
APPLICATION-AWARE NETWORK DESIGN USING SOFTWARE-DEFINED

NETWORKING FOR APPLICATION PERFORMANCE OPTIMIZATION FOR BIG

DATA AND VIDEO STREAMING

A Dissertation
IN

Telecommunications and Computer Networking
and

Computer Science

Presented to the Faculty of the University
of Missouri–Kansas City in partial fulfillment of

the requirements for the degree

DOCTOR OF PHILOSOPHY

by
SHUAI ZHAO

M.S., University of Missouri - Kansas City, USA, 2011
B.S., Heze University, Heze, ShanDong, China, 2008

Kansas City, Missouri
2017

c© 2017

SHUAI ZHAO

ALL RIGHTS RESERVED

APPLICATION-AWARE NETWORK DESIGN USING SOFTWARE-DEFINED

NETWORKING FOR APPLICATION PERFORMANCE OPTIMIZATION FOR BIG

DATA AND VIDEO STREAMING

Shuai Zhao, Candidate for the Doctor of Philosophy Degree

University of Missouri–Kansas City, 2017

ABSTRACT

This dissertation investigates improvement in application performance. For appli-

cations, we consider two classes: Hadoop MapReduce and video streaming. The Hadoop

MapReduce (M/R) framework has become the de facto standard for Big Data analytics.

However, the lack of network-awareness of the default MapReduce resource manager in

a traditional IP network can cause unbalanced job scheduling and network bottlenecks;

such factors can eventually lead to an increase in the Hadoop MapReduce job completion

time. Dynamic Video streaming over the HTTP (MPEG-DASH) is becoming the de facto

dominating transport for today’s video applications. It has been implemented in today’s

major media carriers such as Youtube and Netflix. It enables new video applications to

fully utilize the existing physical IP network infrastructure. For new 3D immersive me-

dias such as Virtual Reality and 360-degree videos are drawing great attentions from both

iii

consumers and researchers in recent years. One of the biggest challenges in streaming

such 3D media is the high bandwidth demands and video quality. A new Tile-based video

is introduced in both video codec and streaming layer to reduce the transferred media size.

In this dissertation, we propose a Software-Defined Network (SDN) approach in

an Application-Aware Network (AAN) platform. We first present an architecture for our

approach and then show how this architecture can be applied to two aforementioned appli-

cation areas. Our approach provides both underlying network functions and application-

level forwarding logics for Hadoop MapReduce and video streaming. By incorporating a

comprehensive view of the network, the SDN controller can optimize MapReduce work-

loads and DASH flows for videos by application-aware traffic reroute. We quantify the

improvement for both Hadoop and MPEG-DASH in terms of job completion time and

user’s quality of experience (QoE), respectively. Based on our experiments, we observed

that our AAN platform for Hadoop MapReduce job optimization offer a significant im-

provement compared to a static, traditional IP network environment by reducing job run

time by 16% to 300% for various MapReduce benchmark jobs. As for MPEG-DASH

based video streaming, we can increase user perceived video bitrate by 100%.

iv

APPROVAL PAGE

The faculty listed below, appointed by the Dean of the School of Graduate Studies,

have examined a dissertation titled “Application-Aware Network Design Using Software-

Defined Networking for Application performance Optimization for Big Data and Video

Streaming,” presented by Shuai Zhao, candidate for the Doctor of Philosophy degree, and

certify that in their opinion it is worthy of acceptance.

Supervisory Committee

Deep Medhi, Ph.D., Committee Chair
Department of Computer Science & Electrical Engineering

Appie Van De Liefvoort, Ph.D.
Department of Computer Science & Electrical Engineering

Baek-Young Choi, Ph.D.
Department of Computer Science & Electrical Engineering

Ken Mitchell, Ph.D.
Department of Computer Science & Electrical Engineering

Praveen R. Rao, Ph.D.
Department of Computer Science & Electrical Engineering

Zhu Li, Ph.D.
Department of Computer Science & Electrical Engineering

v

CONTENTS

ABSTRACT . iii

ILLUSTRATIONS . viii

TABLES . xi

ACKNOWLEDGEMENTS . xii

Chapter

1 INTRODUCTION . 1

1.1 Application Background . 1

1.2 Application-aware Networks and Software-defined Networking 4

1.3 Motivation and Scope . 5

1.4 Contribution . 7

1.5 Additional Research Contributions . 9

1.6 Organization . 21

2 RESEARCH SURVEY . 22

2.1 Related Work . 22

2.2 Research Scope . 26

2.3 Background Overview . 27

3 Proposed Architecture . 32

3.1 General AAN-SDN Architecture and Implementation 32

4 AAN-SDN For Hadoop . 39

vi

4.1 HiBench: Bigdata Micro Benchmark Suite 39

4.2 Data Collection Cases . 44

4.3 AAN-SDN Hadoop Architecture and Implementation 52

4.4 MapReduce Traffic Optimization Using SDN 53

4.5 Performance Evaluation . 54

5 Study of User QoE Improvement for Dynamic Adaptive Streaming over HTTP

(MPEG-DASH) . 71

5.1 Composite Video Streaming QoE Metrics 71

5.2 Proposed Dynamic Composite QoE Algorithm 74

5.3 Implementation and Empirical Evaluation 77

6 AAN-SDN For MPEG-DASH . 84

6.1 Regular MPEG-DASH Video Streaming QoE Improvement 84

6.2 Immersive/360-degree MPEG-DASH Video Streaming QoE Improvement 90

7 Conclusion . 103

Appendix

A Mininet Topology Source Code For DASH Setup 106

B Hadoop Installation Source Code . 109

C Openvswitch Installation Source Code . 118

D HiBench Installation Guide . 120

REFERENCE LIST . 122

VITA . 135

vii

ILLUSTRATIONS

Figure Page

1 Video Content Size Comparison . 4

2 I-CaN-MaMa Framework . 10

3 Streaming Architecture . 11

4 Storm Topology . 12

5 BuDDI Middlebox Architecture. 13

6 SPArTaCuS: Architecture Framework 14

7 Home Architecture . 15

8 DASH Over WebRTC . 17

9 WebRTC and WebSocket in NS3 Experiment Setup 18

10 DASH SAND Architecture . 20

11 Research Scope . 27

12 Software-Defined Network Architecture 28

13 MapReduce WorkFlow . 29

14 MPEG-DASH System Overview [51] 30

15 General AAN-SDN Architecture . 32

16 Traffic Reroute Workflow Example . 36

17 HiBench Hadoop MapReduce Related Workload Summary 40

18 HiBench MapReduce Workloads Configuration Details 41

viii

19 Topology Type (a) TA, (b) TB-1, (c) TB-2, (d) TC, TD 43

20 CPU Load Summary . 47

21 Memory Load Summary . 49

22 Job Completion time Summary . 51

23 SDN Hadoop Experimental Architecture 52

24 Experimental Network Setup . 54

25 Loop Network Topology Setup . 55

26 Hadoop M/R runtime Comparison . 56

27 SDN Controller System Load . 57

28 Control Traffic . 57

29 (a) Network Topology, (b) Traffic Path Before Reroute, (c) Traffic Path

After Reroute . 59

30 Hadoop MapReduce Intermediate Data Transfer 63

31 ARP Broadcasting Packet Cause CPU Utilization High in a Loop Topology 64

32 Hadoop Job Runtime Comparison . 67

33 Network Profile for Testing Environment [21] 77

34 A Sample Run of Network Traces Using Our Dynamic Algorithm 79

35 System Buffered Details: (a) Buffered Time and Queue Size (b) Buffered

Bitrate Quality and Queue Number . 80

36 BenchMark Sample Run . 81

37 Rebuffer Comparison for Various Network Profiles 82

ix

38 Comparison in Video Bitrate Switchover Frequence, Magnitude and Video

Quality Between Proposed Dynamic and ExoPlayer Reference Algorithm 83

39 AAN-SDN DASH Experimental Architecture 85

40 GENI Topology Setup . 87

41 SDN Adaptive Path Selection For DASH Traffic 88

42 Multiple Clients Fetch Video Segment at The Same Time Using SDN and

Non-SDN . 89

43 Tile-based Streaming Workflow [22] . 91

44 DASH SRD XML Example . 92

45 DASH SRD Coordinate Example (3× 3 tiles) 93

46 Tile-based Video Playback Example . 94

47 SDN DASH Experimental Architecture 95

48 Mininet SDN Topology Setup . 97

49 ROI Movement for A 2X2 Tile-based Video Segments 98

50 Bitrate for Both Non-SDN and SDN deployment 99

51 Buffered Size for Both Non-SDN and SDN deployment 100

52 QoE Improvement Comparison . 102

x

TABLES

Tables Page

1 Message types . 16

2 Monitored Port Number . 60

3 HiBench Workloads Traffic Reroute Using SDN 66

4 Hibench Workload: Hardware Related Data Collection 68

5 Mapreduce Workload Traffic Flow Data Summary 69

6 Example of MapReducde Shuffle Traffic For Each Flow 70

7 Composite QoE Metrics . 72

8 Test Video Bitrate Index . 78

9 MPEG-DASH Video Dataset Characteristics 86

10 MPEG-DASH Video Dataset Characteristics 97

xi

ACRONYMS

AAN Application-Aware Networks

ABR Adaptive Bitrate

ARP Address Resolution Protocol

AVC Advanced Video Codec

CSMA Carrier-Sense Multiple Access

CMFD Common Mode Failure and Common Dependencies

DANE Dash Aware Network Elements

FoV Fielf of View

GENI Global Environment for Network Innovations

HDFS Hadoop File System

HEVC High Efficiency Video Coding

HMD Head Mount Display

ICN/CCN Information-Centric Networking/Content-Centric Networking

IoT Internet of Things

JVM Java Virtual Machine

M/R MapReduce

MPEG-DASH Dynamic Adaptive Streaming Over HTTP

MPD Media Presentation Description

OVX OpenVirtex

OTT Over-the-Top

OVS Openvswitch

PSNR Peak Signal-to-noise Ratio

QoE Quality of Experience

RoI Region of Interest

SAND Server and Network Assisted DASH

FDH The Full-Duplex HTTP based Protocols

SDN Software-Defined Networking

STP Spanning Tree Protocols

SRD Spatial Relationship Descriptor

SP Sliding Percentile

TE Traffic Engineering

VM Virtual Machine

VR Virtual Reality

xiii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Prof. Deep Medhi for

the continuous support of my Ph.D. study and related research, for his patience, motiva-

tion, and immense knowledge. His guidance helped me in all the time of research and

writing of this thesis. I could not have imagined having a better advisor and mentor for

my Ph.D. study.

Besides my advisor, I would like to thank the rest of my thesis committee: Dr.

Appie Van De Liefvoort, Dr. Baek-Young Choi, Dr. Ken Mitchell, Dr. Praveen R. Rao,

and Dr. Zhu Li, for not only their insightful comments and encouragement, but also for

their hard questions, which incentives me to widen my research from various perspectives.

I thank my fellow labmates for the stimulating discussions, for the sleepless nights

we were working together before deadlines, and for all the fun we have had in the last four

years.

I also want to thank all of my mentors during my Internship experience. Dr. Guo-

Qiang(GQ) Wang and Dr. Ravishankar Ravindran from FutureWei Inc, gave me the first

internship opportunity. They are great scientists and taught me much valuable knowl-

edge. During my second internship at Raytheon BBN, Dr. Ali Sydney and Heidi Picher

Dempsey were wonderful and generous friends and mentors. I am very grateful for every-

thing they have taught me. Dr. Shan Liu was an awesome mentor when I was interning

at Mediatek USA, Inc. She is very passionate and willing to mentor me with all of her

efforts. My Ph.D. study experience could not be considered as complete without those

xiv

mentors’ support.

Special thanks to my family. Words cannot express how grateful I am to my

mother-in law, father-in-law, my mother, and father for all of the sacrifices that you’ve

made on my behalf. I would also like to thank all of my friends who supported me in

writing and helped me to strive towards my goal. In the end, I would like to express

appreciation to my beloved wife Jingxian Chen who spent sleepless nights with me and

was always my support in the moments when there was no one to believe in me.

This work is partially supported by NSF Grant # 1526299.

xv

CHAPTER 1

INTRODUCTION

The rapid development of cloud services, mobility, Internet of Things (IoT) sen-

sors, and video streaming services not only led to an explosion of network data but is

also challenging the existing network management and monitoring system. Users pay the

premium and also expect quality on-demand access to those applications, infrastructure,

and other IT resources. Handling today’s mega datasets requires massive parallel process-

ing that also puts a constant need for flexible capabilities from the underlying network.

Network-based applications themselves are increasingly growing and require massively

distributed computation.

1.1 Application Background

1.1.1 Hadoop MapReduce Big Data Processing Platform

To handle the ever-increasing data size, Hadoop [7] MapReduce (M/R) is a scal-

able framework that allows dedicated and a seemingly unbound number of servers to

participate in the analytics process. The response time of an analytics request is a major

factor for time to gain data insights. Hadoop has been designed as a shared computing

and storage platform and supports parallel computing of jobs for multiple users. While

the computing and disk I/O requirements can be scaled with the number of servers, scal-

ing the system leads to increased network traffic in the underlying network. Arguably, the

1

communication-heavy phase of M/R contributes significantly to the overall response time.

This problem is further aggravated, if communication patterns are heavily skewed, which

is common in many MR workloads. Most of this caveat of the MapReduce program is

because the default Hadoop resource manager does not take the network condition into

consideration for job scheduling.

1.1.2 MPEG-DASH Video Streaming Status

In the video streaming filed, the report from Cisco system [13] demonstrates that

video streaming over the Internet has become a major network traffic class, which could

reach four-fifth of overall traffic by 2020. Many video providers such as YouTube and

NetFlix are facing an ever-increasing challenge to keep a high QoE for their subscribers.

Dynamic adaptive streaming over HTTP (MPEG-DASH) [66] was initially designed for

efficient streaming of 2D flat videos. It has become one of the de facto effective adaptive

streaming approaches that can fully utilize the existing physical IP network infrastruc-

ture. However, the current IP network has the limitation of effective dynamic bandwidth

allo cation, which can lead to suboptimal streaming experience for immersive content

consumers. MPEG-DASH as one of the promising solutions, has caught significant atten-

tions by both industrial and academic researchers. In DASH , the video files are encoded

with different bitrates and divided into smaller sized segments. The clients can adapt

the video bitrate by requesting the most suitable video segment by underlying network

conditions. DASH video segments are stored under various bitrates with different play-

back lengths. By delivering appropriate bitrate segments, user QoE can be guaranteed. A

2

high user-perceived QoE is a combination of many factors: available bandwidth, available

video bitrates, and rebuffers. The key is to keep a balance among those factors.

The public interest of immersive devices such as head-mounted displays (HMD)

for Virtual Reality (VR), 360-degree video cameras for capturing immersive contents and

3D playback support from the commercial website such as YouTube are drawing great

attentions from both consumers and researchers. Compare with regular 2D flat video con-

tents, the 360 VR videos are extremely bandwidth intensive especially with the 4K/8K

video resolution being widely accepted as a functional minimum resolution for current

HMDs, while 8K or higher is desired. Therefore, a major challenge is how to efficiently

transmit these bulky 360 VR videos to bandwidth-constrained wireless VR HMDs at ac-

ceptable quality levels given their high bitrate requirements. Recommended VR/360-

degree video display aspect ratio from YouTube is 2:1 for monoscopic or panoramic

videos and 1:1 for stereoscopic videos with a ratio of 2:1 per eye for better user QoE.

The file size is double w.r.t the original 2D videos. Nowadays, YouTube provides video

contents with different resolutions. For illustration, we obtained video file sizes of three

sample videos at different resolutions from YouTube, which is shown in Figure 1. This de-

picts how video content size increases exponentially while the video resolution increases.

A recently proposed tile-based approach is attempting to reduce the transfer size

based on user’s region of interests (ROIs). In a typical scenario for streaming VR/360

videos, the user usually views only a portion of the video at a time, called field-of-view

(FoV). As a result, there is a huge waste of bandwidth for streaming content to the client

that is not visible to the user. By knowing the user ROIs, we can stream it with high

3

Figure 1: Video Content Size Comparison

quality while minimizing the quality of the rest of the video and thereby, saving the user

bandwidth. In a video tiling scenario, the video is partitioned to multiple tiles and de-

pending on the user’s viewable area, we stream the overlapping tiles. Tiling has proven

useful in domains such as online video lectures and sports.

1.2 Application-aware Networks and Software-defined Networking

The emergence of Application-aware Networks (AAN) provides a new approach

for managing Hadoop network traffic.The AAN provides the capability of an intelligent

network to maintain current information about applications that connect to it and as a

result, optimize their functioning as well as that of other applications or systems that

they control. The information maintained includes the application state and resource re-

quirements. The main benefits of our AAN approach are 1) It allows a controllable

Hadoop cluster management system and a fine-granular application control platform using

the SDN architecture 2) It provides an open programming interface for more intelligent

4

Hadoop resource allocations with consideration of global network traffic information.

A software-based solution using software-defined networking (SDN) is a fine-

grained way of controlling individual application and network devices. AAN benefits

from SDN in two ways: first, by enabling dynamic control, configuration and giving the

ability of AAN to allocate resources at any given moment; second, by running network

controls on a separate server from the traffic forward device. The SDN is a relatively

recent networking paradigm that has been conceived to address certain limiting of IP

networking. With decoupled control and forwarding layers, SDN can dynamically op-

timize network flows traffic based on global network traffic information. It also has a

finer quality of service (QoS) control based on assigned flow priorities. Our work aims to

investigate how the future immersive video streaming scheme can exploit SDN for bet-

ter QoE. Specifically, we propose a SDN-based approach to design a tile-based VR/360

streaming platform using DASH. In our work, we focus on 1) Hadoop computation using

an AAN framework through SDN when Hadoop nodes are spread out over a network 2)

Video Streaming using MPEG-DASH with proposed AAN-SDN.

1.3 Motivation and Scope

In general, the goal of our research is to improve applications’ performance by

proposed application-awareness networking framework. To prove its usability and effi-

ciency, we tested our framework using two important applications in both big data and

video streaming realm. We analyze the current issues and factors, which can affect the

performance for those applications.

5

1.3.1 The Hadoop MapReduce Run Time Performance Optimization

A great deal of consideration must be put in place when managing a Hadoop

cluster using resources for running MapReduce jobs in order to fully understand Hadoop

traffic. The key elements are summarized as follows:

• The block size and split size: Hadoop uses blocks and split size to control how many

blocks are being divided and used when running MapReduce jobs.

• Block replication factor: Hadoop uses this approach to prevent data loss because of

common hardware failures.

• The physical configuration of hardware resources: This includes CPU, memory,

hard disk capacity, interconnection network link speed and the number of slave

nodes.

• Java Virtual Machine(JVM): Hadoop uses JVM to complete jobs. The number of

resources, mainly CPU and memory, can be assigned to each created JVM. Because

the process of creation and killing of such resources takes time, the rule of thumbs

when using JVM is that the less mapper is better, which leads to less JVM creation

and less killing time. However, this must be accomplished by being given sufficient

resources to start with for the submitted jobs.

• Hadoop cluster topology: How slaves deploy across the Hadoop cluster can be

critical and depends on the assigned network bandwidth between master nodes and

slave/data nodes.

6

• Other Hadoop performance tuning methods: Additional factors such as the num-

ber of files, file size, JVM Reuse and combiners are also important for Hadoop

performance tuning.

1.3.2 User QoE improvement for MPEG-DASH Based Video Streaming

As video gets popular, user requires higher quality-of-experience (QoE). With

limited network bandwidth and architecture, network side video traffic optimization can

play an important role. The key elements are summarized as follows:

• Video Streaming QoE Metrics: Design QoE metrics for regular 2D video streaming

is very important process to benchmark user perceived video qualities.

• Network Profiles for Video Streaming: Video quality changes based on networking

condition such as bandwidth and delays.

• Region of Interests (ROIs) Based Immersive/360-Degree Video Streaming: Immer-

sive video content streaming using various number of ROIs.

1.4 Contribution

In our research, we present AAN-SDN architecture for application performance

optimization. We introduce tools and traffic reroute mechanisms for Hadoop and video

streaming application optimization. We ran real-world MapReduce and MPEG-DASH

streaming applications using our proposed AAN-SDN architecture to show improvement

in both application use cases. Briefly, we make the following contributions:

7

1. w.r.t general AAN-SDN architecture design:

• An application-aware framework with SDN

• A new ARP (address resolution protocol) flooding avoidance resolver algo-

rithm for our framework.

2. w.r.t Hadoop MapReduce optimization:

• A data flow model to improve the data movement efficiency for MapReduce

related workloads

• An adaptive traffic engineering mechanism for the AAN-SDN environment

for Hadoop applications

3. w.r.t MPEG-DASH streaming QoE improvement:

• We present the difference in immersive content streaming between traditional-

and SDN-based network.

• We introduce a SDN-based framework to assist tile-based immersive content

streaming.

• We quantify the benefits brought by our SDN approach using network simu-

lation. The results indicate that our scheme can increase of user’s quality of

experience.

8

1.5 Additional Research Contributions

During my Ph.D. study, I have conducted collaborative research that resulted in

published papers in various journal and conferences in the area of networking, multime-

dia, and big data processing.

1.5.1 I-Can-MaMa: NetFlow Data Processing and Traffic Grouping

In I-Can-MaMa [80], the goal was to explore Cisco NetFlow Data from campus

data center network and analyze traffic pattern and traffic grouping. In this paper, we

focus on two important components that the CampusIS needs to address. The first is the

campus physical network, and the second are the campus data centers that connect users

to computing resources through the network. The goal of this project has been to take an

integrated approach that gives the CampusIS system administrators (sysadmin, in short)

the ability to understand the impact on the network. The impact may be due to different

services using the data centers over the network, or due to users accessing external sites.

The aim is to allow the CampusIS sysadmin to have a comprehensive view so that they

can see how the network is being used by the data centers as well as external applications

through a common framework. Because of virtual machines (VMs) provided at the data

centers, it is also necessary to see how different traffic flows are incoming or outgoing

from a specific VM. While the CampusIS sysadmin uses a number of commercial and

public-domain tools, most of them are geared for a specific situation such as mrtgthat

gives views on a link use. We proposed the I-Can-MaMa Framework (Fig 2) for large

NetFlow data processing. Our data integration environment focuses on creating a few key

9

Network Data Collection

VLAN
Table

Knowledge
Table

NetFlow
Table

Virtual Machine
Table

SwitchConfig
Table

Postgresql Database

Campus Network Monitor

Administrator

Visualize

VLAN Traffic

Visualize

Virtual

Machine

Traffic

Visualize

Campus

Building Traffic

Visualize
Specific Application

and
more

Understand Campus
Network Architecture

Core Switch

Cloud

SAN

Server
Farm

 DataCenter
Storage

Research VM
Clusters

Figure 2: I-CaN-MaMa Framework

tables in the PostgreSQL database to store a few key pieces of information on a periodic

basis. We have created a number of tables. Collectively, we have built a KnowledgeBase

through these tables.

1.5.2 Real-time Network Anomaly Detection System Using Machine Learning

In [2], we presented the design and implementation of a real time network anomaly

detection system for network-flow data in a campus network using Storm [69] real time

data processing framework. The real network traffic of the campus network based using

10

Cisco NetFlow was collected at the campus data center at the University of Missouri–

Kansas City (UMKC). Our proposed system is currently being developed using Apache

Hadoop, Apache Storm, and Apache Kafka. Fig. 3 shows the architecture of our system.

Apache’s Hadoop distributed file system (HDFS) is an open source system for reliable,

scalable, distributed computing. Hadoop is comprised of two major components, HDFS

and MapReduce. For our real time streaming purpose, the HDFS component serves as a

flow data producer. Our Storm topology can be mapped to Kafka topics.

