
 

 

DMLA: A DYNAMIC MODEL-BASED LAMBDA ARCHITECTURE FOR LEARNING AND 

RECOGNITION OF FEATURES IN BIG DATA 

 

 

A THESIS IN 
Computer Science 

 
 
 
 

Presented to the Faculty of the University  
Of Missouri-Kansas City in partial fulfillment 

 Of the requirements for the degree 
 

MASTER OF SCIENCE 
 
 
 
 
 
 
 

By 
RAVI KIRAN YADAVALLI 

 
 
 

B.Tech, Jawaharlal Nehru Technological University – Hyderabad, India, 2013 
 
 
 
 
 
 
 

Kansas City, Missouri 
2016 

 

 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

©2016 
 

RAVI KIRAN YADAVALLI 
 

ALL RIGHTS RESERVED



iii 
 

 

DMLA: A DYNAMIC MODEL-BASED LAMBDA ARCHITECTURE FOR LEARNING AND 

RECOGNITION OF FEATURES IN BIG DATA 

 
 

Ravi Kiran Yadavalli, Candidate for the Master of Science Degree 
 

University of Missouri-Kansas City, 2016 
 
 

ABSTRACT 

Real-time event modeling and recognition is one of the major research areas that is yet 

to reach its fullest potential. In the exploration of a system to fit in the tremendous challenges 

posed by data growth, several big data ecosystems have evolved. Big Data Ecosystems are 

currently dealing with various architectural models, each one aimed to solve a real-time 

problem with ease.  There is an increasing demand for building a dynamic architecture using the 

powers of real-time and computational intelligence under a single workflow to effectively 

handle fast-changing business environments. To the best of our knowledge, there is no attempt 

at supporting a distributed machine-learning paradigm by separating learning and recognition 

tasks using Big Data Ecosystems.  

The focus of our study is to design a distributed machine learning model by evaluating 

the various machine-learning algorithms for event detection learning and predictive analysis 

with different features in audio domains. We propose an integrated architectural model, called 

DMLA, to handle real-time problems that can enhance the richness in the information level and 

at the same time reduce the overhead of dealing with diverse architectural constraints. The 

DMLA architecture is the variant of a Lambda Architecture that combines the power of Apache 

Spark, Apache Storm (Heron), and Apache Kafka to handle massive amounts of data using both 

streaming and batch processing techniques. The primary dimension of this study is to 
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demonstrate how DMLA recognizes real-time, real-world events (e.g., fire alarm alerts, babies 

needing immediate attention, etc.) that would require a quick response by the users. Detection 

of contextual information and utilizing the appropriate model dynamically has been distributed 

among the components of the DMLA architecture. In the DMLA framework, a dynamic 

predictive model, learned from the training data in Spark, is loaded from the context 

information into a Storm topology to recognize/predict the possible events. The event-based 

context aware solution was designed for real-time, real-world events. The Spark based learning 

had the highest accuracy of over 80% among several machine-learning models and the Storm 

topology model achieved a recognition rate of 75% in the best performance. We verify the 

effectiveness of the proposed architecture is effective in real-time event-based recognition in 

audio domains. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 
 

Real-time event detection involves the identification of newsworthy happenings (events) as 

they occur. These events can be mainstream activities, e.g. when a plane crashes into the Hudson 

River, or local events, e.g. a house fire nearby. Automatic online event detection systems use live 

document streams to detect events. For instance, streams of newswire articles from multiple 

newswire providers have previously been used for event detection [1]. Big Data is one of the most 

popular terms nowadays, but Big Data is not only about the volume. Much of the data is received in 

real time and is most valuable at the time of arrival. 

Around the world, we have 360 million people who have a challenge in hearing [2]. Disabling 

hearing loss refers to hearing loss greater than 40 dB in the better hearing in adults and greater than 

30 dB in the better hearing in children [2].  This thesis discusses one solution to solve the problem of 

hearing disabled people. The audio analysis and prediction are performed using the big data machine 

learning platform in apache spark for batch processing and apache storm for real-time audio 

recognition. Our motivation was to devise a dynamic model which can be available to the hearing 

challenged pupil at optimal resources. 

The inception of the model for this project was from the idea of hearing dog. A hearing dog is 

a specially trained dog that is owned by people having hearing trouble. The dog hears for any audio 

sound and then notifies its owner if the audio event is of prominence such as doorbell etc. Also, the 

other idea was to harness the power of the big data platform and streaming audio data for audio 

analysis. This is one area that has been unexplored. These simple ideas were the motivation for our 

study where the primary goal was to develop an audio detection, analysis, and prediction system.  
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1.2 Problem Statement 

The unusual growth of data in the recent past has pushed the world into a room of bigger 

challenges. The synthesis and the processing of this tremendous data to valuable information are the 

most popular challenge of technology world today. In the exploration of a system to fit in the 

tremendous challenges posed by the data growth, several ecosystems have evolved; one such is Big 

Data Ecosystem. Big Data Ecosystem is currently carrying varying architectural models, each one 

aimed to solve a real-time problem with ease. The problem statement here is to develop a new 

integrated architecture for audio classification training model and dynamic audio recognition based 

on the trained model. The each audio model built must be context aware and should have the ability 

to predict the correct class with in the appropriate context. One have to figure out the most accurate 

or suitable machine learning model for each of the context through observations and experiments. A 

dynamic topology has to be generated for identification of each of the class and recognize the audio 

of variable frame length to predict the audio stream’s category.  

1.3 Proposed Solution 

This thesis focuses on design of a distributed integrated architectural model for both batch 

and streaming data. The philosophy of having integrated architectural models to face a superset of 

real-time problem statements is novel one, which could enhance the richness in information level and 

at the same time reduce the overhead of dealing with inhomogeneous architectural constraints.  

The proposed solution is a Lambda Architecture. Lambda Architecture is a data processing 

architectural design to handle massive amounts of data using both the streaming and batch 

processing techniques. The likes of Lambda architecture’s popularity can be directly proportion to the 

increasing success of big-data, Hadoop and stream processing. 

The focus of our study is to design a distributed machine learning model by evaluating the 

various machine-learning algorithms for event detection learning and predictive analysis with 
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different features in audio domains. We propose an integrated architectural model, called DMLA, to 

handle real-time problems that can enhance the richness in the information level and at the same 

time reduce the overhead of dealing with diverse architectural constraints. 
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

 

2.1 Terminology  
 

 Decision trees and their ensembles are popular methods for the machine learning 

tasks of classification and regression. Decision trees are widely used since they are easy to interpret, 

handle categorical features, extend to the multiclass classification setting, do not require feature 

scaling, and are able to capture non-linearities and feature interactions. Tree ensemble algorithms 

such as random forests and boosting are among the top performers for classification and regression 

tasks [4]. 

 Naive Bayes is a simple multiclass classification algorithm with the assumption of 

independence between every pair of features. Naive Bayes can be trained very efficiently. Within a 

single pass to the training data, it computes the conditional probability distribution of each feature 

given label, and then it applies Bayes’ theorem to compute the conditional probability distribution of 

label given an observation and use it for prediction [5]. 

