

DMLA: A DYNAMIC MODEL-BASED LAMBDA ARCHITECTURE FOR LEARNING AND

RECOGNITION OF FEATURES IN BIG DATA

A THESIS IN
Computer Science

Presented to the Faculty of the University
Of Missouri-Kansas City in partial fulfillment

 Of the requirements for the degree

MASTER OF SCIENCE

By
RAVI KIRAN YADAVALLI

B.Tech, Jawaharlal Nehru Technological University – Hyderabad, India, 2013

Kansas City, Missouri
2016

©2016

RAVI KIRAN YADAVALLI

ALL RIGHTS RESERVED

iii

DMLA: A DYNAMIC MODEL-BASED LAMBDA ARCHITECTURE FOR LEARNING AND

RECOGNITION OF FEATURES IN BIG DATA

Ravi Kiran Yadavalli, Candidate for the Master of Science Degree

University of Missouri-Kansas City, 2016

ABSTRACT

Real-time event modeling and recognition is one of the major research areas that is yet

to reach its fullest potential. In the exploration of a system to fit in the tremendous challenges

posed by data growth, several big data ecosystems have evolved. Big Data Ecosystems are

currently dealing with various architectural models, each one aimed to solve a real-time

problem with ease. There is an increasing demand for building a dynamic architecture using the

powers of real-time and computational intelligence under a single workflow to effectively

handle fast-changing business environments. To the best of our knowledge, there is no attempt

at supporting a distributed machine-learning paradigm by separating learning and recognition

tasks using Big Data Ecosystems.

The focus of our study is to design a distributed machine learning model by evaluating

the various machine-learning algorithms for event detection learning and predictive analysis

with different features in audio domains. We propose an integrated architectural model, called

DMLA, to handle real-time problems that can enhance the richness in the information level and

at the same time reduce the overhead of dealing with diverse architectural constraints. The

DMLA architecture is the variant of a Lambda Architecture that combines the power of Apache

Spark, Apache Storm (Heron), and Apache Kafka to handle massive amounts of data using both

streaming and batch processing techniques. The primary dimension of this study is to

iv

demonstrate how DMLA recognizes real-time, real-world events (e.g., fire alarm alerts, babies

needing immediate attention, etc.) that would require a quick response by the users. Detection

of contextual information and utilizing the appropriate model dynamically has been distributed

among the components of the DMLA architecture. In the DMLA framework, a dynamic

predictive model, learned from the training data in Spark, is loaded from the context

information into a Storm topology to recognize/predict the possible events. The event-based

context aware solution was designed for real-time, real-world events. The Spark based learning

had the highest accuracy of over 80% among several machine-learning models and the Storm

topology model achieved a recognition rate of 75% in the best performance. We verify the

effectiveness of the proposed architecture is effective in real-time event-based recognition in

audio domains.

v

APPROVAL PAGE

The faculty listed below, appointed by the Dean of the School of Computing and Engineering,

have examined a thesis titled “DMLA: A Dynamic Model-based Lambda Architecture for Learning and

Recognition of Features in Big Data” presented by Ravi Kiran Yadavalli, candidate for the Master of

Science degree, and certify that in their opinion, it is worthy of acceptance.

Supervisory Committee

Yugyung Lee, Ph.D., Committee Chair
School of Computing and Engineering

 Yongjie Zheng, Ph.D.
School of Computing and Engineering

Sejun Song, Ph.D.
School of Computing and Engineering

vi

TABLE OF CONTENTS

ABSTRACT .. iii

ILLUSTRATIONS…………………………………...vii

TABLES .. x

1. INTRODUCTION .. 1

1.1 Motivation .. 1

1.2 Problem Statement .. 2

1.3 Proposed Solution .. 2

2. BACKGROUND AND RELATED WORK.. 4

2.1 Terminology .. 4

2.2 Related Work .. 6

2.2.1 Big Data Streaming Tools and Frameworks .. 6

2.2.2 Evaluation on Current Stream Processing Frameworks .. 11

3. PROPOSED FRAMEWORK ... 18

3.1 Overview ... 18

3.2 Dynamic Recognition .. 20

3.3 Feature Extraction Flow.. 21

3.4 Apache Spark Workflow ... 22

3.5 Apache Storm Workflow .. 24

3.6 Apache Kafka and REST API .. 28

3.7 Features on JAudio ... 29

3.8 Context Aware Model... 32

3.8.1 Home Context ... 33

3.8.2 Classroom Context .. 34

3.8.3 Outdoor Context ... 36

3.8.4 Office Context.. 37

vii

3.8.5 Contextual features ... 38

4. RESULTS AND EVALUATION .. 43

4.1 Apache Spark .. 43

4.1.1 Machine Learning Algorithms ... 43

4.2 Evaluation .. 53

4.2.1 Feature Based Analysis .. 53

4.2.2 Audio File VS Feature Data .. 54

5. CONCLUSION AND FUTURE WORK ... 56

5.1 Conclusion .. 56

5.2 Limitations .. 56

5.3 Future Scope ... 56

REFERENCES ... 57

VITA ... 59

viii

ILLUSTRATIONS

Figure Page

Figure 1: Hadoop vs Spark Runtime Performance .. 9

Figure 2: Storm Topology Architecture ... 10

Figure 3: Streaming Applications Workflow .. 12

Figure 4: Lambda Architecture .. 18

Figure 5: Stream Processing Framework Sequence Diagram .. 19

Figure 6: Complete Recognition Model ... 20

Figure 7: Feature Extraction Complete Flow ... 22

Figure 8: Spark Model Building Architecture .. 22

Figure 9: Decision Tree Model ... 23

Figure 10: Storm Topology Recognition .. 25

Figure 11: Storm Topology Visualization ... 25

Figure 12: Single Bolt Topology ... 26

Figure 13: Multiple Bolt Topology ... 27

Figure 14: Hierarchical Bolt Topology ... 28

Figure 15: Kafka Cluster ... 29

Figure 16: Accuracy of Contexts .. 31

Figure 17: Accuracy of Features .. 31

Figure 18: Runtime Performance of Features ... 32

Figure 19: Home Context ... 33

Figure 20: Home Context Wave Form Visualization .. 34

Figure 21: Classroom Context ... 34

ix

Figure 22: Classroom Context Wave Form Visualization... 35

Figure 23: Outdoor Context ... 36

Figure 24: Outdoor Context Wave Form Visualization ... 37

Figure 25: Office Context ... 37

Figure 26: Office Context Wave Form Visualization .. 38

Figure 27: Ranking of Features .. 43

Figure 28: Spark learning vs Features.. 44

Figure 29: Learning in Spark: Static vs Dynamic Data ... 46

Figure 30: Learning in Spark: Static vs Dynamic Data ... 47

Figure 31: Decision Tree Model Evaluation ... 48

Figure 32: Storm ML Model Recognition vs Number of Features ... 49

Figure 33: Storm Recognition vs Classes ... 50

Figure 34: Storm Recognition vs Topologies ... 51

Figure 35: Storm Recognition vs Mobile Recognition ... 52

Figure 36: Heron vs Storm Performance ... 52

x

 TABLES

Table Page

Table 1: Kafka vs Rabbit MQ Performance ... 14

Table 2: Graph Processing Performance .. 15

Table 3: Communications Flow Comparison .. 16

Table 4: Processing Guarantee Comparison .. 17

Table 5: Home Sample Features ... 39

Table 6: Classroom Sample Features ... 40

Table 7: Outdoor Sample Features ... 41

Table 8: Office Sample Features ... 42

Table 9: Real Time Training Data Performance .. 54

Table 10: Static Training Data Performance ... 55

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

Real-time event detection involves the identification of newsworthy happenings (events) as

they occur. These events can be mainstream activities, e.g. when a plane crashes into the Hudson

River, or local events, e.g. a house fire nearby. Automatic online event detection systems use live

document streams to detect events. For instance, streams of newswire articles from multiple

newswire providers have previously been used for event detection [1]. Big Data is one of the most

popular terms nowadays, but Big Data is not only about the volume. Much of the data is received in

real time and is most valuable at the time of arrival.

