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Abstract 

Humans and chimpanzees demonstrate numerous cognitive specializations for processing faces, 

but comparative studies with monkeys suggest that these may be the result of recent evolutionary 

adaptations. The present study utilized the novel approach of face space, a powerful theoretical 

framework used to understand the representation of face identity in humans, to further explore 

species differences in face processing. According to the theory, faces are represented by vectors 

in a multidimensional space, the center of which is defined by an average face. Each dimension 

codes features important for describing a face’s identity and vector length codes the feature’s 

distinctiveness. Chimpanzees and rhesus monkeys discriminated male and female conspecifics’ 

faces, rated by humans for their distinctiveness, using a computerized task. Multidimensional 

scaling analyses showed that the organization of face space was similar between humans and 

chimpanzees. Distinctive faces had the longest vectors and were the easiest for chimpanzees to 

discriminate. In contrast, distinctiveness did not correlate with the performance of rhesus 

monkeys. The feature dimensions for each species’ face space were visualized and described 

using morphing techniques. These results confirm species differences in the perceptual 

representation of conspecific faces which are discussed within an evolutionary framework.  
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Face recognition is a complex problem because all faces contain the same features, e.g., 

eyes, nose, and mouth, arranged in the same general configuration (1
st
 order configuration), yet 

our ability to discriminate between faces and recognize a face’s identity appears effortless 

(Maurer et al., 2002). One of the most popular and well-established explanations for this 

complex skill is that over many years humans develop an expertise with faces that enables the 

rapid and accurate detection of subtle changes in the size and spacing of facial features (2
nd

 order 

configuration) which are then integrated into a single perceptual representation, e.g., identity, via 

holistic processing (Rhodes et al., 1993; Rossion, 2008; Tanaka & Farah, 1993).  

There has been considerable debate over the past 10 years as to whether these abilities 

reflect unique human specializations, or whether other nonhuman primates also represent face 

identity in similar ways. In the majority of studies conducted, researchers report similarities in 

the face processing skills of chimpanzees and humans (Martin-Malivel & Okada, 2007; Parr et 

al., 2000; 2006; Parr, 2011b; Parr & Taubert, 2011; Tomonaga, 1999, 2007; see Parr, 2011a for a 

review of this literature).  However, the literature is much less consistent with regard to 

similarities in the face processing skills of monkeys compared to humans, where some recent 

studies have reported finding similarities (Dahl et al., 2007; 2009; Gothard et al., 2004; 2009; 

Pokorny & de Waal, 2009), while others have reported species differences (Bruce, 1982; Parr et 

al., 1999; 2008; Parr, 2011b; Parr & Taubert, 2011; Parron & Fagot, 2007). These differences 

could be the result of differences in testing methodologies, selective looking versus operant 

testing paradigms, or they could reflect genuine species differences in face perception (see Parr, 

2011a). Moreover, the approach of most studies has been to manipulate or mask some aspect of 

the face stimuli, e.g., orientation, feature spacing, contrast, etc., and then measure the effect on 

subjects’ behavior or performance. This approach is somewhat limited as faces contain many 

sources of information and manipulating one source does not preclude subjects utilizing another. 

Moreover, the approach lacks a unifying theoretical focus and cannot be used to make 

predictions about the representation of face identity across species. Therefore, to provide a better 

understanding of the evolution of face processing skills in primates, the present study used a face 

space framework to compare the representation of face identity in chimpanzees and rhesus 

monkeys.  

Face space is a powerful theoretical framework for understanding the representation of 

face identity in humans and has been used to explain a variety of phenomena related to face 

processing, including distinctiveness and caricature effects, the face inversion effect, and other 

race effects (Bruce, 1982; Byatt & Rhodes, 2004; Rhodes et al., 1987; Valentine, 1991; 

Valentine & Endo, 1992). According to the face space framework, faces are encoded as vectors 

in a multidimensional space (Figure 1). Each dimension reflects both physical and psychological 

attributes important for encoding a face’s identity, e.g., big nose, wide face, female, attractive, 

etc. Experience may shape the sheer number of dimensions present in face space, with a small 

number occurring for familiar faces in infancy and expanding as one’s experience with faces 

grows throughout adulthood (Johnson & Ellis, 1995; Nishimura et al., 2009; Pedelty et al., 

1985). Although the number and form of dimensions is unspecified, the location of each face in 

the multidimensional space encodes its unique combination of features. The origin (center) of 
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face space represents the central tendency of these dimensions, so faces located close to the 

origin are average, of typical appearance, while faces located farthest from the origin are 

distinctive (Valentine, 1991). In a familiar environment of own-race faces, typical faces 

represent the most frequently encountered faces making the origin of face space the most densely 

populated region (however see Burton & Vokey, 1998). Because of this, discriminating between 

typical faces can be difficult, producing many false positives, while distinctive faces lie in 

sparsely populated regions making them easier to discriminate.  

The perceptual dimensions of face space can be visualized using multidimensional 

scaling analyses (MDS), a statistical technique that provides a graphical representation of the 

relative distances between stimuli based on their perceived dissimilarities. Based on the location 

of faces in the MDS plot, researchers can begin to interpret what features best characterize the 

perceptual dimensions of face space. The number of meaningful dimensions is typically 

identified from a scree plot which shows the cumulative variance accounted for by each 

subsequent dimension. However, the interpretation of a multidimensional space is conceptually 

challenging, so studies of face space constrain the MDS solution to 2 or 3 dimensions.  Using 

these techniques, several studies have explored the physical and psychological dimensions of 

human face space. Johnston and colleagues (1997b), for example, examined the effect of 

distinctiveness on similarity judgments for male faces. Human participants rated all pair-wise 

comparisons of 36 typical and distinctive faces on a 7-point scale. The similarity ratings were 

then subject to MDS analysis (2-6 solutions) and the distance from each face to the origin of face 

space was calculated (e.g., vector length) and correlated with the distinctiveness ratings. For all 

solutions, the vector length from the origin of face space was shorter for the 18 faces rated as 

most typical compared to the 18 distinctive faces, supporting the basic architecture of face space 

(Valentine, 1991).  

