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Broadening of the Berezinskii-Kosterlitz-Thouless transition by correlated disorder
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The Berezinskii-Kosterlitz-Thouless (BKT) transition in two-dimensional superconductors is usually expected
to be protected against disorder. However, its fingerprints in a real system, such as, e.g., the universal superfluid-
density jump, are often at odds with this expectation. Here, we show that the disorder-induced granularity of the
superconducting state modifies the nucleation mechanism for vortex-antivortex pairs. This leads to a considerable
smearing of the universal superfluid-density jump as compared to the paradigmatic clean case, in agreement with
experimental observations.
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More than 40 years after the seminal work by Berezinskii
[1], Kosterlitz, and Thouless [2,3], the Berezinskii-Kosterlitz-
Thouless (BKT) transition remains one of the most fascinating
examples of topological phase transitions. Its universality class
describes several phenomena ranging from the quantum metal-
insulator transition in one dimension (1D) to the Coulomb-
gas screening transition in 2D, and of course the metal-to-
superfluid transition in 2D [4]. As such, it has been investigated
in neutral superfluids, such as, e.g., thin He films [5] and cold-
atom systems made of bosons [6] or neutral fermions [7], but
also in quasi-2D superconductors. The latter case applies not
only to thin films of conventional [8–17] and unconventional
[18–20] superconductors, but also to the artificially confined
2D electron gas at the interface between two insulators in
artificial heterostructures [21,22], or in the topmost layer of
ion-gated superconducting (SC) systems [23].

The most spectacular hallmark of the BKT transition is
the expected universal jump of the superfluid density at
TBKT [24]. While this jump has been clearly observed in
superfluid helium films [5], in disordered films of conventional
superconductors it is systematically smeared out in a broad
downturn, as shown by direct measurements of the superfluid
density via the inverse penetration depth λ [11–17], or by its
estimate based on the nonlinear I -V characteristics [8–10].
Since the jump occurs when the superfluid stiffness Js is of
the order of TBKT, in conventional superconductors the BKT
transition can be clearly distinguished from the BCS one only
in thin films. Indeed, by reducing the film thickness d, one
eliminates the screening effects of supercurrents (making the
Pearl [25] length � = 2λ2/d larger than the system size)
and suppresses Js by increasing the effective disorder level
[26]. This implies that the BKT transition is found in strongly
disordered systems, which are usually at the verge of a direct
superconductor-to-insulator transition (SIT). As it has been
proven experimentally [27–33] and discussed theoretically
[37–42] in the last few years, the competition between SC
phase coherence and charge localization triggered by strong
disorder induces an emergent “granular” SC background,
whose effects on the BKT transition have yet to be explored.
Interestingly, the inhomogeneity of the SC state can be
relevant also for different classes of 2D SC materials, such as

*Corresponding author: lara.benfatto@roma1.infn.it

heterostructures [22,34–36], or even ultrathin films of cuprate
superconductors [19], where the BKT jump is completely lost
in the underdoped phase when superconductivity competes
with spin/charge ordering.

Understanding the role of microscopic electronic disorder
on the BKT transition within SC fermionic models is an
incredible task [38,40,43,44], due mainly to the small size
of systems accessible numerically. Alternatively, one can
address the question directly within a proper phase-only model
[45–48], as, e.g., the XY model,

H = −
∑
ij

Jij cos(θi − θj ), (1)

where θi represents the SC phase and Jij the random
Josephson-like coupling between coarse-grained SC islands.
As long as the Jij are spatially uncorrelated, the Harris
criterium [49] guarantees that disorder is irrelevant at the
transition, so that, for example, the expected “universal” jump
[24] of the superfluid stiffness at TBKT is still preserved, as
confirmed by numerical simulations [46,47]. In this Rapid
Communication we investigate what happens when instead the
spatial arrangement of the couplings Jij mimics the granular,
spatially correlated disorder observed experimentally, that can
be generated by the mean-field solution of the (quantum) XY

model in a random transverse field (RTF) [39,42,50]. While
for uncorrelated disorder the robustness of the BKT physics
is preserved even away from the transition, with a universal
rescaled behavior, the fragmentation of the SC state at strong
disorder in the RTF model leads to a pronounced temperature
dependence before the transition, with a smoothing of the BKT
jump in close analogy with experimental observations [10–17].
This result follows from unconventional vortex-pair nucleation
in the granular SC state, made possible by the presence of large
clusters of low-SC regions.

