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ABSTRACT 

The intent of this study is to investigate the effects of a particular adaptive math learning 

program (ALEKS) on math achievement and its impact on closing the achievement gap in 

math performance of middle school students. The study is conducted in two small urban 

school districts in a southern city. The study is a quasi-experimental research design with a 

sample size of 1110 students in grades fifth through ninth forming a control group and a 

treatment group of equal sizes. The data is compiled from the 2014-2015 school year 

(archived data) and has been analyzed using analysis of covariance (ANCOVA) to compare 

mean scores of the two groups from a norm-referenced test and regression analysis to 

understand various categorical variables affecting math achievement on ALEKS. 
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CHAPTER 1 

INTRODUCTION 

Math has traditionally been difficult to understand, a dreaded subject area in K-16 for 

many students. When educators talk about achievement gaps among ethnic groups, math is 

definitely at the center of those discussions. A significant number of college freshmen must 

take remedial math courses, despite having passing scores on state standardized tests or 

making good grades on their high school math coursework (Harper & Reddy, 2013; 

Robathan & Wilson, 2011). With advancements in computer and network technologies, new 

trends and methods for teaching and learning mathematics have emerged, especially web-

based assessment and tutoring systems built on artificial intelligence (Albert & Hockemeyer, 

1997; Doignon & Falmagne, 1999; Falmagne, Cosyn, Doignon, & Thiery, 2006). Despite 

this, attrition rates in math courses, online or classroom-based, are still higher than courses of 

other disciplines (Shakerdge, 2016; Varsavsky, 2010). Even with the support of adaptive 

learning technologies and intelligent tutoring systems, many students still fail, withdraw from 

or perform poorly in their math courses. Therefore, there is a clear need for evaluation of 

computer-based adaptive learning software to determine their effects on learning and math 

achievement. 

Adaptive Online Learning 

Computer based learning environments in mathematics have evolved rapidly in the 

past decade. It started with programs that provide drills and tutorials based on behaviorist 

learning philosophy; then continued with using games and simulations in the learning process 

advocated by cognitive learning theory; and finally lead to the extensive use of hypertext and 
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hypermedia that promote constructivist learning approaches (Anderson, 1970; Baker, 1968; 

McKenney & Dill, 1966; Albert & Hockemeyer, 1997). 

Cognitive tutoring and assessment systems built on artificial intelligence opened a 

new wave of reform in public education. In the last two decades, smart algorithms started 

helping teachers identify student knowledge gaps and create learning spaces; an especially 

effective method for teaching mathematics (Aleven & Koedinger, 2001; Doignon & 

Falmagne, 1999; Falmagne & Doignon, 2011). Such advancements lead to digital learning 

reforms aimed at personalizing learning for all students. With personalization in mind, local 

districts began putting individual devices into the hands of students as early as first grade in 

an attempt to engage learners through digital content providers and adaptive instructional 

software, thus allowing students to progress at their own pace using a mastery based 

approach. 

Online instructional delivery by means of an interactive device such as a computer or 

tablet in order to engage students with content tailored to student learning needs forms the 

basis of adaptive learning. “How well it adapts to the individual is entirely dependent on the 

sophistication of the software that drives the device” explains Vander Ark (2013). Education 

expert Tom Vander Ark goes on to explain how smart learning algorithms are starting to 

keep user experience in mind when delivering just-right content, just in time: 

The same sophisticated, predictive, intelligent use of data that has accustomed us to 

personalization in online shopping and music, and show us content we are mostly 

likely to appreciate and potentially use, has come to learning and education. Smart 

instructional content adjusts its path based on response to questions. Like computer 

games, adaptive systems calibrate the difficulty to maintain an appropriate level of 

challenge. But there is a level beyond shopping and gaming where an entirely new 

class of adaptive learning software exists, and it is called Intelligent Adaptive 

Learning. (Vander Ark, 2013, p. 8) 
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Intelligent adaptive learning holds promise for robust personalization in education, 

specifically most beneficial for high need students in public schools. These new learning 

models can be a cure for closing the persistent achievement disparities in the U.S. 

Problem Statement 

Public education in America has long suffered from disparities of achievement among 

ethnic groups. According to the Coleman Report of 1966, cited in Camera (2016), average 

black student in grade 12 ranked in the 13th percentile of the score distribution in both math 

and reading, outperformed by 87% of their white counterparts in grade 12. Data from 2013 

National Assessment for Educational Progress Education placed average black twelfth grader 

in the 19th percentile in math, a slight improvement in nearly half a century showing that 

achievement gaps still persist (Camera, 2016). Agencies both at the federal and state levels 

have made countless attempts to reform public education with a single goal in mind: closing 

the achievement gap. Starting with No Child Left Behind Act and followed by Race to the 

Top initiatives, education reformers placed heavy emphasis on improving math and reading 

instruction, and promoted personalized learning models. These legislative initiatives (“Every 

Student Succeeds Act (ESSA)”, 2017; “No Child Left Behind”, 2017; “U.S. Department of 

Education”, 2017) put federal and state mandates on schools to make adequate yearly 

progress on accountability measures, and ensure that all students perform ‘proficient’ on 

standardized state assessments. Because students in the very same classroom begin at 

different levels, and hence have very different needs, differentiation of instruction, and even 

more importantly, personalizing the learning experience for each student has become 

necessary. With the pressure of performance targets on standardized tests, schools and 

districts are designing or adopting new programs and tools to boost student performance on 
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state assessments. In recent years, the use of computer-based adaptive learning programs has 

been on the rise, and schools are purchasing and using these programs in hopes that they will 

help increase test performance (Dickard, 2003).  

Traditional instructional approaches have not been successful in narrowing and 

closing the achievement gaps in mathematics between black and white students, as well as 

economically disadvantaged and affluent students. The demographic makeup of American 

public schools is closely related to the achievement disparities among racial and socio-

economic groups, particularly with growing resegregation of schools in recent decades 

(Frankenberg, Lee, & Orfield, 2003; Orfield, Kucsera, & Siegel-Hawley, 2012). Based on 

data from National Assessment of Educational Progress (NAEP) in 2011, “on average, White 

students attended schools that were 9 percent Black while Black students attended 

schools that were 48 percent Black, indicating a large difference in average Black student 

density nationally” (Bohrnstedt, Kitmitto, Ogut, Sherman, & Chan, 2015, p. 1). Student 

performance analysis showed that math achievement was significantly lower in the highest 

black density schools for both black and white students than in the lowest black density 

schools, while the achievement gap in math remained the same between black and white 

students in the same schools regardless of black density level (Bohrnstedt et al., 2015). 

Some researchers identified teacher quality as the root cause of achievement 

disparities in math (Flores, 2007; Kane & Staiger, 2005), while others argued that poverty is 

a more significant cause than teacher quality (Haberman, 1991; Marder, 2012). Indeed, 

Haberman (1991) claimed that recruiting good teachers is the solution for closing 

achievement gaps caused by poverty. Marder (2012) reported that educational performance 
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was strongly correlated with poverty. Based on SAT/ACT math scores of Texas high school 

students in 2010 and college readiness criterion, Marder (2012) concludes:  

Among schools where less than 15% of the students are eligible for free and reduced 

meals, there are virtually none where fewer than 20% of the students graduate 

college-ready. Conversely, among schools where more than 85% of the students are 

eligible for free and reduced meals, there are none where more than 20% of the 

students graduate college-ready. In short, the least successful schools serving the 

wealthy do better than the most successful schools serving the poor. (p. 15) 

 

Although new edtech products can seem appealing to educators right away, the 

problem becomes testing the adaptivity and curricular alignment of these programs and 

determine whether they are able to contribute to math achievement measured by standardized 

assessments. Teachers and administrators should ask themselves this very question: Is our 

educational technology moving the needle in the classroom? The U.S. Department of 

Education is recommending schools and districts to use a new approach to evaluating new 

programs called rapid-cycle evaluations prior to making large scale decisions on edtech 

acquisition. Rapid cycle evaluation offers educational leaders a low-cost, quick-turn-around 

evaluation option to make evidence-based decisions (“Mathematica Policy Research”, 2017). 

School districts need timely and reliable evidence on the effectiveness of new innovative 

programs to be able to determine whether it is the right fit for the need. However, anecdotal 

experience, references, and marketing materials are typically the only data available to 

administrators for decision-making when purchasing a new edtech product or implementing a 

new curricular program. Because education technology is a rapidly changing and developing 

field, traditional research and evaluation approaches do not meet the needs of school districts 

as they take too long and cannot usually keep up with new developments (“Office of 

Educational Technology”, 2017). Theoretically, with the personalized learning path adaptive 

learning programs create to cater to the needs of individual students, they seem promising in 
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bringing success to all students. The problem being investigated in this study is whether or 

not adaptive learning programs are able to make significant contributions to learning 

outcomes in mathematics in reality. 

Purpose of Study 

The purpose of this research study is to investigate the effects of a particular adaptive 

math learning software (ALEKS) on math achievement and its impact on closing the 

achievement gap in math performance of middle school students in two public charter school 

districts in a large urban southwestern city. This research will help educators assess how 

similar digital learning tools can help create personalized learning environments for middle 

school students. 

An Intelligent Tutoring System (ITS) is defined as a computer based program that has 

problem-solving capabilities, which can identify users’ current knowledge and skills, and can 

help users close the achievement gap between themselves and the software itself. ALEKS is 

a perfect example of an ITS, and is widely used in teaching and learning of math across many 

K-12 school districts and higher education institutions. 

What is ALEKS? 

This research is aimed at studying the effectiveness and impact of adaptive learning 

programs built on artificial intelligence and how they can support personalized learning for 

students in mathematics. For the purposes of this research, I chose to study ALEKS 

(Assessment of LEarning in Knowledge Spaces), a web-based intelligent tutoring system 

(ITS) that is widely used at both K-12 and college levels, particularly for math (“ALEKS”, 

2017; Carpenter & Hanna, 2006; Harper & Reddy, 2013; LaVergne, 2007; Taylor, 2008). 

The adaptive questioning feature of ALEKS is able to determine quickly and accurately what 
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a student knows and does not know in a math course. The program then creates an instruction 

plan to teach students math topics they are most ready to learn based on the precedence 

relation among topics. As a student works through a course in ALEKS, the program 

periodically reassesses the student to ensure that topics learned are also retained over time. 

Another great feature of ALEKS is that it avoids multiple-choice questions, and instead uses 

flexible answer input tools, which is equivalent to what students would traditionally need to 

do with paper and pencil to work out a problem. 

ALEKS is an artificially intelligent assessment and learning system that is built on 

Knowledge Space Theory (KST), which is the theoretical framework that enables a 

computerized algorithm to identify the knowledge state of a learner and create a learning 

space individualized to the needs of that particular student (Falmagne, Cosyn, Doignon, & 

Thiery, 2006). KST reveals the knowledge state of the individual and determines the best 

learning path based on what the learner is capable of doing in math (Doignon & Falmagne, 

2011).  

What is NWEA MAP? 

Measures of Academic Progress (MAP) is a norm-referenced assessment developed 

by non-profit Northwest Evaluation Association (NWEA). MAP creates a personalized 

assessment experience by adapting to each student’s learning level in order to measure 

student progress and growth for each individual. NWEA MAP assessments are used by many 

districts across the nation as they provide valuable data on student percentile ranks, student 

growth, and instructional gains (“NWEA”, 2017). The districts participating in this study 

administers the MAP tests twice a year, once at the start of school and once again at the end 

of school year. 
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Research Questions & Hypotheses 

This study intends to address the following two broad questions: 

1- Does use of ALEKS math software improve student achievement in mathematics? 

2- Does increased time spent with ALEKS correlate with improved student achievement 

in mathematics? 

For the first broad question, I will compare student performance on NWEA MAP test, 

which is a norm-referenced adaptive assessment that is used in participating districts as a 

summative assessment, between ALEKS users and non-ALEKS users. 

In order to tackle the second question, I will need to measure time spent within 

ALEKS and study the relationships between time-spent and measured subsequent 

achievement levels. Below are more specific questions I will seek answers to, when tackling 

the second question: 

- What is the relationship between time spent in ALEKS and latest test performance? 

- What is the relationship between concept mastery and latest test performance? 

These questions might help me uncover the best learning indicator for teachers to use for 

instructional purposes, especially when teachers are forming small groups to reteach certain 

topics based on common areas students struggle in math.  

In this study, I have formed three hypotheses as follows: 

Ho1: There is no statistically significant difference in mean spring NWEA 

mathematics scores between students who received a regular math instruction and 

students who received adaptive math instruction via ALEKS, controlling for previous 

fall NWEA mathematics scores, α ≤ .05. 
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Ho2: Among ALEKS users, there is no statistically significant relationship between 

time spent on ALEKS and students’ spring NWEA mathematics scores, controlling 

for previous fall NWEA mathematics scores, α ≤ .05. 

Ho3: Among ALEKS users, there is no statistically significant relationship between 

pie mastery percentage and students’ spring NWEA mathematics scores, controlling 

for previous fall NWEA mathematics scores, α ≤ .05. The ALEKS pie shows the 

amount of topics mastered in the course. 

In order to test the first hypothesis, spring RIT scores from the NWEA MAP math 

assessment will be used as the dependent variable. Previous (fall) RIT scores from the 

NWEA MAP math assessment will be used as a covariate to control for prior skill level. The 

independent variable will be ALEKS use (i.e., ALEKS users as treatment group, and non-

users as the control group). 

To test the second and third hypothesis, a two – block regression model will be used. 

In the first block, previous (fall) RIT scores from the NWEA MAP math assessment will be 

used as a control variable and regressed onto spring RIT scores (dependent variable). In the 

second block, the significance of time spent on ALEKS instruction and PIE mastery 

percentage will be used to test the hypotheses.  

Theoretical Framework 

Many adaptive math software programs, including ALEKS, are built on Knowledge 

Space Theory (KST), which constitutes the theoretical framework of this study. Falmagne 

and Doignon (1999) developed the knowledge space theory and explained the science behind 

ALEKS through KST. This theory makes it possible to uncover the knowledge state of a 

particular student in a particular math topic through an online assessment. Knowledge state is 
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defined as the complete set of problems in a particular topic that a student is able to solve 

(Falmagne & Doignon, 1999). Based on this basic principle, Falmagne and Doignon (1999) 

explains, an artificially-intelligent adaptive assessment in ALEKS creates two shortlists of 

problems and concepts that guide students and teachers on what each student can do and 

what he/she is ready to learn. These two lists uncover the complete knowledge state of an 

individual student being assessed and then their learning space is mapped out accordingly 

(Doignon & Falmagne, 2011). The connectivity of student responses made possible by KST 

allows ALEKS to track thinking patterns of the students in learning the math content 

(Taagepera & Noori, 2000). As a result, knowledge space theory provides new means for 

assessing the cognitive organization of student knowledge, which enables educators to 

deliver instruction with greater insight (Falmagne, Cosyn, Doble, Thiery, & Uzun, 2007). 

Significance of the Study 

Given the contemporary nature of merging software development with cognitive 

science, there has been very limited previous research in this field. Lead researchers in this 

field mainly addressed theoretical aspects of advanced computer tutoring in an attempt to 

introduce the phenomenon to educators and touched on achievement gains through cognitive 

tutors in a broad sense as case studies (Anderson et al., 1995, & Koedinger and Aleven, 

2007). There are numerous adaptive math software programs in the market that are built on 

artificial intelligence (“ALEKS”, 2017; “DreamBox Learning”, 2017; “MIND Research 

Institute”, 2017; “Reasoning Mind”, 2017). Many of them can simulate responses of a human 

tutor and provide tutoring, hints, explanations, and feedback on problem solving to students. 

These programs are also designed to help students progress at their own pace through a 

competency based approach, which means students are continually assessed on a particular 
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objective until they show evidence of mastery based on their performance before moving on 

to the next learning target. 

Many entrepreneurs in the field of education used aforementioned principles and 

theories to develop adaptive learning software in math and they have been widely in use in 

K-16 education institutions (Horn & Staker, 2014; Vander Ark, 2012). Advancements in 

learning technologies and software development have been so rapid and many school 

districts have been pushed to implement personalized education reforms and adopt such 

adaptive learning software quickly with federal and state mandates, without a chance to see 

research based pilot programs first. Shortly, the market of edtech tools is growing rapidly and 

more and more districts are adopting these programs every year. Unfortunately, research in 

this area has not been able to keep up with the fast paced advancements and quick changes in 

implementation. Although there is a clear need for further research to study effectiveness of 

these learning technologies, much of the existing evaluations come from companies who 

develop them, which questions the reliability of those studies and brings up ethical concerns 

(Krimski, 2012; Pigott, Polanin, Valentine, Willians, & Canada, 2013). Furthermore, 

investors, developers, and entrepreneurs spend more time and money on advertising these 

products rather than conducting evaluations and research to test and improve them. Much of 

the existing evaluations conducted has a single goal of presenting the product with a 

“research proven” label and thus increasing its market value, which ultimately brings in more 

customers and more profit. Therefore, there is an immediate need for an investigation on 

these adaptive learning programs to be conducted by an independent researcher with no ties 

to the developers and/or vendors. Majority of the previous independent research on ALEKS 

and other adaptive learning technologies have been conducted with college student samples, 
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and very few research conducted on K-12 student samples (“ALEKS”, 2017). A thorough 

experimental research with participants from K-12 school districts would allow educators to 

see the true value of these programs and help them make informed decisions before they 

spend tax-payer dollars from their already constrained budgets. 

Table 1.1 lists key technical terms along with their common abbreviations and basic 

definitions. These terms will be referenced many times throughout the literature review and 

they can also be encountered in other scholarly articles on adaptive learning technologies and 

intelligent tutoring systems. 

Table 1.1. 

Definition of Key Terms 

Term Abbreviation Definition 

Adaptive Control 

of Thought 

ACT A network model that takes into account all of our 

human cognition such as language, learning, decision-

making, and so on. 