Lee and colleagues (2000) created several categories of facial stimuli, the original 

veridical face and a set of their caricatures (faces in which distinctive features have been 

exaggerated), anticaricatures (faces in which distinctive features have been minimized), and the 

population average. Similar to Johnston and colleagues (1997b), they used MDS to plot the 

perceived dissimilarity between these images based on subjects’ ratings. Their results confirmed 

that the highest exemplar density was near the origin and that the caricatures were located in 

more sparsely populated regions farthest from the both the average face and the origin of the face 

space. Thus, the caricatures were seen as being most distinctive and located in the outermost 

regions of face space. Using a morphing technique, Busey (1998) also confirmed the utility of 

the face space model to understand the psychological representation of faces. They created a set 

of faces morphed between two identities, rated their typicality, and then examined the location of 

these morphs in an MDS plot of face space. As predicted by the face space model, the morphed 

faces were located between the two original identities, closest to the origin of face space, and the 

morphs were rated as more typical in appearance than either identity. This suggests that 

morphing functioned to reduce the distinctiveness of each face.  

The face space model has also been used to examine the representation of age and gender 

in adults (Johnston et al., 1997a), other-race effect (Byatt & Rhodes, 2004; Papesh & Goldinger, 

2010), and explore developmental changes in face processing between infants and children.  As 

young as 6 years, for example, children classify caricatures as being more distinctive than anti-

caricatures and these effects are stronger after 8 years of age (Chang et al., 2002). The MDS 

technique has also shown that young children (under 10 years) appear to use fewer dimensions to 

differentiate faces than older children and adults (Johnston & Ellis, 1995; Nishimura et al., 2009; 
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Pedelty et al., 1985). These data suggest that face space is not a fixed construct but undergoes 

experiential changes throughout development in a manner similar to other experience-dependent 

changes in face perception, including perceptual narrowing and other-race effects (Pascalis et al., 

2002; Scott & Monesson, 2009; Slater et al., 2010). Under some conditions, the amount of time 

needed to form an average/prototype can be very short (Panis et al., 2011). The importance of 

experience has been validated by auto-association network models trained to discriminate either 

Caucasian or Asian faces (same race) and then tested for recognition among the untrained (other 

race) faces. The distribution of these faces according to the variance accounted for by PCA 

modeling confirmed greater stimulus density, more difficult race categorizations, for the 

untrained (other race) faces compared to the trained (same race faces) (Caldara & Abdi, 2006). 

These results confirm that face space is an extremely influential model for understanding 

the representation of face identity in adults (Johnston et al., 1997b; Valentine, 1991), infants and 

children (Chang et al., 2002; Jeffery et al., 2010; Humphrey & Johnson, 2007; Johnson & Ellis, 

1995; Pedelty et al., 1985), and clinical populations (Nishimura et al., 2010; Pellicano et al., 

2007). Although statistical approaches, such as MDS and other data reduction techniques, have 

been useful in visualizing the features important for the recognition of faces and facial 

expressions in monkeys (Kanazawa, 1996; Leopold et al., 2006; Young & Yamane, 1992) and 

chimpanzees (Parr, Waller & Heintz, 2008a), the results of these studies are often only 

interpreted subjectively without any strong theoretical context. When used together, however, the 

face space model is able to generate specific predictions about the perceptual representation of 

face identity, enabling cross-species comparisons that can be interpreted within a single 

theoretical framework. This approach provides a more objective basis for identifying and 

evaluating previously reported species differences in face identity processing in nonhuman 

primates (see Parr, 2011a for a review). Therefore, it was the goal of this experiment to utilize a 

face space framework to compare similarities and differences in the perceptual representation of 

face identity in two species of nonhuman primates, chimpanzees and rhesus monkeys. A 

subsequent goal was to interpret the distribution of faces in the MDS plot to identify what 

physical features were most important for discriminating face identity. 

Using a simple discrimination task, both chimpanzees and rhesus monkeys were required 

to match every combination of 20 conspecific faces (380 pairs). This performance (% correct) is 

analogous to the use of similarity ratings between pairs of photographs in human studies. 

Humans who were experts with chimpanzees and rhesus monkeys were recruited using a web-

based survey to provide the distinctiveness ratings for the face stimuli using a 5-point scale. The 

face space model predicts that the features important for the representation of face identity will 

be related to a faces’ distinctiveness such that faces rated by human experts as most typical will 

cluster towards the origin of face space and be discriminated poorly, while the faces rated as 

distinctive will occupy peripheral locations and be easier to discriminate. Based on previous 

studies, we expect to find similarities in the basic organization of face space between 

chimpanzees and humans, however, monkey face space is not expected to be anchored by an 

average face and discrimination performance is not expected to be related to a face’s 

distinctiveness.  

 

Materials and Methods 

Stimuli 

The face stimuli used in both of these experiments consisted of composites made by 

averaging together 10 different photographs of each stimulus individual’s face (Benson & 
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Perrett, 1993). Previous studies in humans have demonstrated that composite images maximize 

the information diagnostic of individual identity by minimizing the visual information that is 

specific to the photograph, such as background, hue, lighting and contrast. This information is 

not relevant for the recognition of individual identity and can even interfere because the variance 

in pictorial cues across photographs tends to outweigh the variance across faces. This can create 

a situation in which photographs of different individuals appear more similar to one another than 

photographs of the same individual (Burton et al., 2005; Jenkins & Burton, 2008). The composite 

images produce robust recognition advantages with small numbers of images. Error rates in 

recognizing a person’s identity from a composite image, for example, become negligible after 

combining only 10-12 images (Burton et al., 2005). This stability also appears to be independent 

of which specific exemplar photographs are used, such that two composite images showing the 

same individual, but made using different sets of photographs, will appear highly consistent to 

one another. Finally, advantages in recognizing a person’s identity from composite image 

compared to a single image remains robust even when the composite image is contaminated by 

the inclusion of an erroneous photograph depicting a different individual (for a review see 

Jenkins & Burton, 2011).   

 To create the face composite stimuli, photographs were acquired from male and female 

chimpanzees living at the MD Anderson Cancer Center in Bastrop, TX, and rhesus monkeys at 

the Yerkes National Primate Research Center field station, Lawrenceville, GA. Photographs 

were taken outside during overcast weather conditions or when subjects were in the shade so as 

to minimize the influence of shadows, or differences in lighting that might bias the quality of the 

composite. Important for the creation of the individual composites was that each photograph be 

taken at a different “sitting,” and not all from the same time point when the subject remained in 

the same position. This helped to ensure that the visual information averaged in each photograph 

was not biased by the overrepresentation of a particular background or lighting condition, and 

that each composite averaged a reasonable estimate of the range of variance present in different 

photographs (Burton et al., 2005). Only photographs that depicted relatively full-frontal 

orientations were used. Before creating the composites, each photograph was standardized by 

rotating it in-plane so that the inter-pupil distance was horizontally aligned, and then cropping 

closely around the head. Each photograph was then resized to 700 pixels in height. Using 

Psychomorph software (Tiddeman et al., 2001), 188 points were then positioned on each 

chimpanzee face to delineate specific facial landmarks, and 106 points were used to delineate the 

features of the monkey faces. This difference was due to a greater number of morphological 

features in the eye region, e.g., distinctive wrinkles under the eyes, across the muzzle, and 

defining the ear region of chimpanzees compared to rhesus monkeys (see SOM_Figure 3). 

