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ABSTRACT 

Internet of Things (IoT) is a network of physical objects or things that are 

embedded with electronics, software, sensors, and network connectivity - which enable 

the object to collect and exchange data. Rapid proliferation of IoT is driving the 

intelligence in things used daily in homes, workplaces and industry. The IoT devices 

typically communicate via radio frequency (RF), such as WiFi and Bluetooth.  

In this dissertation we deeply analyze the various characteristics of different 

wireless communication methods in terms of range, energy-efficiency, and radiation 

pattern. We find that a well-established communication method might not be the most 

efficient, and other alternate communication methods with the desired properties for a 

particular application could exist. We exploit radically alternative, innovative, and 

complimentary wireless communication methods, including radio frequency, infrared 

(IR), and visible lights, through the IoT applications we have designed and built with those. 
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We have developed various IoT applications which provide security and authentication, 

enable vehicular communications with smartphones or other smart devices, provide 

energy-efficient and accurate positioning to smart devices, and enable energy-efficient 

communications in Industrial Internet of Things (IIoT). 
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CHAPTER 1 

INTRODUCTION 

 

 We are at a turning point in our society where the world around us is deeply 

embedded with smart objects that are wirelessly connected to each other and eventually 

through the Internet. The network of such physical objects or things that are embedded 

with electronics, software, sensors, and Internet connectivity which enables these objects 

to collect and exchange data forms the basis for the philosophy of the Internet of Things 

(IoT).  

 IoT systems and their application have gained unprecedented popularity and 

proliferation in recent times. A recent report projects the IoT systems to increase in their 

economic impact from the current $3.9 trillion to $11.1 trillion a year by 2025 [1]. This 

significant economic impact is a direct result of connecting over 50 billion devices to the 

Internet, as shown in Figure 1.1 [117]. One part of this growth focuses on connecting 

everyday objects being used by humans to the Internet. The potential of creating such 

Internet connected devices or IoT devices is huge. IoT devices offer various avenues that 

make human interactions with the machines possible. Some examples of such 

applications are in the field of healthcare by monitoring the vital signs of a person via 

wearable devices, home automation, home security, personalized care and products, 

smart vehicles, etc. While such applications offer a huge potential, the other aspect of IoT  
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involves connecting the machines in industries to the Internet, with each other and with 

the work force in a plant. This philosophy forms the basis for Industrial Internet of Things 

(IIoT) [2]. 

At the core of the current IoT technologies, is the communication through radio 

frequency, such as WiFi, Bluetooth, and cellular data connection. With the prevalence of 

connected devices, our reliance on the radio frequency communication is becoming  

 

Figure 1. 1: Projected proliferation of the Internet of Things [117] 
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significant. However, the radio spectrum, which lies in the electromagnetic spectrum as 

shown in Figure 1.2 [118], is extremely crunched and its dependability becomes a growing 

issue. Other concerns involve radio frequency smog which not only cause interference in 

wireless communications, but can also lead to health hazards at high frequencies. As the 

proliferation of IoT devices in our homes, office spaces and industries grows, and rapidly 

increasing number of consumers embrace these technologies, the impact of the radio 

spectrum crunch will be profound, and could become an Achilles heel for the industry.  

Therefore, we argue that it is important to diversify the wireless communication 

methods. In this dissertation, we propose radically alternative, innovative, and 

complimentary wireless communication methods, including radio frequency, infrared 

Figure 1.2: The Electromagnetic Spectrum [118] 
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(IR), and visible lights, through the IoT applications we have designed and built with those. 

Clever, opportunistic, and collaborative use of the frequencies within the radio frequency 

spectrum along with other frequencies from the electromagnetic spectrum in general, 

such as the visible light and infrared radiation, can not only improve the energy-efficiency, 

speed, and accuracy of the communications, but enable novel applications which could 

not have been possible with existing RF technologies. We thoroughly analyze and 

compare their cons and pros from various perspectives with experiments and simulations, 

and provide insights for a better connected world. In this dissertation, our research 

contributions are highly interdisciplinary in nature, and involve contributions in the fields 

of Telecommunications and Computer Networking, Computer Science, as well as 

Electrical Engineering. 

1.1 Dissertation Outline  

The rest of the dissertation is structured as follows. In Chapter 2, we describe a novel 

token-based authentication mechanism for smartphones and other smart devices. As 

recent smartphone technologies in software and hardware keep on improving, many 

smartphone users envision to perform various mission critical applications on their 

smartphones that were previously accomplished by using PCs. Hence, smartphone 

authentication has become one of the most critical security issues. Due to the relatively 

small smartphone form factor, the traditional user id and password typed authentication 

is considered as an inconvenient and time-taking approach. Taking advantage of various 

sensor technologies of smartphones, alternative authentication methods such as pattern, 

gesture, finger print, and face recognition have been actively researched. However, those 
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authentication methods still pose one of speed, reliability, and usability issues. They are 

especially not suitable for the users in rugged conditions and with physical challenges. 

In this chapter of the dissertation, we evaluate existing alternative smartphone 

authentication approaches in various usage scenarios to propose an ambient light sensor 

based authentication for smartphones. We have designed and prototyped a challenge-

based programmable Fast, Inexpensive, Reliable, and Easy-to-use (FIRE) hardware 

authentication token. FIRE token uses an onboard LED to transmit passwords via an 

Optical Wireless Signal (OWS) to the smartphone that captures, and interprets it via its 

ambient light sensor. FIRE token is a part of the challenge-response technique in the 

Inverse Dual Signature (IDS) that we designed to facilitate a multi-factor authentication 

for the mission critical smartphone applications. Together they provide the Optical 

Wireless Authentication (OptAuth) for the user of the smartphone. Our experiments 

validate that OptAuth can authenticate a user on a smartphone in a simple, fast, and 

reliable way without compromising the security quality and user experience [3]. 

In Chapter 3 of this dissertation, we discuss about our research on vehicular 

communications to prevent collisions between pedestrians and vehicles. As smartphones 

gain their popularity, vulnerable road users (VRUs) are increasingly distracted by activities 

with their devices such as listening to music, watching videos, texting or making calls while 

walking or bicycling on the road. In spite of the development of various high-tech Car-to-

Car (C2C) and Car-to-Infrastructure (C2I) communications for enhancing the traffic safety, 

protecting such VRUs from vehicles still relies heavily on traditional sound warning 

methods. Furthermore, as smartphones continue to become highly ubiquitous, VRUs are 
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increasingly oblivious to safety related warning sounds. A traffic accident study shows the 

number of headphone-wearing VRUs involved in roadside accidents has increased by 

300% in the last 10 years. Although recently a few Car2Pedestrian-communication 

methods have been proposed by various car manufacturers, their practical usage is 

limited, as they mostly require special communication devices to cope with the wide 

range of mobility, and also assume VRUs' active attention to the communication while 

walking.  

In this chapter of the dissertation, we propose a smartphone-based Car2X-

communication system, named WiFi-Honk, which can alert the potential collisions to both 

VRUs and vehicles in order to especially protect the distracted VRUs. WiFi-Honk provides 

a practical safety means for the distracted VRUs without requiring any special device using 

WiFi of smartphone. WiFi-Honk removes the WiFi association overhead using the beacon 

stuffed WiFi communication with the geographic location, speed, and direction 

information of the smartphone replacing its SSID while operating in WiFi Direct/Hotspot 

mode, and also provides an efficient collision estimation algorithm to issue appropriate 

warnings. Our experimental and simulation studies validate that WiFi-Honk can 

successfully alert VRUs within a sufficient reaction time frame, even in high mobility 

environments [4].  

In Chapter 4, we have developed a collaborative positioning system for smart devices 

which provides them with accurate location information at a fraction of the energy cost 

as compared to the traditional positioning approaches. The fast growing popularity of 

smartphones and tablets enables us to use various intelligent mobile applications. As 
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many of those applications require position information, smart mobile devices provide 

positioning methods such as Global Positioning System (GPS), WiFi-based positioning 

system (WPS), or Cell-ID-based positioning service. However, those positioning methods 

have different characteristics of energy-efficiency, accuracy, and service availability.  

In this chapter, we present an Energy-Efficient Collaborative and Opportunistic 

Positioning System (ECOPS) for heterogeneous mobile devices. ECOPS facilitates a 

collaborative environment where many mobile devices can opportunistically receive 

position information over energy-efficient and prevalent WiFi, broadcasted from a few 

other devices in the communication range. The position-broadcasting devices in ECOPS 

have sufficient battery power and up-to-date location information obtained from 

accurate but energy-inefficient GPS. A position receiver in ECOPS estimates its location 

using a combination of methods including received signal strength indicators and 2D 

trilateration. Our field experiments show that ECOPS significantly reduces the total 

energy consumption of devices while achieving an acceptable level of location accuracy. 

ECOPS can be especially useful for unique resource scarce, infrastructure less, and mission 

critical scenarios such as battlefields, border patrol, mountaineering expeditions, and 

disaster area assistance [5].   

In Chapter 5, we work towards improving the operational efficiency of Industrial 

Internet of Things (IIoT) systems. Internet of Things (IoT) promises to be a key enabler for 

Smart Manufacturing and Smart Supply Chain. The IoT systems are responsible for 

enabling and improving the operational efficiencies of factories, plant floors, including 

assembly plants. These systems are characterized by reliable sensing and reporting of 
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multiple parameters within the factory floor. Such sensing activities offer safe, efficient 

and optimized performance of not only the machines manufacturing the products, but 

also the workforce operating them. Industrial IoT (IIoT) systems could suffer from high 

and unbalanced energy consumption due to the nature of the network deployment. Such 

behavior is undesirable as it not only increases the carbon footprint of the plant, but also 

makes the planned maintenance of IoT devices for battery replacement a huge challenge.  

In this chapter, we propose a heuristic and opportunistic link selection algorithm, 

HOLA, which not only reduces the overall energy consumption of the IoT network but also 

balances it across the network. HOLA achieves this energy-efficiency by opportunistically 

offloading the IoT device data to smart-devices being carried by the workforce in the 

factory settings. Further, these smart-devices with multiple radio links such as Bluetooth, 

Wi-Fi, and 3G/4G LTE heuristically determine the best link to transmit the data to the 

Cloud based on the quality and energy cost of the link. Our experimental and simulation 

studies validate that HOLA can improve the energy efficiency of IIoT systems by reducing 

the overall energy consumption and balancing it across the network [6]. 

In Chapter 6, we work towards the development of a secure, electronic smart door 

lock. The recent advancements in Internet of Things (IoT) have spurred an unprecedented 

revolution of connecting various everyday use objects to the Internet. One such 

application is that of Smart Door Locks (SDL). While electronic door locks have been used 

in the enterprise for close to four decades, this revolution in the IoT coupled along with 

the proliferation of smartphones has been responsible for spurring the recent adoption 

of SDL for home and other commercial use. The SDL are an attractive replacement to 
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traditional door locks as they offer increased security, and easy key sharing while offering 

ease of operation.  

In this chapter, we propose an optical wireless unlocking for SDL. We have designed 

and prototyped a SDL system named OptLock. OptLock accepts an optical wireless signal 

(OWS) which contains the encoded one-time-password (OTP) key via its onboard infrared 

(IR) sensor to unlock. This challenge-response based OWS is transmitted by the user 

through a smartphone via its onboard IR light emitting diode (LED). In the absence of an 

onboard IR LED, an external dongle containing an IR LED can be easily connected to the 

smartphone. This hardware we designed is powered though the smartphone’s 3.5 mm 

headphone jack. Our experiments and analysis validate that OptLock offers a fast and 

efficient unlocking experience which is highly secure, and successfully thwarts various 

attack scenarios [7].   

In Chapter 7, we conclude this dissertation with a summary of our contributions. We 

discuss about the possible future work, and research directions that could arise from our 

research presented in this dissertation to enable a better connected world with the 

Internet of Things.   
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CHAPTER 2 

OPTICAL WIRELESS AUTHENTICATION FOR SMART DEVICES USING AN ONBOARD 

AMBIENT LIGHT SENSOR 

 

 As smartphones gain their remarkable popularity, and their technologies in software 

and hardware keep on improving, they are envisioned eventually to be functional as 

primary devices for various mission critical tasks previously accomplished with PCs. 

Considering that a great portion of the online services requires various types of client and 

server authentications, in addition to the access of the smartphones itself, smartphone 

users will be requested to do authentication as many times as PC users do. However, 

smartphone’s small screen and keypad make it challenging for users to use the traditional 

user id and password typed authentication method whenever access to the device as well 

as the services are needed. It can be especially difficult for the users in rugged conditions 

or with physical challenges. For example, in addition to the personal usage, government 

agencies including DARPA, ARL, and NSA have been actively seeking smartphone 

technologies to support various DoD mission critical activities, including the tactical 

battlefield mission, disaster recovery, and other mission areas. Soldiers in a battlefield 

during covert surveillance missions or people with difficulties in fine motor controls may 

not be able to type in the right passcode in a timely manner. Additionally, there is a 

growing traction among the experts in the security field that days of simple password 

based systems are over [8] since they are easily guessed, cracked, and stolen. 
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Taking advantage of various sensor technologies of smartphones, alternative 

authentication methods such as a pattern, gesture, fingerprint, and face recognition have 

been actively researched. Authentication techniques can be classified into four categories 

as follows: 

 Something that a user knows (user-know): This constitutes techniques such as 

passwords, pin codes, and patterns that can be drawn. 

 Something that a user is (user-is): This constitutes biometric traits of a human 

body such as their fingerprints, face, and iris as well as environments such as 

location and orientation that are unique to the particular person. 

 Something that a user does (user-do): This constitutes an activity that only a 

particular person can generate such as its handwritten signature, gestures, and 

voice generation. 

 Something that a user has (user-have): This constitutes a secure and unique 

hardware token that is possessed by the owner alone. 

Although many smartphone authentication methods have been developed to 

optimize speed and usability while being secure and reliable, they still pose one of 

security, speed, reliability, and usability issues. For example, Knock Code [9] that uses a 

knocking pattern to unlock a phone was introduced by LG in 2014 MWC (Mobile World 

Congress). Although it improves usability, the security level is the same as the original 

pattern-based authentication. Several alternative biometric approaches [10], [11] have 

been proposed mainly as a second factor authentication to heighten the security level. 

However, biometric based authentication techniques can be computationally expensive, 
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and moreover are hard to replace once their security is compromised. Camera-based 

facial recognition may not work for a soldier applying a camouflage to her face, or in a 

dark environment. Recent sensor-based authentication techniques [12], [13], [14] use 

location, orientation, adjacency-to-token, or magnetic information. However, the 

reliability of those authentication techniques is susceptible to environments such as noise 

and signal jamming. Especially, communication sensors such as WiFi or Bluetooth tend to 

consume relatively high energy and require a longer negotiation time. 

In this work, we evaluate existing alternative smartphone authentication approaches 

in various usage scenarios, and propose ambient light sensor based Fast, Inexpensive, 

Reliable, and Easy-to-use (FIRE) authentication for smartphones. We leverage ambient 

light sensors that are already available in most smartphones. An authentication to unlock 

a smartphone and/or to enable web or cloud service access can be done using a light-

emitting token. The light-emitting token is programmable by using configurable 

challenges via a small and inexpensive encoder. FIRE falls under the category of user have 

and user know while combining the two authentication paradigms to deliver a multi-

factor authentication technique. A multi-factor authentication scheme inherently tends 

to be more secure over single-factor authentication schemes. 

We designed and prototyped the FIRE hardware token which uses an onboard LED to 

transmit a programmed authentication key bit string via an Optical Wireless Signal (OWS) 

to the smartphone. The smartphone captures and interprets this OWS via its ambient light 

sensor providing the Optical Wireless Authentication (OptAuth) for the user of the 

smartphone. The experimental results validate that the proposed light sensor token 



 

13 
 

method can achieve FIRE smartphone authentication without compromising the security 

quality. The token can be eventually designed and carried in various inexpensive and small 

form factors including a key chain, a ring, and smartphone accessories. Our major 

contributions in this work consist of 1) evaluating smartphone centric authentication 

methods; 2) proposing a light-emitting token based FIRE smartphone authentication 

technology; 3) proposing a Challenge-Response and Inverse Dual Signature (IDS) security 

scheme; and 4) prototyping and validating the feasibility of the proposed authentication 

method. 

 The rest of this chapter is organized as follows. A detailed explanation of the 

proposed OptAuth system is presented in Section 2.1. The prototype implementation 

along with performance evaluations and experimental scenarios are explained in Section 

2.2. Section 2.3 discusses the existing and state-of-the-art authentication techniques. 

Finally, we conclude the chapter in Section 2.4. 

