University of Missouri Extension

G5050, Reviewed October 1993

How to Measure Trees and Logs

John P. Slusher School of Forestry, Fisheries and Wildlife

Selling timber without measuring the products is like selling livestock without weighing the animals. Knowing what you have to sell and securing several bids can mean many additional dollars from your timber sales. With the assistance of a professional forester, decide which trees are ready for market, then measure them and mark them with paint spots at breast height and below stump height. If the trees are already cut, scale the logs before they are sent to the mill.

The Missouri Department of Conservation will furnish a cruising stick to any Missouri landowner free of charge. The cruising stick is a Biltmore Stick on one side and a log scaling stick on the other side. You can obtain one from your local Missouri Department of Conservation district forestry office. Your cruising stick, plus the volume tables in this publication, will enable you to compute the volume in either standing trees or logs.

Before logs or trees can be bought or sold, it is necessary to determine their content by some standard. The board foot is the most common standard used for saw logs and lumber. A board foot contains 144 cubic inches of sawed lumber or the equivalent of a board 1 inch thick, 12 inches wide and 1 foot long.

A second unit of measure is the cord. Fuel wood and pulp wood (wood used to make paper) are measured and sold by the cord. The standard cord is a pile of wood 4 feet high, 4 feet wide and 8 feet long. It occupies 128 cubic feet of space, but does not actually contain 128 cubic feet of wood because of the air spaces.

Fuel wood and pulp wood are often cut in various lengths. A pile 5 feet wide, 4 feet high and 8 feet long occupies 160 cubic feet and is called a "long cord." Similarly, a pile of wood 4 feet high and 8 feet long cut into 1- or 2-foot lengths is a "short cord," which occupies less than 128 cubic feet.

The following formula may be used to determine the number of standard cords in a stack of wood:

Number of standard cords = [length (feet) x width (feet) x height (feet)]

128

Example

Take a stack of wood that is 10 feet long, 6 feet wide and 3 feet high. Substituting these figures into the formula we get:

Number of cords = $\frac{(10 \times 6 \times 3)}{128}$ = 1.406 cords 128

A third unit of measure is the "cubic foot." In the United States, the cubic foot unit of measure is used chiefly in growth and yield studies or in forest inventory and research projects, but generally not in commercial dealings. It represents a block or cube of wood 1 foot high, 1 foot wide and 1 foot thick.

Another unit of measure commonly found in Missouri is the "chord foot," which is used to measure cooperage bolts. This unit is based on the length of line along the chord of the bolt. A "chord foot" is 12 inches measured along the chord, inside the bark, from "sapwood to sapwood," or from "heartwood to heartwood." Prices per chord foot depend primarily upon the quality and amount of heartwood (redwood) in the bolt and also upon the length of the bolt.

Cooperage bolts vary in length, but "stave" bolts are most commonly 39 inches long with "heading" bolts 24 inches in

G5050 How to Measure Trees and Logs | University of Missouri Extension

length. Estimated chord foot yields from sound trees are shown in Table 1.

Table 1

Stave bolt and heading volumes in standing trees

Stave bolts				Number of 39-inch cuts						
Diameter Brea	ist Heigh	t, D.B.H.		1	2	3	4	5	6	7
			Volume in chord feet							
12 inches				1.6	3.0					
14 inches				2.8	5.4	7.0				
16 inches				3.3	6.3	8.4	10.0			
18 inches					7.4	10.7	13.7	16.5	19.1	
20 inches				4.2	8.2	12.	15.6	18.9	21.9	24.7
22 inches			4.9	9.4	13.6	17.6	21.5	25.0	28.3	
24 inches	24 inches			5.2	10.2	15.1	19.6	23.8	27.8	31.7
26 inches			6.0	11.6	16.8	21.8	26.7	31.2	35.4	
28 inches			6.5	12.7	18.7	24.3	29.5	34.5	39.4	
30 inches			9.3	16.0	22.5	28.7	34.7	40.3	45.2	
32 inches				11.5	21.9	31.2	37.9	44.4	50.6	56.6
34 inches				12.2	24.1	35.6	46.0	55.3	62.0	68.5
36 inches				14.1	27.2	39.4	51.3	62.8	73.2	82.5
Heading bolts				Number of 24-inch cuts						
D.B.H.	1	2	3	4	5	6	7	8	9	10
		_	_	_	Volume i	n chord fe	et			
18 inches	4.6	9.2	13.7	18.1	22.3					
20 inches	5.1	10.2	15.2	20.1	24.9	29.5	34.0	38.4	42.7	
22 inches	5.6	11.2	16.7	22.1	27.3	32.4	37.3	42.0	46.5	50.7
24 inches	6.1	12.0	17.6	22.9	27.9	32.6	37.0	41.0	44.9	48.5
26 inches	6.7	13.1	19.2	25.0	30.5	35.7	40.6	45.2	49.	53.0
28 inches	7.2	14.1	20.7	27.0	33.0	38.7	44.1	49.2	54.0	58.5
30 inches	7.7	15.1	22.2	29.0	35.5	41.7	47.6	53.2	58.5	63.5
32 inches	8.2	16.	23.7	31.0	38.0	44.7	51.1	57.2	63.0	68.5