Composite images were created by calculating the mean shape for each set of images and each 

image warped to the average shape. The images were then superimposed to create an image with 

the average shape and color of the constituents (Rowland & Perrett, 1995; Tiddeman et al., 

2001). The averages were rendered with a texture algorithm (wavelet) to minimize blurring that 

can occur as a result of the averaging process (Tiddeman et al., 2001).  

There were 80 total face composites used in this study, 40 chimpanzees and 40 rhesus 

monkeys (20 males and 20 females). Of the 20 face composites for each species/gender, 19 

depicted specific individuals, e.g., John, Mary, etc. The final composite face was a population 

average created by averaging together the faces of 20 different individuals from each species and 

gender category. So, four population average faces were created, one for each species/gender 

stimulus category.  All of the stimulus individuals were unfamiliar to the subjects of this study. 
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Subjects 

Five chimpanzees (3 males and 2 females) ranging in age from 17 to 23 years 

participated voluntarily in these studies. The chimpanzees were raised by humans in peer groups 

at the Yerkes Primate Center until 4 years of age when they joined established social groups. All 

chimpanzees were socially housed and tested twice daily in their home cage using a 

computerized-joystick testing protocol (see Parr et al. 2000). All chimpanzees had extensive 

experience performing computerized tasks of face recognition using matching-to-sample (MTS) 

prior to this study (reviewed by Parr, 2011a).   

Six rhesus monkeys (2 males and 4 females) approximately 10 years of age participated 

in these studies. The monkeys were raised by their mothers in large social groups at the Yerkes 

Primate Center field station until 4 years of age when they were moved to the main center to 

participate in experiments of face recognition. The monkeys were pair housed (same gender) in 

the same colony room and tested twice daily in their home cage using a computerized-

touchscreen testing protocol (see Parr, Heintz & Pradhan, 2008b). All monkeys had extensive 

experience performing computerized tasks of face recognition using matching-to-sample (MTS) 

prior to this study (reviewed by Parr, 2011a).  

Prior to this experiment, neither the chimpanzee nor rhesus monkey subjects had ever 

been presented with composite face images. All procedures used in these studies were approved 

by the Institutional Animal Care and Use Committee of Emory University. 

 

Procedures: cognitive testing using matching-to-sample 

All animal subjects were tested using a computerized matching-to-sample (MTS) task. 

Chimpanzees selected images using a joystick-controlled cursor while monkeys used a 

touchscreen interface. According to the MTS procedure, animal subjects are first shown a single 

face, referred to as the sample, on the computer monitor. This was presented centrally against 

one of the four sides of the computer monitor. After orienting to this image by contacting it with 

the joystick-controlled cursor (procedure for the chimpanzees) or touching it three times in rapid 

succession on the touchscreen monitor (procedure for the monkeys), two additional faces were 

presented simultaneously on the screen located equidistant from the sample on the opposite side 

of the monitor. One of these faces (target) was identical to the sample, while the other (foil) 

showed the face of a different conspecific (see Figure 2). A correct response to the target image 

was reinforced with a small food item and followed by an inter-trial interval (ITI) of 2 s, while 

an incorrect response to the foil was followed by an ITI of 5 s and no food reward. The next trial 

was then presented.  

For the purposes of this study, the animal subjects only discriminated conspecifics’ faces 

and because face gender may be represented differently in face space, having distinct norms 

(Johnston et al., 1997a; Little et al., 2008), male and female faces were tested separately. For 

both species, photographs of the female faces were acquired more quickly than the male faces, so 

female faces were tested first, followed by the male faces. The task was organized so that the 

matching pair of faces (sample plus target) showed identical composites and these were paired 

with every other composite as the foil. Thus, 380 unique trials were created (20*19) for each 

species/gender category representing every dyadic combination of faces within each category. 

Each face dyad, representing one trial, was repeated 10 times, totaling 3800 trials. Before testing 

began, the 3800 trials were randomly divided into 76, 50-trial blocks and the animal subjects 

received two 50-trial testing blocks per day until all 76 blocks had been completed. Each animal 
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subject was tested using a different, random block order. The discrimination performance data 

(% correct) were then subject to MDS analysis.  

 

Facial distinctiveness ratings by human experts 

Using a web-based survey, distinctiveness ratings for the 20 face composites in each of 

the four species/gender categories were gathered from humans who had experience working 

directly with chimpanzees and rhesus monkeys. The human experts were recruited by email 

invitation to rate the composite faces using a 5-point rating scale (1 = very typical, 2 = somewhat 

typical, 3 = interesting, 4 = unusual, 5 = highly distinctive). They were additionally asked to list 

their experience working with each species (< 1 yr, 1-5 yrs, 6-10 yrs, and > 11 yrs), the 

approximate number of individuals they considered themselves familiar with (< 5, 6-20, 21-50, 

and > 51 individuals), and the degree to which the face was an important visual feature for 

identifying individuals (1-not at all, 2-face is important with other features, 3-the face is 

primarily how individuals are recognized, 4-will not make positive identification without seeing 

the face). These data were not analyzed but used to validate the expertise of the human raters 

(see Table 1). Because the survey responses were anonymous and acquired at different times for 

the four stimulus categories, they were not necessarily rated by the same individuals. The 

surveys for each gender/species were available online for a 3 month period, after which the 

rating data were downloaded and saved for analysis.   

 

Data analysis 

The animal subjects’ performance discriminating each of the 20 male and female face 

composites was averaged across foil types. This produced an overall percentage correct for each 

face. Pearson’s product moment correlations were then used to compare this overall performance 

with the human experts’ mean distinctiveness ratings. We hypothesized that subjects’ 

discrimination performance would correlate positively with the human experts’ distinctiveness 

ratings, so that the best performance would occur for the most distinctive faces. 