Around the world, we have 360 million people who have a challenge in hearing [2]. Disabling

hearing loss refers to hearing loss greater than 40 dB in the better hearing in adults and greater than

30 dB in the better hearing in children [2]. This thesis discusses one solution to solve the problem of

hearing disabled people. The audio analysis and prediction are performed using the big data machine

learning platform in apache spark for batch processing and apache storm for real-time audio

recognition. Our motivation was to devise a dynamic model which can be available to the hearing

challenged pupil at optimal resources.

The inception of the model for this project was from the idea of hearing dog. A hearing dog is

a specially trained dog that is owned by people having hearing trouble. The dog hears for any audio

sound and then notifies its owner if the audio event is of prominence such as doorbell etc. Also, the

other idea was to harness the power of the big data platform and streaming audio data for audio

analysis. This is one area that has been unexplored. These simple ideas were the motivation for our

study where the primary goal was to develop an audio detection, analysis, and prediction system.

2

1.2 Problem Statement

The unusual growth of data in the recent past has pushed the world into a room of bigger

challenges. The synthesis and the processing of this tremendous data to valuable information are the

most popular challenge of technology world today. In the exploration of a system to fit in the

tremendous challenges posed by the data growth, several ecosystems have evolved; one such is Big

Data Ecosystem. Big Data Ecosystem is currently carrying varying architectural models, each one

aimed to solve a real-time problem with ease. The problem statement here is to develop a new

integrated architecture for audio classification training model and dynamic audio recognition based

on the trained model. The each audio model built must be context aware and should have the ability

to predict the correct class with in the appropriate context. One have to figure out the most accurate

or suitable machine learning model for each of the context through observations and experiments. A

dynamic topology has to be generated for identification of each of the class and recognize the audio

of variable frame length to predict the audio stream’s category.

1.3 Proposed Solution

This thesis focuses on design of a distributed integrated architectural model for both batch

and streaming data. The philosophy of having integrated architectural models to face a superset of

real-time problem statements is novel one, which could enhance the richness in information level and

at the same time reduce the overhead of dealing with inhomogeneous architectural constraints.

The proposed solution is a Lambda Architecture. Lambda Architecture is a data processing

architectural design to handle massive amounts of data using both the streaming and batch

processing techniques. The likes of Lambda architecture’s popularity can be directly proportion to the

increasing success of big-data, Hadoop and stream processing.

The focus of our study is to design a distributed machine learning model by evaluating the

various machine-learning algorithms for event detection learning and predictive analysis with

3

different features in audio domains. We propose an integrated architectural model, called DMLA, to

handle real-time problems that can enhance the richness in the information level and at the same

time reduce the overhead of dealing with diverse architectural constraints.

4

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Terminology

 Decision trees and their ensembles are popular methods for the machine learning

tasks of classification and regression. Decision trees are widely used since they are easy to interpret,

handle categorical features, extend to the multiclass classification setting, do not require feature

scaling, and are able to capture non-linearities and feature interactions. Tree ensemble algorithms

such as random forests and boosting are among the top performers for classification and regression

tasks [4].

 Naive Bayes is a simple multiclass classification algorithm with the assumption of

independence between every pair of features. Naive Bayes can be trained very efficiently. Within a

single pass to the training data, it computes the conditional probability distribution of each feature

given label, and then it applies Bayes’ theorem to compute the conditional probability distribution of

label given an observation and use it for prediction [5].

 Random forests are ensembles of decision trees. Random forests combine many

decision trees in order to reduce the risk of overfitting. The spark.ml implementation supports

random forests for binary and multiclass classification and for regression, using both continuous and

categorical features [6].

 Storm Topology is where; the logic of a real-time application is packaged. It is

analogous to map-reduce job. One of the prime differences is that map-reduce job eventually finishes,

whereas a topology runs forever. It is a graph of spouts and bolts that are connected with streaming

groups.

 Stream is the core abstraction in storm which is unbounded sequence of tuples that is

processed and created in parallel in a distributed way. It is defined with a schema that names the

5

fields in the stream’s tuples. It can, by default, contain integers, longs, byte arrays, etc. One can also

define their own serializers so that custom types can be used within the topology.

 Spout is a source of streams in a topology. Usually spouts will read tuples from an

external source and emit them into the topology.

 Bolts can do anything from filtering functions to aggregations, talking to Databases

and more. They can do simple stream transformations and can also do complex transformations using

multiple bolts and multiple steps.

 Tasks pertain to one thread of execution and stream groupings define the procedure

to send data from one task to another.

 Feature Vector is an n-dimensional vector of numerical features that represent some

object. Many algorithms in machine learning require a numerical representation of objects. Since,

such representations facilitate processing and statistical analysis.

 Machine learning Model can be either based on supervised learning or unsupervised

learning. It is the stored form of the model yielded from the training data passed.

 Events in the audio domain will be the different sounds which can be distinguished

uniquely and grouped under a context. Here on, the events are synonymous to the audio classes in

each of the environment.

6

2.2 Related Work

2.2.1 Big Data Streaming Tools and Frameworks

Big data is a process of dealing with huge volume, high velocity of heterogeneous data [3].

This kind of data cannot be handled using the traditional data management techniques. Big data tools

are the set of tools and techniques that provide the features to store and process the big data

efficiently. These tools provide analytical capabilities that help in knowledge mining and decision

making process. Apache Hadoop, Apache Spark, Kafka, Tableau etc. are some of the popular big data

tools. In this approach use Apache Spark for the processing of audio data.

 MapReduce is successful in implementing data intensive applications on commodity clusters

but they make use of acyclic flows to execute data flow and this is not useful for certain type of

applications which involve using working sets like iterative algorithms [8]. Spark is intended for these

type of applications as well and it uses a data abstraction called RDDs (Resilient distributed datasets)

to achieve these goals and for fault tolerance. In the storm, the real time stream processing is done

and it is fault tolerant. The complex computations in twitter at Scala can be processed in real time by

storm. This work gives a brief description on the architecture of Storm and methods to implement

fault tolerance and distributed scale-out. This work also illustrates how to execute queries in storm

and how flexible it is while dealing with machine failures.

Now-a-days stream processing has become a serious issue of the data pipeline for consumer

internet companies. Kafka is introduced as a distributed message system that is developed for

collection and delivery of high volumes of data with low latency. Kafka supports both online and

offline messaging system. To make Kafka more efficient, few unconventional design choices are made.

Experimental results clearly say that Kafka has high performance when compared to other two

messaging systems. In Kafka hundreds of gigabytes of data is been processed every day.

7

Stream analysis research has been extensively increased these days, especially on feature

extraction and context summary. Deep intelligence framework which is used to reveal the knowledge

that is hidden in the stream data. This combines stream processing, batch processing and deep

learning in order to realize deep intelligence. This helps in processing the content online. Streaming

content consumption has become more popular these days. This has reshaped the internet traffic

which made people move from scheduled television to content on demand services. Since the

broadcasting services are online, customers are expecting a good bit rates. Wise Replica, which is

adaptive replication scheme for peer assisted content on demand systems which will enforce the

average bit rate for the Internet content. With the help of the machine learning algorithm, Wise

replica will save storage and bandwidth from majority of non-popular contents. Resilient Distributed

Datasets (RDDs): It is an immutable i.e. read only collections of objects that are partitioned across

cluster. RDD is immutable so, MapReduce algorithms can be applied on them. They can be cached on

memory so, they perform better than Hadoop. RDD need not be stored or replicated to achieve fault

tolerance but a handle to operations performed on original data is stored so that lost partitions can

be rebuilt again parallel. RDDs are default lazy so computationally efficient. Several parallel operations

like reduce, collect, map and for-each, filter etc. can be applied on RDD’s. And all programming

statements should be deterministic. Spark provides two kinds of shared variables, broad cast variables

and accumulators. Broad cast variables send small amount to all nodes. Accumulator variables are

used for add only associative operations in driver like count operations in MapReduce [9].