The superfluid stiffness Js of the model (1) for a given, let
us say x, direction is defined as

Js = Jd − Jp, (2)

Jd = 1

L2

〈∑
i

Ji,i+x cos(θi − θi+x)

〉
, (3)

Jp = 1

T L2

〈(∑
i

Ji,i+x sin(θi − θi+x)

)2〉
, (4)
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FIG. 1. Superfluid stiffness as a function of the temperature for
a Gaussian distribution of the couplings at different values of the
variance σ . In the main panel the curves have been rescaled by the
value of the stiffness at T = 0 and by Tc, defined as the intersection
of Js(T ) with the 2T/π line, shown in the inset (solid black line).

where L is the size of the square lattice. Here, Jd denotes
the diamagnetic term, which coincides with the average
kinetic energy of the system, while Jp is the paramagnetic
term, obtained as a current-current correlation function for
the paramagnetic current I

p

i,i+x = Ji,i+x sin(θi − θi+x) of the
model (1). Equation (2) is computed by means of Monte Carlo
simulations on a L × L square lattice with L = 128, such that
in the clean case (Jij = J ) a sharp jump of Js is recovered (see
Ref. [51] for technical details).

To test the effects of uncorrelated disorder we first con-
sidered the paradigmatic case where the values of the local
couplings Jij are randomly extracted from a Gaussian distribu-
tion PG(Jij ) = exp[−(Jij − J̄ )/2σ 2]/

√
2πσ 2 with increasing

variance σ and fixed average J̄ = 1. The suppression of

Js(T = 0) due to disorder is reflected in a suppression of
the critical temperature Tc. The jump of Js(T ) occurs at
the intersection with the universal 2T/π line, so that the
universal relation [24] Js(Tc) = 2Tc/π is always preserved
(see the inset of Fig. 1). This is in agreement with the Harris
criterium [49]: Since at the BKT transition the correlation
length diverges exponentially [3] instead of the usual power
law, the length scale set by disorder is always irrelevant for
the ordering process at criticality. However, by rescaling the
Js(T ) curves by their T = 0 value and the temperature by
Tc we find a remarkable collapse of all the curves on each
other, showing the complete irrelevance of disorder even
away from Tc. This behavior can be understood considering
that at low temperature the primary excitations of the model
(1) are disordered longitudinal spin waves, well described
[52] by the quadratic approximation of the Hamiltonian (1),
H ≈ ∫

drJ (r)[∇θ (r)]2. By making an expansion of the local
stiffness J (r) = J̄ + δJ (r) around its average value J̄ , one
can show [52] that at low temperatures,

Jd � J̄ − T/4, Jp = J̄ [〈δJ 2〉/2J̄ 2 + c(T/J̄ )2], (5)

where c is a numerical constant. As a consequence, the
primary effect of disorder is to induce a T = 0 paramagnetic
suppression of the stiffness J

app
s (T = 0) � J̄ [1 − 〈δJ 2〉/2J̄ 2],

as found [45] also by using the mapping [53] into a random-
resistor network with conductance Jij at each node. On the
other hand, the −T/4 spin-wave depletion of the diamagnetic
term is unaffected by disorder, so that the Tc, determined by
the universal relation, follows from Tc � (π/2)[Js(0) − Tc/4],
i.e., it scales itself with Js(0). This explains why the rescaled
curves of Fig. 1 collapse on each other.

Let us consider now the case of correlated disorder,
relevant for thin SC films. Tunneling spectroscopy on several
conventional superconductors such as NbN, InOx , and TiN
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FIG. 2. Maps of the couplings Ji,i+x [(a1), (b1)] and superfluid stiffness [(a2), (b2)] at disorder levels W/J = 4 and W/J = 10. Here, RTF
and Peff denote the case of correlated and uncorrelated disorder, respectively. At weaker disorder (a2) the two curves overlap and the jump
of Js is still sharp. At larger disorder (b2) the curve for the RTF case starts to deviate from the usual trend, showing an almost symmetric
smearing of the jump around the critical temperature. (c) Rescaled curves of the superfluid stiffness for the clean case, the uncorrelated Peff,
and correlated RTF disordered case at W/J = 12. Despite strong disorder, the Peff curve shows only a small finite-size effect above Tc, while
the RTF stiffness is dramatically modified above and below the transition. Inset: Evolution with disorder of the zero-temperature value of Js ,
of Jd for the RTF model, and of the approximate result J app