Apache Storm Processing

Storm Topology
(T1, T2, …, Tn)

T-1

Kafka Spout

T-2 T-N
….

….

Hadoop

EcoSystem

HDFS

NetWork

Data

Result

Figure 3: Streaming Architecture

Fig. 4 shows a topology setup for the anomaly detection in one of the switches.

The streaming process is divided into four components: Kafka Spout, Data Preprocess-

ing Bolt, Anomaly Detection Bolt, and Machine Learning Bolt. The Machine Learning

Bolt conducted advanced anomaly detection over the anomaly traffic data detected by the

Anomaly Detection Bolt. The data were used as training data for the machine learning

process. The Machine Learning Bolt was implemented using a Weka Machine Learning

tool [27] to improve the accuracy of anomaly detection tasks. The output was automati-

cally saved and stored in HDFS for future use.

11

Shuffle
Grouping

Shuffle
Grouping

Anomaly detection by
(Destination Port)

Anomaly detection by
(Source Port)Data

Preprosseing bolt

Kafka Spout

Anomaly
 detection bolt

Anomaly detection by
(Source IP, Destination Port)

Anomaly detection by
(Source Port, Destination IP)

Machine
Learning

Bolt

Tuple
output

Machine
Learning
output

Figure 4: Storm Topology

In this work, we presented a novel real-time system for network anomaly detec-

tion by utilizing state-of-the-art approaches including Apache Storm, Apache Kafka and

applying real-time analytics on streaming data for network monitoring and management.

We obtained promising preliminary results for real-time network anomaly detection.

1.5.3 BuDDI: Bug Detection, Debugging, and Isolation Middlebox for

Software-Defined Network Controllers

In BuDDI [2], we used SDN concepts and proposed an online software Bug De-

tection, Debugging, and Isolation (BuDDI) middlebox architecture for SDN controllers.

Software bugs cannot be resolved with them due to unexpected failure behavior. Fur-

thermore, they are often bounded by common mode failure and common dependencies

(CMFD). BuDDI consists of a shadow-controller based online debugging facility and a

CMFD mitigation module in support of a seamless heterogeneous controller failover. For

on-line bug detection and debugging, unlike a traditional N + 1 redundancy cluster sys-

tem, we propose an N + 2 load balancing cluster system where components (N) have

12

at least two independent failover components (+2). BuDDI enables a shadow controller

that mirrors the active controller functions and turns on a verbose debugging mode for a

specific failure module. Eventually, the two failover components will converge into one

active controller. If the shadow-controller cannot identify a software bug in a given pe-

riod, it sends a preemption message to the active CMFD module to take over the active

role. Otherwise, it will confirm an active role for the CMFD module.

Figure 5: BuDDI Middlebox Architecture.

The proposed architecture is shown in Figure 5. The middlebox is connected to

the controllers via northbound OpenFlow, whereas with the physical network, via south-

bound OpenFlow. Ryu, POX, FloodLight, Trema, and OpenDaylight are some of the most

commonly used open source controllers. These controllers vary from each other in one

way or another, which gives them diversity and supports our claim of using a heteroge-

neous controller approach. We verified that BuDDI supports our claim of a heterogeneous

controller switchover without causing additional performance overhead.

13

1.5.4 SPArTaCuS: Service Priority Adaptiveness for Emergency Traffic in Smart Cities

Using Software-defined Networking

In [1], we proposed SPArTaCuS (Service Priority Adaptiveness for Emergency

Traffic in Smart Cities using Software-defined networking), a framework for smart cities

on how to prioritize services for emergency needs in a stressed situation. Our approach is

based on a promising new networking technology, known as software-defined network-

ings (SDN). Our approach resorts to virtualizing networks for different service classes,

and dynamic allocation of resources as the need be.

Figure 6: SPArTaCuS: Architecture Framework

Our proposed approach SPArTaCuS uses SDN to accomplish service prioritiza-

tion for emergency services in a stressed situation. In particular, SPArTaCuS uses the

SDN framework with OpenVirtex (OVX) to create virtual SDN networks for different

service classes that are mapped to the physical infrastructure. Fig. 6 presents a high-level

14

view of the SPArTaCuS framework. In our approach, the middlebox layer has a priority

management layer on top of OVX; that is connected to multiple SDN controllers on the

northbound interface. We argue to divide the traffic based on different organizations and

prioritize them using the priority management layer in the middlebox. We illustrate two

situations where SPArTaCuS can be helpful.

1.5.5 SeSAMe: Software Defined Smart Home Alert Management System for Smart

Communities

In SeSAMe [3], we proposed an architectural vision for software defined smart

community home alarm management based on software defined networks. We presented

the protocol messages and systems components for the operation of SeSAMe. With our

approach, should any alert/event such as a fire occur, an automated notification is sent to

all the homes in the neighborhood and to the fire department and the police department

about the fire. At the same time, alerts can also be forwarded to the police and the fire

departments.

Figure 7: Home Architecture

15

Fig. 7 shows the high level architecture of a smart home in SeSAMe. It can be

categorized into two categories: home gateway and sensors. The sensors include different

sensors that are part of the home, e.g., fire sensor, temperature sensor, light sensor, motion

sensor, and so on. All sensors send their data to the home gateway. The controller creates

a database of the readings from various sensors. As shown in the figure, there are three

sensors in the home and the controller creates a database for each of the sensors. The

home gateway consists of a database where the reading from different sensors is stored,

at least temporarily.

Table 1: Message types

Message Type Sender-receiver Description
Update Home-to-Controller Sends updates to

the controller
Trigger Home-to-Controller Event triggered

message to notify
the controller of
any alert

Announce Home-to-Homes Notify the homes
of any alert

Keepalive Home-to-Controller Notify the
controller that the
home is connected

In SeSAMe, we define four different types of messages as shown in Table 1. By

varying the message size and frequency, we measure the efficiency of proposed system.

The preliminary results show that using SDN approach alerts can be communicated very

quickly. Moreover, they give the flexibility of programmable control functions, lower

operating costs, and centralized management, to name a few.

16

1.5.6 Low Delay Video Streaming Using WebRTC for MPEG-DASH in Both Wired

and Wireless Networks

In [81, 83], we studied MPEG-DASH streaming over the WebRTC data chan-

nel. We explored the low delay WebRTC data channel as a transport vehicle for carrying

DASH video sessions, and deploy our own sender side pacing solution for low delay

DASH streaming. Simulation over a relay network using the NS-3 platform, demon-

strates the significant improvement in end-to-end QoE delivery and reduction of start up

and channel switching delays.

Figure 8: DASH Over WebRTC

With WebRTC based solution, which is RTP based, we are not suffering from

TCP under-utilization. However, this comes with a cost because the sender needs to take

over the congestion avoidance logic and pacing the transmission. We use a sender self-

timing transmission scheme, with underlying webRTC congestion signals exposed via

WebRTC APIs to help avoid congestion. Fig. 8 shows our system architecture. A server

serves DASH MPD files and segment data. A DASH client communicates with the server

17

through a WebRTCdatachannel.

In this work, we conduct our experiments on both DASH and WebRTC using an

NS-3 simulated network. In order to run the simulated network with an existing DASH

.js player and WebRTC applications, we deploy two Linux containers using a Linux LXC

library and Chrome as our test web browser. The DASH.js player and WebRTC are de-

ployed as user level applications running on top of two different Linux containers that are

connected by tap devices using an NS-3 simulated CSMA network. Figure 9 shows the

topology setup using NS-3.

Figure 9: WebRTC and WebSocket in NS3 Experiment Setup

Initial simulation demonstrated very high link utilization and a low delay for

DASH over WebRTC as compared with a typical DASH .js client over the HTTP link. In

the future, we will further invest and expose the underlying WebRTC congestion model

to support better QoS adaptation and introduce new sptaio-temporal QoE metrics to MPD

to facilitate better end-to-end QoE optimization. Also, it will be interesting to introduce a

thin middleware layer plug-in that enables WebRTC based peer-to-peer DASH streaming.

18

1.5.7 Wireless Video Traffic Bottleneck Coordination With A DASH SAND

Framework

In [45], we introduced new Quality of Experience (QoE) metrics for DASH sub-

representations, and proposed a marginal utility maximization-based resource pricing

scheme to coordinate multiple video traffic sharing the bottleneck resource. The solution

is based on the DASH SAND (Server And Network assisted DASH) messaging frame-

work. Simulation results demonstrated the QoE multiplexing gains from this solution,

and the pricing control scheme is adopted in SAND messages. The growth of video data

traffic is far out pacing the network capacity growth, and it dictated the reality that a large

portion of mobile video sessions will be operating at a quality of service (QoS) deficit over

a bottleneck. The bottleneck could happen over both the eNodeB wireless channels, over

the home broadband gateway, and the links in the mobile core networks. The original

DASH framework offers an effective rate adaptation scheme within a single streaming

session, but lacks the coordination mechanisms among users sharing a common bottle-

neck. In recent work, DASH SAND (MPEG-DASH Part 5) is addressing this problem

by introducing new messaging and control schemes among DASH servers, clients and

middle boxes (known as DANE: Dash Aware Network Elements). The overall SAND

architecture is illustrated in Fig. 10 [61].

We also introduced a new temporal quality metric and DASH sub-representation

packing solution, to offer finer granular streaming operating points in rates and grace-

ful spatio-temporal quality degradation when streaming rates need to be reduced. For a

19

Figure 10: DASH SAND Architecture

pre-coded DASH segment at a certain PSNR quality level, we can further derive tem-

poral quality operating points by packing the I, P, and B frames according to their if-loss

distortion-induced characteristics. This is achieved by a frame significance function based

frame loss distortion metric [44].

1.5.8 Multi-party Conference Over Virtual Service Edge Router (VSER) Platform

In [8], we investigated Virtual Service Edge Router (VSER) platform a realized

using OpenStack, which is an ICN edge service router with the capability of hosting arbi-

trary realtime and non-realtime services as virtual machines (VM). The platform services

are orchestrated through a programmable framework and takes advantage of scalable for-

warding plane for content distribution.

20

1.6 Organization

The rest of this dissertation is organized as follows: Chapter 2 discuss our research

scope and background knowledge on SDN, Hadoop MapReduce, and MPEG-DASH .

We present our proposed the general AAN-SDN architecture for application performance

optimization in chapter 3. We discuss how AAN can benefit Hadoop MapReduce jobs in

chapter 4. We show our study of user QoE improvement for dynamic adaptive streaming

over HTTP (MPEG-DASH) in chapter 5. We then discuss how AAN can benefit video

streaming using MPEG-DASH in chapter 6. We conclude our work in chapter 7.

21

CHAPTER 2

RESEARCH SURVEY

In this chapter, we will discuss the state-of-art researches that have been done with

regarding to improve the performance for both Hadoop MapReduce and MPEG-DASH

streaming. We then discuss our research scope and related background review for Hadoop

MapReduce, MPEG-DASH, and Software-defined networking.

2.1 Related Work

2.1.1 Hadoop MapReduce Related work

The Hadoop MapReduce [26, 41, 72] as a distributed processing framework has

become the dominant approach for processing volumetric traffic in the big data era.

Many researchers have studied several options to improve MapReduce’s performance.

Recent work, using traditional IP networks, can be grouped into two categories within

given hardware resources: (1) an advanced Hadoop resource scheduling algorithm design

in [24, 25, 34, 68, 71, 73, 76, 78, 79] and (2) job optimization with optimized configuration

parameters using specific hardware in [5, 43, 74].

The Existing Hadoop MapReduce resource scheduling algorithm manages to op-

timize the Hadoop cluster resources such as slave nodes, CPUs, memories, networks,

and disks. Those algorithms fall mainly into three categories: FIFO, capacity-based, and

22

fairness schedulers. There are also heuristic designs that focus on data locality with sim-

ulations. BAR [34] proposed a heuristic task scheduling based on data locality by simula-

tion, by initially finding an ideal data location for job processing in order to reduce the job

running time. However, the assumption of initial job starting and completion time cannot

stand in a real network. The proposed wait and random peeking approach in [68] and a fair

scheduler [78] improves data locality. However, those methods can be further improved

if integrated with network information and by using real-time data traces. SHadoop [23]

takes an approach of modifying standard Hadoop’s map and reducing execution methods

to avoid employing any particular hardware or supporting software. Other similar works,

which use adaptive job performance scheduling under various cluster circumstances are

in [25, 48].

Another aspect of improving MapReduce job completion time can be achieved

using a hardware acceleration approach [6,74]. Special software and hardware need to be

deployed that may not be readily accessible for normal cluster setups. Job specific opti-

mization for MapReduce works is presented in [43, 62]. However, it lacked generalized

methods for the overall performance of MapReduce jobs.

By using the Hadoop cluster under the traditional IP network, MapReduce’s per-

formance can be substantially degraded due to (1) the inherent characteristic of inten-

sive data shuffle frameworks to transfer a large amount of intermediate data among slave

nodes, and (2) default resources’ allocation methods that lack the global view of real-time

network traffic information. TCP related optimization work for MapReduce workloads is

invested in [9,15,77], but the overall operation still bears low-performance improvement.

23

New network frameworks have been studied to identify new approaches to achieve

a better MapReduce performance, such as in MROrchestrator [63], Coflow [11] and Or-

chestra [12] with much more sophisticated application integration designs. Pythia [52]

has similarities with our approach but lacks a clear and comprehensive SDN system de-

sign with respect to MapReduce and a related application-aware approach. A preliminary

idea on our approach was presented in [87]. Our application-Aware network design on top

of SDN provides a common API interface, which can provide a full range of capabilities

for network management and monitoring for different applications. We also measure the

SDN control latency cost in our test cases. Based on the test results, our AAN realization

can be better utilized for applications such as Hadoop M/R, which does not rely on a low

lantency requirement. Our recent work published [85] shows the benefits how such an

AAN-SDN can improve the Hadoop’s run time efficiency.

2.1.2 MPEG-DASH MapReduce Related work

With modern capturing systems for 4K or Ultra High Definition (UHD) and 8K

or ultra high definition television (UHDTV) video, new types of media experiences are

possible where end users have the possibility to choose their viewing direction. Also

with increased interest of immersive HMD devices for VR/360 content playback, user’s

viewing experience suffers because of the present limitations in both of existing network

framework and video delivery methods.

A great deal of work has been done on both video encoder and delivery methods to

reduce transferred media size. Tiling, in the video codec level such as the H.265/HEVC [?,

24

14] refers to a spatial partitioning of a video where tiles correspond to independently de-

codable video streams, which takes a divide-conquer approach to encoding and can reduce

video content size by half. However, it is currently not widely adopted compared with the

H.264/AVC encoding method.

With a 2D flat video, a tiled video can be obtained from a single video by par-

titioning each frame into multiple frames of smaller resolution and by aggregating the

smaller frames coming from the same partition/region of the input frame into a new video.

Here, tiles are defined as a spatial segmentation of the video content into a regular grid

of individual videos. Similar ideas are also being used for creating tile-based VR/360

contents [28, 29, 42, 47, 59, 67].

MPEG-DASH is one of de facto effective adaptive streaming approaches that

can fully utilize the existing physical IP network infrastructure. To utilize the DASH

approach for video streaming, various client sides’ ABR algorithm development have

been proposed. Some of the representatives of the bandwidth-based approach such as

PANDA [46], Elastic [16], Festive [33], SARA [35]. The performance of this approach

can be affected by its bandwidth estimator’s accuracy. Bandwidth estimation and predic-

tion are known to be tough tasks [60,75]. The fundamental design of DASH architectures

makes the DASH client play important roles for a smooth and quality playback by im-

plementing the mechanism for selecting the bitrate and resolution is built into the player.

Buffer-based algorithms (BBA) are also studied such as in BOLA [65]. Such BBA-based

approach is adopted by NetFlix. We also studied the low delay MPEG DASH streaming

over the WebRTC data channel related in [82, 83] and wireless streaming in [45].

25

DASH also supports the tiling scheme in the Media Presentation Description

(MPD) file [54]. By specifying spatial relationship description (SRD) in the DASH MPD

file, the client can fetch video segments based on current ROIs such as applications in

[10,18,38].New streaming architectures is proposed in [58] to provide an efficient stream-

ing experience. However, such experiments have been conducted using the existing IP

network architecture. Related research such as improving the quality of experience for

streaming tile-based videos are also being investigated in [50, 59]. We studied the DASH

QoE in [84] using the traditional IP network as our benchmark.

Our research is to exploit how SDN can be used in Hadoop and DASH including

regular 2D and immersive streaming scenarios. One recent work in [86] shows our AAN-

SDN architecture design for MPEG-DASH based streaming and Tile-based immersive

streaming.

2.2 Research Scope

In our research, we focus on understanding and exploring the issues regarding

the current network and application. Fig. 11 shows our research scope. We started with

Hadoop as one experimental application to build an AAN-SDN based network architec-

ture. We investigate the bottleneck point under traditional network architecture. We then

propose our AAN-SDN architecture. We explain our architecture in details. With in-

tensive real test cases, we show the performance gain under proposed architecture. We

then extend our methodology to improve the video streaming performance using MPEG-

DASH.

26

Figure 11: Research Scope

2.3 Background Overview

We first present a brief background on three important parts for our work: software-

defined networking, MapReduce framework, HiBench benchmark suite and MPEG-DASH.

2.3.1 Software-defined Networking

Software-Defined Networking (SDN) [39, 57] provides a dynamic, manageable

and cost-effective platform for making it an important platform for the high-bandwidth,

dynamic nature of today’s network applications. Fig 3 shows the SDN architecture. It

decouples the control and data forwarding layers and provides the programming interface

for the underlying forwarding devices as well as upper application layer. The SouthBound

and NorthBound APIs are provided as communication channels between the SDN layers.

AAN can be realized using an SDN architecture that includes two main components: an

SDN controller and a traffic forwarding protocol using the forwarding devices. An SDN

controller is a software application that manages application flows to enable a dynamic

27

and controllable networking environment. The popular SouthBound communication pro-

tocols between SDN controllers and forwarding devices are OpenFlow [39,49,57], which

allows servers to instruct forwarding devices where to send packets.

Forwarding
Layer

SDN Control
Layer

Network control Applications

Application
Control
Layer

Application Controller

SouthBound API (eg., OpenFlow)

NorthBound API

Figure 12: Software-Defined Network Architecture

2.3.2 MapReduce Framework

A Hadoop cluster includes one master node to manage the cluster’s metadata,

such as the Hadoop File System (HDFS) and a resource manager such as YARN [70]

that manages Job and task tracker for each submitted MapReduce job. Designated slave

nodes run as computing powers. A Hadoop cluster is normally deployed in a closed

and control environment such as in an Enterprise or a Campus datacenter (DC). Hadoop

MapReduce [72] is a distributed and parallel computing framework that runs on top of

the Hadoop File System (HDFS). A typical MapReduce program is composed of mixed

operations among various numbers of mapper and reducer functions. Fig. 13 shows the

28

Figure 13: MapReduce WorkFlow

major MapReduce workflows and data movements. After the job submission, the input

data split into blocks of data. The number of mapper and reducer functions plays a vital

role to decide how MapReduce jobs are running on a Hadoop cluster. Based on the design

of the MapReduce platform, there is a critical data movement phase when a job is running

(called shuffle) that represents the output of a mapper function that is transferred to reduce

functions for the final processing. How fast the shuffle phase is completed can affect the

overall job completion time. We summarize the possible situations where various traffic

patterns might occur in a Hadoop cluster:

• HDFS management such as a cluster health check

• File reads and writes from HDFS such as data replication, MapReduce input and

output, and Cluster balancing

29

• Data shuffle among data nodes

• Interaction between TaskTracker such as data shuffles from mapper to reducer func-

tions and data write back to HDFS as the final output.

2.3.3 MPEG-DASH

Figure 14: MPEG-DASH System Overview [51]

MPEG-DASH (ISO/IEC 23009-1) is a vendor-independent, international stan-

dard. It bears the same video streaming approaches such as Apple HLS, Microsoft Smooth

Streaming, and Adobe HDS. The goal of the DASH approach is to provide continued

adaptation to the bandwidth situation of the client, reduce playback delay and increase

the scalability and flexibility of client’s adaptive bitrate (ABR) schema. It utilizes the

existing HTTP-based CDN and caches related techniques to bypass NATs and firewalls

and ease the network packet traversal in the network. The fundamental idea of DASH

is depicted in Fig 14 [51]. A Media Presentation Description (MPD) file stored on the

server side depicts the metadata of video segments such as segment durations, video/au-

dio codec, bitrate, video resolutions, and how segments are stored indicated by segment

30

reference schemes The client first fetches the MPD file to learn the URLs of all video

segments. Thus, the video segments available from a video server. The ABR adaptation

mechanism is conducted on the client side for each segment to determine which quality

of a video segment is to be fetched. Bitrate switchover happens when network bandwidth

or client buffer changes. By adaptively changing the downloaded bitrate, it provides a

smooth playback experience for the user without much rebuffer situations.

31

CHAPTER 3

PROPOSED ARCHITECTURE

In this section, we discuss the status for our design approach of AAN-SDN archi-

tecture and preliminary results w.r.t our two use cases: Hadoop and MPEG-DASH.

3.1 General AAN-SDN Architecture and Implementation

Forwarding

Layer

Traffic
Monitor

Flow
ReRoute

Shortest
Path

Topology
Discover

HDFS

Controller

MapReduce

Controller

Transport Layer: TCP, UDP

Network Layer: ARP, ICMP,

IP

Physical Layer: LLDP

Packet Forwarding

Module

RESTAPI

Engine

WebServer

Traffic Monitor

Module

OpenFlow Compatible Devices

 Core
SDN

Controller
Layer

Apps
Layer

Network
control

and
Monitor
Layer

SSH IperfApplication Specific Control Modules

Network Management and
Monitoring Layer

Core SDN Controller Layer

Figure 15: General AAN-SDN Architecture

32

In this section, we present our proposed AAN-SDN platform design and imple-

mentation in general. We first introduced our layered SDN network architecture then

conducted SDN-assisted MapReduce job completion time optimization. Starting from

the bottom to the top layer, our proposed architecture (see Fig. 15) segregated our design

into three main components:

• Core SDN Controller Layer

• Network control and monitor Layer

• Application-specific Layer

3.1.1 Core SDN controller Layer

In the core SDN layer, we implemented two network modules, Packet Forward-

ing, and Traffic Monitoring. In the packet forwarding module, we applied the network

primary forwarding functions including the link layer discovery protocol (LLDP) in the

physical network layer. The implementation was based on OpenFlow-compatible for-

warding device. In the network layer, we implemented the forwarding function for the

Internet Control Message Protocol (ICMP) messages, which is the key mechanism used

to give feedback on network problems that could prevent packet delivery. Due to the flex-

ibility provided by the SDN framework, we also addressed a new physical layer flooding

avoidance mechanism such as for the address resolution protocol (ARP). In a traditional IP

network, variations of spanning tree protocols (STP) are widely used to build a loop-free

topology. The configuration of such an STP protocol can be cumbersome and complicated

33

based on the used forwarding devices. We designed and implemented an ARP resolver

in Algorithm 1 that offers smooth ARP package flooding, instead of using a costly STP

protocol as would be the case in a traditional IP network environment. It also takes care

of ARP cache expiration issues by avoiding to send additional ICMP messages to get an

updated ARP entry.

Above the network transport layer, we implemented TCP and UDP packet for-

warding functions for application-aware networking. Based on the application layer’s

port number and protocol type, it will forward packets accordingly. In the traffic moni-

tor module, we implemented lightweight REST-API services to proactively fetch global

network information such as port traffic for each forwarding device, flow installation/-

modification, and traffic details in a managed time interval. The REST-APIs are designed

to be lightweight without introducing extra overhead for the SDN controller. One Apache

web server collects the pulled results from the REST-APIs and aggregates traffic details

to provide any traffic alerts and Traffic Engineering (TE) recommendations.