 Random forests are ensembles of decision trees. Random forests combine many 

decision trees in order to reduce the risk of overfitting. The spark.ml implementation supports 

random forests for binary and multiclass classification and for regression, using both continuous and 

categorical features [6]. 

 Storm Topology is where; the logic of a real-time application is packaged. It is 

analogous to map-reduce job. One of the prime differences is that map-reduce job eventually finishes, 

whereas a topology runs forever. It is a graph of spouts and bolts that are connected with streaming 

groups. 

 Stream is the core abstraction in storm which is unbounded sequence of tuples that is 

processed and created in parallel in a distributed way. It is defined with a schema that names the 
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fields in the stream’s tuples. It can, by default, contain integers, longs, byte arrays, etc. One can also 

define their own serializers so that custom types can be used within the topology. 

 Spout is a source of streams in a topology. Usually spouts will read tuples from an 

external source and emit them into the topology. 

 Bolts can do anything from filtering functions to aggregations, talking to Databases 

and more. They can do simple stream transformations and can also do complex transformations using 

multiple bolts and multiple steps. 

 Tasks pertain to one thread of execution and stream groupings define the procedure 

to send data from one task to another. 

 Feature Vector is an n-dimensional vector of numerical features that represent some 

object. Many algorithms in machine learning require a numerical representation of objects. Since, 

such representations facilitate processing and statistical analysis. 

 Machine learning Model can be either based on supervised learning or unsupervised 

learning. It is the stored form of the model yielded from the training data passed.  

 Events in the audio domain will be the different sounds which can be distinguished 

uniquely and grouped under a context. Here on, the events are synonymous to the audio classes in 

each of the environment. 
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2.2 Related Work 

2.2.1 Big Data Streaming Tools and Frameworks 
 

Big data is a process of dealing with huge volume, high velocity of heterogeneous data [3]. 

This kind of data cannot be handled using the traditional data management techniques. Big data tools 

are the set of tools and techniques that provide the features to store and process the big data 

efficiently. These tools provide analytical capabilities that help in knowledge mining and decision 

making process. Apache Hadoop, Apache Spark, Kafka, Tableau etc. are some of the popular big data 

tools. In this approach use Apache Spark for the processing of audio data.  

 MapReduce is successful in implementing data intensive applications on commodity clusters 

but they make use of acyclic flows to execute data flow and this is not useful for certain type of 

applications which involve using working sets like iterative algorithms [8]. Spark is intended for these 

type of applications as well and it uses a data abstraction called RDDs (Resilient distributed datasets) 

to achieve these goals and for fault tolerance.  In the storm, the real time stream processing is done 

and it is fault tolerant. The complex computations in twitter at Scala can be processed in real time by 

storm. This work gives a brief description on the architecture of Storm and methods to implement 

fault tolerance and distributed scale-out. This work also illustrates how to execute queries in storm 

and how flexible it is while dealing with machine failures.  

Now-a-days stream processing has become a serious issue of the data pipeline for consumer 

internet companies. Kafka is introduced as a distributed message system that is developed for 

collection and delivery of high volumes of data with low latency. Kafka supports both online and 

offline messaging system. To make Kafka more efficient, few unconventional design choices are made. 

Experimental results clearly say that Kafka has high performance when compared to other two 

messaging systems. In Kafka hundreds of gigabytes of data is been processed every day.  



7 
 

Stream analysis research has been extensively increased these days, especially on feature 

extraction and context summary. Deep intelligence framework which is used to reveal the knowledge 

that is hidden in the stream data. This combines stream processing, batch processing and deep 

learning in order to realize deep intelligence. This helps in processing the content online. Streaming 

content consumption has become more popular these days. This has reshaped the internet traffic 

which made people move from scheduled television to content on demand services. Since the 

broadcasting services are online, customers are expecting a good bit rates. Wise Replica, which is 

adaptive replication scheme for peer assisted content on demand systems which will enforce the 

average bit rate for the Internet content. With the help of the machine learning algorithm, Wise 

replica will save storage and bandwidth from majority of non-popular contents. Resilient Distributed 

Datasets (RDDs): It is an immutable i.e. read only collections of objects that are partitioned across 

cluster. RDD is immutable so, MapReduce algorithms can be applied on them. They can be cached on 

memory so, they perform better than Hadoop. RDD need not be stored or replicated to achieve fault 

tolerance but a handle to operations performed on original data is stored so that lost partitions can 

be rebuilt again parallel. RDDs are default lazy so computationally efficient. Several parallel operations 

like reduce, collect, map and for-each, filter etc. can be applied on RDD’s. And all programming 

statements should be deterministic. Spark provides two kinds of shared variables, broad cast variables 

and accumulators. Broad cast variables send small amount to all nodes. Accumulator variables are 

used for add only associative operations in driver like count operations in MapReduce [9].  
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Spark is built on top of Mesos, a cluster resource manager. This helps spark to work with 

existing cluster computing frameworks like Hadoop, HDFS, etc. Any RDD implements three simple 

operations as an interface,  

1. getPartitions, which returns a list of partition IDs.  

2. getIterator(partition), which repeats over a partition.  

3. getPreferredLocations(partition), this is used for task scheduling in order to achieve data 

locality.  

Apache Spark system is divided in multiple layers, each layer has some responsibilities. The 

layers work independent of each other.  

Interpreter is the first layer and Spark uses a Scala interpreter. As the code is entered in spark 

console Spark creates an operator graph. When the code runs an action (like collect), the Graph is 

submitted to a DAG Scheduler. It changes the operators into “stages of different tasks”. A stage can 

be seta as a set of tasks based on input RDD and number of partitions. The DAG scheduler pipelines all 

the operators together. Many map operators can be scheduled in a single stage is possible. The final 

output from a DAG scheduler is a set of stages. So many things can be performed by dividing tasks 

into map and reduce stages. The Stages are passed on to the Task Scheduler. The task scheduler will 

launch tasks via cluster manager - Spark Standalone/Yarn/Mesos. The task scheduler doesn't know 

about dependencies between stages. The Worker executes the tasks on the Slave machine or node. A 

new JVM is started for a JOB. The worker knows about the code that is assigned to it by task 

scheduler. The shared variables are implemented using their custom serialization formats. 

 Spark mainly uses Scala interpreter but Spark is also available in java, python. They made two 

changes to actual Scala interpreter to make it work with Spark. The interpreter will output classes to a 

shared filesystem from which custom java class loaders can be used. To propagate the updates made 
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by singleton objects to workers, they changed the generating code to reference previous line as well 

in the code.  

For the evaluation, spark is used for logistic regression, alternating least squares, and 

dumping memory access to test for instructiveness of spark. 