Next, the animal subjects’ mean performance discriminating each of the 380 individual 

face dyads in each gender category was entered into a square asymmetrical matrix and subject to 

a multidimensional scaling analysis (MDS-Proxscal) using a Euclidean distance scaling model 

following the guidelines of Garson (http://faculty.chass.ncsu.edu/garson/PA765/index. htm). The 

MDS derives a distance measure between each pair of faces that reflects their perceived 

dissimilarity, the farther apart the faces lie, the greater their dissimilarity (Everitt & Dunn, 2001). 

This was initially performed using a 2-6 dimension solution to evaluate of the number of 

dimensions that best described the data sets. However, because the visual interpretation of MDS 

plots containing more than 2 dimensions can be challenging, the remainder of the analyses were 

constrained to a 2D solution. The derived stimulus configurations graphed in the 2D solution 

reflect the degree of perceptual dissimilarity among the faces and this approach has been used in 

previous studies in humans to provide a graphical plot analogous to the perceptual dimensions of 

face space from which specific hypotheses can be drawn (Johnston et al., 1997a,b; Nishimura et 

al., 2009; Valentine, 1991).  

Using the 2D framework, we quantified vector length, the linear distance between each 

face from the origin (0:0) as a measure of its distinctiveness. The population average face was 

hypothesized to have the shortest vector, lying closest to the origin and representing the most 

typical face. Pearson’s product moment correlations were used to evaluate the relationship 

between vector length and the mean distinctiveness ratings provided by the human experts. 

http://faculty.chass.ncsu.edu/
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Significant positive correlations were expected between the humans’ face distinctiveness ratings 

and vector length. The longer the vector the more distinctive the face’s rating. Moreover, if the 

average face represents the central tendency of the feature space, then it is expected to have the 

shortest vector, falling closest to the origin of face space.   

Finally, to determine whether the origin of face space was the most densely populated 

region, we calculated the mean interstimulus distance as a proxy for stimulus density where 

longer distances reflected lower density. Then, using the median split of the vector lengths, we 

divided the faces into two groups, those falling close to the origin of face space and those falling 

in the periphery. A univariate ANOVA was then used to compare whether the stimulus density 

for each composite face differed between these two regions.  

 

Results 

Distinctiveness ratings by human experts 

Table 1 lists the mean (+sem), minimum, and maximum distinctiveness ratings provided 

for both the male and female face composites by the human chimpanzee and rhesus monkey 

experts. It additionally lists the length of experience that the experts had working with those 

species, and the approximate number of individuals with whom they had familiarity. Independent 

t-tests were used to evaluate whether the humans’ perception of chimpanzee and rhesus monkey 

face distinctiveness showed marked differences. No significant differences were found for the 

distinctiveness ratings between the male chimpanzee compared to rhesus monkey faces, t(38) = 

0.70, p= 0.49, or the female chimpanzee compared to rhesus monkey faces, t(38) = 0.32, p= 0.75. 

 

Chimpanzee subjects’ performance data 

Overall, chimpanzees discriminated the face composites well. Performance matching 

male conspecifics’ faces (mean = 89.65%, sem = 0.90, range 83.47% to 96.63%) was better than 

matching the female conspecifics’ faces (mean = 86.93%, sem = 1.25, range 75.79% to 95.26%), 

but this did not reach significance, F(1,38) = 3.11, p= 0.086. To determine whether performance 

changed over time, a slope value was derived from subjects’ mean performance over each of the 

76, 50-trial testing sessions (Figure 3). These slope values were very low (female = 0.012; male 

= 0.025), suggesting that there was no cumulative increase or decrease in performance over time, 

and they were not significantly different, t(4) = 0.39, p= 0.72. 

                                                          

Visualizing the perceptual dimensions of chimpanzee face space using MDS 

Initially, a 2-6 dimension MDS (Proxscal) solution was derived for the male and female 

chimpanzee face composites based on 100 iterations of each matrix until the stress value could 

be improved by no more than 0.001 (SPSS 17.0). Four and 3 iterations met this criterion for 

female and male chimpanzee faces, respectively. The number of dimensions that best described 

the data was interpreted from the scree plots showing the normalized raw stress scores for each 

dimension. Four dimensions were optimal for both the female and male chimpanzee faces.  The 

MDS analysis provides several measures of stress indicating how well the derived distances 

reflect the input data (Kruskal & Wish, 1978). Using a 4D solution, the Kruskal’s stress formula 

1, where 0 is the best and 1 is the worst fit, was 0.18 for the female chimpanzee faces and 0.19 

for the male chimpanzee faces. The mean dispersion accounted for, e.g., goodness-of-fit, by the 

derived distances was 0.97 and 0.96 for the female and male chimpanzee faces, respectively. 

This indicates the proportion of variance explained by the derived distances. The MDS analysis 

was then constrained to a 2D solution to provide a graphical plot analogous to the perceptual 
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dimensions of face space (described above). Figures 4 and 5 show the derived stimulus 

configurations for the female and male chimpanzee faces. Table 2 lists the mean performance of 

chimpanzees matching each of the 20 female and 20 male conspecific face composites (averaged 

across foil types), the mean typicality ratings for these stimuli made by the human experts, the 

vector length calculated from the 2D MDS plot, and the mean interstimulus distance (ISD), 

where large values reflect low stimulus density.  

An analysis of the MDS plot shown in Figure 4 confirmed each of our hypotheses. The 

female chimpanzee population average face (outlined) had the shortest vector (0.10), falling 

closest to the origin of face space, was rated by the human chimpanzee experts to be the least 

distinctive face (1.40), was the most difficult face to discriminate based on the chimpanzees’ 

overall performance (75.79% averaged across foil types), and had the shortest mean 

interstimulus distance (0.65), indicating that it was the most densely interconnected face in face 

space. Pearson Product Moment Correlations confirmed significant positive correlations between 

human chimpanzee experts’ distinctiveness ratings and vector length, r = 0.55, p< 0.02, and 

human chimpanzee experts’ distinctiveness ratings and the chimpanees’ face discrimination 

performance, r = 0.58, p< 0.01. Faces rated as more distinctive had longer vectors and were 

discriminated better than typical faces.  