3.1.2 Network Control and Monitor Layer, and Adaptive Traffic Engineering

In the network control and monitoring layer, the global network topology was dis-

covered where we took an adaptive traffic engineering approach by feeding into a shortest

path algorithm module to calculate a path for each pair of network node/hosts on an on-

demand basis. The traffic monitor component, using REST-APIs’ services, deployed at

the core SDN controller layer proactively pulled network traffic information from the net-

work. If there were any pre-defined traffic priority violations, a traffic reroute using a flow

34

Algorithm 1: ARP Resolver Algorithm
Data: ARP Flows ARPr

Result: ARP Processing Decision (Forwarding/Blocking/NoAction)
ARP cache initialization for each connect switch;
Read incoming ARP packets: ;
if is ARP Broadcast then

if ARP cache is empty then
Add this entry to ARP Cache;
Add expire timer to this entry;
Flood this packet;

else
if exists then

if entry timer =< ARP Timer then
Renew entry timer;
Do not flood this packet;

else
Renew entry timer;
Flood this packet;

end
else

if is coming from a different port from existing entry then
Do not flood this packet;

else
Add this entry to ARP Cache;
Add expire timer to this entry;
Flood this packet;

end
end

end
else

Forward ARP Request/Reply Packet;
end

35

OVS1

ARP
request

Flow
lookup ()

Host-A Ryu SDN
Controller

OVS2 Host-B

ICMP
echo

Flow Not Exists ARP Flooding ARP

Flooding

ARP

Reply

Install Flows

Udpate:
HostTracker()ARP ReplyARP

Reply

ShortestPath()

ARP Reply

Install Flows

ICMP echo

Flow Exists, Ping will go through.

t1

t2
Cross Traffic (>= pre-set Link Bandwidth Threshold

PathOverLap()

Ping_Reroute()

ShortestPath()

Install New FlowsInstall New Flows

ICMP Request

ICMP echo

Flow_clean()

Delete
Previous Flows

Delete
Previous Flows

t3

Udpate

ARP

Cache

Udpate_ARP
_Cache

Cross_traffic
_threshold()

Figure 16: Traffic Reroute Workflow Example

36

reroute component might happen as explained in Fig. 16 that depicts the primary traffic

reroute workflow. From the beginning, the ARP message for a network request such as

Ping, SSH, or other applications. It first looks at the flow table and passes the traffic if

there is an existing matching flow or checks if there are ARP broadcasting messages, oth-

erwise. Flows are installed based on the path provided by the shortest path components.

Flow rereoutes can happen when background traffic (at time t2) on the same route has

over saturated some of the links along the path through adaptive traffic engineering. For

this, the SDN controller recalculates a second shortest path in real time and installs new

flows to reroute the application’s traffic.

3.1.3 Application Layer

In the Application layer, a port number based application recognition feature is

implemented (such as port 22 is by default for the remote secure shell (SSH)). In our

controlled network, the port number can be managed/changed via a separate configura-

tion file that is read by our SDN controller. The modularization of various components

provided by different SDN controllers helps the network administrator to control them

individually in a manageable way. With regard to our specific use cases, we can resue our

foundemental AAN-SDN design and add specific application layer modules:

Hadoop MapReduce AAN-SDN It shows the application layer modules for Hadoop

MapReduce. It includes HDFS and MapReduce control components are implemented

to instruct how to install flows regarding Hadoop file operations and job assignments,

accordingly.

37

MPEG-DASH AAN-SDN It shows the application layer modules for MPEG-DASH.

With regards to DASH streaming applications, web server and DASH client control com-

ponents are implemented to instruct how to install flows over forwarding devices. The

modularization of various components provided by different SDN controllers helps the

network administrator to control them individually in a manageable way. With regarding

to recent Immersive video content such as VR/360 streaming over HTTP. MPEG-DASH

has such support using Spatial Relationship Descriptor (SRD) in MPD file. The SRD

parser module can parse the MPD file and extract the tile coordination based on user’s

ROI change. Shortest path module can calculate in real-time for all shortest paths be-

tween each pair of nodes based on existing network conditions and topology changes.

In our test scenarios, higher priority tiles are rerouted using flow reroute module to the

non-bottle-necked path to achieve better bandwidth utilization.

We discuss the specific application layer details for each of the mentioned appli-

cations, which are the Hadoop MapReduce and MPEG-DASH , in Chapter 4 and 6.

38

CHAPTER 4

AAN-SDN FOR HADOOP

In this section, we first introduce HiBench, which is a Hadoop MapReduce bench-

mark suite. We ran HiBench using real-world MapReduce applications to understand the

depth of MapReduce traffic pattern with various Hadoop configurations such as hardware

and network topology. We then discuss our AAN-SDN design for Hadoop MapReduce

and evaluate how proposed architecture can improve the Hadoop runtime efficiency

4.1 HiBench: Bigdata Micro Benchmark Suite

In this section, we first introduce HiBench, which is a Hadoop MapReduce bench-

mark suite. We ran HiBench using real-world MapReduce applications to understand the

depth of MapReduce traffic pattern with various Hadoop configurations such as hardware

and network topology. We then discuss our AAN-SDN design for Hadoop MapReduce

and evaluate how proposed architecture can improve the Hadoop runtime efficiency

4.1.1 HiBench Summary

HiBench [30] is a big data benchmark suite that helps evaluate different big data

frameworks in terms of speed, throughput, and system resource utilization. Hadoop

MapReduce workloads in the HiBench benchmark suite include a number of applications

such as Sort, WordCount, SQL, and PageRank. Due to our goal of understanding the

39

Figure 17: HiBench Hadoop MapReduce Related Workload Summary

resources’ usage and shuffle data traffic pattern and to later use this in our AAN-SDN en-

vironment, we use the workloads’ categories depicted in Fig. 17 based on given hardware

resources.

4.1.2 HiBench MapReduce: Configuration and Initial Job Runtime Data Collection

40

Figure 18: HiBench MapReduce Workloads Configuration Details

41

Before considering our AAN-SDN framework, we conducted a set of measure-

ments on the Hadoop HiBench benchmark suite while keeping the topology simple and

static to understand traffic patterns. We first discuss HiBench configurations used for this

work.

The main considerations for running a MapReduce job include the job input size,

the number of running slave nodes, the number of mappers and reducers, and the block

size and location of the slaves. The Hadoop file block size was set to 32MB due to

our limited hardware resources for the experimental platform and the replication factor

is set to 2. Additional Hadoop related configurations are displayed in Fig 18. One of

our goals in this work is to understand the shuffle traffic of Hadoop M/R. The selected

configuration parameters are the key control points for our proposed AAN platform. For

the rest, Hadoop default parameter values were used.

The small files problems [26] are avoided by limiting the total given file size. We

setup a HiBench configuration based on a Hadoop MapReduce job type and the network

topology locations for slave nodes as shown in Fig 18. Consider test configuration “B-1”

as an example to explain our setup of HiBench: its input file size is 48MB. The number

of mappers and reducers set to one each. At this configuration setup, we compare the

runtime difference with other “B-X” configurations as well as other test configurations

using different HiBench settings. Slave locations are depicted in Fig. 19. For a TA type,

only one slave is active for the submitted job. A TA case sets up a base comparison

with other topology configuration types for the same MapReduce job with respect to job

CPU, memory consumption and how long does it take to complete the job. We also ran a

42

(a) (b)

(c)

(d)

Figure 19: Topology Type (a) TA, (b) TB-1, (c) TB-2, (d) TC, TD

MapReduce job under different slave locations using a various number of slave nodes to

understand if the location of the slave could affect the job completion time. For example in

the TB-1 and TB-2 configuration setup, two slaves ran under the same topology location

in TB-1 while they were in different locations for TB-2. A TE type uses eight slave nodes

that are evenly distributed under four forwarding devices as shown in Fig. 29(a).

Some of the predefined MapReduce jobs in HiBench can be assigned a particular

data size for input such as its micro workloads, WordCount and Sort, while others use

43

different input parameters such as for Join and Scan [56] from the SQL workload. For

example, a Join workload using two parameters to set up the workloads, “number of

Universities” and “pages”, instead of specifying the size of the input data. To ensure our

input data size is the same, we conducted an initial experiment and derived the following

relation based on empirical runs:

HiBench SQL workload: Join, Sort, Aggregation

Input Size(MB) =
Number of Universities ∗ 1.8

105
. (4.1)

HiBench WebSearch workload: PageRank

Input Size(MB) =
Number of Universities ∗ 2

6
√

2 ∗ 5000
. (4.2)

We determined that only the parameter, “number of Universities”, can change the

input data size for workloads such as Join, Scan, and PageRank. By varying the predefined

parameters, we keep our test configuration consistent with the same amount of input data

size for different workloads.

4.2 Data Collection Cases

Hadoop MapReduce hardware resource data collection is conducted for a set of

small static topology configurations. The goal is to understand the runtime resource con-

sumption such as CPU, memory, and job completion time for each HiBench workload

that is depicted in Fig 18.

Altogether, there were 330 tests. Because of the size of the test cases, was ran each

test three times for each configuration to compute the average value; we also calculated the

95% confidence interval (CI) to determine the oscillatory nature of the MapReduce jobs.

44

Table 4 lists the detailed values for reference. Based on our observations that different

HiBench jobs behave differently, we first examined the resource usage separately from

each other for each HiBench configuration. We will then present a combined analysis.

4.2.1 Average CPU Usage Summary

Fig. 20 depicts the average CPU usage for various configurations. From the runs,

we made the following observations:

• The single slave node uses CPUs most extensively, compared with other configura-

tions. It has the highest CPU usage for a single slave node.

• When the number of mappers and reducers increases, the CPU usage increases

slightly using the same input size, such as B-1 vs. B2 and B3 vs. B4. Even though

for E-X configurations there is a slight drop for some jobs such as WordCount and

Scan, the values are still within the 95%CI range. The reason for such behavior is

due to over resource allocations since our testbed had limited hardware.

• When the number of slave nodes increases, the average CPU usage decreases in

most our cases; for example, compare between D-1 and E-X.

• The location of a slave node in our setup does not play a significant role in affecting

the overall CPU usage with consistent bandwidth allocation on each interconnected

link.

• The overall CPU usage has significant oscillation for the same set of test configu-

rations even with no background processes running on the same system. The main

45

reason is due to the efficiency of the JVM resource allocation and release in the

MapReduce platform at the runtime environment.

• PageRank has a higher CPU usage compared to other jobs, while others show sim-

ilar CPU usage trends.

46

!"!!

#!"!!

$!"!!

%!"!!

&!"!!

'!"!!

(!"!!

)!"!!

*!"!!

+!"!!

#!!"!!

,
-
#

.
-
#

.
-
$

.
-
%

.
-
&

/
-
#

/
-
$

0
-
#

1
-
#

1
-
$

1
-
%

,
-
#

.
-
#

.
-
$

.
-
%

.
-
&

/
-
#

/
-
$

0
-
#

1
-
#

1
-
$

1
-
%

,
-
#

.
-
#

.
-
$

.
-
%

.
-
&

/
-
#

/
-
$

0
-
#

1
-
#

1
-
$

1
-
%

,
-
#

.
-
#

.
-
$

.
-
%

.
-
&

/
-
#

/
-
$

0
-
#

1
-
#

1
-
$

1
-
%

,
-
#

.
-
#

.
-
$

.
-
%

.
-
&

/
-
#

/
-
$

0
-
#

1
-
#

1
-
$

1
-
%

2345 6347839:5 ;3<: 28=: >=?@A=:B

,
C
@
4
=
?
@
D/
>
E
D

E
F
=
?
@
D>
@
4
8
@
:
5
=
?
@
DG
H
I

J<.@:8KD634BL3=7F

Figure 20: CPU Load Summary

47

4.2.2 Average Memory Usage Summary

Fig. 21 depicts the average memory usage for various HiBench configurations.

From the runs, we observed the following:

• A single slave had the lowest memory usage even with the lowest input data size

when comparing configuration A-1 with others.

• The average memory usage increases dramatically when the data size increase. For

example, the average memory usage increased nearly 500%(≈ 2500/500) com-

pared to six times in data growth(≈ 304/48).

• The memory usage was in direct proportion to the number of allocated mappers and

reducers. However, in some cases, we noted opposing results, particularly in the C-

2 and E-X cases. Even though they still fell into the calculated 95%CI range, the

reason for such behavior was due to over-resource allocations given our hardware’s

limitations.

• The overall memory usage had less oscillation for the same set of test configurations

compared to the CPU usage.

• All of the jobs had the same level of memory usage when compared to the same set

of configuration runs.

48

!"!!

#!!"!!

$!!!"!!

$#!!"!!

%!!!"!!

%#!!"!!

&!!!"!!

&#!!"!!

'!!!"!!

(
)
$

*
)
$

*
)
%

*
)
&

*
)
'

+
)
$

+
)
%

,
)
$

-
)
$

-
)
%

-
)
&

(
)
$

*
)
$

*
)
%

*
)
&

*
)
'

+
)
$

+
)
%

,
)
$

-
)
$

-
)
%

-
)
&

(
)
$

*
)
$

*
)
%

*
)
&

*
)
'

+
)
$

+
)
%

,
)
$

-
)
$

-
)
%

-
)
&

(
)
$

*
)
$

*
)
%

*
)
&

*
)
'

+
)
$

+
)
%

,
)
$

-
)
$

-
)
%

-
)
&

(
)
$

*
)
$

*
)
%

*
)
&

*
)
'

+
)
$

+
)
%

,
)
$

-
)
$

-
)
%

-
)
&

./01 2/034/561 7/86 .496 :9;<=96>

(
?
<
0
9
;
<
@A

<
B
/
0
C
@

D
E
9
;
<
@F
A
*
G

H8*<64I@2/0>J/93E

Figure 21: Memory Load Summary

49

4.2.3 Job Completion Time: Comparison

Fig. 22 depicts the average job completion time for various configuration setups.

From the runs, we observed the following:

• The input size had the largest impact on the average job completion time. The

larger the data size, the longer it took, such as the comparison between C-X and

D-1. However, with the same input size, more slave nodes reduced the overall time,

such as the comparison between D-1 and E-X.

• The number of mappers and reducers for the same set of HiBench workloads also

played an important role in the completion time in most configuration cases except

for Scan. However, in some cases, it showed the opposite results such as in PageR-

ank. The slight time increased from E-2 to E-3 was due to over resource allocations

on the given hardware’s limitation.

• Pagerank has a significant time increase compared with other workloads due to its

CPU-intensive nature.

50

!"!!

#!!"!!

$!!"!!

%!!"!!

&!!"!!

'!!"!!

(!!"!!

)!!"!!

*!!"!!

+!!"!!
,
-
#

.
-
#

.
-
$

.
-
%

.
-
&

/
-
#

/
-
$

0
-
#

1
-
#

1
-
$

1
-
%

,
-
#

.
-
#

.
-
$

.
-
%

.
-
&

/
-
#

/
-
$

0
-
#

1
-
#

1
-
$

1
-
%

,
-
#

.
-
#

.
-
$

.
-
%

.
-
&

/
-
#

/
-
$

0
-
#

1
-
#

1
-
$

1
-
%

,
-
#

.
-
#

.
-
$

.
-
%

.
-
&

/
-
#

/
-
$

0
-
#

1
-
#

1
-
$

1
-
%

,
-
#

.
-
#

.
-
$

.
-
%

.
-
&

/
-
#

/
-
$

0
-
#

1
-
#

1
-
$

1
-
%

2345 6347839:5 ;3<: 28=: >=?@A=:B

C
D
=
A
@
7
9
8
@
E;
3
F
E

A
9
:
EG
<H

@
EI
J
K

L<.@:8ME634BN3=7J

Figure 22: Job Completion time Summary

51

In summary, each HiBench workload behaved differently even with similar con-

figuration setups. Clearly, understanding the different behaviors of various MapReduce

jobs was an essential step for us for our SDN-based AAN environment for MapReduce

applications.

4.3 AAN-SDN Hadoop Architecture and Implementation

In this section, we present our proposed AAN-SDN platform design and imple-

mentation. For implementation of SDN, we used Ryu [55] and OpenFlow v1.3. We first

introduced our layered SDN network architecture then conducted SDN-assisted MapRe-

duce job completion time optimization. Starting from the bottom to the top layer, our

proposed architecture (see Fig. 23) segregated our design into three main components:

Forwarding

Layer

Traffic
Monitor

Flow
ReRoute

Shortest
Path

Topology
Discover

HDFS

Controller

MapReduce

Controller

Transport Layer: TCP, UDP

Network Layer: ARP, ICMP,

IP

Physical Layer: LLDP

Packet Forwarding

Module

RESTAPI

Engine

WebServer

Traffic Monitor

Module

OpenFlow Compatible Devices

 Core
SDN

Controller
Layer

Apps
Layer

Network
control

and
Monitor
Layer

SSH Iperf

Figure 23: SDN Hadoop Experimental Architecture

52

4.3.1 Application Layer

In the Application layer, a port number based application recognition feature is

implemented. In our controlled network, the port number can be managed/changed via

a separate configuration file that is read by our SDN controller. With regards to Hadoop

applications, HDFS and MapReduce control components are implemented to instruct how

to install flows regarding Hadoop file operations and job assignments, accordingly. The

modularization of various components provided by different SDN controllers helps the

network administrator to control them individually in a manageable way. Four groups of

application layer components are deployed:

• SSH is used for remote access control. Hadoop Master node uses SSH to start/end

slave nodes’ services and other control messages.

• Iperf is implemented as background traffic injections.

• HDFS controller is deployed to control files and write/read in a Hadoop cluster.

• MapReduce controller is used for job assignment and monitoring services.

4.4 MapReduce Traffic Optimization Using SDN

In this section, we report on experiments conducted using our proposed AAN-

SDN platform to optimize MapReduce job running oversaturated network links.

53

4.4.1 System Workflow

Fig. 24 explains the workflow of our running system. After the Hadoop and Hi-

Bench configuration are completed, the SDN controller starts to run Hadoop MapReduce

jobs. While such jobs are running, the SDN controller will install flows based on applica-

tion types and collect network traffic information accordingly.

Figure 24: Experimental Network Setup

4.5 Performance Evaluation

4.5.1 Proof-of-Concept

In this section, we used a small set of M/R job and a relative small ring network

topology to test the usability of proposed AAN-SDN architecture.

4.5.1.1 Loop Network Topology

In this experiment, the testbed is created using virtual machines (VMs) in the

Global Environment for Network Innovations (GENI) [19] platform. Fig. 25 shows our

topology setup. We created a ring topology using five OpenVSwitches (OVSs) as for-

warding devices. To illustrate the impact, we consider a Hadoop cluster with one Hadoop

54

master and two data nodes (DN) at two different locations, along with two iPerf traf-

fic generators for background traffic. All of the VMs have one core X5650@2.67GHz,

880MB memory. The bandwidth between the OVSs and host was set to 100 Mbps. The

link threshold was set to 50 Mbps between OVS1 and OVS5.

OVS1

OVS5

OVS3

OVS2

OVS4

Link

Threshold

50Mbit/s

DN2TrafficGen

DN1

Master

TrafficGen

Ryu Controller

TCP connection

Figure 25: Loop Network Topology Setup

4.5.1.2 Preliminary Results

In this environment, we tested Hadoop M/R performance by running the Word-

Count program with the following file sizes: 200 MB, 300 MB, and 400 MB. Fig. 26

shows that Hadoop WordCount runtime decreases by an average of 23% when using our

AAN platform.

Fig. 27 shows the SDN controller system load based on the number of flows.

Before a re-route happens, flows traverse 2 switches (OVS1 and OVS5), and the CPU

load increases significantly from 50% to 100% while the flows’ number increases from

50 to 100. When the re-route happens, the CPU load is higher using 5 switches compared

with using 2 switches. In both cases, the CPU load keeps high occupancy after 100 flows.

55

Figure 26: Hadoop M/R runtime Comparison

The CPU load hits the bottleneck around 500 flows before the flow re-route and 100 flows

after. However, the system memory use was steady around 6% in both cases.

The SDN controller sends the flow installation and delete instructions through the

TCP connection among all connected switches. Fig. 28 shows that the control traffic

increases when the number of flows increases. The control traffic size increases go up

from 500 Kbps to 800 Kbps when the number of flows changes from 50 to 100; the rate

of increase slows down from 100 to 500 flows. It finally hits the transfer bottleneck after

500 flows. Thus, an important factor to address with Hadoop in an AAN environment is

to ensure that the SDN controller can handle a sufficiently large number of flow re-routes

without hitting the bottleneck.

In this experiment, we presented an application-aware networking environment

using SDN for Hadoop M/R applications running in a distributed environment. We used

GENI testbed to test the proof-of-concept where flow rerouting aliviates performance

56

 500

 700

 900

 1000

 0 50 100 500 1000

O
u

tb
o

u
n

d
 T

ra
ff

ic
 (

K
b

it
/s

)

Flow Counts

Path [OVS1, OVS2]
Path [OVS1, OVS2, OVS3, OVS4, OVS5]

Figure 27: SDN Controller System Load

 30

 50

 70

 100

 0 50 100 500 1000

C
P

U
 o

r
M

e
m

e
o

ry
 L

o
a

d
 (

%
)

Flow Counts

CPU Load For Path [OVS1, OVS2]
CPU Load For Path [OVS1, OVS2, OVS3, OVS4, OVS5]

Memory Usage

Figure 28: Control Traffic

57

bottleneck. We conducted a proof-of-concept experiment to show that the AAN approach

reduces the compute time. The flow re-route results show that the SDN controller is CPU

intensive.

4.5.2 Scale up with HiBench and Larger Topology

In this section, we tested the proposed AAN-SDN architecture with HiBench, a

larger Hadoop cluster and network topology.

4.5.2.1 Data Center Network Topology

We deployed our SDN-based Hadoop and HiBench environment on the GENI

testbed [19] platform. We setup a network topology as shown in Fig. 29(a) to emulate a

data center network topology with hosts associated with different network switches that

correspond to Hadoop nodes. We used Openvswitch (OVS v2.3.1) [55] as our forwarding

devices and numbered the DPID in order from ’1’ to 7’. One Hadoop master node and

eight slaves were deployed. The deployed nodes have the same hardware configuration

with a single core of Intel(R) Xeon(R) CPU X5650 @ 2.67GHz and 8 GB RAM. Each

connected link has 100 Mbps bandwidth allocation.

58

(a) (b) (c)

Figure 29: (a) Network Topology, (b) Traffic Path Before Reroute, (c) Traffic Path After Reroute

59

4.5.2.2 Network Flow Traffic Capture

Network flow traffic is captured when running the HiBench workload using SDN

by designed REST-API services, which proactively pulls global network traffic informa-

tion based on any given port number. Table 2 shows the related port number regarding

our MapReduce benchmark tests. For example, data shuffling traffic is captured during

the map-reduce shuffle phase using port number 50010.

Table 2: Monitored Port Number

Traffic
Catagory Explanation Port Number

Hadoop File System
Operation (HDFS) 50010

HDFS Hadoop Datanode Transfer 22
Master Node Http IPC 54310

Yarn Resource Scheduler 8030
YARN Yarn Resource Tracker 8031

Yarn Resource Manager 8032
Others Iperf 5001

Secure Shell (SSH) 22

Fig. 30 depicts the data shuffling pattern for each workload. Detailed flow traffic

is listed in Table 5. The major traffic has been captured from port number 50010, the ma-

jority of this being from the MapReduce shuffling phase. We summarize our observations

as follows:

1. The shuffling data size is in direct proportion to the input data. Except for the

WordCount workload, which has minimal increase, the others have significant data

flows. This is to show that WordCount has a minimal shuffling data size. The other

60

cases have more output data than the input size:

(a) The Sort workload has roughly 110% of the input data size that gets shuffled.