 

Figure 1: Hadoop vs Spark Runtime Performance 
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The storm architecture involves processing of streams of tuples flowing through the 

topologies. In the topology we have vertices and edges. The Vertices represent computations and the 

edges describe the flow of data between the computational components. Vertices are further 

classified into two different sets namely Spouts and Bolts. The data from the queries Such as Kafka is 

pulled by the spouts. The incoming tuples are processed by the bolts and passes them to next stream 

of bolts. Storm topology involves cycles. Storm is generally processed on a distributed cluster and 

twitter on mesos. In the figure, the Nimbus is the master node and is responsible for assigning and 

correlate the execution of topology. The worker nodes process the actual work to be done.  

 

 

 

Figure 2: Storm Topology Architecture 
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The worker node runs on one or more worker process. More than one worker process is 

involved at any point of time during execution and this worker process is to be mapped to a single 

topology on the cluster. One or more worker processes from the same machine may involve 

executing different parts of the same topology. This worker process is executed on the JVM. Through 

this process parallelism has been provided by the tasks. Each spout or a bolt consists of set of tasks 

running on the same machine. Storm has five different partitioning strategies. They are:  

1. Shuffle grouping: The tuples are grouped randomly.  

2. Field grouping: The subset of the tuple field is hashed.  

3. All grouping: The complete stream of data is replicated over the consumer tasks.  

4. Global grouping: The total stream of data is sent to a single bolt for processing.  

5. Local grouping: The tuples are sent to the consumer bolts through the same executer. 

2.2.2 Evaluation on Current Stream Processing Frameworks 

There is a class of applications in which large amounts of data generated in external 

environments are pushed to servers for real time processing. These applications include sensor-based 

monitoring, stock trading, web traffic processing, network monitoring, and mobile devices [10]. The 

data generated by these applications can be seen as streams of events or tuples. In stream-based 

applications this data is pushed to the system as unbounded sequences of event tuples. Since 

immense volumes of data are coming to these systems, the information can no longer be processed in 

real time by the traditional centralized solutions. A new class of systems called distributed stream 

processing frameworks (DSPF) has emerged to facilitate such large-scale real time data analytics. 

There are many frameworks developed to deploy, execute and manage event-based 

applications at large scale, and this is one important class of streaming software. Examples of early 

event stream processing frameworks included Aurora, Borealis, StreamIt and SPADE. With the 

emergence of Internet-scale applications in recent years, new distributed map-streaming processing 
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models have been developed such as Apache S4, Apache Storm, Apache Samza, Spark Streaming, 

Twitter’s Heron and Neptune, with commercial solutions including Google Millwheel, Azure Stream 

Analytics and Amazon Kinesis. Apache S4 is no longer being developed actively. Apache Storm shares 

numerous similarities with Google Millwheel, and Heron is an improved implementation of Apache 

Storm to address some of its execution inefficiencies. 

 

Figure 3: Streaming Applications Workflow 

 We can evaluate a streaming system on two largely independent dimensions. In one 

dimension there is a programming API for developing the streaming applications, and the other has 

an execution engine that executes the streaming application. In theory a carefully designed API can be 

plugged into any execution engine. A subset of modern event processing engines were selected in this 

paper to represent the different approaches that DPSFs have taken in both dimensions of 

functionality, including a DSPF developed in academia i.e. Neptune.  

The engines we consider are:  

1. Apache Storm [13]: Apache Storm is a free and open source distributed real-time computation 

system.  

2. Apache Spark [12]: Apache Spark is a fast and general engine for big data processing, with built-in 

modules for streaming, SQL, machine learning and graph processing. 
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3. Apache Flink [14]: Apache Flink is an open source platform for distributed stream and batch data 

processing. Flink’s core is a streaming dataflow engine that provides data distribution, 

communication, and fault tolerance for distributed computations over data streams. 

4. Apache Samza [15]: Apache Samza is a distributed stream processing framework. It uses Apache 

Kafka for messaging, and Apache Hadoop YARN to provide fault tolerance, processor isolation, 

security, and resource management. 

5. Neptune [10]: A real-time distributed stream processing framework. 

We would like to evaluate these five modern distributed stream processing engines to 

compare the capabilities they offer and their advantages and disadvantages along both dimensions of 

functionality. 

Distributed Stream Processing has a strong connection to message queuing middleware. 

Message queuing middleware is the layer that compensates for differences between data sources and 

streaming applications. Message queuing is used in stream processing architectures for two major 

reasons. 

1. It provides a buffer to mitigate the temporal differences between message producing 

and message consuming rates. When there is a spike in message production, they can be temporally 

buffered at the message queue until the message rate comes down to normal. Also when there is a 

slowdown in the message processors, messages can be queued at the broker.  

2. Messages are produced by a cloud of clients that makes a connection to the data 

services hosted in a different place. The clients cannot directly talk to the data processing engines 

because different clients produce different data and these have to be filtered and directed to the 

correct services. For such cases brokers can act as message buses to filter the data and direct them to 

appropriate message processing applications.  

  

http://kafka.apache.org/
http://kafka.apache.org/
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
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    Table 1: Kafka vs Rabbit MQ Performance 

                                                                              Kafka [16] RabbitMQ [10] 

Latency  Polling clients and disk-based data 
storage makes it less friendly to 
latency critical applications.  

In memory storage for fast 
transfer of messages.  

Throughput  Best write throughput with scaling 
and multiple client writing to 
same topic. Multiple clients can 
read from same topic at different 
locations of message queue at the 
same time.  

Single client writing to the same 
topic. Multiple consumers can 
read from the same topic at the 
same time.  

Scalability  Many clients can write to a queue 
by adding more partitions. Each 
partition can have a message 
producer implying writers 
equivalent to partitions.  
The server doesn’t keep track of 
the clients, so adding many 
readers doesn’t affect the 
performance of the server.  

Maintains the client status in 
memory, so having many clients 
can reduce its performance.  

Fault tolerance  Support message replication 
across multiple nodes  

Support message replication 
across multiple nodes  

Complex message routing  No  Supports up to some level, but not 
to the level of a service bus.  

 

The graph is abstracted in different ways in different stream processing engines. Some DSPFs 

directly allow users to model the streaming application as a graph and manipulate it as such. Others 

do not allow this function and instead give higher level abstractions which are hard to recognize as a 

graph but ultimately executed as such. Different DSPFs have adopted different terminologies for the 

components of the graph. 
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                  Table 2: Graph Processing Performance 

                               Storm[13] Spark[12] Flink[14] Samza[15] Neptune[10] 

Graph Node Spout or Bolt An operator on 
a RDD 

Operator on a 
DataStream 

Task Stream Sources 
and Stream 
Processors 

Graph Edge Stream Defined 
implicitly by 
the operators 
on RDDs 

Defined 
implicitly by the 
operators on 
Data Stream 

Kafka Topic Links 

Graph is 
directly 
created by 
user 

Yes No No Yes Yes 

Message 
abstraction 

Tuple RDD Data Stream Envelope Stream Packet 

Primary 
operator 
implementatio
n language 

Java Java/Scala Java/Scala Java Java 

Name of Graph Topology Stream 
processing job 

Stream 
Processing job 

Samza Job Stream 
Processing 
Graph 

 
Communications involve serializing the objects created in the program to a binary format and sending 

them over TCP. Different frameworks use different serialization technologies and this can be 

customized. The communications can do optimizations such as message batching to improve the 

throughput sacrificing latency. Usually the communications are peer to peer and the current DSPFs 

don’t implement advanced communications optimizations. Communications can be either pull based 

or poll based while pull based providing the best latency. Poll based systems can have the benefit of 

not taking messages that cannot process at a node.  