  The picture was similar for the male chimpanzee faces, but several differences were also 

observed.  An analysis of the MDS plot shown in Figure 5 revealed that the shortest vector (0.24) 

and shortest mean interstimulus distance (0.69) was for Martin’s face (see Table 2), followed by 

the male chimpanzee population average face (0.40 vector length vs. 0.71 ISD). The human 

chimpanzee experts rated the male chimpanzee population average face as “somewhat typical” 

but these ratings did not correlate significantly with the chimpanzees’ discrimination 

performance, r = 0.34, p< 0.14. The chimpanzees’ performance discriminating the population 

average male chimpanzee face was 85.25%, with only four other male faces having as low or 

lower performance. There was, however, a significant positive correlation between vector length 

and the human chimpanzee experts’ distinctiveness ratings, r = 0.48, p< 0.04. Faces rated as 

more distinctive had longer vectors.   

In order to address whether the center of face space was the most densely populated 

region, the male and female chimpanzee faces were each divided into 2 groups using a median 

split of their vector lengths.  Then, the mean interstimulus distance, as a proxy for stimulus 

density, was analyzed for each group of faces using a one-way ANOVA where vector length 

(short vs long) was the between-group factor. This revealed a significant difference in stimulus 

density for both the female, F(1,18) = 54.20, p< 0.001, and male chimpanzee faces, F(1,18) = 

60.92, p< 0.001. The chimpanzee faces located closer to the origin of face space (short vectors) 

were more densely clustered, having shorter interstimulus distances, than faces located far from 

the origin of face space (long vectors).  

                                                 

Rhesus monkey performance data 

Overall, the rhesus monkeys discriminated the conspecific face composites well, but their 

performance was significantly greater for the male (mean = 84.67%, sem = 1.18, range 73.86% 

to 91.32%) compared to female monkey faces (mean = 78.60%, sem = 1.57, range 62.37% to 

88.42%), F(1,38) = 9.53, p< 0.004. To determine whether performance changed over time, a 

slope value was derived from the monkeys’ performance over the 76 testing sessions (see Figure 

3). These slope values were significant larger for the monkeys’ performance than for the 

chimpanzees’ performance, F(1,19) = 45.92, p< 0.001 (female = 0.102; male = 0.127), but a 
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paired t-test showed that there was no difference between the slope of performance by monkeys 

discriminating the female compared to male rhesus faces, t(5) = 1.10, p= 0.32.   

                                                                   

Visualizing the perceptual dimensions of rhesus monkey face space using MDS 

Similar to the chimpanzees’ data, an initial MDS analysis was performed on the 

monkeys’ performance data. This required 8 iterations for the female monkey faces and 5 for the 

male monkey faces. Four dimensions were also optimal in accounting for the greatest variability 

in the monkeys’ performance discriminating conspecifics’ faces. Using this 4 dimension 

solution, the Kruskal’s stress formula 1 for the male and female rhesus monkey faces was 0.19. 

The mean dispersion accounted for, e.g., goodness-of-fit, by the derived distances was 0.96 and 

0.97 for the female and male rhesus monkey faces, respectively. The MDS analysis was then 

constrained to two dimensions. Figures 6 and 7 show the derived stimulus configurations for the 

female and male rhesus monkey faces, respectively. Table 2 lists the mean performance of 

monkeys matching each of the 20 female and 20 male monkey face composites (averaged across 

foil types), the mean typicality ratings made by the human rhesus monkey experts, the vector 

length calculated from the 2D MDS plot, and the mean interstimulus distance (ISD).  

The MDS plots shown in Figure 6 and 7 revealed that neither the male or female rhesus 

monkey population average face (outlined) was located close to the origin of face space. 

Interestingly, the human rhesus monkey experts rated the population average monkey faces (both 

male and female) as least distinctive, and these ratings were not significantly correlated with the 

monkeys’ discrimination performance for either the female monkey face composites: r = 0.17, p 

= 0.47, or the male rhesus monkey face composites, r = 0.11, p = 0.63), or vector length (female: 

r = 0.16, p = 0.51; male: r = 0.26, p = 0.27). Overall, the population average rhesus monkey faces 

were not difficult for the monkeys to discriminate, 81.93% for the female average, which was the 

8
th

 best performance, and 82.54% for the male average, which was the 13
th

 best performance (of 

the 20 composites in each gender category). 

The same procedures used for the chimpanzee were applied to address whether the center 

of face space was the most densely populated region for the monkey’s face space. A univariate 

ANOVA using vector length (short vs long) as the between-group factor revealed a significant 

difference in stimulus density for both the female, F(1,18) = 47.25, p< 0.001, and male rhesus 

monkey faces, F(1,18) = 47.36, p< 0.001. The faces located closer to the origin of face space 

(short vectors) were more densely clustered, having lower interstimulus distances, than faces 

located far from the origin of face space (long vectors). The population average female monkey 

face fell in the distinctive group, while the population average male monkey face fell in the 

typical group, based on the median split of the vector lengths for all 20 faces in each category. 

 

Interpreting the dimensions of face space 

Interpreting the feature dimensions of face space can be challenging, even when the MDS 

plot is constrained to two dimensions. In some studies, researchers have been able to label the 

dimensions by noting the location of each stimulus face in the MDS plot and interpreting 

similarities and differences in their features (Parr et al., 2008a). Using similar methods, 

important features for human face recognition have included age, race, species, face width, and 

facial hair (Busey, 1998; Johnston et al., 1997a; Little et al., 2008; Pedelty et al., 1985). In other 

studies, however, finding clear labels for each dimension has been more difficult, particularly if 

these involve a combination of features that cannot easily be verbalized or may be co-dependent 

on other cues, which can be a limitation when narrowing the MDS plot to show only 2 
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dimensions. In the present study, we used two approaches to interpret the perceptual dimensions 

of face space revealed by the MDS analyses above. First, we attempted to label the dimensions 

by visual inspecting the location of each face composite stimulus on the 2D MDS plots and 

interpreting similarities and differences in observable features (Parr et al., 2008a). For the female 

chimpanzee faces shown in Figure 4, this proved to be difficult. Four of the six individuals high 

on dimension 1 (>0.5) had faces or muzzles that were browner in coloration than those 

individuals at the low end of dimension 1. So, dimension 1 might be defined by facial coloration. 

A similar interpretation was plausible for the male chimpanzee faces (Figure 5). Several of the 

individuals located on the high end of dimension 1 had browner muzzles and contrasting facial 

patterns compared to the individuals on the low end of dimension 1. Dimension 2 could not be 

easily labeled for either the female or the male chimpanzee faces.   