8

Spark is built on top of Mesos, a cluster resource manager. This helps spark to work with

existing cluster computing frameworks like Hadoop, HDFS, etc. Any RDD implements three simple

operations as an interface,

1. getPartitions, which returns a list of partition IDs.

2. getIterator(partition), which repeats over a partition.

3. getPreferredLocations(partition), this is used for task scheduling in order to achieve data

locality.

Apache Spark system is divided in multiple layers, each layer has some responsibilities. The

layers work independent of each other.

Interpreter is the first layer and Spark uses a Scala interpreter. As the code is entered in spark

console Spark creates an operator graph. When the code runs an action (like collect), the Graph is

submitted to a DAG Scheduler. It changes the operators into “stages of different tasks”. A stage can

be seta as a set of tasks based on input RDD and number of partitions. The DAG scheduler pipelines all

the operators together. Many map operators can be scheduled in a single stage is possible. The final

output from a DAG scheduler is a set of stages. So many things can be performed by dividing tasks

into map and reduce stages. The Stages are passed on to the Task Scheduler. The task scheduler will

launch tasks via cluster manager - Spark Standalone/Yarn/Mesos. The task scheduler doesn't know

about dependencies between stages. The Worker executes the tasks on the Slave machine or node. A

new JVM is started for a JOB. The worker knows about the code that is assigned to it by task

scheduler. The shared variables are implemented using their custom serialization formats.

 Spark mainly uses Scala interpreter but Spark is also available in java, python. They made two

changes to actual Scala interpreter to make it work with Spark. The interpreter will output classes to a

shared filesystem from which custom java class loaders can be used. To propagate the updates made

9

by singleton objects to workers, they changed the generating code to reference previous line as well

in the code.

For the evaluation, spark is used for logistic regression, alternating least squares, and

dumping memory access to test for instructiveness of spark.

Figure 1: Hadoop vs Spark Runtime Performance

10

The storm architecture involves processing of streams of tuples flowing through the

topologies. In the topology we have vertices and edges. The Vertices represent computations and the

edges describe the flow of data between the computational components. Vertices are further

classified into two different sets namely Spouts and Bolts. The data from the queries Such as Kafka is

pulled by the spouts. The incoming tuples are processed by the bolts and passes them to next stream

of bolts. Storm topology involves cycles. Storm is generally processed on a distributed cluster and

twitter on mesos. In the figure, the Nimbus is the master node and is responsible for assigning and

correlate the execution of topology. The worker nodes process the actual work to be done.

Figure 2: Storm Topology Architecture

11

The worker node runs on one or more worker process. More than one worker process is

involved at any point of time during execution and this worker process is to be mapped to a single

topology on the cluster. One or more worker processes from the same machine may involve

executing different parts of the same topology. This worker process is executed on the JVM. Through

this process parallelism has been provided by the tasks. Each spout or a bolt consists of set of tasks

running on the same machine. Storm has five different partitioning strategies. They are:

1. Shuffle grouping: The tuples are grouped randomly.

2. Field grouping: The subset of the tuple field is hashed.

3. All grouping: The complete stream of data is replicated over the consumer tasks.

4. Global grouping: The total stream of data is sent to a single bolt for processing.

5. Local grouping: The tuples are sent to the consumer bolts through the same executer.

2.2.2 Evaluation on Current Stream Processing Frameworks

There is a class of applications in which large amounts of data generated in external

environments are pushed to servers for real time processing. These applications include sensor-based

monitoring, stock trading, web traffic processing, network monitoring, and mobile devices [10]. The

data generated by these applications can be seen as streams of events or tuples. In stream-based

applications this data is pushed to the system as unbounded sequences of event tuples. Since

immense volumes of data are coming to these systems, the information can no longer be processed in

real time by the traditional centralized solutions. A new class of systems called distributed stream

processing frameworks (DSPF) has emerged to facilitate such large-scale real time data analytics.

There are many frameworks developed to deploy, execute and manage event-based

applications at large scale, and this is one important class of streaming software. Examples of early

event stream processing frameworks included Aurora, Borealis, StreamIt and SPADE. With the

emergence of Internet-scale applications in recent years, new distributed map-streaming processing

12

models have been developed such as Apache S4, Apache Storm, Apache Samza, Spark Streaming,

Twitter’s Heron and Neptune, with commercial solutions including Google Millwheel, Azure Stream

Analytics and Amazon Kinesis. Apache S4 is no longer being developed actively. Apache Storm shares

numerous similarities with Google Millwheel, and Heron is an improved implementation of Apache

Storm to address some of its execution inefficiencies.

Figure 3: Streaming Applications Workflow

 We can evaluate a streaming system on two largely independent dimensions. In one

dimension there is a programming API for developing the streaming applications, and the other has

an execution engine that executes the streaming application. In theory a carefully designed API can be

plugged into any execution engine. A subset of modern event processing engines were selected in this

paper to represent the different approaches that DPSFs have taken in both dimensions of

functionality, including a DSPF developed in academia i.e. Neptune.

The engines we consider are:

1. Apache Storm [13]: Apache Storm is a free and open source distributed real-time computation

system.

2. Apache Spark [12]: Apache Spark is a fast and general engine for big data processing, with built-in

modules for streaming, SQL, machine learning and graph processing.

13

3. Apache Flink [14]: Apache Flink is an open source platform for distributed stream and batch data

processing. Flink’s core is a streaming dataflow engine that provides data distribution,

communication, and fault tolerance for distributed computations over data streams.

4. Apache Samza [15]: Apache Samza is a distributed stream processing framework. It uses Apache

Kafka for messaging, and Apache Hadoop YARN to provide fault tolerance, processor isolation,

security, and resource management.

5. Neptune [10]: A real-time distributed stream processing framework.

We would like to evaluate these five modern distributed stream processing engines to

compare the capabilities they offer and their advantages and disadvantages along both dimensions of

functionality.

Distributed Stream Processing has a strong connection to message queuing middleware.

Message queuing middleware is the layer that compensates for differences between data sources and

streaming applications. Message queuing is used in stream processing architectures for two major

reasons.

1. It provides a buffer to mitigate the temporal differences between message producing

and message consuming rates. When there is a spike in message production, they can be temporally

buffered at the message queue until the message rate comes down to normal. Also when there is a

slowdown in the message processors, messages can be queued at the broker.

2. Messages are produced by a cloud of clients that makes a connection to the data

services hosted in a different place. The clients cannot directly talk to the data processing engines

because different clients produce different data and these have to be filtered and directed to the

correct services. For such cases brokers can act as message buses to filter the data and direct them to

appropriate message processing applications.

http://kafka.apache.org/
http://kafka.apache.org/
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

14

 Table 1: Kafka vs Rabbit MQ Performance

 Kafka [16] RabbitMQ [10]

Latency Polling clients and disk-based data
storage makes it less friendly to
latency critical applications.

In memory storage for fast
transfer of messages.

Throughput Best write throughput with scaling
and multiple client writing to
same topic. Multiple clients can
read from same topic at different
locations of message queue at the
same time.

Single client writing to the same
topic. Multiple consumers can
read from the same topic at the
same time.

Scalability Many clients can write to a queue
by adding more partitions. Each
partition can have a message
producer implying writers
equivalent to partitions.
The server doesn’t keep track of
the clients, so adding many
readers doesn’t affect the
performance of the server.

Maintains the client status in
memory, so having many clients
can reduce its performance.

Fault tolerance Support message replication
across multiple nodes

Support message replication
across multiple nodes

Complex message routing No Supports up to some level, but not
to the level of a service bus.

The graph is abstracted in different ways in different stream processing engines. Some DSPFs

directly allow users to model the streaming application as a graph and manipulate it as such. Others

do not allow this function and instead give higher level abstractions which are hard to recognize as a

graph but ultimately executed as such. Different DSPFs have adopted different terminologies for the

components of the graph.

