986 

218 



[Le Guernic & Benveniste 87] 

Real-Time, Synchronous, Data-Flow Programming: The Language 

SIGNAL and its Mathematical Semantics 

P. Le Guemic and A. Benveniste 

INRIA Rapports de Recherche No. 620. February 1987 

[Le Lann 83] 

On Real-Time Distributed Computing 
G. LeLann 

Proceedings IFIP 1983 

North-Holland Information Processing 83. 

[Liebermann & Hewitt 83] 

A Real-Time Garbage Collector Based on the Lifetimes of Objects 
H. Liebermann and C. Hewitt 

Communications of the ACM Vol. 26 No.6. June 1983 

[MoD 70] 

Official Definition of Coral-66 

Ministry of Defence 1970 

[McCarthy 60] 

Recursive Functions of Symbolic Expressions and Their Computation 

by Machine, Part I 

J. McCarthy 

Communications of the ACM Vol. 3, No.4. April 1960 

[McCarthy 63] 

A basis for a mathematical theory of computation 

J. McCarthy 

Studies in logic: Computer programming andformal systems 

Eds. Braffort and Hirschberg 

North Holland 1963. 

[Partsch & Steinbruggen 83] 

Program Transformation Systems 

H. Partsch and R. Steinbruggen 

ACM Computing Surveys Vol. 15, No.3. September 1983 

219 



[Peyton Jones 85] 

GRIP - a parallel graph reduction machine 
S.L. Peyton Jones 

University College London Internal note 1665. January 1985 

[Peyton Jones 87] 

The Implementation of Functional Programming Languages 
S.L. Peyton Jones 

Prentice-Hall Internationa11987 

[Sannella 81] 

HOPE Update 

D. Sannella 

University of Edinburgh, Dept. of Computer Science. February 1981 

[Schmidt 86] 

Denotational Semantics, A Methodology For Language Development 

D .A. Schmidt 

Allyn and Bacon 1986 

[Sherlis 80] 

Expression Procedures and Program Derivation 

W.L. Sherlis 

Ph.D. Thesis 

Dept. Of Computer Science, Stanford University 

Report No. STAN-CS-80-818. August 1980 

[Shin 87] 

Introduction to special issue on Real-Time systems 

K.G. Shin 

IEEE Transactions on Computers Vol. c-36, No.8. August 1987 

[Stoy 77] 

Denotational Semantics: The Scott-Strachey Approach to 

Programming Language Theory 

J. Stoy 

The MIT Press 1977 

[Stoye 86] 
Message-Based Functional Operating Systems 

W. Stoye 
Science of Computer Pro gramming No.6, pp 291-311. 1986 

220 



[Thompson 86] 

Writing Interactive Programs in Miranda 

S. Thompson 

UKC Computer Lab. Report No. 40. University of Kent, August 1986 

[Turner 85] 

Miranda: A non-strict functional language with polymorphic types 

D.A. Turner 

Proceedings, Functional Programming Languages and Computer Architecture 

Nancy, France. Sept 1985 

Springer-Verlag LNCS 201 

[Turner 87] 

Functional programming and communicating processes 

D.A. Turner 

Proceedings Parallel Architectures and Languages Europe 

Eindhoven. June 1987 

Springer-Verlag LNCS 259 

[USDOD 83] 

Programming Language Ada: Reference Manual 

U.S. Dept. of Defence 1983 

Springer-Verlag LNCS 155 

[Wadge & Ashcroft 85] 

Lucid, the Dataflow Programming Language 

W.W.Wadge and E.A.Ashcroft 

Academic Press, London 1985 

[Wirth 83] 

Programming in Modula-2 

N. Wirth 

Springer-Verlag 1983 

[Young 82] 
Real Time Languages design and development 

S.J. Young 

Ellis-Harwood Publishers 1982. 

221 


	257439_0001
	257439_0002
	257439_0003
	257439_0004
	257439_0005
	257439_0006
	257439_0007
	257439_0008
	257439_0009
	257439_0010
	257439_0011
	257439_0012
	257439_0013
	257439_0014
	257439_0015
	257439_0016
	257439_0017
	257439_0018
	257439_0019
	257439_0020
	257439_0021
	257439_0022
	257439_0023
	257439_0024
	257439_0025
	257439_0026
	257439_0027
	257439_0028
	257439_0029
	257439_0030
	257439_0031
	257439_0032
	257439_0033
	257439_0034
	257439_0035
	257439_0036
	257439_0037
	257439_0038
	257439_0039
	257439_0040
	257439_0041
	257439_0042
	257439_0043
	257439_0044
	257439_0045
	257439_0046
	257439_0047
	257439_0048
	257439_0049
	257439_0050
	257439_0051
	257439_0052
	257439_0053
	257439_0054
	257439_0055
	257439_0056
	257439_0057
	257439_0058
	257439_0059
	257439_0060
	257439_0061
	257439_0062
	257439_0063
	257439_0064
	257439_0065
	257439_0066
	257439_0067
	257439_0068
	257439_0069
	257439_0070
	257439_0071
	257439_0072
	257439_0073
	257439_0074
	257439_0075
	257439_0076
	257439_0077
	257439_0078
	257439_0079
	257439_0080
	257439_0081
	257439_0082
	257439_0083
	257439_0084
	257439_0085
	257439_0086
	257439_0087
	257439_0088
	257439_0089
	257439_0090
	257439_0091
	257439_0092
	257439_0093
	257439_0094
	257439_0095
	257439_0096
	257439_0097
	257439_0098
	257439_0099
	257439_0100
	257439_0101
	257439_0102
	257439_0103
	257439_0104
	257439_0105
	257439_0106
	257439_0107
	257439_0108
	257439_0109
	257439_0110
	257439_0111
	257439_0112
	257439_0113
	257439_0114
	257439_0115
	257439_0116
	257439_0117
	257439_0118
	257439_0119
	257439_0120
	257439_0121
	257439_0122
	257439_0123
	257439_0124
	257439_0125
	257439_0126
	257439_0127
	257439_0128
	257439_0129
	257439_0130
	257439_0131
	257439_0132
	257439_0133
	257439_0134
	257439_0135
	257439_0136
	257439_0137
	257439_0138
	257439_0139
	257439_0140
	257439_0141
	257439_0142
	257439_0143
	257439_0144
	257439_0145
	257439_0146
	257439_0147
	257439_0148
	257439_0149
	257439_0150
	257439_0151
	257439_0152
	257439_0153
	257439_0154
	257439_0155
	257439_0156
	257439_0157
	257439_0158
	257439_0159
	257439_0160
	257439_0161
	257439_0162
	257439_0163
	257439_0164
	257439_0165
	257439_0166
	257439_0167
	257439_0168
	257439_0169
	257439_0170
	257439_0171
	257439_0172
	257439_0173
	257439_0174
	257439_0175
	257439_0176
	257439_0177
	257439_0178
	257439_0179
	257439_0180
	257439_0181
	257439_0182
	257439_0183
	257439_0184
	257439_0185
	257439_0186
	257439_0187
	257439_0188
	257439_0189
	257439_0190
	257439_0191
	257439_0192
	257439_0193
	257439_0194
	257439_0195
	257439_0196
	257439_0197
	257439_0198
	257439_0199
	257439_0200
	257439_0201
	257439_0202
	257439_0203
	257439_0204
	257439_0205
	257439_0206
	257439_0207
	257439_0208
	257439_0209
	257439_0210
	257439_0211
	257439_0212
	257439_0213
	257439_0214
	257439_0215
	257439_0216
	257439_0217
	257439_0218
	257439_0219
	257439_0220
	257439_0221