Artificial 

Intelligence 

AI The human-like intelligence exhibited by machines or 

software. The science and engineering of making 

intelligent machines, especially intelligent computer 

programs.  

Assessment of 

Learning in 

Knowledge Space 

ALEKS A web-based, artificially intelligent assessment and 

learning system. 

Cognitive Tutor CT A particular kind of intelligent tutoring system that 

utilizes a cognitive model to provide feedback 

to students as they are working through example 

problems. 

Cognitive Science  The interdisciplinary scientific study of the mind and its 

processes. 

Computer Assisted 

Instruction 

CAI A program of instructional material presented by means 

of a computer or computer systems. 

Computer Based 

Education 

CBE The use of electronic media and information and 

communication technologies (ICT) in education. 
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Depth of 

Knowledge 

DOK Represents the comparison of the cognitive demand of 

learning standards and the cognitive demand of the 

assessments given to determine their mastery. 

Hypermedia Based 

Instruction 

HBI Instruction based on electronic literature including but 

not limited to audio, video, plain text, hyperlinks, and 

other multimedia tools. 

Intelligent Tutoring 

System 

ITS A computer system that aims to provide immediate and 

customized instruction or feedback to learners, usually 

without intervention from a human teacher. 

Knowledge Space 

Theory 

KST A set-theoretical framework, which proposes 

mathematical formalisms to operationalize knowledge 

structures in a particular domain. 

Practical Algebra 

Tutor 

PAT An intelligent tutoring system for algebra problem 

solving.  

 

Organization of Subsequent Chapters 

Chapter two of this study is a review of the literature that brings together rich 

discussions on relevant research topics, including an overview of adaptive learning 

technologies. Chapter 3 presents the research design for this study and describes the 

statistical methodology used to perform hypothesis testing. Chapter 4 presents the results of 

the study along with data analyses. Finally, chapter 5 is a discussion of findings, conclusions, 

and implications of the study, and it concludes with limitations of current study and 

recommendations for further research. 
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CHAPTER 2 

REVIEW OF LITERATURE 

 This chapter is organized to present a thorough review of relevant literature in the 

field being studied, in order to establish the significance of the research and to provide a 

benchmark for assessing the results of this study with comparable research in the field. In an 

effort to establish the context for the current literature in this field, the chapter starts with a 

brief discussion of select topics in the current landscape of American public schools, and 

continue with a more extensive discussion of trends and reform efforts in public education. 

The latter broader topic includes the conceptual framework of this study, Knowledge Space 

Theory (KST), as well as online Intelligent Tutoring Systems (ITS), mainly ALEKS. The 

literature review includes a wide range of studies on ALEKS and its effects on mathematics 

instruction in both secondary and post-secondary education institutions. 

Current Landscape of Education in American Public Schools 

American public education system was designed based on a Prussian factory model of 

education introduced by Horace Mann in late 1800s. This industry model of education was 

the right fit for decades in the twentieth century, because graduates would take 

manufacturing jobs at factories that did not require higher order skills. The world has 

changed dramatically since then. Advancements in technology, robotics, and automation has 

caused a shift towards a knowledge economy. The job markets have changed dramatically, so 

did the expectations of what a high school or college graduate must know and be able to do. 

Despite all these changes, our education system has remained almost the same for nearly 130 

years. 
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The Skills Gap and Industry Expectations  

Math skills have always been vital to employers for successful job performance. Even 

lower level or mid-level jobs require some kind of math skills in order to operate high-tech 

equipment (Agondi, Harris, Atkins-Burnett, Heaviside, Novak, & Murphy, 2009). Many 

states have invested in high school courses under career and technical education to make sure 

students leave high school with necessary mid-skills to be successful in such careers. An 

increasing number of business and industry leaders reported dissatisfaction with new 

generation workers coming out of high schools or two year colleges lacking foundational 

math skills to perform above average at their jobs (Vincent, 2005). 

It is also known that United States has been lagging behind many other European and 

Asian countries in international student assessments in the areas of math and science. It has 

been common over the past decade for researchers and the popular press to report the deficits 

in U.S. student achievement relative to many other nations (Kerr, 2015). For example, Pew 

Research reports that the Programme for International Student Assessment (PISA), a 

comparative international test of mathematics science and literacy skills, ranked the United 

States 38th among 71 countries in mathematics, and only 24th in science. The Organization 

for Economic Cooperation and Development (OECD), a 35 – nation group that sponsors 

PISA testing, ranked the US 30th in mathematics and 19th science. (Desilver, 2017). Kerr 

(2016) reported in the Associated Press (AP) that the Trends in International Mathematics 

and Science Study, (TIMSS), which administers tests every four years in many countries, that 

the United States placed 10th in fourth grade science and eighth grade mathematics. Kerr 

also reported that American students placed 14th in fourth grade mathematics on the 

TIMMS, behind Portugal and Kazakhstan. Employer dissatisfaction and the increasing 

http://www.oecd.org/pisa/aboutpisa/
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negative distance between American student achievement and students of other countries are 

the reasons that led educational policy makers to design new and more rigorous learning 

standards, especially in math, which subsequently led to the adoption of common core 

standards by 46 states and District of Columbia in the United States (Coburn, Hill & 

Spillane, 2016; Watt 2015). 

Mathematics Instruction in the U.S.  

Many researchers also argue that in addition to a viable, coherent curriculum, it is 

also equally important how such a curriculum is delivered to students (Schmoker, 2011; 

Marzano, Waters, & McNulty, 2005). That is, we should focus both on what we teach and 

how we teach. This argument brings up the question of what effective instructional tools and 

strategies must be implemented to be able to ensure a highly effective delivery of the 

curriculum. Furthermore, the delivery of instruction is supposed to make sure that all student 

groups (based on demographics and educational needs) master the content and skills before 

the teacher can move on. American public education has long been suffering from disparities 

of achievement among ethnic groups. Education agencies both at the federal and state levels 

have made countless attempts to reform public education with a single goal in mind: closing 

the achievement gap. The U.S. Department of Education defines the term achievement gap as 

follows: 

Achievement gap: The difference in the performance between each ESEA subgroup 

(as defined in this document) within a participating LEA or school and the statewide 

average performance of the LEA's or State's highest achieving subgroups in 

reading/language arts and mathematics as measured by the assessments required 

under the ESEA. (U.S. Department of Education, 2012) 

 

Starting with No Child Left Behind Act and followed by Race to the Top initiatives, 

education reformers put heavy emphasis on improving math and reading instruction and 
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promoted personalized learning models. With personalization in mind, technology and digital 

learning came into picture. Now more than ever, local districts started putting individual 

devices into the hands of students as early as first grade in an attempt to engage learners 

through digital content providers. The role of the teacher shifted from provider of 

information to facilitator of learning (Juan et al., 2011).  

According to National Assessment of Educational Progress (NAEP), also known as 

the nation’s report card, only 39% of fourth-graders, 34% of eighth-graders, and 23% of 

twelfth-graders score proficient in math. These statistics confirm that the longer students are 

in school, the wider the achievement gap is in math. This impacts higher education 

negatively as well. The demand for remedial math courses is very high in colleges. Since 

many students enter into higher education with critical deficiencies in mathematics, Robathan 

and Wilson (2011) state that universities are obligated to rectify those deficiencies by means 

of remedial course offerings. According to a report by Jobs for the Future, 60% of 

community college students end up taking at least one remedial math course before they are 

allowed to enroll in college-level courses. This is simply because many high school graduates 

arrive at college lacking not just basic algebra but also basic arithmetic. Varsavsky (2010) 

confirms that one of the main reasons why students drop out of college is their lack of 

mathematical skills.  

Minimizing drop out and failure rates have become a major priority for university 

administrators across the U.S. (Gury, 2011). There is a strong need for evidence-based 

innovative programs and interventions, especially in math as Kezar (2011) points out, to 

improve student skills for college level requirements and college persistence rates. Padilla-

Oviedo, Mundy, and Kupczynski (2016) suggest a blended learning model for improving 
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mathematics instruction that effectively complements the learning environment with a 

computer-based component. There has been slow but steady shifts in the educational system 

from traditional methods to technology-assisted instruction (Gano, 2011). The advancements 

in technology, computer science, and internet connectivity enabled effective utilization of 

technology tools in education, which has transformed the outlook of instruction in American 

classrooms (Juan, Steegmann, Huertas, Martinez, & Simosa, 2011). These trends are further 

discussed in the blended learning section of this literature review. 

All of these facts point to a significant problem in our math education. Mathematics 

and policy experts at the National Mathematics Advisory Panel acknowledge that math 

education is broken and must be fixed in the United States, and they list the following six 

issues to be addressed (Hechinger Report, 2010): 

1. Standards: There are too many content standards that are scattered and repetitive. 

Teachers need clear guidance on what is important. Many higher achieving countries 

focus on a few set of standards each year and expect students to study those in greater 

depth. 

2. Curriculum: Elementary and middle school curricula must be redesigned to build a 

strong foundation in whole numbers, fractions, measurement, and basic geometry. 

The goal should be to prepare students to take algebra by eighth grade. 

3. Graduation Requirements: Increased requirements must align with student 

achievement and preparedness as measured by SAT and end-of-course exams. 

4. Textbooks: American textbooks are too big and cover a wide range of topics. 

Teachers are unable to get through the textbooks and thus sample through the 
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material without a coherent plan. Moreover, the textbooks address merely definitions 

and formulas and do not go beyond the mechanics of mathematics. 

5. Teaching: There is no consensus among researchers about what good math teaching 

is. Teachers must have a deep knowledge of the math content they are teaching. 

Teacher preparation programs must incorporate more math content into their design. 

Schools and districts must support less experienced math teachers with strong 

mentorship and professional development. 

6. Culture: American society has accepted a culture of inadequate expertise and fluency 

in math. It is ok for many students to say “I hate math.” Many parents do not seem to 

mind that their children lack basic math literacy. 

There are obvious roadblocks for students to understand math. Many students 

experience math anxiety and teachers feel pressured to cover material too quickly. Korbey 

(2013) stated that math teachers are strapped for time and resources to be able to explore the 

beauties of math in meaningful ways. The way textbooks are designed and written as well as 

pressures to meet curriculum pacing requirements are among main reasons for this problem 

(Korbey, 2013). More students can understand and appreciate math if teachers are granted 

more time and freedom. 

Personalized learning approaches advocate for connecting learning to student 

interests, which helps student retain information for longer periods of time. According to 

Schwartz (2013), this approach might work specifically well with math since many students 

dislike the subject for not seeing its relevance to their lives. In many classrooms today math 

is not being applied to the student’s world in a meaningful way. One strategy to change that 



20 

is tailoring questions to individual student interests when teaching difficult and abstract math 

concepts in particular (Schwartz, 2013). 

 

Standardized Testing & Accountability 

In recent decades, American public schools have focused heavily on standardized 

testing, which sometimes even supersedes instruction in importance. This prioritization has 

led some schools and teachers to feel pressured to “teach to the test” rather than implement 

authentic lesson plans to make learning more meaningful and enjoyable for students. The 

achievement gap among different student groups (based on demographics and educational 

needs) urges educators to find creative ways to use data in decision making to inform their 

instruction and make it more targeted. Teachers are expected to use formative and interim 

assessments more than ever to constantly assess student skills and knowledge. Critics who 

oppose testing argue that the more focus on assessments the less time teachers have for 

instruction. But why should we lose valuable instructional time at the expense of extracting 

formative data every so often? Cognitive tutoring allows integrating assessment into 

classroom instruction, which enables students to learn during a test (Anderson et al., 1995). 

Personalized Learning Initiatives 

Blended Learning. One of the emerging models that support personalized learning 

environments is blended learning. Simply put, this model blends individual and group 

instruction with facilitated technology through digital curricula. Blended learning 

encompasses a wide spectrum of tools and practice such as extensive use of technology in the 

classroom, use of online and formative assessment, adaptive software for students, learning 

management systems and many other technological advancements. A formal and commonly 
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accepted definition of blended learning is given below by research fellows at Clayton 

Christensen Institute for Disruptive Innovation: 

Blended learning is a formal education program in which a student learns, at least in 

part, through online learning. Blended learning includes some element of student 

control over time, place, path, and/or pace and includes learning, at least in part, in a 

supervised brick-and-mortar location away from home. The modalities within a 

course or subject along each student's learning path are connected to provide an 

integrated learning experience. (Staker & Horn, 2012, p. 3) 

 

Wolf and Schneiderman (2014) stated that the ultimate goal of blended learning is 

personalized learning for all students. 

No Child Left Behind Act (2001) was ambitiously passed by the United States 

Congress with an intent to to close the achievement gap in reading and math. It required 

schools to make adequate yearly progress with the ultimate goal of all students meeting or 

exceeding proficiency by 2014. Unfortunately, many schools across the nation have fallen far 

behind this ambitious goal. Blended learning was suggested by experts as a powerful model 

to help close the achievement gap in reading and math. As NCLB unfolded over the years, 

we have started seeing early adopters of blended learning by innovative districts and schools 

in different pockets of the country. Although many schools implement different curricular 

initiatives in math classrooms, there is little empirical research to demonstrate their 

effectiveness (Slavin & Lake, 2007). My research topic is the impact of adaptive learning 

software on math achievement and how such digital learning tools can help create 

personalized learning environments for middle school students. 

Adaptive Learning Technologies 

In the area of adaptive learning technology research, there are two groundbreaking 

theories that form the foundation of adaptive learning technologies. The first is called the 

Knowledge Space Theory (KST), developed by Jean-Claude Falmagne, a Belgium-born 
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American mathematical psychologist, along with his colleague Jean-Paul Doignon. Falmagne 

and Doignon’s research made significant contributions to educational technology, 

specifically in mathematics. The second predominant theory in adaptive learning 

technologies is Adaptive Control of Thought (ACT).  

Knowledge Space Theory. Knowledge Space Theory (KST) is a key principle used 

in creating artificially intelligent adaptive learning software in math. KST is basically a 

knowledge representation and it is based on precedence relation. Due to strong prerequisite 

requirements among many mathematical subjects, Falmagne et al. (2004) argued that 

precedence relation can be used to design effective and rigorous assessment tools. This 

concept revolutionized the digital learning market for K-12 math education, which is now a 

billion dollar industry thanks to entrepreneurial spirit of elite-class American businessmen. 

Adaptive online learning programs are now being largely used in order to leverage 

advances in artificial intelligence and cognitive science. Falmagne and his research team 

explained the science behind adaptive math software through knowledge space theory. This 

theory makes it possible to uncover the knowledge state of a particular student in a particular 

math topic through an online assessment (Falmagne, Koppen, Villano, Doignon, & 

Johannesen, 1990). Knowledge state is defined as the complete set of problems in a particular 

topic that a student is able to solve (Falmagne & Doignon, 1999). Based on this basic 

principle, Falmagne and Doignon (1999) explains, an artificially intelligent adaptive 

assessment creates two shortlists of problems and concepts that guide students and teachers 

on what each student can do and what he/she is ready to learn. These two lists uncover the 

complete knowledge state of an individual student being assessed (Falmagne et al., 2007). 
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Effective teachers first assess the knowledge state of their students, find out their 

strengths and weaknesses, and then attempt to tailor their lessons to meet the varying needs 

of their individual students. This is how, in the most basic idea, teachers can differentiate 

instruction to personalize learning for each individual student. Knowledge space theory 

simulates the skills of an expert teacher to assess the knowledge state of a student in a 

computerized fashion (Falmagne & Doignon, 1985). As opposed to a theory of human 

cognition, knowledge space theory automatically informs an online assessment of student 

knowledge and keeps it accurate and continuously updated. A knowledge space for a 

particular math topic consists of all possible knowledge states related to that topic (Falmagne 

et al., 1990).  

Adaptive learning software designed with knowledge space theory maps out the 

details of each student’s knowledge and determines whether they mastered a particular topic 

with that continuous assessment cycle, and it knows what they are ready to learn next based 

on their updated knowledge state. Such programs use this knowledge to provide feedback to 

learners, make learning more efficient and provide continuous growth path by offering 

students a selection of only the topics they are ready to learn at that specific moment in time. 

This, in turn, provides a personalized learning environment for students, where each learner 

can progress at their own pace as if they are studying with a private tutor. 

Knowledge Space Theory provides a framework to be able to formally describe 

knowledge domain structures in particular knowledge spaces. Albert and Hockemeyer (1997) 

argues that “the set of possible knowledge states is restricted by prerequisite relationships 

between the items” (p. 553). They went on to apply this phenomenon to describe hypertext 

structures, where prerequisite relationships among hypertext components are specified by 
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prerequisite links (Albert, Hockemeyer, and Held, 1997). The structures of knowledge spaces 

and these prerequisite links in hypertexts turn out to be quite similar, which made it possible 

to design intelligent hypertext tutoring systems for individualized instruction through 

combination of a hypertext model and knowledge space theory (Albert & Hockemeyer, 

1997). The authors attribute the efficiency of such an adaptive hypertext-based ITS to two 

main things. First one is the effective procedures presented by knowledge space theory in 

identifying structures of a given knowledge domain. The second one is the description of a 

hypertext model that uses mathematical relations to connect prerequisite links to specific 

components of the knowledge domain within the student’s knowledge state. Applying 

methods of relational database theory to knowledge domain structures “concerns not only 

individual access to document appropriate for student’s actual knowledge but also the 

construction of sub hypertexts due to educational objectives or to the student’s prior 

knowledge” (Albert & Hockemeyer, 1997, p. 555). 