(b) In the Join workload, around 70% of the input data gets shuffled.

(c) In the Scan, around 120% of the input data gets shuffled.

(d) In the PageRank about 240% of the input data gets shuffled.

2. The number of mappers and reducers has no noticeable effect on the shuffling data

sizes, such as the comparison between C-1 and C-2. The total shuffle size is the

sum of individual traffic among possible slave nodes.

To have a deeper understanding of what composes the shuffle traffic, we capture

the data transfer for each pair of slave nodes. Due to the nature of the replication factor

we set, even though the sum of the total shuffle traffic is within our calculated 95%CI

range, the pairs of slave nodes that generate the shuffle traffic are not fixed for each run.

However, we list a network trace in Table 6 to explain the different behaviors of each

workload. By identifying the shuffling pattern, we understand what the traffic size is and

which network link it takes to transfer the data. From our test results, we summarize our

observations as follows:

1. The number of mappers and reducers plays important roles for shuffling pairs. For

examples, in the B-1 and B-2 configuration with one and two mappers/reducers,

respectively, there is only one pair of shuffling traffic on case B-1 but there might be

two pairs on B-2. It mostly depends on the current system load and FIFO resource

allocators.

61

2. The input data size also contributes to the number of shuffling pairs. For example,

there is a significant number of pairs that increases from configuration B-X to E-X.

Consider workload Join with the E-3 test case for an example to note the random-

ness of the flow traffic pattern; the detailed traffic direction is listed in Table 6. There are

53 sets of individual shuffle pairs. The uncertainty of MapReduce traffic is not easy to

address by a traditional IP network with less individual traffic flow control.

62

!
"!!
#!!
$!!
%!!
&!!
'!!
(!!
)!!
*!!

+
,
"

-
,
"

-
,
#

-
,
$

-
,
%

.
,
"

.
,
#

/
,
"

0
,
"

0
,
#

0
,
$

+
,
"

-
,
"

-
,
#

-
,
$

-
,
%

.
,
"

.
,
#

/
,
"

0
,
"

0
,
#

0
,
$

+
,
"

-
,
"

-
,
#

-
,
$

-
,
%

.
,
"

.
,
#

/
,
"

0
,
"

0
,
#

0
,
$

+
,
"

-
,
"

-
,
#

-
,
$

-
,
%

.
,
"

.
,
#

/
,
"

0
,
"

0
,
#

0
,
$

+
,
"

-
,
"

-
,
#

-
,
$

-
,
%

.
,
"

.
,
#

/
,
"

0
,
"

0
,
#

0
,
$

1234 523672894 :2;9 17<9 =<>?@<9A

B
<
C
@
?
6
8
7
?
DD
E
9
4
?
F
?
6
;<
4
?
D

/
<
4
<
DG
3
<
9
H
I
?
3
!
B
-
"

J;-?97KD523AL2<6H

Figure 30: Hadoop MapReduce Intermediate Data Transfer

63

4.5.2.3 ARP Flooding Avoidance Using ARP Resolver

Our proposed ARP resolver method (see Algorithm 1) provides smooth ARP

cache expiration and packet flooding, instead of using a costly STP protocol as would

be the case in a traditional IP network environment. We implemented the default ARP

packet defined in RFC 826, which is 28 bytes. We then conducted a measurement on how

the proposed ARP can avoid flooding issues using the minimum ARP request packets. If

we use slave nodes S1 and S7 as an example, the shortest path is S1→Switch 4→Switch

2→Switch 7→S7. If S1 sends an ARP request, an ARP flooding packet must be sent out

if the previous ARP cache has expired. If that is the case, the ARP flooding packet will

be forwarded to all network forwarding devices by each other.

Figure 31: ARP Broadcasting Packet Cause CPU Utilization High in a Loop Topology

Based on our experimental result shown in Fig 31, the forwarding switch’s CPU

can run almost at 100% utilization without any ARP flooding avoidance methods, which

causes the network to stop functioning properly. However, it only takes 20 ARP flooding

64

packets (Each ARP broadcasting packet can only be seen twice by the connecting port)

to travel through the network by using our proposed ARP resolver. With the minimum

number of flooding packets, the proposed ARP resolver algorithm can minimize the flood-

ing traffic and destination searching time, without overwhelming the forwarding switch’s

CPU.

4.5.2.4 SDN Traffic Reroute through Adaptive Traffic Engineering

The behavior of the data shuffle phase for an individual MapReduce workload has

shown various data sizes and patterns based on our study. One can assume that if such a

workload was running on a busy network link, the increase in delay would be expected. A

traditional IP network lacks real-time global traffic information updates and the network

administrator has less control over a specific network flow with the minimum cost. With

regards to Hadoop MapReduce applications, data could shuffle from any pair of running

slave nodes. If any delay happens on any of the shuffle phases, the overall job completion

time can be prolonged.

Our goal of running Hadoop MapReduce jobs using the proposed AAN-SDN ar-

chitecture is to investigate how much SDN can alleviate from a busy Hadoop cluster based

on the different sizes of input data and the number of slave nodes. Table 3 shows experi-

ment scenarios and test results. Two cases are considered. The first is 48MB input size

with two slaves nodes and the second is 240MB input size with four slave nodes. To

simulate a busy cluster situation, we induced background traffic using iperf on selected

links.

65

Fig. 29(b) depicts the MapReduce job path utilization before reroute. The running

Hadoop nodes are marked in green colors. They are the master node and S3, S4, S5, and

S6 are the slave nodes. For reroute test case 1 (shown in Table 3), slave nodes S3 and S5

ran HiBench workloads. The shortest path module from the SDN platform installed flows

along the path [P1, P2, P3] at the beginning of the system and ran in order to start the

Hadoop cluster and start MapReduce jobs. Meanwhile, path [P1, P7, P5, P6] was saved

as a backup shortest path between the master node and slave nodes S3 and S5.

Table 3: HiBench Workloads Traffic Reroute Using SDN

Workloads Sort WordCount Join Scan Pagerank
ReRoute Test 1 ReRoute Test 2 ReRoute Test 1 ReRoute Test 2 ReRoute Test 1 ReRoute Test 2 ReRoute Test 1 ReRoute Test 2 ReRoute Test 1 ReRoute Test 2

Slaves S3 S5 S3 S4 S5 S6 S3 S5 S3 S4 S5 S6 S3 S5 S3 S4 S5 S6 S3 S5 S3 S4 S5 S6 S3 S5 S3 S4 S5 S6
Input Data Size (MB) 48 240 48 240 48 240 48 240 48 240

No Background Traffic with path [P1, P2, P3] 49±2 338±56 56±3 220±17 171±12 423±38 116±7 146±19 190±18 713±33
Background Traffic with path[P1, P2, P3] 66±4 483±40 75±2 393±27 216±4 616±63 151±27 208±43 256±56 1022±224

SDN Reroute Path[P1, P5, P6, P7] 55±2 360±62 61±3 234±18 187±10 452±30 130±3 167±34 212±7 745±20
Reroute Time Consumption 7±1 24±10 8±5 14±27 16±13 29±15 14±5 21±14 23±16 31±15

Improvement 20.00% 34.00% 22.00% 68.00% 16.00% 36.00% 16.00% 25.00% 20.00% 337.00%

Iperf background traffic runs on the path [P2, P3] consuming 90Mbps bandwidth,

which is our predefined threshold for any flow reroute scenario. We first disabled the

reroute module and forced the MapReduce jobs to run on the oversaturated links between

S3 and S5 to emulate a static environment. When the reroute module is enabled, the SDN

controller detects there is data flow over an acceptable threshold of background traffic

along the first pair of the shortest path. New flows are installed using the backup path

[P1, P7, P5, P6] to avoid any potential delays as shown in Fig. 29(c).

In summary, Fig. 32 shows that with our adaptive traffic engineering approach

through rerouting, the MapReduce Job completion time can be reduced by 16% to 300%

66

depending on test case configurations. The improvement is varied and it depends on

the different behaviors of each MapReduce job. Consider the PageRank for example;

its shuffle phase has over 200% more data output compared with the input data size. It

also has the most runtime efficacy improvement in terms of job completion time. Even

though the improvements for other jobs are not as significant as PageRank, it still shows

an increasing trend when the data input size increases.

Figure 32: Hadoop Job Runtime Comparison

As our result shows, our AAN platform for Hadoop MapReduce job optimization

offers a significant improvement compared to a static, traditional IP network environment.

Our design can be extended to other MapReduce jobs and various network topology with-

out much additional complexity.

67

Table 4: Hibench Workload: Hardware Related Data Collection

Configurations A B-1 B-2 B-3 B-4 C-1 C-2 D-1 E-1 E-2 E-3
Avg 95% CI Avg 95% CI Avg 95% CI Avg 95% CI Avg 95% CI Avg 95% CI Avg 95% CI Avg 95% CI Avg 95% CI Avg 95% CI Avg 95% CI

Sort
Time 42.00 4.30 58.67 6.25 52.67 6.25 51.67 3.79 52.33 3.79 155.00 22.77 158.67 45.83 248.33 49.33 115.67 18.97 127.00 43.53 169.00 160.09
CPU 68.17 5.17 38.27 1.23 45.33 5.09 36.80 4.35 43.70 1.51 29.10 14.33 33.53 14.62 32.37 14.90 23.17 3.11 21.67 6.48 21.67 14.69

Memory (MB) 342.43 7.40 638.60 31.18 641.13 44.53 620.70 10.82 641.13 13.53 1338.67 205.58 1380.97 85.03 1661.17 153.65 2556.47 254.89 2517.37 205.55 2694.87 387.48
WordCount

Time 47.64 12.40 64.72 4.29 69.12 10.93 62.90 13.81 62.20 6.44 173.07 17.08 167.54 55.09 269.42 34.56 135.14 85.04 104.03 8.61 133.07 40.71
CPU 69.67 2.73 37.17 16.37 41.03 11.80 38.13 10.13 45.87 0.94 30.93 11.18 29.63 3.11 36.27 6.02 27.20 12.44 33.30 5.19 26.07 17.27

Memory (MB) 457.13 33.30 631.57 3.19 761.13 249.26 760.87 110.73 797.63 38.83 1623.07 454.34 1552.73 7.50 1753.57 309.09 2466.47 390.76 2659.37 209.67 2533.60 812.82
Join

Time 108.97 25.89 123.22 4.38 160.40 14.21 117.85 21.37 111.69 9.53 288.49 38.53 167.75 8.13 383.02 30.65 200.23 38.76 213.25 10.19 217.93 31.11
CPU 44.20 2.59 28.70 1.72 32.47 5.72 28.03 1.80 32.37 2.74 26.00 4.24 21.80 3.76 30.33 7.35 18.33 1.52 18.87 1.37 20.67 3.49

Memocy (MB) 352.03 6.34 613.20 10.97 615.73 64.34 599.00 56.28 616.27 11.14 1289 162.99 1115.30 8.41 1510.03 166.02 2393.27 74.33 2357.73 122.34 2454.17 61.67
Scan

Time 37.06 3.01 33.03 1.06 94.95 15.89 53.89 6.62 38.77 0.91 117.22 32.34 81.25 13.52 143.82 22.66 99.77 14.34 106.57 31.39 123.03 66.02
CPU 34.97 3.28 16.30 0.43 31.30 2.62 25.00 3.82 26.67 1.03 29.43 3.43 36.97 1.46 34.8 5.68 19.63 0.87 18.67 1.93 18.20 6.76

Memocy (MB) 298.73 4.83 432.53 6.25 623.40 5.39 592.13 18.42 574.83 5.96 1258.20 70.75 1144.07 38.60 1322.47 243.37 2293.23 110.99 2256.8 42.53 2311.87 124.70
Pagerank

Time 148.55 9.55 214.96 36.21 153.65 33.36 194.66 44.4 177.75 9.23 571.13 19.67 427.82 31.55 781.25 41.6 567.69 37.02 473.73 11.02 496.78 20.52
CPU 72.80 10.24 44.80 13.17 59.37 30.66 46.37 6.85 60.27 5.74 38.70 8.35 51.17 6.39 33.17 8.68 24.70 1.72 26.40 10.25 31.83 12.51

Memocy (MB) 424.97 24.46 742.13 8.32 784.13 97.23 731.07 76.85 756.87 88.44 1693.47 261.40 1785.07 333.00 1841.30 46.89 2681.37 390.61 2595.93 415.55 2677.80 1044.33

68

Ta
bl

e
5:

M
ap

re
du

ce
W

or
kl

oa
d

Tr
af

fic
Fl

ow
D

at
a

Su
m

m
ar

y

Co
nfi

gu
ra

tio
ns

A
B-

1
B-

2
B-

3
B-

4
C-

1
C-

2
D-

1
E-

1
E-

2
E-

3
Tr

affi
cC

ata
go

rie
s

Po
rt

Av
g

95
%

CI
Av

g
95

%
CI

Av
g

95
%

CI
Av

g
95

%
CI

Av
g

95
%

CI
Av

g
95

%
CI

Av
g

95
%

CI
Av

g
95

%
CI

Av
g

95
%

CI
Av

g
95

%
CI

Av
g

95
%

CI
So

rt
54

31
0

0.0
6

0.0
51

0.0
98

0.0
87

0.0
74

0.0
24

0.0
97

0.1
51

0.0
91

0.0
92

0.1
54

0.0
56

0.2
51

0.1
37

0.2
36

0.5
25

0.2
88

0.4
18

0.2
16

0.0
62

0.3
58

0.1
97

Sla
ve

sT
oM

as
ter

80
31

0.0
37

0.0
43

0.0
93

0.1
21

0.0
49

0.0
11

0.0
71

0.1
83

0.0
53

0.1
03

0.1
54

0.1
05

0.3
17

0.2
46

0.3
04

0.6
67

0.3
41

0.7
42

0.2
39

0.1
76

0.4
16

0.1
5

80
30

0.0
1

0.0
06

0.0
16

0.0
12

0.0
12

0.0
02

0.0
14

0.0
12

0.0
15

0.0
09

0.0
25

0.0
38

0.0
33

0.0
08

0.0
43

0.0
93

0.0
36

0.0
21

0.0
37

0.0
18

0.0
44

0.0
28

Sla
ve

sT
oS

lav
es

50
01

0
0

0
50

.63
4

0.2
42

50
.64

2
0.1

35
50

.57
8

0.6
66

51
.23

0.6
39

25
3.2

37
3.8

77
25

6.3
54

4.1
73

35
5.0

36
10

.22
1

31
4.6

06
7.9

45
31

8.3
93

7.6
68

31
9.7

12
14

.65
Ot

he
rs

22
0.0

06
0.0

03
0.0

11
0.0

03
0

0
0.0

03
0.0

14
0.0

04
0.0

17
0.0

11
0.0

49
0

0
0

0
0.0

27
0.1

17
0

0
0

0
80

32
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
W

or
dC

ou
nt

54
31

0
0.0

60
0.0

54
0.0

92
0.0

99
0.0

96
0.0

46
0.0

82
0.1

19
0.0

79
0.0

18
0.1

61
0.0

42
0.1

91
0.1

41
0.2

98
0.1

04
0.2

66
0.2

22
0.2

45
0.2

36
0.3

11
0.1

82
Sla

ve
sT

oM
as

ter
80

31
0.0

36
0.0

49
0.0

72
0.0

74
0.0

64
0.0

37
0.0

53
0.0

02
0.0

5
0.0

46
0.1

55
0.1

64
0.1

73
0.1

32
0.3

59
0.1

1
0.2

48
0.2

53
0.2

55
0.4

41
0.2

78
0.3

29
80

30
0.0

11
0.0

07
0.0

16
0.0

11
0.0

14
0.0

01
0.0

15
0.0

09
0.0

13
0.0

01
0.0

3
0.0

1
0.0

32
0.0

19
0.0

54
0.0

19
0.0

44
0.0

14
0.0

42
0.0

36
0.0

37
0.0

03
Sla

ve
sT

oS
lav

es
50

01
0

0
0

0.9
13

0.0
35

0.6
86

0.0
38

0.6
65

0.0
01

0.6
8

0.0
02

1.5
61

0.4
1.3

63
0.3

51
2.3

73
0.5

22
3.0

63
0.8

47
3.4

88
0.5

11
3.7

06
0.8

85
Ot

he
rs

22
0.0

05
0.0

02
0.0

02
0.0

08
0.0

16
0.0

18
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
80

32
0.0

19
0.0

83
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
Jo

in
54

31
0

0.1
37

0.1
38

0.1
79

0.2
61

0.1
50

0.0
59

0.1
89

0.2
30

0.1
37

0.0
14

0.4
01

0.3
15

0.2
97

0.1
41

0.3
81

0.1
95

0.4
61

0.7
37

0.4
78

0.2
92

0.4
42

0.3
48

Sla
ve

sT
oM

as
ter

80
31

0.0
81

0.0
66

0.1
13

0.1
9

0.1
29

0.0
31

0.1
48

0.1
25

0.1
19

0.0
35

0.3
95

0.0
69

0.2
71

0.2
19

0.4
61

0.0
2

0.5
17

1.3
26

0.5
32

0.5
67

0.6
46

0.3
87

80
30

0.0
24

0.0
26

0.0
32

0.0
33

0.0
22

0.0
01

0.0
3

0.0
29

0.0
22

0
0.0

58
0.0

29
0.0

6
0.0

26
0.0

66
0.0

2
0.0

61
0.0

36
0.0

49
0.0

17
0.0

56
0.0

3
Sla

ve
sT

oS
lav

es
50

01
0

0
0

35
.88

6
2.6

24
34

.77
4

1.7
65

36
.27

8
3.0

07
35

.18
2

1.7
45

85
.57

7
7.6

07
10

5.2
85

1.1
28

10
1.3

37
19

.67
5

24
2.5

93
5.0

54
24

2.1
28

8.2
68

23
8.8

58
20

.44
7

Ot
he

rs
22

0.0
03

0.0
14

0.0
06

0.0
26

0
0

0
0

0
0

0.0
12

0.0
5

0
0

0
0

0.0
28

0.1
2

0
0

0
0

80
32

0
0

0
0

0
0

0.0
06

0.0
27

0
0

0
0

0
0

0
0

0
0

0
0

0
0

Sc
an

54
31

0
0.0

77
0.1

51
0.1

51
0.2

48
0.0

62
0.0

06
0.1

25
0.2

41
0.0

66
0.0

11
0.3

11
0.4

10
0.2

00
0.0

97
0.3

63
0.4

58
0.3

53
0.2

28
0.4

74
0.4

30
0.2

69
0.1

26
Sla

ve
sT

oM
as

ter
80

31
0.0

52
0.1

02
0.1

2
0.1

93
0.0

49
0.0

5
0.1

12
0.1

94
0.0

76
0.0

13
0.2

79
0.3

24
0.1

97
0.0

86
0.3

2
0.3

03
0.2

81
0.2

66
0.3

85
0.5

45
0.2

36
0.0

77
80

30
0.0

12
0.0

25
0.0

19
0.0

3
0.0

08
0.0

01
0.0

18
0.0

3
0.0

08
0.0

01
0.0

35
0.0

48
0.0

2
0.0

03
0.0

43
0.0

39
0.0

41
0.0

38
0.0

39
0.0

38
0.0

27
0.0

03
50

01
0

0
0

59
.08

1.6
9

59
.44

8
0.2

77
59

.76
8

0.0
32

59
.76

8
0.1

08
28

9.4
82

1.5
68

29
8.7

07
26

.64
43

9.9
74

24
.98

1
43

9.0
16

35
.09

1
46

5.4
16

28
.02

6
45

1.2
01

17
.70

2
Ot

he
rs

22
0

0
0

0
0

0
0

0
0

0
0

0
10

3.3
18

44
4.5

42
0

0
0

0
0

0
0

0
80

32
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
Pa

ge
ra

nk
54

31
0

0.1
38

0.1
32

0.2
16

0.2
04

0.1
86

0.0
88

0.2
32

0.1
33

0.2
38

0.2
91

0.5
87

0.4
40

0.4
71

0.0
81

0.8
41

0.2
14

0.6
62

0.8
11

0.6
83

0.1
61

0.7
48

0.1
97

Sla
ve

sT
oM

as
ter

80
31

0.0
9

0.0
59

0.1
98

0.1
82

0.1
69

0.1
2

0.1
99

0.0
76

0.2
02

0.1
88

0.5
22

0.0
61

0.5
33

0.1
57

0.8
17

0.1
32

0.6
15

0.9
55

0.8
1

0.2
0.9

26
0.1

72
80

30
0.0

21
0.0

45
0.0

56
0.0

21
0.0

49
0.0

11
0.0

57
0.0

28
0.0

63
0.0

7
0.1

21
0.0

23
0.1

0.0
16

0.1
95

0.0
7

0.1
34

0.0
48

0.1
23

0.0
25

0.1
14

0.0
69

50
01

0
0

0
12

7.8
78

4.0
58

12
9.9

49
5.2

51
13

0.8
79

2.6
18

12
7.3

04
6.7

22
57

9.3
03

18
.06

9
57

1.9
67

6.1
01

75
7.6

9
9.5

65
71

8.8
63

16
.58

6
73

2.3
44

39
.64

3
73

8.4
79

5.2
18

Ot
he

rs
22

0.0
03

0.0
14

0.0
06

0.0
27

0
0

0.0
05

0.0
22

0
0

0.0
12

0.0
53

0
0

0
0

0.0
63

0.2
71

0
0

0
0

80
32

0.0
15

0.0
65

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

69

Ta
bl

e
6:

E
xa

m
pl

e
of

M
ap

R
ed

uc
de

Sh
uf

fle
Tr

af
fic

Fo
rE

ac
h

Fl
ow

W
or

k
lo

ad
s

C
on

fi
gu

ra
ti

on
N

u
m

b
er

of
S

h
u

ffl
e

P
ai

rs
T

ot
al

D
at

a
S

iz
e

(M
B

)
%

O
f

F
lo

w
#1

%
O

f
F

lo
w

#2
%

O
f

F
lo

w
#3

%
O

f
F

lo
w

#4
%

O
f

F
lo

w
#5

%
O

f
F

lo
w

#6
%

O
f

F
lo

w
#7

%
O

f
F

lo
w

#8
%

O
f

F
lo

w
#9

O
th

er
s

A
-1

0
-

-
-

-
-

-
-

-
-

-
-

B
-1

1
5

0
.5

4
9

8
.7

5
%

1
.2

5
%

-
-

-
-

-
-

-
-

B
-2

2
5

0
.6

3
5

0
.5

0
%

4
9

.5
0

%
-

-
-

-
-

-
-

-
B

-3
2

5
0

.7
0

9
9

.4
8

%
0

.5
2

%
-

-
-

-
-

-
-

-
B

-4
2

5
0

.9
9

1
0

0
.0

0
%

0
.0

0
%

-
-

-
-

-
-

-
-

S
o
rt

C
-1

9
2

5
2

.2
0

2
4

.9
2

%
2

4
.9

2
%

1
3

.0
6

%
1

2
.9

8
%

1
2

.0
1

%
1

1
.9

3
%

0
.1

0
%

0
.0

8
%

0
.0

0
%

0
.0

0
%

C
-2

1
2

2
5

7
.5

3
2

4
.8

8
%

1
2

.9
3

%
1

2
.5

1
%

1
2

.4
5

%
1

2
.3

4
%

1
2

.3
2

%
1

2
.3

1
%

0
.1

0
%

0
.1

0
%

0
.0

6
%

D
-1

1
2

3
5

3
.2

1
2

9
.8

7
%

2
0

.6
9

%
1

3
.2

4
%

1
1

.3
6

%
9

.3
8

%
9

.3
7

%
4

.0
4

%
1

.9
7

%
0

.0
8

%
0

.0
0

%
E

-1
3

3
3

0
2

.0
5

1
0

.8
5

%
1

0
.8

2
%

1
0

.8
2

%
1

0
.8

1
%

1
0

.7
7

%
1

0
.7

5
%

9
.0

9
%

6
.4

0
%

4
.8

2
%

1
4

.8
7

%
E

-2
2

8
3

2
1

.8
3

1
4

.6
3

%
1

4
.4

3
%

1
0

.2
9

%
1

0
.2

8
%

1
0

.1
9

%
1

0
.1

8
%

1
0

.1
8

%
1

0
.1

7
%

4
.5

6
%

5
.0

8
%

E
-3

3
0

3
2

4
.8

3
2

0
.2

7
%

1
2

.4
9

%
1

2
.2

9
%

1
0

.3
1

%
1

0
.2

4
%

1
0

.0
1

%
9

.9
8

%
4

.6
1

%
2

.2
8

%
7

.5
2

%
T

ra
ffi

c
N

od
e

P
ai

rs
F

or
E

-3
(S

3
→

S
8

)
(S

7
→

S
2

)
(S

8
→

S
4

)
(S

7
→

S
1

)
(S

8
→

S
5

)
(S

6
→

S
8

)
(S

5
→

S
6

)
(S

3
→

S
8

)
(S

6
→

S
7

)
-

A
-1

0
-

-
-

-
-

-
-

-
-

-
-

B
-1

2
0

.9
3

6
8

.6
0

%
3

1
.4

0
%

-
-

-
-

-
-

-
-

B
-2

2
0

.7
0

8
6

.0
5

%
1

3
.9

5
%

-
-

-
-

-
-

-
-

B
-3

2
0

.6
6

5
6

.8
4

%
4

3
.1

6
%

-
-

-
-

-
-

-
-

B
-4

2
0

.6
8

5
9

.4
7

%
4

0
.5

3
%

-
-

-
-

-
-

-
-

W
o
rd

co
u
n
t

C
-1

1
0

1
.7

4
3

5
.2

1
%

2
1

.1
3

%
1

8
.0

9
%

1
5

.6
1

%
7

.6
3

%
1

.0
1

%
0

.4
3

%
0

.3
5

%
0

.1
0

%
0

.4
3

%
C

-2
1

0
1

.2
5

2
7

.3
0

%
2

7
.0

6
%

2
5

.4
8

%
1

1
.6

1
%

7
.0

4
%

0
.9

2
%

0
.2

8
%

0
.1

6
%

0
.1

3
%

0
.0

4
%

D
-1

1
1

2
.1

5
2

1
.5

7
%

1
9

.0
3

%
1

4
.4

1
%

1
2

.3
5

%
1

2
.2

2
%

7
.2

9
%

4
.5

9
%

4
.3

7
%

3
.8

4
%

0
.3

4
%

E
-1

3
1

2
.7

0
1

5
.9

8
%

9
.9

2
%

9
.8

3
%

9
.7

6
%

9
.7

2
%

9
.5

3
%

6
.0

8
%

5
.8

8
%

4
.5

3
%

1
8

.7
8

%
E

-2
2

7
3

.5
8

3
6

.3
1

%
1

0
.4

8
%

9
.4

1
%

7
.6

5
%

7
.5

6
%

7
.3

7
%

5
.2

0
%

4
.2

7
%

3
.7

6
%

7
.9

9
%

E
-3

3
3

3
.8

8
2

0
.9

5
%

1
4

.4
0

%
1

3
.3

3
%

9
.2

7
%

7
.1

9
%

6
.8

6
%

6
.8

1
%

4
.1

0
%

4
.0

6
%

1
3

.0
2

%
T

ra
ffi

c
N

od
e

P
ai

rs
F

or
E

-3
(S

5
→

S
3

)
(S

5
→

S
7

)
(S

5
→

S
4

)
(S

3
→

S
7

)
(S

6
→

S
3

)
(S

5
→

S
3

)
(S

7
→

S
8

)
(S

4
→

S
7

)
(S

8
→

S
4

)
-

A
-1

0
-

-
-

-
-

-
-

-
-

-
-

B
-1

2
3

5
.2

8
9

8
.8

8
%

1
.1

2
%

-
-

-
-

-
-

-
-

B
-2

2
3

5
.5

3
9

5
.8

4
%

4
.1

6
%

-
-

-
-

-
-

-
-

B
-3

2
3

5
.6

0
9

8
.0

9
%

1
.9

1
%

-
-

-
-

-
-

-
-

B
-4

2
3

5
.5

7
9

7
.6

8
%

2
.3

2
%

-
-

-
-

-
-

-
-

Jo
in

C
-1

1
2

8
7

.7
9

2
1

.1
1

%
1

9
.6

7
%

1
9

.5
8

%
1

9
.5

2
%

1
9

.2
1

%
0

.3
4

%
0

.2
5

%
0

.2
2

%
0

.0
7

%
0

.0
4

%
C

-2
1

2
1

0
5

.2
7

3
2

.2
0

%
1

6
.4

1
%

1
6

.3
8

%
1

6
.2

9
%

1
6

.0
3

%
1

.5
6

%
0

.4
0

%
0

.2
4

%
0

.1
7

%
0

.3
1

%
D

-1
1

2
1

0
5

.9
1

3
2

.2
5

%
1

6
.5

5
%

1
6

.2
8

%
1

6
.0

9
%

1
5

.9
0

%
1

.7
9

%
0

.5
6

%
0

.1
9

%
0

.1
9

%
0

.2
0

%
E

-1
3

9
2

4
3

.4
2

1
4

.0
7

%
7

.5
8

%
7

.0
6

%
7

.0
4

%
7

.0
3

%
7

.0
2

%
6

.9
9

%
6

.9
8

%
6

.9
7

%
2

9
.2

6
%

E
-2

3
7

2
4

3
.4

5
7

.2
5

%
7

.2
5

%
7

.0
9

%
7

.0
7

%
7

.0
5

%
7

.0
3

%
7

.0
1

%
7

.0
1

%
6

.9
9

%
3

6
.2

6
%

E
-3

5
3

2
4

3
.8

8
1

4
.0

5
%

7
.0

9
%

7
.0

7
%

7
.0

4
%

7
.0

4
%

7
.0

1
%

7
.0

0
%

6
.9

9
%

6
.9

9
%

2
9

.7
2

%
T

ra
ffi

c
N

od
e

P
ai

rs
F

or
E

-3
(S

4
→

S
8

)
(S

2
→

S
6

)
(S

7
→

S
1

)
(S

7
→

S
3

)
(S

1
→

S
2

)
(S

5
→

S
2

)
(S

3
→

S
4

)
(S

6
→

S
7

)
(S

2
→

S
5

)
-

A
-1

0
-

-
-

-
-

-
-

-
-

-
-

B
-1

2
5

9
9

9
.9

9
%

0
.0

1
%

-
-

-
-

-
-

-
-

B
-2

2
5

9
6

4
.9

9
%

3
5

.0
1

%
-

-
-

-
-

-
-

-
B

-3
2

5
9

.7
6

1
0

0
.0

0
%

0
.0

0
%

-
-

-
-

-
-

-
-

B
-4

2
5

9
.6

6
6

4
.1

7
%

3
5

.8
3

%
-

-
-

-
-

-
-

-

S
ca

n
C

-1
1

1
2

8
9

.0
2

2
5

.4
2

%
2

3
.4

5
%

2
1

.6
7

%
1

7
.8

5
%

5
.9

0
%

5
.5

0
%

0
.1

4
%

0
.0

6
%

0
.0

0
%

0
.0

0
%

C
-2

1
1

2
9

7
.5

7
2

5
.3

2
%

1
5

.7
4

%
1

5
.6

6
%

1
0

.7
0

%
9

.9
7

%
7

.2
6

%
6

.4
2

%
5

.7
3

%
3

.1
7

%
0

.0
3

%
D

-1
9

4
5

1
.5

0
2

9
.2

0
%

1
7

.0
9

%
1

5
.8

5
%

1
2

.9
3

%
1

2
.3

2
%

7
.8

1
%

4
.8

0
%

0
.0

0
%

0
.0

0
%

0
.0

0
%

E
-1

3
9

4
4

5
.7

3
1

4
.6

5
%

1
3

.3
2

%
1

1
.1

4
%

9
.7

5
%

7
.8

6
%

6
.7

7
%

5
.4

5
%

5
.2

9
%

4
.2

7
%

2
1

.5
0

%
E

-2
3

3
4

5
8

.3
9

1
4

.8
1

%
1

1
.5

4
%

1
1

.0
0

%
7

.7
0

%
7

.2
5

%
7

.1
4

%
6

.7
2

%
5

.8
5

%
5

.2
4

%
2

2
.7

6
%

E
-3

3
7

4
4

7
.1

7
1

7
.0

3
%

1
1

.2
5

%
7

.8
0

%
7

.4
0

%
6

.7
4

%
5

.9
8

%
5

.1
0

%
4

.9
4

%
4

.4
0

%
2

9
.3

6
%

T
ra

ffi
c

N
od

e
P

ai
rs

F
or

E
-3

(S
7
→

S
3

)
(S

4
→

S
7

)
(S

5
→

S
8

)
(S

4
→

S
8

)
(S

5
→

S
2

)
(S

4
→

S
1

)
(S

8
→

S
6

)
(S

8
→

S
4

)
(S

7
→

S
2

)
-

A
-1

0
-

-
-

-
-

-
-

-
-

-
-

B
-1

2
1

2
6

.1
5

9
9

.4
9

%
0

.5
1

%
-

-
-

-
-

-
-

-
B

-2
2

1
2

8
.1

5
5

0
.4

1
%

4
9

.5
9

%
-

-
-

-
-

-
-

-
B

-3
2

1
3

0
.2

4
9

7
.0

5
%

2
.9

5
%

-
-

-
-

-
-

-
-

B
-4

2
1

3
0

.2
8

5
1

.3
2

%
4

8
.6

8
%

-
-

-
-

-
-

-
-

P
ag

eR
an

k
C

-1
1

2
5

8
7

1
4

.3
4

%
1

2
.3

4
%

1
1

.2
6

%
1

1
.2

0
%

1
1

.1
2

%
9

.2
4

%
6

.4
2

%
6

.3
0

%
5

.7
1

%
1

2
.0

7
%

C
-2

1
2

5
7

4
.4

4
1

8
.4

3
%

1
8

.1
8

%
1

3
.9

3
%

1
2

.5
6

%
1

1
.7

3
%

6
.4

8
%

6
.4

2
%

6
.3

8
%

5
.7

2
%

0
.1

7
%

D
-1

1
2

7
5

7
.7

4
2

7
.4

1
%

1
8

.6
5

%
1

4
.4

2
%

1
4

.3
1

%
1

2
.9

7
%

4
.3

6
%

3
.1

3
%

3
.0

3
%

0
.6

0
%

1
.1

3
%

E
-1

4
7

7
2

6
.3

4
9

.0
9

%
9

.0
4

%
8

.9
2

%
7

.6
1

%
5

.9
1

%
4

.6
1

%
4

.5
8

%
4

.5
6

%
4

.5
4

%
4

1
.1

4
%

E
-2

4
0

7
3

8
.0

4
1

3
.2

3
%

8
.8

7
%

8
.8

6
%

8
.8

2
%

8
.8

1
%

5
.8

2
%

4
.5

4
%

4
.5

2
%

4
.4

8
%

3
2

.0
6

%
E

-3
3

9
7

3
7

.6
0

1
6

.2
8

%
1

1
.7

8
%

8
.9

1
%

8
.8

7
%

7
.6

6
%

7
.3

7
%

7
.3

5
%

7
.3

4
%

7
.3

4
%

1
7

.1
1

%
T

ra
ffi

c
N

od
e

P
ai

rs
F

or
E

-3
(S

8
→

S
2

)
(S

8
→

S
7

)
(S

3
→

S
8

)
(S

6
→

S
7

)
(S

1
→

S
8

)
(S

4
→

S
8

)
(S

6
→

S
3

)
(S

8
→

S
5

)
(S

7
→

S
4

)
-

70

CHAPTER 5

STUDY OF USER QOE IMPROVEMENT FOR DYNAMIC ADAPTIVE

STREAMING OVER HTTP (MPEG-DASH)

In this chapter, we first show the study of the basic MPEG-DASH QoE metric

design and propose the moving averaging algorithm for client and use one of the Andorid-

based DASH player, ExoPlayer [20]. The purpose of that is to display how an MPEG-

DASH based player performs and how client’s side fetching algorithm can affect the user

perceived QoEs based on pre-defined QoE Metrics. We then discuss our proposed AAN-

SDN platform to demonstrate how proposed AAN-SDN can benefit MPEG-DASH based

streaming without modification of application itself.

5.1 Composite Video Streaming QoE Metrics

Users’ perspectives of a high quality of experience can vary by each individual.

However, in a nutshell it can be quantified by a combination of many metrics. For ex-

ample, rebuffer is the most undesirable case based on [40]. A high bitrate will provide

the user a better streaming quality. However, if the bitrate changes frequently from a

higher bitrate to a lower one, a sudden bitrate improvement can not represent a smooth

experience. However, if the bitrate switches gradually inside one quality category, such

as between a standard definition range or a high definition range, it might not cause a

noticeable difference for the user. Similar findings are in [17, 35–37, 64].

Our approach toward a composite QoE focuses on both the DASH server and

71

client sides. We consider the situation where a client fetches video segments from a

DASH server using the HTTP-GET protocol. The communication channel between client

and server uses a configurable network environment. The user’s QoE is measured by a set

of defined variables; see Table 7.

Table 7: Composite QoE Metrics

QoE Metrics Name Definition
Bitrate
Switch
Count

ρ, Avg.
Change Frequency

∑
(Nnot/N)

m, Avg.
Change Magnitude

∑
(Mi/N),

i = 1, 2, 3..N

rebuffer
Count Tfi, Count Tfi ∈ 0, 1, 2, ...

TR, Duration
TR =

∑
Tfi,

i ∈ 0, 1, 2, ...

Estimated
Bitrate r, Single Bitrate ri, i ∈ 0, 1, 2, ...

γ, Avg. Bitrate
∑
ri/N

Video
Quality Qsd, Avg. SD

∑
(Qsi/N)

Qhd, Avg. HD
∑

(Qhi/N)
Qtotal, Avg. Total Qsd +Qhd

Buffer Status TB , Buffered Time Tq ∗ ti,ti ∈ 1, 2, .4..
Tq, Buffered Queue Tq ∈ 1, 2, 3, ..

DASH client. The DASH client is responsible for fetching the proper video bitrate

based on current network discrete bandwidth r and captures QoE metrics when streaming

a video over the channel. We define N as the total downloaded video segments. The

bandwidth moving average γ is refreshed for each download. The playback video seg-

ment duration ti(s) ∈ 1, 2, 4, ...T . Each downloaded segment falls into a bitrate quality

72

category that either belongs to Qsd or Qhd, where Qsd represents the average of the stan-

dard definition video count and Qhd represents the average of the high definition video

count. We define Qsd equals
∑

(Qsi/N), where Qsi is the total standard definition video

count at download number i (∈ 0, 1, ...N). Qtotal is the average of the total video seg-

ment quality. The bitrate switchover is captured in two levels: average change frequency

ρ =
∑

(Nnot/N), where Nnot is the number of unchanged bitrates, and the average

change magnitude m =
∑

(Mi/N), where Mi is the average magnitude after each down-

load. Both ρ and m represent the smoothness of the video playback. The client buffer

status is represented by TB, which is the buffered time, and Tq, which is the buffered

queue size. The total buffered time equals
∑

(Tq ∗ ti), where ti represents the video

segment length.

The rebuffer is measured by the rebuffer frequency Tfi and the rebuffer duration

TR for each Tfi, where i ∈ Z+. The system buffered time TB and queue size Tq are impor-

tant indicators of rebuffer occurance. Given an available bandwidth, the QoE optimization

problem can be expressed as follows:

Minimize

{
BitrateSwitchover : ρ,m

rebuffer : Tf , TR

and

Maximize

{
Buffer : TB, Tq

Quality : Qtotal

Network Profile. We design various network profiles based on available band-

width to simulate different network on-off patterns. The bandwidth r is simulated by the

increasing and decreasing percentage Pi where i ∈ (1, 2, ..., Np), and Np is the bandwidth

73

change frequency. The bandwidth changing magnitude Pdiff = (Pi − Pi−1) represents

the stable of the given available bandwidth at a specific time T . The combination of Np

and Pdiff represents a network profile.

5.2 Proposed Dynamic Composite QoE Algorithm

Our dynamic composite QoE adaptive algorithm takes a bandwidth based ap-

proach. The estimated bandwidth is captured by the weighted sliding window based

bandwidth estimator: Sliding Percentile (SP). A overview of how SP runs is elaborated in

Algorithm 2. The performance of SP shows a slow convergence when Pdiff and Np are

relatively large and frequent. The percentile p for each captured bandwidth r and recycle

bin size B can be altered to be suited for an unstable network.

Our proposed algorithm is in Algorithm 3. In order to smooth the estimated

bandwidth and allow fast convergence in the case of dramatic network changes when

using SP as the bandwidth estimator, we add bandwidth history Rhis to keep track of

bandwidth change. Ravg is the moving average of the estimated bandwidth. Immedi-

ate bandwidth change α = Rhis[−2]/Rhis[−1] is utilized in order to enable and accu-

rately detect network changes and avoid false positive bandwidth estimations. Together

∆ = Ravg[−2]/Ravg[−1] and α will decide how the bandwidth changes as well as the

changing magnitude. To mitigate the SP slow convergence problem, compensators: ω

and ε are being added to the SP algorithm.

Buffered time based threshold indicators, Tin and Tde, are also used for returning

the final bitrate Rnext for downloading where Tin and Tde represent the threshold for

74

Algorithm 2: SlidingPercentile
input : MaxWeight W , percentile p, SampleSet Set, SampleSize Sets, Recycle Bin B,

BinSize Bs

output: A weighted Bandwidth r
Download ByteSize Ds

// Save data into Sets and Keep it under W
for i ⊂ Ds do

if Bs > 0 then
Set.add

(
B[-1]

)
;

else
Set.add

(√
i
)

;

while Sets >= W do
excessWeight← Sets −W ;
if excessWeight >= Set[0] then

Sets − = Set[0];
Sets.remove(0);
for j ← Bs do

B.add(Set[0]);

else
W − = excessWeight

// Return Weighhted Bandwidth r
for i← Set do

if
∑
i >= Sets * p then

return ri;

bitrate upgrades and downgrades, respectively. By allowing Rnext to follow Ravg and

with constraints of buffer threshold indicators, it can mitigate the rebuffering occurance

and improve composite QoE.

75

Algorithm 3: Proposed Dynamic Composite QoE Algorithm
input : Estimated Bandwidth r, Buffer Time TB , BitRate Increase Threshold Tin, BitRate

Decrease Threshold Tde Aviable Bitrate Rmpd, current Bitrate Rcurrent, percentile
p, Recycle Bin B, BinSize Bs, Bandwidth History Rhis, Immediate Bandwidth
Change α = Rhis[−2]/Rhis[−1], Bandwidth Moving Average Ravg,
BandwidthChangePencentage ∆ = Ravg[−2]/Ravg[−1], BandwidthState Rstate,
Bandwidth factor ζ, Percentile factor ω, Bin factor ε

output: Next Bitrate Rnext

System Initialization;
for each r evaltion cycle do

Recalculate Ravg, Rhis, α,∆;
// Calculate Rnext

;
if ∆ > 1 and α > 1± ζ then

Rstate is in decreasing mode;
p = 0.1± ω, Bs = 2± ε;
for i← Rmpd do

if Rcurrent <= i then
Return Rnext = i± 1 ∼ 2;

else if
(

∆ > 1 and α < 1± ζ
)

or
(

∆ < 1 and α < 1± ζ
)

then
Rstate is in increasing mode;
p = 0.5± ω, Bs = 5± ε;
Return Rnext <= Ravg[−1];

// Double Check if Rnext = i is The proper One Based on TB
if Rnext > Rcurrent then

if TB >= Tin then
Return Rnext

else
Return Rcurrent

else if Rnext < Rcurrent then
if TB >= Tde then

Return Rnext

else
Return Rcurrent

else
return Rnext

76

5.3 Implementation and Empirical Evaluation

In this section, we conduct our empirical network traces using our dynamic al-

gorithm to evaluate the QoE metrics. Google ExoPlayer [20], as the first Android-based

mobile DASH player, is being used as our reference player. We compare our algorithm

performance with ExoPlayer’s reference bitrate adaptive algorithm.

TestBed Setup. We run our network traces in a controlled network environment.

Video sources are stored in an Apache Server running Ubuntu 14.04 LTS. A network

shaper is also deployed at the server side to simulate different network profiles. Fig 33

shows the reference network profile recommended by Chrome’s [21] web browser. The

ExoPlayer will download video segments from the server while the network shaper tries

to control the server side bandwidth throughput.

Figure 33: Network Profile for Testing Environment [21]

The video source used in our trace is from ”Big Buck Bunny” [32] and has 20

video representations, see Table 8. The duration of each video segment is 4s. The qual-

ity of each downloaded video segment is grouped into standard (Qsd) and high (Qhd)

77

definitions based on the segment bitrate and resolution. In our definition, Qsd includes

a segment that has a bitrate less than 0.783mbps and the resolution is less than 1280 ∗

720(720p). Qhd includes a segment that has a bitrate greater than and equal to 0.783mbps

and a resolution that is greater than and equal to 720p. We argue that high Qhd represents

one important factor of a user’s QoE.

Table 8: Test Video Bitrate Index

Index Bitrate
(mbps) Resolution Index Bitrate

(mbps) Resolution

0.1 0.045 320x240 1.1 0.783 1280x720
0.2 0.089 320x240 1.2 1.0 1280x720
0.3 0.129 320x240 1.3 1.2 1280x720
0.4 0.177 480x360 1.4 1.5 1280x720
0.5 0.218 480x360 1.5 2.1 1920x1080
0.6 0.256 480x360 1.6 2.4 1920x1080
0.7 0.323 480x360 1.7 2.9 1920x1080
0.8 0.378 480x360 1.8 3.3 1920x1080
0.9 0.509 854x480 1.9 3.6 1920x1080
1.0 0.578 854x480 2.0 3.9 1920x1080

Understand QoE Metrics Collection with an Example.

QoE metrics collection while playback is presented here by running a network

trace example. We use a sample video source that is 150s long. Since we desire to test

our dynamic algorithm within a relatively unstable network condition, we simulated the

bandwidth in a steep on-off pattern. Fig. 34 shows that the available bandwidth starts with

5mbps for 10s, then drops to 2G for 35s, and continues a similar pattern until the playback

stops. By keeping a low available bandwidth for a relative longer time, we try to create

rebuffer cases.

Fig. 35 (a) shows the system buffer detail. Both the buffered time and queue size

78

0 10 20 30 40 50
Segment #

0.5

1.0

1.5

2.0

4.0

6.0
b
it
ra
te
 (
m
b
p
s)

Estimated Bandwidth

Download Bitrate

Avg. Estimated Bandwdith

Avg. Download Bitrate

Network Bandwidth

Figure 34: A Sample Run of Network Traces Using Our Dynamic Algorithm

show the state of the client. If either the buffered time or queue size drops to and near

0, the player stops playing and rebuffering happens. For each downloaded segment, the

video quality is stored in a buffered queue in bitrate. Fig. 35 (b) captures the bitrate asQsd

and Qhd. In this run, Tin is set to 10s and Tde is 25s, which means the next downloadable

bitrate will not: (1) increase to a higher bitrate if Tin is less than 10s (2) decrease to a

lower bitrate if Tde is greater than 25s.