The same initial visualization approach was applied to the derived stimulus configuration 

plots for the rhesus monkey faces. This inspection showed that for both the female and male 

rhesus monkey faces, dimension 1 had a clear and prominent color/brightness component. For 

the female monkey faces shown in Figure 6, the individual faces located at the high end of 

dimension 1 appeared brighter and had lighter hair color than faces at the low end of dimension 

1. These individual faces appeared darker and had more reddish colored hair. Additionally, 

dimension 1 appeared to characterize something about face size and shape. Individuals at the 

high end of dimension 1 had smaller, more triangular shaped faces than the individuals at the low 

end of dimension 1 whose faces appeared rounder and larger. For the male rhesus monkey faces 

shown in Figure 7, dimension 1 also appeared to reflect the color of the faces, with the faces at 

the high end of dimension 1 appearing to have a more bluish, earthy tone whereas the faces at the 

low end of dimension 1 had a more reddish tone. There was no clear interpretation for dimension 

2. A post-hoc analysis of color is provided in the next section below.  

Nishimura and colleagues (2009) attempted to overcome the difficulties inherent in 

visually interpreting the MDS solutions by averaging together the individual faces located at the 

extremes of each dimension, and then asking people to rate the observable features in these 

high/low dimension averages. This strategy has the advantage over visual inspection in that more 

than two dimensions may be evaluated from the stimulus coordinates produced by the optimal 

MDS solution, e.g., we could evaluate all four dimensions from our analyses. Therefore, our 

second approach was to average the face composites located at the extreme endpoints of the 4D 

MDS solutions (based on their spatial coordinates), resulting in eight averages that represent the 

high and low values for each of the four feature dimensions. Psychomorph was used to 

symmetrize these faces and then transform each population average into their template space. 

The transformation was performed along a dynamic continuum that exaggerated the shape 

differences defined by each dimension. In this way, the shape features unique to each dimension 

could be visualized on an identity-neutral face. The face continua for each dimension were then 

visually inspected and prominent differences in facial features were noted. Animations represent 

the best way to visualize these dimensions and these can be viewed in the Supplementary 

material online (http://www.psych-survey.stir.ac.uk/mds_animation/). 

Figure 8 illustrates the 1
st
, 6

th
 and 11

th
 images in an 11 image continua (animated in 

SOM_Figure 1, http://www.psych-survey.stir.ac.uk/mds_animation/) representing the 

characteristics of each dimension for female chimpanzee faces. Female dimension 1 (Figure 8, 

from left to right) appeared to be defined by head width and muzzle tilt. Dimension 2 was 

defined by an inverse relationship between head width and ear size. Dimension 3 was defined by 

a head tilt and brow width. Dimension 4 was defined by head height and ear size. For the male 

http://www.psych-survey.stir.ac.uk/mds_animation/
https://owa.emory.edu/owa/redir.aspx?C=39fcf4b8b8934ba3a11171212c9332d3&URL=http%3a%2f%2fwww.psych-survey.stir.ac.uk%2fmds_animation%2f
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chimpanzee face composites, dimension 1 (Figure 8, from left to right) was defined by head tilt 

and width, similar to the female dimension 3. Dimension 2 was characterized by head width and 

length, creating a rounding of the head. Dimension 3 was characterized by head width and 

muzzle tilt, similar to female dimension 1. Finally, dimension 4 appeared very similar in the 

male and female chimpanzee faces, an inverse relationship between head and ear size.  

Similar to the procedures described for the chimpanzee faces, these high/low dimension 

averages were symmetrized, the population average transformed into their template space, and 

animated to illustrate the shape differences defined by each dimension. Figure 9 illustrates the 

1
st
, 6

th
 and 11

th
 images in an 11 image continua (animated in SOM_Figure 2 http://www.psych-

survey.stir.ac.uk/mds_animation/) representing the characteristics of each dimension for female 

rhesus monkey faces where dimension 1 was defined by an inverse relationship between face 

size and head width. Dimension 2 was characterized by head tilt, face size, and changes in eye 

size and inter-ocular distance. Dimension 3 was complex but contained a distinct lifting of the 

eye corners, nose length and mouth size. Dimension 4 was defined by a head tilt, mouth width, 

eye size and interocular distance. For the male rhesus monkey faces, dimension 1 was defined by 

an inverse relationship between head width and face size, similar to female dimension 1. 

Dimension 2 was complex but contained a change in lower face width and tilt, nose length and 

and eye size. Some of this appeared similar to female dimension 2 but without the overall head 

tilt. Dimension 3 was defined by an inverse relationship between chin and head size, including a 

prominent jutting of the chin, eye size and interocular distance, these latter features were similar 

to the female dimension 2. Dimension 4 was defined by an inverse relationship between face size 

and head width, similar to dimension 1, but there was an interesting coupling between nose 

length and brow curvature.   

 

Post-hoc analysis of color 

Because the results above suggested that dimension 1 for both the chimpanzee and rhesus 

monkey faces may be characterized, in part, by variation in color, a post-hoc analysis was 

conducted to determine the extent to which color correlated with any of the four MDS 

dimensions for the male and female faces of each species. Using the color picker tool in Adobe 

Photoshop (version 7.0), red, green and blue values were extracted from pixels at two separate 

locations in each stimulus face, the middle portion of the head and the center of the upper lip. 

These values were then converted into a single hue value using a freely available color 

conversion utility (www.ccc.orgfree.com) and correlated with the derived distance values for 

each of the four MDS dimensions using Pearson product moment correlations. Separate analyses 

were performed for each gender/species. Lip color correlated significantly with dimension 1 for 

the female chimpanzee faces (r = 0.71, p< 0.01), male chimpanzee faces (r = 0.87, p< 0.01), and 

male rhesus monkey faces (r = 0.74, p< 0.01), while head color correlated significantly with 

dimension 1 for the male chimpanzee faces (r = 0.59, p< 0.01) and female rhesus faces (r = 0.69, 

p< 0.01). Color was not significantly correlated with any of the other three dimensions.  

Therefore, for both male and female rhesus monkey and chimpanzee faces, color only played a 

role in characterizing dimension 1.  