Combining knowledge space theory with relational hypertext model Hockemeyer, 

Held, and Albert (1998) created an ITS prototype called RATH, which stands for Relational 

Adaptive Tutoring Hypertext. Elementary probability theory was chosen as the initial course 

to be incorporated into RATH as a knowledge domain due to the fact that many students had 

difficulties with this course, hence further instructional support was needed (Hockemeyer et 

al., 1998). Any other math courses could be easily added into RATH, provided that a tutoring 

hypertext is available containing lessons, examples, assessments, and any other teaching 

materials for the course. Although the initial prototype of RATH was instrumental in 

providing instructional support to students, Hockemeyer et al. (1998) acknowledge several 

areas of improvement for RATH, such as the addition of an initial assessment to determine a 
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student’s current knowledge state rather than starting everyone off with the assumption of 

zero knowledge in the course, and improving analysis of student answers to exercise 

questions in order to provide meaningful feedback rather than just giving a true/false 

response. The authors conclude that RATH was an important stepping stone for 

incorporating psychological theories into intelligent tutoring systems. 

Villano and Bloom (1992) also used knowledge space theory as the foundational 

architecture of a probabilistic student model to be embedded into an ITS. The researchers 

were particularly interested in a probabilistic student model in order to be able to represent 

the uncertainty of estimating student knowledge. “Several factors contribute to uncertainty in 

student modeling such as careless errors and lucky guesses in the student's responses, 

changes in the student knowledge due to learning and forgetting, and patterns of student 

responses simply unanticipated by the designer of the student model” (Villano & Bloom, 

1992, p. 1). In knowledge space theory, Falmagne and Doignon, (1985) define the basic unit 

of knowledge as an item. Villano and Bloom (1992) considered two basic steps in the 

construction of their probabilistic student model: (i) building the structural relationships 

among the items in domains of knowledge, and (ii) determining the initial probability values 

in the models. Following these steps required expert judgments and/or empirical student data. 

The authors explored both of these approaches with the addition of a novel application of 

neural networks for constructing knowledge structures. This research was able to leverage 

knowledge space theory and its utilization to develop adaptive, computerized student 

assessment and tutoring systems for building a probabilistic student model in KST. The 

probabilistic student model demonstrated many effective applications such as adaptive 

assessment item selection, adaptive assessment updating routine, knowledge type 
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representations, curriculum representation, hint level selection, advancement criterion, and 

student feedback. Villano and Bloom (1992) concluded that applying probabilistic student 

models to an intelligent tutoring system could lead to “developing a dynamic, non-

deterministic student model capable of robust, individualized assessment” (p. 9). 

Conlan, Hampson, O’Keeffe, and Heller (2006) presented a series of case studies 

where KST principles were applied to the analysis and determination of a learner’s 

knowledge for creating highly effective adaptive systems to support learner modeling and 

personalization in instruction. Over the course of six years, the researchers designed and 

refined an adaptive engine which powers the personalized learning services for adaptive 

instruction. The first case study examined a personalized course on mechanics, which tested 

the initial prototype of the adaptive engine in 2001. The adaptive nature of this personalized 

physics course was four-fold. It started with a pre-test to build a basic model of the learner’s 

initial knowledge. Next, the dynamic personalization mechanism presented a series of 

modules that the learner is capable of mastering. As the learner interacts with the eLearning 

modules and consumes the course materials, the dynamic modeling tool mapped out the 

learner’s evolving competencies aligned to created modules and objectives of the course. 

And the final piece of its adaptivity was learner choice to expand the course, which meant 

that additional content would be added to the eLearning space when learner decided he/she is 

ready to learn more, provided that all prerequisite content is already mastered. 

The second case study presented by Conlan et al. (2006) was called Personalization in 

iClass, and it examined two particular personalization technologies. One is the 

personalization of content and activities, while the other is monitoring and profiling the 

learner. The authors report dramatic evolutions in both the use of adaptive engine and the 
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implementation of knowledge space theory during the iClass project. One innovative 

approach in this case study was to incorporate confidence degrees in knowledge assessment 

by soliciting the confidence degree of the respondent after each question item. Another 

addition to the initial assessment was to assess also skills along with concepts. The 

confidence degree attached to each response enabled the adaptive engine to create more 

robust personalization experience for learners as it hinted the ITS whether a wrong answer 

was merely a guess or a serious misconception. The iClass program offered a more powerful 

personalization experience with a two-fold approach: (i) the Selector service that adapts 

concepts and activities recommended to a learner based on their knowledge and personal 

preferences, and (ii) the LO generator that selects new learning objects from the content pool. 

Conlan et al. (2006) reports this separation of knowledge assessment from the 

personalization of eLearrning as the primary advancement made through this case study. In 

the first case study presented above, the knowledge assessment approach was intricately tied 

to the adaptation mechanism. “This separation has enabled the evolution of the knowledge 

assessment to be carried out independently to the evolution of the personalized eLearning, 

thus enabling different pedagogical approaches to be adopted for different learners while still 

using the same knowledge assessment facilities” (Conlan et al., 2006, p. 1916). 

Adaptive Control of Thought. The second theory supporting human-computer 

interaction as a teaching/learning tool is also widely used in cognitive learning systems, and 

is called adaptive control of thought (ACT), developed by Kenneth Koedinger, a cognitive 

psychologist at Carnegie Mellon University. Koedinger extensively studied human-computer 

interaction and his research significantly contributed to the development of intelligent 

tutoring systems. Cognitive tutoring software is a particular intelligent tutoring system that is 
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designed to provide personalized instruction and immediate feedback to students while 

assessing their knowledge and skills (Koedinger & Aleven, 2007). Cognitive tutors are 

designed based on a set of eight principles of the advanced computer tutoring theory, which 

are listed as follows: 

1. Use production system models of the student 

2. Communicate the goal structure of the problem space 

3. Provide instruction on the problem-solving context 

4. Promote an abstract understanding of the problem-solving knowledge 

5. Minimize working memory load 

6. Provide immediate feedback in errors 

7. Adjust the grain size of instruction according to learning principles 

8. Enable the student to approach the target skills by successive approximation 

(Anderson, Boyle, Farrell, & Reiser, 1987) 

Similar to knowledge space theory, adaptive control of thought also provides means to assess 

current knowledge and skills of a student, thereby providing personalized instructional 

methods via intelligent tutoring systems (Anderson et al., 1987; Koedinger & Aleven, 2007). 

 Although there is evidence that computer-aided instruction and intelligent tutoring 

systems increased student engagement and motivation in math classes (Schofield, 1995), it 

would be naïve to assume that such tech-enabled classrooms are exempt from motivation and 

engagement issues that are chronic in traditional lecture-based classrooms. Aleven and 

Koedinger (2001) stated that some students misuse intelligent tutoring systems designed with 

principles of adaptive control of thought. Baker, Corbett, Koedinger, and Wagner (2004) 

conducted a study on off-task student behaviors while working with a cognitive tutor. The 
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researchers found that students who misuse the cognitive tutor and cheat the system learned 

only two-thirds as much as their counterparts who used the system properly. The misuse of 

the tutoring system was referred to as “gaming the system” which meant systematically 

abusing the feedback and help features of the program for the sole purpose of finding correct 

answers and advancing through the material as quickly as possible (Baker et al., 2004). This 

study provoked the idea of designing enhanced ITSs which can adapt to not only varying 

levels of student cognition but also differences in student motivation. This requires a robust 

assessment of motivational state of students. Baker, Corbett, and Koedinger (2004) further 

investigated motivational issues when students interact with ITSs and ways to remedy such 

issues. During their study, Baker et al. (2004b) observed students gaming the system in two 

different ways, one by abusing the help feature and the other by engaging in systemic trial-

and-error. The authors reported a strong negative correlation between a student’s frequency 

of gaming and their learning gains. Interestingly, they also reported no significant correlation 

between learning and other off-task behavior such as talking, sleeping, web-surfing, etc. This 

finding suggests that various types of low motivation do not impact learning outcomes the 

same way. When choosing a remediation approach to prevent or reduce gaming, it is critical 

to be able to detect which students are gaming the system and which ones are not, because 

the remediation approaches will likely frustrate learners who do not engage in gaming the 

system. Therefore, Baker et al. (2004b) “present and discuss a machine-learned Latent 

Response Model (LRM) that is highly successful at discerning which students frequently 

game the system in a way that is correlated with low learning” (p. 535). Creating an 

algorithm to accurately detect which students were gaming the system was the purpose of 

this study. In order to accomplish this, Baker et al. (2004b) included a sample of 70 students 
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using the same cognitive tutor lesson during their regular math instructional setting. Three 

different types of data were collected and combined as participating students interacted with 

the ITS. The first data set was recording a log of student activities for each student, the 

second data was observations of student behavior, while the third data came from learning 

outcomes of the participants. By following the patterns and frequency of errors in student 

responses and cross-validating this data with learning outcomes, the algorithm calculates 

probability rates for estimating whether a student is gaming or not and whether their learning 

outcomes were hurt due to gaming. Out of the 70 students participating in the study, the 

algorithm reported 53 students never engaged in gaming, 9 students gaming the system but 

not impacted negatively by their gaming behavior, and the remaining 8 students engaged in 

gaming with low learning outcomes. This machine-learned Latent Response Model (LRM) 

was proven to be able to detect gaming students who have low learning outcomes with high 

accuracy. Baker et al. (2004b) indicates that this research will have significant contributions 

to the further development of intelligent tutors that can adapt to behavioral characteristics of 

students as well as their knowledge and cognition levels. 

Cognitive Science & Intelligent Tutoring Systems 

Technological advancements across the world in the past few decades caused 

tremendous shifts in the way we live, work, and organize our lives. Industries and jobs have 

also gone through major transformations that changed the outset of the global economy. For 

example, automation and coding almost completely wiped out manual labor needs in 

manufacturing, networking, and infrastructures. Advancements in computer science and 

software design enabled major breakthroughs in the field of artificial intelligence, which has 

been quite instrumental in education. Online and digital learning mediums powered by 
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artificial intelligence and smart algorithms continue to create huge opportunities for cognitive 

science to expand learning methodologies and their efficiency in education. Online adaptive 

instructional programs have been designed to interact with learners by mimicking human 

responses and attitudes when providing performance feedback and learning 

recommendations to users, very much like the recommendation engine we see at Amazon or 

Netflix that customizes experience to user needs, interests, and personal preferences. Such 

educational software programs have the potential to function as an Intelligent Tutoring 

System (ITS) or as a cognitive tutor through machine learning. 

Anderson et al. (1995) report significant achievement gains through use of cognitive 

tutors, where students in some cases reach the same proficiency levels as in traditional 

instructional setting in one-third of the time. The rich problem-solving environment 

combined with instructional guidance through step by step feedback and on-demand content 

hints are some of the features that make these theory-based tutoring systems highly 

interactive and appealing to learners (Koedinger & Aleven, 2007). As intelligent tutoring 

systems have matured and more widely used in K-12 education, more researchers have been 

attracted to the adaptive learning technology field. One intriguing question posed by 

Koedinger and Aleven (2007) was “How should learning environments balance information 

or assistance giving and withholding to achieve optimal student learning?” (p. 239).  

How best to achieve this balance remains a fundamental open problem in 

instructional science. We call this problem the “assistance dilemma” and emphasize 

the need for further science to yield specific conditions and parameters that indicate 

when and to what extent to use information giving versus information withholding 

forms of interaction. (Koedinger & Aleven, 2007, p.239) 

 

Intelligent tutoring systems provide a powerful tool for educators to leverage 

advances in artificial intelligence and cognitive science. When these scientific breakthroughs 
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are merged with the evolving power of the Internet, effective learning in math becomes 

scalable and personalized for every single student. Before intelligent tutoring systems, more 

traditional computer-based instruction was in use, which was not as robust as ITS in terms of 

tracking student performance and adjusting the teaching approach based on the needs and 

strengths of students (Woolf, 2009). 

A number of researchers reported positive learning outcomes in math as a result of 

using computer-aided instruction, including ITS models (Murphy, Penuel, Means, Korbak, 

Whaley, & Allen, 2001; Beal, Arroyo, Cohen & Woolf, 2010). On the other hand, some 

researchers claimed that many computer-based instruction studies had design flaws, which 

made their findings invalid (Waxman, Lin, & Michko, 2003). According to Waxman et al. 

(2003), many studies were only descriptive and lacked relevant data and specificity, and only 

a handful created a randomized experimental design. 

One of the evaluation studies examined use of a computer-aided algebra tutoring 

program by PLATO Learning in a high school remedial math setting. The overall program 

objective was to boost student performance on state mandated testing. In this comparative 

experimental study, a treatment group of 87 students spent 80% of the instructional time on 

PLATO’s computer-based algebra program, 39 students in the control group received regular 

instruction without any use of technology. Hannafin and Foshay (2006) reported significant 

gains made by both treatment and control group on the state exams. While the mean score for 

the control group was a lot higher than the mean score for treatment group, the achievement 

gains of the treatment group were significantly higher than the gains made by the control 

group (Hannafin & Foshay, 2006). 



33 

In a similar study, Koedinger, Anderson, Hadley, and Mark (1997) evaluated an 

algebra curriculum called PUMP, which also had a supplemental intelligent tutoring system 

called PAT. In this rather larger experimental study, the treatment group included 470 

students enrolled in algebra classes who were taught with PUMP curriculum and used the 

ITS as well. The control group had 120 students also enrolled in algebra class who did not 

use the ITS at all and were taught with a traditional curriculum. Students were given two 

standardized tests and two custom-created tests by the end of the class, and the students in 

the treatment group outperformed their counterparts in control group on all tests (Koedinger 

et al., 1997). 

A rather contemporary study attempted to evaluate and compare the performance of 

students from two Algebra I classes; one that uses a computer-based instructional software 

and another that uses an intelligent tutoring system. Campuzano, Dynarski, Agodini and Rall 

(2009) set up a control group where students accessed Larson computer-based algebra 

program as part of their traditional curriculum, while the treatment group used Cognitive 

Tutor as the core algebra curriculum. Control group students accessed the program 313 

minutes per year over 6-week periods. Treatment group students used the Cognitive Tutor 

software an average of 2,149 minutes per year over a 24-week period. This large scale study 

reported no significant difference between the performances of treatment and control groups 

using computer-based and intelligent tutoring softwares for algebra instruction (Campuzano 

et al., 2009). 

Barrus, Sabo, Joseph, Atkinson, & Perez (2012) conducted their research by means of 

a summative evaluation of two off-the-shelf intelligent tutoring systems: Carnegie Learning’s 

Cognitive Tutor and ALEKS. The goal of this study is to measure the effectiveness of these 
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two ITS models when they are used as an exclusive method of instructional delivery. 30 

remedial high school algebra students were selected and they were randomly assigned to 

either ALEKS or Cognitive Tutor and worked on their respective adaptive software every 

day during the 14-day summer school. Students’ gains in math were measured through the 

Accuplacer algebra and arithmetic reasoning subtests and both groups made significant gains 

from Day 1 to Day 13 using either ITS model (Barrus et al., 2012). 

In another recent study, Nwaogu (2012) conducted research on ALEKS by means of a 

quasi-experimental study using one-group, non-randomized, pretest-posttest design to 

measure the effect of ALEKS on student math achievement. 80 students participated in this 

study as part of an online 5-week long summer College Mathematics course. Nwaogu (2012) 

reports a strong correlation between the concept mastery and achievement scores on the 

quizzes and posttest. There was not a significant relationship between time spent learning in 

ALEKS and achievement scores. The results also did not suggest any correlation between the 

two independent variables: concept mastery and time spent learning in ALEKS (Nwaogu, 

2012). 

Foster, et al (2016) studied the effects of using Building Blocks Software, specifically 

with kindergarten – level low income and minority children in an urban school district. 

Student – subjects for this study were 243 monolingual and predominantly minority (63% 

black, 30% Hispanic, 4% mixed/other and 2% White) who attended a Title I school. 

Students’ pre – and post – test scores (beginning and end of kindergarten year) on the 

"Research Based Early Math Assessment," were recorded as a measure of numeracy. 

Subjects were randomly selected to receive Building Blocks Software (mathematics) or 

"Earobics Step 1", a literacy oriented computer - assisted tutoring program. The authors 
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found a significant positive affect of using Building Blocks Software to supplement 

instruction (F(1, 178) = 8.08, p < 0.01), controlling for subjects’ initial numeracy score. 

Computer – assisted tutoring has been shown to be effective with at – risk students, as 

well. Salerno (1995) examined the effect of computer – assisted tutoring on students defined 

as ”at – risk“ (i.e. dropping out of or failing in school for reasons of SES, drug use, lowered 

English skills, or previous failure in academic subjects). Salerno’s study randomly selected 

150 students deemed at – risk from a large urban school district. Of the selected students, 50 

were assigned to each of two experimental groups and the remaining 50 were assigned to a 

control group. The first experimental group received computer assisted instruction (CAI) in 

mathematics for the usual amount of time used in the school district. The second 

experimental group received CAI for an 60 minutes each week beyond the time used for the 

first experimental group. The control group spent an equivalent amount of time performing 

math – related tasks without CAI. The experimental and control groups were further divided 

by student – sex. Alternate forms of a criterion – referenced test were used as a 

pretest/posttest measure. 

Salerno (1995) found in subsequent analysis that additional time spent with CAI had 

a positive affect for both boys and girls; but, the effect was statistically significant only for 

boys. Both boys and girls in the treatment groups showed a statistically significant positive 

affect relative to the control group. Salerno demonstrated a positive effect of CAI; but, the 

author also identified a differential effect by student sex. 

Ravenel, Lambeth & Spires (2014) studied the effects of CAI on student attitude 

towards mathematics and the amount of engagement among students. The researchers 

divided 31 fourth grade subjects into two groups, hands – on and CAI. The students were 
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approximately representative of their district with respect to SES and race (66% White, 33% 

non – white; 70% economically disadvantaged). Teachers monitored engagement using a 

checklist while students were receiving instruction, either in the hands-on activity mode or 

through CAI. Student attitudes toward mathematics was measured by a survey administered 

to the study subjects. The study was conducted across a seven week period. The findings of 

the study showed that both CAI and hands – on groups had a positive attitude towards 

mathematics. The authors also found that the CAI group had a statistically significantly 

higher level of engagement with their mathematics instruction than did the hands – on group. 