Data from MU AGR. EX. SVC. CIR 671 and EX. SVC. Kansas State University, 3A-574-4-500

Volume content of logs and standing trees

The volume of wood in standing trees may be estimated by obtaining two measurements and applying these to tree scale volume tables. The two measurements are diameter and merchantable height.

Once the techniques for determining tree diameter and height have been mastered, it becomes relatively easy to determine tree volume. For standing trees, this can be accomplished by checking a tree volume table (Table 2), which is simply a tabulation of volumes of trees corresponding to different tree heights and diameters.

Measuring the board-foot content of a log or a group of logs is known as log scaling. The only equipment needed to scale logs is a yardstick and a log rule (Table 3). To speed up "scaling," a log scaler uses a scaling stick. A scaling stick serves as a yardstick and has printed on it a log rule from which the contents of a log can be read as it is measured.

When calculating the volumes of standing trees, landowners should be sure they are reading from a tree volume table and when measuring logs that their volumes are from a log rule. A comparison of Tables 2 and 3 will show why this is important.

Another factor to know is the difference between various log rules. Because of certain factors, there are variations in sawed output of logs. These factors have resulted in the development of more than 50 log rules in the U.S. The International 1/4-inch Log Rule (Table 3) and the Doyle Log Rule (Table 4) are the two most commonly used rules in Missouri. The International Rule takes into account the taper in a log and probably is the most accurate, but it requires the sawmill to have a good sawyer and good equipment to cut out the volumes estimated.

Table 2

D.B.H.	Number of 16-foot logs in trees										
	1/2	1	1-1/2	2	2-1/2	3	3-1/2				
		Volume in board feet									
10 inches	21	34	44	55							
12 inches	30	52	68	85	98						
14 inches	42	74	99	124	143	162					
16 inches	59	100	134	169	198	226	246				
18 inches	74	129	175	221	259	297	325				
20 inches	92	162	220	279	328	377	413				
22 inches	112	198	271	344	406	467	514				
24 inches	133	237	326	415	491	567	622				
26 inches	158	284	392	500	592	684	755				
28 inches	187	331	458	585	696	806	888				
30 inches	220	381	529	677	805	933	1029				
32 inches	254	435	606	776	926	1077	1192				
34 inches	291	493	687	881	1054	1227	1359				
36 inches	333	559	782	1006	1205	1404	1557				
38 inches	374	624	874	1125	1354	1582	1754				
40 inches	415	693	974	1256	1510	1764	1962				

Board-foot volume of trees¹ by diameter and height classes (International Rule — Form Class 76)

¹For estimating board feet in standing trees

The board-foot contents of logs according to the International Rule using a saw cutting 1/4-inch kerf

Diameter of log small ends, inside bark		Leng	th of logs	(feet)	
	8	10	12	14	16
			Board fee	t	
6 inches	10	10	15	15	20
7 inches	10	15	20	25	30
8 inches	15	20	25	35	40
9 inches	20	30	35	45	50
10 inches	30	35	45	55	65
11 inches	35	45	55	70	80
12 inches	45	55	70	85	95
13 inches	55	70	85	100	115
14 inches	65	80	100	115	135
15 inches	75	95	115	135	160
16 inches	85	110	130	155	180
17 inches	95	125	150	180	205
18 inches	110	140	170	200	230
19 inches	125	155	190	225	260
20 inches	135	175	210	250	290
21 inches	155	195	235	280	320
22 inches	170	215	260	305	355
23 inches	185	235	285	335	390
24 inches	205	255	310	370	425
25 inches	220	280	340	400	460
26 inches	240	305	370	435	500
27 inches	260	330	400	470	540
28 inches	280	365	430	505	585
29 inches	305	385	465	545	630
30 inches	25	410	495	585	675

Table 4

The board-foot contents of logs according to the Doyle Log Scale

Diameter	Length of log (feet)								
	6	8	10	12	14	16			
	Contents in board feet								
8 inches	6	8	10	12	14	16			

http://extension.missouri.edu/publications/DisplayPrinterFriendlyPub.aspx?P=G5050[6/21/2017 11:47:27 AM]