Flow control is a very important aspect in streaming computations. When a processing node 

becomes slow the upstream nodes can produce more messages than the slow node can process. This 

can lead to message build ups in the upstream nodes or message losses at the slow node depending 
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on the implementation. Having flow control can prevent such situations by slowing down the 

upstream nodes and eventually not taking messages from the message brokers to process. 

                Table 3: Communications Flow Comparison 

    Storm[13]  Spark [12] Flink [14] Samza [15] Neptune [10] 

Data 
serialization  

Kryo 
serialization of 
Java objects  

RDD 
serialization  

Data Stream 
Serialization  

Custom 
serialization  

Java Objects  

Task Scheduler  Nimbus, can 
use resources 
allocated by 
Yarn  

Mesos, Yarn  Job Manager 
on top of the 
resources 
allocated by 
Yarn and 
Mesos  

Yarn  Granules  

Communicatio
n framework  

Netty  Netty  Netty  Kafka  Netty  

Message 
Batching for 
High 
throughput  

Yes  Yes  Yes  Yes  Yes  

Flow control  No  Yes  Yes  Yes  Yes  

Message 
delivery  

Pull  Pull  Pull  Poll  Pull  

 
There are several methods of achieving processing guarantees in streaming environments. 

The more traditional approaches are to use active backup nodes, passive backup nodes, upstream 

backup or amnesia. Amnesia provides gap recovery with the least overhead. The other three 

approaches can be used to offer both precise recovery and rollback recovery. All these methods 

assume that there are parallel nodes running in the system and these can take over the responsibility 

of a failed task.  

Before providing message processing guarantees, systems should be able to recover from 

faults. If a system cannot recover automatically from a fault while in operation, it has to be manually 

maintained in a large cluster environment, which is not a practical approach. Almost all the modern 

distributed processing systems provide the ability to recover automatically from faults like node 
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failures and network partitions. Now let’s look at how the five frameworks we examine in this paper 

provide processing guarantees. 

                Table 4: Processing Guarantee Comparison 

                                Storm [13] Spark [12] Flink [14] Samza [15] Neptune [10] 

Recover from 
faults  

Yes  Yes  Yes  Yes  No  

Message 
processing 
guarantee  

At least once  Exactly once  Exactly once  At least once  Not available  

Message 
guarantee 
mechanism  

Upstream 
backup  

Write ahead 
log  

Check-pointing  Check-pointing  Not available  

Message 
guarantee 
effect on 
performance  

High  High  Low  Low  Not available  
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CHAPTER 3 

PROPOSED FRAMEWORK 

3.1 Overview 
The demand for stream processing is increasing. Immense amounts of data have to be 

processed fast from a rapidly growing set of disparate data sources. This pushes the limits of 

traditional data processing infrastructures. These stream-based applications include trading, social 

networks, Internet of things, system monitoring, live results tracking and many other real-time system 

examples. A number of powerful, easy-to-use open source platforms have emerged to address this. 

But the same problem can be solved differently, various but sometimes overlapping use-cases can be 

targeted or different vocabularies for similar concepts can be used. This may lead to confusion, 

longer development time or costly wrong decisions. 

 

Figure 4: Lambda Architecture 

 

 Batch Layer: Unrestrained computation. The batch layer can calculate anything, given 

enough time 
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 Speed Layer: All the complexity is isolated in the Speed Layer. If anything goes wrong, 

it’s auto-corrected 

 Serving Layer:  This layer queries the batch & real-time views and merges it.  

 

Figure 5: Stream Processing Framework Sequence Diagram  

We specified three types of events related to task usage that can be reported by a task back 

to the platform [11]:  

 Number and types of recent interactions with an actuator (“recent” is defined by a 

configurable time window).  
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 Number and types of recent database transactions.  

 Probability of topology termination based on the most recent task executions (this 

metric shows the ratio with which incoming stream items do not lead to any outgoing stream and it 

can be important when deciding where to execute the tasks). 

3.2 Dynamic Recognition 

 

Figure 6: Complete Recognition Model 

Dynamic Recognition model is the combination of the Batch training and Real-time prediction 

system. The model has low latency and high performance in clustered environment. Multiple sources 

through client application can train the data using spark model building techniques. Message broker 

Kafka helps us achieve high scalability and fault-tolerance from message communication between 

client and spark. In terms of testing data, a feature vector is sent to storm through Kafka producer by 

an REST service from client application. Once the data is received to Kafka spout, each of the tuple is 

sent to several Bolts for processing and synthesis to extract intermediate outputs. The synthesis is 
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based on the decision tree model built on spark. The intermediate outputs can be aggregated using an 

aggregator bolts. The results from aggregation are stored in mongo DB for visualization.  

3.3 Feature Extraction Flow 

In this section we would be briefly explaining about the feature extraction flow. A real-time 

audio is constantly received by the Android client through a listener. Once the audio is received, the 

Fast Fourier Transformation is applied to the audio input stream and the transformed sound is fed to 

the JAudio feature extractor in order to extract various features. These features are saved in a text file 

which will be used as training dataset in Spark for model building. 

Once the model is successfully built, the same procedure of collecting features from a real-

time audio is applied. The received features are processed with the already built model during model 

training phase to emit predictions. These predictions are analyzed and the client is notified about the 

recognition from model prediction phase. 

 



22 
 

Figure 7: Feature Extraction Complete Flow 

 Figure 7 shows the light weight feature extraction from the client and the distributed 

computing achieved with Spark for training and testing. The architecture is highly scalable and fault 

tolerant. The updated model can be saved in Spark in order to predict results for real-time input on 

the go. The audio data is collected by the mobile device listener and data is converted to a fast fourier 

transformer wave and features are extracted out of it for learning and recognition. 

3.4 Apache Spark Workflow 

 

Figure 8: Spark Model Building Architecture  

On the Spark server engine side, before the application actually runs the models are trained 

using data in the form of .wav files. To improve the accuracy samples of real time data, i.e. data 

recorded through Android device is also fed into the training data. For training based on the audio 

files the Spark server uses JAudio library to extract features from the audio files. These files are 

sampled and features are extracted for each sample. The ratio of samples can be user defined by 

defining the sample length through the JAudio library. 
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 For each context models are trained and saved into the filesystem. Once the data from the 

client arrives through the socket, the Spark server checks the context information to load the 

appropriate model to be used. Then the server uses the feature extraction information to predict the 

audio class based on the values of the features that were received.   