  

Discussion 

 This study compared conspecific face processing by chimpanzees and rhesus monkeys by 

testing specific hypotheses generated by face space theory. Important species differences were 

observed in both the organization of face space and the feature dimensions used to encode face 

https://owa.emory.edu/owa/redir.aspx?C=39fcf4b8b8934ba3a11171212c9332d3&URL=http%3a%2f%2fwww.psych-survey.stir.ac.uk%2fmds_animation%2f
https://owa.emory.edu/owa/redir.aspx?C=39fcf4b8b8934ba3a11171212c9332d3&URL=http%3a%2f%2fwww.psych-survey.stir.ac.uk%2fmds_animation%2f
http://www.ccc.orgfree.com/
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identity, suggesting that monkeys and apes process conspecifics’ faces using different perceptual 

strategies. The performance of chimpanzees confirmed each of the predicted hypotheses. The 

population average female chimpanzee face was located closest to the origin of the 2D face 

space, as derived from the chimpanzees’ discrimination performance. The origin of this face 

space was also the most densely populated region. The average female chimpanzee face was the 

hardest female face for the chimpanzees to discriminate and was rated least distinctive (most 

typical) by human chimpanzee experts. In addition, two significant positive correlations were 

found between the human experts’ distinctiveness ratings. First, these ratings correlated 

significantly with the chimpanzee’s overall performance discriminating these faces, and second, 

with the vector length describing the location of these faces. The most distinctive female 

chimpanzee faces were the easiest to discriminate and were located farthest from the origin of 

face space.  

The population average male chimpanzee face was located 2
nd

 closest to the origin of 

face space, which was also the most densely populated region. It was one of the more difficult 

faces for the chimpanzees to discriminate, although the male faces were discriminated quite well 

overall. While the population average male chimpanzee face was rated least distinctive 

(somewhat typical) by human chimpanzee experts, these ratings did not correlated with the 

chimpanzees’ performance discriminating male conspecifics’ faces. Overall, the chimpanzees 

performed better discriminating the male compared to female conspecifics’ faces, however, this 

failed to reach statistical significance. This high level of performance may explain the lack of 

significant correlation with the human experts’ distinctiveness ratings. Positive correlations, 

however, were found between the human experts’ mean distinctiveness ratings and vector length, 

indicating that the male chimpanzee faces located closer to the origin of face space were more 

typical in appearance than those located in the periphery. These results are consistent with 

previous studies in humans and support the conclusion that typical faces are more difficult to 

discriminate than distinctive faces because they are located in densely populated regions 

containing faces that resemble an average (Bruce 1983; Hancock et al., 2000; Johnson et al., 

1997b; Rhodes et al., 1987; Valentine, 1991). Overall, these results support strong similarities 

between the perceptual dimensions important for representing conspecific face identity between 

chimpanzees and humans, e.g., individual identity is encoded on a continuum related to the 

distinctiveness of specific features, and the average face reflects the central tendency of these 

features. 

The second goal of this study was to identify what specific perceptual features were 

important for diagnosing individual identity by interpreting the dimensions of face space. Similar 

approaches utilizing similarity judgments and MDS analyses have been used to study face 

perception in adult humans for whom the salient dimensions include face shape, hair length and 

age, and in children for whom the salient dimensions include hair color, face width and lip-to-

nose ratio (Pedelty et al., 1995). Nishimura and colleagues (2009) suggested that children rely on 

a more restricted set of features to define their face space than adults, with a heavy reliance on a 

single dimension, e.g., eye color, compared to the multiple dimensions found in adult face 

perception. Four dimensions best accounted for variation in the chimpanzees’ performance 

discriminating both female and male conspecifics’ faces. Through the use of morphing 

techniques (Nishimura et al., 2009), the shape features accounted for by these dimensions could 

be visualized on an identity neutral face (the population chimpanzee average face for each 

gender), and animated (Hancock, 2000, see Supplementary material online). For the female 

chimpanzee faces, these four dimensions were quite clear and easy to interpret. They represented 
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head width and muzzle tilt, head width and ear size, head tilt, and an inverse relationship 

between head and ear size. Changes in the shape of the brow also accompanied gross changes to 

head width in dimension 1. For the male chimpanzee faces, the dimensions were also quite clear 

and easy to interpret. They represented head tilt and width, head rounding, head width and 

muzzle tilt, and an inverse relationship between head and ear size. There was considerable 

similarity between the male and female chimpanzee face shape dimensions and these could be 

characterized by Euclidean-like perceptual spacing, involving mostly homogeneous changes 

affecting a small number of discrete features. In addition to these shape features, the two-

dimensional MDS plots and post-hoc analyses revealed that for both the male and female 

chimpanzee faces, dimension 1 could be defined by variations in coloration. In sum, the 

perceptual dimensions of face space were highly similar for both the male and female 

chimpanzee faces and could be easily defined by both shape and to some extent, color. 

Presenting the face composites in color resulted in an uncontrolled variable, however, this 

method was determined to be preferential due to the ecological salience of color images and the 

desire for this study to explore face identity processing in as naturalistic a manner as possible.  

Such a high degree of similarity in the organization of face space between chimpanzees and 

humans suggests that the perceptual representation of conspecific face identity shares a recent 

evolutionary history.   

The results were quite different for the rhesus monkeys. For both the male and female 

rhesus monkey faces, the population average face was not located close to the origin of face 

space, but instead appeared in the periphery. Interestingly, the human rhesus monkey experts 

rated the male and female population average faces as the least distinctive (most typical), but 

there was no significant correlation between the monkeys’ discrimination performance and the 

human experts’ mean distinctiveness ratings, or between these ratings and vector length. The 

population average monkey faces were easy for the monkeys to discriminate, suggesting that 

their performance was not affected by the distinctiveness of specific facial features. Similar to 

the chimpanzee faces, an initial scan of the 2D MDS plot and the post-hoc analyses revealed that 

for both the male and female monkey faces, dimension 1 could also be defined by color.  