Adaptive learning programs are designed to enhance cognitive retention of facts, 

concepts, and principles (“MIND Research Institute”, 2017). That is why many blended 

learning solutions (digital curricula, adaptive learning software, dynamic assessment systems, 

etc.) incorporate game-based simulations into their instructional design. Before 

advancements in hardware and software technologies, education practitioners and researchers 

tested out simulation-gaming techniques to improve cognitive achievement and retention 

(Anderson, 1970; Baker, 1968; Lucas, Postma, & Jay, 1974; McKenney & Dill, 1966). Lucas 

et al. (1974) conducted an experimental study involving 294 high school students enrolled in 

United States History course in five different public high schools in a Midwestern state over 

a five-week instructional period. The subjects were chosen from a wide range of 

geographical and social regions to ensure diversity in sampling. The purpose of the study was 

to compare cognitive achievement and cognitive retention of participants in traditional 

lecture-based instruction versus game-based simulation techniques. In order to control for 

teacher variable, each history teacher from participating schools had one control class and 

one experimental class. The researchers found that both control and treatment groups made 
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equivalent gains in terms of cognitive achievement based on the post-test given at the end of 

the five-week treatment period. However, based on the post-test given to both groups after a 

delay of ten weeks revealed that simulation-gaming group performed significantly better than 

traditional lecture group. With these results, Lucas et al. (1974) concluded that simulation-

gaming techniques are effective in cognitive retention of facts, concepts, and principles. 

Algebra is one of the most critical subjects students take in high school. Every single 

state education agency across the nation selects Algebra as one of the handful of high school 

courses to administer a summative end-of-course test for accountability purposes. Some 

states even make it a policy to pass Algebra state test before high school students can apply 

for a driver’s license. Student performance in Algebra is often one of the key indicators of 

success in college, and therefore is used as a metric for college readiness by K-12 school 

districts. For this reason, it is common practice among districts to find alternative 

interventions for Algebra and pilot them to evaluate the results before scaling it across an 

entire school or district. Below report presents findings from an action research of a pilot of 

ALEKS in high school algebra and how intervention correlates with student outcomes in 

state Algebra assessment. 

Lavergne (2007) attempted to answer the question “How does the ALEKS online 

math tutorial impact the learning and retention of math concepts and skills for Algebra 1 

students as measured by the MAP Test (Measures of Academic Progress)?” This action 

research study was implemented in a midsized community high school in the Midwest. The 

algebra I progress of 98 students was followed for one semester. Participants were pretested 

at the start of the semester and tested again at the end of the semester using the MAP test. 

During the semester, participants used ALEKS, a computer – administered mathematics 
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teaching program. Participants’ achievement results across the semester were subsequently 

compared with the school district as a whole and with national means for ALEKS users. 

The author found that ALEKS users had a 2.7 RIT score increase during the semester, 

compared with a one point increase for non-ALEKS users in the district and a 1.6 point 

increase nationally. Although no hypothesis test was associated with this report, ALEKS 

users in the study group scored much higher than the national average and more than 2.5 

times the increase of non-ALEKS users within the same school district. 

As previously mentioned, ALEKS was originally created to address remediation 

problems in college mathematics courses. Naturally, it was adopted by colleges and 

universities first, and eventually the program was enhanced to be scaled in K-12 schools to 

address learning challenges in mathematics at earlier grades. Due to its widespread use at 

higher education institutes especially at its inception, the amount of research investigating 

ALEKS and its effects on math at universities is a lot more than similar research conducted 

in K-12 schools. Several examples of such studies at various universities are reported next. 

Taylor (2008) investigated the utility of using ALEKS, which emphasizes mastery 

learning, to remediate the mathematics skills of college freshmen enrolled in an intermediate 

college algebra course. Decreasing mathematics anxiety and improving students’ attitude 

towards mathematics were also a focus of the study. Taylor focused on the following five 

research questions (p 38): 

1. Does a mastery learning perspective of remediation, where students are 

expected to learn all the objectives in an intermediate algebra class, make 

a difference in mathematics achievement?  

2. What differences exist between students using Assessments and Learning 

in Knowledge Spaces (ALEKS) compared to students who are taught 

Intermediate Algebra using a traditional lecture style?  
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3. Are there differential mathematics effects for either group based on 

demographic factors such as gender, age, ethnicity, number of 

mathematics courses taken in the past, and degree plans?  

4. Do differences emerge between the two groups of students in their 

perceived level of mathematics anxiety?  

5. Are the students’ attitudes toward mathematics a factor in students’ 

inability to be successful in Intermediate Algebra? 

 

Participants in the study were 54 students assigned to ALEKS-based instruction and 

39 control students who receive traditional lecture-based instruction. Ethnically, students 

participating in the study had a similar distribution to the state and university in which the 

study was conducted, with moderate deviation in the percentage of Hispanic students. The 

National Achievement Test First Year Algebra Test (NATFYAT) was used as a pretest and 

posttest measure of achievement. The study was conducted in a four month period between 

September and December. Paired – sample t-tests and correlational analysis showed that both 

groups had improved achievement across the study, but the control group had a greater gain 

and achievement than the ALEKS group. The authors hypothesized that this difference may 

be attributable to the fact that ALEKS is differentially effective based on individual student 

characteristics. The authors found no differences between groups based on ethnicity, gender, 

or age. 

Further analysis showed that students in both the experimental and control groups had 

lowered anxiety levels across the period of the study; but, the experimental ALEKS group 

showed a statistically significantly greater reduction in anxiety than did the control group. 

The F-S scales, a Likert-type questionnaire, was used to determine changes in student 

attitude during the study. Results showed that there was no statistically significant change in 

student attitude among the experimental students, but that there was a net negative change in 

student attitudes among the control group (Taylor, 2008). 
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Although the study was limited both in size and complexity, the results indicate that 

ALEKS can potentially increase student achievement in algebra while decreasing anxiety. 

Students using ALEKS maintain their attitude during the course while students in the lecture 

– type course exhibited a negative change in attitude (Taylor, 2008). 

Another study involving ALEKS at a university level examined a curriculum redesign 

to leverage blended learning models by combining theory and web-based learning modules. 

Hagerty, Smith, and Goodwin (2010) presented a case – study of redesigning the algebra 

curriculum at a four-year university, including the addition of ALEKS, a web – based 

learning tool for mathematics. At the outset of the curriculum redesign, the University was 

faced with declining enrollment in upper-level mathematics courses, such as trigonometry 

and calculus, because students were not well – prepared in their algebra coursework to 

engage in the upper-level mathematics courses. The mathematics faculty, in conjunction with 

psychology and sociology faculty, explore the attributes of mathematics students in order to 

determine the most effective method or redesigning the curriculum. One finding was that 

students had poor self – efficacy when beginning their studies at the college algebra level 

(Hagerty et al., 2010). To counteract this, they determined that mastery experiences should 

be emphasized in students’ mathematics study. ALEKS was evaluated for both content and 

underlying principles, and found to be adequate for algebra instruction. The incorporation of 

ALEKS, along with other substantive changes in the curriculum, was credited with several 

beneficial effects on the algebra and mathematics achievement of students (Hagerty et al., 

2010). 

 Algebra course passing rates (‘‘C’’ or above) increased by 21% (54% to 75%) 

within a four-year period. The authors attribute this to improvements made by 
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ALEKS publishers, improved understanding by the faculty of ALEKS, and 

improved incorporation of ALEKS by the faculty.  

 The Collegiate Assessment of Academic Proficiency (CAAP), a nationally – 

normed algebra assessment was used to measure the difference between students 

taking the traditional curriculum versus those taking the redesigned curriculum 

which incorporated ALEKS. Students taking the redesigned curriculum scored 

moderately higher on the ACT mathematics portion than did students taking the 

traditional curriculum. The authors did not statistically test this measure as a 

hypothesis. 

 Class attendance improved by 26% across the four-year redesign period of the 

course. 

 Improved self-efficacy was another benefit of the algebra redesign project. This 

was determined by the fact that three times as many students enrolled in 

trigonometry immediately following the college algebra course. 

The authors conclude that ALEKS, although it was not the only part of the course 

redesign, was a significant contributor to the success of the course redesign. 

ALEKS is also used to enhance learning and instruction in statistical courses. Another 

study at a university used mixed methods to measure the impact of ALEKS on students’ 

learning and attitude towards statistics. Xu, Meyer, and Morgan (2009) studied the 

effectiveness of Assessment and LEarning in Knowledge Spaces (ALEKS) in addressing the 

needs of students based on their individual characteristics. The two primary research 

questions of the study were (p 5): 

 Does the integration of ALEKS improve student performance in Stats I?  
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 How does the hybrid class with an online commercial tutoring system 

impact students’ learning and attitude about statistics? 

 

The authors collected data from the fall semester of one year (traditional instruction, 

n=45), which was considered the control group and the fall semester of the following year 

(traditional instruction + ALEKS,  n=41) which was considered the experimental group. 

Additionally, qualitative data were collected via a survey and three focus group interviews 

from the experimental (ALEKS) group. ANCOVA, using incoming GRE quantitative scores 

as a covariate to control for initial statistics levels, showed no statistically significant 

difference between the control and experimental groups (ALEKS/non-ALEKS) in 

achievement gains during the course. Neither age nor race were statistically significant in the 

ANCOVA results (Xu et al., 2009). 

Subsequent questionnaires and focus groups with students in the experimental 

(ALEKS) group found two primary concerns with using ALEKS to augment instruction: 1) 

They found ALEKS to be time-consuming; and 2) the ALEKS coursework was not well 

matched with the associated classroom instruction (Xu et al., 2009). A third area, concerning 

ALEKS assessments, as Xu et al., (2009) reports, showed higher satisfaction among students 

that were high performing at the start of the course then with other students. The authors 

conclude that the relationship between student attributes, such as initial skills, knowledge and 

attitudes, may be significantly related to the students’ perceptions of ALEKS and the efficacy 

of ALEKS in improving their learning. The authors also hypothesize that these student 

characteristics may be an important determinants of whether or not ALEKS should be used 

with selected students. 

Many college freshmen end up dropping out of college after having academic 

struggles, mainly reported in mathematics courses (Shakerdge, 2016). ALEKS is a 
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commonly used intervention to address this problem in many universities (“ALEKS”, 2017). 

A state university located in northwestern U.S. particularly had low freshman retention rate 

of 64% among its engineering students, compared to national average of 69% (Pyke, 

Gardner, Hampikian, Belcheir, & Schrader, 2007). This statistic prompted further 

investigation to find ways for improving freshman retention rates among engineering 

students. The university turned to ALEKS as an instructional support system for freshman 

engineering students.  

Hampikian, Guarino, Chyung, Gardner, Moll, Pyke, and Schrader (2007) conducted a 

study on ALEKS in a Precalculus class for freshman engineering students. In this study, 84 

freshman engineering students were enrolled in Precalculus classes. The university added a 

non-compulsory freshman engineering course (ENGR 110) in an effort to increase retention 

rates. The main focus of ENGR 110 was supporting the Precalculus students via ALEKS. Of 

the 84 freshman engineering students enrolled in Precalculus, 37 opted in to enroll in ENGR 

110, which had a requirement of making a weekly progress of 4%-6% on ALEKS, as well as 

a goal of completing 65%-75% of their knowledge space by the end of the semester. These 

students spent most of their time working on ALEKS. Engineering students who did not 

choose to take ENGR 110 still remained in the Precalculus course without using ALEKS.  

Hampikian et al. (2007) created an assessment rubric and used it on all engineering 

Precalculus students comparing ALEKS and non-ALEKS users on both interim performance 

over the course of the semester and also on their final grades. They found that mean math 

scores in Precalculus for ALEKS users were higher than non-ALEKS users across the board, 

however the results were not statistically significant. The assessment rubric also had an exit 

survey component for ALEKS users only, which provided qualitative data on student 
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experiences and attitudes in Precalculus class. The survey data revealed positive regard for 

ALEKS, as 63% of students reported that ALEKS helped them succeed in Precalculus as 

well as increase their confidence in math (Hampikian et al., 2007). The authors attributed the 

statistically insignificant gains made by ALEKS users to small sample size.  

In another study involving ALEKS use in college algebra courses, Padilla-Oviedo et 

al. (2016) examined how instructional strategies, college division, and gender may have an 

impact on student performance and learning outcomes as measured by final course grades 

and drop/withdrawal data. The motivation for this study was due to high drop/failure rates in 

college algebra courses and their direct influence on 4- to 6-year graduation rates. The fact 

that college algebra courses have become gatekeepers towards graduation makes it all the 

more worthwhile to invest in evidence-based instructional practices and research on their 

effectiveness. Padilla-Oviedo et al. (2016) studied 253 students enrolled in college algebra 

across seven different college divisions in a southern university serving predominantly 

Hispanic students (90%). The participants were receiving instruction via three different 

instructional strategies including a traditional lecture-based instruction, technology-based 

instruction with adaptive learning program ALEKS, and a targeted intervention program 

called College Completion America Fundamentals of Conceptual Understanding & Success 

(CCA-FOCUS). CCA-FOCUS started out as a summer bridge program and expanded into a 

semester-based implementation where developmental math students are placed in college 

algebra while receiving targeted support and just-in-time content-specific remediation 

(Loredo, 2012). Padilla-Oviedo et al. (2016) found that final grades of study participants in 

college algebra course was significantly different across the three different instructional 

strategy groups. Both ALEKS group and CCA-FOCUS group performed significantly better 
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in college algebra than traditional lecture group, while the CCA-FOCUS group had the 

highest mean score. The authors also looked at gender and college division to see if those 

independent variables would impact student outcomes in college algebra. Padilla-Oviedo et 

al. (2016) reported no significant differences in performance between male and female 

students as well as across college divisions. The intervention approach in CCA-FOCUS 

group was similar to what ALEKS offered in terms of personalizing the learning experience 

of students, but it also included a cooperative learning element where students also leveraged 

peer-tutoring through discussion of material with their peers. The authors attributed the 

higher scores achieved by the CCA-FOCUS group to the cooperative learning strategy. 

Achievement disparities among racial groups has been a hot topic in education in the 

accountability and testing era of the standards movement. It is also a common issue in 

regards to high school graduation and college persistence. Researchers often reported that 

performance of African American and Hispanic students often lag behind their White 

counterparts in both SAT/ACT scores and course grades in mathematics (Harris & 

Herrington, 2006; Orr, 2003). Hu, Luellen, Okwumabua, Xu, and Mo (2008) conducted a 

study at a large urban university to examine the effectiveness of ALEKS as an intelligent 

tutoring system on closing the racial performance gaps in an undergraduate behavioral 

statistics course. The researchers stated that ALEKS was adopted as an ITS to provide online 

instructional support for students who take the behavioral statistics as an online course via 

distance learning. The adaptive, mastery-based, and self-paced features of ALEKS tailoring 

the instructional material to the needs of individual students were most appealing to the 

university in their decision to select ALEKS as an ITS for the online version of the course.  
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Hu et al. (2008) included 548 undergraduate students in their study from a 10-year 

span of academic years from spring 1995 to fall 2005 who took both the online and on-site 

version of the behavioral statistics course from the same professor. The study followed a 

non-equivalent control group design to compare student performance in ALEKS-using 

sections of the course to a retrospective comparison group following a traditional lecture 

style instruction. 137 students were in the control group and 411 students were in the 

comparison group. After “a full factorial analysis of variance (ANOVA) examining the 

relationships between cumulative grade point average (GPA) prior to enrolling in behavioral 

statistics and three factors, passing status (passed vs. failed), race (black vs. white) and 

course format (lecture vs. online ITS)” Hu et al. (2008) reported no significant two-way or 

three-way interactions (p. 6). The only significance was observed in the main affects for 

passing status and race. Since the two-way interaction between race and course format was 

not significant, Hu et al. (2008) concluded that the trends for failing students were similar in 

online and on-site course formats. However, the relationship between the standardized course 

grade and race varied significantly by course format. The average standardized grade in the 

lecture-based course format was significantly lower for African American students compared 

to their white counterparts. This is a typical observation of performance disparity among 

racial groups. Interestingly, the same racial disparity between African American and white 

students was not observed in the online ITS class. The average standardized grade for 

African American students in the ALEKS-using online class was equivalent to that of their 

white counterparts, which is an indicator of elimination of racial disparities (Hu et al., 2008). 

Moreover, the average standardized scores of African American students enrolled in online 

ITS class were significantly higher than that of their African American counterparts in 
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lecture-based classes. White students, on the other hand, did not perform significantly 

different in online versus traditional lecture format. These findings show promising potential 

of online intelligent tutoring systems such as ALEKS in closing the achievement gaps 

between racial groups (Hu et al., 2008). 

Nexus between K-12 Personalized Learning and Post-Secondary Education 

The issue of knowledge and skills gap of students in the nation’s public schools has 

been the root cause of high school graduates being persistently underprepared for college and 

career readiness. Innovative districts made bold attempts to design personalized learning 

initiatives to achieve specific post-secondary outcomes. One approach has been designing K-

16 pathways, which offers post-secondary exploratory experiences for K-12 students. One of 

the key considerations in turning such K-16 initiatives to success is how to provide 

credentialing to students for completing post-secondary experiences while in high school. To 

address these design challenges, districts such as Race to the Top grantees partnered with 

higher education institutes to establish connections and identify relationships between 

profiles of what secondary and post-secondary graduates should know and be able to do 

better. Identifying the best measures of competency including and beyond academic skills is 

critical to fulfill the promise of competency based education, which requires assessing 

readiness based on mastery of learning targets rather than seat-time requirements. Adaptive 

learning programs such as ALEKS make it possible for schools to move towards a 

competency based education model.  

Badaracco and Martinez (2011) proposed a new architecture for an intelligent 

tutoring system, which incorporated competency-based education as its pedagogical model. 