s obtained from (5).
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FIG. 3. Temperature dependence of the superfluid stiffness Js , the
diamagnetic term Jd , the paramagnetic term Jp , and the vortex-pair
density ρv for three different cases: (a) Clean case, (b) uncorrelated
disorder Peff with W/J = 10, and (c) correlated disorder RTF with
W/J = 10. (d) Local vortex density ρV at T = 0.02 superimposed
on the color map of the local stiffness Jij for the RTF model.

has shown that the local order parameter, as probed by the
local density of states, is strongly inhomogeneous, forming
domains of good and bad SC regions with a size of a few times
the coherence length [27,29,33,42]. This emergent granularity
can be reproduced [39,42,50] by the effective quantum XY

pseudospin- 1
2 model in a transverse random field [54],

HPS ≡ −2
∑

i

ξiS
z
i − 2J

∑
〈i,j〉

(S+
i S−

j + H.c.). (6)

Within the bosonic picture of the model (6) the pairing
degrees of freedom are frozen, and disorder induces a direct
SIT, as seen experimentally [33]. In pseuodospin language,
superconductivity corresponds to a spontaneous in-plane
magnetization, favored by the coupling J , while the random
transverse field ξi , box distributed between −W and W , tends
to align the local spin along z, mimicking the localization
of Cooper pairs due to disorder. At the mean-field level one
easily finds [51] that the local magnetization forms an angle
φ

ps
i with respect to the z axis, with φ

ps
i approaching 0 as

W/J increases. The resulting maps of the local SC order
parameter 〈Sx

i 〉 = 1
2 sin φ

ps
i reproduce the salient features of

the experiments, as discussed previously [27,42]. Here, we
investigate the effects of classical phase fluctuations on top
of this inhomogeneous SC ground state, described [50,51] by
the model (1) with local stiffness Jij = J sin φ

ps
i sin φ

ps
j . The

typical maps of local couplings are shown in the insets of
Figs. 2(a1) and 2(b1). As discussed in Refs. [42,50], the local
stiffness Jij is on average suppressed by disorder, and it tends
to segregate in bad SC regions embedding a good, filamentary
[41] SC structure. To disentangle the effects of the spatial
correlations of the couplings from the ones connected to their
probability distribution, we also compute for each disorder
level the stiffness of the effective, uncorrelated distribution
Peff. This means that we assign the value Jij to each link by
extracting it randomly from the same probability distribution
Peff(Jij ) which represents the RTF maps. In this case, the SC
state does not show any evident aggregation in real space,
giving rise to standard, uncorrelated disorder, as it is already
evident in the maps shown in Figs. 2(a1) and 2(b1). To quantify
these differences we computed [51] for each type of disorder
the average size of bad and good regions, identified by a
threshold αJs , with α � 1. Looking, e.g., to the bad clusters,
one sees that while for the Peff their size is almost independent
on W/J and α, for the RTF maps it increases significantly with
W/J and α, showing a clear tendency towards an emergent
clusterization of the SC state.

The evolution of the stiffness computed by means of Monte
Carlo simulations for increasing disorder level W/J (with J =
1) is shown in Fig. 2. The T = 0 suppression of the stiffness is
well captured by the approximated expression (5) up to large
W/J values [see the inset of Fig. 2(c)]. With respect to the
Gaussian case discussed above, here the diamagnetic term is
rapidly suppressed for increasing W/J . On the other hand,
up to W/J = 4 the BKT transition preserves its character,
and spatial correlations are irrelevant, as shown in Fig. 2(a2).
However, at larger disorder the granularity of the SC state
increases, and the superfluid-density jumps start to be smeared
out [see Fig. 2(b2)]. Despite this, the same effect is not seen
when spatial correlations disappear, as demonstrated by the
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case of Peff. To compare the behavior at different disorder
levels we show in Fig. 2(c) the rescaled curves. At W/J = 12
the probability distribution of the coupling is peaked at low
values with very large tails [39,42,51]. This has the only effect
to increase slightly the finite-size effect, as one can see by
comparing the curve for Peff with the clean case. However, the
granular RTF model shows a definitively broader jump, which
is symmetrically smeared out around Tc, in agreement with
experimental observations for the inverse penetration depth
[11–17] or for the nonlinear I -V exponent [8–10], that we
show explicitly in Ref. [51].