G5050 How to Measure Trees and Logs | University of Missouri Extension

9 inches	9	13	16	19	22	25
10 inches	14	18	23	27	32	6
11 inches	18	25	31	37	43	49
12 inches	24	32	40	48	56	64
13 inches	30	41	51	61	71	81
14 inches	38	50	63	75	88	100
15 inches	45	61	76	91	106	121
16 inches	54	72	90	108	126	144
17 inches	63	85	106	127	148	169
18 inches	74	98	123	147	172	196
19 inches	84	113	141	169	197	225
20 inches	96	128	160	192	224	256
21 inches	108	145	181	217	253	289
22 inches	122	162	203	243	284	324
23 inches	135	181	226	271	316	361
24 inches	150	200	250	300	350	400
25 inches	165	221	276	331	386	441
26 inches	182	242	303	363	424	484
27 inches	198	265	331	397	463	529
28 inches	216	288	360	432	504	576
29 inches	234	313	391	469	547	625
30 inches	254	338	423	507	592	676

Scaling logs

The scaling of logs is the normal basis for transactions between loggers and sawmillers. Although not as accurate as the actual lumber tally after sawing, log scaling has certain advantages. It permits prompt settlement for timber cut and delivered without waiting for actual yield, and it eliminates the need for separating logs on the yard by ownership.

Scaling practices may vary in local areas. Therefore, these practices should be agreed upon before sawlogs are sold. The standard methods for obtaining log measurements are:

Diameter

measured at the small end, inside the bark and to the nearest inch. For logs that are not round, average diameters should be taken. For example, a log measuring 10.0 inches in one direction across the diameter and 11.2 inches in another direction will average 10.6 inches. This would be scaled as an 11-inch log.

Length

usually measured to an even number of feet such as 8, 10, 12, etc. If logs are cut to lengths between these even numbers, then the length is called to the smaller even number rather than to the nearest even number. For example, a log measuring 15 feet, 7 inches would be scaled as a 14-foot log rather than as a 16-foot log. In actual practice, about 3 inches additional length should be allowed. This will permit trimming the rough ends of boards sawed from the log.

Once the diameter and length have been measured, the log rule is used to determine the board-foot volume. Since log rules are constructed on the basis of sound, straight logs and no allowance is made for defect, volume loss due to defect must be calculated separately and deducted from the gross scale given by the log rule. There are guides available for estimating the amount of defect in logs.

Measuring standing timber

Timber is often sold on a stumpage basis, which means it is sold in standing trees rather than cut products such as logs, posts and pulp wood. To determine the volume of a tree, its d.b.h. (diameter breast height) and merchantable height must be determined. When these two measurements are known, the volume of the tree can be read directly from a tree volume table.

Measuring diameter at breast height (d.b.h.)

Diameter measurements of standing timber are made at breast height, which is 4-1/2 feet above the ground, because this is above the swell of the base of most trees.

The two most frequently used instruments to measure tree diameter are the diameter tape and the cruising stick. The diameter tape shows tree diameter by measuring circumference. It is based on the fact that circumference of a circle is equal to the circle's diameter multiplied by 3.14. Consequently, each division on the tape is 3.14 inches apart, with each division representing 1 inch in the tree's diameter. The diameter tape is wrapped around the tree at breast height and the diameter is read directly from the tape.

The cruising stick does not measure as accurately as the diameter tape but is much faster. It is based on a system of similar triangles (identical angles but different side lengths) to determine the distances on the stick that correspond to each inch in diameter.

To use the cruising stick, hold it horizontally, 25 inches from your eye (about arm's reach for the average person) against the tree at breast height. Be sure you have the "diameter measurement" side (front) of the stick toward you and not the log scaling side (back). Line up the zero end with the outside of the tree. Then without moving your head and using only one eye, look at the other side of the tree and read the figure nearest to where your line of sight crossed the stick and the edge of the tree. That number is the estimate of the tree's diameter at breast height.

It is important to move your eye instead of your head, or your reading will not be correct

If the tree is not round, take another reading at a right angle to the first and average the two readings.

Measuring merchantable (usable) height

Individual tree height normally is measured from a 6-inch stump to a point on the stem beyond which marketable sawlogs or other products cannot be cut. For sawlogs (a 16-foot log), the merchantable height usually is to a top diameter of not less than 8 inches. Cordwood (short logs, called "bolts") may be figured to about a 4-inch diameter. It is important to note that the merchantable top may occur at a point lower on the trunk than previously mentioned if merchantability is limited by forking, large branches or deformity.

To measure height, use that portion of the front of your cruising stick marked off as "number of 16-foot logs."