Once the predicted audio class data is ready, it is then sent back to android client using the 

socket connection. On receiving the predicted audio class the client displays a notification to the user. 

This notification is intended to alert the user of the audio event that was recorded. 

 

Figure 9: Decision Tree Model 

The outcome of spark machine learning model is that a decision tree model like above figure 

is built which can help us predict the label of the class. Decision Tree is bunch of if-else statements 

based on feature vector values to identify a leaf-node, which is a class in a context. 

 

 

 



24 
 

3.5 Apache Storm Workflow 

Storm defines computation in terms of data streams flowing through a graph of connected 

processing instances. These instances are held in-memory, may be replicated to achieve scale and can 

be run dynamically on multiple machines. The graph of inter-connected processes is referred to as a 

topology. A single Storm topology consists of spouts that inject streams of data into the topology and 

bolts that process and modify the data. Topologies facilitate the modularization of complex processes 

into multiple spouts and bolts. By connecting multiple spouts and bolts together, tasks can be 

distributed and scaled 

Apache Storm has the following advantages in terms of performance benchmarks. 

1. Scalable: The operations team needs to easily add or remove nodes from the Storm cluster 

without disrupting existing data flows through Storm topologies (aka. standing queries). 

2. Resilient: Fault-tolerance is crucial to Storm as it is often deployed on large clusters, and 

hardware components can fail. The Storm cluster must continue processing existing topologies with a 

minimal performance impact. 

3. Extensible: Storm topologies may call arbitrary external functions (e.g. looking up a MySQL 

service for the social graph), and thus needs a framework that allows extensibility. 

4. Efficient: Since Storm is used in real-time applications; it must have good performance 

characteristics. Storm uses a number of techniques, including keeping all its storage and 

computational data structures in memory. 

5. Easy to Administer: Since Storm is at that heart of user interactions on Twitter, end-users 

immediately notice if there are (failure or performance) issues associated with Storm. The operational 

team needs early warning tools and must be able to quickly point out the source of problems as they 

arise. Thus, easy-to-use administration tools are not a “nice to have featured,” but a critical part of 

the requirement. 
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Figure 10: Storm Topology Recognition 

Storm can receive the data continuously from Kafka spout and emit the tuples to various 

processing bolts. Bolts are the processing centers for tuples received through spout and the emitted 

results can be stored in MongoDB for further evaluation. Tuples are the data objects coupled closely 

to bolts. Several transformations of tuples are possible in execute method of Bolt.  

 

Figure 11: Storm Topology Visualization 



26 
 

 

Figure 12: Single Bolt Topology 

The complete machine learning model is dynamically loaded into storm from Mongo DB. The 

Outcome of the Bolt is a Single Decision. The single Recognition Bolt will identify the class the audio 

belongs to from set of classes. 
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Figure 13: Multiple Bolt Topology 

The complete machine learning models is dynamically loaded into storm from Mongo DB and 

is split to multiple Bolts. The Outcome of the Bolt is an Aggregation from individual Bolts. Each 

Recognition Bolt would give a Boolean decision for class. The aggregation bolt collects the results 

from each of the spanning tree bolt. 
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Figure 14: Hierarchical Bolt Topology 

The complete machine learning model is dynamically loaded into storm from Mongo DB and 

is split multi- level bolts. The Outcome of the Bolt is an input to the next level bolt. Each Recognition 

Bolt would predict a class or level and therefore expects to parse the remaining of the model tree. 

The aggregation bolt collects the results from each of the final level tree bolt. 

 

3.6 Apache Kafka and REST API 

Kafka has four core APIs: 

 The Producer API allows an application to publish a stream records to one or more 

Kafka topics. 

 The Consumer API allows an application to subscribe to one or more topics and 

process the stream of records produced to them. 

https://kafka.apache.org/documentation.html#producerapi
https://kafka.apache.org/documentation.html#consumerapi
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 The Streams API allows an application to act as a stream processor, consuming an 

input stream from one or more topics and producing an output stream to one or more output topics, 

effectively transforming the input streams to output streams. 

The Connector API allows building and running reusable producers or consumers that connect 

Kafka topics to existing applications or data systems. For example, a connector to a relational 

database might capture every change to a table.  

 

Figure 15: Kafka Cluster 

3.7 Features on JAudio 
 

The different features which can be extracted for a input audio stream in JAudio are listed 

below. In each context scenario, we choose only those features which could best represent the types 

of classes in a context. 

 

https://kafka.apache.org/documentation.html#streams
https://kafka.apache.org/documentation.html#connect
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1. Peak detection (PD) is the detection of the points in time that a sound signal exceeds 

a certain threshold. 

2. Zero crossing rate (ZCR) is the rate of sign-changes along a signal or the number of 

times the sound signals cross the x-axis. This feature excels in separating voiced and unvoiced frames. 

The human voice contains both voiced and unvoiced parts. 

3. The Root Mean Square of the waveform calculated in the time domain to indicate its 

loudness. Corresponds to the ‘Energy’ feature. 

4. Fraction of Low Energy Windows is the fraction of the last 100 windows that has an 

RMS less than the mean RMS in the last 100 windows. This can indicate how much of a signal is quiet 

relative to the rest of the signal. 

5. Spectral Roll-off is the frequency bin below which 93% of the distribution is focused; 

this is a degree of the skewness of the spectral distribution. 

6. MFCCs (Mel Frequency Cepstrum Coefficients) are motivated by the human auditory 

system. Human sensitivity of frequencies does not follow a linear scale. Variants in lower frequencies 

are perceived more precisely than variations in high frequencies. 

7. Compactness: A degree of the noisiness of a signal. Established by comparing the 

components of a window's magnitude spectrum with the magnitude spectrum of its adjacent 

windows. 
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Figure 16: Accuracy of Contexts 

The above figure shows the performance of different features pertaining to each of the 

contexts. For example, it is observed that the accuracy of recognition is high in case of Gender context 

using the frequency distribution (FD) feature of audio. In general, MFCC happens to perform the best 

in recognizing the correct class in a given context. 

 

 

Figure 17: Accuracy of Features 

The above figure shows the accuracy achieved per feature vectors of Jaudio on 

different contexts and it is observed that Haar and MFCC performing the best for given 

contexts. Whereas the highest performing individual feature happens to be the Frequency 

Domain for Gender class. 
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Figure 18: Runtime Performance of Features 

The relative execution times of different features are given in the list and the MFCC happens 

to have to have highest execution time, yet has very high accuracy. Hence it is always chosen as a key 

feature despite its high running time. 

3.8 Context Aware Model 
      

Context aware systems are a component of ubiquitous computing or pervasive computing 

environment [7].The goal is to make the mobile computer capable of sensing the users and their 

current state, exploiting context information to significantly reduce demands on human attention. To 

minimize user distraction, a pervasive computing system must be context-aware. In our current work, 

we have devised four important contexts based on the geographical prevalence. 