15

 Table 2: Graph Processing Performance

 Storm[13] Spark[12] Flink[14] Samza[15] Neptune[10]

Graph Node Spout or Bolt An operator on
a RDD

Operator on a
DataStream

Task Stream Sources
and Stream
Processors

Graph Edge Stream Defined
implicitly by
the operators
on RDDs

Defined
implicitly by the
operators on
Data Stream

Kafka Topic Links

Graph is
directly
created by
user

Yes No No Yes Yes

Message
abstraction

Tuple RDD Data Stream Envelope Stream Packet

Primary
operator
implementatio
n language

Java Java/Scala Java/Scala Java Java

Name of Graph Topology Stream
processing job

Stream
Processing job

Samza Job Stream
Processing
Graph

Communications involve serializing the objects created in the program to a binary format and sending

them over TCP. Different frameworks use different serialization technologies and this can be

customized. The communications can do optimizations such as message batching to improve the

throughput sacrificing latency. Usually the communications are peer to peer and the current DSPFs

don’t implement advanced communications optimizations. Communications can be either pull based

or poll based while pull based providing the best latency. Poll based systems can have the benefit of

not taking messages that cannot process at a node.

Flow control is a very important aspect in streaming computations. When a processing node

becomes slow the upstream nodes can produce more messages than the slow node can process. This

can lead to message build ups in the upstream nodes or message losses at the slow node depending

16

on the implementation. Having flow control can prevent such situations by slowing down the

upstream nodes and eventually not taking messages from the message brokers to process.

 Table 3: Communications Flow Comparison

 Storm[13] Spark [12] Flink [14] Samza [15] Neptune [10]

Data
serialization

Kryo
serialization of
Java objects

RDD
serialization

Data Stream
Serialization

Custom
serialization

Java Objects

Task Scheduler Nimbus, can
use resources
allocated by
Yarn

Mesos, Yarn Job Manager
on top of the
resources
allocated by
Yarn and
Mesos

Yarn Granules

Communicatio
n framework

Netty Netty Netty Kafka Netty

Message
Batching for
High
throughput

Yes Yes Yes Yes Yes

Flow control No Yes Yes Yes Yes

Message
delivery

Pull Pull Pull Poll Pull

There are several methods of achieving processing guarantees in streaming environments.

The more traditional approaches are to use active backup nodes, passive backup nodes, upstream

backup or amnesia. Amnesia provides gap recovery with the least overhead. The other three

approaches can be used to offer both precise recovery and rollback recovery. All these methods

assume that there are parallel nodes running in the system and these can take over the responsibility

of a failed task.

Before providing message processing guarantees, systems should be able to recover from

faults. If a system cannot recover automatically from a fault while in operation, it has to be manually

maintained in a large cluster environment, which is not a practical approach. Almost all the modern

distributed processing systems provide the ability to recover automatically from faults like node

17

failures and network partitions. Now let’s look at how the five frameworks we examine in this paper

provide processing guarantees.

 Table 4: Processing Guarantee Comparison

 Storm [13] Spark [12] Flink [14] Samza [15] Neptune [10]

Recover from
faults

Yes Yes Yes Yes No

Message
processing
guarantee

At least once Exactly once Exactly once At least once Not available

Message
guarantee
mechanism

Upstream
backup

Write ahead
log

Check-pointing Check-pointing Not available

Message
guarantee
effect on
performance

High High Low Low Not available

18

CHAPTER 3

PROPOSED FRAMEWORK

3.1 Overview
The demand for stream processing is increasing. Immense amounts of data have to be

processed fast from a rapidly growing set of disparate data sources. This pushes the limits of

traditional data processing infrastructures. These stream-based applications include trading, social

networks, Internet of things, system monitoring, live results tracking and many other real-time system

examples. A number of powerful, easy-to-use open source platforms have emerged to address this.

But the same problem can be solved differently, various but sometimes overlapping use-cases can be

targeted or different vocabularies for similar concepts can be used. This may lead to confusion,

longer development time or costly wrong decisions.

Figure 4: Lambda Architecture

 Batch Layer: Unrestrained computation. The batch layer can calculate anything, given

enough time

19

 Speed Layer: All the complexity is isolated in the Speed Layer. If anything goes wrong,

it’s auto-corrected

 Serving Layer: This layer queries the batch & real-time views and merges it.

Figure 5: Stream Processing Framework Sequence Diagram

We specified three types of events related to task usage that can be reported by a task back

to the platform [11]:

 Number and types of recent interactions with an actuator (“recent” is defined by a

configurable time window).

20

 Number and types of recent database transactions.

 Probability of topology termination based on the most recent task executions (this

metric shows the ratio with which incoming stream items do not lead to any outgoing stream and it

can be important when deciding where to execute the tasks).

3.2 Dynamic Recognition

Figure 6: Complete Recognition Model

Dynamic Recognition model is the combination of the Batch training and Real-time prediction

system. The model has low latency and high performance in clustered environment. Multiple sources

through client application can train the data using spark model building techniques. Message broker

Kafka helps us achieve high scalability and fault-tolerance from message communication between

client and spark. In terms of testing data, a feature vector is sent to storm through Kafka producer by

an REST service from client application. Once the data is received to Kafka spout, each of the tuple is

sent to several Bolts for processing and synthesis to extract intermediate outputs. The synthesis is

21

based on the decision tree model built on spark. The intermediate outputs can be aggregated using an

aggregator bolts. The results from aggregation are stored in mongo DB for visualization.

3.3 Feature Extraction Flow

In this section we would be briefly explaining about the feature extraction flow. A real-time

audio is constantly received by the Android client through a listener. Once the audio is received, the

Fast Fourier Transformation is applied to the audio input stream and the transformed sound is fed to

the JAudio feature extractor in order to extract various features. These features are saved in a text file

which will be used as training dataset in Spark for model building.

Once the model is successfully built, the same procedure of collecting features from a real-

time audio is applied. The received features are processed with the already built model during model

training phase to emit predictions. These predictions are analyzed and the client is notified about the

recognition from model prediction phase.

22

Figure 7: Feature Extraction Complete Flow

 Figure 7 shows the light weight feature extraction from the client and the distributed

computing achieved with Spark for training and testing. The architecture is highly scalable and fault

tolerant. The updated model can be saved in Spark in order to predict results for real-time input on

the go. The audio data is collected by the mobile device listener and data is converted to a fast fourier

transformer wave and features are extracted out of it for learning and recognition.

3.4 Apache Spark Workflow

Figure 8: Spark Model Building Architecture

On the Spark server engine side, before the application actually runs the models are trained

using data in the form of .wav files. To improve the accuracy samples of real time data, i.e. data

recorded through Android device is also fed into the training data. For training based on the audio

files the Spark server uses JAudio library to extract features from the audio files. These files are

sampled and features are extracted for each sample. The ratio of samples can be user defined by

defining the sample length through the JAudio library.

23

 For each context models are trained and saved into the filesystem. Once the data from the

client arrives through the socket, the Spark server checks the context information to load the

appropriate model to be used. Then the server uses the feature extraction information to predict the

audio class based on the values of the features that were received.

Once the predicted audio class data is ready, it is then sent back to android client using the

socket connection. On receiving the predicted audio class the client displays a notification to the user.

This notification is intended to alert the user of the audio event that was recorded.

Figure 9: Decision Tree Model

The outcome of spark machine learning model is that a decision tree model like above figure

is built which can help us predict the label of the class. Decision Tree is bunch of if-else statements

based on feature vector values to identify a leaf-node, which is a class in a context.

24

3.5 Apache Storm Workflow

Storm defines computation in terms of data streams flowing through a graph of connected

processing instances. These instances are held in-memory, may be replicated to achieve scale and can

be run dynamically on multiple machines. The graph of inter-connected processes is referred to as a

topology. A single Storm topology consists of spouts that inject streams of data into the topology and

bolts that process and modify the data. Topologies facilitate the modularization of complex processes

into multiple spouts and bolts. By connecting multiple spouts and bolts together, tasks can be

distributed and scaled

Apache Storm has the following advantages in terms of performance benchmarks.