2.1 OptAuth Approach  

A light sensor is one of the most common sensors in smartphones, and is located on 

its surface above the screen. Since the screen of a smartphone is a major factor in draining 

its battery, an ambient light sensor is used to recognize the brightness of its surroundings 

and adapt the screen backlight to save battery power while optimizing the visibility. We 

exploit the existing and prevalent light sensor in smartphones and use a programmable 

light token generator for the authentication. A light emitter can be a small portable token  
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embedded into everyday objects such as a key chain, a security badge, and smartphone 

accessories. A FIRE hardware token consists of battery powers, a microcontroller, a light 

source LED, a photoresistor sensor [15], a guard around the LED, programmable code key 

buttons, and optionally an NFC chip. An NFC chip can be used for a multi-factor token. It 

ensures the proximity of the FIRE token to the authenticating smartphone as well as 

stores the authentication for multiple server accesses. Multiple types of authentication 

information on the NFC chip can be selected from a drop-down menu when scanned by 

the smartphone. 

We propose an Inverse Dual Signature (IDS) security scheme to complement the 

OptAuth approach. In SET (Secure Electronic Transaction) [16], the concept of Dual 

Signature is used by concatenating two different pieces of information to generate a  

Figure 2. 1: OptAuth: Key storing phase 
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Algorithm 2. 1: FIRE Key Store Phase 

FIRE – KeyStore Phase 

1: encrypt password with CAs public key K+
U ; 

2: K+
U is passed through symmetric encryption function E’ with device IMEI as key KD 

to generate Password Device Signature PDS; 

3: disjoin PDS into Token Signature ST , and Device Signature SD; 

4: ST is stored on the FIRE token; 

5: SD is stored on the mobile device; 

 

single message digest, which, after encryption with the user’s private signature key results 

in a Dual Signature. In this work, we take an inverse approach, where we disjoin a single 

piece of information which is user’s password, and encrypt it with CA’s public key followed 

by user’s symmetric key. This results in two signatures that are intended for the FIRE 

token, and the user’s smartphone, respectively. 

An OptAuth smartphone authentication approach takes the following process. First, 

as illustrated in Figure 2.1, the user’s password is encrypted with Certificate Authority’s 

(CA) public key (K+
U) for the user. This is further encrypted with symmetric encryption 

function E’ that takes the smartphone’s IMEI as its key to produce the Password Device 

Signature PDS. A disjoin function breaks PDS into Token Signature ST and Device Signature 

SD. While ST is stored on the user’s FIRE token, SD is stored on user’s smartphone as shown 
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in Algorithm 2.1. Using a device unique information such as IMEI to encrypt K+
U generates  

a PDS that only the specific device can recover by decrypting it with the IMEI as the key 

again. In absence of the IMEI for a device, its MAC address can be used. 

Additionally, we have designed a unique challenge-response technique to aid in 

ensuring that the holder of the FIRE token is the actual owner of that FIRE token. This 

technique is critical to guard the smartphone owner against the security threat in which 

both the smartphone and FIRE token are stolen by the same attacker. It is also essential 

for the entire challenge-response and authentication process to be touchless and typing 

free to maintain a high usability in emergent scenarios where smartphones are being used 

by soldiers in battlefields, and patients with difficulties in their fine motor controls. 

During the challenge setting phase as illustrated in Figure 2.3, the user is presented 

with a random collection of color patterns on the smartphone screen. The user must 

select one of those color patterns as the challenge for authentication by pressing the  

Figure 2. 2: OptAuth: Authentication phase 
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particular tile. Then the user must scan this color pattern with the photoresistor sensor 

embedded on the surface of the FIRE token (not implemented yet). The FIRE token 

registers the scanned color pattern RGB from the photoresistor sensor. 

During the authentication phase the user must first prove that he/she is the actual 

owner of that smartphone, and FIRE token. This is achieved using the challenge-response 

scheme as illustrated in Figure 2.4. The user is first presented with a random collection of 

color patterns on the smartphone screen in which a few patterns along with the actual 

challenge always repeat. The user then scans the required color pattern from the screen 

with the photoresistor sensor embedded on the surface of the FIRE token. The FIRE token 

registers the sensor readings from the photoresistor and computes it as RGB’. If the values 

of the scanned RGB’, and the set value of the challenge RGB match, then the FIRE token 

is activated to transmit the user’s password. 

Then as illustrated in Figure 2.2 and Algorithm 2.2, the user employs the FIRE token 

to transmit ST via OWS. The smartphone ambient light sensor interprets the variation in 

light frequency of OWS to compute S’T. The smartphone then retrieves SD from its 

memory. A concatenation function then results in the recovery of PDS’. The device then   

Figure 2. 3: OptAuth Challenge setting phase 
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Algorithm 2. 2: Fire - Authentication phase 

FIRE – Authentication Phase 

1: user places FIRE token on smartphone light sensor, transmits ST via Optical Wireless 

Signal (OWS); 

2: smartphone light sensor interprets variation in light frequency of OWS to compute 

S’T; 

3: smartphone retrieves SD stored in its memory; 

4: concatenate S’T and SD to obtain PDS : PDS = (S’T+SD); 

5: smartphone reconstructs K+
U (P) = D’(PDS); 

6: symmetric decryption function D’ uses device IMEI as key to recover K+
U (P); 

7: User provides K+
U (P) to CA for authentication; 

8: CA uses its private key to decrypt password from User: P = K-
U (K+

U (P)) 

9: if P == P’ then 

10:   user successfully authenticated; 

11: end if 

12: if P != P’ then 

13:   user authentication is unsuccessful; 

14:    notify user of possible attempted unauthorized access by trusted mechanism; 

15: end if 

 

reconstructs the encrypted password K+
U (P) by running PDS’ through symmetric 

decryption function D0 that requires the device IMEI as the key. The user then provides 
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the CA with K+
U (P) for authentication. The CA in turn decrypts K+

U (P) with its private key 

for the user K-
U to obtain P’. If P’ and the user’s allocated password P match, then the user 

is successfully authenticated as illustrated in Figure 2.5. 

If the values of RGB’ and RGB do not match, the FIRE token perceives that an attacker 

is trying to access the token, and does not activate further to transmit the password. After 

a predetermined number of failures to identify the correct challenge, the FIRE token locks 

up altogether to thwart any misuse of the FIRE token. Let p be the probability of an 

adversary to randomly guess the challenge-response. In addition, suppose t and c are a 

preset limit of trials and the number of color patterns on the screen, respectively. Then, 

p can be calculated by  

𝑝 =  
𝑡

𝑐
 

The number of color patterns, c, is a function of m and f as below: 

𝑐 = ∏ 𝑓 − 𝑖

𝑚−1

𝑖=0

 

Figure 2. 4: OptAuth Challenge-response phase 
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 where m is the number of tiles in one color pattern and f is the number of colors. We 

assume f is greater than or equal to m. As the passcode of the user is encrypted twice, 

and only one half of it is kept on the FIRE token, it is practically impossible for the attacker 

to guess the correct password by a brute-force attack on the FIRE token hardware. 

The proposed IDS scheme along with the challenge response scheme and FIRE token 

offer high security and defeat various attack models associated with hardware token 

based security approaches as follows: 

Figure 2. 5: FIRE approach: Successful user authentication example 
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 Stolen FIRE Token and Smartphone: If the user’s FIRE token, and smartphone 

are stolen by the same attacker, the attacker is unable to access the user’s 

accounts as the attacker is unaware of the correct response to the color 

pattern challenge. So as the attacker is not able to scan the RGB’ value from 

the color pattern that will match the RGB value that the FIRE token is  

Figure 2. 6: FIRE approach: Unsuccessful attacker authentication example 
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Table 2. 1: Comparison of various authentication techniques 

Authentication 
Technique 

Time 
(sec) 

Security 
Level 

Summary 

Username & 
Password 

~24.5 High Hard to enter complex passwords 

Username & 
Password while 
wearing gloves 

~45.5 High 
Trouble with responsiveness of 

touch screen 

Fingerprint 
recognition 

(including time to 
take gloves off) 

~2 Moderate 
Low recognition rate with foreign 
substances on fingers, unusable 

when wearing gloves 

Facial recognition ~2 Moderate 
Unusable for face with 

camouflage, protective eyewear 
or helmets, dim lighting 

Patterns ~1 Low Easy to break 

Fire ~1 High 
Fast, Inexpensive, Reliable, and 

Easy-to-use 
 

expecting, the FIRE token will not activate to send the passcode via OWS. 

Additionally, after a preset number of wrong attempts at the challenge-

response, the FIRE token will lock itself from further use. 

 Stolen FIRE Token: If the user’s FIRE token gets stolen, the attacker is incapable 

of producing correct K+
U (P) to offer to the CA. This is because the attacker 

lacks SD that is stored on the original user’s smartphone. So when the attacker 

tries to present the CA with K+
U (P) by using a stolen token, it results in failed 

authentication as illustrated in Figure 2.6. The user is further notified of this 

event, and a new password and FIRE token are issued. In case the user’s 

smartphone and FIRE token both are stolen, the CA issues a new password and 

FIRE token for the user. 
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 Snooping OWS from the FIRE Token: The attacker’s attempts to snoop on the 

bit stream of OWS from the FIRE token are defeated by multiple factors. First, 

the physical guard around the light emitter blocks snooping attacks apart from 

enabling the isolation of environmental light that aids in better sensor reading. 

Second, the attacker is unable to reproduce correct K+
U (P) due to lack of SD 

and also the IMEI number of the smartphone that is unique to a particular 

phone. 

Therefore, the probability (𝑝") of correct authentication of an adversary can be 

summarized as follows: 

𝑝" =  
𝑡

𝑐
, 𝑖𝑓 𝑏𝑜𝑡ℎ 𝐹𝐼𝑅𝐸 𝑇𝑜𝑘𝑒𝑛 𝑎𝑛𝑑 𝑆𝑚𝑎𝑟𝑡𝑝ℎ𝑜𝑛𝑒 𝑎𝑟𝑒 𝑠𝑡𝑜𝑙𝑒𝑛 

𝑝" =  0, 𝑖𝑓 𝑜𝑛𝑙𝑦 𝐹𝐼𝑅𝐸 𝑇𝑜𝑘𝑒𝑛 𝑖𝑠 𝑠𝑡𝑜𝑙𝑒𝑛 

𝑝" =  0, 𝑖𝑓 𝑠𝑛𝑜𝑜𝑝𝑒𝑑 

OptAuth provides authentication services for a variety of usage scenarios such as 

unlocking the smartphone or authentication for online services such as banking, emailing, 

and social networking. For the case of unlocking the smartphone, there is no need for the 

device to be connected to the network. The challenge-response step will be followed by 

IDS, and the passcode for it can be stored locally on the smartphone. For services such as 

banking, emailing, and social networking the smartphone will need to be connected to a 

network to access those services, and also to verify the authenticity of the user with the 

particular service provider’s authentication servers. 
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As presented in Table 2.1, we have tested the processing speed of various smartphone 

authentication methods and compare and summarize the performance and security level. 

According to the aforementioned characteristics, we discuss the advantages of the FIRE 

authentication approach as follows: 

 Fast: Using a light token only requires a proximity to the smartphone’s light 

sensor instead of manually typing user name and password that is especially 

hard in challenging environments. Hence, it enables the faster authentication 

than the traditional approaches. As also shown in Table I, FIRE is faster than 

other alternative authentication approaches such as facial recognition and 

fingerprints. FIRE’s authentication speed is the fastest and as good as the 

pattern based authentication. 

 Inexpensive: The cost of building a light token hardware is less than $4 in our 

prototype implementation, as described in Section 2 of this chapter. The cost 

can be even lowered with mass production. 

 Reliable: A smartphone’s light sensor reading is a highly accurate and 

straightforward technology compared to other sensor technologies. We 

validate this by using our simple and inexpensive LED prototype. For example, 

magnetic sensors or microphones [14] would pick the magnetic fields and 

background noise that are commonly present in the environment, requiring 

special filtering techniques. Other token based alternative authentication 

approaches can typically address the threat of unauthorized access and a 

device theft by blocking the access without the token. In addition, a high 



 

25 
 

proximity contact and a guard around the token light emitter isolate its signal 

from interference or noise and exclude snooping threats. Furthermore, an 

Infrared (IR) LED can be embedded in the token that is invisible to human eyes. 

 Easy-to-Use: Unlike most biometric authentication approaches, it can be easily 

used in a dark environment, and does not require cumbersome typing. An easy 

authentication is critical for the users in disaster or military environments, or 

for those with physical challenges or disabilities. 

2.2 OptAuth Prototype Implementation and Evaluation  

In this section we explain the implementation and experimental settings used to 

validate the feasibility of employing a smart device light sensor for authentication. 

 We have built a simple circuit that is able to modulate a digital bit string into a 

sequence of lights toggling on and off for a controlled time interval. The time should be 

brief enough to transfer the bit string in a short time and not be easily detected by human 

Figure 2. 7: Timer circuit design and LED output in PSpice simulator 
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eyes. The light sequence also includes a few bits of (e.g., 10101) a preamble for 

synchronization in addition to the secure authentication bit string. We have used the HTC 

One (M8) smartphone powered with Android 4.4 for all the experiments, and wrote our 

OptAuth application with the Android SDK. While profiling the ambient light sensor of the 

smartphone, we employed an application AndroSensor [17] additionally to capture the 

ambient light sensor readings for sanity check. 

We first experimented to see if the light sensor on the smartphone was capable of 

distinguishing various bit patterns encoded with light emitters. For this purpose, we 

modeled the timer circuit in PSpice simulator shown in Figure 2.7, and then designed a 

prototype circuit with hardware components, Figure 2.8. We observed that the simulated  

and generated light waveforms matched with the actual sensor readings on the smart 

devices. 

Figure 2. 8: Timer circuit prototype implementation 
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We then built and programmed a prototype light encoder hardware using the ultra-

low power microcontroller ATmega328P by Atmel [18]. The ATmega328P microcontroller 

was programmed using the Arduino Uno Revision 3 [19] microcontroller board. The 

schematic of the circuit we built for the FIRE hardware token along with the block diagram 

of the Arduino Uno microcontroller board is shown in Figure 2.9 and the hardware token 

we built is shown in Figure 2.10. The size of this board is smaller than a credit card and 

the total retail price of the light encoder and emitter components was only about $2 that 

would become even smaller with mass production. The cost is by far lower compared to 

other available tokens such as RSA SecurID [20] or VASCO Digipass [21] that cost around 

$50. We have use the bread board to attach additional components to the Ardunio Uno  

microcontroller. In practice, however, this can be compactly packaged into a key chain, a 

ring or other smartphone accessories. The latest version of the hardware token we built 

Figure 2. 9: FIRE token circuit implementation 

 

 

 



 

28 
 

is shown in Figure 2.11. It is built with an Arduino Nano which again has an ATmega328P 

microcontroller, and is designed as a compact wearable type of device. 

We built the OptAuth application for Android using the Android SDK. The application 

has been designed to listen for the OWS via its ambient light sensor once it detects the 

presence of the FIRE token. The OptAuth application perceives the presence of the FIRE 

token when its proximity sensor (which is collocated with the ambient light sensor) is 

triggered, and continues to register the presence. The application also displays various   

Figure 2. 10: FIRE token hardware set up with Arduino Uno 
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status messages, and displays the bit string that was received from the FIRE token. The 

screenshots for the application are shown in Figure 2.12. 

Next, we verify the viability of using the ambient light sensor of a smartphone to 

receive an OWS that is transmitted by the OptAuth token experimentally. We first profiled 

the ambient light sensor on the HTC One (M8) smartphone to observe its sensitivity to 

various light levels. The LED connected to the microcontroller in the token can have 

varying levels of brightness by varying the value of analogWrite function that uses the 

Pulse Width Modulation (PWM) available on certain digital output pins. This analogWrite 

value can be varied between 0 and 255 with steps of 1. The corresponding values of 

brightness (in lux) that are recorded by our OptAuth application are shown in Figure 2.13. 

To verify the correctness of our application, we have compared it with a commercially 

available application, AndroSensor. As can be seen from the Figure 2.13, both the 

application record nearly similar values of lux for corresponding brightness of the token 

Figure 2. 11: FIRE token hardware setup with Arduino Nano 
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LED. These various levels of brightness can also be observed from Figure 2.14. It should 

be noted that for a high data rate, the LEDs switching rate from one state to another 

becomes so high that it appears as a flicker to the human eye, and it is impossible to 

discern the data being sent by just observing. 

For the OptAuth technique to be fast and reliable, the FIRE token should be able to 

send the key bit string that is long enough for strong security at a very high data rate with 

no or minimum errors. For this we first aim to understand the physical data rate limits of 

the ambient light sensor of the smartphone using a basic modulation scheme such as ON-

OFF keying (OOK), and then device a more sophisticated modulation scheme for achieving 

relatively very higher data rates. 