Each of the below discussed context has around 5 classes in each context, which depict the 

most important activities of the user in the corresponding context .The application is designed in a 

such a way that the activity/event is recognized based on the current context and alerts the user 

through a notification on device. 
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3.8.1 Home Context 
 

The Home context would be set to alert the user about the most significant activities when 

user is around geolocation of home. The purpose of a home context is to identify the key activities of 

user in day to day life. Once the user identifies the key activities, he can train them as different classes 

under this context for future recognition. 

 

Figure 19: Home Context 

The different classes under home context are  

1.       Telephone: The Telephone context at home would signify a ringing sound from a home 

telephone or a cellular device. 

2.       Door knock: The Door knock context signifies a knock on the door in home environment. 

3.       Doorbell: The Doorbell scenario will highlight common sounds of a doorbell in home context. 

4.       Dog bark: The dog bark context can identify with different types of sound from the bark of a dog 

at home. 

5.       Siren: The siren context in home context will include emergency alarms such as fire alarms, 

security threats at home, etc. 
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Figure 20: Home Context Wave Form Visualization 

3.8.2 Classroom Context 
 

The Classroom context would be useful in identifying the activities in the classroom of the 

user. The possible events could be a lecture taking place, an emergency alarm or a discussion in the 

classroom. 

 

Figure 21: Classroom Context 
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The classes under Classroom context are: 

1. Siren: The siren context in classroom context will include emergency alarms such as fire 

alarms, security threats, etc. in school environment. 

2. Man: The man context will highlight male voice sounds in a classroom. 

3. Woman: The woman context will highlight female voice sounds in a classroom. 

4. Group: The group context will highlight more than one female or male voice sounds in a 

classroom. 

 

 

Figure 22: Classroom Context Wave Form Visualization 
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3.8.3 Outdoor Context 
 

The Outdoor context would be enabled when the user is driving or when the user is exposed 

to an open-air environment. This would help the user in identifying any alarming activities on the road 

and alert the user.  

 

Figure 23: Outdoor Context 

The classes under Outdoor context are: 

1. Ambulance: The Ambulance alarm and siren sounds are identified under this class. 

2. Horn: The horn sounds from vehicles are identified under this class.  

3. Police: The police vehicle’s siren alerts sounds are identified in this class. 

4. Traffic: The traffic class identifies the noises noticed during heavy congestions on road.  

5. Train: The different sounds emitted from a train are captured in this class. 

6. Vehicle (Car, Motorbike): The vehicle class senses the sounds from different two wheeler and 

four wheeler vehicles. 
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Figure 24:  Outdoor Context Wave Form Visualization 

          

3.8.4 Office Context 
 

The Office context would capture and alert vital events when user is in office. These events 

could be possibly the sounds of several devices or gadgets which generally used for communication in 

the office. 

 

Figure 25: Office Context 
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The classes under Outdoor context are: 

1.       Desk bell: The desk bell class signifies the sounds from different bells for service in the office 

environment. 

2.       Keyboard: The keyboard typing sounds are captured under this class. 

3.       Fax: Fax alerts and fax machine running sounds in the office are recognized in the fax class. 

4.       Office door:  Office door opening and shutting sounds are captured in the office door class. 

5.       Phone: The cellular and telephone ringing sounds of the office are recognized in this class. 

6.       Printer: The printer class identifies various sounds from the office printing machines.  

 

Figure 26: Office Context Wave Form Visualization 

3.8.5 Contextual features 
 
The most significant features for home context are Compactness and MFCC. These features 

can correctly classify the classroom activities to corresponding classes.  

The decision tree for this context has a depth of 5 and 21 nodes. The spanning trees could 

correctly label each of the class from the decision tree model.  
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Table 5 shows the sample features values for different classes in home context.  

Table 5: Home Sample Features 

Class Zero 

Cross

ing 

MFCC Spectral Roll 

Off 

Peak Value RMS Compactness Fraction of 

Low Energy 

Windows 

Teleph

one 

17.19

8 

6.4000144900

84054 

0.00450390

625 

0.04266666666

666665 

7.39571384741

4926E-4 

0.008650060383

35191 

636.1971371

271076 

Doork

nock 

14.85

6 

6.4000213476

15432 

0.00406738

28125 

0.04266666666

666665 

2.98472578828

03524E-4 

0.007734650891

316967 

653.9503031

006038 

Doorb

ell 

8.807 6.4000063181

30669 

0.00248779

296875 

0.04266666666

666665 

4.12487389586

4025E-4 

0.003569621600

0250477 

683.2859511

11393 

Dogbar

k 

14.10

6 

6.4000104810

406855 

0.00256542

96875 

0.04266666666

666665 

1.82076200539

99944E-4 

0.004052412511

388329 

651.4340836

352274 

Siren 22.77

3 

6.4000956966

31952 

0.00900830

078125 

0.04266666666

666665 

0.00343367580

9666451 

0.056676612669

82051 

324.7194988

563841 

 

In table 5, the most significant features for classroom context are Compactness and MFCC. 

These features can correctly classify the classroom activities to corresponding classes. The decision 

tree for this context has a depth of 5 and 21 nodes. The spanning trees could correctly label each of 

the class from the decision tree model. Table 5 shows the sample features values for different classes 

in office context. 
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Table 6: Classroom Sample Features 

ClassRoo

m 

Zero 

Crossing 
MFCC 

Spectral 

Roll Off 
Peak Value RMS Compactness 

Fraction of 

Low Energy 

Windows 

Siren 12.081 

6.40003

043287

9214 

0.0061455

078125 

0.04266666666

666665 

0.002642619852

6988184 

0.020974373548

93187 

448.87528089

151414 

Man 8.295 

6.40000

537807

4125 

0.0024746

09375 

0.04266666666

666665 

1.036937096571

0008E-4 

0.001957488770

6529163 

678.01187391

24316 

Woman 11.852 

6.40003

275627

9287 

0.0059165

0390625 

0.04266666666

666665 

8.275344874519

14E-4 

0.014278280763

170673 

640.69509863

6625 

Group 11.433 

6.40000

383628

9739 

0.0031699

21875 

0.04266666666

666665 

5.027383033026

648E-5 

0.001176044147

0179542 

661.11984782

3091 

 

               In table 6, the significant features in the home context are RMS and Spectral Roll Off which 

could correctly classify the events to appropriate classes. This has the decision tree with a depth of 5 

and having 33 nodes. The various spanning trees could correctly label each of the class from the 

decision tree model. Table 6 shows the sample features values for different classes.  
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Table 7: Outdoor Sample Features 