General architecture of an ITS consists of four components: 1) domain model, 2) student 
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model, 3) pedagogical model, and 4) interface model (Sleeman & Brown, 1982; Polson & 

Richardson, 1988). Domain model is the knowledge domain that is being taught. Student 

model refers to the characteristics of the learner, mainly the initial knowledge state. In other 

words, student model is the student’s knowledge of the domain model. Pedagogical model, 

also known as the instructional model, is the set of strategies how the material is delivered 

and how the learner is allowed to progress throughout the material. The interface component 

designs and supports how the learner interacts with the ITS. These components work together 

to deliver a customized learning experience for the user.  

Competency-based education is an emerging instructional model that is gaining 

momentum across the globe. Many innovative school districts in the U.S. moved towards a 

competency-based education model by embedding digital playlists of modular content into 

their curricula, aligning formative and summative assessments to allow mastery based 

progression and fluid movement of students as they work through their customized playlists 

(Vander Ark, 2013; 2014; Horn & Staker, 2014). Competency education movement created a 

framework for designing personalized, competency-based education in 2011 when 100 

innovators came together to establish a consensus on what constitutes a high-quality 

competency education model. Sturgis (2017) summarizes their working definition as follows: 

 Students advance upon mastery. 

 Competencies include explicit, measurable, transferable learning objectives that 

empower students. 

 Assessment is meaningful and a positive learning experience for students. 

 Students receive timely, differentiated support based on their individual learning 

needs. 
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 Learning outcomes emphasize competencies that include application and creation of 

knowledge, along with the development of important skills and dispositions. 

Competency-based education movement also spread to Europe and Latin America 

with Tuning Educational Structures in Europe and Tuning Latin America projects. More than 

135 universities in Europe joined the movement since 2001 to fine-tune the educational 

structures and improve cooperation among higher education institutes for the purpose of 

developing excellence and effectiveness (Tuning Project, 2017). Badaracco and Martinez 

(2011) explains tuning “as a platform for developing reference points at subject area level. 

These are relevant for making programmes of studies (bachelor, master, etc.) comparable, 

compatible, and transparent” (p. 127). The ability to perform effectively in a given situation 

is a common definition of competence. While knowledge is an essential requirement of a 

competency, it is also a representation of know-how that integrates conceptual, procedural, 

and attitudinal knowledge (Badaracco & Martinez 2011). Effective competency-based 

models identify competencies that correspond to learning targets and clearly outline 

performance descriptors for evaluating progress within each competency (Sturgis, 2017). 

Competency-based education models challenge the current time-based requirements of 

American public schools and demand new policies to move away from seat-time towards 

personalized, competency-based systems. Following are the main reasons listed for this 

radical change effort: 

 To ensure that all students succeed in building college and career readiness, 

consistent with the Common Core of world class knowledge and skills; 

 To build the capacity of districts, schools and educators to respond more rapidly to 

the needs of students and engage in continuous improvement; 
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 To take advantage of the extraordinary technological advances in online learning for 

personalization, allowing students to learn at their own pace, any time and 

everywhere; 

 To provide greater flexibility for students that would otherwise not graduate from 

high school because they have to work or care for their families. (Sturgis, 2017) 

Although there is a strong, coordinated effort to scale competency-based education across the 

U.S., current federal, state, and district policies and accountability structures are limiting the 

abilities of local education agencies to make the shift to competency education. Hence, the 

movement is still at its infancy. 

In the absence of a standards-based competency approach to credentialing students 

before they are allowed to graduate from secondary schools, post-secondary institutions are 

presented with the challenge of effectively assessing student readiness, which is a critical 

task that helps universities place students into courses they are most likely to succeed. A 

study conducted at the University of Illinois (Harper & Reddy, 2013) compares ALEKS as a 

placement tool into the university’s five entry-level freshman math courses to previously 

used ACT math scores for placement. As previously mentioned, ALEKS was built upon the 

principles of Knowledge Space Theory (KST). The initial adaptive assessment in ALEKS 

uncovers the current knowledge state of a student based on the correct answers of the student. 

Then ALEKS creates a customized learning environment for that student once it determines a 

set of items the student already demonstrated mastery over through the mapping of his/her 

knowledge state. Carpenter and Hanna (2006) presented empirical evidence that ALEKS can 

be used as a placement measure, which informed the University of Illinois’ decision to 

switch to ALEKS for placement program, Harper and Reddy (2013) reports, due to its ability 
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to accurately measure knowledge, given that initial knowledge at the start of a course is a 

strong indicator of student performance in that course (Carpenter & Hanna, 2006; Doignon, 

1994). 

Harper and Reddy (2013) explain the critical need for accurate placement since 

students come to university from different backgrounds, locations, and school experiences 

with varying math skills and backgrounds. The curriculum, assessments, and exit criteria for 

the same course at different secondary schools could be vastly different, not to mention 

varying grading practices of these institutions and their educators. Consequently, the math 

coursework students complete during their secondary education does not constitute readiness 

for the next college level math course, and certainly not presenting reliable data for success 

indication in postsecondary math courses. Therefore, there is a dire need to precisely assess 

readiness before placing students. 

Many universities use standardized test data for placement purposes such as ACT, 

SAT, and AP Calculus exam scores (Baron & Norman, 1992; Carpenter & Hanna, 2006; 

Harper & Reddy, 2013). This was also the case for the University of Illinois prior to 

switching to ALEKS as a placement mechanism. It is debatable how well standardized 

assessments can measure specific skills and/or predict student success later in the course. 

According to Baron and Norman (1992), there is very weak (in some cases even negative) 

correlations between SAT scores and student performance in a math course. Harper and 

Reddy (2013) also argue that use of standardized test scores in placement decisions correlate 

poorly with student performance due to obvious reasons. One such reason is, many students 

take their ACTs or SATs in junior year and/or in early senior year, and they do not take any 

math courses in their senior year since it is not a requirement in many states. One 
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ramification of this common practice is that data from students’ latest math course grade or 

exit exam as well as ACT/SAT type standardized tests are not reliable measures because 

students have completed these assessments long time ago prior to starting a college math 

course, and their attained knowledge in most recent math course have already been lost after 

new knowledge acquisition. To overcome these challenges, the university decided to require 

students to take a placement assessment in the last 4 months prior to starting a math course 

and achieve a cut score for readiness (Harper & Reddy, 2013). When students fall short of 

the cut score for readiness, they are either removed from the course to be placed into another 

course, or ALEKS would give students the option to remediate until they become ready using 

the learning mechanisms built into ALEKS.  

Although many colleges use ALEKS as a placement program, the initial assessment 

of ALEKS was not designed as merely a placement exam (“ALEKS”, 2017). It is a part of a 

learning system where the initial knowledge state of a student determines a customized 

design of that student’s learning experience in that course. The reason behind ALEKS being 

used as a placement mechanism is that the accurate mapping of a student’s initial knowledge 

state is a strong predictor of eventual student performance (Harper & Reddy, 2013). The 

adaptive nature of ALEKS adjusts the level and difficulty of each question based on the 

students’ answers to allow exact pinpointing of a student’s knowledge state, thereby 

providing a customized learning path for each student. Falmagne and Doignon (2011) 

explains that due to the fact that ALEKS is a completely free-response assessment and ITS, it 

minimizes the risk of inaccurate inferencing when constructing learning spaces, as it takes 

out the possibility of careless errors and lucky guesses we often see with multiple choice 

assessments. 
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The goal of effective and accurate placement is to reduce course failure and 

withdrawal rates. Evaluating placement mechanisms depends not only on student 

performance in the course, but also on course drop/withdrawal rates. Harper and Reddy 

(2013) used three years of placement program data to compare ACT math score and ALEKS 

assessment. They found that ALEKS assessments are strongly correlated to student 

performance in all five of the university’s entry level math courses. Furthermore, they 

concluded that the ability of ALEKS to create the initial knowledge state of students was a 

strong foundation for placement decisions. Compared to ACT math scores, ALEKS 

assessment provided a significant improvement on the correlation of placement data and 

course grades in all five courses. The authors attributed this strong correlation to the 

proximity of the assessment to enrollment in the course. 

The use of knowledge state in providing a personalized learning environment 

customized to the needs of each student is a powerful idea; one that is not possible with use 

of static item assessments. Adaptive assessments, however, are able to map out a learner’s 

knowledge state with high precision. Two students may make the same score on ALEKS 

assessment but end up having two completely different knowledge states. Likewise, two 

students may score equally on ACT by answering almost completely different sets of 

questions on the exam. In static assessments like ACT though, we are not able to determine 

the knowledge state of each student and end up placing them into the same course just 

because they scored the same. In ALEKS, two students may have a completely different 

learning experience with the program even within the same course despite scoring equally on 

the initial exam. In other words, the learner experience is customized and personalized with 
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powerful and smart use of adaptive technologies and principles of knowledge space theory, 

all thanks to the advancements in the field of cognitive science. 
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CHAPTER 3 

METHODOLOGY 

This quantitative study investigated the effects of ALEKS, a web-based artificially 

intelligent assessment and learning system, on math achievement of students in fifth through 

ninth grades in an urban school setting. This chapter describes the methodology for the 

research study, and includes an overview of the research sites and participants, instruments 

used to collect data, procedures used to carry out the design and how the data was analyzed. 

Participants 

Participants in this study come from two different public charter school districts. Both 

school districts are located in the same city, a southwestern urban metropolitan area. Being 

located in the same city and serving families from similar underserved neighborhoods and 

communities, both districts have very similar demographics and characteristics as follows: 

 60-65% economically disadvantaged students 

 Predominantly Hispanic/Latino students: 60-65%  

 Heavy curricular focus on literacy and numeracy 

 Heavy extra-curricular focus on STEM (Science, Technology, Engineering, and 

Math) events and activities 

 Young/inexperienced teaching workforce: Average years of teaching experience 

~1.8-2.2 

Both districts are managed by the same Charter Management Organization (CMO) and 

therefore implement the same curriculum, and teachers receive the same professional 

development services. Despite being separate independent charter districts, it is safe to say 

that both districts implement the same educational model. Due to a grant available to only 
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one of these districts, treatment and control populations were naturally formed within these 

schools.  

Data Considerations 

The accessible population consists of all students enrolled in grades 5 through 9 in 

five different schools within the two selected districts. All students enrolled in these targeted 

grade levels were eligible to participate in the research. Therefore, the accessible population 

in this sampling frame includes all participants. Hence, population validity was established. 

The sample size was 1110 students. Missing values treatment and data matching efforts were 

applied to the collected data to finalize the sample. The sample was divided into two groups 

forming our experiment group and control group. A propensity score matching technique was 

used to eliminate selection bias based on unobserved characteristics between control and 

treatment groups. This precise matching on student demographic characteristics alleviates the 

need to control for these characteristics during analysis. 

Design. The quantitative study has a pretest-posttest quasi-experimental design with 

control and experiment groups. Because there was no random assignment of participants into 

control/experiment groups, this is not considered a true experimental design, hence it is 

deemed quasi-experimental.  

Data Collection. The data was collected from the 2014-2015 school year. All 

participants had already completed fall and spring administrations of NWEA MAP 

assessments. This data is stored in NWEA servers, and is accessible to school/district leaders 

at any time. Participants in the experimental group used the ALEKS program throughout the 

school year. These students spent roughly 45 minutes a day working with ALEKS to make 

progress on their personal learning plans. The complete data set (concept mastery, time spent, 
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and latest test performance) for each student is archived on ALEKS servers. This data set is 

accessible to school/district leaders any time on-demand.  

Measures 

In this study the researcher has collected demographic information such as gender, 

race, socio-economic status, grade level, and inclusion in any special programs (ESL, Special 

Education, and Gifted & Talented) to be able to make correlations and generalize findings. In 

addition to the demographic data, student achievement data were collected using NWEA 

MAP math scores and diagnostic assessments in ALEKS as measures of math achievement. 

MAP is a norm-referenced adaptive test developed by Northwest Evaluation 

Association, a non-profit educational organization providing assessment and growth tools to 

many schools nation-wide. ALEKS is an adaptive educational mathematics software, which 

is only implemented in one of the participating districts. The ALEKS program includes its 

own diagnostic tests, which are used as a pretest and posttest to measure concept mastery in 

math. Both ALEKS diagnostic assessments and NWEA MAP already have reliability and 

validity evidences provided by test developers. Summary of reliability and validity evidence 

is presented as follows: 

Reliability is an essential measure of consistency of an assessment. There are two 

types of consistency checks we are looking at; performance across time (test-retest 

reliability) and performance across forms (parallel forms reliability). Essentially, we are 

looking to answer these two questions: 

 To what extent does the test administered to the same students twice yield the 

same results from one administration to the next? 

 To what extent do two equivalent forms of the test yield the same results? 
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Both of these questions are answered using the Pearson r correlation coefficient. NWEA 

conducted several reliability estimate studies. In 2002, reliability estimates for test-retest 

reliability and parallel forms reliability of NWEA MAP mathematics test from fall to spring 

yielded Pearson correlation coefficients of .91, .93, .94, .93, and .90 for grades 5 through 9 

respectively. Given that minimum expected coefficients (r) for test-retest reliability and 

parallel forms reliability are .80 and .85 respectively, the results propose strong reliability of 

the NWEA MAP assessment. NWEA also estimated reliability across test items, which is 

often referred to as internal consistency. For internal consistency, NWEA developed its own 

test called the marginal reliability coefficient. In 1999 fall and spring administrations of 

NWEA MAP mathematics test yielded coefficients ranging from .94 to .96 in grades 5 

through 9. These results are nearly identical to the Cronbach’s Alpha method for calculating 

internal consistency. 

 Concurrent validity is an important measure to determine if an assessment measures 

what it is supposed to measure. Concurrent validity is important to be able to make 

inferences based on the results of a test or to make generalizations about a population. 

NWEA assured content validity by mapping its content standards with a dozen different state 

assessments. The essential question for validity is, “How well do the scores from NWEA 

MAP correspond to the scores from another test?” A Pearson r correlation coefficient can be 

used again to measure this concurrent validity. When this coefficient is in the mid- .80’s we 

can say that content validity is established. The concurrent validity measure for Texas 

yielded a Pearson correlation coefficient of .82 for 7th grade mathematics in 2003. 

 ALEKS is a much more complicated assessment system built on artificial intelligence 

and does not have static tests. That makes it very hard to measure its reliability and validity 
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in traditional ways. For this reason, a comprehensive study focusing on the validity and 

reliability of ALEKS has been conducted by the developers and founders of knowledge space 

theory. This study investigated the extent of how predictive of an ALEKS user’s responses to 

the problems that are not in the assessment, thereby measuring the validity and reliability of 

the artificial intelligence algorithm that runs the program (Falmagne, Cosyn, Doble, Thiery, 

& Uzun, 2007). The study reports a mean correlation of .67 between predicted and observed 

responses and the mean log odds ratio of 2.75 (Falmagne et al., 2007). The authors also point 

out to an indirect evidence of the validity of ALEKS as follows: 

We also presented an analysis of the learning efficiency achieved by students because 

it is directly related to the validity of the assessment. Indeed, the problem types that 

are proposed to the student for learning are those located in the outer fringe of that 

student’s state, as revealed by the assessment. The argument is that a valid assessment 

leads to a correct gauging of the outer fringe, which should entail efficient learning. 

The distribution of the conditional probabilities of learning successes are displayed 

and the median of that distribution is .92. (Falmagne et al., 2007, p. 19) 

 

Procedure 

Organizational approvals to access and use student data were obtained prior to 

starting the research. FERPA regulations were followed to maintain student privacy. The 

researcher did not interact with any of the research participants throughout this study and all 

necessary data were already archived in district student information systems. Upon receiving 

IRB approval from UMKC, the researcher contacted the district administration to obtain 

written permission for collecting and/or accessing archived data in order to conduct the 

study. There was no need to inform the participants regarding their participation in the study 

either, because they were already in naturally formed treatment and control group 

environments and the treatment had already been introduced to the students and completed 

during the 2014-2015 school year, prior to research taking place. The researcher has simply 
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accessed student demographic and achievement data from districts’ student information 

systems and conducted the experiment thereafter.  

The research design is a quasi-experimental, pretest-posttest design, with control and 

treatment groups. All of the treatment group participants came from one district, and 

likewise, all of the control group participants came from the other district. Because the 

treatment program had already been established in one of the selected districts and it did not 

exist in the other selected district, the researcher did not have to ask any of the participants to 

do anything. The treatment group already knew about the treatment program. The control 

group had no knowledge or access to the treatment program, since they have no connection 

to the participants in the treatment group. Therefore, this research study naturally avoids any 

possible threats to validity that are typically seen in most experimental designs where there is 

a control versus treatment group. 

There was no need to compensate participants for their involvement in this research. 

However, each school who was implementing the treatment program had similar strategies to 

provide incentives to participating students to make sure that students used the program with 

fidelity and benefitted from it. These incentive strategies included giving out achievement 

certificates to students when they reached certain milestones within the program, recognizing 

them in public, small gifts, and class parties (pizza, ice-cream, etc.) when the entire class met 

their performance goals. 

Analysis 

This quantitative study examined the effectiveness of a cognitive tutoring and 

assessment software (ALEKS) on math achievement as measured by norm-referenced 

(NWEA MAP) assessments. The study follows a pretest-posttest quasi-experimental design 
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with a control and a treatment group of middle school students from two urban school 

districts in the south. 

The following three hypotheses were tested in this study: 

Ho1: There is no statistically significant difference in mean spring NWEA 

mathematics scores between students who received a regular math instruction and 

students who received adaptive math instruction via ALEKS, controlling for previous 

fall NWEA mathematics scores, α ≤ .05. 

Ho2: Among ALEKS users, there is no statistically significant relationship between 

time spent on ALEKS and students’ spring NWEA mathematics scores, controlling 

for previous fall NWEA mathematics scores, α ≤ .05. 