Figure 2. 12: OptAuth android application screenshots 
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 The Android KitKat operating system (4.x) can scan its sensors at four predefined 

levels, and specifically reports the new value of the ambient light sensor when it changes. 

Otherwise, the sensor retains the stale value. These four delay types that can be set are 

Fastest, Game, UI, and Normal in the increasing order. A detailed comparison of these 

delay types, their sensing delays, and corresponding energy efficiency is shown in Table 

2.2. 

We find that the with the sensor delay set to the Fastest rate, i.e. reporting the change 

in the lux values with zero delay, the minimum switching period between two consecutive 

states of the LED has to be at least that of 3 msec. That is, the minimum width of the pulse 

has to be at least that of 3 msec for OOK. Based on this, experimentally we could achieve 

a data rate of 333 bits/sec for OOK with zero errors. The OOK modulation scheme is  

Figure 2. 13: Android ambient light sensor sensitivity to brightness of FIRE token 
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shown in Table 2.3. The ON symbol indicates that the LED is emitting light, and the OFF 

symbol indicates that the LED is not emitting light. The data rates that can be achieved 

for the other Android sensor delay levels are shown in Figure 2.15. 

Now, another interesting information that can be perceived from Figure 13 is that 

there are exactly six different levels of lux values that are recorded. Thus we used the 

difference between the six different lux values to create more levels to represent the bits. 

If we use the six levels as is we can have only 2-bit representation at the max (00 to 11) 

due to the 22 i.e. four unique values available at the max to fit the 2x representation. 

To get more values for the 6 different lux levels that we can observe, we used the 

difference between each of them. This combination of differences yields exactly 16 

unique values. On the basis of those 16 different values i.e. 24 different values we can use 

4-bit representation of 0000 to 1111 assigned to each of them. This modulation scheme 

thus results in 4 times improvement over the base one resulting in total achievable data 

rate of 1332 bits/sec (or 1.332 Kbps). So for e.g. if we have a 128 bit key, we can still send 

it via the token in under 1 second, and have additional bits for verifying if it was received 

correctly by the Android app with some error correcting scheme. We call this modulation 

scheme for OptAuth as Light Intensity Modulation (LIM) which is shown in Table 2.4. 

 

Note that FIRE can use either ambient light LEDs or infrared LEDs (IR LEDs) for the light 

sensors in smart devices. While it uses slightly more energy than ambient LEDs, IR LEDs 

that fall under the far infrared category operate with a 50 ~ 1,000 mm wavelength, and 
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are not visible to human eyes [22], thus can be more secure without a light guard around 

the LED. The ATmega328P is a very low power micro controller, and will draw about 34.5 

mA or 41 mA while operating an ambient LED and an IR LED, respectively, for 1 ms [23] 

[24]. The remote key for unlocking a car typically use a CR2025 button battery. This 

CR2025 can be used to power the micro controller, and it has a capacity of 150mAh [24]. 

Then, an estimated operation time of a FIRE token can be obtained using the following 

equation: 

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑇𝑖𝑚𝑒 =  
𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑟𝑎𝑤𝑛/𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 

The results in an operation time of 3.6585 hours with IR LEDs. Now if the FIRE token 

is encoding a 10 bit security code at 10 bps, the token can be used approximately 13,170 

times on a single battery which can last over 3 years if the FIRE token is used 10 times per  

Figure 2. 14: OptAuth FIRE token LED emitter 
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day. The approximate lifetimes of the FIRE token with various battery types are shown in 

Table 2.5. 

2.3 Related Work  

Various authentication approaches can be identified in literature including biometric 

based, sensor based, and token-sensor based authentication. 

Biometric based authentication techniques [10], [11], [25], [26] rely on the uniqueness 

of certain physical traits in humans. Some of these traits are fingerprints, finger knuckles, 

retinas, and walking patterns. The major problem of biometric based authentication 

techniques is that it is hard to replace once their security is compromised. On the other 

hand, token based authentication schemes can be easily replaced and renewed if they  

Figure 2. 15: Android light sensor data rates 
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Table 2. 2: Android sensor delay comparison 

Android 
Sensor 
Delay 

Min Pulse 
Width 
(msec) 

Data 
Rate 

(bits/sec) 

Sampling 
Delay 

(microsec) 

Weighted 
Android Energy 

Efficiency 

Fastest 3 333 0 ~ 0 

Game 3 333 20,000 ~ 0.1 
UI 4 250 60,000 ~ 0.3 

Normal 4 250 200,000 ~ 1 

 

are lost or if their security is compromised. Furthermore, visual face recognition does not 

work for a soldier applying a camouflage to his/her face, or in a dark environment. 

Recently, sensor based authentication techniques [12], [13], [27], [28], [29], [30], [31] 

have been proposed. They rely on the various sensor readings within a smartphone itself 

such as the location sensor, and orientation sensor when a smartphone is in use. 

However, those sensor based authentication techniques are likely to need additional 

filtering techniques due to the sensitivity of noisy environments. Communication sensors 

on smartphones such as WiFi or Bluetooth [32] tend to consume relatively high energy 

and require a longer time due to their own authentication or negotiation. Signal emitters 

of such RF would also be relatively expensive. Furthermore, such schemes become 

unusable under electromagnetic pulse (EMP) attacks where wireless communication 

channels are not available due to signal jamming. 

In token-sensor based authentication schemes [14], [33], [34] an additional token 

such as a QR code, magnetic or acoustic keys are used for authentication. The authors in 

[14] have proposed two token based approaches named Magkey, and Mickey. The 

Magkey token encodes the authenticating code in a form of a magnetic field that can be  
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Table 2. 3: OOK bit encoding 

Bit Symbol 
0 OFF 

1 ON 

 

detected by the smartphone’s compass, and the Mickey employs a sound emitter to 

achieve same encoding that can be detected by the smartphone’s microphone. Although 

both these approaches leverage common smartphone sensors, they suffer from an 

inherent drawback in terms of sensor reliability. As a compass is embedded deep inside 

the smartphone, it is practically impossible to filter out stray magnetic fields in the 

environment whether from the Earth’s magnetic field or any electronic devices, or 

conduction wires that generate a magnetic field that is fluctuating in nature. The same 

applies to the microphone as it catches the acoustic noise in the environment. On the 

other hand the natural exposure of a light sensor and a straight light emission on the 

surface of a smartphone provide an effective isolation of noise especially by employing a 

physical guard around the light emitter in the FIRE token. 

Keeping pace with the evolving shift to use smartphones as primary gateways to the 

web and cloud services are the newer threat models that are targeted specifically towards 

smartphones. Threat models as designed in [35] rely on accelerometer, and gyroscope 

sensors of a smartphone to predict the passwords being typed by the users. The lack of 

any moderation on use of accelerometer, and gyroscope sensors increases the security 

risk. Using the FIRE token to authenticate users will defeat such security threats. 
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Table 2. 4: LIM bit encoding 

Bits First Symbol (lux) Second Symbol (lux) 
0000 10 320 

0001 10 640 

0010 10 1280 

0011 10 2600 
0100 10 10240 

0101 320 640 

0110 320 1280 

0111 320 2600 
1000 320 10240 

1001 640 1280 

1010 640 2600 

1011 640 10240 
1100 1280 2600 

1101 1280 10240 

1110 2600 10240 

1111 10240 10 

 

OptAuth is one of the token-sensor authentication methods that leverages a 

prevalent sensor in smartphones. It provides the user fast authentication using an 

inexpensive light-emitting token. We have found that it is highly reliable in that 

smartphone sensors accurately read the high rate light pulses with little error. It enables 

the users in rugged conditions and with physical challenges to do authentication. 

2.4 Conclusion  

We have presented an optical wireless authentication for smartphones, OptAuth that 

is Fast, Inexpensive, Reliable, and Easy-to-use (FIRE). OptAuth leverages a smartphone’s 

ambient light sensor and uses a challenge-based programmable light-emitting token 

generator. We have designed and prototyped an inexpensive passcode encoder and light-

emitting hardware. Our experiments validated that FIRE token can authenticate a user on 
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a smartphone in an easy, fast, and reliable way without compromising the security 

quality. The proposed authentication can be used not only to act as a fast and easy-to-

use alternative for emergent or challenging usage scenarios, but also as part of a multi-

factor authentication scheme that is fast, inexpensive, reliable, and easy-to-use. 
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CHAPTER 3 

SMARTPHONE BASED CAR2X-COMMUNICATION WITH WIFI BEACON STUFFING FOR 

VULNARABLE ROAD USER SAFETY 

 

 As smart devices gain their popularity, vulnerable road users (VRUs) are increasingly 

distracted by the activities with the devices such as listening to music, watching videos, 

texting or making calls while walking or bicycling on the road. They are more at risk of 

getting involved in accidents with vehicles on the streets [36]. For example, a recent 

report [36] says “The number of headphone-wearing pedestrians seriously injured or 

killed near roadways and railways has tripled since 2004” and “In roughly one-third of the 

cases, horns or sirens sounded before the victim was hit, according to eyewitness 

reports.” Although various VRU safety infrastructures such as traffic lights, warning signs, 

and alert sensors are deployed on the streets to reduce the risk of collisions, all such 

mechanisms are not capable of providing direct alerts to the distracted VRUs tailored to 

the specific scenarios. Although much of pedestrian safety in intelligent systems is 

directed towards alerting driver of the vehicle with the pedestrian detection sensors and 

night time infrared cameras, a direct alert from vehicles to VRUs still heavily relies on the 

traditional sound warning method. However, the more VRUs are shutting out the external 

safety related warning sounds especially due to their smart devices. Thus, it is critical to 

design a bi-directional communication system between vehicles and smart devices of 

VRUs that can directly exchange personalized alerts either sides to recommend ways to 

avoid imminent collisions in a timely manner. 
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 Recently researchers in the automotive industry, as well as academia [37], [38], [39] 

have proposed Car2Pedestrian communication systems that issue alerts between vehicles 

and VRUs using smart devices, if a situation of potential collisions arises. 

In [37], the researchers use the WiFi Direct feature of Android powered devices to 

establish an ad-hoc network between the smart devices in the vehicles, and those carried 

by VRUs. They cite that the communication latency to relay a threat to VRUs is low as it 

takes around 1 second only for the WiFi Direct [40] association time. However, in practical 

scenarios, it will greatly limit the coverage distance between the devices. For example, 

according to GIDAS [41], [39], nearly 90% of all accidents are with the vehicle speeds up 

to 70 km/h (i.e. 20m/s). However, the system only can cover the speed of less than 25 

km/h.  

In [39] the researchers find that ad hoc communication at high speeds is not possible 

with the WLAN chipsets. They propose Car2X communication should be enabled by using 

dedicated short-range communications (DSRC) [42] also known as 802.11p, and the 

software modules of smart devices for European Telecommunications Standards 

Institute’s Intelligent Transport Systems, which specifies 5.9 Ghz technology (ETSI ITS G5). 

However, such an approach would require the vehicle manufactures to provide the 

802.11p enabled modules in the vehicles. Similarly, in [38] the researchers use 802.11p 

modules in the vehicles, and modified smartphones for VRUs to enable Car2X 

communications. As presented in Table 3.1, the range and mobility that DSRC offers  

Table 3. 1: Comparison of various wireless protocols 

Protocol Data Rate Range Mobility 

DSRC 3-27 Mbps < 1 Km > 60 Mph 
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WiFi (with association) 6-54 Mbps < 100 m > 5 Mph 
Cellular < 2  Mbps < 10 Km > 60 Mph 

Mobile WiMax 1-32 Mbps < 15 Km > 60 Mph 

 

cannot be matched by the regular WiFi [43]. DSRC, however, is not ubiquitously available 

yet on VRUs’ smart devices, and only available in some vehicles. 

In this chapter, we propose a smartphone based Car2X communication system, 

named WiFiHonk, which can alert the imminent collisions to both VRUs and Vehicles. 

WiFiHonk provides the cost effective and practical safety means to the distracted VRUs 

using the WiFi of smart devices. First, we have identified that the severe mobility 

constraints of the WiFi are due to its communication association latency. Hence, if we are 

able to override this connection step between the devices, and still achieve the delivery 

of intended messages, then the devices can communicate even in high mobility cases. To 

enable the connectionless communications between devices using WiFi without the 

association latency, we exploit the possibility of using WiFi Beacon Stuffing [44] in Car2X 

communication scenarios. The Beacon Stuffing approach embeds the intended messages 

within the SSID or BSSID field of the WiFi beacon header and is available for the smart 

devices by operating the WiFi Hotspot [45] or WiFi Direct mode. 

These beacons are transmitted every 100 ms, and are passively scanned in WiFi 

Hotspot/Direct discovery mode. Our practical and simulation experiments indicate that 

WiFiHonk works well up to 70 mph high speed vehicles, and successfully exchange 

accurate warnings between VRUs and vehicles. Second, we have designed an efficient  
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Algorithm 3. 1: TB beacon update 

TB Beacon Update 

1: At start time obtain fine-grained location from GPS satellites; 

2: Extract Current Speed (Cs); 

3: Get Travel Direction (Td); 

4: while ElapsedTime (Et) < DecayTime (Dt) do 

5:    if Cs changes by ±S Mph then 

6:       Update Beacon; 

7:    else if Td changes by ±D° then 

8:       Update Beacon; 

9:    end if 

10: end while 

 

collision estimation algorithm that can correlate mobility vectors of VRUs and vehicles in 

order to avoid unnecessary warnings (not to disturb the VRU’s original usage experience) 

as well as to issue appropriate warnings (in their urgency and intensity). For example, a 

VRU may receive beacon messages from the multiple vehicles. The algorithm can select 

messages only from the approaching vehicles. It also decides the warning level according 

to the proximity and speed of the vehicles. 

The rest of this chapter is organized as follows. A detailed explanation of the proposed 

WiFiHonk system is presented in Section 3.1. The performance evaluations are explained  
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Algorithm 3. 2: TR collision estimation 

TR Collision Estimation 

1: At start time obtain fine-grained location from GPS satellites; 

2: Estimate TR Vector (TRVec); 

3: Activate WiFi radio; 

4: Execute thread TRVec Update(); 

5: while ElapsedTime (Et) < DecayTime (Dt) do 

6:    Scan WiFi Beacons; 

7:    if new or updated TB scanned then 

8:       Extract beacon from TBX; 

9:       Evaluate TBX vector (TBXVec); 

10:     if TRVec and intersect TBXVec then 

11:            Update CollisionTable with TBX;    

12:     else         

13:            Discard TBX;    

14:     end if            

15:     else          

16:        for each TB in CollisionTable do 

17:           if Time to Collision < CriticalTime then           

18:              Alert User;     

19:           end if 

20:        end for       
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21:  end if  

22: end while 

 

in Section 3.2. Section 3.3 discusses the existing, state-of-the-art Car2X communication 

techniques. Finally, we conclude the chapter in Section 3.4. 

3.1 WiFiHonk Approach  

WiFiHonk consists of a beacon stuffing module, a collision estimation module, a 

collision table, and an alert module. The technique of embedding meaningful information 

in the access point (AP) discovery messages is called Beacon Stuffing [44]. It enables us to 

push meaningful information safety alert without incurring the delay of WiFi AP 

association which can take a few seconds. As presented in Algorithm 3.1, the beacon 

stuffing module first collects the location from the GPS positioning (latitude and 

longitude), the speed from the accelerometer sensor (mph), and the travel direction from 

the gyroscope sensor (degree 0 ∼ 360). The collected information replaces the beacon 

messages SSID field (32 bytes) as a WiFiHonk Information Packet (WHIP). A WHIP packet 

starts with a special string C2X followed by latitude, longitude, speed, and direction 

separated by a space. The WHIP stuffed beacon message can be initiated by both vehicles 

and VRUs called Threat Broadcaster (TB). The TB broadcasts these beacons every beacon 

interval (i.e, 100 ms). These beacons can be adaptively stuffed when there is a significant 

change in the location, device speed and/or direction of travel. The collision estimation 

module calculates an Estimated Time to Collision (ETC) information by using the received 

WHIP information. 
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Algorithm 3. 3: TRVec Update 

TRVec Update() 

1: while ElapsedTime (Et) < DecayTime (Dt) do 

2:    if Cs changes by ±S Mph then 

3:       Update TRVec; 

4:    else if Td changes by ±D° then 

5:       Update TRVec; 

6:    end if 

7: end while 

 

When a smart device encounters a WHIP information (starting with C2X) from the 

SSID field of the beacon message, it also extracts the source MAC address from the 

information element. The receiving smart device can obtain a unique identifier, Vehicle 

ID from the message’s MAC address. As shown in Algorithm 3.3, it collects local devices 

location, speed, and travel direction information to calculate its direction vector. Using 

the direction vectors calculated from the WHIP information (location, speed and travel 

direction) and the local information, it generates a logical map to identify its own vector 

along with the direction vectors for various vehicles obtained through WHIP information. 