1. Scalable: The operations team needs to easily add or remove nodes from the Storm cluster

without disrupting existing data flows through Storm topologies (aka. standing queries).

2. Resilient: Fault-tolerance is crucial to Storm as it is often deployed on large clusters, and

hardware components can fail. The Storm cluster must continue processing existing topologies with a

minimal performance impact.

3. Extensible: Storm topologies may call arbitrary external functions (e.g. looking up a MySQL

service for the social graph), and thus needs a framework that allows extensibility.

4. Efficient: Since Storm is used in real-time applications; it must have good performance

characteristics. Storm uses a number of techniques, including keeping all its storage and

computational data structures in memory.

5. Easy to Administer: Since Storm is at that heart of user interactions on Twitter, end-users

immediately notice if there are (failure or performance) issues associated with Storm. The operational

team needs early warning tools and must be able to quickly point out the source of problems as they

arise. Thus, easy-to-use administration tools are not a “nice to have featured,” but a critical part of

the requirement.

25

Figure 10: Storm Topology Recognition

Storm can receive the data continuously from Kafka spout and emit the tuples to various

processing bolts. Bolts are the processing centers for tuples received through spout and the emitted

results can be stored in MongoDB for further evaluation. Tuples are the data objects coupled closely

to bolts. Several transformations of tuples are possible in execute method of Bolt.

Figure 11: Storm Topology Visualization

26

Figure 12: Single Bolt Topology

The complete machine learning model is dynamically loaded into storm from Mongo DB. The

Outcome of the Bolt is a Single Decision. The single Recognition Bolt will identify the class the audio

belongs to from set of classes.

27

Figure 13: Multiple Bolt Topology

The complete machine learning models is dynamically loaded into storm from Mongo DB and

is split to multiple Bolts. The Outcome of the Bolt is an Aggregation from individual Bolts. Each

Recognition Bolt would give a Boolean decision for class. The aggregation bolt collects the results

from each of the spanning tree bolt.

28

Figure 14: Hierarchical Bolt Topology

The complete machine learning model is dynamically loaded into storm from Mongo DB and

is split multi- level bolts. The Outcome of the Bolt is an input to the next level bolt. Each Recognition

Bolt would predict a class or level and therefore expects to parse the remaining of the model tree.

The aggregation bolt collects the results from each of the final level tree bolt.

3.6 Apache Kafka and REST API

Kafka has four core APIs:

 The Producer API allows an application to publish a stream records to one or more

Kafka topics.

 The Consumer API allows an application to subscribe to one or more topics and

process the stream of records produced to them.

https://kafka.apache.org/documentation.html#producerapi
https://kafka.apache.org/documentation.html#consumerapi

29

 The Streams API allows an application to act as a stream processor, consuming an

input stream from one or more topics and producing an output stream to one or more output topics,

effectively transforming the input streams to output streams.

The Connector API allows building and running reusable producers or consumers that connect

Kafka topics to existing applications or data systems. For example, a connector to a relational

database might capture every change to a table.

Figure 15: Kafka Cluster

3.7 Features on JAudio

The different features which can be extracted for a input audio stream in JAudio are listed

below. In each context scenario, we choose only those features which could best represent the types

of classes in a context.

https://kafka.apache.org/documentation.html#streams
https://kafka.apache.org/documentation.html#connect

30

1. Peak detection (PD) is the detection of the points in time that a sound signal exceeds

a certain threshold.

2. Zero crossing rate (ZCR) is the rate of sign-changes along a signal or the number of

times the sound signals cross the x-axis. This feature excels in separating voiced and unvoiced frames.

The human voice contains both voiced and unvoiced parts.

3. The Root Mean Square of the waveform calculated in the time domain to indicate its

loudness. Corresponds to the ‘Energy’ feature.

4. Fraction of Low Energy Windows is the fraction of the last 100 windows that has an

RMS less than the mean RMS in the last 100 windows. This can indicate how much of a signal is quiet

relative to the rest of the signal.

5. Spectral Roll-off is the frequency bin below which 93% of the distribution is focused;

this is a degree of the skewness of the spectral distribution.

6. MFCCs (Mel Frequency Cepstrum Coefficients) are motivated by the human auditory

system. Human sensitivity of frequencies does not follow a linear scale. Variants in lower frequencies

are perceived more precisely than variations in high frequencies.

7. Compactness: A degree of the noisiness of a signal. Established by comparing the

components of a window's magnitude spectrum with the magnitude spectrum of its adjacent

windows.

31

Figure 16: Accuracy of Contexts

The above figure shows the performance of different features pertaining to each of the

contexts. For example, it is observed that the accuracy of recognition is high in case of Gender context

using the frequency distribution (FD) feature of audio. In general, MFCC happens to perform the best

in recognizing the correct class in a given context.

Figure 17: Accuracy of Features

The above figure shows the accuracy achieved per feature vectors of Jaudio on

different contexts and it is observed that Haar and MFCC performing the best for given

contexts. Whereas the highest performing individual feature happens to be the Frequency

Domain for Gender class.

32

Figure 18: Runtime Performance of Features

The relative execution times of different features are given in the list and the MFCC happens

to have to have highest execution time, yet has very high accuracy. Hence it is always chosen as a key

feature despite its high running time.

3.8 Context Aware Model

Context aware systems are a component of ubiquitous computing or pervasive computing

environment [7].The goal is to make the mobile computer capable of sensing the users and their

current state, exploiting context information to significantly reduce demands on human attention. To

minimize user distraction, a pervasive computing system must be context-aware. In our current work,

we have devised four important contexts based on the geographical prevalence.

Each of the below discussed context has around 5 classes in each context, which depict the

most important activities of the user in the corresponding context .The application is designed in a

such a way that the activity/event is recognized based on the current context and alerts the user

through a notification on device.

33

3.8.1 Home Context

The Home context would be set to alert the user about the most significant activities when

user is around geolocation of home. The purpose of a home context is to identify the key activities of

user in day to day life. Once the user identifies the key activities, he can train them as different classes

under this context for future recognition.

Figure 19: Home Context

The different classes under home context are

1. Telephone: The Telephone context at home would signify a ringing sound from a home

telephone or a cellular device.

2. Door knock: The Door knock context signifies a knock on the door in home environment.

3. Doorbell: The Doorbell scenario will highlight common sounds of a doorbell in home context.

4. Dog bark: The dog bark context can identify with different types of sound from the bark of a dog

at home.

5. Siren: The siren context in home context will include emergency alarms such as fire alarms,

security threats at home, etc.

34

Figure 20: Home Context Wave Form Visualization

3.8.2 Classroom Context

The Classroom context would be useful in identifying the activities in the classroom of the

user. The possible events could be a lecture taking place, an emergency alarm or a discussion in the

classroom.

Figure 21: Classroom Context

35

The classes under Classroom context are:

1. Siren: The siren context in classroom context will include emergency alarms such as fire

alarms, security threats, etc. in school environment.

2. Man: The man context will highlight male voice sounds in a classroom.

3. Woman: The woman context will highlight female voice sounds in a classroom.

4. Group: The group context will highlight more than one female or male voice sounds in a

classroom.

Figure 22: Classroom Context Wave Form Visualization

36

3.8.3 Outdoor Context

The Outdoor context would be enabled when the user is driving or when the user is exposed

to an open-air environment. This would help the user in identifying any alarming activities on the road

and alert the user.

Figure 23: Outdoor Context

The classes under Outdoor context are:

1. Ambulance: The Ambulance alarm and siren sounds are identified under this class.

2. Horn: The horn sounds from vehicles are identified under this class.

3. Police: The police vehicle’s siren alerts sounds are identified in this class.

4. Traffic: The traffic class identifies the noises noticed during heavy congestions on road.

5. Train: The different sounds emitted from a train are captured in this class.

6. Vehicle (Car, Motorbike): The vehicle class senses the sounds from different two wheeler and

four wheeler vehicles.