Ho3: Among ALEKS users, there is no statistically significant relationship between 

PIE mastery percentage and students’ spring NWEA mathematics scores, controlling 

for previous fall NWEA mathematics scores, α ≤ .05. 

In order to test the first hypothesis, spring RIT scores from the NWEA MAP math 

assessment are used as the dependent variable. Previous (fall) RIT scores from the NWEA 

MAP math assessment are used as a covariate to control for prior skill level. The independent 

variable is ALEKS use (i.e., ALEKS users as treatment group, and non-users as the control 

group). 

To test the 2nd and 3rd hypotheses, a two – block regression model is used. In the 

first block, previous (fall) RIT scores from the NWEA MAP math assessment are used as a 

control variable and regressed onto spring RIT scores (dependent variable). In the second 

block, the significance of the beta weights for time spent on ALEKS instruction and PIE 

mastery percentage are used to test the hypotheses.  
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The following research questions are addressed in this study: 

1. Does use of ALEKS math software improve student achievement in mathematics? 

2. How effective is ALEKS in identifying and closing knowledge gaps of students in 

math? 

a. What is the relationship between time spent in ALEKS and latest test 

performance? 

b. What is the relationship between concept mastery and latest test performance? 

Here, time spent and concept mastery are independent variables and the latest test 

performance is our dependent variable. ALEKS maps out a personal learning plan illustrated 

as a pie. This pie includes all the topics and objectives a student is expected to master. As 

students work through ALEKS, they periodically take an assessment to prove mastery. When 

they prove mastery on a set of learning objectives pertaining to a topic, the student’s 

knowledge gaps in regards to that topic are closed. The latest assessment includes not only 

problems students are practicing lately, but also a comprehensive set of problems that they 

have been studying since the beginning of the course. That makes the latest assessment a 

comprehensive one where we can draw conclusions on how effectively a student’s 

knowledge gaps are identified (based on their pie) and closed (based on mastery and pie 

completion). The relationship between concept mastery and latest test performance will help 

us determine how much of an impact concept mastery has on student performance on the 

latest assessment, thereby the program’s effectiveness in closing knowledge gaps. 

The following analyses were used in this research: 

 Analysis of Covariance (ANCOVA) 

 Descriptive Analysis: for mean/median comparisons. 
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 Correlational Analysis: to investigate relationships between dependent and 

independent variables and their effect sizes. 

 Multiple Regression Analysis: to uncover joint effect of independent variables on 

math achievement. 

Before performing any data analysis, a missing values analysis were conducted. It is 

very common in pretest-posttest designs that a number of participants miss either part of the 

test, which results in missing data. The researcher followed the most traditional treatment for 

missing data and used listwise deletion where necessary.  

IBM Statistical Package for the Social Sciences (SPSS) version 23 was used for the 

analysis, with the alpha level set to 0.05. For the first hypothesis, ANCOVA analysis will 

allow the researcher to compare mean student performance on the posttest for each 

participant group (control vs. treatment), with a pretest score used as a controlling covariate. 

In a recent study conducted by Hyer and Waller (2014), various analytic techniques for two-

group, pre-post repeated measures designs were compared and the researchers concluded that 

ANCOVA was one of the effective statistical analysis methods to test differences on post-test 

controlling for pre-test. Using ANCOVA for comparing results of two groups controlling for 

pretest is a classical way of statistical analysis in this type of situation. Reducing the error 

variance and eliminating systematic bias are main reasons for using pretest scores as a 

covariate in ANCOVA with a pretest-posttest design (Dimitrov & Rumrill, 2003). 

Linear regression analysis is used in this research as well. Regression analysis will 

help the researcher predict which independent variable in ALEKS has the greatest effect on 

math achievement. A two – block regression model is used. In the first block, previous (fall) 

RIT scores from the NWEA MAP mathematics assessment is used as a control variable and 
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regressed onto spring RIT scores (dependent variable). In the second block, the significance 

of time spent on ALEKS instruction and PIE mastery percentage is used to test the 2nd and 3rd 

hypotheses.  

Propensity matching the treatment and control groups based on demographic factors 

such as gender, ethnicity, socio-economic status, grade level, and participation in special 

programs (i.e., ESL, Special Education, and Gifted/Talented) alleviates the need to control 

for these variables when testing hypotheses based on group membership. Propensity 

matching assigns individuals a propensity score based on their demographic characteristics. 

For each subject in the treatment group, control subjects were randomly selected from a 

larger control group pool if their propensity score was nearest to or matched a treatment 

group subject. For this study, there was a randomly-selected control group member that 

matched each treatment group subject. This resulted in subjects from both groups being 

demographically almost identical, thus alleviating potential bias attributable to demographic 

dissimilarity. 

In summary, to tackle the first research question, we engage in ANCOVA analysis to 

determine the statistical significance of the difference in means scores between students who 

use ALEKS and those who do not. We also do regression analysis to determine the 

relationship between concept mastery and time spent in ALEKS instruction and posttest 

mathematics achievement scores. 

Ethical Considerations 

The researcher used student data from the school districts he works for as a district 

administrator. This might bring up some ethical considerations to be addressed in this study. 

First and foremost, the researcher ensures that all necessary measures are taken to maintain 
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student privacy per FERPA regulations and takes all necessary precautions to eliminate the 

possibility of matching or tracing any achievement and/or demographic data to individual 

students. The researcher has carefully selected the most appropriate statistical analysis and 

methods to maintain integrity of the research and meet ethical expectations for quantitative 

research. 
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CHAPTER 4 

RESULTS OF ANALYSES AND CONCLUSIONS 

As stated in Chapter 3, three hypotheses were tested in this study: 

Ho1: There is no statistically significant difference in mean spring NWEA 

mathematics scores between students who received a regular math instruction and 

students who received adaptive math instruction via ALEKS, controlling for previous 

fall NWEA mathematics scores, α ≤ .05. 

Ho2: Among ALEKS users, there is no statistically significant relationship between 

time spent on ALEKS and students’ spring NWEA mathematics scores, controlling 

for previous fall NWEA mathematics scores, α ≤ .05. 

Ho3: Among ALEKS users, there is no statistically significant relationship between 

PIE mastery percentage and students’ spring NWEA mathematics scores, controlling 

for previous fall NWEA mathematics scores, α ≤ .05. 

Correlations between variables and descriptive statistics for the variables used will be 

provided at the start of this chapter, followed by hypothesis tests and the conclusions derived 

therefrom. 

Characteristics of Treatment and Control Groups 

Using propensity score matching allows the researcher to create a randomly sampled 

control group that is demographically matched to the treatment group. Although random 

sampling gives the appearance that a truly experimental design was implemented, all 

selection of treatment and control subjects was performed post hoc with existing data. 

Despite the random selection of demographically-matched control subjects’ post-hoc to avoid 
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demographically related bias, subjects could not be randomly assigned to control & 

experimental groups before the experimental learning conditions were applied: hence, this 

study is deemed quasi-experimental. Given a control – pool large enough, a control group 

that is very similar to the treatment group can be created. For this study, demographic 

variables such as race, sex, special education, economic disadvantage (free or reduced lunch 

status), gifted/talented status, Limited English proficiency status (LEP) and student grade 

level were chosen as the matching factors. An almost – exact match was obtained, as shown 

in the following tables. The only discrepancy in matching was that an American 

Indian/Alaska native could not be found from the control pool. 

Table 4.1. 

Control/treatment group participation by grade level 

  Percent Frequency 

Grade Control Treatment Control Treatment 

5th 15.3 15.3 85 85 

6th 28.3 28.3 157 157 

7th 18.9 18.9 105 105 

8th 22.7 22.7 126 126 

9th 14.8 14.8 82 82 

Total 100.0 100.0 555 555 

 

Table 4.1 shows 100% correspondence between treatment and control groups based on grade 

level. 
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Table 4.2.  

Control/treatment group participation by race 

 Percent Frequency 

  Control Treatment Control Treatment 

AI/AN 0.0 .2  0 1 

Asian 1.1 1.1 6 6 

Black 8.8 8.8 49 49 

Hispanic 77.5 77.5 430 430 

Multi-ethnic 1.8 1.6 10 9  

White 10.8 10.8 60 60 

Total 100.0 100.0 555 555 

 

Table 4.2 shows 100% correspondence between treatment and control groups based on 

student race. 

Table 4.3.  

Control/treatment group participation by sex 

  Percent Frequency 

  Control Treatment Control Treatment 

Male 53.2 53.2 295 295 

Female 46.8 46.8 260 260 

Total 100.0 100.0 555 555 

 

Table 4.3 shows 100% correspondence between treatment and control groups based on 

student sex. 
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Table 4.4. 

Control/treatment group participation by special – education status 

  Percent Frequency 

  Control Treatment Control Treatment 

SPED_NO 96.6 96.6 536 536 

SPED_YES 3.4 3.4 19 19 

Total 100.0 100.0 555 555 

 

Table 4.4 shows 100% correspondence between treatment and control groups based on 

student special – education status. 

Table 4.5.  

Control/treatment group participation by economic disadvantage (F/R lunch status) 

  Percent Frequency 

  Control Treatment Control Treatment 

ED_NO 34.8 34.8 193 193 

ED_YES 65.2 65.2 362 362 

Total 100.0 100.0 555 555 

 

Table 4.5 shows 100% correspondence between treatment and control groups based on 

student economic disadvantage (F/R lunch status). 
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Table 4.6. 

Control/treatment group participation by Limited English Proficiency status 

  Percent Frequency 

  Control Treatment Control Treatment 

LEP_NO 94.1 94.1 522 522 

LEP_YES 5.9 5.9 33 33 

Total 100.0 100.0 555 555 

 

Table 4.6 shows 100% correspondence between treatment and control groups based on 

student Limited English Proficiency status. 

Table 4.7. 

Control/treatment group participation by Gifted/Talented status 

  Percent Frequency 

  Control Treatment Control Treatment 

G/T_NO 93.7 93.7 520 520 

G/T_YES 6.3 6.3 35 35 

Total 100.0 100.0 555 555 

 

Table 4.7 shows 100% correspondence between treatment and control groups based on 

student Gifted/Talented status.  

Tables 4.1 – 4.7 show an extremely high correspondence of treatment/control group 

participation based on demographic variables that are historically related to educational 

achievement. This high correspondence between the treatment/control groups obviates the 

need to control for these variables during analysis. 
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Statistical Analyses & Data Tables 

Table 4.8 shows the Pearson r correlations among selected variables used in this 

study. 

Table 4.8. 

Correlations among selected variables used in the study 

Variable Statistic 

RIT Score 

Spring 

RIT Score 

Fall ED (Y/N) 

LEP 

(Y/N) 

RIT Score Spring Pearson r 1 .849** -.158** -.168** 

Sig. (2-tail)   0.000 0.000 0.000 

N 1110 1110 1110 1110 

RIT Score Fall Pearson r .849** 1 -.154** -.173** 

Sig. (2-tail) 0.000   0.000 0.000 

N 1110 1110 1110 1110 

ED (Y/N) Pearson r -.158** -.154** 1 .088** 

Sig. (2-tail) 0.000 0.000   0.003 

N 1110 1110 1110 1110 

LEP (Y/N) Pearson r -.168** -.173** .088** 1 

Sig. (2-tail) 0.000 0.000 0.003   

N 1110 1110 1110 1110 

Gifted/Talented 

(Y/N) 
Pearson r .239** .229** -.153** -.065* 

Sig. (2-tail) 0.000 0.000 0.000 0.030 

N 1110 1110 1110 1110 

Total Time ALEKS Pearson r 0 -0.0116 0.00415 0.03791 

Sig. (2-tail) 0.740 0.786 0.922 0.373 

N 555 555 555 555 

Best Pie Mastery 

pct 
Pearson r .230** .155** -0.0593 0.01386 

Sig. (2-tail) 0.000 0.000 0.163 0.745 
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N 555 555 555 555 

TestPercentile Pearson r .913** .757** -.133** -.170** 

Sig. (2-tail) 0.000 0.000 0.002 0.000 

N 555 555 555 555 

Table 4.8 Correlations among selected variables used in the study (continued) 

Variable Statistic 

Gifted/Talented 

(Y/N) 

Total Time 

ALEKS 

Best Pie 

Mastery pct 

Test 

Percentile 

RIT Score 

Spring 
Pearson r .239** .014 .230** .913** 

Sig. (2-tail) 0.000 0.740 0.000 0.000 

N 1110 555 555 555 

RIT Score Fall Pearson r .229** -.012 .155** .757** 

Sig. (2-tail) 0.000 0.786 0.000 0.000 

N 1110 555 555 555 

ED (Y/N) Pearson r -.153** .004 -0.0593 -.133** 

Sig. (2-tail) 0.000 0.922 0.163 0.002 

N 1110 555 555 555 

LEP (Y/N) Pearson r -.065* .038 0.014 -.170** 

Sig. (2-tail) 0.030 0.373 0.745 0.000 

N 1110 555 555 555 

Gifted/Talented 

(Y/N) 
Pearson r 1 -.150** .147** .313** 

Sig. (2-tail)   0.000 0.001 0.000 

N 1110 555 555 555 

Total Time 

ALEKS 
Pearson r -.150** 1.000 .382** 0.00148 

Sig. (2-tail) 0.000   0.000 0.972 

N 555 555 555 555 

Best Pie 

Mastery pct 
Pearson r .147** .382** 1 .407** 

Sig. (2-tail) 0.001 0.000   0.000 

N 555 555 555 555 
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Table X8: Correlations among selected variables used in the study (continued) 

Variable Statistic 

Gifted/Talented 

(Y/N) 

Total Time 

ALEKS 

Best Pie 

Mastery pct 

Test 

Percentile 

Test 

Percentile Pearson r .313** .001 .407** 1 

Sig. (2-tail) 0.000 0.972 0.000   

N 555 555 555 555 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

 

Table 4.9. 

Descriptive statistics for dependent and independent variables used in the study, by 

treatment/control group 

  RIT Score Fall RIT Score Spring 
Total Time 

ALEKS 

Best Pie 

Mastery pct 

Statistic Control Treatment Control Treatment Treatment Treatment 

N 555 555 555 555 555 555 

Mean 222.61 223.00 224.61 229.13 2620.58 59.796 

Std. Dev. 15.723 15.338 17.670 15.573 1068.655 18.1195 

Variance 247.210 235.256 312.231 242.523 1142024.261 328.315 

Skewness -.432 -.439 -.492 -.473 -.391 .182 

Kurtosis .281 .798 .748 .370 -.274 -.359 
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Figure 4.1 shows the distribution of independent variable fall RIT score by 

treatment/control group. The distribution for both groups is relatively normal and 

symmetrical. 

Figure 4.1. 

Distribution of independent variable fall RIT score by treatment/control group 
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Figure 4.2 shows the distribution of independent variable spring RIT score by 

treatment/control group. The distribution for both groups is relatively normal and 

symmetrical. 

Figure 4.2. 

Distribution of dependent variable spring RIT score by treatment/control group 
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Figure 4.3 shows the relationship between covariate fall RIT score and dependent 

variable spring RIT score. The relationship between these two variables is quite high 

(r=0.849), making the fall RIT score a good covariate for testing hypothesis number one. 

Using the fall RIT score as a covariate will hold students’ achievement level at the beginning 

of the study constant, allowing relative gains to be comparable. 

Figure 4.3.  

Scatter plot of dependent variable spring RIT score and covariate fall RIT score 
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Hypothesis Testing 

The first hypothesis to be tested is: 

Ho1: There is no statistically significant difference in mean spring NWEA 

mathematics scores between students who received regular math instruction 

and students who received adaptive math instruction via ALEKS, controlling 

for previous fall NWEA mathematics scores, α ≤ .05. 

Table 4.10. 

Results of ANCOVA analysis, test of hypothesis 

Source Type III SS df MS F Sig. 

Partial 

Eta 

Squared 

Observed 

Powerb 

Corrected 

Model 
230559.860a 2 115279.930 1548.044 0.000 .737 1.000 

Intercept 2711.233 1 2711.233 36.408 .000 .032 1.000 

RIT_F 224897.653 1 224897.653 3020.053 0.000 .732 1.000 

Aleks_user 4798.004 1 4798.004 64.430 .000 .055 1.000 

Error 82436.199 1107 74.468     

Total 57444375.000 1110      

Corrected 

Total 
312996.059 1109           

a. R Squared = .737 (Adjusted R Squared = .736) 

b. Computed using alpha = .05 

 

Table 4.11.  

Results of ANCOVA analysis, mean spring mathematics RIT score by group 

Group Mean SD N 

Control 224.61 17.670 555 

Treatment 229.13 15.573 555 

Total 226.87 16.800 1110 
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Table 4.12.  

Test for homogeneity of variance 

Levene Statistic df1 df2 Sig. 

3.840 1 1108 .051 

 

ANCOVA results show that there is a statistically significant difference in the mean 

spring mathematics RIT scores (highlighted row Table 4.10), and that the score for the 

treatment group was higher (highlighted row Table 4.11). The homogeneity of variance 

between the treatment and control groups is not different (SEE Table 4.12). These results 

show that there is a statistically significant difference in mean spring NWEA mathematics 

scores between students who received regular math instruction and students who received 

adaptive math instruction via ALEKS, controlling for previous fall NWEA mathematics 

scores, α ≤ .05, and therefore, the null hypothesis may be rejected. Although the results show 

that the null hypothesis should be rejected, the test has a high level of power due to the very 

large sample size, and the Eta Squared shows that ALEKS instruction explains 5.5% of the 

variance in spring NWEA mathematics scores after controlling for fall NWEA mathematics 

scores. Although some researchers may consider this a small amount of variance explained in 

a study, educators having the ability to influence 5.5% of achievement in a subject area is not 

a negligible finding. 