These are called Collision Vectors, and if a device can compute these Collision Vectors to 

intersect a point in the logical map at the same time, then it means there is a possibility 

of collision in their future travel paths. If an intersection is found, using the speed and 

location information, it calculates ETC. 
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When the ETC for a particular entry reaches a configured critical point, an alert 

module issues an alert via various ways to draw a smart device user’s attention such as 

audio, tactile, and visual alerts via the smart device headphones/speakers, vibrations, and 

display screen. This operation is called the Threat Receiver (TR), and explained in detail in 

Algorithm 3.2 and 3.3. The collision table is a database that stores unique vehicle id 

entries in the increasing order of ToC. The conceptual approach of the proposed WiFiHonk 

is illustrated in Figure 3.1. 

3.2 WiFiHonk Evaluation  

We used Samsung Galaxy S3 and Galaxy Tab powered with Android 4.0 to implement 

WiFiHonk. We experimentally obtain the various environmental factors used in our 

simulation studies. In practical situations for WiFi Hotspot/Direct, the range for the APs is 

Figure 3. 1: WiFiHonk approach conceptual illustration 
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∼50 m, the association time ∼2 seconds, beacon intervals is 100 ms, and time to register 

an alert for VRU is ∼1-2 seconds. We use Rayleigh Fading signal propagation model [46] 

with environmental noise of 95 db to model losses. The packets lost in a wireless medium 

are a function of the distance between the transmitter and receiver, and the 

environmental noise. The average bit error probability PB is calculated using the following 

equation: 

𝑃𝐵 =  
1

2 ∗ (1 + 𝑆𝑁𝑅)
 

𝑤ℎ𝑒𝑟𝑒 𝑆𝑖𝑔𝑛𝑎𝑙 𝑇𝑜 𝑁𝑜𝑖𝑠𝑒 𝑅𝑎𝑡𝑖𝑜 (𝑆𝑁𝑅) = 𝑅𝑆𝑆𝐼 + 𝑁𝑜𝑖𝑠𝑒  

Figure 3. 2: WiFiHonk & WiFi Direct mobility verification: Vehicles crossing each other 
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The observed Received Signal Strength Indictor (RSSI) for the smart devices at different 

distances between transmitter and receiver are shown in Table 3.2. The VRU gait is 3.1 

mph, and vehicle speed is varied. 

 First, we verify if WiFiHonk can successfully deliver at least one beacon in a timely 

manner for a wide range of speeds and mobility scenarios, as just one beacon containing 

the WHIP packet is enough to estimate if there will be a collision. We emulated an 

environment in which two vehicles are crossing each other and following each other for 

varying speeds and distances. We also compare WiFiHonk’s performance with the 

traditional association based WiFi Direct method for transmitting messages. In both 

cases, the broadcast interval of the messages was 100 ms.  As shown in Figure 3.2 and  

Figure 3. 3: WiFiHonk & WiFi Direct mobility verification: Vehicles following each other 
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Figure 3.3, WiFiHonk successfully delivers at least one message for both the cases for all 

settings of mobility speed and distance. It should be noted that WiFi Direct based method 

fails in delivering even a single message for the case in which the two vehicles are crossing 

each other when the speed is greater than 15 mph. Vehicles crossing in some format is 

the most basic setting for most type of collision. 

 Next, we carried out simulation tests for various crash scenarios, and obtained results 

determining the Time Available to Stop (TAS) and Probability of Collision (POC) for a VRU 

after the alert is received using WiFiHonk, and compared it with WiFi Direct method. We 

used the following formula to compute POC, as it is inversely proportional to TAS 

combined with the Time necessary by a VRU to recognize the Alert on smart device (TRA).  

Figure 3. 4: WiFiHonk evaluation - VRU time available to stop 
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We assume 1 second for the Required Time to Sop (RTS), and 1∼2 random time for TRA 

in the evaluation. POC becomes 1 if TAS is 0 second. 

𝑃𝑂𝐶 =  
𝑅𝑇𝑆

𝑇𝑆𝐴 + 𝑇𝑅𝐴
 𝑖𝑓 𝑇𝑆𝐴 ≠ 0 

 For a crash scenario similar to one in Figure 3.1, Figure 3.4 shows that with WiFiHonk 

a VRU can be safely alerted of a collision is a timely manner even for high speeds, whereas 

WiFi Direct based method works well till only ∼10 mph of vehicle speed. In addition, the 

resultant POC is reduced due to the use of WiFiHonk as shown in Figure 3.5. Based on the 

POC, we can alert the driver of the vehicle as well as the VRU in a more aggressive mode 

of WiFiHonk where VRUs’ device also acts in AP mode. 

 

Figure 3. 5: WiFiHonk evaluation - probability of collision 
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Based on the TAS and POC results, we estimate the outcome of the situation for 

various conditions of braking or accelerating to avoid the accident as shown in Figure 3.6, 

and Figure 3.7. While Figure 3.6 shows the outcome of the scenario when a vehicle 

responds to the WiFiHonk alerts by accelerating or decelerating to avoid hitting the VRU, 

Figure 3.7 shows the outcome when similar evasive maneuvers are made by the VRU. 

Green zone indicates successful evasion of accident, orange zone indicate high risks, and 

red zone indicate definite collisions. In the green zone, a driver and a VRU(s) can be 

alerted with recommendations to avoid an accident in a timely manner. We observe that 

WiFiHonk alerts are important to be delivered to the smart device in a vehicle, as evasive 

measures by the vehicle result in better outcomes where crashes are avoided. As for a  

Figure 3. 6: WiFiHonk vehicle evasive measures 
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VRU, the crash can be avoided mostly only if they completely stop moving, and 

attempting to run or slow down the pace are not effective in avoiding the accident. It 

should be noted that 90% vehicle-VRU accidents occur at 43.5 mph [39]. WiFiHonk will 

successfully avert such accidents unlike existing approaches. 

3.3 Related Work 

Various Car2X safety application can be identified in literature that use different 

communication mechanisms including GSM/CDMA networks, DSRC based 

communication, and adhoc WiFi based communication in smart devices.  

Figure 3. 7: WiFiHonk pedestrian evasive measures 

 

 



 

53 
 

GSM/CDMA communication based techniques [47], [48], [49], [50] rely on the smart 

devices onboard the vehicle to detect, and relay accident information using the sensors 

on the smart phones. They use the GSM/CDMA connectivity to make the other vehicles, 

and emergency responders aware of the accident. They aim to improve the driving 

conditions, and response time of the emergency responders in getting to the accident 

site. Such GSM/CDMA techniques are not suitable for accident prevention due to the high 

latency incurred due to interaction with third party servers that are used to relay the 

messages between devices. 

DSRC based techniques [38], [39] aim to use a DSRC onboard unit for special vehicles 

to detect the presence of VRUs on the streets using their smart device to alert the driver 

in case of collisions. The smart devices are equipped with ETSI ITS G5 software modules 

to enable the interaction with the DSRC unit aboard the vehicles. While such DSRC based 

techniques satisfy the low latency requirements of accident prevention applications, they 

require expensive additional DSRC equipment that vehicle manufacturers should fit their 

vehicles with. In addition, it presents a challenge to older or regular models of vehicles 

with no DSRC unit. 

Ad-hoc WiFi connection techniques use the WiFi Direct feature in Android powered 

devices to enable P2P communication between them [37]. However, the additional delay 

introduced by the connection setup process of the WiFi consumes precious time. This 

results in degraded performance of such systems when the vehicle is traveling at speeds 

upward of 15 mph as demonstrated in our results. 
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Table 3. 2: Emperical average of measured RSSI for various distances 

Distance between devices (m) 10 20 30 40 50 
Measured average RSSI (dB) -70 -75 -80 -85 -90 

 

Some standalone applications that use the camera and other sensors to detect 

presence of vehicles, and estimate the threat of collision have also been proposed [51]. 

However, such techniques will require the user to position the camera appropriately 

capturing the street while walking. It should be noted that not only will it be difficult for 

VRUs to ensure that while walking, but also that the camera does not capture 360 degree 

view of the environment unlike the radio frequency techniques that are omnidirectional 

in nature. For example, if the camera of a VRU in is pointing ahead, such technique will 

not be able to avert a collision with vehicle approaching from behind. 

WiFiHonk on the other hand uses the beacon stuffed WiFi messages to overcome the 

mobility challenges imposed by the connection oriented WiFi approach. Our experiments 

and simulation studies have found that WiFiHonk can alert VRUs of possible collisions 

successfully for high speeds, and various collision scenarios. 

3.4 Conclusions 

We have proposed an active VRU safety mechanism called WiFiHonk that uses Beacon 

Stuffing to alert VRUs of collision with vehicles using smart devices. We demonstrate the 

efficacy of WiFiHonk in successfully alerting the VRUs of collisions even for very high 

speeds which is not possible with the approaches currently available. 
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CHAPTER 4 

ENERGY-EFFICIENT COOPERATIVE OPPORTUNISTIC POSITIONING FOR HETEROGENEOUS 

SMART DEVICES 

 

 Smart mobile devices such as smartphones and tablets are rapidly becoming 

prevalent in our lives. They have spurred a paradigm shift from traditional restricted 

phone applications to intelligent mobile applications such as location-based, context-

aware, and situation-aware services. For example, a social-network-based traffic 

information system [52] allows each mobile user to report and use real-time traffic 

information, in addition to the archived traffic information from the US Department of 

Transportation. 

As many of those application services require position information, smart mobile 

devices provide various positioning services via Global Positioning System (GPS) [53], 

WiFibased positioning system (WPS) [54], or Cell-ID Positioning [55]. Being dedicated 

equipment for positioning, GPS becomes available for many smart devices as an 

additional feature and is considered to be an accurate and preferred method for location-

based services (LBSs) [56], [57]. However, its high energy consumption, due to the Time 

To First Fix (TTFF), becomes a significant drawback. WPS approximates a position from 

the location information of a nearby wireless access point (AP) that is stored in the 

database. Its energy efficiency is much better than GPS, and the accuracy is moderate.  
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Table 4. 1: Characterization of various positioning methods 

Positioning 
Method 

Accuracy 
Energy 

Efficiency 
Equipment 
Availability 

Service Limitations 

GPS High (~ 10 m) Low Low Indoor & canyons 

WPS Medium (~ 50 m) Medium High 
Coarse AP density 

areas 
Cell-ID 

Positioning  
Low (~ 5 Km) High Medium Rural areas 

 

As WiFi is a de facto standard in wireless local area network (WLAN) communication, 

it is broadly available on most smart devices. However, the service is limited to indoor or 

urban areas where the access points are densely populated. Cell-ID Positioning provides 

an approximate location from the serving cell tower, where a cell area range is around 

100 ∼500 m in urban areas, but it can span up to 10 Km for rural areas. Although this is 

the most power saving approach, due to a large error range caused by the coarse cell 

tower density, Cell-ID Positioning cannot offer the utility of most LBS applications. In 

addition, mobile devices such as the WiFi version of tablets are not fully equipped with 

3G/4G data chips at the present time even though 3G and 4G wireless networks provide 

enough bandwidth to enable explicit support for real-time LBS. We have summarized the 

characteristics of positioning methods ([58]) in Table 4.1. 

Energy efficiency while maintaining required accuracy for the given service limitations 

is one of the most critical issues in mobile devices, due to limited battery life and the high 

energy consumption of applications. As different positioning methods available on a 

mobile device have different characteristics with respect to accuracy, energy-efficiency, 

and service availability, there have been several proposals for dynamic selection of a  
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positioning method on an individual device. For example, [59] uses an accelerometer for 

movement detection to power cycle GPS, if the device is not mobile. However, the 

effectiveness of most of the existing heuristics is limited by equipment constraints or 

service availability, as the applications choose a preferred positioning method that is 

available within an individual device. 

In this chapter, we propose ECOPS to facilitate a WiFi hotspotmode [60] or 

WiFiDirectmode [61] based approximation in collaboration with a few available GPS 

broadcasting devices under budget constraints. ECOPS is a collaborative positioning 

method between WiFi and GPS mobile devices, in addition to a positioning method 

selection heuristic within a mobile device. It can achieve moderate accuracy with low 

energy usage. Although there is a previous collaborative work [59] that pairs two devices 

via Bluetooth to save GPS power cycle, the approach needs both GPS and Bluetooth on  

Figure 4. 1: Illustration of global positioning system 
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both devices. Instead, ECOPS supports heterogeneous methods among mobile devices. 

There are many mobile devices including the majority of current tablets that only support 

a basic wireless communication method which is WiFi. The WiFi-only device can obtain 

position information from a GPS device with ECOPS. This proposed system can operate 

opportunistically, where each device can resolve the location via various available 

methods including trilateration [62] with three GPS broadcasting devices and a received 

signal strength indicator (RSSI) [63] or approximation with geomagnetic sensors [64] and 

a single GPS device without requiring any WiFi AP. 

We implemented ECOPS using Android-powered mobile devices such as smartphones 

and tablets. The evaluation results show that ECOPS significantly saves the total energy 

consumption of the devices while achieving a good level of location accuracy. In addition,  

Figure 4. 2: Illustration of WiFi positioning system 
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it enables constrained devices to enjoy location-based services that would otherwise not 

be possible. 

The rest of the chapter is organized as follows. Potential application scenarios are 

described in Section 4.1. Section 4.2 discusses the existing and state-of-the-art 

techniques. A detailed explanation of the proposed system is presented in Section 4.3.  

Figure 4. 3: Illustration of Cell-ID positioning 
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The performance evaluations and experimental scenarios are explained in Section 4.4. 

Finally, we conclude the chapter in Section 4.5. 

4.1 ECOPS Application Scenarios 

While security and social incentive issues are not in the scope of this paper, the 

proposed opportunistic and collaborative positioning scheme can be especially useful for 

unique resource scarce and mission critical applications. Such examples include border 

patrol, battlefields, mountaineering expeditions, and disaster area assistance. 

For example, suppose a team of border patrol officers is searching for an illegal 

immigrant in the border area. In some areas of rigid terrain, GPS and cellular signals can  

Figure 4. 4: ECOPS deployment example 
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Algorithm 4. 1: ECOPS: Initial procedure deciding whether a device becomes either a PB 
or a PR 

Main() 

1: check the residual power (pr); 

2: if GPS-equipped device & pr ≥ pmin then 

3:    device becomes PB and activatesWiFi hotspot; 

4:    executes CollaborativePB(); 

5: else if non-GPS device || pr < pmin then 

6:    device becomes PR and executes CollaborativePR(); 

7:    end if 

 

be lost in a canyon. Some projects [65] employ a low-altitude tethered aerostat to set up 

a temporary WiFi hotspot. To help with positioning, a few officers stay at the top of the 

valley to relay their GPS position information to the officers searching down in the valley. 

Such a collaborative positioning is a natural application scenario of ECOPS. 

In a battlefield scenario, when a platoon is air-dropped into a war zone, it is nearly 

impossible to find WPS services in the surroundings. Even with the availability of 

technology like LANdroids [66] to provide a network in such conditions, it is not a simple 

task. Also, it is crucial for soldiers to have accurate location information in the battlefield. 

In such a scenario, the capabilities of ECOPS can be exploited to maintain accurate 

location information while reducing overall energy consumption. Although one may not 

have a strong incentive to take a lead and offer location information for others, such  
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Algorithm 4. 2: ECOPS:  CollaborativePB() 

CollaborativePB() 

1: while pr ≥ pmin do 

2:    listen to connection request from a PR; 

3:    wait for location request from a PR; 

4:    if PR requests then 

5:       check the time elapsed since the device got location information (te) 

6:       calculate Idecay; 

7:       if Idecay < 𝛼 then 

8:          update its GPS location information; 

9:          te = 0; 

10:     end if 

11:    end if 

12: broadcast current GPS location information; 

13: check the residual power (pr); 

14: end while 

15: execute CollaborativePR(); 

 

concerns are lifted immediately if a leadership hierarchy preexists in the application 

scenario. For instance, when a platoon is being deployed in a battlefield, the platoon 

leader chooses to be the primary location broadcaster using ECOPS along with a few 

others at the top of the hierarchy. The other soldiers in the unit are able to estimate their  
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Algorithm 4. 3: ECOPS: CollaborativePR() 

CollaborativePR() 

1: while non-GPS device || (GPS-equipped device & pr < pmin) do 

2:    sleep until the device needs to update location information 

3:    numofPBs = 0; 

4:    check the list of available PBs; 

5:    make connection to each PB and request GPS location information sequentially; 

6:    calculate the distance to each PB using the obtained RSSI value; 

7:    set numofPBs to the number of the detected PBs 

8:    if numofPBs == 1|| one of PBs is within the near field threshold (𝛽 meters) then 

9:       use the received GPS location information immediately without trilateration; 

10:    continue; 

11:  end if 

12:    if numofPBs == 2 then 

13:       calculate two possible locations (PR) and get the middle location between the 

two possible locations; 

14:    end if 

15:    if numofPBs >= 3then 

16:       select three PBs randomly and calculate the its current location (PR) with the 

GPS coordinates and distance information of the selected PBs; 

17:    end if 

18:    if GPS-equipped device then 
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19:       check the residual power (𝑝𝑟); 

20:    end if 

21: end while 

22: execute CollaborativePB(); 

 

location information based on the geo-coordinates they receive from their unit’s 

command. This will result in fewer devices from the unit querying satellites for location 

information and reduce the overall energy consumption. Extending the lifetime of devices 

during the operation is a mission critical parameter as the duration of an operation is not 

fixed and often tends to be longer than expected. Under the Battlefield Air Targeting Man 

Aided Knowledge (BATMAN) [67] project, the United States Air Force is actively seeking 

to equip their soldiers with modern Android-powered smartphones to obtain accurate 

location information with high energy efficiency. Modified versions of Android [68], [69] 

enable the desired level of security for military use. Such projects can benefit greatly by 

ECOPS. 