37

Figure 24: Outdoor Context Wave Form Visualization

3.8.4 Office Context

The Office context would capture and alert vital events when user is in office. These events

could be possibly the sounds of several devices or gadgets which generally used for communication in

the office.

Figure 25: Office Context

38

The classes under Outdoor context are:

1. Desk bell: The desk bell class signifies the sounds from different bells for service in the office

environment.

2. Keyboard: The keyboard typing sounds are captured under this class.

3. Fax: Fax alerts and fax machine running sounds in the office are recognized in the fax class.

4. Office door: Office door opening and shutting sounds are captured in the office door class.

5. Phone: The cellular and telephone ringing sounds of the office are recognized in this class.

6. Printer: The printer class identifies various sounds from the office printing machines.

Figure 26: Office Context Wave Form Visualization

3.8.5 Contextual features

The most significant features for home context are Compactness and MFCC. These features

can correctly classify the classroom activities to corresponding classes.

The decision tree for this context has a depth of 5 and 21 nodes. The spanning trees could

correctly label each of the class from the decision tree model.

39

Table 5 shows the sample features values for different classes in home context.

Table 5: Home Sample Features

Class Zero

Cross

ing

MFCC Spectral Roll

Off

Peak Value RMS Compactness Fraction of

Low Energy

Windows

Teleph

one

17.19

8

6.4000144900

84054

0.00450390

625

0.04266666666

666665

7.39571384741

4926E-4

0.008650060383

35191

636.1971371

271076

Doork

nock

14.85

6

6.4000213476

15432

0.00406738

28125

0.04266666666

666665

2.98472578828

03524E-4

0.007734650891

316967

653.9503031

006038

Doorb

ell

8.807 6.4000063181

30669

0.00248779

296875

0.04266666666

666665

4.12487389586

4025E-4

0.003569621600

0250477

683.2859511

11393

Dogbar

k

14.10

6

6.4000104810

406855

0.00256542

96875

0.04266666666

666665

1.82076200539

99944E-4

0.004052412511

388329

651.4340836

352274

Siren 22.77

3

6.4000956966

31952

0.00900830

078125

0.04266666666

666665

0.00343367580

9666451

0.056676612669

82051

324.7194988

563841

In table 5, the most significant features for classroom context are Compactness and MFCC.

These features can correctly classify the classroom activities to corresponding classes. The decision

tree for this context has a depth of 5 and 21 nodes. The spanning trees could correctly label each of

the class from the decision tree model. Table 5 shows the sample features values for different classes

in office context.

40

Table 6: Classroom Sample Features

ClassRoo

m

Zero

Crossing
MFCC

Spectral

Roll Off
Peak Value RMS Compactness

Fraction of

Low Energy

Windows

Siren 12.081

6.40003

043287

9214

0.0061455

078125

0.04266666666

666665

0.002642619852

6988184

0.020974373548

93187

448.87528089

151414

Man 8.295

6.40000

537807

4125

0.0024746

09375

0.04266666666

666665

1.036937096571

0008E-4

0.001957488770

6529163

678.01187391

24316

Woman 11.852

6.40003

275627

9287

0.0059165

0390625

0.04266666666

666665

8.275344874519

14E-4

0.014278280763

170673

640.69509863

6625

Group 11.433

6.40000

383628

9739

0.0031699

21875

0.04266666666

666665

5.027383033026

648E-5

0.001176044147

0179542

661.11984782

3091

 In table 6, the significant features in the home context are RMS and Spectral Roll Off which

could correctly classify the events to appropriate classes. This has the decision tree with a depth of 5

and having 33 nodes. The various spanning trees could correctly label each of the class from the

decision tree model. Table 6 shows the sample features values for different classes.

41

Table 7: Outdoor Sample Features

Out

Door

Zero

Cross

ing

MFCC
Spectral Roll

Off
Peak Value RMS Compactness

Fraction of

Low Energy

Windows

Ambula

nce

117.2

1

799.78619825

48343

0.20666666666

666667

150.47721741

661945

0.06939453

125

3932.1387766

719226

32.548268762

45168

Horn 65.55
142.39445117

349476

0.11999999999

999997

14.180537678

19874

0.08183593

75

2224.5983352

975654

18.917546286

145356

Police
122.4

7

162.64174963

18415

0.13999999999

999996

4.5477088441

12729

0.09760253

90625

2357.2694785

83858

22.033538458

42048

Traffic
170.6

4

105.82071270

580484

0.28000000000

000014

16.199522332

341193

0.15255859

375

5134.0673716

78831

43.441276270

69722

Train 120.0
201.30429275

7232

0.16666666666

66666

10.708176546

111845

0.11869140

625

3014.0134634

61915

26.338728397

79567

Vehicle
148.7

1

232.57912378

520254

0.20666666666

666667

8.1358935508

60294

0.09444824

21875

3621.2184729

63309

32.862534136

147254

In table 7, the significant features in the office context are Zero crossing and MFCC which

correctly classifies the office events to corresponding classes. The decision tree has a depth of 5 and

38 nodes. The spanning trees could correctly label each of the class from the decision tree model.

Table 8 shows the sample features values for different classes in office context.

42

Table 8: Office Sample Features

Office

Zero

Cross

ing

MFCC
Spectral Roll

Off
Peak Value RMS Compactness

Fraction of

Low Energy

Windows

Printer 191.3
325.54124

9784738

0.28000000000

000014

73.597115134

90828

0.21969238

28125

4813.3313780

03683

43.977482471

25381

Office Door 17.07
72.198724

37202147

0.06666666666

666667

11.991216027

091632

0.02067382

8125

1137.4420117

912287

10.559684350

774301

Phone 18.7
69.659608

4943008

0.07333333333

333333

11.468184399

816431

0.03835449

21875

1232.0263855

665005

11.594855330

414326

Fax 93.12

104.54954

70369279

8

0.10666666666

666665

14.938082276

075852

0.05849609

375

1966.8493570

266512

16.876733356

265046

Keyboard 25.86
62.169119

02208157

0.08666666666

666666

15.318767451

079482

0.06132324

21875

1494.6489932

33488

13.582590988

0317

D

esk bell

9

.36

1

58.960993

54553522

0.066

6666666666666

7

8.624

715385893023

0.

0291943359

375

1002.

511108828091

10.89

941986626601

4

In table 8, feature extraction from audio plays a key role in identifying the appropriate

features for the class recognition in the each context. The features have been classified largely into

domains.one being time domain and other is frequency domain.

43

CHAPTER 4

RESULTS AND EVALUATION

4.1 Apache Spark

The Spark engine receives the extracted features from the android device through socket and

builds a model from the training data. The training data is the set of features from device which are

collected on the go when a sound is heard. Various combinations of training data features have been

tested and finally the below seven features were considered to be the top performing audio features

both on client and server. Those are Zero crossings, MFCC, SpectralRollOff, Peak Value, RMS,

Compactness and Fraction of Low Energy Windows.

4.1.1 Machine Learning Algorithms

Figure 27: Ranking of Features

 In figure 27, we present in more detail how the different features that have performed in the

machine learning. MFCC happens to be the best performing feature among the 10 features.

0 10 20 30 40 50 60 70 80 90

Zero crossing rate

MFCC

Peak Value

RMS

Compactness

Fraction of low energy windows

Spectral roll off point

Spectral flux

Magnitude spectrum

Power spectrum

80.3

82.5

63.5

74.5

56.8

56.9

56.9

49.7

51.5

45.3

Accuracy

Accuracy

44

Figure 28: Spark learning vs Features

In figure 28, we present in more detail how the different machine learning algorithms have

performed with the change in the number of features. With the increase up to 7 features have

increased the accuracy. Decision Tree algorithms with 7 features have performed the best.