The second and third hypotheses will be tested using a single multi – block multiple 

regression model using the SPSS Linear Regression procedure. These tests involve only the 

treatment group: 
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Ho2: Among ALEKS users, there is no statistically significant relationship between 

time spent on ALEKS and students’ spring NWEA mathematics scores, controlling 

for previous fall NWEA mathematics scores, α ≤ .05. 

Ho3: Among ALEKS users, there is no statistically significant relationship between 

PIE mastery percentage and students’ spring NWEA mathematics scores, controlling 

for previous fall NWEA mathematics scores, α ≤ .05. 

Table 4.13 specifies the multi-– block regression model. In block 1, fall NWEA 

mathematics scores are entered into the model to hold them constant. In block 2, time spent 

in ALEKS and PIE Mastery are entered simultaneously so that their beta weights may be 

evaluated to test hypotheses 2 and 3. 

 

Table 4.13. 

Regression model specification 

Variables Entered/Removeda 

Model 
Variables 

Entered 

Variables 

Removed 
Method 

1 RIT Score Fallb --  Enter 

2 

Total Time 

ALEKS & Best 

Pie Mastery pctb 

--  Enter 

a. Dependent Variable: RIT Score Spring 

b. All requested variables entered. 
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Table 4.14.  

Regression model summary 

Model R R Square 
Adj. R 

Square 

Std. Error of 

the Estimate 

1 .876a .768 .768 7.506 

2 .882b .777 .776 7.368 

a. Predictors: (Constant), RIT Score Fall 

b. Predictors: (Constant), RIT Score Fall, Total Time ALEKS, Best Pie 

Mastery pct 

 

In Table 4.14 the adjusted R square values show that after pretest scores are 

controlled for, Total Time in ALEKS and Best Pie Mastery pct. Explain only an additional 

0.8% of the variance in the posttest scores (see highlighted column). 

 

Table 4.15. 

ANOVA results associated with the regression model 

Model   SS df MS F Sig. 

1 Regression 103201.306 1 103201.306 1831.724 .000b 
 Residual 31156.611 553 56.341   

  Total 134357.917 554       

2 Regression 104448.369 3 34816.123 641.390 .000c 
 Residual 29909.548 551 54.282   

  Total 134357.917 554       

a. Dependent Variable: RIT Score Spring 

b. Predictors: (Constant), RIT Score Fall 

c. Predictors: (Constant), RIT Score Fall, Total Time ALEKS, Best Pie 

Mastery pct 
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Table 4.16. 

Coefficients resulting from the regression model. 

Model Variable 

Unstandardized 

Coefficients 

Standardized 

Coefficients t Sig. 
  B Std. Error Beta   

1 (Constant) 30.691 4.647   6.604 .000 

  
RIT Score 

Fall 
.890 .021 .876 42.799 .000 

2 (Constant) 29.641 4.635   6.395 .000 

 RIT Score 

Fall 
.874 .021 .860 42.157 .000 

 Total Time 

ALEKS 
.000 .000 -.015 -.689 .491 

  
Best Pie 

Mastery pct 
.088 .019 .102 4.639 .000 

a. Dependent Variable: RIT Score Spring 

 

Table 4.16 (highlighted rows) shows that the Beta for time spent in ALEKS was not 

significant, and therefore time spent in ALEKS had no statistically significant effect on mean 

posttest scores controlling for pretest scores. Null hypothesis 2 is retained. Table 4.16 does 

show, however, that Pie mastery percent does have a statistically significant effect on mean 

posttest scores controlling for pretest scores. Null hypothesis three is rejected. 

Performance Analyses of Demogrraphic Groups 

Because ANCOVA analysis shows statistical evidence of significance of the 

treatment program on mathematics achievement of students, the researcher has decided to 

look at analysis of student performance data broken down by various demographic groups 

such as race, gender, grade level, and educational needs. Tables 4.17 – 4.20 below 

demonstrate performance analysis of student groups based on demographics and educational 

needs through ANCOVA results. These further analyses will provide more in depth insight 
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into whether the significance of ALEKS as an adaptive learning software can be generalized 

for different student groups as typically reported in state and federal accountability measures.  

Table 4.17.  

Results of ANCOVA analysis, mean spring mathematics RIT score by group, broken down 

by grade level 

Grade Level Group Mean SD N 

5th Grade 

Control 212.71 16.90 85 

Treatment 214.45 16.47 85 

Total 213.58 16.90 170 

6th Grade 

Control 217.46 16.76 157 

Treatment 224.30 15.55 157 

Total 220.88 16.75 314 

7th Grade 

Control 227.28 16.57 105 

Treatment 231.23 15.54 105 

Total 229.25 16.57 210 

8th Grade 

Control 234.31 16.62 126 

Treatment 236.64 15.53 126 

Total 235.48 16.62 252 

9th Grade 

Control 232.33 16.81 82 

Treatment 239.35 15.57 82 

Total 235.84 16.80 164 

 

Highlighted rows in Table 4.17 show that treatment group has outperformed control 

group in each grade level. The impact of the treatment has been largest in 6th grade and 9th 
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grade as we see roughly a 7-point performance difference between ALEKS users and non-

ALEKS users. The smallest mean difference in NWEA MAP mathematics spring scores 

between control and treatment group was observed in 5th grade (1.74 RIT score points) and in 

8th grade (2.33 RIT score points) respectively. From this analysis, we can conclude that each 

participating grade level in the treatment was able to make positive gains in mathematics 

achievement via ALEKS instruction and outperform their peers in control group. 

Table 4.18.  

Results of ANCOVA analysis, mean spring mathematics RIT score by group, broken down 

by special populations 

Category Group Mean SD N 

Special 

Education 

(SPED) 

Control 202.16 16.96 19 

Treatment 211.89 15.05 19 

Total 207.03 16.61 38 

Limited English 

Proficiency 

(LEP) 

Control 213.45 16.65 33 

Treatment 217.88 15.74 33 

Total 215.67 16.65 66 

Gifted/Talented 

(GT) 

Control 239.51 16.69 35 

Treatment 245.11 15.65 35 

Total 242.31 16.69 70 

Economically 

Disadvantaged 

(ED) 

Control 222.16 16.80 362 

Treatment 227.70 15.56 362 

Total 224.93 16.80 724 
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Highlighted rows in Table 4.18 show that treatment group has outperformed control 

group in each special programs category. The impact of the treatment has been largest among 

special education students as we see a 9.73 RIT-score difference between ALEKS users and 

non-ALEKS users. This is considered a very large performance difference based on 

normative RIT-score guidelines of NWEA MAP assessment and can be interpreted as the 

treatment group making instructional gains about 1.5 to 2 grade levels in mathematics in a 

single school year. That is a strong indicator of closing the achievement gap effectively. The 

mean differences in NWEA MAP mathematics spring scores between control and treatment 

group among economically disadvantaged and gifted/talented students was very similar, with 

both treatment groups outperforming their corresponding control groups by more than 5.5 

RIT score points. This significant performance difference observed nearly as identical in the 

historically highest performing student group (gifted/talented) and also in the historically 

lowest performing student group (economically disadvantaged) confirms the findings of this 

study that ALEKS is a promising adaptive learning software which can be used both as an 

intervention tool for low performing students and also as an enrichment program for high 

performing students. It is also worth noting that students with limited English proficiency 

made significant gains in math achievement via ALEKS as the treatment group in this 

category outperformed the control group with a nearly 4.4 RIT-score difference in spring 

NWEA MAP mathematics test. From this analysis, we can conclude that each participating 

special-needs groups in the treatment was able to make positive gains in mathematics 

achievement via ALEKS instruction and outperform their counterparts in control group.  
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Table 4.19.  

Results of ANCOVA analysis, mean spring mathematics RIT score by group, broken down 

by race/ethnicity 

Race Group Mean SD N 

African 

American 

Control 221.63 16.67 49 

Treatment 222.12 15.75 49 

Total 221.88 16.67 98 

Hispanic 

Control 223.40 16.80 430 

Treatment 228.82 15.57 430 

Total 226.11 16.80 860 

White 

Control 232.32 16.68 60 

Treatment 234.30 15.90 60 

Total 233.31 16.68 120 

 

 Table 4.19 shows performance analysis across three racial/ethnic student groups. In 

this table several racial/ethnic groups such as American Indian / Alaskan Native, Asian, and 

multi-ethnic groups are excluded due to their small size within the sample. This data reveals 

that among Hispanic students the treatment effect was largest as we see a difference of 5.42 

RIT-score points between the treatment and the control group. Among white students, the 

treatment group outperformed the control group by roughly 2 points, while the performance 

difference within the African American students are observed to be minimum with a less than 

1-point RIT-score between the treatment group and the control group. Nonetheless, it is 

worth noting that treatment group has outperformed control group across all participating 

ethnic populations. The significant gains made by the Hispanic students is of particular 
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interest to the participating school district due to the fact that the district serves 

predominantly Hispanic students in its community. 

 

Table 4.20.  

Results of ANCOVA analysis, mean spring mathematics RIT score by group, broken down 

by gender 

Gender Group Mean SD N 

Male 

Control 224.20 16.80 295 

Treatment 229.04 15.57 295 

Total 226.62 16.80 590 

Female 

Control 225.08 16.68 260 

Treatment 229.23 15.57 260 

Total 227.15 16.68 520 

 

Performance analysis based on gender is shown in Table 4.20. According to this data, 

both male students and female students made significantly larger gains in mathematics due to 

treatment effect. Male students using ALEKS outperformed male students in the control 

group by 4.84 RIT-score points in spring NWEA MAP mathematics assessment, while 

female students in the treatment outperformed females in the control group by 4.15 RIT-

score points. 

Conclusions and Summary 

The results of analysis show that ALEKS instruction has a statistically significant 

positive effect on students’ end– of – year mathematics scores when beginning – of – year 

scores are held constant, and that participation in ALEKS instruction explains approximately 
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5.5% of the variance in end– of – year mathematics scores. Despite the finding that ALEKS 

use was significantly related to positive mean posttest scores controlling for pretest scores, 

Table 4.16 (highlighted rows) shows that the Beta for actual time spent in ALEKS was not 

significant, and therefore time spent in ALEKS had no statistically significant effect on mean 

posttest scores controlling for pretest scores. 

With a deeper dive into demographic group performance analysis, the results reveal 

that treatment group participating in mathematics instruction via ALEKS outperformed the 

control group across all grade levels (6 through 9), both gender groups, all racial/ethnic 

groups (African American, Hispanic, and White), and all special programs (Special 

Education, Limited English Proficient, Gifted/Talented, and Economically Disadvantaged) in 

spring NWEA MAP mathematics assessment. The results also show that pie mastery 

percentages are a statistically significant predictor of subsequent end – of – year mathematics 

scores, and that they can be a useful benchmark indicator during the year’s instruction. 

In chapter 5, the educational implications of these results will be discussed, along 

with implications for future research. 
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CHAPTER 5 

DISCUSSION 

The results of this study, presented in detail in chapter 4, are interpreted in this 

chapter with further discussion in light of the research questions addressed in this study and 

in conjunction with other relevant literature. Educational implications of the findings of this 

study for K-12 schools and districts will be in the center of our discussions in this section, as 

well as implications for further research. 

Within the last two decades, public education system in the United States has been 

subject to various reform efforts both at the federal and at the state levels. While many 

researchers and practitioners (Horn & Staker, 2014; Vander Ark, 2012; Domenech, Sherman, 

&Brown, 2016) argue that American public education must be completely redesigned rather 

than applying changes to its current infrastructure, policymakers are in favor of maintaining 

the status quo and allowing educational reform in small doses not to disrupt the century old 

model currently in place. Obama administration has been particularly more bold and 

innovative in providing funding and flexibility for state education agencies and local 

education agencies to design and implement new learning models in K-12 education. One of 

the main goals of these reform efforts has been boosting high school graduation and college 

readiness rates across the country.  

The Department of Education under Secretary Duncan’s leadership has proudly 

announced that high school graduation rates have reached an all-time high record of 82 

percent in 2013-2014 school year. “In school year 2013–14, the adjusted cohort graduation 

rate (ACGR) for public high schools rose to an all-time high of 82 percent” (NCES, 2016). In 
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fact, the graduation rates have reached another record high of 83 percent in the 2014-2015 

school year, marking the fifth straight record-setting year under Obama’s presidency. Despite 

these tremendous improvements in graduation rates and rising emphasis on college-

readiness, recent reports on student performance based on SAT and ACT scores suggest that 

most high school graduates are ill-prepared for the academic rigor of college, especially 

when it comes to mathematics (Adams, 2015). According to a recent report by Saxe and 

Braddy (2015), about 50 percent of students are not passing college algebra with a grade of C 

or above each year. These students are either deemed college-ready in mathematics 

according to their SAT or ACT scores, or they have taken and successfully passed one or 

more remedial math courses before they were allowed to take college algebra. These high 

failure rates spurred universities to take a proactive approach to math classes.  

ALEKS was indeed originally created as an intelligent tutoring system for college 

math classes in the 90s. It was intended to address the very aforementioned problems with 

college-readiness in math. As the program gained success and popularity, the developers 

expanded the program to reach K-12 students in an effort to start closing their knowledge and 

skills gaps in mathematics at earlier ages. The advancements in technology made 

personalized learning more possible at scale. Horn and Staker (2014) describe digital 

curricula and online adaptive learning software as the backbone of blended learning and 

portray how personalized learning comes to life when the infrastructure that supports selected 

hardware and software is in place with an anytime anywhere learning culture established 

throughout the school community. Vander Ark (2012) also writes how digital learning and 

smart algorithms change the way students are learning and causing dramatic shifts in job 

markets across the globe, hence necessitating drastic changes how schools are run and 
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learning environments are designed. Domenech, Sherman, and Brown (2016) agree with 

these ideas as they further argue how shifts in demographic landscape of our country 

demands personalizing 21st century education for all students, specifically to close the 

achievement gap between economically disadvantaged students and their affluent 

counterparts across all U.S. cities and communities in urban, rural, and suburban settings. 

Since we live in a performance-driven world under strict accountability guidelines, 

funders, policy makers, and those in positions of power demand to see hard evidence that any 

reform initiative will work in education before they authorize large scale projects. Therefore, 

new innovative approaches to personalized learning are still evaluated by their impact on 

student achievement and growth, measured by standardized state assessments under NCLB 

and ESEA. Although many innovators in K-12 education (Horn & Staker, 2014; Vander Ark, 

2012; Domenech, Sherman, &Brown, 2016) argue that standardization of curriculum and 

assessments totally contradicts the basic tenets and premise of personalized learning, current 

education system is still bound by accountability guidelines that hinder personalization rather 

than enable it. Seat-time requirements, pacing guides, bell schedules, the sage-on-the-stage 

stance of teachers in the classrooms, and many other traditional norms and policies in public 

education still support the one-size-fits-all approach to education and make it inherently more 

difficult to personalize learning for all students. In spite of these roadblocks, effective 

teachers and school leaders are able to mobilize their resources with the help of evolving 

edtech products to launch blended learning environments within the constraints of current 

realities of public education system and its bureaucracies.  

Horn and Staker (2014) described various blended learning models such as flipped 

classroom, station rotation, and enriched virtual that are all making it possible to personalize 



91 

the instruction to individual students through smart use of technology and making a 

combination of online and offline digital curricula available to students anytime anywhere. 

Vander Ark (2012) describes how adaptive online learning programs such as ALEKS can 

mimic the behavior of an effective human tutor and provide instant feedback to students to 

help them move forward and master the content that is readily available to each individual 

learner at the right time and at the appropriate pace. These advancements help students who 

have large learning gaps catch up with their peers at an optimum pace and enable other 

students who may have previously mastered the content to move forward and be challenged 

with a more rigorous content appropriate to their level. This way, students who are behind 

are not frustrated with the curriculum and those who are ahead are not feeling bored and held 

back until everybody gets the same content.  

The digital revolution in education coupled with breakthroughs in cognitive science 

and artificial intelligence is not meant to replace the teacher by no means. Blended learning is 

not about providing personalized instruction through computers and technology alone, but 

rather it is about empowering teachers with real time actionable data and affording them the 

time and space to tailor their instructional plans and intervene with their students in smaller 

groups based on timely feedback flowing from adaptive online programs like ALEKS (Horn 

& Staker, 2014; Vander Ark 2012). Technology becomes an enabler for personalized 

learning and helps schools and districts scale blended learning in a way it was not possible 

before. Leveraging the power of technology brings numerous advantages to teachers, such as 

real-time actionable data to inform their instructional decision making and grouping their 

students based on their current and ever changing state of knowledge as they interact with 

adaptive learning programs throughout the school day. Blended learning requires a dramatic 
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shift in teacher’s role from being the ‘sage on the stage’ to a ‘guide on the side’ which puts 

teachers in more of a learning facilitator role and pushes students to take ownership of their 

own learning and build student agency, Horn and Staker (2014) explain. The ‘command-and-

control’ type classrooms in traditional schooling leaves students unprepared to successfully 

navigate in an ever changing, unpredictable world. Students are robbed of opportunities when 

they are taught like robots to read textbooks and find answers to standardized test questions. 

In blended classrooms and other personalized learning models, teachers see themselves as an 

innovator and change maker of education, they act like an instigator of thought and create 

learning sparks in children through their guidance. All teachers must be exposed to this in 

order to effectively prepare the future leaders of our society. 