Another scenario where ECOPS can be extremely useful is during natural calamities. 

In such cases, emergency responders who are involved in search and rescue missions can 

host an ECOPS-based location broadcasting service over WiFi Direct. As they move around 

the area, victims can use their smart devices to either request assistance or transmit their 

locations. 

4.2 Related Work 
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Positioning schemes on mobile devices have been a long standing topic of exploration. 

This resulted in three main positioning techniques using either the information provided 

by the GPS, WPS, or Cell-ID Positioning. Also, there have been several research proposals 

for specific environments. 

The Global Positioning System (GPS) is a satellite navigation system that provides 

location and time information anywhere on earth with four or more GPS satellite signals. 

It is originally deployed and maintained by the United States government and is now 

freely accessible to anyone [53]. The GPS provides very high level of accuracy, but suffers 

from a high TTFF due to the large distance between the GPS receiver and serving 

satellites. This problem has been somewhat addressed by the use of assisted GPS (aGPS) 

that relies on the cellular or internet infrastructure to get a faster lock on the serving 

satellites while obtaining precise time information from the network. 

Within the navigation message continuously broadcasted by each of the satellites in 

the constellation, the GPS receiver looks for three important pieces of data as illustrated 

in Figure 4.1. The first piece of data consists of the GPS date and time information. It 

additionally also consists of the health statistics of the satellite. The ephemeris data forms 

the second important piece and allows the GPS receiver to calculate the position of the 

satellite and is broadcasted every 30 seconds. The ephemeris data is valid for no longer 

than four hours. The third important piece is the almanac data which provides 

approximate information concerning the rest of the satellites. This data is transmitted 

over 12.5 minutes and is valid for a maximum of 180 days. The almanac data can be 

obtained from any satellite, and it enables the GPS receiver to determine which particular  
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satellite to search for next. As the signal from the selected satellite becomes directly 

available, the GPS receiver then downloads the second important data, that is, the 

ephemeris data. It is absolutely necessary that the GPS receiver has the satellite’s 

complete copy of the ephemeris data to determine its position. In case the signal is lost 

in the middle of acquiring this data, the GPS receiver will have to discard whatever data 

was downloaded and start searching for a new satellite signal. 

Once the GPS receiver has ephemeris data directly from three or more satellites, it 

can carry out various methods to accurately determine its own location. These methods 

involve and are not restricted to 3D trilateration, Bancroft’s method, and 

multidimensional Newton-Raphson calculations. Due to the high propagation delays, 

getting the ephemeris and almanac data can take up to 15 minutes for a device just out  

Figure 4. 5: 2D trilateration 
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of the factory, and then around ∼20 seconds after the initial configuration. To expedite 

this process, some GPS receivers can use multiple channels for faster fixes. Another 

strategy is to obtain the ephemeris and almanac data from a faster network like the 

cellular network or the internet as in the case of a GPS. 

The WiFi-Based Positioning System (WPS) maintains an extensive database of WiFi 

access points (APs) along with their geographic locations [70], [71].This information has  

Figure 4. 6: Android module architecture 
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to be collected painstakingly over a large duration of time and is vulnerable to changes in 

the location of APs or the discontinuation of their service. The information of AP’s SSID 

and geographic location can be collected manually or in amore automated way by 

retrieving the GPS location of smart devices connected to the AP and associating that 

information with the AP. Once such a large and dedicated database is ready and a device 

is in the vicinity of an AP, or several APs, it can provide the RSSI values and the SSID of the 

APs to the WPS servers. The WPS servers, based on proprietary techniques, apply filtering 

approaches and trilateration techniques to this data and determine the accurate location 

of the smart device. This geographic location information is then relayed back to the 

smart device which can exploit it for various LBSs. The illustration of WPS is depicted in 

Figure 4.2. 

Figure 4. 7: ECOPS screenshot 
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While the WPS service approaches work well in terms of energy efficiency [72], [73], 

[74], they are not globally available for users. A solution leveraging the existing 

infrastructure, such as APs without requiring any specialized infrastructures for 

localization, has been proposed in [75]. However, since this localization scheme is limited 

to the indoors and still relies on infrastructure, such as APs, it cannot be useful outdoors 

where the WiFi signals are neither dense enough nor covered. 

In Cell-ID Positioning, a mobile device obtains its position from the geographic 

location of its associated base transreceiver station (BTS), with an error range 

proportional to the signal strength within a cell. The mobile device can estimate its 

location as the BTS periodically broadcasts its Cell-ID along with its location. Once this 

information is available to the mobile device, it can use the location of the BTS as its own 

location with the error calculated using the propagation model. Another technique that 

may be used for cell phones to estimate their location is to observe the delay in receiving 

a special message broadcasted by the BTS from the time it was transmitted. This 

information is used by the mobile device to estimate its distance from the BTS. 

Note that a cell size can be very large especially in rural areas and highways where the 

density of cellular towers is very low. One cellular tower is often capable for serving up to 

5 Km radius. As this large cell size leads to a significant error range, other nearby cell tower 

signals may be used in order to improve the accuracy [55, 76]. Such approaches also 

exploit the fading phenomenon independently or along with predictive techniques to 

improve the accuracy of Cell-ID Positioning. However, the accuracy is still limited as the 

propagation model needed for the trilateration does not work well, due to complex signal 
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fading behavior over long distances. The illustration of Cell-ID Positioning is depicted in 

Figure 4.3. 

In other recent research proposals, while most of commercial approaches heavily 

depend on infrastructures [54, 77], or use extra high-end sensors and exploit the available 

information from an individual device [77], [78], [79], research proposals mostly aim to 

improve the positioning accuracy or energy efficiency through algorithmic approaches 

[59], [74], [75], [80], [81], [82], [83], [84]. 

The work in [82], [83], [84] attempt to learn a known location from a training phase 

for a better location accuracy. The authors of [84] employ indoor positioning, and perform 

fingerprinting and training of the known space using multiple sensors in a smartphone 

such as WiFi radio, cellular communications radio, accelerometer, and magnetometer. In 

order to improve Cell-ID location accuracy in low-end cell phones where neighboring cell 

tower information is not available, [83] uses RSSI from only the associated cell tower and 

leverages the signal strength history to estimate the location. The Cell-ID Aided 

Positioning System (CAPS) [82] relies on the continuous mobility and position history of a 

user to obtain better location accuracy over a basic cell tower-based approach. It uses 

Cell-ID sequence matching to estimate current position based on the history of Cell-ID 

and GPS position sequences that match the current Cell-ID sequence. CAPS assumes that 

the user moves on the same routes repeatedly and has the same cellular chip and 

infrastructure availability. 
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A few studies address energy efficiency of smartphones using power duty cycling 

techniques [58], [59], [82] that use a combination of the basic positioning techniques in a 

smartphone.  

The authors of [58] use different positioning schemes depending on the condition, for 

the purpose of target tracking. In the scheme, energy-efficient but inaccurate Cell-ID 

Positioning or WPS is used when the target is distant, while accurate but energy-

inefficient GPS is used when the target is close.  

The rate-adaptive positioning system (RAPS) [59] uses built-in sensors in a 

smartphone to determine if the phone has moved beyond a certain threshold and decides 

whether to turn on the GPS or not. RAPS also stores the space-time history of the user’s 

movements to estimate how to yield high energy efficiency. Another idea presented by 

the authors involves a Bluetooth-based position synchronization (BPS) in which devices 

share their location information over a Bluetooth connection. While a Bluetooth 

connection consumes less power as compared to a WiFi ad hoc, it also limits the range of 

communication to less than 10 m. Our work has advantages over the basic BPS technique 

in several aspects. Not only does a WiFi ad-hoc mode give us a better range, but we have 

also taken into account the heterogeneity amongst the devices in terms of availability of 

a GPS chip or cellular connection. We expect all the devices to have at least a WiFi module 

present onboard. In BPS, once location information is obtained from a neighboring device, 

only a fixed error range of 10m (e.g., same as the range of a typical Bluetooth) is 

associated with that information. However, in ECOPS we exploit the RSSI values of the 

connection to determine the accurate distance between the two devices, and when three 
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or more location transmitting devices are available, the trilateration technique achieves 

pinpoint locating capabilities. 

The work in [85] proposed to use minimal auxiliary sound hardware for acoustic 

ranging in order to improve the accuracy. The acoustic ranging technique estimates the 

distance among peer phones, then maps their locations jointly against a WiFi signature 

map subject to ranging constraints. It is a WPS augmentation technique to improve the 

accuracy over a pure WPS. 

Our approach is unique in that we use a collaborative approach rather than focusing 

on the information in an individual device and do not rely on any special hardware or 

infrastructure such as WPS or Cell-ID Positioning. Note that we only use a small amount 

of GPS information and the WiFi ad-hoc mode of mobile nodes. ECOPS is specifically 

aimed at resource constrained environments such as battlefields where GPS is the only 

available positioning infrastructure, and WiFi ad hoc mode is readily available in most 

mobile devices while allowing good network range (up to 100m). Besides controlling 

energy usage and the location accuracy, we allow to use heterogeneous mobile device 

types. 

4.3 ECOPS Approach 

In this section, we discuss ECOPS algorithms in detail. Figure 4.4 shows an ECOPS 

deployment example. It consists of mobile devices with heterogeneous positioning 

methods available such as GPS, WiFi, and Cell-ID. These devices virtually establish an ad 

hoc network using WiFi to build a collaborative positioning environment. In the 



 

73 
 

established ECOPS ad hoc network, a device may function as either a position broadcaster 

(PB) or a position receiver (PR). A GPS equipped device with sufficient battery life and up-

to-date location information becomes a candidate for a PB. Other devices with no GPS 

that need current location information will become PRs. 

Three algorithms are presented for the overall operation of the ECOPS. Algorithm 4.1 

describes the initial procedure deciding whether a device becomes a PB or a PR. After the 

initial decision, Algorithms 4.2 and 4.3 depict how the devices in ECOPS collaboratively 

maintain their most updated location information as a PB or a PR, respectively. For GPS-

equipped devices, the role of the devices can be changed during their operation according 

to their residual energy level (i.e., PB ↔ PR). As illustrated in Algorithm 4.1, a device, 

once it starts ECOPS operation, will check the time elapsed since the device got the 

location information (te) and residual power (pr) to see if it is qualified for being a PB. 

Since we are looking for the devices that have the most recent location information with 

enough residual power, the device with the conditions such as pr ≥ pmin and Idecay ≥ 𝛼 can 

be a PB, where pmin is the minimum residual energy that a PB has to maintain and Idecay is 

the level of the validity with respect to time for the location information, defined by the 

following equation: 

𝐼𝑑𝑒𝑎𝑐𝑦 = 100 ∗ (1 −  
𝑡𝑒

𝑡𝑑
) 

where td is the maximum time in which the location information is considered to be valid. 

If a device is equipped with a GPS receiver and satisfies the pmin, it can be a PB. Once 

it becomes a PB, it will start its WiFi hotspot mode and serve the most up-to-date location 
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information to a PR when a PR requests the location information. An Android device 

cannot use the WiFi Internet service while it is in the WiFi hotspot mode. However, with 

(Android 4.0), WiFi Direct technology can be used for PBs. In a PB mode with WiFi Direct, 

the users can enjoy their WiFi Internet service and provide the most up-to-date location 

information simultaneously. The device without a GPS receiver will automatically be a PR 

once it enters ECOPS, and then search for PBs around it. 

As shown in Algorithm 4.2, once the device enters the PB mode, it plays a role of the 

PB while it satisfies the pmin constraint. The threshold 𝛼 is a system parameter that can 

be varied according to the requirement of applications. The tradeoff between location 

accuracy and energy consumption can be adjustable using 𝛼. An application requiring high 

accuracy will select a small amount of 𝛼, but a high value of 𝛼 is used for applications 

requiring low energy consumption. The PB will check Idecay to see if the current location 

information is adequate (e.g., Idecay ≥ 𝛼) before broadcasting it. 

In Algorithm 4.3, a PR will collect the possible number of GPS coordinates and 

corresponding RSSI values and apply opportunistic localization as illustrated in Figure 4.5. 

If a PR finds a PB within the threshold distance (𝛽 meters), then a PR uses the GPS 

coordinate from a PB as is. The parameter 𝛽 is controllable and users of ECOPS can set it 

according to their preference. Once a PR estimates its location, it can become a PB. 

However, we do not use those cases in our experiments to avoid the additional errors 

that will be induced from PBs and focus on the PR’s accuracy. 
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ECOPS is opportunistic, meaning that getting the most updated location via 

trilateration is not limited by the number of available PBs. Supposing that there is only 

one GPS broadcaster in Figure 4.5, say node 𝐶, then the center of an error range of the 

circle C3 will become the PR’s approximated position. Another possible situation is when 

there are two PBs, say nodes 𝐴 and 𝐵; then the middle point of two possible points, 𝐷 

and 𝐷’, is selected as an approximated PR location. The accuracy of the estimated location 

will range from one point where the two circles intersect in the best case to the diameter 

of the smaller circle in the worst case, respectively. In order to get the most accurate 

location information for a PR, we need at least three PBs to provide their location 

information obtained from the GPS receiver along with the RSSI values, so that we can 

build an absolute coordinate system from the relative coordinate system. For example, in 

Figure 4.5, we calculate the distance parameters 𝑎, 𝑏, 𝑐, and 𝑑 using the algorithm 

described in [86] in order to obtain the values of 𝑒 and 𝑓.We convert the obtained 

distances 𝑒 and 𝑓 into the unit of the GPS coordinates to get the final calculated GPS 

coordinate. The distance between two GPS coordinates, (lat1, lng1) of 𝑒 and (lat2, lng2) of 

𝑓, is computed using the haversine formula that gives a spherical distance between two 

points from their longitudes and latitudes [86, 87]. The formula is described in the 

following equation:  

𝐹𝑑𝑖𝑠𝑡(𝑙𝑎𝑡1, 𝑙𝑛𝑔1, 𝑙𝑎𝑡2, 𝑙𝑛𝑔2) = 𝑟𝑎𝑑 2 deg(𝑎 𝑐𝑜𝑠(𝑑𝑖𝑠𝑡)) ∗ 60 ∗ 1.1515 ∗ 1.609344 

and and the formula for the value of dist is shown in the following equation: 
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𝑑𝑖𝑠𝑡 = sin(deg 2 𝑟𝑎𝑑(𝑙𝑎𝑡1)) ∗ sin(deg 2 𝑟𝑎𝑑(𝑙𝑎𝑡2))

+ cos(deg 2 𝑟𝑎𝑑(𝑙𝑎𝑡1)) ∗ cos(deg 2 𝑟𝑎𝑑(𝑙𝑎𝑡2))

∗  cos(deg 2 𝑟𝑎𝑑(𝑙𝑛𝑔1 − 𝑙𝑛𝑔2))  

Thus, we can calculate relative coordinates (𝑎, 𝑏, 𝑐, and 𝑑) with the following equations: 

𝑎 =  𝐹𝑑𝑖𝑠𝑡(𝐴𝑙𝑎𝑡, 𝐴𝑙𝑛𝑔, 𝐵𝑙𝑎𝑡 , 𝐴𝑙𝑛𝑔) 

𝑏 =  𝐹𝑑𝑖𝑠𝑡(𝐴𝑙𝑎𝑡, 𝐴𝑙𝑛𝑔, 𝐴𝑙𝑎𝑡, 𝐵𝑙𝑛𝑔) 

𝑐 =  𝐹𝑑𝑖𝑠𝑡(𝐴𝑙𝑎𝑡, 𝐴𝑙𝑛𝑔, 𝐶𝑙𝑎𝑡, 𝐴𝑙𝑛𝑔) 

𝑑 =  𝐹𝑑𝑖𝑠𝑡(𝐴𝑙𝑎𝑡, 𝐴𝑙𝑛𝑔, 𝐴𝑙𝑎𝑡, 𝐶𝑙𝑛𝑔) 

The distances (𝑑1, 𝑑2, and 𝑑3) between node 𝐷 and other nodes (𝐴, 𝐵, and 𝐶) can be 

derived from the measured RSSI values of node 𝐷, using the following formula from the 

path loss propagation model [37]: 

𝑅𝑆𝑆𝐼 =  −(10𝑛 ∗  log10 𝑑) +  𝛿 

where RSSI is the received power which is a function of the distance between the 

transmitter and the receiver (T-R), 𝑛 is the signal propagation constant (also called 

propagation exponent), 𝑑 is the T-R separation distance in meters, and δ is the system 

loss factor. Based on the previous equation, we derived the distance (𝑑) between two 

devices using the average RSSI value with the following equation: 

𝑑 =  10(−𝑅𝑆𝑆𝐼− 𝛿)/10𝑛 
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Now, the three circles in Figure 4.5 can be represented by the following three 

equations, respectively: 

𝐶1 ∶  𝑋2 +  𝑌2 =  𝑑1
2 

𝐶2 ∶  (𝑋 − 𝑎)2 +  (𝑌 − 𝑏)2 =  𝑑2
2 

𝐶3 ∶  (𝑋 − 𝑐)2 +  (𝑌 − 𝑑)2 =  𝑑3
2 

where the location of node 𝐴 is set to (0, 0). 