The following three algorithms were considered and experimented with various training and

testing data sets and their results have been shown in the evaluations. The ideal machine learning

algorithm for the problem statement is Decision Tree. As the model accurately evaluates the incoming

data and implements the appropriate decisions to predict the class of audio correctly in a context.

Decision trees and their ensembles are popular methods for the machine learning tasks of

classification and regression. Decision trees are widely used since they are easy to interpret, handle

categorical features, extend to the multiclass classification setting, do not require feature scaling, and

are able to capture non-linearities and feature interactions. Tree ensemble algorithms such as random

forests and boosting are among the top performers for classification and regression tasks [4].

13.04

27.16
29.9

56.97

73.17
69.19

63.15

80.89

73.98

0

10

20

30

40

50

60

70

80

90

100

1 Audio feature 7 Audio features 10 Audio features

A
cc

u
ra

cy

Features

Naïve Bayes

Random Forest

Decision Tree

45

Naive Bayes is a simple multiclass classification algorithm with the assumption of

independence between every pair of features. Naive Bayes can be trained very efficiently. Within a

single pass to the training data, it computes the conditional probability distribution of each feature

given label, and then it applies Bayes’ theorem to compute the conditional probability distribution of

label given an observation and use it for prediction [5].

Random forests are ensembles of decision trees. Random forests combine many decision

trees in order to reduce the risk of overfitting. The spark.ml implementation supports random forests

for binary and multiclass classification and for regression, using both continuous and categorical

features [6].

Real time dynamic model training by collecting features using Spark MLlib from client side

feature set. Multiple models have been built based on several parameters like efficient set of feature

set, machine learning model, number of classes. Server client connection has been established

through socket connection.

The aim of this exercise was finding the ideal features set for improving the accuracy of the

prediction model. In this evaluation the focus was to find a match for the best model in terms of

highest accuracy. At the same time varying the features set size to minimize the effort on the model

while trying to increase the accuracy. The figures above present the case that based on the

comparison for accuracy for Naïve Bayes, Random Forest and Decision Tree algorithms with 1, 7 and

10 features respectively. From the figure it can be deduced that Decision Tree with 7 features (Zero

crossings, MFCC, SpectralRollOff, Peak Value, RMS, Compactness, and FrationOfLowEnergyWindows)

resulted in the best accuracy. So it was used in the application.

46

Figure 29: Learning in Spark: Static vs Dynamic Data

In figure 29, we present in more detail how the different types of testing data have impacted

the accuracy on static and dynamic learning data. Both Training and Testing data from dynamic

collection have performed the best.

In this experiment the focus was on the study of the accuracy of the model prediction with

only static data in training versus model prediction of model with real time data included in training.

 It was clearly evident that with static data in training the accuracy of the model was only 73

percent as audio data varies with a lot of factors such as noise, context etc.

 When real time data was also added for training of the model there was an increase in the

accuracy to 83 percent as most of the real time data captured the variance of the audio data in

terms of noise and other factors. This is depicted in the figure above.

0

10

20

30

40

50

60

70

80

90

100

Training-Static Training-dynamic

66.81
73.16

27.02

83.59

A
cc

u
ra

cy

Static Testing

Dynamic Testing

47

Figure 30: Learning in Spark: Static vs Dynamic Data

In figure 30, accuracy for the contextual models is relatively higher than the non-contextual

model. The model prediction is increased by 5% with respect to model which is unaware of context.

The outdoor context apparently has individual best accuracy among the classes. Having any

contextual data to existing features would better the performance of recognition for a model. The

same has been learnt through our model that by addition of contextual information the recognition

accuracy was increased. Among all the contexts outdoor context had highest accuracy as the classes

in outdoor context were largely distributed with respect to features. In the classroom context, the

classes are closely coupled and overlapping and therefore accuracy was lowest among the other

contextual scenarios.

79

79.5

80

80.5

81

81.5

82

82.5

83

83.5

84

84.5

Non Contextual Contextual

80.81

83.59

84.14

81.96
82.31

None

Home

Outdoor

Classroom

Office

48

Figure 31: Decision Tree Model Evaluation

In figure 31, we present in more detail how the different features that have been discussed

have performed in the machine learning under different contexts.

 MFCC happens to be the best performing feature among the 10 features.

 Through our experiments it has been learnt the more the number of features better was the

accuracy in each of the context individually.

 If the features were increased over seven, the accuracy gradually decreased in each of the

context. So the ideal no of features in each of the context were seven.

0
20

40
60

80
100

Office Context

Class Context

Home Context

Outdoor Context

Accuracy

7 features

10 features

2 feature

49

Figure 32: Storm ML Model Recognition vs Number of Features

In figure 32, we present in more detail how the different Machine Learning Libraries have

performed with increasing number of features. Decision Tree with 7 features was performing the

ideal. Time Domain Most feature extraction algorithms necessitate a frequency analysis as the

primary step. There is conversely a minor group of algorithms that use the signal in its raw form.

These time domain features are often used when processing power is an issue. The preprocessing

that needs to be done for this type of feature is less than when using frequency domain features.

Applications that are deployed on wireless sensor nodes or on wearable devices often employ time

domain features to gain knowledge about the environment. For these devices, battery-life is an

important issue, so the algorithms that are being used must be computationally inexpensive.

Naives Bayes

Decision Tree

Random Forest

0

10

20

30

40

50

60

70

80

90

100

1 Feature
7 Features

10 Features

24.35
32.85

23.56

72.42
74.47

71.88

72.08 72.19 73.12
A

cc
u

ra
cy

Naives Bayes

Decision Tree

Random Forest

50

Figure 33: Storm Recognition vs Classes

In figure 33, we present in more detail how the storm recognition has been impacted with

varying features. Here, we present in more detail how the storm recognition has been impacted with

varying features. The observation from this experiment was that the accuracy difference with the

change in recognition in storm was almost consistent with the results achieved from recognition

through spark. Multiple Bolt recognition with 2 classes had highest accuracy. As the number of classes

increased, the accuracy gradually decreased on all the bolt models in storm.

84.73

77.45

73.15

64.56

82.64

74.04
71.78

62.81

81.64

72.14
70.67

67.8

60

65

70

75

80

85

90

95

100

2 Classes 5 Classes 7 Classes 10 Classes

Multiple Bolt

single Bolt

Hierarchial Bolt

51

Figure 34: Storm Recognition vs Topologies

In the Figure 34, we present in more detail how the storm recognition has been impacted

with varying features. Single bolt recognition is a single prediction system from the model generated.

The highest accuracy was achieved from seven features and multiple recognition bolt model followed

by hierarchical bolt model in storm recognition.

In the Figure 35 below, we present in the execution time and accuracy of different models

involved in evaluation. The primary goal of the experiment was to distinguish the run-time

performance of distributed recognition model to that of light weight client side model. Through

distributed recognition model, we have achieved five percent more accuracy in almost four times less

execution time. The least execution time for recognition was using single bolt recognition model of

0.7 seconds.

47.16

58.29

55.09

74.26
75.49 75.17

67.58
69.15 68.72

30

35

40

45

50

55

60

65

70

75

80

1 features 7 features 10 features

A
cc

u
ra

cy

Single Bolt

Multiple Bolts

Hierarchial Bolts

52

Figure 35: Storm Recognition vs Mobile Recognition

Figure 36: Heron vs Storm Performance

82.7
77.2

84.5

75.8

0

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
cc

u
ra

cy

Execution Time

Accuracy

Mobile
Recognition
model

Single level Bolt Hierarchical
Bolt

17.28

27.22

0

5

10

15

20

25

30

Storm Heron

Throughput

Throughput

Expon. (Throughput)

53

In Figure 36, we present in more detail how the different distributed platforms for large data.

Here we compare the apache storm and twitter heron for real time stream framework performance.

The above figure is the evaluation of throughput of results generated from bolts. Twitter heron

apparently is the replacement for storm with state full architecture. In our experiments twitter heron

is 1.6 times faster than apache storm.