- Starting with your heel at the base of the tree, pace out a distance of 50 feet. Pace toward an opening that will allow you to see the tree you are measuring. Do not pace up or down hill any more than necessary, but try to stay as close to the same level as the base of the tree as possible.
- Decide where the last cut will be made when the tree is cut into logs (merchantable height of the tree).
- Hold the stick 25 inches from your eye (arm's length for the average person) but in a vertical position. Be sure the

side of the stick with the "number of 16-foot logs" is toward you.

- Move the stick up or down until the lower end is even with your line of sight to stump height on the tree.
- Without moving your head, shift your vision upward to the point that you decided was the usable length of the tree. The point where your line of sight passes the stick amounts to a reading in terms of 16-foot logs. Be sure the stick is in a vertical position and not tilted forward or backward. Make your reading to the nearest half-log.

If it is necessary to go farther than 50 feet for a clear view of the tree, you may pace twice the distance and then double the reading obtained from the stick. After a little practice in timber cruising, you will find that you do not need to measure the merchantable heights of all trees. Foresters usually measure a few during a day of cruising just to "check their eye," but most of the height estimating is done by eye rather than by measurement when tallying saw timber.

Computing the volume of standing trees

- Read down the left-hand column of the tree volume table (Table 2), which is headed "Diameter breast height," and find the diameter of the tree.
- Read across the table to the proper column for the number of 16-foot logs in the tree and find the volume in board feet.
- Remember that the International Rule is very accurate and that sound logs or trees will saw out very close to the number of board feet indicated. However, if a tree or log is too crooked or defective, it will be necessary to reduce the volume accordingly. The quality of the log and the grade of the material it will produce often affect the price you will be offered for it.

Computing board feet in logs

On the back side of the Missouri Department of Conservation cruising stick is an International Log Rule. To use the rule, read from the stick the number of board feet in a log of the length you have measured. (Log lengths in feet are printed in the left-hand column on the stick and read 8, 10, 12, 14 and 16.) The diameters (in inches) are printed across the top of the stick. The point of intersection of the diameter and log length columns gives the board feet in the log if the log is straight and sound. Defects must be deducted.

Computing cordwood

Table 5 gives rough estimates of the amount of cordwood that can be produced from trees of various diameters and heights. The table is read in the same manner as the tree volume and log rule tables.

D.B.H.	Height in number of 8-foot bolts								
	1	2	3	4	5	6			
	Volume in cords — unpeeled								
6 inches	0.02	0.03	0.04	0.06					
8 inches	0.03	0.05	0.07	0.09	0.12	0.14			
10 inches	0.05	0.07	0.10	0.13	0.17	0.20			
12 inches	0.07	0.10	0.14	0.18	0.22	0.27			
14 inches	0.10	0.13	0.18	0.23	0.29	0.35			
16 inches	0.12	0.17	0.22	0.29	0.36	0.44			
18 inches		0.20	0.27	0.35	0.44	0.53			

Table 5

Cord volume

http://extension.missouri.edu/publications/DisplayPrinterFriendlyPub.aspx?P=G5050[6/21/2017 11:47:27 AM]

20 inches	0.25	0.32	0.42	0.52	0.63	
-----------	------	------	------	------	------	--

Taken from Technical Note 202, Lakes States Forest Experiment Station, University Farm, St. Paul, Minnesota, 1943. Volume is stem volume above one foot stump in standard unpeeled cords (standard cord is 4 feet x 4 feet x 8 feet). Height is number of usable 8-foot bolts to a variable top diameter, not less than 4 inches inside the bark.

Some woodland management tips

- Eliminate wildfire and excessive grazing from your timber.
- Do not sell good quality trees until they are mature. This usually means 18 inches or more in diameter at breast height.
- Do not sell timber until you know what you are selling in terms of board feet or other unit of measure.
- Draw up a sale contract before you close the deal. Sample contracts are available from your farm forester or MU Extension forester.
- Treat your woodland as any other crop. Manage it to maintain the proper number of good quality trees per acre. See your farm forester or MU Extension specialist for assistance with farm woodland management, or write to the State Forester, Missouri Department of Conservation, Jefferson City, Mo. 65101, or the MU Extension forester, MU, Columbia, Mo. 65201.

Related MU Extension publications

- G5055, Determining Timber Cost Basis http://extension.missouri.edu/p/G5055
- G5452, How to Buy and Sell Cordwood http://extension.missouri.edu/p/G5452

Order publications online at http://extension.missouri.edu/explore/shop/ or call toll-free 800-292-0969.

Extension

 ■ Issued in furtherance of the Cooperative Extension Work Acts of May 8 and June 30, 1914, in cooperation with the United States Department of Agriculture. Director, Cooperative Extension, University of Missouri, Columbia, MO 65211
■ an equal opportunity/ADA institution ■ 573-882-7216 ■ extension.missouri.edu