Empirical Result. We compared our dynamic algorithm with ’s reference adaptive

algorithm. We implemented our proposed algorithm in . Our approach for achieving a

high composite QoE is described in Section 5.1. A benchmark scenario (Fig. 36) is created

for the purpose of giving a best case scenario for a playback. In the benchmark use case,

79

0

10

20

30

40

50

B
u
ff
e
re

d
 D

e
ta

ils

Buffered Queue (unit)

Buffered Time (s)

0 10 20 30 40 50

Queue Number

0

5

10

15

20

B
it
ra

te
 I
n
d
e
x
 S

u
m

index 0.1

index 0.2

index 0.3

index 0.4

index 0.5

index 0.6

index 0.7

index 0.8

index 0.9

index 1.0

index 1.1

index 1.2

index 1.3

index 1.4

index 1.5

index 1.6

index 1.7

index 1.8

index 1.9

index 2.0

Figure 35: System Buffered Details: (a) Buffered Time and Queue Size (b) Buffered
Bitrate Quality and Queue Number

80

the network shaper simulates a constant 5mbps bandwidth using the same video source in

Table 8. The achieved QoE is expected to be higher compared with our simulated network

profiles.

0 10 20 30 40 50 60 70
Segment #

0.5

1.0

1.5

2.0

4.0

6.0

bi
tr
at

e
(m

bp
s)

Estimated Bandwidth

Download Bitrate

Avg. Estimated Bandwdith

Avg. Download Bitrate

Network Bandwidth

Figure 36: BenchMark Sample Run

After a 150s playback, a rebuffer metric comparison is shown in Fig 37. With

our dynamic algorithm, no rebuffering occurs in any network condition except in the

initial buffering stage (∼ 0.35s) that happens on each case. The worst case happened in

a 2G network profile using ’s reference adaptive algorithm. Rebuffer Tf occurred 5 times

and the total duration was 76s, represented by TR =
∑
Tfi, where i ∈ {1, 2, 3, 4, 5}.

In the same network profile, our dynamic algorithm only had an initital buffer. When

we improved the network condtion from 2G to 3G, the reference algorithm reduced the

Tf and TR, accordingly. However, rebuffering still occurred for each case. Even under

81

the benchmark test, the reference algorithm still remained in two rebuffer cases. That

happened because even though the network condition was stable, the reference player

greedily downloaded the highest bitrate with no concern for TCP protocol’s on-off nature

(see in Fig 36). Our dynamic algorithm kept a moving average approach and gradually

increased or decreased to the next downloadable bitrate and remained a smooth playback.

Figure 37: Rebuffer Comparison for Various Network Profiles

The bitrate changing metric is shown in Fig 38. The reference algorithm always

has a higher bitrate switchover frequence ρ and change magnitude m compared with our

dynamic one in the same network profile. For example, in a 2G network profile, dynamic

ρ = 0.2 < reference ρ = 0.28 and dynamic m = 0.28 < reference m = 0.64.

The average downloaded high definition video quality Qhd also keeps a higher

number compared with the referenced algorithm. The video quality increases more slowly

when the network profile changes from 2G to 3GR because the bandwidth changes (in a

82

relative small range) from 0.45mbps to 0.75mbps. Video quality quickly improves when

the network profile changes to 3GG since bandwidth increases to 1.5mbps. But in any

case, our dynamic algorithm keeps a higher video quality in terms of the average number

of high definition video segments (Qhd), lower average bitrate switchover rate (ρ) and

change magnitude (m).

Figure 38: Comparison in Video Bitrate Switchover Frequence, Magnitude and Video
Quality Between Proposed Dynamic and ExoPlayer Reference Algorithm

In summar, we proposed a generic dynamic bitrate adaptive algorithm that can be

utilized in both bandwidth and buffer based approachs and Investigate the composite QoE

approach for improving DASH performance under various network profiles.

83

CHAPTER 6

AAN-SDN FOR MPEG-DASH

In this section, we present our proposed AAN-SDN platform design and imple-

mentation for video streaming using MPEG-DASH for both regular 2D and immersive/360-

degree videos. We discuss AAN-SDN applicaiton layer design separately based on the

video contents.

6.1 Regular MPEG-DASH Video Streaming QoE Improvement

In this section, we report on experiments conducted using our proposed AAN-

SDN platform to optimize DASH running oversaturated network links for regular flat 2D

video contents. Starting from the bottom to the top layer, our proposed architecture (see

Fig. 39) segregates our design into three main components as discussed in chapter 3.

6.1.1 AAN-SDN Application Layer Design for Regular 2D Video Streaming

In the Application layer, a port number based application recognition feature is

also implemented. With regards to DASH streaming applications, web server and DASH

client control components are implemented to instruct how to install flows over forward-

ing devices. The modularization of various components provided by different SDN con-

trollers helps the network administrator to control them individually in a manageable way.

Three applications layer components are deployed:

• Iperf is used for background traffic injection purpose.

84

Forwarding

Layer

Traffic
Monitor

Flow
ReRoute

Shortest
Path

Topology
Discover

Apache

Web

Server

DASH
Client

Transport Layer: TCP, UDP

Network Layer: ARP, ICMP,

IP

Physical Layer: LLDP

Packet Forwarding

Module

RESTAPI

Engine

WebServer

Traffic Monitor

Module

OpenFlow Compatible Devices

 Core
SDN

Controller
Layer

Apps
Layer

Network
control

and
Monitor
Layer

Iperf

Figure 39: AAN-SDN DASH Experimental Architecture

• One MPEG-DASH compliant Apache web server is deployed for serving DASH

video segments.

• One DASH compliant video player is implemented to fetch video segment from

server.

6.1.2 Performance Evaluation

6.1.2.1 Video Dataset And Media Player

We used MPEG-DASH encoded video datasets to evaluate our models. To test the

efficiency of our model, we selected different types of DASH dataset (Table. 10) to ensure

85

each dataset had variations in encoding details.

Table 9: MPEG-DASH Video Dataset Characteristics

Name Codec Source Quality Genre
BigBuck Bunny H.264/AVC 1080p Animation

The Swiss Account H.264/AVC 1080p Sport
Valkaama H.264/AVC 1080p Movie

Of Forest and Men H.264/AVC SD Movie

Astream Media player [4] is a python based command line tool. Its an emulated

video player which could be used to evaluate performance of the DASH bit-rate adaptation

schemes. It can request segments from any multimedia server using the MPD file provided

to it during the start of the video streaming session. it typically doesn’t provide any GUI

for the user to watch the video.

During the video play back, the media player provides logs like Buffer logs and

Playback Logs. Buffer logs provide information about Epoch time, current playback time,

current buffer size, and current playback state. Playback logs provide information about

epoch time, playback time, segment number, segment size, playback bitrate, segment

duration, and weighted harmonic mean average download bitrate.

6.1.2.2 Network Topology

We deployed our SDN-based DASH streaming system on the GENI testbed [19]

platform. We setup a network topology as shown in Fig. 47. We used Openvswitch (OVS

v2.3.1) as our forwarding devices and numbered the DPID in order from ’0000000000000001’

to ’0000000000000006’. One DASH web server and DASH client were deployed. Iperf

based deployed nodes had the same hardware configuration with a single core of Intel(R)

86

Xeon(R) CPU X5650 @ 2.67GHz and 8 GB RAM. Each connected link had default

100 Mbps bandwidth allocation.

Figure 40: GENI Topology Setup

6.1.2.3 SDN Traffic Reroute Through Adaptive Traffic Engineering

The proposed SDN-based dynamic path selection model is depicted in Fig 41. As-

suming this is the first time streaming from the client’s side, the completed video segment

fetching starts from the ARP request packets, which triggered the shortest path algorithm

discussed in Chapter 3 implemented with Dijkstra’s algorithm. Once the initial path is

selected, MPEG-DASH TCP based flows were installed along the path. Adaptive path

selection occurred at time t2 when cross traffic was taking most of bandwidth out of the

previous DASH streaming link, and the second most shortest path was re-selected. The

DASH client and server used the new path to continue the streaming experience.

6.1.2.4 Multiple Session Tests Using Mininet

Mininet is a well-known SDN emulator. A multi-session test of the proposed AAN

architecture was conducted using the Mininet. The topology is shown in Fig.47 was setup

with 10 Mbps link bandwidth and a 2 ms delay. We used 5 DASH clients. In this test,

87

Server
Gateway

ARP
request

Flow
lookup ()

DASH

Server
Ryu SDN

Controller

Client
Gateway

DASH
Client

ICMP
echo

Flow Not Exists ARP Flooding ARP

Flooding

ARP

Reply

Install Flows

Udpate:
HostTracker()ARP ReplyARP

Reply

ShortestPath()

ARP Reply

Install Flows

ICMP echo

Flow Exists, Ping will go through.

t1

t2
Cross Traffic (>= pre-set Link Bandwidth Threshold

PathOverLap()

Ping_Reroute()

ShortestPath()

Install New FlowsInstall New Flows

ICMP Request

ICMP echo

Flow_clean()

Delete
Previous Flows

Delete
Previous Flows

t3

Udpate

ARP

Cache

Udpate_ARP
_Cache

Cross_traffic
_threshold()

Figure 41: SDN Adaptive Path Selection For DASH Traffic

88

we started all five clients at the same time to fetch the BigBuckBunny video from a video

server.

Figure 42: Multiple Clients Fetch Video Segment at The Same Time Using SDN and
Non-SDN

Fig. 42 shows the downloaded segment bitrate quality with and without SDN.

Without SDN, all of the DASH clients fetched segments using the default path. All of the

clients could not get an optimal streaming experience because bandwidth in the congested

link was shared by all the clients. With SDN, we rerouted client-1’s DASH traffic to the

unused second path after the 15th segment to demonstrate how available network link

resources were fully exploited using SDN for this DASH client, thereby improving the

user’s streaming experience significantly. This also shows that through selective traffic

engineering, our AAN architecture can be used for giving priority to some customers.

89

6.2 Immersive/360-degree MPEG-DASH Video Streaming QoE Improvement

In this section, we report on experiments conducted using our proposed AAN-

SDN platform to optimize DASH running oversaturated network links for Immersive/360-

degree video contents. We first discuss state-of-art literature overview regarding how to

use tile-based ideas for immersive/360-degree video streamings. Then we discuss the

MPEG-DASH Spatial Relationship Description support for immersive videos. We design

our experiments based on the movement of user’s Region of Interests for a immersive/360-

degree video. We then discuss the AAN-SDN application layer design and experiment

result for QoE improvement.

6.2.1 Tile-Based Concepts for Immersive Video Streaming

Video tilling is considered as a spatial relationship of a video where those tiles

are independently decodable video bitstreams [53]. A typical classic video bitstream is

considered to be a 1x1 tiling. While the approach of tiling nicely removes all depen-

dencies between tiles, the drawbacks of this approach are that synchronization between

tiles must be ensured and that a ROI might require more than one tile to be accessed for

reconstructing the view.

Video titles can be grouped based on defined priorities discussed in [42], such

as uniform, top-bottom, row-based, center-based and middle-column based. Tiles can be

delivered in various strategies discussed in [22] such as full or partial delivery. The chosen

delivery strategies shall be based on user’s region of interests or the movement of HMD.

In [22], the workflow of immersive/360-degree video streaming is illustrated.

90

Figure 43: Tile-based Streaming Workflow [22]

In Fig 43, the tiling process is performed within a multi-resolution scheme such

as using MPEG-DASH , where can contain multiple bitrates for each tile. Using multi-

resolution tiling allows for increasing the user perceived qualities by increasing the bi-

trates of desired tiles and lower the bitrate for others at the same time. For example, when

one region of interest (ROI) is defined by user, the video server will provide the highest

resolution tiles to constitute the requested region. However, the work of reconstructing

one ROI is also more complex and might lead to visual quality drops at the border be-

tween high resolution tiles and concealed pixel regions. Tiles synchronization can also

decrease user’s QoE.

6.2.2 MPEG-DASH Spatial Relationship Description (SRD)

DASH is the MPEG standard for describing dynamic adaptive streaming con-

tent [31]. The DASH standard allows associating non-timed related information to MPD

elements, such as the role of a media asset (e.g. main video or alternate video, subtitle

91

representation, or audio description). The MPD uses so-called Descriptor elements to

associate such information. Prior to the definition of SRD, there was no descriptor to

associate spatial information with media assets. The existing Viewpoint descriptor was

too restricted and mainly oriented toward 3D. It was not possible to describe that two

videos were representing spatially related parts of a same scene. The SRD feature solves

this problem. Fig 44 depicts one XML example of an MPEG-DASH with SRD support.

In this XML, it describes one horizontal 360-degree video made of 9 tiles; each tile has

two altenate resolutions. Different resolution can be choosed adaptively by client side

segment fetching algorithms.

Figure 44: DASH SRD XML Example

To make a tiled video, one can resort to either multiple source camera setup, or to

partition a single video into multiple frames of smaller resolution. Here, tiles are defined

as a spatial segmentation of the video content into a regular grid of independent videos. In

addition to supporting segmented video streaming, the DASH standard also allows asso-

ciating non-timed related information to MPD elements. One of such syntax calls Spatial

Relationship Description (SRD) to represent spatial relation for various parts of the same

92

scene. In SRD, the relationship is represented using a scheme URI (@schemeIdUri at-

tribute) and a value (@value attribute). In the value field, one can specify how video tiles

are spatially allocated. Figure 45 depicts a tile space for value = 〈0, 0, 0, 1, 1, 3, 3〉. This

is a 3 × 3 tiled coordination with tile’s height and length equaling 1. Starting from the

lower left corner, tiles’ coordinates are numbered.

Figure 45: DASH SRD Coordinate Example (3× 3 tiles)

6.2.3 Region of Interests (ROIs) vs Video Tiles

When viewing immersive contents, the ROIs are the current viewport or the viewer’s

focus. For efficient streaming experience, ideally, one ROI is covered by just one or less

than one video tile, which can reduce data size by streaming lower bitrate for non-ROIs

tiles and increase, otherwise. However, in the real world use case, a user’s ROI falls more

like Figure 46, which shows a possible ROI locations for a 3 × 3 tiled scheme. In such

scenarios, it is better for tiles with the number in [010, 020, 011, 021] to get higher bi-

trates to increase the view quality while the rest of the tiles can be transmitted with lower

bitrates. Simply by doing such assessments, the transferred data size can be cut by half

with increased QoE significantly.

93

Figure 46: Tile-based Video Playback Example

On the other hand, the current immersive contents are streamed either by down-

loading the whole content into player’s devices or without any optimization with the user’s

ROIs. Instead, significant bandwidths are wasted while transferring high bitrate segments

that is not necessary. Also, the current IP network does not fully support multipath traffic

loading balancing and cannot dynamically adapt network flows based on real-time net-

work information, which can lead to suboptimal user’s quality of experience and waste of

bandwidth. Especially, with the humongous immersive media’s creation, new approach

are investigated in the next section to explore how SDN can be utilized in streaming im-

mersive media.

94

Network control and Monitor

Traffic

Monitor

Flow

ReRoute
Shortest

Path

Topology

Discover

OpenFlow Compatible
Devices

 Core SDN Controller Layer

DASH Traffic Control

SRD

Parser

Server

Acess

Figure 47: SDN DASH Experimental Architecture

6.2.4 AAN-SDN Application Layer Design for Immersive/360-degree Video

Streaming

Fig 47 depicts the abstract function design for each SDN layers, which includes

the SDN control and Application layer. In the network control and monitoring layer,

the global network topology is discovered where we take an adaptive traffic engineering

approach by feeding into a shortest path algorithm module to calculate a path for each

pair of network node/hosts on an on-demand basis. The traffic monitor component using

REST-APIs’ services deployed at the core SDN controller layer proactively pulls network

traffic information from the network. If there is any pre-defined traffic priority violation, a

traffic reroutes using flow reroute component might happen. From the beginning, for ARP

messages for a network request such as Ping, SSH, or other applications, it first looks at

the flow table and passes the traffic if there is a current matching flow or checks if it is a

ARP broadcasting message otherwise.

95

Port number based application recognition feature is implemented (such as port 80

is by default for the Apache Web Service). In our controlled network, the port number can

be managed/changed via a separate configuration file that is read by our SDN controller.

With regards to DASH streaming applications, web server and DASH client control com-

ponents are implemented to instruct how to install flows over forwarding devices. The

modularization of various components provided by different SDN controllers helps the

network administrator to control them individually in a manageable way.

The SRD parser module can parse the MPD file and extract the tile coordination

based on user’s ROI change. Shortest path module can calculate in real-time for all short-

est paths between each pair of nodes based on existing network conditions and topology

changes. In our test scenarios, higher priority tiles are rerouted using flow reroute module

to the non-bottle-necked path to achieve better bandwidth utilization.

6.2.5 Network Topology

The topology is as shown in Fig.47 that is setup with 10 Mbps link bandwidth and

2 ms delay in Mininet. We set up a network topology as illustrated in Fig. 48. We use

Openvswitch (OVS v2.3.1) as our forwarding devices. One DASH Apache web server

and DASH client were deployed. Each connected link has default 10 Mbps bandwidth

allocation. For the implementation of SDN, we used Ryu and OpenFlow v1.3 as south-

bound APIs.

96

Figure 48: Mininet SDN Topology Setup

6.2.6 Immersive Video Dataset and Media Player

We use MPEG-DASH encoded video datasets to evaluate our models. To test the

efficiency of our model, we selected different types of DASH datasets (Table. 10) ensuring

that each dataset has variations in encoding details.

Table 10: MPEG-DASH Video Dataset Characteristics

Name Codec Source Quality Genre
BigBuck Bunny H.264/AVC 1080p Animation

AStream Media player used in [35] is a python based command line tool. It is an

emulated video player, which could be used to evaluate the performance of the DASH

bitrate adaptation schemes. It can request segments from any multimedia server using

MPD file provided to it during the start of the video streaming session. It typical does not

provide any GUI for the user to watch the video.

During the video playback, the media player provides logs like Buffer logs and

Playback Logs. Buffer logs provide information about Epoch time, Current playback

time, current buffer size, current playback state. Playback logs provide information about

epoch time, playback time, segment number, segment size, playback bitrate, segment

duration and weighted harmonic mean average download bitrate.

97

6.2.7 SDN Traffic Engineering for ROI(s) Traffic Optimization

In this section, we evaluate user’s QoE based given ROI bitrates and buffer size.

Figure 49 shows that two different ROI regions on a given 2X2 tile-based video segments.

The MPEG-DASH SRD represents the spatial locations, such as tile #12 is represented

by SRD syntax value field 〈1, 2, 1, 1, 2, 2〉. In our test scenario, ROI-A is covered only by

tile #12, while ROI-B is covered by both tile #11 and #12. The number of tiles covering

the specific ROI(s) is the number of segments that user’s focus at a specific time. At the

specific time t, the user will change its ROI, such as from ROI-A to ROI-A’ and from

ROI-B to ROI-B’. We track the segment bitrate changes for each tile and evaluate how

proposed SDN framework can adaptively optimize user’s QoE by varying the segments’

bitrate based on ROIs’ coordination and movement.

Figure 49: ROI Movement for A 2X2 Tile-based Video Segments

6.2.8 Benchmark with Non-SDN Deployment

To establish the benchmark for comparison purpose, streaming over the traditional

network is conducted first. Without any traffic engineering to optimize ROI’s bitrate,

98

(a) BenchMark Bitrate With No SDN (b) SDN: One ROI Bitrate

(c) SDN: Two ROIs Bitrates (d) SDN: One ROI Adaptive Bitrate

Figure 50: Bitrate for Both Non-SDN and SDN deployment

all the tiles are streaming over one single link. Figure 50(a) and 51(a) depict the bi-

trate and buffer information for each tile flow. The traffic pattern displays a typical TCP

bandwidth allocations among all traffic. The average downloaded bitrate for each tile is

[0.5, 0.4, 0.4, 0.3], with an overall average bitrate of 0.4 Mbps. The average buffer size is

[6.7, 6.5, 6.5, 5.7], with an overall average buffer of 6.3 units.

99

(a) BenchMark Buffer With No SDN (b) SDN: One ROI Buffer

(c) SDN: Two ROIs Buffer (d) SDN: One ROI Adaptive

Figure 51: Buffered Size for Both Non-SDN and SDN deployment

6.2.9 ROI Bitrate Optimization With SDN Deployed

In this section, we first assume viewer’s ROI is on the tile #12, shown in Fig-

ure 49. The SDN controller’s SRD parser module parses the feedback from the viewer

and installs flows on the path [ovs-2, ovs-3, ovs3-4] in Figure 48 for that particular flow.

The rest of tiles stayed with the original path [ovs-2, ovs-1, ovs-4]. Figure 50(b) shows

that the bitrate rate increases after client’s initial setup, which is around ten segments.

The average downloaded bitrate for each tile is [0.4, 0.4, 0.4, 2.0], with an overall average

100

bitrate of 0.8 Mbps. The highest bitrate 1.93 is for tile #12, which increases viewer’s

quality of experience by increasing the bitrate for his/her ROI. Average buffer size in Fig-

ure 51(b) is [6.2, 6.2, 6.2, 6.7], with an overall average buffer of 6.3 units. Even though

the average buffer is approximately equal to the previous test case, the higher buffer size

for ROI tile #12 is increased by 1 buffer unit.

Then we assume viewer’s ROI is covered by tile #12 and #11.In this case, ROI

and Non-ROI tiles are split equally by two paths. Figure 50(c) shows the average bitrate

for ROI tiles’ average bitrate [0.7, 0.9], with an overall average bitrate of 0.8 Mbps. The

Average buffer size in Figure 51(c) is [7.7, 7.7], with an overall average buffer of 7.7 units.

In both metrics, they are better than cases with Non-SDN deployed.

6.2.10 ROI Switchover with SDN Deployed

In this test case, we adaptively change viewer’s ROI from ROI-A to another ROI-

A’ shown in Figure 49. The new ROI is still covered by one tile. At the beginning of

playback, segments are split by two paths to increase initial ROI’s (#12) bitrate. We

assume that ROI switches to #01 right after finish streaming the 15-th segment. Fig-

ure 50(d) shows the average downloaded bitrate for each tile as [1.4, 0.4, 0.4, 0.9], with an

overall average bitrate of 0.8 Mbps. The highest bitrate 1.41 Mbps is for new ROI with

tile #01. Previous ROI tile #12 has average bitrate 0.9 Mbps. Average buffer size in

Figure 51(d) is [5.9, 6.2, 6.1, 6.1], with an overall average buffer of 6.1 units. Slightly low

buffer size compared with one ROI optimization test case is negligible.

In summary, from Figure 52, with the SDN-assisted framework, user’s QoE can

101

be increased by increasing average ROI’s bitrate in both fixed ROI and ROI switchover

cases. In our test cases, the increased bitrate is around 100% and buffer size 6%.

Figure 52: QoE Improvement Comparison

102

CHAPTER 7

CONCLUSION

Our approach in this work was to develop an Application-aware networking (AAN)

environment with modularized components and fine-grained control network behavior to

improve application’s performance without changing the underlying design of the appli-

cation itself. We presented a software-defined network based system architecture and

over-the-top (OTT) software applications for the Hadoop MapReduce and MPEG-DASH

based video streaming data flow control. We proposed a general application interface

regarding a traffic flow alternation mechanism.

With Regarding to Hadoop MapReduce applications, we identified major traffic

patterns of various MapReduce workloads based on HiBench benchmark suites using

different configurations, which is the key to understanding the problem caused by data

shuffle. A primary goal of this work was to demonstrate a concept of AAN using SDN

implementation and MapReduce performance improvement without alternating the exist-

ing Hadoop configuration.