Many of the federal, state, and even philanthropic grant programs to empower 

innovation in public education today have distinct requirements to serve high need students 

and schools and lift their achievement with significant academic gains. Race to the Top 

(RTTT) and Investing in Innovation (I3) are prime examples of such competitive federal 

grant opportunities that are designed to promote blended learning and technology investment 

in K-12 public education. While the end goal in such programs is to boost college- and 

career-readiness rates, the progress is measured by student achievement and growth data 

through standardized state assessments, and the grantees are required to report their data 

broken down by eight different student groups based on demographics and educational 

needs, many of which are specifically created to see impact of funding on high-needs student 

populations. The U.S. Department of Education defines the term ‘high-needs students’ as 

follows:  

High-needs students: Students at risk of educational failure or otherwise in need of 

special assistance and support, such as students who are living in poverty, who attend 
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high-minority schools (as defined in the Race to the Top application), who are far 

below grade level, who have left school before receiving a regular high school 

diploma, who are at risk of not graduating with a diploma on time, who are homeless, 

who are in foster care, who have been incarcerated, who have disabilities, or who are 

English learners. (U.S. Department of Education, 2012) 

 

From this definition, students who are eligible for free or reduced priced lunch are 

automatically considered to be high-needs students due to being economically disadvantaged 

(ED), as well as students who receive special education services (SPED) and those who are 

limited English proficiency (LEP). Additional students who are not classified in any of these 

groups may still be considered high-needs based on their academic progress and/or living 

conditions. The participant sample for this study consists of at least 67 percent high-needs 

students (742 out of 1110) solely based on their economically disadvantaged, special 

education, and/or limited English proficiency classifications. This rate might be higher if we 

consider the possibilities of academic failures, learning gaps, and living conditions of 

participating students, but because we do not have access to such data on the participants it is 

not possible to get an exact number and percentage of high-needs students in our sample. 

Nonetheless, a minimum of 67% of high-needs students is considered to be a large enough 

percentage for schools and makes those schools eligible for being regarded as a high-needs 

school overall. Therefore, the sample meets ideal characteristics of testing out educational 

reforms and measuring their impact and effectiveness. 

Discussion of Findings 

Does use of ALEKS math software improve student achievement in mathematics? 

Yes, the use of ALEKS in general has significantly improved student achievement in 

mathematics. Although both groups showed improvement on the post-test, the instructional 
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gains made by the treatment group are significantly higher than that of the control group. The 

details of the statistical analyses are presented in the summary section next. 

Does increased time spent with ALEKS correlate with improved student achievement in 

mathematics? 

 No, increased time spent with ALEKS does not necessarily correlate with improved 

student achievement in mathematics. More detailed answer to this question is provided in the 

following sub-questions tied to this research question. 

What is the relationship between time spent in ALEKS and latest test performance? 

 Based on the statistical analysis conducted in this research, there has not been found 

any strong correlation between time spent in ALEKS and students test performance in 

mathematics. Although theoretically students are expected to perform better on math 

assessments as they spend more time with ALEKS, but there is no way to assess the quality 

of the time students spend on the program. They may simply get off task at times or leave the 

program running and engage in other activities especially when they are not supervised by 

their teachers. 

What is the relationship between concept mastery and latest test performance? 

 The concept mastery, also referred to as pie mastery, has turned out to be a strong 

predictor of math achievement. Unlike time spent on ALEKS, we can see a strong 

relationship between concept mastery and test performance. Specifically, the more concepts a 

student demonstrates mastery on, the more likely he/she is to make larger gains on his/her 

math test. 

Summary 
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This study aims to uncover the impact of an online adaptive learning software 

(ALEKS) on math achievement and growth of middle school students in a southern urban 

school district. This research measured student math achievement and growth using a norm-

referenced assessment known as NWEA MAP in mathematics. Students were assessed once 

in the beginning of the school year in early fall and those scores were recorded as Fall RIT 

scores. Students were then divided into two groups for control and treatment. Both groups are 

taught the same curriculum with their teachers going through the same training program. 

Treatment group had an additional curricular resource using the adaptive ALEKS intelligent 

tutoring system integrated into the mainstream math curriculum. Later in the spring semester, 

both groups were administered the NWEA MAP test in mathematics again by the end of the 

school year. Those scores were recorded as Spring RIT scores. In this research, we looked at 

how student math achievement improved from fall to spring measured by NWEA MAP and 

whether or not these improvements can be attributed to adaptive learning software ALEKS, 

and specifically what data points in ALEKS predicts student achievement significantly. 

 Demographic indicators such as grade level, gender, race/ethnicity, learning 

disabilities, language acquisition levels, and socio-economic factors are known to be 

historically affecting educational achievement of students. Therefore, many educational 

research studies control for these variables during analysis. To eliminate demographic 

indicator bias, such variables are usually matched to a high level of correspondence as much 

as possible. In our case, control and treatment group participation data was matched with a 

nearly perfect correspondence based on demographic variables, thereby eliminating 

demographic bias altogether and removing the need to control for demographic variables 

during statistical analysis. 



96 

In the first hypothesis of this study, we assume that there is no statistically 

significant difference in mean spring NWEA mathematics scores between students 

who received regular math instruction and students who received adaptive math 

instruction via ALEKS, controlling for previous fall NWEA mathematics scores. In 

order to test this hypothesis, we first examined the relationship between the pre-test 

(Fall RIT) and post-test (Spring RIT) scores. The correlation between the two turned 

out to be very strong, which makes it an ideal case to use pre-test scores for holding 

student achievement constant in the beginning of the school year and thus analyzing 

changes in independent variable (post-test scores) to compare relative instructional 

gains in math. 

The analysis revealed statistically significant gains in math achievement from 

fall to spring in treatment group. Mean Spring RIT score was 224.61 for control 

group, while it was 229.13 for the treatment group, which is a 4.52 increase in RIT 

scores. This increase is considered to be a large instructional gain for middle school 

students made by the treatment group helping those students close the achievement 

gap and improve their grade level readiness and increase their nationwide percentile 

ranking measured by the norm-referenced NWEA MAP assessment. Furthermore, the 

variance between the treatment and control groups is not different, hence 

homogeneity of variance assumption is verified. As these results show, there is a 

statistically significant difference in mean spring NWEA mathematics scores between 

students who received regular math instruction and students who received adaptive 

math instruction via ALEKS, controlling for previous fall NWEA mathematics 

scores. Hence, the first null hypothesis may be rejected. One important thing worth 
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noting here is that the treatment explains only about 5.5% of the variance in Spring 

RIT scores. Some researchers may consider this a small amount of variance explained 

by a treatment factor. However, considering the large sample size and thus the high 

level of power the statistical test holds here, educators would consider it a pretty 

strong intervention to be able to influence student achievement levels by 5.5% in 

mathematics. 

The second and third hypotheses are listed here as follows: 

 Among ALEKS users, there is no statistically significant relationship between time 

spent on ALEKS and students’ spring NWEA mathematics scores, controlling for 

previous fall NWEA mathematics scores. 

 Among ALEKS users, there is no statistically significant relationship between PIE 

mastery percentage and students’ spring NWEA mathematics scores, controlling for 

previous fall NWEA mathematics scores. 

Since the second and third hypotheses involve only the treatment group, they were tested 

using block designs looking at each factor (time spent and pie mastery percentage) separately 

and then their joint effect on student achievement (Spring RIT scores). The analysis shows 

that after pretest scores are controlled for, time spent in ALEKS and pie mastery percentage 

explain only an additional 0.8% of the variance in the post-test scores. Since the joint effect 

of these two variables has some influence –but not very large- on math achievement, this 

finding suggests that one of these independent variables might be a more significant predictor 

as opposed to the other one for math achievement. Further analysis showed that time spent in 

ALEKS was not significant, while pie mastery percent does have a statistically significant 
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effect on mean post-test scores controlling for pre-test scores. Therefore, we decide to retain 

the second null hypothesis, but reject the third one.  

Conclusions 

The purpose of this study was to test the effectiveness of an adaptive learning 

software called ALEKS, on mathematics achievement and growth levels. The results of 

analysis show that mathematics instruction via ALEKS has a statistically significant positive 

effect on students’ math achievement and growth levels measured by a normative end– of – 

year mathematics assessment when beginning – of – year scores are held constant. Upon 

observing statistically significant impact of ALEKS, in the second part of this study the 

researcher looked into various predictors and independent variables in the software to decide 

which components and data points of the program are best predictors of mathematical 

success and instructional growth. The conclusions of this study can be summarized as 

follows: 

 ALEKS made a statistically significant impact on mathematics achievement in the 

treatment group. 

 Participation in adaptive math instruction via ALEKS explains approximately 

5.5% of the variance in end– of – year mathematics scores.  

 Students receiving math instruction via ALEKS outperformed students who are not 

using ALEKS in each of the participating grade levels (6 through 9). 

 Students in 6th and 9th grades made the largest gains in mathematics by using 

ALEKS in end-of-year test scores. 
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 Both male and female students participating in ALEKS program outperformed their 

non-ALEKS using counterparts with large instructional gains observed in end-of-year 

test scores. 

 Students receiving math instruction via ALEKS outperformed students who are not 

using ALEKS across all racial/ethnic groups (African American, Hispanic, and 

White).  

 Hispanic students made the largest gains in mathematics by using ALEKS in 

end-of-year test scores. 

  Students receiving math instruction via ALEKS outperformed students who are not 

using ALEKS across all special-needs programs (Special Education, Limited English 

Proficient, Gifted/Talented, and Economically Disadvantaged). 

 Special Education students made the largest gains in mathematics by using 

ALEKS in end-of-year test scores. The numbers suggest that students in this 

group made improvements equivalent to 1.5 to 2 years of growth in a single 

school year. 

 Gifted/Talented students and economically disadvantaged students achieved 

roughly the same amount of growth in mathematics making the second largest 

gains in mathematics by using ALEKS. 

 Among ALEKS users, the results show that pie mastery percentages are a statistically 

significant predictor of subsequent end – of – year mathematics scores, which can be 

a useful benchmark indicator for teachers and instructional leaders during the year’s 

instruction. 
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 Among ALEKS users, the results show that time spent on ALEKS is not a 

statistically significant predictor of subsequent end – of – year mathematics scores. 

Therefore, this data point should not be used as a benchmark indicator for teachers 

and instructional leaders during the year’s instruction. 

Implications 

Issues of academic growth and equitable access to high quality educational programs 

has been critical to PK-12 public school reform movements in the United States. Designing 

blended learning environments to tackle these growth and access issues have gained 

momentum both in research and practice in public education. Decision makers in PK-12 

education are increasingly considering blended learning and adaptive learning technologies 

as a lever for personalizing instruction for all students. As blended learning becomes an 

integral component of their academic programs, research studies like this one will provide 

insight for these decision makers and practitioners. In many cases, educators are trying to 

make decisions about blended learning to increase student access and growth for equity. 

According to Picciano (2006), while such efforts are driven by pedagogical reasons “trying to 

capture the best of online and traditional face-to-face modalities” (p. 99), individual accounts 

and case studies are not contributing to the research and literature in the absence of adequate 

data collection processes.  

In a recent blog series about what parents want for their child(ren)’s education, which 

culminated into a book later on, smart parents demand competency-based, personalized 

learning that happens anytime, anywhere, in a student-centered setting allowing children to 

take ownership over their learning (Lathram, Schneider, & Vander Ark, 2015). As schools 

across the United States continue to focus on designing powerful learning experiences and 
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plan for equitable access to devices and broadband, blended learning will continue to scale 

allowing both schools and parents making informed decisions through independent research 

studies like this one to support their students. Furthermore, this research study addresses the 

current opportunities and challenges encountered by students and schools and provides 

insights into evidence-based actions students, parents, and educators can take to cultivate 

effective learning at home and at school. 

Finally, this research also has great implications for practice for educational 

leadership roles. Adaptive learning technologies are an indispensable component of 

personalized blended learning designs. These learning models create a shift in teacher roles 

and requires school and district leaders to approach supporting their teachers in new ways 

(Domenech et al., 2016; Horn & Staker, 2014). Teachers need new skillsets to be able to use 

data and form dynamic student groups to provide small group instruction while monitoring 

online progression of other students who are working individually on their personalized 

learning paths. With the increasing use of online software and digital curricula, teachers get 

more rapid and robust data on student progress and mastery of concepts. In order to support 

all teachers and schools systematically in these blended learning models, district leaders must 

invest in learning management systems and data dashboards to create seamless procedures 

and data analytic tools and engines so that teachers can feel supported in their new emerging 

roles as learning facilitators in these highly personalized educational settings.  

Limitations 

 This research study only included samples from grades 5th through 9th. Although 

ALEKS is available to grade levels 3 through 12, the results of this study can only be 



102 

generalized for the sample population and hence would be limited to 5th through 9th grade 

students.  

 Another limitation of this study is the learning software studied, which is called 

ALEKS. Personalized learning continues to gain traction in K-12 public education and the 

edtech market is growing at a rapid scale. There are so many other adaptive online software 

similar to ALEKS that are designed to personalize math instruction for K-12 students. The 

results of this study can only be generalized for ALEKS software and we cannot make 

generalizations and draw conclusions accordingly for other adaptive programs similar to 

ALEKS without specifically studying them and their impact on student achievement.  

Furthermore, the findings of this study may not be used to make generalizations about 

the overall effectiveness and merit of blended learning models as we see different 

implementations of various types of blended learning in many different school communities. 

Horn and Staker (2014) present case studies of blended learning implementations across the 

nation, and while they speak highly of the promise of blended learning for 21st century 

schooling, they also caution educators to set the tone right for blended learning as they see 

many failed attempts when personalized learning is not done right. 

Recommendations for Future Research 

 To further this research, I would like to include a different sample from elementary 

grade levels, specifically 3rd and 4th grades. I would also like to study other adaptive math 

programs and compare their effectiveness with ALEKS. Based on state assessment scores 

and accountability reports, the schools included in this study experienced more gains in math 

in grades 5th through 9th where ALEKS was used. However, they have not seen the same 

level of success with 3rd and 4th grade students, where a different adaptive online software 
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was used. This is one of the reasons why research findings on a particular instructional 

software should not be assumed to be relevant for other instructional software and thus we 

should avoid making generalizations about effectiveness of blended learning initiatives 

and/or adaptive learning technologies.  

As a practicing educational leader, I had the chance to visit many schools around the 

nation and talked with teachers and principals about their experiences with personalized 

learning and curricular components of their programs. Their personal reflections can be 

summed up as follows: You may find one particular program that works really well for 

middle school or high school students, but the same program may not work well for 

elementary level students, or vice versa. Since younger learners are more attracted to 

animations and games, some digital curriculum developers are doing a great job leveraging 

this fact and creating game-based content with animated effects. The same kid-friendly 

approach looks and feels childish and boring for high school level students, and causes them 

to disengage from the program. Therefore, it is commonly observed in K-12 districts which 

are going blended and investing in adaptive learning programs to choose multiple softwares 

for different grade bands. For such reasons, the field of personalized learning and adaptive 

learning technologies seem very research-friendly and such research studies can benefit 

schools and districts tremendously and help them make informed decisions based on 

research. 

Concluding Thoughts 

The factory model of education introduced by Horace Mann was the right fit for our 

country at the time of industrial revolution. That was well over a century ago. The world has 

changed so much since then, but our education system has not. We no longer need high 
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school graduates produced in batches to work in manufacturing jobs at factories. It used to be 

enough for graduates to have basic literacy and arithmetic skills back in the industry age. But 

today the job markets and the economy is much different. The automotive industry for 

example has manufactured a self-driving car. Today many automobile manufacturers do not 

employ mid-skills workers to manufacture parts and put together a car. These things are 

being done by sophisticated robots. So instead of mid-skills workers, manufacturers need 

highly trained engineers, technicians, scientists, and software developers to make and 

program those robots who replaced human workers. As Vander Ark (2016) puts it, “smart 

machines will eat jobs!” The employment opportunities for today’s children are changing and 

being shaped by the artificial and augmented intelligences (Vander Ark, 2016). History is full 

of examples with how advancements in technology and automation changed job markets and 

caused some jobs to vanish. These examples include the printing press, steam engines, and 

the rise of robotics. 

Adaptive technologies and artificial intelligence are increasing efficiency and 

productivity at the workplace and making life so much easier for humans. Why not benefit 

from these advancements in education, so that teaching and learning can be elevated and 

optimized? Blended learning seems to be a great opportunity to provide the means for such 

innovation. Bringing and sustaining change in public education is very difficult and complex 

process. Teachers, leaders, and policy makers can naturally resist to change and prefer 

maintaining the status quo. While some blended learning models appear to be disrupting the 

current traditional school system, educators can implement a hybrid blended learning model 

as a sustaining innovation relative to the traditional classroom. According to Christensen, 

Horn, and Staker (2013), “this hybrid form is an attempt to deliver the best of both worlds—
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that is, the advantages of online learning combined with all the benefits of the traditional 

classroom” (p. 3). Blending effective traditional strategies with new innovations in online 

adaptive learning can be a great fit for most teachers and school leaders especially if they 

have limited budgetary or architectural control over their schools (Christensen, Horn, & 

Staker, 2013). 

Education technology is evolving and new blended curricular solutions are hitting the 

market every year. It is imperative that school and district leaders make informed decisions 

when it comes to choosing the right learning software for their blended learning programs. 

Soliciting teacher and student feedback, creating pilot opportunities, reviewing literature and 

research findings, and communicating with other innovative schools and districts are best 

practices for informed decision making. ALEKS is an online adaptive learning software in 

mathematics with a solid theoretical framework known as knowledge/space theory and is 

built on artificial intelligence. It has promising implications for student learning outcomes 

and strong results as presented in this research study. The researcher hopes that this study 

makes significant contributions to the literature in this emerging field and provides a 

benchmark for evidence-based decision making for educators. 

Finally, for schools and districts who cannot afford hardware and software to bring 

adaptive learning technologies to their students, I would recommend exploring cost-free 

and/or low cost resources to start their personalized learning journey. Khan Academy is a 

free resource that many schools leverage as a personalized tutoring system. Facebook 

recently partnered with a charter school district in San Francisco bay area to design a 

personalized learning platform and dashboard that makes it possible to house online 

curriculum content and track student progress against personalized goals and timelines. This 



106 

personalized learning platform is now offered to all schools and districts across the United 

States free of charge with pre-loaded digital curricula developed under creative commons 

licensing. 
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