We obtain the relative coordinate of PR node 𝐷 from node 𝐴, (𝑒, 𝑓), by calculating the 

point where these three circles intersect. In other words, we want to calculate the 

coordinate values of 𝑋 and 𝑌 that simultaneously satisfy the equations for C1, C2 and C3. 

We first extend the equations for C2 and C3 as follows: 

𝐶2 ∶  𝑋2 − 2𝑎𝑋 + 𝑎2 + 𝑌2 − 2𝑏𝑌 + 𝑏2 =  𝑑2
2 

𝐶3 ∶  𝑋2 − 2𝑐𝑋 + 𝑐2 + 𝑌2 − 2𝑑𝑌 + 𝑑2 =  𝑑3
2 

By applying the equation for C1, the equations for C2 and C3 can be rewritten as: 

𝐶2 ∶  𝑑1
2 − 2𝑎𝑋 + 𝑎2 − 2𝑏𝑌 + 𝑏2 =  𝑑2

2 

𝐶3 ∶  𝑑1
2 − 2𝑐𝑋 + 𝑐2 − 2𝑑𝑌 + 𝑑2 =  𝑑3

2 

Finally, the node 𝐷’s coordinate that satisfies the three circles is attained by replacing 

𝑋 and 𝑌 with 𝑒 and 𝑓, respectively, in the previous equation. We can formulate the 

equations in terms of 𝑒 and 𝑓 as follows: 

𝑒 =  
𝑑(𝐷𝑣𝑒𝑐1) − 𝑏(𝐷𝑣𝑒𝑐2)

2(𝑏𝑐 − 𝑎𝑑)
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𝑓 =  
𝑐(𝐷𝑣𝑒𝑐1) − 𝑎(𝐷𝑣𝑒𝑐2)

2(𝑎𝑑 − 𝑏𝑐)
 

where 

𝐷𝑣𝑒𝑐1 =  𝑑2
2 − 𝑑1

2 − 𝑎2 − 𝑏2 

𝐷𝑣𝑒𝑐2 =  𝑑3
2 − 𝑑1

2 − 𝑐2 − 𝑑2 

We have implemented ECOPS as an Android application for a feasibility test and 

analysis. Figure 4.7 shows the screenshots of the ECOPS application. Figure 4.7(a) displays 

the main screen that allows users to manually select an ECOPS device option either in PB 

mode or PR mode, or to request the selection automatically based on various parameters 

such as the remaining energy and sensor availabilities. Figure 4.7(b) presents a PB screen 

that lists the broadcasting location information. Figure 4.7(c) shows a PR screen that lists 

the received information and measured distance using the RSSI value. Although the 

current implementation is on an application level, as illustrated in Figure 4.6, it is still 

capable of making the received location information available to other application 

services. It will eventually be implemented within the application framework so that other 

applications can use the ECOPS services via APIs. 

4.4 Evaluation of ECOPS  

In this section, we present the evaluation results of ECOPS in terms of energy 

efficiency and location accuracy. We have implemented an ECOPS Android application 

and used several Android smartphones including Samsung Galaxy Nexus S running  
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Android version 2.3.6 and two LG Optimus V running Android version 2.2.2.We have 

turned the GPS off on some of the devices to mimic heterogeneous devices. 

We start with the validation of smartphone GPS accuracy and propagation model. As 

a first step, we test the accuracy of commodity GPS receivers on smartphones since they 

are not dedicated devices like the navigation devices for positioning. We have measured 

the accuracy of smartphones’ GPS, by walking around the Kansas City area while carrying 

three smartphones. As shown in Figure 4.8, the GPS collected locations are presented 

accurately except for a little error between tall buildings (∼10m). 

Next, we validate the path loss model for correlation of the distance between a WiFi 

signal emitter and receiver with the measured RSSI values at the signal receiver for both 

indoor and outdoor environments. We compared the measured RSSI value with the  

Figure 4. 8: GPS trace obtained by smartphone 
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theoretical RSSI value from the path loss model. As RSSI values often vary at each time of 

measurement for a given location, we used an averaged RSSI value with multiple samples 

(e.g., 1,000 samples within a few seconds). In Figures 4.10 and 4.11 we compare the 

measured RSSI with the theoretical RSSI while varying the distance between PB and PR; 

both inside a building and in outdoor environments are shown, respectively. The 

theoretical RSSI values are derived from equation for path loss propagation model [88]. 

The dotted blue line shows the measured average RSSI values, and the solid green line 

represents the theoretical RSSI values at the corresponding distances. The system loss 

factor value (𝐴) is set to 30. For the indoor environment, since we measured the RSSI 

between two devices while they were in the line-of-sight, we set the system loss factor 

(𝑛) to 0.6. For the outdoor environment, we used 𝑛 = 1.9. As evidenced in the figures, we 

observe that the path loss model works well for us in estimating the distance. 

Figure 4. 9: Energy usage of GPS versus ECOPS PR 

 

 



 

81 
 

 

We now compare the total energy consumption of ECOPS devices to that of devices 

with GPS only scheme in various settings. First, we compare the energy consumption of a 

node that is ECOPS PR with a node using only GPS at per second granularity as illustrated 

in Figure 4.9. This power consumption profiling was done using PowerTutor [89].The GPS 

uses 429 mW/s continuously once it is powered up and takes several seconds to power 

down which adds up to the energy consumption. Meanwhile, the WiFi module once 

powered up uses 720 mW/s in an active state and 38 mW/s when in an idle state. During 

the experiment, for the same operational time of one minute, an ECOPS PR node uses 

only 3000 mW of energy in total whereas the GPS-only node uses 7432 mW of total 

energy. This clearly shows that an ECOPS PR is more energy efficient than a GPS-only 

node. These values are for an LG Optimus V model in particular, and similar for most 

smartphones. 

Figure 4. 10: Measured RSSI (avg. of 1,000 samples) at various indoor spots 
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Next, we contrast the energy consumption of a node that is ECOPS PR with a node 

using only GPS while varying the operational time with 1 minute increments as illustrated 

in Figure 4.12.We do this experiment to analyze the effectiveness of ECOPS over a 

duration of time. It shows that ECOPS is increasingly energy efficient with the elapsed 

time over the GPS only scheme. 

In Figure 4.13, we compare the energy consumption of nodes that are ECOPS PR with 

nodes using only GPS while varying the number of devices in the network. We do this 

experiment to analyze the energy efficiency of ECOPS as the number of devices in the 

network scales. Note that for the ECOPS PR scheme, the PRs receive GPS data from three 

PBs and their energy consumption is accounted for in the results. The energy efficiency 

Figure 4. 11: Measured RSSI (avg. of 1,000 samples) at various outdoor spots 
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of ECOPS compared with the GPS only scheme is clear from Figure 4.13 and becomes 

increased substantially as the number of devices in the network scales. 

Next, we evaluate the location accuracy of ECOPS as compared to that of GPS, WPS, 

and Cell-ID Positioning. We tested ECOPS in a soccer field using four smartphones for the 

accuracy measurements. The soccer field was chosen, so that we have a clear and 

unhindered view of the sky, and in turn the experimental results are not influenced by 

the GPS position errors, and the ECOPS errors are precisely measured. We turned on GPS 

for three devices and turned it off for a device that acted as the PR. In order to measure 

the location accuracy, as illustrated in Figure 4.14, we placed the PR device at the center 

of the area and moved the other PB devices around multiple locations within the soccer 

field. The PR device computed its location using the measured RSSI values, and GPS 

coordinates from the PBs, and the trilateration technique described in Section 4.3. 

Figure 4. 12: Comparison of individual node energy consumption: GPS versus ECOPS PR 
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We have moved the PBs to various places around the PR and recorded the PR’s 

computed locations. As shown in Figure 4.15, we observed that ECOPS achieves a 

minimum error range of 2.32 m and a maximum error range of 33.31 m. While from Figure 

4.16 we can observe that nearly 60 %of these locations are within a 10 m error range and 

less than 10 % have an error range greater than 15 m. The results represent that ECOPS 

can achieve a higher location accuracy than WPS while using less energy than GPS 

receivers. Also, note that the error ranges we observe here are an amalgamation of the 

general GPS receiver error from the PBs and the distance measurement error from the 

RSSI values. 

Finally, we compare the errors of different positioning methods in Figure 4.17. As 

before, a smartphone that needs positioning is located at the center of soccer field. The  

Figure 4. 13: Comparison of total energy consumption of nodes (1 min): GPS versus 
ECOPS 
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network positioning API in Android obtains the location information either from WPS or 

Cell-ID Positioning. In order to ensure the Cell-ID Positioning in Android, the smartphone 

acquired the location from network positioning API while turning off the WiFi signal. The 

location information received was off by almost 300 m. Together with the location, it also 

suggested its own estimated error range of 1,280 m associated with it. Clearly, such 

information is too inaccurate to be used in most of LBS application scenarios. As for WPS, 

the smartphone obtained the location from Android network positioning API while 

turning off cellular signal. Note that WPS is not typically available in outdoor environment. 

Thus, we used an average WPS error from what we experimented at multiple locations in 

Kansas City area where WPS is available and found it to be 60m. It is the dotted blue line 

in Figure 4.17. While the GPS-based location information proved to be the most accurate 

with an error range of about 2 m, ECOPS achieved the accuracy ranging from 2.32 m to  

Figure 4. 14: ECOPS field experiment setup for accuracy measurements 
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33.31 m. This is better than the performance of a WPS and fairly close to GPS accuracy 

while saving energy costs. This encourages us to comment that even when WPS service 

might be available, using ECOPS will facilitate a smartphone to receive more accurate 

location information at the same energy cost. 

4.5 Conclusions  

In this chapter, we have presented an Energy Efficient Collaborative Opportunistic 

Positioning System (ECOPS) for heterogeneous mobile devices. Unlike existing 

approaches that are seeking the best available positioning method from an individual 

device, ECOPS facilitates collaborative environments among a set of mobile devices, and 

thus mobile devices benefit from their neighboring devices. ECOPS supports 

heterogeneous devices to maximize energy-efficiency, as a device with only WiFi can  

Figure 4. 15: Experiment results: points calculated with three GPS coordinates and RSSI 
values 
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collaborate with a few available GPS broadcasting devices via WiFi hotspot mode or WiFi 

Direct-based approximation. A beneficiary device may use one or more locations’ 

information from neighbors opportunistically, depending on their availability. 

Furthermore, each device improves the received location accuracy via various available 

methods including trilateration or approximation with geomagnetic sensors. We have 

implemented an ECOPS prototype application on Android 2.3.6 and 2.2.2 and have tested 

it with various types of Android mobile devices. The results show that ECOPS provides 

accuracy within 10 m for nearly 60 % of the location estimates, and within 15 m for more 

than 90 % of them. ECOPS also offers significantly more energy efficiency than a GPS-only 

scheme, while overcoming various service limitations. 

 

Figure 4. 16: Distribution in error range for location estimated by PR 
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Figure 4. 17: Accuracy comparison: ECOPS, GPS, WPS, and GSM-based positioning 
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CHAPTER 5 

REDUCING AND BALANCING ENERGY CONSUMPTION IN  

INDISTRIAL INTERNET OF THINGS (IIoT) 

 

 The Industrial Internet promises to dramatically improve productivity and 

efficiencies in the production process and throughout the supply chain. Processes in the 

future are likely to govern themselves, with intelligent machines and devices that can take 

corrective action to avoid unscheduled breakdown of machinery. Individual parts will be 

automatically replenished based on real time data. Every handheld digital device in the 

factory will report the status of every fixed device, giving personnel mobile access to real-

time, actionable information [90]. Wearable pervasive devices, including sensors will 

track the location and work load of each employee in the factory that in turn will improve 

efficiencies and provide 24 by 7 visibility. These are only a few examples of the huge 

power of the Industrial Internet. 

Within the Industrial Internet, IoT systems and their application have gained 

unprecedented popularity and proliferation in recent times. A recent report projects the 

IoT systems to increase in their economic impact from the current $3.9 trillion to $11.1 

trillion a year by 2025 [1]. This significant economic impact is a direct result of connecting 

over 50 billion devices to the Internet. One part of this growth focuses on connecting 

everyday objects being used by humans to the Internet. The potential of creating such 

Internet connected devices or IoT devices is huge. IoT devices offer various avenues that  
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make human interactions with the machines possible. Some examples of such 

applications are in the field of healthcare by monitoring the vital signs of a person via 

wearable devices, home automation, home security, personalized care and products, 

smart vehicles, etc. While such applications offer a huge potential, the other aspect of IoT 

which is even more critical, involves connecting the machines in industries to the Internet, 

with each other and with the work force in a plant. This philosophy forms the basis for 

Industrial Internet of Things (IIoT) [2]. 

 

Figure 5. 1: Typical Vanilla System architecture in manufacturing environment 
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The existing state-of-the art machines used for manufacturing already support analog 

or digital sensing that is reported to a central control room for monitoring over wired 

Ethernet systems [91]. However these systems are still typically not connected to the 

Internet. Retrofitting existing aging machines with plug-and-play IoT devices offers a cost 

effective solution over replacing the machines. Having such prognostics capabilities by 

monitoring the vibrations in mechanical bearings of the machine with vibration sensors 

and excessive heating with temperature sensor will reduce the downtime by optimizing 

maintenance [92]. Tracking of the inventory during the manufacturing process can be  

Figure 5. 2: The HOLA System architecture 
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Algorithm 5. 1: HOLA IoT Device Operation 

IoTDeviceOperation() 

1: At start time, initiate all on-board sensors; 

2: Extract HOLA IoT device ID (Hid); 

3: while HOLA IoT device operational do 

4:    Extract RFID of product being processed (Crfid); 

5:    Extract current temperature at the machine (Ctemp); 

6:    Extract current humidity at the machine (Chum); 

7:    Extract current vibrations at the machine (Cvib); 

8:    HIP = (Hid, Crfid, Ctemp, Chum, Cvib); 

9:    if Base Station device in range then 

10:       Transmit HIP to Base Station device; 

11:  else if HOLA smart device in range then 

12:       Transmit HIP to HOLA smart device; 

13:  else if Downlink HOLA IoT device in range then 

14:       Transmit HIP to HOLA IoT device; 

15:  end if 

16:  if NminTemp <= Ctemp <= NmaxTemp & NminHum <= Chum <= NmaxHum & NminVib <= Cvib <=  

NmaxVib then 

17:       ST = SmaxT ; 

18:  else 

19:  if ST > SminT then 
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achieved with Radio Frequency Identification (RFID) technology. IoT devices such as the 

above sensors serve as enablers in smart supply chain and smart manufacturing. The 

system architecture for such a deployment of IoT devices in a manufacturing environment 

is illustrated in Figure 5.1. We will refer to this system architecture as the Vanilla System. 