To assist flat 2D video streaming over the internet, we presented a software-

defined network based system architecture to improve regular 2d flat DASH ’s-based

video streaming performance. A primary goal of this work was to demonstrate a con-

cept of AAN using SDN implementation and DASH streaming performance improvement

without altering of the existing MPEG-DASH client’s configuration.

103

The presented AAN architecture performed better when compared to the tradi-

tional end-client adaptation model. Our model was evaluated and tested on two client

adaptation schemes. We also found that SARA was better at adapting to change while

minimizing switching events compared to buffer based adaptation when the originally

designated path was overloaded. In all tests, we observed a significant reduction of bitrate

switchover events that signified improvement of QoE of video streaming.

We also summarize the difference in immersive content streaming between traditional-

and SDN-based network and introduce a SDN-based framework to assist tile-based im-

mersive content streaming. Our goal was to develop a SDN-assisted framework to im-

prove user QoEs for streaming new 3D immersive media such as Virtual Reality and 360-

degree video using DASH without changing the underlying design of DASH client itself.

We proposed a general application interface regarding a traffic flow alteration mechanism.

By optimizing bitrate for viewer’s ROI, our proposed framework reduces the overall trans-

ferred data size and increase bitrates for ROI to improve the overall viewing experience.

The presented framework outperformed compared to the traditional end-client adaptation

model. Our model is evaluated and tested on a number of ROI schemes. In all tests,

we observed a significant ROI bitrate and buffer increase which signifies improvement of

QoE of video streaming.

As future work, we plan to integrate tile-based streaming related issues such as

a synchronization problem for different tiles and also increase the number of tiles with

higher resolutions. Because each tile is essentially a separate TCP connection, each tile

might have different playback timeline due to package delay in a congested network. We

104

are also planning to include video traffic classification using data signature based dynamic

machine learning models and explore additional traffic engineering (TE) methods as well

as larger platforms for our approach. New transport protocols such as WebSocket can also

be investigated for multiple ROIs switchover at the same time in a single duplex network

flow for better network efficiency.

105

APPENDIX A

MININET TOPOLOGY SOURCE CODE FOR DASH SETUP

! / u s r / b i n / py thon

from m i n i n e t . n e t i m p o r t M i n i n e t

from m i n i n e t . t opo i m p o r t Topo

from m i n i n e t . l o g i m p o r t lg , s e t L o g L e v e l

from m i n i n e t . c l i i m p o r t CLI

from m i n i n e t . node i m p o r t R e m o t e C o n t r o l l e r

from m i n i n e t . node i m p o r t Host

from f u n c t o o l s i m p o r t p a r t i a l

from m i n i n e t . l i n k i m p o r t TCLink

CORES = {
’gw1 ’ : { ’ dp id ’ : ’ 000000000000010% s ’ } ,

’gw2 ’ : { ’ dp id ’ : ’ 000000000000020% s ’ } ,

}
number o f nodes

FANOUT = 10

c l a s s I2Topo (Topo) :

d e f i n i t (s e l f , e n a b l e a l l =True) :

” C r e a t e Smart Home t o p o l o g y . ”

Add d e f a u l t members t o c l a s s .

s u p e r (I2Topo , s e l f) . i n i t ()

Add c o r e s w i t c h e s

s e l f . c o r e s = {}
s e l f . H o s t c o u n t = 0

106

f o r s w i t c h i n CORES:

s e l f . c o r e s [s w i t c h] = s e l f . addSwi tch (

swi t ch , dp id =(CORES[s w i t c h] [’ dp id ’] % ’ 0 ’))

Add h o s t s and c o n n e c t them t o t h e i r c o r e s w i t c h

f o r s w i t c h i n CORES:

i f s w i t c h == ”gw1” :

FANOUT = 1

e l s e :

FANOUT = 10

f o r c o u n t i n x ra ng e (1 , FANOUT + 1) :

s e l f . H o s t c o u n t = s e l f . H o s t c o u n t + 1

Add h o s t s

h o s t = ’ h %s %s ’ % (swi t ch , c o u n t)

i p = ’ 1 7 2 . 1 6 . 0 . % s ’ % s e l f . H o s t c o u n t

p r i n t ” Swi tch Name: ” , s w i t c h

p r i n t ” Host IP a d d r e s s : ” , i p

mac = CORES[s w i t c h] [’ dp id ’] [4 :] % c o u n t

h = s e l f . addHost (hos t , i p = ip , mac=mac)

Connect h o s t s t o c o r e s w i t c h e s

s e l f . addLink (h , s e l f . c o r e s [s w i t c h])

Connect c o r e s w i t c h e s

s e l f . addLink (s e l f . c o r e s [’gw1 ’] , s e l f . c o r e s [’gw2 ’])

i f n a m e == ’ m a i n ’ :

t opo = I2Topo ()

i p = ’ 1 0 . 0 . 0 . 2 2 4 ’

i p = ’ 1 9 2 . 1 2 2 . 2 3 6 . 1 0 5 ’

p o r t = 6633

c = R e m o t e C o n t r o l l e r (’ c ’ , i p = ip , p o r t = p o r t)

add p r i v a t e DIR f o r each h o s t

107

p r i v a t e D i r s = [(’ / v a r / l o g ’ , ’ / tmp /%(name) s / v a r / l o g ’) ,

(’ / v a r / run ’ , ’ / tmp /%(name) s / v a r / run ’) ,

’ / v a r / mn ’]

h o s t = p a r t i a l (Host , p r i v a t e D i r s = p r i v a t e D i r s)

l i n k = p a r t i a l (TCLink , d e l a y = ’ 2ms ’ , bw=10)

n e t = M i n i n e t (t opo = topo , h o s t = hos t , au toSe tMacs =True ,

x t e r ms = F a l s e , c o n t r o l l e r =None , l i n k = l i n k)

n e t . a d d C o n t r o l l e r (c)

n e t . addNAT () . c o n f i g D e f a u l t ()

n e t . s t a r t ()

CLI (n e t)

n e t . s t o p ()

108

APPENDIX B

HADOOP INSTALLATION SOURCE CODE

! / b i n / bash

HadoopUserLogin=” sudo su − h a d o o p u s e r ”

echo −n ” ##### For a l l t h e Hadoop Nodes ##### ”

echo ” Are you i n s t a l l i n g f o r Hadoop Mas te r mode or s l a v e (M/ S) ? ”

echo −n ” E n t e r M or S [ENTER] : ”

read mode

echo $mode

i f [$mode == ’M’] ; then

echo ” I n s t a l l i n g hadoop Mas te r ”

e l i f [$mode == ’S ’] ; then

echo ” I n s t a l l a t i o n hadoop s l a v e ”

e l s e

echo ” wrong i n p u t ”

e x i t

f i

echo −n ” add j a v a repo ”

sudo ap t−g e t u p d a t e

sudo ap t−g e t i n s t a l l −y s o f t w a r e−p r o p e r t i e s −common

sudo add−ap t−r e p o s i t o r y ppa : webupd8team / j a v a

sudo ap t−g e t u p d a t e

sudo ap t−g e t i n s t a l l o r a c l e−j ava7− i n s t a l l e r −y

sudo ap t−g e t i n s t a l l openssh−c l i e n t openssh−s e r v e r −y

109

Updata Java r u n t i m e

sudo upda te−j ava−a l t e r n a t i v e s −s j ava−7−o r a c l e

sud ap t−g e t i n s t a l l −y vim

D i s a b l e IPv6 (S k i p t h i s s t e p i f you are n o t u s i n g IPv6)

sudo sed − i ’ s / n e t . i pv6 . b i n d v 6 o n l y \ =\ 1 / n e t . i pv6 . b i n d v 6 o n l y \
=\ 0 / ’ \ / e t c / s y s c t l . d / b i n d v 6 o n l y . con f

&& sudo invoke−r c . d p r o c p s r e s t a r t

echo −n ” S e t t i n g up a Hadoop User ”

sudo addgroup hadoopgroup

sudo a d d u s e r h a d o o p u s e r

sudo a d d u s e r h a d o o p u s e r hadoopgroup

sudo d e l g r o u p hadoopgroup

sudo d e l u s e r hadoopuser

echo −n ” ##### For Mas te r node on ly ##### ”

i f [$mode == ’M’] ; then

echo −n ” Login as h a d o o p u s e r and G e n e r a t e s s h key ”

$HadoopUserLogin −c ” whoami ”

$HadoopUserLogin −c ” ssh−keygen − t r s a −P ’ ’ ”

A u t h o r i z e t h e key t o e n a b l e password l e s s s s h

$HadoopUserLogin −c

” c a t / home / h a d o o p u s e r / . s s h / i d r s a . pub >>

/ home / h a d o o p u s e r / . s s h / a u t h o r i z e d k e y s ”

$HadoopUserLogin −c ”chmod 600 ˜ / . s s h / a u t h o r i z e d k e y s ”

echo −n ”You need t o copy i d r a s . pub t o s l a v e s a u t h o r i z e d k e y s ”

echo −n ” Also add h o s t s ’ s IP i n your hadoop s l a v e s f i l e s ”

#Copy t h i s key t o s l a v e −1 t o e n a b l e password l e s s s s h

#$ ssh−copy−i d − i ˜ / . s s h / i d r s a . pub s l a v e s / I P a d d r e s s

110

#Make s u r e you can do a password

l e s s s s h u s i n g f o l l o w i n g command .

#$ s s h s l a v e s / I P a d d r e s s

f i

echo −n ” ##### For a l l nodes ##### ”

$HadoopUserLogin −c ” wget

h t t p : / / apache . m i r r o r s . i o n f i s h . o rg / hadoop /

common / hadoop −2 . 6 . 0 / hadoop −2 . 6 . 0 . t a r . gz

t a r xzv f hadoop −2 . 6 . 0 . t a r . gz ”

change hadoop s o u r c e f o l d e r t o hadoop

(n o t n e c e s s a r y , j u s t f o r easy remember purpose)

$HadoopUserLogin −c ”mv hadoop −2 .6 .0 hadoop ”

s e t up e n v i r o n m e n t v a r i a b l e s f o r Master and s l a v e s

$HadoopUserLogin −c ” c a t >> ˜ / . b a s h r c << EOF

S e t HADOOP HOME

e x p o r t HADOOP HOME=/ home / h a d o o p u s e r / hadoop

S e t JAVA HOME

e x p o r t JAVA HOME=/ u s r / l i b / jvm / j ava−7−o r a c l e

Add Hadoop b i n and s b i n d i r e c t o r y t o PATH

e x p o r t PATH=$PATH :$HADOOP HOME/ b i n :$HADOOP HOME/ s b i n

EOF

”

$HadoopUserLogin −c ” s o u r c e ˜ / . b a s h r c ”

$HadoopUserLogin −c

’ echo −n ” need t o mannualy u p d a t e hadoop−env ” ’

$HadoopUserLogin −c

111

’ echo −n ” hadoop−env . sh

e x p o r t JAVA HOME=/ u s r / l i b / jvm / j ava−7−o r a c l e ” ’

echo −n ” u d p a t e core−s i t e . xml f o r a l l nodes ”

$HadoopUserLogin −c

’ c a t > / home / h a d o o p u s e r / hadoop / e t c / hadoop / core−s i t e . xml

<< EOF

<?xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8”?>

<?xml−s t y l e s h e e t type =” t e x t / x s l ” h r e f =” c o n f i g u r a t i o n . x s l ”?>

<c o n f i g u r a t i o n >

<p r o p e r t y>

<name>hadoop . tmp . d i r </name>

<va lue >/home / h a d o o p u s e r / tmp</ va lue>

<d e s c r i p t i o n >Temporary D i r e c t o r y .< / d e s c r i p t i o n >

</ p r o p e r t y>

<p r o p e r t y>

<name>f s . d e f a u l t F S </name>

<va lue>h d f s : / / 1 9 2 . 1 6 8 . 0 . 1 : 5 4 3 1 0 < / va lue>

<d e s c r i p t i o n >Use HDFS as f i l e s t o r a g e eng ine </ d e s c r i p t i o n >

</ p r o p e r t y>

</ c o n f i g u r a t i o n >

EOF

’

echo −n ” ##### Update Mas te r on ly ##### ”

i f [$mode == ’M’] ; then

echo −n ” u p d a t e m a s t e r mapred−s i t e . xml ”

112

$HadoopUserLogin −c

’ c a t > / home / h a d o o p u s e r / hadoop / e t c / hadoop / mapred−s i t e . xml

<< EOF

<?xml v e r s i o n =” 1 . 0 ”?>

<?xml−s t y l e s h e e t type =” t e x t / x s l ” h r e f =” c o n f i g u r a t i o n . x s l ”?>

<c o n f i g u r a t i o n >

<p r o p e r t y>

<name>mapreduce . j o b t r a c k e r . a d d r e s s </name>

<va lue>h t t p : / / 1 9 2 . 1 6 8 . 0 . 1 : 5 4 3 1 1 < / va lue>

<d e s c r i p t i o n >The h o s t and p o r t t h a t t h e MapReduce

j o b t r a c k e r r u n s a t . I f â l o c a l â , then jobs a r e run

in−p r o c e s s a s a s i n g l e map and r e d u c e t a s k .

</ d e s c r i p t i o n >

</ p r o p e r t y>

<p r o p e r t y>

<name>mapreduce . framework . name</name>

<va lue>yarn </ va lue>

<d e s c r i p t i o n >

The framework f o r r u n n i n g mapreduce jobs

</ d e s c r i p t i o n >

</ p r o p e r t y>

</ c o n f i g u r a t i o n >

EOF

’

f i

echo −n ” ##### For a l l nodes ##### ”

echo −n ” u p d a t e hdfs−s i t e . xml f o r a l l nodes ”

113

$HadoopUserLogin −c

’ c a t > / home / h a d o o p u s e r / hadoop / e t c / hadoop / hdfs−s i t e . xml

<< EOF

<?xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8”?>

<?xml−s t y l e s h e e t type =” t e x t / x s l ” h r e f =” c o n f i g u r a t i o n . x s l ”?>

<c o n f i g u r a t i o n >

<p r o p e r t y>

<name>d f s . r e p l i c a t i o n </name>

<va lue >2</ va lue>

<d e s c r i p t i o n >D e f a u l t b l o c k r e p l i c a t i o n .

The a c t u a l number o f r e p l i c a t i o n s can be

s p e c i f i e d when t h e f i l e i s c r e a t e d .

The d e f a u l t i s used i f r e p l i c a t i o n i s

n o t s p e c i f i e d i n c r e a t e t ime .

</ d e s c r i p t i o n >

</ p r o p e r t y>

<p r o p e r t y>

<name>d f s . namenode . name . d i r </name>

<va lue >/home / h a d o o p u s e r / h d f s / namenode</ va lue>

<d e s c r i p t i o n >D e t e r m i n e s where on t h e l o c a l

f i l e s y s t e m t h e DFS name node s h o u l d s t o r e

t h e name t a b l e (f s i m a g e) . I f t h i s i s a comma−d e l i m i t e d

l i s t o f d i r e c t o r i e s then t h e name t a b l e i s r e p l i c a t e d

i n a l l o f t h e d i r e c t o r i e s , f o r r edundancy .

</ d e s c r i p t i o n >

</ p r o p e r t y>

<p r o p e r t y>

<name>d f s . d a t a n o d e . d a t a . d i r </name>

114

<va lue >/home / h a d o o p u s e r / h d f s / da tanode </ va lue>

<d e s c r i p t i o n >D e t e r m i n e s where on t h e l o c a l f i l e s y s t e m

an DFS d a t a node s h o u l d s t o r e i t s b l o c k s . I f t h i s i s a c

omma−d e l i m i t e d l i s t o f d i r e c t o r i e s , then d a t a w i l l

be s t o r e d i n a l l named d i r e c t o r i e s , t y p i c a l l y on

d i f f e r e n t d e v i c e s . D i r e c t o r i e s t h a t do

n o t e x i s t a r e i g n o r e d .

</ d e s c r i p t i o n >

</ p r o p e r t y>

<p r o p e r t y>

<name> d f s . b l o c k . s i z e </name>

<va lue >33554432</ va lue>

<d e s c r i p t i o n >F i l e b l o c k s i z e , d e f a u l t on Hadoop

2 . 6 i s 128 MB. I changed t o 32MB = 32 ∗ 1024 ∗ 1024

= 33554432 b y t e s

</ d e s c r i p t i o n >

</ p r o p e r t y>

</ c o n f i g u r a t i o n >

EOF

’

echo −n ” u p d a t e yarn−s i t e . xml ”

$HadoopUserLogin −c

’ c a t > / home / h a d o o p u s e r / hadoop / e t c / hadoop / yarn−s i t e . xml

<< EOF

<?xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8”?>

<?xml−s t y l e s h e e t type =” t e x t / x s l ” h r e f =” c o n f i g u r a t i o n . x s l ”?>

<c o n f i g u r a t i o n >

<p r o p e r t y>

115

<name>ya rn . nodemanager . aux−s e r v i c e s </name>

<va lue>m a p r e d u c e s h u f f l e </ va lue>

</ p r o p e r t y>

<p r o p e r t y>

<name>ya rn . r e s o u r c e m a n a g e r . s c h e d u l e r . a d d r e s s </name>

<va lue >192 .168 .0 .1 :8030 < / va lue>

</ p r o p e r t y>

<p r o p e r t y>

<name>ya rn . r e s o u r c e m a n a g e r . a d d r e s s </name>

<va lue >192 .168 .0 .1 :8032 < / va lue>

</ p r o p e r t y>

<p r o p e r t y>

<name>ya rn . r e s o u r c e m a n a g e r . webapp . a d d r e s s </name>

<va lue >0 . 0 . 0 . 0 : 8 0 8 8 < / va lue>

</ p r o p e r t y>

<p r o p e r t y>

<name>

ya rn . r e s o u r c e m a n a g e r . r e s o u r c e− t r a c k e r . a d d r e s s

</name>

<va lue >192 .168 .0 .1 :8031 < / va lue>

</ p r o p e r t y>

<p r o p e r t y>

<name>ya rn . r e s o u r c e m a n a g e r . admin . a d d r e s s </name>

<va lue >192 .168 .0 .1 :8033 < / va lue>

</ p r o p e r t y>

</ c o n f i g u r a t i o n >

EOF

’

116

echo −n ” u p d a t e b a s h r c f i l e ”

$HadoopUserLogin −c

’ c a t >> / home / h a d o o p u s e r / . b a s h r c << EOF

export

PATH=

$PATH : / home / h a d o o p u s e r / hadoop / b i n :\
/ home / h a d o o p u s e r / hadoop / s b i n : / s b i n

EOF

’

$HadoopUserLogin −c ’ source / home / h a d o o p u s e r / . ba sh rc ’

echo −n ” done i n s t a l l a t i o n and c o n f i g u r e . . NEXT ”

echo −n ” add h a d o o p u s e r t o r o o t group ”

sudo a d d u s e r h a d o o p u s e r r o o t

echo −e ”To Begin u s i n g Hadoop :

su − h a d o o p u s e r \n

1 . you need t o e d i t m a s t e r s l a v e s f i l e \n

2 . s t a r t your m a s t e r node $ h d f s namenode −f o r m a t \n

3 . need t o mannualy u p d a t e hadoop−env . xml change

a t hadoop−env . sh \n

e x p o r t JAVA HOME=/ u s r / l i b / jvm / j ava−7−o r a c l e \n

4 . modify / e t c / h o s t s f i l e s f o r a l l t h e nodes \n \n

5 copy mas te r ’ s i d r a s . pub t o s l a v e s a u t h o r i z e d k e y s \n

6 . $ s t a r t −d f s . sh \n6 . s t a r t −ya rn . sh ”

e x i t

117

APPENDIX C

OPENVSWITCH INSTALLATION SOURCE CODE

! / b i n / bash

echo ”make s u r e \nOS : Ubuntu 1 4 . 0 4 . 1 S e r v e r LTS X86 64

K er ne l v e r s i o n : 3.13.0−34− g e n e r i c ”

sudo ap t−g e t u p d a t e

sudo a p t i t u d e i n s t a l l dh−a u t o r e c o n f l i b s s l −dev o p e n s s l

echo ” compi l e OVS 2 . 3 . 1 , on ly s u p p o r t Linux k e r n e l <= 3 . 1 3 ”

cd ˜

wget h t t p : / / o p e n v s w i t c h . o rg / r e l e a s e s / openvswi tch −2 . 3 . 1 . t a r . gz

t a r zxv f openvswi tch −2 . 3 . 1 . t a r . gz && cd openvswi tch −2 .3 .1

. / boo t . sh

. / c o n f i g u r e −−with−l i n u x =/ l i b / modules / ‘ uname −r ‘ / b u i l d

make − j && sudo make i n s t a l l

sudo make m o d u l e s i n s t a l l

sudo modprobe g r e

sudo modprobe o p e n v s w i t c h

sudo modprobe l i b c r c 3 2 c

sudo lsmod | g rep o p e n v s w i t c h

sudo ovsdb−t o o l \
c r e a t e / u s r / l o c a l / e t c / o p e n v s w i t c h / con f . db \
/ u s r / l o c a l / s h a r e / o p e n v s w i t c h / v s w i t c h . ovsschema \

echo ” s e t u p ovsdb−s e r v e r ”

sudo ovsdb−s e r v e r \
−−r emote = pun ix : / u s r / l o c a l / v a r / run / o p e n v s w i t c h / db . sock \
−−r emote =db : Open vSwitch , Open vSwitch , m a n a g e r o p t i o n s \

118

−−p i d f i l e −−d e t a c h −−log− f i l e

echo ” check OVSdb l o g ”

c a t / u s r / l o c a l / v a r / l o g / o p e n v s w i t c h / ovsdb−s e r v e r . l o g

echo ” open ovs−v s c t l ”

sudo ovs−v s c t l −−no−wait i n i t

echo ” open ovs−v s w i t c h d ”

sudo ovs−v s w i t c h d −−p i d f i l e −−d e t a c h −−log− f i l e

echo ” Auto open when r e b o o t , E n t e r r o o t mode”

su

echo ” o p e n v s w i t c h ” >> / e t c / modules

echo ” g r e ” >> / e t c / modules

echo ” l i b c r c 3 2 c ” >> / e t c / modules

c a t > / e t c / i n i t . d / o p e n v s w i t c h << EOF

! / b i n / sh

s t a r t −s top−daemon −q −S −x \
/ u s r / l o c a l / s b i n / ovsdb−s e r v e r −− \
−−r emote = pun ix : / u s r / l o c a l / v a r / run / o p e n v s w i t c h / db . sock \
−−r emote =db : Open vSwitch , Open vSwitch , m a n a g e r o p t i o n s \
−−p i d f i l e −−d e t a c h −−log− f i l e

s l e e p 3 # w a i t i n g ovsdb−s e r v e r

s t a r t −s top−daemon −q −S −x / u s r / l o c a l / b i n / ovs−v s c t l \
−− −−no−wait i n i t

s t a r t −s top−daemon −q −S −x / u s r / l o c a l / s b i n / ovs−v s w i t c h d \
−− −−p i d f i l e −−d e t a c h −−log− f i l e

EOF

chmod +x / e t c / i n i t . d / o p e n v s w i t c h

upda te−r c . d −f o p e n v s w i t c h d e f a u l t s

e x i t

sudo ovs−v s c t l show

119

APPENDIX D

HIBENCH INSTALLATION GUIDE

! / b i n / bash

echo ” s e e d e t a i l s a t h t t p : / / g i t h u b . co / i n t e r −hadoop / HiBench ”

cd ˜

g i t c l o n e h t t p s : / / g i t h u b . com / i n t e l −hadoop / HiBench . g i t

cd HiBench

B u i l d HiBench

echo ” i n s t a l l maven ”

sudo ap t−g e t i n s t a l l maven

mvn −D sc a l a =2 .11 c l e a n package

mvn −D sc a l a =2 .10 c l e a n package

B a s i c HiBench C o n f i g u r a t i o n Se tup :

h i b e n c h . hadoop . home / home / h a d o o p u s e r / hadoop

The pa th o f hadoop e x e c u t a b l e

h i b e n c h . hadoop . e x e c u t a b l e ${ h i b e n c h . hadoop . home } / b i n / hadoop

Hadoop c o n f i g r a u t i o n d i r e c t o r y

h i b e n c h . hadoop . c o n f i g u r e . d i r ${ h i b e n c h . hadoop . home } / e t c / hadoop

The r o o t HDFS pa th t o s t o r e HiBench da ta

h i b e n c h . h d f s . m a s t e r h d f s : / / 1 9 2 . 1 6 8 . 0 . 1 : 5 4 3 1 0

Hadoop r e l e a s e p r o v i d e r . S u p p o r t e d v a l u e : apache , cdh5 , hdp

h i b e n c h . hadoop . r e l e a s e apache

120

Change Data I n p u t P r o f i l e :

cd con f /

vim h i b e n c h . con f

h i b e n c h . s c a l e . p r o f i l e t i n y / s m a l l / l a r g e / huge / g i g a n t i c / b i g d a t a

Example : Change Data S i z e f o r each work load P r o f i l e

Take wordcount a s one example i n

/ HiBench / con f / work loads / micro / wordcount . con f

I change t o 16MB, 48MB, 80MB, 112MB, 240Mb, 304MB

h i b e n c h . wordcount . t i n y . d a t a s i z e 16777216

h i b e n c h . wordcount . s m a l l . d a t a s i z e 50331648

h i b e n c h . wordcount . l a r g e . d a t a s i z e 83886080

h i b e n c h . wordcount . huge . d a t a s i z e 117440512

h i b e n c h . wordcount . g i g a n t i c . d a t a s i z e 251658240

h i b e n c h . wordcount . b i g d a t a . d a t a s i z e 318767104

Tuning :

cd con f /

vim h i b e n c h . con f

h i b e n c h . d e f a u l t . map . p a r a l l e l i s m Mapper number i n hadoop

h i b e n c h . d e f a u l t . s h u f f l e . p a r a l l e l i s m Reducer number i n hadoop

121

REFERENCE LIST

[1] Abhishek, R., Zhao, S., and Medhi, D. SPArTaCuS: Service priority adaptiveness

for emergency traffic in smart cities using software-defined networking. In Smart

Cities Conference (ISC2), 2016 IEEE International (2016), IEEE, pp. 1–4.