Out 

Door 

Zero 

Cross

ing 

MFCC 
Spectral Roll 

Off 
Peak Value RMS Compactness 

Fraction of 

Low Energy 

Windows 

Ambula

nce 

117.2

1 

799.78619825

48343 

0.20666666666

666667 

150.47721741

661945 

0.06939453

125 

3932.1387766

719226 

32.548268762

45168 

Horn 65.55 
142.39445117

349476 

0.11999999999

999997 

14.180537678

19874 

0.08183593

75 

2224.5983352

975654 

18.917546286

145356 

Police 
122.4

7 

162.64174963

18415 

0.13999999999

999996 

4.5477088441

12729 

0.09760253

90625 

2357.2694785

83858 

22.033538458

42048 

Traffic 
170.6

4 

105.82071270

580484 

0.28000000000

000014 

16.199522332

341193 

0.15255859

375 

5134.0673716

78831 

43.441276270

69722 

Train 120.0 
201.30429275

7232 

0.16666666666

66666 

10.708176546

111845 

0.11869140

625 

3014.0134634

61915 

26.338728397

79567 

Vehicle 
148.7

1 

232.57912378

520254 

0.20666666666

666667 

8.1358935508

60294 

0.09444824

21875 

3621.2184729

63309 

32.862534136

147254 

 

In table 7, the significant features in the office context are Zero crossing and MFCC which 

correctly classifies the office events to corresponding classes. The decision tree has a depth of 5 and 

38 nodes. The spanning trees could correctly label each of the class from the decision tree model. 

Table 8 shows the sample features values for different classes in office context. 
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Table 8: Office Sample Features 

Office 

Zero 

Cross

ing 

MFCC 
Spectral Roll 

Off 
Peak Value RMS Compactness 

Fraction of 

Low Energy 

Windows 

Printer 191.3 
325.54124

9784738 

0.28000000000

000014 

73.597115134

90828 

0.21969238

28125 

4813.3313780

03683 

43.977482471

25381 

Office Door 17.07 
72.198724

37202147 

0.06666666666

666667 

11.991216027

091632 

0.02067382

8125 

1137.4420117

912287 

10.559684350

774301 

Phone 18.7 
69.659608

4943008 

0.07333333333

333333 

11.468184399

816431 

0.03835449

21875 

1232.0263855

665005 

11.594855330

414326 

Fax 93.12 

104.54954

70369279

8 

0.10666666666

666665 

14.938082276

075852 

0.05849609

375 

1966.8493570

266512 

16.876733356

265046 

Keyboard 25.86 
62.169119

02208157 

0.08666666666

666666 

15.318767451

079482 

0.06132324

21875 

1494.6489932

33488 

13.582590988

0317 

D

esk bell 

9

.36 

1

58.960993

54553522 

0.066

6666666666666

7 

8.624

715385893023 

0.

0291943359

375 

1002.

511108828091 

10.89

941986626601

4 

 

In table 8, feature extraction from audio plays a key role in identifying the appropriate 

features for the class recognition in the each context. The features have been classified largely into 

domains.one being time domain and other is frequency domain. 
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CHAPTER 4 

RESULTS AND EVALUATION 

4.1 Apache Spark 
 

The Spark engine receives the extracted features from the android device through socket and 

builds a model from the training data. The training data is the set of features from device which are 

collected on the go when a sound is heard. Various combinations of training data features have been 

tested and finally the below seven features were considered to be the top performing audio features 

both on client and server. Those are Zero crossings, MFCC, SpectralRollOff, Peak Value, RMS, 

Compactness and Fraction of Low Energy Windows. 

4.1.1 Machine Learning Algorithms 
 

 

Figure 27: Ranking of Features 

 In figure 27, we present in more detail how the different features that have performed in the 

machine learning. MFCC happens to be the best performing feature among the 10 features. 
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Figure 28: Spark learning vs Features 

In figure 28, we present in more detail how the different machine learning algorithms have 

performed with the change in the number of features. With the increase up to 7 features have 

increased the accuracy. Decision Tree algorithms with 7 features have performed the best.   

The following three algorithms were considered and experimented with various training and 

testing data sets and their results have been shown in the evaluations. The ideal machine learning 

algorithm for the problem statement is Decision Tree. As the model accurately evaluates the incoming 

data and implements the appropriate decisions to predict the class of audio correctly in a context. 

Decision trees and their ensembles are popular methods for the machine learning tasks of 

classification and regression. Decision trees are widely used since they are easy to interpret, handle 

categorical features, extend to the multiclass classification setting, do not require feature scaling, and 

are able to capture non-linearities and feature interactions. Tree ensemble algorithms such as random 

forests and boosting are among the top performers for classification and regression tasks [4]. 
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Naive Bayes is a simple multiclass classification algorithm with the assumption of 

independence between every pair of features. Naive Bayes can be trained very efficiently. Within a 

single pass to the training data, it computes the conditional probability distribution of each feature 

given label, and then it applies Bayes’ theorem to compute the conditional probability distribution of 

label given an observation and use it for prediction [5]. 

Random forests are ensembles of decision trees. Random forests combine many decision 

trees in order to reduce the risk of overfitting. The spark.ml implementation supports random forests 

for binary and multiclass classification and for regression, using both continuous and categorical 

features [6]. 

Real time dynamic model training by collecting features using Spark MLlib from client side 

feature set. Multiple models have been built based on several parameters like efficient set of feature 

set, machine learning model, number of classes. Server client connection has been established 

through socket connection. 

The aim of this exercise was finding the ideal features set for improving the accuracy of the 

prediction model. In this evaluation the focus was to find a match for the best model in terms of 

highest accuracy. At the same time varying the features set size to minimize the effort on the model 

while trying to increase the accuracy. The figures above present the case that based on the 

comparison for accuracy for Naïve Bayes, Random Forest and Decision Tree algorithms with 1, 7 and 

10 features respectively. From the figure it can be deduced that Decision Tree with 7 features (Zero 

crossings, MFCC, SpectralRollOff, Peak Value, RMS, Compactness, and FrationOfLowEnergyWindows) 

resulted in the best accuracy. So it was used in the application. 
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Figure 29: Learning in Spark: Static vs Dynamic Data 

In figure 29, we present in more detail how the different types of testing data have impacted 

the accuracy on static and dynamic learning data. Both Training and Testing data from dynamic 

collection have performed the best. 

In this experiment the focus was on the study of the accuracy of the model prediction with 

only static data in training versus model prediction of model with real time data included in training. 

 It was clearly evident that with static data in training the accuracy of the model was only 73 

percent as audio data varies with a lot of factors such as noise, context etc.  

 When real time data was also added for training of the model there was an increase in the 

accuracy to 83 percent as most of the real time data captured the variance of the audio data in 

terms of noise and other factors. This is depicted in the figure above. 
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Figure 30: Learning in Spark: Static vs Dynamic Data 

 

In figure 30, accuracy for the contextual models is relatively higher than the non-contextual 

model. The model prediction is increased by 5% with respect to model which is unaware of context. 

The outdoor context apparently has individual best accuracy among the classes. Having any 

contextual data to existing features would better the performance of recognition for a model. The 

same has been learnt through our model that by addition of contextual information the recognition 

accuracy was increased.  Among all the contexts outdoor context had highest accuracy as the classes 

in outdoor context were largely distributed with respect to features. In the classroom context, the 

classes are closely coupled and overlapping and therefore accuracy was lowest among the other 

contextual scenarios. 
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Figure 31: Decision Tree Model Evaluation 

In figure 31, we present in more detail how the different features that have been discussed 

have performed in the machine learning under different contexts.  