In the Vanilla System, the main components are the IoT devices, Base Station, and the 

Cloud service provider. The IoT devices in such deployments are typically powered by 

microcontrollers such as Arduino [93]. The plug-and-play nature of the devices requires 

them to use batteries as a source of energy. To conserve energy, the IoT devices use a low 

power wireless communication protocol such as Bluetooth. The IoT devices collect data 

from their sensors and send it to the Base Station (BS). The Bluetooth protocol has a short 

communication range of approximately 10 m. A typical manufacturing factory has a 

rectangular shape with typical dimensions of 1000 m × 900 m [94], and the BS is typically 

located at one end of the plant. In order to be able to reach the BS, the IoT devices form 

a Peer-to-Peer (P2P) multi-hop network. Thus the IoT devices not only sense and report 

data collected from the sensors, but also the data arriving from neighboring nodes down 

the link that needs to be forwarded to the BS over the Bluetooth interface. The BS, for 

example, could typically be powered by a Raspberry Pi device [95]. The BS collects all the  

20:    ST --; 

21:  end if 

22:  end if 

23: end while 
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Algorithm 5. 2: HOLA Smart Device Operation 

 

 sensor data from the IoT devices over Bluetooth interface and transmits it to the 

Cloud for further processing over wired Ethernet interface. The Cloud is powered by an 

analytics platform. Some examples of IoT platforms are the TCS Connected Universe 

Platform (TCUP) [96] and the Splunk platform [97] for machine data. 

We observe that the network topology in the Vanilla System leads to low energy 

efficiency of the IoT devices. Specifically, we observe that the nature of the network  

SmartDeviceOperation() 

1: while Smart device enrolled in HOLA operation do 

2:    Extract HIP received from HOLA IoT Device; 

3:    Extract smart device location; 

4:    if Elapsed Time (ET ) > Decay Time (DT ) Or Current Location (CL) not stored then 

5:       Extract bandwidth, delay and loss for all available communication links LBDL = 

[bandwidth, delay, loss]; 

6:       Determine and set for current location CL an optimal link LOptimal = 

Compare(WiFiBDL; LTEBDL; 3GBDL;BluetoothBDL); 

7:    end if 

8:    Transmit HIP over LOptimal; 

9: end while 
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Table 5. 1: Comparison of various wireless radio interfaces 

  

topology leads to increased energy consumption and geo-physically skewed energy 

consumption of the IoT devices. The IoT devices at one end of the network sense and 

transmit only their sensor data. This results in low congestion and low energy 

consumption in these IoT devices. However the IoT devices at the center of the network 

are not only sensing and reporting their sensor data, but also that of the IoT devices from 

uplink (i.e., located at farther end of the network). This leads to moderate congestion and 

energy consumption. The IoT devices closer to the BS have to sense and transmit their 

own sensor data and also transmit the sensor data arriving from the rest of the network. 

This leads to high congestion and energy consumption in these IoT devices. The additional 

transmission responsibilities result in the IoT devices operating Bluetooth antenna for 

long durations. This, in turn, increases the energy consumption of the IoT devices that are 

close to BS. 

High energy consumption in IoT devices in an Industrial Internet setting is not 

desirable since it results in reduced network lifetime and increased carbon footprint. 

Skewed or uneven energy consumption is not desirable as it makes planned maintenance 

of IoT devices for battery replacement challenging and increases the overall down time. 

With this in mind, in this paper, we propose a Heuristic and Opportunistic Link selection 

Algorithm (HOLA), for IoT systems that improves the energy-efficiency of IoT systems by  

Wireless Protocol Range (m) Bandwidth Energy Efficiency 
Bluetooth 10 Low High 

WiFi 100 High Medium 

3G/4G LTE 5000 Medium to High Low to Medium 
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reducing the overall energy consumption and balancing it across the network. HOLA 

achieves this energy-efficiency by opportunistically offloading the IoT device data to 

smart devices (e.g., smart phones, tablets, etc.) being carried by the workforce in factory 

settings. Further, these smart-devices with multiple radio links such as Bluetooth, Wi-Fi, 

and 3G/4G LTE heuristically determine the best link to transmit the data to the Cloud 

based on the quality and energy cost of the link. Our experimental and simulation studies 

validate that HOLA can improve the energy efficiency of IIoT systems by reducing the 

overall energy consumption and balancing it across the network. 

Our contributions in this chapter are as follows: we observe and report the high and 

geo-physically skewed energy consumption in IoT system networks, we then propose the 

HOLA system that improves the energy-efficiency of IoT systems by reducing overall 

energy consumption and balancing it across the network, we design and prototype the  

 

Figure 5. 3: The HOLA IoT device 
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Figure 5. 4: HOLA IoT device power consumption 

 

 

 

HOLA IoT device, and perform experiments and simulation studies to validate energy-

efficiency of HOLA.  

The rest of this chapter is organized as follows. The detailed explanation of the 

proposed HOLA system is presented in Section 5.1. The prototyping of HOLA IoT devices 

and performance evaluation of the HOLA IoT system is presented in Section 5.2. In Section 

5.3, we discuss about the existing state-of-the-art techniques. And with Section 5.4, we 

conclude this chapter. 

5.1 HOLA Approach  

Modern smart-devices such as smartphones and tablet computers powered by 

various operating systems such as Android, Windows and iOS are equipped with multiple 

radio interfaces to connect to the Internet and other wireless devices. Examples of such 

radio interfaces are Wi-Fi (IEEE 802.11 a/b/g/n/ac), Bluetooth (IEEE 802.15.x), and cellular  
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Table 5. 2: HOLA IoT device power consumption 

Activity 
Current Draw 

(mA) 
Power 

Consumption (mW) 

Arduino Idle Operation 47.1 423.9 
1 Sensor Active - Vibration Sensor 55.5 499.5 

2 Sensors Active – Vibration, Temp & 
Humidity Sensor 

58.2 523.8 

3 Sensors Active – Vibration, Temp & 
Humidity Sensor, RFID Sensor 

184.1 1656.9 

Bluetooth Transmit & Receive 203.5 1831.5 

 

3G/4G LTE. These wireless interfaces have unique characteristics in terms of operational 

range, energy consumption, bandwidth, and availability. These key characteristics are 

illustrated in Table 5.1 [5]. In the proposed HOLA system, we exploit these multiple 

wireless radios equipped with the smartphones carried by the workforce in the factory 

settings to offload the IoT device data. 

The system architecture for HOLA is illustrated in Figure 5.2. In the HOLA system, the 

IoT devices carry out the sensing in an intelligent fashion. These devices engage in 

efficient filtering and fusion of sensor data to reduce the amount of data that needs to be 

transmitted. For example, during a regular operation, the HOLA IoT devices sense and 

report data collected over a one minute interval. However, when the predefined 

thresholds for the sensor data are breached (indicating, for example, a machine failure or 

other critical event), the HOLA IoT device dynamically increases the sampling and 

reporting rate. When it is time to report the collected sensor data, the HOLA IoT devices 

opportunistically offload the sensor data to an available smart phone over a Bluetooth  
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interface. If a smartphone is not available, the HOLA IoT device offloads the data to a 

neighbor in the path to BS within the Peer-to-Peer network. 

The detailed operation of HOLA IoT device is presented in Algorithm 5.1. The HOLA 

IoT device initiates all its sensors at start time, and extracts the identification number 

(Hid). This unique ID is used in the Cloud to identify the machines having problem, and the 

components that have been processed by the machine (identified by the RFID associated 

with the product being processed (Crfid)). During its operational lifetime, the HOLA IoT 

device extracts the RFID of product being processed (Crfid), current temperature at the 

machine (Ctemp), current humidity at the machine (Chum), and current vibrations at the 

machine (Cvib). With this information, it constructs the HOLA IoT Device Information 

Packet (HIP) which needs to be transmitted to the Cloud. If a Base Station device is within  

Figure 5. 5: HOLA IoT Device Power Consumption 
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range, the HIP is transmitted directly to Base Station device, else if a smart device 

participating in HOLA service is available, the HIP is opportunistically transmitted to this 

smart-device. If none of these are available, the HIP is transmitted to a downlink HOLA 

IoT device in range. Through the operational lifetime, if the sensor values fall beyond the 

normal operational minimal or maximum values, the sensing rate increases by reducing 

the sleep time (ST) step-wise till it falls to minimum possible sleep time (SminT ). Otherwise, 

the ST remains at maximum possible sleep time (SmaxT ) to conserve energy. 

A smart phone can potentially connect to multiple HOLA IoT devices simultaneously. 

This effectively creates cloudlets of IoT devices within a large deployment. It should be 

noted that these smartphones are typically recharged from time to time which is not 

possible with the IoT devices due to their nature of deployment. The primary goal of the  

Figure 5. 6: HOLA Simulation Setup 
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smartphones in a factory environment is to extract analytics and warnings and present it 

to the workforce. Based upon the data, the factory work force can take necessary actions 

such as, for example troubleshooting a malfunctioning machine. As result of reduced inter 

IoT device communication, HOLA achieves energy-efficiency by reducing the overall 

energy consumption as well as by balancing it geo-spatially. Geo-spatial balancing of 

energy consumption results in a uniform energy consumption for the IoT devices across 

the factory floor. 

Once the data from an IoT device is offloaded to a smart phone, HOLA employs an 

intelligent link selection algorithm. Modern smartphones are heterogeneous in terms of 

availability of radio links and residual battery power. If a smartphone has low residual 

energy, it will not be included in the HOLA network until it is recharged. HOLA employs a  

Figure 5. 7: Reduced total power consumption with HOLA 
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Figure 5. 8: Unbalanced power consumption at individual IoT devices with Vanilla System 

 

 

 

set of heuristics to determine the best link (e.g., Bluetooth, Wi-Fi or 3G/4G LTE) to 

transmit the data over to the cloud while considering quality of the link to maintain the 

Service Level Agreements (SLAs), and the energy cost of using that link. 

It should be noted that the Wi-Fi and the cellular radios on the smart phones consume 

similar amount of power per unit of operation [98], [99]. However the amount of energy 

used by the Wi-Fi or cellular connection for a given amount of data is a function of the 

available bandwidth on that link. Theoretically, Wi-Fi access points (APs) provide larger 

bandwidth over cellular connection. Thus, Wi-Fi can transmit same amount of data at a  



 

103 
 

 

Figure 5. 9: Balanced power consumption at individual IoT devices with HOLA IoT System 

 

 

 

faster rate as compared to a cellular connection. As a result the Wi-Fi radio is used for a 

shorter duration resulting in less energy usage compared to the cellular connection. 

However in a factory setting, there are several factors that affect the bandwidth of the 

Wi-Fi links. Presence of metallic structures, high temperature, or congested network due 

to larger number of smart phones connected to a Wi-Fi AP is likely to reduce the quality 

and bandwidth of the Wi-Fi link. This leads to dropped packets that results in 

retransmission of data. 
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If the number of packet retransmissions is too large, it is less costly to use the cellular 

3G/4G LTE link to transmit the data to the cloud service. Hence before transmitting the 

data, the smartphone must be aware of the most efficient link to use. Probing the links 

frequently to check for available bandwidth is costly in terms of energy, and no active 

transmission can be carried for the duration of probing. Typically the working stations in 

a factory are fixed. Thus while probing the links, the smart phones in HOLA system geo-

tag a particular location and associate the link to be used in its neighborhood and store 

this information in their database. This information can be recalled for later use, and the 

smartphone probes for bandwidth only if the information is not available or if it is stale. 

The detailed operation of HOLA smart-device is described in Algorithm 5.2. 

5.2 HOLA Evaluation  

We have built and prototyped the HOLA IoT device from scratch with of-the-shelf 

components. The prototype implementation is shown in Figure 5.3, where Figure 5.3a 

shows the circuit diagram of the IoT device, and Figure 5.3b shows the HOLA IoT device. 

The HOLA IoT device is powered by the ultralow-power Atmel ATmega 328 

microcontroller. This microcontroller is programmed by the Arduino Uno R3 

microcontroller board. The HOLA IoT device communicates with other IoT devices and 

smart-devices using the JY-MCU Bluetooth Antenna Module. We have integrated the 

following three sensors in the HOLA IoT device: vibration sensor, temperature and 

humidity sensor, and an RFID antenna sensor. The HOLA IoT device supports two 

important functionalities.  
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First, HOLA IoT devices support inventory tracking and track objects in a 

manufacturing or an assembly setting with RFID technology. The RFID Reader Antenna 

sensor reads the codes associated with RFID tags attached to the items as they go through 

the assembly chain. Second, HOLA IoT device can predict, detect, and report machine 

degradation. HOLA IoT devices use the vibration sensor to detect anomalous behavior of 

a machine and the temperature and humidity sensor to detect over heating of the 

machine. 

We have studied the power consumption of the HOLA IoT device that we have built 

with detailed experiments. The experimental setup and circuit diagram for the power 

consumption experiments are illustrated in Figure 5.4, where Figure 5.4a shows the circuit 

diagram of the experimental setup to measure power consumption, and Figure 4b shows 

the experimental setup. The current drawn by the HOLA IoT device is measured with a 

digital multi-meter (DMM) for 9V battery. We measure the power consumption of the 

HOLA IoT device for various operation scenarios as illustrated in Table 5.2. Each of these 

experiments have been conducted 50 times, and the average values have been reported. 

As can be seen from Figure 5.5, the radio frequency transmitters and receivers consume 

significant amount of energy in the HOLA IoT devices. The high power consumed by the 

Bluetooth module becomes significant when the IoT devices transmit not only their own 

data but also the data of their neighbors. We have tested the operation of HOLA IoT 

devices with Nexus 7 tablet powered by Android 5.1.2, HTC One M8 smartphone powered 

by Android 4.4.2, and a HP Stream 7 tablet powered by Windows 8.1. The HOLA IoT 

devices are not only plug-and-play, but also support cross-platform compatibility along 
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with third-party applications. The HOLA device successfully communicates with these 

smart devices to offload the sensor data from its onboard sensors. A video demo of the 

HOLA IoT device is available on YouTube at [100]. 

With the help of simulation studies we investigate scalability to study the 

performance of HOLA as compared to the Vanilla System. The parameters used in the 

simulation studies have been experimentally obtained by us. To provide realistic loss in 

wireless environment, we have implemented the Rayleigh Fading signal propagation 

model [63] with environmental noise of 95 db. The simulation setup has been created in 

Python with NetworkX, SciPy, and NumPy libraries. The simulation environment reflects 

a 100m*70m factory floor with HOLA IoT devices placed at uniform 10m interval for a 

total of 700 devices as shown in Figure 5.6. A duty-cycle sensing and reporting is done 

every 60 seconds. The BS is located at one end of the setup. We perform sensing activities 

for a 24 hour duration with the Vanilla System and the HOLA IoT system. For simulation 

of the HOLA IoT system, we assume that each of the HOLA IoT devices have access to a 

smartphone to offload their sensor data. The smart phones use 800 mW of energy at the 

radio link to forward data from each of the sensors to the Cloud. The power consumption 

values have been experimentally obtained with PowerTutor [101]. Our future work aims 

to observe the effects of varying smartphone density, and its impact on overall energy 

efficiency. 

In Figure 5.7, we plot the Time on x-axis vs Power Consumed on y-axis, and observe 

the total energy being consumed by the IoT devices for the Vanilla System and HOLA IoT 

System during the 24 hour operational duration. From Figure 5.7, we can see that HOLA 
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successfully reduces the total energy being consumed by the IoT devices in the network 

as compared to the Vanilla System. HOLA is able to reduce the total energy consumption 

of IoT devices by reducing the inter-IoT device communication and opportunistically 

offloading the sensor data to smart devices. Further we see that, as time progresses, the 

energy efficiency of HOLA is more effective as compared to the Vanilla System. 

We observe the energy being consumed individually at each of the IoT device in the 

network during the 24 hour operational duration. In Figure 5.8, we observe that in the 

Vanilla System the IoT devices have a highly skewed energy consumption. As time 

progress, uneven power consumption becomes more severe. With the HOLA IoT system, 

the IoT devices have a balanced power consumption across the network as illustrated in 

Figure 5.9. HOLA geo-spatially balances the power consumption of the IoT devices since 

the IoT devices closer to the BS do not have to transmit the data from the IoT devices that 

are farther away from the BS. Thus, with simulation with realistic power consumption 

values, we demonstrate that the HOLA IoT system not only successfully reduces the total 

energy consumption, but also balances it across the IoT device network. 

5.3 Related Work  

Energy-efficiency is one of the important performance parameters of an IoT system. 

Industrial IoT (IIoT) applications have even further stringent requirements for network 

lifetime and delays [102]. In literature, researchers have proposed numerous techniques 

to improve energy-efficiency of IoT systems. These techniques can be classified as either 

duty cycling of sensor nodes, efficient filtering, and fusion of sensor data to reduce 
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network traffic, and using a mobile ferry to collect IoT sensor data, which again reduces 

the network traffic. 

With duty cycling, the energy conservation and increased network lifetime are 

achieved by alternating the operational mode of the IoT devices between active and 

dormant state [102], [103], [104], [105]. They use the ability of an IoT device to operate 

in various modes to reduce the power being consumed. Examples of such duty cycling can 

involve powering down the IoT device, putting it in sleep mode where the radio is still 

active, or putting the IoT device in a deep sleep mode where the radio is turned off and 

is activated at predefined intervals to listen from the neighbor IoT devices. The drawback 

of duty cycling is that it could reduce the area being monitored if the deployment is not 

dense and also requires highly synchronized clocking to wake up the IoT device. 