To get deeper insight on the separate roles of spin-wave and
vortex excitations, we show in Fig. 3 the temperature evolution
of the two separate diamagnetic (3) and paramagnetic (4)
contributions, along with the average density ρV of vortex
pairs. This is defined by computing the local (positive or
negative) vorticity of the phase around each square plaquette
of the array. In Fig. 3(a) we show the results for the clean
case. As discussed in Eq. (5) above, spin waves dominate
the behavior of Jd and Jp at low temperatures. The vortex
density is exponentially suppressed at low T and it increases
sharply at T � 0.9, bringing up the paramagnetic contribution,
which grows quickly, leading to Jp = Jd at T � 1. A similar
trend is observed at W/J = 10 for the Peff case [see Fig. 3(b)].
Indeed, apart from the sizable finite corrections (5) to Jd and Jp

at T = 0, the thermal evolution of the various contributions is
essentially the same: The vortex density has a fast increase only
at T � 0.075, where the universal jump is indeed expected [see
Fig. 2(b)]. Instead, the results change considerably for the RTF
model [Fig. 3(c)]. In particular, we observe an anomalously
smooth increase of the paramagnetic response Jp at low
temperature, followed by a faster one around the temperature
scale where the universal jump should be observed. This
unconventional paramagnetic response is responsible for the
symmetric broadening of the transition observed in Fig. 2(b).
A second striking result is the almost linear increase of the
vortex density in the whole temperature range.

To get deeper insight into the anomalous behavior of
Jp at strong disorder, we investigated the vortex nucleation
mechanism in real space. As we explained above, a distinct
characteristic of the RTF model is the emergence of large
clusters of bad SC regions, where the local stiffness is
small [51]. Vortices can then proliferate inside these regions
already at low temperatures, as shown in Fig. 3(d), where
the local vorticity is superimposed on the color map of the

local stiffness. In contrast, in the Peff case the bad regions
remain small, and vortex formation cannot be confined in
low-coupling clusters. The direct connection between Jp and
ρV in the RTF model is also proven by adding explicitly to
the model (1) a chemical-potential term weighting the finite
vortex density [51]. While for the homogeneous case the
only effect this term has is to shift the transition to higher
temperatures [55], for the RTF case it strongly modifies both
Jp and ρV at low temperatures, showing that for correlated
disorder, vortex-antivortex pairs are relevant already below
Tc, in contrast to what was shown in Fig. 1 for uncorrelated
disorder. Finally, we find that these anomalies are observed
by increasing the lattice size up to L = 256 [51], suggesting
that the effects observed here are very different from the usual
rounding of the stiffness above Tc due to the conventional
finite-size effect.

In summary, we investigated by Monte Carlo simulations
the evolution of the universal superfluid-density jump within
a XY model with random local couplings. We compared
models with and without spatial correlations, focusing on
the temperature dependence of the superfluid stiffness. When
disorder lacks spatial structure, it appears irrelevant not only
for the jump at criticality, as expected, but also away from it.
Indeed, by rescaling the stiffness to its T = 0 value, suppressed
by disorder, we observe a remarkable universal temperature de-
pendence. This scenario changes considerably when disorder
mimics the inhomogeneous SC background observed experi-
mentally. In this case the superfluid-density jump is consider-
ably smeared out both above and below the temperature where
the universal jump would be expected. This effect is attributed
to a different mechanism for vortex-antivortex pair generation
due to the presence of large clusters of low-SC regions. Our
results not only provide an explanation for the trends observed
experimentally in thin films of conventional [8–17] and
unconventional [19] superconductors, but they pave the way
for the understanding of the topological excitations in gated 2D
superconductors, where the inhomogeneity of the SC state is
recently emerging [22,34–36] as the hallmark of field-induced
electron doping.
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