4.2 Evaluation

The application had acceptable performance in terms of the run time required for the entire

work flow. In terms of the model training and model saving the run time required was 20 minutes and

34 seconds for the non-contextual model. While it around 6 minutes for each of the four contextual

models. The runtime for one cycle of audio recording, feature extraction, prediction of audio class and

notification to the user was as following.

  Audio recording is 4 seconds

  Feature extraction and audio class detection at server is 3.42 seconds.

  Response from server to client and notification to the user is 1.89 seconds.

4.2.1 Feature Based Analysis

The aim of the exercise is comparison of the accuracy for Non contextual model versus the

contextual model. In this exercise we had two models, one where there was no context information

for the model. There was only a single model with 20 classes and training data for all the 20 classes.

On the other hand we had 4 different models each for one of four contexts. Each contextual model

had 5 classes each and training data was limited only to these 5 classes for each model. Then we

compared the accuracy of non-contextual model vs each of the contextual model. As the following

figure depicts the contextual models outperform the non-contextual model as the contextual models

each have limited classes to predict which in turn improves accuracy of the model.

54

Static data, here is an audio file in .wav format. The static sounds have been collected from

various repositories like findsounds.com based on the context. Audio features are extracted and

trained on the spark machine. Real Time data is collected through MediaRecorder listener on device

from sounds on YouTube and findsounds.com to extract features at client side and send them to

spark for training.

4.2.2 Audio File VS Feature Data

1. Audio file training has more training time by almost 4 times.

2. Feature data training has yielded more accuracy.

3. Client side Audio file testing has yielded low matching and varied results.

4. Feature vector processing on both client and server has optimal performance.

5. Higher the feature vector, higher is the performance.

Evaluation of Model Training in Spark using real-time Data

Table 9: Real Time Training Data Performance

Events in Real Time

Training Data

Execution

Time

Training with Real time

feature data

05.66 mins

Spark loading time 12.34 sec

Audio Testing sampling 04.00 sec

Processing the features on

device

00.20 sec

Features to Spark through

socket

58.00 sec

Context detection and

display

01.89 sec

55

The above results show a huge bench marks in terms of low latency is spark loading time and

light loading of real time features. The overall training time using mini batch system is at least

decreased by five times for real-time data than static data. Hence using real-time training data is

highly suggested.

Evaluation of Model Training in Spark using static Data

Table 10: Static Training Data Performance

Events in Static Training Data

Execution Time

Training with Static .wav files 20.34 mins

Spark loading time 12.34 sec

Audio Testing sampling 04.00 sec

Processing the features on device 00.20 sec

Features to Spark through socket 58.00 sec

Context detection and display 01.89 sec

The above results show the bench marks in terms of low latency is spark loading time and

light loading of static features. The overall training time using mini batch system is much lesser than

running a traditional map-reduce job. The models can be generated both through training of data

from file system and real-time streaming. And models generated from both the sources look tightly

coupled.

56

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

 In the DMLA framework, a dynamic predictive model, learned from the training data in Spark,

is loaded from the context information into a Storm topology to recognize/predict the possible

events. The event-based context aware solution was designed for real-time, real-world events. The

Spark based learning had the highest accuracy of over 80% among several machine-learning models

and the Storm topology model achieved a recognition rate of 75% in the best performance. We verify

the effectiveness of the proposed architecture is effective in real-time event-based recognition in

audio domains.

5.2 Limitations

The current experiments are limited to android devices at client end. The training model is

high coupled with device from which audio is trained. The current model’s training is happening

through a static file based approach. The current model has been only trained in four contexts.

5.3 Future Scope

The challenge ahead of us is to devise a model to handle device configuration dynamically and

adjust the noise levels accordingly. Collaborative learning from multiple devices to improve the

prediction of model. Automatically detecting the user context and efficient usage of the battery for

optimal performance while saving the energy consumption.

57

REFERENCES

[1] McCreadie, Richard, Craig Macdonald, Iadh Ounis, Miles Osborne, and Sasa Petrovic. "Scalable
distributed event detection for twitter." In Big Data, 2013 IEEE International Conference on, pp. 543-
549. IEEE, 2013.

[2] Deafness and hearing loss (2016). World Health Organization [Online]. Available:
http://www.who.int/mediacentre/factsheets/fs300/en/.

[3] Jacobs, Adam. "The pathologies of big data." Communications of the ACM 52, no. 8 (2009): 36-44.

[4] Apache Spark 1.5.1 Mllib. http://spark.apache.org/docs/latest/ml-classification-
regression.html#random-forests.

[5] Apache Spark 1.5.1 Mllib http://spark.apache.org/docs/latest/mllib-naive-bayes.html.

[6] Apache Spark 1.5.1 Mllib. http://spark.apache.org/docs/latest/mllib-decision-tree.html.

[7] Krause, Andreas, Asim Smailagic, and Daniel P. Siewiorek. "Context-aware mobile computing:
Learning context-dependent personal preferences from a wearable sensor array." IEEE Transactions
on Mobile Computing 5, no. 2 (2006): 113-127.

[8]Chen, CL Philip, and Chun-Yang Zhang. "Data-intensive applications, challenges, techniques and

technologies: A survey on Big Data." Information Sciences 275 (2014): 314-347.

[9] Gupta, Sumit. Learning Real-time Processing with Spark Streaming. Packt Publishing Ltd, 2015.

[10] Kamburugamuve, Supun, and Geoffrey Fox. Survey of Distributed Stream Processing. Technical

report, Indiana University, Bloomington, IN, USA, 2016.

[11] Papageorgiou, Apostolos, Ehsan Poormohammady, and Bin Cheng. "Edge-Computing-Aware

Deployment of Stream Processing Tasks Based on Topology-External Information: Model, Algorithms,

and a Storm-Based Prototype." In Big Data (BigData Congress), 2016 IEEE International Congress on,

pp. 259-266. IEEE, 2016.

[12] Zaharia, Matei, Tathagata Das, Haoyuan Li, Scott Shenker, and Ion Stoica. "Discretized streams:

an efficient and fault-tolerant model for stream processing on large clusters." In Presented as part of

the. 2012.

[13] Toshniwal, Ankit, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M. Patel, Sanjeev

Kulkarni, Jason Jackson et al. "Storm@ twitter." In Proceedings of the 2014 ACM SIGMOD

international conference on Management of data, pp. 147-156. ACM, 2014.

[14] Carbone, Paris, Stephan Ewen, Seif Haridi, Asterios Katsifodimos, Volker Markl, and Kostas

Tzoumas. "Apache flink: Stream and batch processing in a single engine." Data Engineering (2015): 28.

http://www.who.int/mediacentre/factsheets/fs300/en/
http://spark.apache.org/docs/latest/mllib-decision-tree.html

58

[15] Kleppmann, Martin, and Jay Kreps. "Kafka, Samza and the Unix Philosophy of Distributed

Data." IEEE Data Engineering Bulletin (2015).

[16] Wang, Guozhang, Joel Koshy, Sriram Subramanian, Kartik Paramasivam, Mammad Zadeh, Neha

Narkhede, Jun Rao, Jay Kreps, and Joe Stein. "Building a replicated logging system with Apache

Kafka." Proceedings of the VLDB Endowment 8, no. 12 (2015): 1654-1655.

59

VITA

Ravi Kiran Yadavalli completed his Bachelor’s degree in Computer Science and Engineering

from Jawaharlal Nehru Technological University in Hyderabad and then worked as a software

developer in Timwe F.Z LLC for 1.5 years. He then joined DST Systems and worked as a technical

intern during 2016 summer. Mr. Ravi Kiran Yadavalli started his masters in computer Science at the

University of Missouri-Kansas City (UMKC) in August 2015, specializing in Data Sciences and Software

Engineering. Upon completion of his requirements for the Master’s Program, Mr. Ravi Kiran plans to

work as a Data Engineer.