 MFCC happens to be the best performing feature among the 10 features.  

 Through our experiments it has been learnt the more the number of features better was the 

accuracy in each of the context individually. 

 If the features were increased over seven, the accuracy gradually decreased in each of the 

context. So the ideal no of features in each of the context were seven. 
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Figure 32: Storm ML Model Recognition vs Number of Features 

In figure 32, we present in more detail how the different Machine Learning Libraries have 

performed with increasing number of features. Decision Tree with 7 features was performing the 

ideal. Time Domain Most feature extraction algorithms necessitate a frequency analysis as the 

primary step. There is conversely a minor group of algorithms that use the signal in its raw form. 

These time domain features are often used when processing power is an issue. The preprocessing 

that needs to be done for this type of feature is less than when using frequency domain features. 

Applications that are deployed on wireless sensor nodes or on wearable devices often employ time 

domain features to gain knowledge about the environment. For these devices, battery-life is an 

important issue, so the algorithms that are being used must be computationally inexpensive. 
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Figure 33: Storm Recognition vs Classes 

In figure 33, we present in more detail how the storm recognition has been impacted with 

varying features. Here, we present in more detail how the storm recognition has been impacted with 

varying features. The observation from this experiment was that the accuracy difference with the 

change in recognition in storm was almost consistent with the results achieved from recognition 

through spark. Multiple Bolt recognition with 2 classes had highest accuracy. As the number of classes 

increased, the accuracy gradually decreased on all the bolt models in storm. 
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Figure 34: Storm Recognition vs Topologies 

In the Figure 34, we present in more detail how the storm recognition has been impacted 

with varying features. Single bolt recognition is a single prediction system from the model generated. 

The highest accuracy was achieved from seven features and multiple recognition bolt model followed 

by hierarchical bolt model in storm recognition. 

In the Figure 35 below, we present in the execution time and accuracy of different models 

involved in evaluation. The primary goal of the experiment was to distinguish the run-time 

performance of distributed recognition model to that of light weight client side model. Through 

distributed recognition model, we have achieved five percent more accuracy in almost four times less 

execution time. The least execution time for recognition was using single bolt recognition model of 

0.7 seconds. 
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Figure 35: Storm Recognition vs Mobile Recognition 

 

 

Figure 36: Heron vs Storm Performance 
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In Figure 36, we present in more detail how the different distributed platforms for large data. 

Here we compare the apache storm and twitter heron for real time stream framework performance. 

The above figure is the evaluation of throughput of results generated from bolts. Twitter heron 

apparently is the replacement for storm with state full architecture. In our experiments twitter heron 

is 1.6 times faster than apache storm. 

4.2 Evaluation 

The application had acceptable performance in terms of the run time required for the entire 

work flow. In terms of the model training and model saving the run time required was 20 minutes and 

34 seconds for the non-contextual model. While it around 6 minutes for each of the four contextual 

models. The runtime for one cycle of audio recording, feature extraction, prediction of audio class and 

notification to the user was as following. 

   Audio recording is 4 seconds  

   Feature extraction and audio class detection at server is 3.42 seconds. 

   Response from server to client and notification to the user is 1.89 seconds. 

 
4.2.1 Feature Based Analysis 

 
The aim of the exercise is comparison of the accuracy for Non contextual model versus the 

contextual model. In this exercise we had two models, one where there was no context information 

for the model. There was only a single model with 20 classes and training data for all the 20 classes. 

On the other hand we had 4 different models each for one of four contexts. Each contextual model 

had 5 classes each and training data was limited only to these 5 classes for each model. Then we 

compared the accuracy of non-contextual model vs each of the contextual model. As the following 

figure depicts the contextual models outperform the non-contextual model as the contextual models 

each have limited classes to predict which in turn improves accuracy of the model. 
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Static data, here is an audio file in .wav format. The static sounds have been collected from 

various repositories like findsounds.com based on the context. Audio features are extracted and 

trained on the spark machine. Real Time data is collected through MediaRecorder listener on device 

from sounds on YouTube and findsounds.com to extract features at client side and send them to 

spark for training. 

4.2.2 Audio File VS Feature Data 
 

1. Audio file training has more training time by almost 4 times. 

2.  Feature data training has yielded more accuracy. 

3.  Client side Audio file testing has yielded low matching and varied results. 

4.  Feature vector processing on both client and server has optimal performance. 

5.  Higher the feature vector, higher is the performance. 

Evaluation of Model Training in Spark using real-time Data 

Table 9: Real Time Training Data Performance 

 

Events in Real Time 

Training Data 

 

Execution 

Time 

Training with Real time 

feature data 

05.66 mins 

Spark loading time 12.34 sec 

Audio Testing sampling 04.00 sec 

Processing the features on 

device 

00.20 sec 

Features to Spark through 

socket 

58.00 sec 

Context detection and 

display 

01.89 sec 
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The above results show a huge bench marks in terms of low latency is spark loading time and 

light loading of real time features. The overall training time using mini batch system is at least 

decreased by five times for real-time data than static data. Hence using real-time training data is 

highly suggested. 

Evaluation of Model Training in Spark using static Data 

Table 10: Static Training Data Performance 

 

Events in  Static Training Data 

 

Execution Time 

Training with Static .wav files 20.34 mins 

Spark loading time 12.34 sec 

Audio Testing sampling 04.00 sec 

Processing the features on device 00.20 sec 

Features to Spark through socket 58.00 sec 

Context detection and display 01.89 sec 

 

The above results show the bench marks in terms of low latency is spark loading time and 

light loading of static features. The overall training time using mini batch system is much lesser than 

running a traditional map-reduce job. The models can be generated both through training of data 

from file system and real-time streaming. And models generated from both the sources look tightly 

coupled. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

 In the DMLA framework, a dynamic predictive model, learned from the training data in Spark, 

is loaded from the context information into a Storm topology to recognize/predict the possible 

events. The event-based context aware solution was designed for real-time, real-world events. The 

Spark based learning had the highest accuracy of over 80% among several machine-learning models 

and the Storm topology model achieved a recognition rate of 75% in the best performance. We verify 

the effectiveness of the proposed architecture is effective in real-time event-based recognition in 

audio domains. 

5.2 Limitations 

The current experiments are limited to android devices at client end. The training model is 

high coupled with device from which audio is trained. The current model’s training is happening 

through a static file based approach. The current model has been only trained in four contexts. 

5.3 Future Scope 

The challenge ahead of us is to devise a model to handle device configuration dynamically and 

adjust the noise levels accordingly. Collaborative learning from multiple devices to improve the 

prediction of model. Automatically detecting the user context and efficient usage of the battery for 

optimal performance while saving the energy consumption. 
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