Efficient filtering and sensor data fusion techniques [106], [107] reduce the amount 

of data that is being transmitted across the network. Since the amount of data being 

transmitted by the radio of the IoT device is reduced, the radio itself has to be powered 

for a shorter duration of time than what it would have been normally. This leads to 

reduced power consumption at the IoT devices. While such sensor data filtering and 

fusion techniques are extremely efficient and successful at reducing the power being 

consumed at the IoT devices, they also have drawbacks. Such techniques are not effective 

when regulatory requirements impose finer granularity of data being reported to satisfy 

the SLAs. 
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Mobile ferry based techniques [108], [109] use a specialized IoT device that can move 

across the IoT network. This mobile ferry travels around the network visiting the IoT 

devices to receive the sensor data collected by them. Once it has collected the data from 

the entire network, it returns to the BS to offload the data before embarking on the travel 

again. Such techniques require the IoT devices to have a large buffer to store the data till 

the arrival of the mobile ferry which is costly. While using a mobile ferry works well for 

delay tolerant networks, it is not well suited for IIoT applications where, for example, a 

machine failure or degradation needs to be reported in real-time. 

The proposed approach HOLA on the other hand, effectively exploits the smartphones 

and other smart devices used by the workforce in industry settings to opportunistically 

and heuristically offload the sensor data collected by the HOLA IoT devices. Our 

experimental and simulation studies confirm that HOLA achieves significant energy-

efficiency by reducing the overall energy consumption of the IoT devices, and distributing 

it evenly across them. 

5.4 Conclusions  

In this chapter, we have proposed HOLA that improves the energy efficiency of IIoT 

systems by reducing overall energy consumption and balancing it across the network. 

HOLA achieves energy-efficiency by opportunistically offloading the IoT device data to 

smart devices being carried by the workforce in factory settings. We validate the efficacy 

of HOLA with extensive practical experiments backed with simulation studies. 
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We have designed and prototyped the HOLA IoT devices with Arduino. The HOLA IoT 

devices serve as an enabler to IIoT applications for smart manufacturing and smart supply 

chain. With the help of practical experiments, we have measured the energy consumption 

of the HOLA IoT devices across various operational scenarios and communication settings. 
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CHAPTER 6 

OPTICAL WIRELESS UNLOCKING FOR SMART DOOR LOCKS USING SMARTPHONES 

 

With the recent rapid advancements in Internet of Things (IoT) technologies, one of 

the applications being researched is smart door lock (SDL) systems. Smart door locks are 

intended to offer ease of access, easy key or access sharing as well as high security. These 

smart lock systems can be categorized into three broad types - biometrics, smart tags, 

and smartphones. However they pose issues of usability, reliability as well as security. 

Biometrics-based smart door locks [110, 111] rely on the unique physical 

characteristics of humans such as fingerprints, facial recognition and retina to grant 

access to authorized users. Such biometric-based techniques are not only 

computationally intensive but also hard to replace once compromised. In spite of 

advances like liveliness detection algorithms, biometric based techniques are prone to 

easy security breaches [112]. While smart tags [113] utilize Radio-frequency Identification  

(RFID) or Near Field Communication (NFC) technology, smartphones [114, 115] use Wi-Fi, 

Bluetooth, or NFC to provide keys to the smart lock in order to unlock it. They can thus be 

classified to use radio frequency (RF) technologies. Such RF technologies are susceptible 

to snooping attacks [116] and also cause RF smog. 

In this chapter, we propose an optical wireless unlocking for SDL. We have designed 

and prototyped a SDL system named OptLock. OptLock accepts an optical wireless signal 

(OWS) which contains the encoded one-time-password (OTP) key via its onboard infrared 

(IR) sensor to unlock. This challenge-response based OWS is transmitted by the user  
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Table 6.1: Characteristics of communication mechanism 

Communication 
Mechanism 

Range 
(m) 

Energy 
Efficiency 

Radiation 
Pattern 

RF Smog 

Wi-Fi ~100 Very Low Omnidirectional Yes 
Bluetooth ~10 Low Omnidirectional Yes 

NFC/RFID ~0.1 Very Low Omnidirectional Yes 

OWC (VLC) ~0.1 High Highly Directional No 

OWC (IR) ~10 High Directional No 
 

through a smartphone via its onboard IR light emitting diode (LED). In the absence of an 

onboard IR LED, an external dongle containing an IR LED can be easily connected to the 

smartphone. This hardware we designed is powered through the smartphone’s 3.5 mm 

headphone jack. Optical wireless communication (OWC) with IR enables energy-efficient, 

and comfortable range line-of-sight communication (which is highly desirable is such 

security applications). Also, it does not contribute to the negative effects that are caused 

by the RF smog. The data rate offered by IR (~4000 bps) is more than sufficient for an 

application like OptLock that needs to send a 128 bits long key in under a second. 

Our experiments and analysis validate that OptLock offers a fast and efficient 

unlocking experience which is highly secure, and successfully thwarts various attack 

scenarios [7]. OptLock offers the physical security of traditional door locks without the 

need to carry extra keys. The inbuilt challenge-response and one-time-password scheme 

enables better security over existing smart locks along with easy key sharing among users. 

The rest of this chapter is organized as follows. A detailed explanation of the proposed 

OptLock system is presented in Section 6.1. The prototype implementation along with 

performance evaluations are explained in Section 6.2. Finally, we conclude the chapter in 

Section 6.3. 
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6.1 OptLock Approach 

An OptLock SDL operation takes the following process. During the key distribution 

process, the user sets up the SDL to be operated with an authorized smartphone. First, as 

illustrated in Figure 6.1, the authorized smartphone’s unique identifier (such as the IMEI  

Figure 6.1: OptLock: Key distribution phase 

 

Figure 6.1: OptLock: Authentication phase 

Figure 6.2: OptLock: Authentication phase 
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or MAC) are concatenated with the user’s password. This concatenation is encrypted with 

the cloud provider’s public key (KH
+) for the user. This is further encrypted with symmetric 

encryption function E’ that takes the user’s personal identification number (PIN) as it’s 

key to produce the Password Device Signature PDS. This PDS is transferred to the 

smartphone by the OptLock hardware using OWS, and stored locally as PDS’.  

 During the authentication phase the user must first prove that he/she is the actual 

owner of that smartphone that is authorized to unlock the SDL. This is achieved using the 

Figure 6.3: OptLock: Prototype circuit diagram 
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PIN of the user as illustrated in Figure 2.6. At the time of unlocking the OptLock SDL, the 

user’s smartphone retrieved the PDS’ that is stored locally  and uses the PIN entered by 

the user (KP) along time-based one-time password (TOTP) function to symmetrically 

decrypt the PDS’. The resulting KH
+(P+IMEI)’ is transmitted to the OptLock SDL by the  

smartphone using its IR LED. The OptLock SDL then asymmetrically decrypts it using its 

private key for the user while applying the TOTP function to recover the (P+IMEI)’. A 

disjoin function further recovers the P’ and IMEI’. If the P’ matches with the original 

password (P) on file for the user with the IMEI matching the IMEI’ of the smartphone 

being used, the OptLock SDL successfully unlocks. 

 Thus, OptLock offers the physical security of traditional door locks without the need 

to carry extra keys. The inbuilt challenge-response and one-time-password scheme 

Figure 6.4: OptLock: Prototype implementation 
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enables better security over existing smart locks along with easy key sharing among users. 

OptLock also protects against the threat from a stolen smartphone with challenge-

response enabled by requiring the entry of a PIN to operate the SDL. An incorrect PIN 

results in the failure to match the password and IMEI of file. 

6.2 OptLock Prototype Implementation and Evaluation 

 In this section we explain the implementation and experimental settings used to 

validate the energy-efficiency of OptLock SDL system. We built and programmed a 

prototype SDL hardware using the ultra-low power microcontroller ATmega328P by 

Atmel [18]. The ATmega328P microcontroller was programmed using the Arduino Uno 

Revision 3 [19] microcontroller board. The OptLock SDL receives IR OWS from the  

Figure 6.5: OptLock: Application screenshots 
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Table 6.2: OptLock Evaluation - Power consumption 

Activity 
Current Draw 

(mA) 
Power Consumption 

(mW) 

Arduino Idle Operation 47.1 423.9 
Arduino With IR Receiver (HX1838) 48.11 433.9 

Arduino With Bluetooth (JY-MCU) 66.5 598.5 

Arduino With Wi-Fi (CC3000) 135 1215 

 

smartphone via the HX1838 IR sensor. A 12V electromagnetic solenoid enables the locking 

functionality of the OptLock SDL. The OptLock SLD also has an onboard LED for 

transmitting data to the smartphone via its ambient light sensor, and a RGB LED that acts 

as a status indicator. The hardware unit is powered by a 12V battery pack for the solenoid, 

and a 9V battery for rest of the onboard electronics. The schematic of the circuit we built 

for the OptLock SDL hardware along with the block diagram of the Arduino Uno 

microcontroller board is shown in Figure 6.3 and the hardware SDL we built is shown in 

Figure 6.4. 

 We built the OptLock application for Android using the Android SDK. The application 

has been designed to transmit the OWS via its onboard IR LED once the user enters the 

PIN. The application also displays various status messages. The screenshots for the 

application are shown in Figure 6.5. We used an HTC One M8 powered with Android 4.4 

to implement OptLock Android application. In the absence of an onboard IR LED, an 

external dongle containing an IR LED can be easily connected to the smartphone. This 

hardware we designed is powered through the smartphone’s 3.5 mm headphone jack. 
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 We have studied the power consumption of the OptLock SDL hardware that we have 

built with detailed experiments. The current drawn by the OptLock SDL hardware for 

communication is measured with a digital multi-meter (DMM) for 9V battery. We 

measure the power consumption of the OptLock SDL hardware for various 

communication scenarios as illustrated in Table 6.2. Each of these experiments have been 

conducted 50 times, and the average values have been reported. Using any form of RF 

communication mechanism results in usage of higher amounts of energy as compared to 

using an IR receiver. Thus, using IR OWC will enable the OptLock SDL hardware to operate 

for longer duration without having to replace the batteries. 

6.3 Conclusion 

We have presented a smart door lock system named OptLock. OptLock accepts an 

optical wireless signal (OWS) which contains the encoded one-time-password (OTP) key 

via its onboard infrared (IR) sensor to unlock. This challenge-response based OWS is 

transmitted by the user through a smartphone via its onboard IR light emitting diode 

(LED). In the absence of an onboard IR LED, an external dongle containing an IR LED can 

be easily connected to the smartphone. Our experiments and analysis validate that 

OptLock offers a fast and efficient unlocking experience which is highly secure, and 

successfully thwarts various attack scenarios. 
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CHAPTER 7 

SUMMARY AND FUTURE DIRECTIONS 

 

7.1 Summary 

In this dissertation, we analyze in detail the various characteristics of different 

wireless communication methods in terms of range, energy-efficiency, and radiation 

pattern. We find that a well-established communication method might not be the most 

efficient, and other alternate communication methods with the desired properties for a 

particular application could exist. We exploit alternative, state-of-the-art, and 

complimentary wireless communication methods, including radio frequency, infrared 

(IR), and visible lights, through the various IoT applications we have designed and built 

with those.  

Using Optical Wireless Communication (OWC) as a direct communication method, we 

have developed two IoT applications. First, we have designed and prototyped the Fast, 

Inexpensive, Reliable and Easy-to-use (FIRE) hardware token with the Inverse Dual 

Signature (IDS) which offers an Optical Wireless Authentication (OptAuth) for users 

authenticating on a smartphone. OptAuth offers convenient and cheap authentication 

process while offering strong security and defeats various attack scenarios. Second, to 

offer strong physical security, we have developed a smart door lock system named 

OptLock. OptLock accepts an optical wireless signal (OWS) which contains the encoded 

one-time-password (OTP) key via its onboard infrared (IR) sensor to unlock. This 

challenge-response based OWS is transmitted by the user through a smartphone via its 
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onboard IR light emitting diode (LED). In the absence of an onboard IR LED, an external 

dongle containing an IR LED can be easily connected to the smartphone. Our experiments 

and analysis validate that OptLock offers a fast and efficient unlocking experience which 

is highly secure, and successfully thwarts various attack scenarios. 

As for WiFi RF, we exploit the WiFi Direct or Hotspot mode of Android devices to 

achieve direct communication for the two apps we have developed to avoid vehicular 

accidents with smart devices, and to estimate their location. We propose a smartphone-

based Car2X-communication system, named WiFi-Honk, which can alert the potential 

collisions to both pedestrians and vehicles in order to especially protect the distracted 

pedestrians. WiFi-Honk removes the WiFi association overhead using the beacon stuffed 

WiFi communication with the geographic location, speed, and direction information of 

the smartphone replacing its SSID while operating in WiFi Direct/Hotspot mode, and also 

provides an efficient collision estimation algorithm to issue appropriate warnings. Our 

experimental and simulation studies validate that WiFi-Honk can successfully alert 

pedestrians within a sufficient reaction time frame, even in high mobility environments. 

Complementing WiFi-Honk we have developed a collaborative positioning system for 

smart devices which provides them with accurate location information at a fraction of the 

energy cost as compared to the traditional positioning approaches such as Global 

Positioning System (GPS) WiFi-based positioning system (WPS), or Cell-ID positioning. The 

Energy-Efficient Collaborative and Opportunistic Positioning System (ECOPS) facilitates a 

collaborative environment where many mobile devices can opportunistically receive 

position information over energy-efficient and prevalent WiFi, broadcasted from a few 
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other devices in the communication range. Our field experiments show that ECOPS 

significantly reduces the total energy consumption of devices while achieving an 

acceptable level of location accuracy. 

Finally, we have used multiple modes of direct communication methods for a large 

scale Industrial Internet of Things (IIoT) systems, particularly manufacturing 

environments. We focused on improving the operational efficiency of a factory floor IIoT 

system that could suffer from high and unbalanced energy consumption due to the nature 

of the network deployment. Such behavior is undesirable as it not only increases the 

carbon footprint of the plant, but also makes the planned maintenance of IoT devices for 

battery replacement a huge challenge. We propose a heuristic and opportunistic link 

selection algorithm, HOLA, which not only reduces the overall energy consumption of the 

IoT network but also balances it across the network. HOLA achieves this energy-efficiency 

by opportunistically offloading the IoT device data to smart-devices being carried by the 

workforce in the factory settings. Further, these smart-devices with multiple radio links 

such as Bluetooth, Wi-Fi, and 3G/4G LTE heuristically determine the best link to transmit 

the data to the Cloud based on the quality and energy cost of the link. Our experimental 

and simulation studies validate that HOLA can improve the energy efficiency of IIoT 

systems by reducing the overall energy consumption and balancing it across the network. 

7.2 Future Directions 

The current steady adoption of IoT systems and their applications is rapidly fueling, 

and fulfilling the prediction of having over 50 billion Internet connected devices by the 

year 2020 [117]. Connecting this huge number of devices to the Internet is a challenging 
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problem to solve. It will lead to several interesting and important scientific discoveries 

and contributions not only in Computer Networking, but also in diverse technical and non-

technical disciplines of study, due to the inherent interdisciplinary nature of IoT 

applications. However, all these diverse areas of research will be challenged by two key 

issues. 

First, securing these devices without compromising their usability and performance 

will be a huge challenge. The ever evolving nature of security threats and attacks makes 

it challenging for the researchers to secure any network connected device. The physical 

and software constraints of the IoT devices further amplifies the extent of these 

challenges. Security schemes employed by OptAuth and OptLock can effectively combat 

various evolving security attacks. Using the IDS, and other multi-factor security solutions, 

researchers can create fast, inexpensive, reliable and easy-to-use security mechanisms. 

However, it should be noted that with IoT systems, it is important to integrate the security 

mechanisms from grounds up rather than as an afterthought. Without effective security 

mechanisms in place, IoT would rapidly disintegrate from being “Internet of Things” to 

being “Internet of Targets”. 

Second, connecting these huge number of IoT devices to the Internet efficiently while 

providing reliable and appropriately fast network connectivity based on the IoT 

application will be challenging. Overreliance on standard RF technologies could 

overwhelm them to the point of degradation of service at the very least, and cause 

adverse effects on human health and inter-device interference at the worst. It will be 

important to diversify the network connectivity with usage of frequencies across the 
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electromagnetic spectrum with direct communication techniques at the edge IoT nodes - 

all without compromising the security. The use of diverse direct and connection-oriented 

techniques presented in this dissertation - such as use of optical wireless communication, 

stuffing relevant information in RF beacons, and switching wireless modalities by 

sampling real-time network performance will be critical to accommodate networking 

requirements of the projected tens of billion objects in the near future. 
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