[2] Abhishek, R., Zhao, S., Song, S., Choi, B.-Y., Zhu, H., and Medhi, D. BuDDI:

Bug detection, debugging, and isolation middlebox for software-defined network

controllers. In Network and Service Management (CNSM), 2016 12th International

Conference on (2016), IEEE, pp. 307–311.

[3] Abhishek, R., Zhao, S., Tipper, D., and Medhi, D. SeSAMe: Software defined smart

home alert management system for smart communities. In Local and Metropolitan

Area Networks (LANMAN), 2017 IEEE International Symposium on (2017), IEEE,

pp. 1–6.

[4] Astream. A DASH segment size aware rate adaptation model for DASH.

https://github.com/pari685/AStream. Access Date: Dec 2016.

[5] Babu, S. Towards automatic optimization of MapReduce programs. In Proceedings

of the 1st ACM Symposium on Cloud Computing (2010), ACM, pp. 137–142.

[6] Becerra, Y., Beltran, V., Carrera, D., González, M., Torres, J., and Ayguadé, E.

Speeding up distributed MapReduce applications using hardware accelerators. In

122

Parallel Processing, 2009. ICPP’09. International Conference on (2009), IEEE,

pp. 42–49.

[7] Borthakur, D. The hadoop distributed file system: Architecture and design.

https://svn.apache.org/repos/asf/hadoop/common/tags/release-0.12.0, 2008.

[8] Chakraborti, A., Rajaraman, V., Zhao, S., Azgin, A., Ravindran, R., and Wang,

G. Demo overview: multi-party conference over virtual service edge router (vser)

platform. In Proceedings of the 1st International Conference on Information-centric

Networking (2014), ACM, pp. 205–206.

[9] Chen, Y., Griffit, R., Zats, D., and Katz, R. H. Understanding TCP Incast and Its

Implications for Big Data Workloads. Tech. Rep. UCB/EECS-2012-40, University

of California at Berkeley, Apr 2012.

[10] Cheung, G., Liu, Z., Ma, Z., and Tan, J. Z. Multi-Stream Switching for Interactive

Virtual Reality Video Streaming. arXiv preprint arXiv:1703.09090 (2017).

[11] Chowdhury, M., and Stoica, I. Coflow: A networking abstraction for cluster ap-

plications. In Proceedings of the 11th ACM Workshop on Hot Topics in Networks

(2012), ACM, pp. 31–36.

[12] Chowdhury, M., Zaharia, M., Ma, J., Jordan, M. I., and Stoica, I. Managing data

transfers in computer clusters with orchestra. In ACM SIGCOMM Computer Com-

munication Review (2011), vol. 41, ACM, pp. 98–109.

123

[13] Cisco. Cisco visual networking index: Forecast and methodology. CISCO White

paper: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-

networking-index-vni/complete-white-paper-c11-481360.htm (2012), 2011–2016.

[14] Concolato, C., Le Feuvre, J., Denoual, F., Maze, F., Ouedraogo, N., and Taquet, J.

Adaptive Streaming of HEVC Tiled Videos using MPEG-DASH. IEEE Transac-

tions on Circuits and Systems for Video Technology (2017).

[15] Costa, P., Donnelly, A., Rowstron, A., and O’Shea, G. Camdoop: Exploiting in-

network aggregation for big data applications. In Proceedings of the 9th USENIX

Conference on Networked Systems Design and Implementation (2012), USENIX

Association, pp. 3–3.

[16] De Cicco, L., Caldaralo, V., Palmisano, V., and Mascolo, S. Elastic: A client-

side controller for dynamic adaptive streaming over http (dash). In Packet Video

Workshop (PV), 2013 20th International (2013), IEEE, pp. 1–8.

[17] Dobrian, F., Sekar, V., Awan, A., Stoica, I., Joseph, D., Ganjam, A., Zhan, J., and

Zhang, H. Understanding the impact of video quality on user engagement. In ACM

SIGCOMM Computer Communication Review (2011), vol. 41, ACM, pp. 362–373.

[18] El-Ganainy, T., and Hefeeda, M. Streaming virtual reality content. arXiv preprint

arXiv:1612.08350 (2016).

[19] Elliott, C. GENI-global environment for network innovations. In LCN (2008), p. 8.

124

[20] Google. ExoPlayer: An extensible media player for Android.

https://github.com/google/ExoPlayer. Access Date: 07/2016.

[21] Google. The hrome Web Browser. http://google.com/chrome, 2008.

[22] Graf, M., Timmerer, C., and Mueller, C. Towards bandwidth efficient adaptive

streaming of omnidirectional video over HTTP: Design, implementation, and eval-

uation. In Proceedings of the 8th ACM on Multimedia Systems Conference (2017),

ACM, pp. 261–271.

[23] Gu, R., Yang, X., Yan, J., Sun, Y., Wang, B., Yuan, C., and Huang, Y. SHadoop:

Improving MapReduce performance by optimizing job execution mechanism in

Hadoop clusters. Journal of Parallel and Distributed Computing Vol. 74 (2014),

2166–2179.

[24] Hammoud, M., and Sakr, M. F. Locality-aware reduce task scheduling for MapRe-

duce. In Cloud Computing Technology and Science (CloudCom), 2011 IEEE Third

International Conference on (2011), IEEE, pp. 570–576.

[25] He, C., Lu, Y., and Swanson, D. Matchmaking: A new MapReduce scheduling

technique. In Cloud Computing Technology and Science (CloudCom), 2011 IEEE

Third International Conference on (2011), IEEE, pp. 40–47.

[26] Holmes, A. Hadoop in Practice. Manning Publications Co., 2012.

125

[27] Holmes, G., Donkin, A., and Witten, I. H. Weka: A machine learning workbench. In

Intelligent Information Systems, 1994. Proceedings of the 1994 Second Australian

and New Zealand Conference on (1994), IEEE, pp. 357–361.

[28] Hosseini, M. View-aware tile-based adaptations in 360 virtual reality video stream-

ing. In Virtual Reality (VR), 2017 IEEE (2017), IEEE, pp. 423–424.

[29] Hosseini, M., and Swaminathan, V. Adaptive 360 VR video streaming based on

MPEG-DASH SRD. In Multimedia (ISM), 2016 IEEE International Symposium on

(2016), IEEE, pp. 407–408.

[30] Huang, S., Huang, J., Dai, J., Xie, T., and Huang, B. The HiBench benchmark

suite: Characterization of the MapReduce-based data analysis. In Data Engineering

Workshops (ICDEW), 2010 IEEE 26th International Conference on (2010), IEEE,

pp. 41–51.

[31] ISO/IEC. 23009-1:2014/Amd 2:2015, Spatial relationship description, generalized

URL parameters and other extensions. https://www.iso.org/standard/65274.html.

[32] ITEC. Big Buck Bunny Movie. http://www-itec.uni-klu.ac.at/ftp/, 2015. Access

Date: Dec 2016.

[33] Jiang, J., Sekar, V., and Zhang, H. Improving fairness, efficiency, and stability

in http-based adaptive video streaming with festive. In Proceedings of the 8th

International Conference on Emerging Networking Experiments and Technologies

(2012), ACM, pp. 97–108.

126

[34] Jin, J., Luo, J., Song, A., Dong, F., and Xiong, R. Bar: An efficient data locality

driven task scheduling algorithm for cloud computing. In Proceedings of the 2011

11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

(2011), IEEE Computer Society, pp. 295–304.

[35] Juluri, P., Tamarapalli, V., and Medhi, D. SARA: Segment aware rate adaptation

algorithm for dynamic adaptive streaming over HTTP. In Communication Workshop

(ICCW), 2015 IEEE International Conference on (2015), IEEE, pp. 1765–1770.

[36] Juluri, P., Tamarapalli, V., and Medhi, D. Measurement of quality of experience of

video-on-demand services: A survey. IEEE Communications Surveys & Tutorials

Vol. 18 (2016), 401–418.

[37] Juluri, P., Tamarapalli, V., and Medhi, D. QoE management in DASH systems

using the segment aware rate adaptation algorithm. In Network Operations and

Management Symposium (NOMS), 2016 IEEE/IFIP (2016), IEEE, pp. 129–136.

[38] Khiem, N. Q. M., Ravindra, G., and Ooi, W. T. Adaptive encoding of zoomable

video streams based on user access pattern. Signal Processing: Image Communica-

tion 27, 4 (2012), 360–377.

[39] Kreutz, D., Ramos, F. M., Esteves Verissimo, P., Esteve Rothenberg, C., Azodol-

molky, S., and Uhlig, S. Software-defined networking: A comprehensive survey.

proceedings of the IEEE Vol. 103 (2015), 14–76.

127

[40] Krishnan, S. S., and Sitaraman, R. K. Video stream quality impacts viewer behavior:

inferring causality using quasi-experimental designs. IEEE/ACM Transactions on

Networking Vol. 21 (2013), 2001–2014.

[41] Lam, C. Hadoop in Action. Manning Publications Co., 2010.

[42] Le Feuvre, J., and Concolato, C. Tiled-based adaptive streaming using MPEG-

DASH. In Proceedings of the 7th International Conference on Multimedia Systems

(2016), ACM, p. 41.

[43] Li, B., Mazur, E., Diao, Y., McGregor, A., and Shenoy, P. A platform for scalable

one-pass analytics using MapReduce. In Proceedings of the 2011 ACM SIGMOD

International Conference on Management of Data (2011), ACM, pp. 985–996.

[44] Li, Z., and I.Bouazizi. FF: Temporal Quality Signalling in ISO Based Media File

Format. ISO/IEC/JTC1/MPEG2014/m33239, 2014.

[45] Li, Z., Zhao, S., Medhi, D., and Bouazizi, I. Wireless video traffic bottleneck co-

ordination with a DASH SAND framework. In Visual Communications and Image

Processing (VCIP), 2016 (2016), IEEE, pp. 1–4.

[46] Li, Z., Zhu, X., Gahm, J., Pan, R., Hu, H., Begen, A. C., and Oran, D. Probe

and adapt: Rate adaptation for HTTP video streaming at scale. IEEE Journal on

Selected Areas in Communications Vol. 32 (2014), 719–733.

128

[47] Lim, S. Y., Seok, J. M., Seo, J., and Kim, T. G. Tiled panoramic video transmission

system based on MPEG-DASH. In Information and Communication Technology

Convergence (ICTC), 2015 International Conference on (2015), IEEE, pp. 719–721.

[48] Mao, H., Hu, S., Zhang, Z., Xiao, L., and Ruan, L. A load-driven task scheduler

with adaptive DSC for MapReduce. In Green Computing and Communications

(GreenCom), 2011 IEEE/ACM International Conference on (2011), IEEE, pp. 28–

33.

[49] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,

J., Shenker, S., and Turner, J. OpenFlow: enabling innovation in campus networks.

ACM SIGCOMM Computer Communication Review 38, 2 (2008), 69–74.

[50] Min, W., Hannu, H., Pettersson, J., and Timner, Y. Optimization of fairness for

HTTP adaptive streaming with network assistance in LTE mobile systems. In Ve-

hicular Technology Conference (VTC Fall), 2014 IEEE 80th (2014), IEEE, pp. 1–5.

[51] Mueller, C. MPEG-DASH in a Nutshell. https://bitmovin.com/dynamic-adaptive-

streaming-http-mpeg-dash/. Access Date: 08/2016.

[52] Neves, M. V., De Rose, C. A., Katrinis, K., and Franke, H. Pythia: Faster big

data in motion through predictive software-defined network optimization at runtime.

In Parallel and Distributed Processing Symposium, 2014 IEEE 28th International

(2014), IEEE, pp. 82–90.

129

[53] Niamut, O., Prins, M., Brandenburg, R. v., and Havekes, A. Spatial tiling and

streaming in an immersive media delivery network. 9th European Interactive TV

Conference, EuroITV’11, Lisbon (2011).

[54] Niamut, O. A., Thomas, E., D’Acunto, L., Concolato, C., Denoual, F., and Lim,

S. Y. MPEG DASH SRD: Spatial relationship description. In Proceedings of the

7th International Conference on Multimedia Systems (2016), ACM, p. 5.

[55] OSRG. Framework community: Ryu sdn controller. https://osrg.github.io/ryu/,

2016.

[56] Pavlo, A., Paulson, E., Rasin, A., Abadi, D. J., DeWitt, D. J., Madden, S., and

Stonebraker, M. A comparison of approaches to large-scale data analysis. In Pro-

ceedings of the 2009 ACM SIGMOD International Conference on Management of

data (2009), ACM, pp. 165–178.

[57] Pióro, M., and Medhi, D. Routing, Flow, and Capacity Design in Communication

and Computer Networks. Elsevier, 2004.

[58] Prins, M., Niamut, O., van Brandenburg, R., Macq, J.-F., Rondao Alface, P., and

Verzijp, N. A hybrid architecture for delivery of panoramic video. In Proceedings

of the 11th European Conference on Interactive TV and Video (2013), ACM, pp. 99–

106.

130

[59] Qian, F., Ji, L., Han, B., and Gopalakrishnan, V. Optimizing 360 video delivery

over cellular networks. In Proceedings of the 5th Workshop on All Things Cellular:

Operations, Applications and Challenges (2016), ACM, pp. 1–6.

[60] Romirer-Maierhofer, P., Ricciato, F., DÕAlconzo, A., Franzan, R., and Karner, W.

Network-wide measurements of TCP RTT in 3G. Traffic Monitoring and Analysis

(2009), 17–25.

[61] Rmi Houdaille, C. T. DASH/CESAND: Cooperative parameters. ISO/IEC

JTC1/SC29/WG11 MPEG 111/m36033, 2015.

[62] Seo, S., Jang, I., Woo, K., Kim, I., Kim, J.-S., and Maeng, S. HPMR: Prefetch-

ing and pre-shuffling in shared MapReduce computation environment. In Cluster

Computing and Workshops (2009), IEEE, pp. 1–8.

[63] Sharma, B., Prabhakar, R., Lim, S.-H., Kandemir, M. T., and Das, C. R. Mrorches-

trator: A fine-grained resource orchestration framework for MapReduce clusters. In

Cloud Computing (CLOUD), 2012 IEEE 5th International Conference on (2012),

IEEE, pp. 1–8.

[64] Sitaraman, R. K. Network performance: Does it really matter to users and by how

much? In Communication Systems and Networks (COMSNETS), 2013 Fifth Inter-

national Conference on (2013), IEEE, pp. 1–10.

131

[65] Spiteri, K., Urgaonkar, R., and Sitaraman, R. K. BOLA: Near-optimal bitrate adap-

tation for online videos. In Computer Communications, IEEE INFOCOM 2016-The

35th Annual IEEE International Conference on (2016), IEEE, pp. 1–9.

[66] Stockhammer, T. Dynamic adaptive streaming over HTTP: standards and design

principles. In Proceedings of the Second Annual ACM Conference on Multimedia

Systems (2011), ACM, pp. 133–144.

[67] TaghaviNasrabadi, A., Mahzari, A., Beshay, J. D., and Prakash, R. Adaptive 360-

degree video streaming using layered video coding. In Virtual Reality (VR), 2017

IEEE (2017), IEEE, pp. 347–348.

[68] Tan, J., Meng, X., and Zhang, L. Coupling task progress for MapReduce resource-

aware scheduling. In INFOCOM, 2013 Proceedings IEEE (2013), IEEE, pp. 1618–

1626.

[69] Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., Patel, J. M., Kulkarni, S.,

Jackson, J., Gade, K., Fu, M., Donham, J., et al. Storm@ twitter. In Proceedings of

the 2014 ACM SIGMOD International Conference on Management of Data (2014),

ACM, pp. 147–156.

[70] Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S., Konar, M., Evans, R.,

Graves, T., Lowe, J., Shah, H., Seth, S., et al. Apache Hadoop YARN: Yet an-

other resource negotiator. In Proceedings of the 4th Annual Symposium on Cloud

Computing (2013), ACM, p. 5.

132

[71] Vernica, R., Balmin, A., Beyer, K. S., and Ercegovac, V. Adaptive MapReduce using

situation-aware mappers. In Proceedings of the 15th International Conference on

Extending Database Technology (2012), ACM, pp. 420–431.

[72] White, T. Hadoop: The Definition Guide. OReilly Media, Inc, 2009.

[73] Xie, J., Yin, S., Ruan, X., Ding, Z., Tian, Y., Majors, J., Manzanares, A., and Qin,

X. Improving MapReduce performance through data placement in heterogeneous

Hadoop clusters. In Parallel & Distributed Processing, Workshops and Phd Forum

(IPDPSW), 2010 IEEE International Symposium on (2010), IEEE, pp. 1–9.

[74] Xin, M., and Li, H. An implementation of GPU accelerated MapReduce: Using

Hadoop with OpenCL for data-and compute-intensive jobs. In Service Sciences

(IJCSS), 2012 International Joint Conference on (2012), IEEE, pp. 6–11.

[75] Yao, J., Kanhere, S. S., and Hassan, M. An empirical study of bandwidth predictabil-

ity in mobile computing. In Proceedings of the third ACM international workshop

on Wireless network testbeds, experimental evaluation and characterization (2008),

ACM, pp. 11–18.

[76] You, H.-H., Yang, C.-C., and Huang, J.-L. A load-aware scheduler for MapReduce

framework in heterogeneous cloud environments. In Proceedings of the 2011 ACM

Symposium on Applied Computing (2011), ACM, pp. 127–132.

133

[77] Yu, W., Wang, Y., and Que, X. Design and evaluation of network-levitated merge

for Hadoop acceleration. IEEE Transactions on Parallel and Distributed Systems

25, 3 (2014), 602–611.

[78] Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S., and Stoica, I.

Delay scheduling: A simple technique for achieving locality and fairness in cluster

scheduling. In Proceedings of the 5th European Conference on Computer Systems

(2010), ACM, pp. 265–278.

[79] Zaharia, M., Konwinski, A., Joseph, A. D., Katz, R. H., and Stoica, I. Improving

MapReduce performance in heterogeneous environments. In Osdi (2008), vol. 8,

p. 7.

[80] Zhao, S., Leftwich, K., Owens, M., Magrone, F., Schonemann, J., Anderson, B., and

Medhi, D. I-can-mama: Integrated campus network monitoring and management.

In Network Operations and Management Symposium (NOMS), 2014 IEEE (2014),

IEEE, pp. 1–7.

[81] Zhao, S., Li, Z., and Medhi, D. Low delay MPEG DASH streaming over the We-

bRTC data channel. In Multimedia & Expo Workshops (ICMEW), 2016 IEEE In-

ternational Conference on (2016), IEEE, pp. 1–6.

[82] Zhao, S., Li, Z., and Medhi, D. Low delay MPEG DASH streaming over the We-

bRTC data channel. In Multimedia & Expo Workshops (ICMEW), 2016 IEEE In-

ternational Conference on (2016), IEEE, pp. 1–6.

134

[83] Zhao, S., Li, Z., and Medhi, D. Low delay streaming of DASH content with We-

bRTC data channel. In Quality of Service (IWQoS), 2016 IEEE/ACM 24th Interna-

tional Symposium on (2016), IEEE, pp. 1–2.

[84] Zhao, S., Li, Z., Medhi, D., Lai, P., and Liu, S. Study of user QoE improvement for

dynamic adaptive streaming over HTTP (MPEG-DASH). In Computing, Network-

ing and Communications (ICNC), 2017 International Conference on (2017), IEEE,

pp. 566–570.

[85] Zhao, S., and Medhi, D. Application-Aware network design for Hadoop MapReduce

optimization using software-defined networking. IEEE Transactions on Network

and Service Management (2017).

[86] Zhao, S., and Medhi, D. Tile-based streaming with MPEG-DASH using Software-

defined Network. In The 3rd IEEE Conference on Network Functions Virtualization

and Software Defined Networking (IEEE NFV-SDN 2017) (2017), IEEE.

[87] Zhao, S., Sydney, A., and Medhi, D. Building Application-Aware Network En-

vironments using SDN for Optimizing Hadoop Applications. In Proceedings of

the 2016 conference on ACM SIGCOMM 2016 Conference (poster paper) (2016),

ACM, pp. 583–584.

VITA

Shuai Zhao was born on Dec 15th, 1986 in Qingdao, China. He received B.Sc in

Applied Mathematics from Heze University, China and M.S. in Computer Science from

the University of Missouri - Kansas City, USA.

Mr. Zhao currently works as a senior engineer at Mediatek USA Inc. He is an

IEEE member and serves (or served) as a Technical Committee Member for IEEE NOMS,

ICNC, NFV-SDN, ICIIP, Globecom, ANTS, NetCom, NoF, ICCC, WPMC, ICUMT, Cy-

berNeticsCom, IPCCC, CNSM and designated reviewer for IEEE ICC, VCIP and ACM

MMSys.

Mr. Zhao interned with Lenovo (2013), FutureWei (2014), Raython BBN (2015)

and Mediatek Inc USA (2016). He has published over 15 papers. His research interests are

Application-Awareness Networking, Software-Defined Networking, network design, big

data, deep learning, MPEG-DASH and MPEG-I Standards, and VR/360 video streaming.

136