Four dimensions best accounted for the variation in the rhesus monkeys’ performance 

discriminating both female and male faces and these could be visualized using morphing 

techniques. Overall, these feature dimensions were more complex (less Euclidean) and more 

difficult to characterize than for the chimpanzee faces. This mirrors the results of the face space 

analysis in that not only was the monkeys’ perception of faces uncorrelated with the human 

experts’ perception of their distinctiveness, but it was difficult for humans to interpret these 

perceptual dimensions from visual inspection alone. For the female rhesus monkey faces, these 

dimensions appeared to describe an inverse relationship between head width and face size, head 

tilt and face/eye size and interocular distance, a complex combination of lifting of the eye 

corners/nose length/mouth size, and head tilt/mouth width, and eye size. For the male rhesus 

monkey faces, these feature dimensions represented head width and face size, a complex 

combination of lower face size and tilt/nose length/eye size, head and chin size/interocular 

distance/eye size, including a prominent jutting of the chin, and face and head width, and a 

coupling of brow curvature and nose length. Each of these dimensions characterized a highly 

heterogeneous and nonlinear set of features, including more variation of inner facial features, 

such as eye size, nose length, interocular distance, chin size, and brow shape, than was observed 

for chimpanzees. This confirms the results of the face space analysis showing that the monkey’s 

performance was not affected by feature distinctiveness, e.g., the average face was one of the 
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easiest to discriminate. Although the features characterized by dimension 1 were very similar 

between the male and female rhesus faces, the remaining dimensions were quite dimorphic, 

perhaps explaining why monkeys were better discriminating the male compared to female faces. 

These differences may help explain previous findings from our lab showing that monkeys were 

significant better in tasks where they were required to discriminate male conspecifics’ faces 

compared to female faces (Parr et al., 2010).   

One explanation for the differences observed in the organization of face space between 

the chimpanzees and monkeys could lie with stimulus-driven differences. For example, the 

population average monkey faces that we created may not reflect true representations of the 

population, and thus might explain why the monkey subjects did not perceive them as average. 

This could have resulted if the individual monkeys included in population averages were 

somehow atypical or unusual in appearance, or that monkey faces contain a greater amount of 

variation such that 20 faces was not enough to capture a true average representation. These 

explanations are unlikely because the averaging technique itself is largely impervious to odd 

exemplars (Jenkins & Burton, 2011). Also, the faces included in the population averages were 

taken from monkeys living at the Yerkes Primate Center, where the monkey subjects of this 

study were born. Therefore, the monkey subjects in this study were familiar with the general 

facial morphology of stimulus faces, eliminating potential biases due to colony-specific 

variations in facial morphology, e.g., if the monkey faces had come from a different breeding 

population. Moreover, both the chimpanzee and human monkey experts rated the population 

average faces as most typical in appearance, so they were not viewed as being atypical or strange 

in any way. This also suggests that the human experts represented the distinctiveness of both 

species’ faces in similar ways and analyses showed that overall there were no differences in the 

distribution of the human experts’ ratings for any of the face stimuli. This was an important 

validation of using human ratings in this study, since it was not possible to have the primate 

subjects themselves provide the distinctiveness ratings for the face composites.  

Although the humans appeared to easily rate the primate faces using a distinctiveness 

metric, it is quite possible that the perceptual differences reported here for the primate subjects 

are the result of unique evolutionary adaptations for discriminating the physiognomic properties 

of each species. If there were greater variability in the physiognomy of rhesus faces compared to 

chimpanzees or humans, then most faces would be distinctive and easily discriminated by simple 

feature detection strategies. However, chimpanzees and humans would benefit from a strategy 

where subtle changes in a faces’ physiognomy could be detected by comparison to central 

prototype. From an evolutionary perspective, such a strategy might work well for monkeys that 

remain in their groups and can learn the unique features of familiar individuals over a short 

period of time. However, chimpanzees and humans are characterized by a more complex and 

flexible social organization known as fission-fusion, where the overall social group size is large, 

but individuals travel in smaller groups that can change membership over the course of a day or 

weeks. In this latter arrangement, recognition of individual faces by comparison to a prototype 

might be more efficient as the social context is malleable. Therefore, it is most likely that the 

species differences reported here are due to a combination of factors. Differences in 

physiognomic variation between the two species could have driven the evolution of unique 

perceptual strategies for processing faces, and differences in social organization may have 

created the need for a more robust, representational face processing system in chimpanzees and 

humans, compared to monkeys. The former question will be examined in future studies using 

principle components analysis to examine the variation present in faces. Regardless, these data 
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confirm species differences in the representation of conspecific face identity. This finding is 

consistent with the results of previous studies that report differences in the cognitive 

specializations underlying face processing in monkeys and apes (Parr et al., 2000; Parr et al., 

2008b; Parr, 2011b; Parron & Fagot, 2008; and for a review see Parr, 2011a).  

Finally, the present findings should not be viewed as incompatible with several recent 

studies suggesting norm-based encoding in monkeys for faces and abstract shapes (De Baene et 

al., 2007; Kayaert et al., 2005; Leopold et al., 2006). Leopold and colleagues (2006), for 

example, presented monkeys with computer-generated human faces and showed that face-

selective cells in monkey IT cortex were tuned around an average face, such that response 

amplitudes increased as the faces were morphed from an average towards a caricature. Similar 

intensity-based changes in neuronal response profiles were found for individual facial features 

and combinations of features manipulated in schematic faces (Friewald et al., 2009). These 

studies utilize a basic face detection paradigm where monkeys are shown many examples of 

single faces within an experiment. The results are exciting as they provide new and important 

detail on the response profiles of face-selective neurons when detecting extreme/atypical 

compared to common features. It is difficult from these few studies alone, however, to conclude 

the presence of a norm-based face space in monkeys, or that the average face plays a special role 

in representing face identity. The reported norm-based responses may have occurred as a result 

of general adaptation to the repeated presentation of face stimuli during the task itself. This could 

have created a prototype effect around which neuronal responses became tuned as a result of the 

general adaptive properties of ventral temporal cortex. It has been shown, for example, that when 

an experiment contains many examples from within a visual category, not restricted to faces, 

norms can form and change quickly to aid subjects’ performance (Panis et al., 2011). 

Additionally, adaptive coding would predict greater response amplitudes for faces or objects 

with unusual or extreme features, compared to common features (Baylis et al., 1987; Rhodes & 

Jeffery, 2006; Rolls et al., 1989; Subotka & Ringo, 1994). In this case, common refers to the 

frequency of encounters compared to the averageness of the input. Future studies in monkeys 

should utilize only high quality images of conspecifics’ faces that vary along a complete, norm-

based identity trajectory, e.g., face to anti-face, and examine neuronal responses and perceptual 

aftereffects to gain a more complete picture of the role of the average face in encoding face 

identity (Leopold et al., 2001). To conclude, there are many remaining questions about the basic 

organization of face space in primates, such as how it develops and changes over the lifetime, 

and its neural representation. Nonetheless, the data presented here suggest fundamental 

differences in the organization of face space, and perceptual representation of conspecific face 

identity in two nonhuman primate species and encourages further study. 
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