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ABSTRACT 

Recent years have seen considerable advances in the study of biological rhythms and the 

underlying molecular mechanisms that drive the daily and seasonal physiology of vertebrates. 

Amongst teleosts the majority of work in this field has focused on the model species the 

zebrafish to characterise clock genes and the molecular feedback loop that underpins 

circadian rhythms and physiology. Daily profiles of clock gene expression in a wide variety 

of tissues and cell types are now relatively well described. However the zebrafish is a tropical 

species that does not display distinct seasonality and therefore may not be the species of 

choice to investigate the entrainment of circannual physiology. In contrast, Atlantic salmon is 

a highly seasonal teleost that displays considerable temporal organisation of most 

physiological processes. In salmonids photoperiod is widely known to synchronise 

physiology to the environmental conditions and as such photoperiod manipulation is 

routinely used by the salmon industry throughout the production cycle to control and 

manipulate spawning, smoltification and puberty. Previous studies in salmonid species have 

already identified a set of clock genes that are linked to these seasonal physiological 

processes. However, to date, the molecular mechanisms regulating daily and seasonal 

physiology are largely unknown despite the strong commercial relevance in the Atlantic 

salmon.  

In the Atlantic salmon, Davie et al (2009) was the first to report the photoperiod dependent 

circadian expression of clock genes (Clock, Bmal and Per2 and Cry2) in the brain of the 

Atlantic salmon. In the same investigation the expression of clock genes was reported in a 

wide variety of peripheral tissues, however 24h profiles of expression in peripheral tissues 

were not characterised. In order to examine further the role of seasonal photoperiod on the 

circadian expression of clock genes, the present work first aimed to characterise diel profiles 

of Clock, Per1 and Per 2 expression in the brain together with plasma melatonin levels in 
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Atlantic salmon acclimated to either long day (LD), short day (SD), 12L:12D (referred to as 

experiment 1 throughout) and SNP (referred to as experiment 2 throughout). Photoperiod 

dependent clocks were also investigated in peripheral tissues, namely in the fin and liver. 

Results showed circadian profiles of melatonin under all photoperiods. In experiment 1 both 

Clock and Per2 displayed significant circadian expression in fish exposed to LD. This is in 

contrast to previous results where rhythmic clock gene expression was observed under SD. In 

addition, clock gene expression differed in response to experimental photoperiod in the liver, 

and diel rhythm differed to that of the brain. No rhythmic expression was observed in the fin. 

Levels of plasma melatonin exhibited a circadian rhythm peaking during the nocturnal phase 

as expected. However the amplitude of nocturnal melatonin was significantly elevated under 

LD (experiment 1) and the SNP long day photoperiod and 2010 autumnal equinox samples 

(experiment 2). Overall results from these experiments suggested that the control of clock 

gene expression would be photoperiod dependent in the brain and the liver however 

photoperiod history is also likely to influence clock gene expression. Interestingly, the 

gradual seasonal changes in photoperiod under SNP did not elicit similar profiles of clock 

gene expression as compared to experimental seasonal photoperiods and clock gene 

expression differed between experimental photoperiod and SNP treatments. In experiment 2 

significant seasonal differences were also observed in the amplitude of individual clock gene 

expression. The mechanisms underlying this and potential impact on seasonal physiology are 

unknown. Developmental changes such as the smoltification process or abiotic factors such 

as temperature or salinity should be further investigated. 

In mammals previous work has focused on the molecular switch for photoperiod response 

and regulation of thyroid hormone bioactivity via deiodinase mediated conversion of T4 to 

the biologically active form T3. In mammals and birds expression of key seasonal molecular 

markers i.e. Tsh, Eya3 and Dio2, are up-regulated hours after exposure to the first LD and 
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persist under chronic LD conditions. In order to confirm the involvement of these genes in 

the seasonal photoperiodic response in salmon, a microarray study was first carried out. 

Results displayed transcriptome level differences in the seasonal expression of a wide variety 

of target genes including Eya3 and Dio1-3 in relation to LD and SD photoperiod suggesting 

that these genes may have a conserved role in salmon. qPCR validations of selected genes of 

interest were then performed (Dio1, Dio2 and Dio3, Eya3 and Tshover diel cycles in fish 

exposed to LD and SD photoperiod (autumn acclimated fish). In addition an unrelated qPCR 

study was undertaken in salmon parr acclimated to LD, 12L12D and SD photoperiod (spring 

acclimated fish)(Dio2, Eya3 and Tsh. Consistent with findings obtained in other vertebrate 

species, circadian expression of Dio2 was observed under LD. However expression of Eya3 

and Tsh appeared to be dependent on photoperiod history prior to acclimation to the 

experimental photoperiods as already suggested for clock gene expression in this thesis. This 

is potentially a consequence of direct regulation by clock genes. To our knowledge, this is the 

first report on the expression of key molecular components that drive vertebrate seasonal 

rhythms in a salmonid species.  

The thesis then focused on another key component of the photoneuroendocrine axis in fish, 

the pineal organ. In the Atlantic salmon, as in other teleosts the photoreceptive pineal organ is 

considered by many to be essential to the generation, synchronisation and maintenance of 

circadian and seasonal rhythms. This would be primarily achieved via the action of melatonin 

although direct evidence is still lacking in fish. In salmonids the production of pineal 

melatonin is regulated directly by light and levels are continually elevated under constant 

darkness. In non salmonid teleosts the rhythmic high at night/ low during day melatonin 

levels persists endogenously under constant conditions and is hypothesised to be governed by 

light and intra- pineal clocks. The aims of the present in vitro and in vivo trials were to 

determine if circadian clocks and Aanat2 expression, the rate limiting enzyme for melatonin 
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production, are present in salmon, test the ability of the pineal to independently re-entrain 

itself to a different photoperiod and establish whether the candidate clock genes and Aanat2 

expression can be sustained under un-entrained conditions. Expression of clock genes was 

first studied in vitro with pineal organs exposed to either 12L:12D photoperiod, reversed 

12D:12L photoperiod and 24D. Clock gene expression was also determined in vivo, in fish 

exposed to 12L:12D. Results were then contrasted with an in vitro (12L:12D) investigation in 

the European seabass, a species displaying endogenous melatonin synthesis. Results revealed 

no rhythmic clock gene (Clock, per1 and per2) expression in isolated salmon pineals in 

culture under any of the culture conditions. In the seabass, Clock and Per1 did not also 

display circadian expression in vitro. However rhythmic expression of Cry2 and Per1 was 

observed in vivo in the salmon pineal. This suggested some degree of extra-pineal regulation 

of clocks in the Atlantic salmon. In terms of Aanat2 no rhythmic expression was observed in 

the Atlantic salmon under any experimental conditions while rhythmic expression of Aanat2 

mRNA was observed in seabass pineals. This is consistent with the hypothesis that in 

salmonids AANAT2 is regulated directly at the protein level by light while in other teleosts, 

such as seabass, AANAT2 is also regulated by clocks at a transcriptional level. Post hoc in 

silico analysis of the Aanat 2 5’ regulatory region revealed the absence of a functional E-box 

element in the salmon in comparison to other teleosts, including the European seabass, 

confirming the absence of clock regulation of Aanat2 mRNA in salmon. 

Although it is crucial to first characterise the molecular mechanisms regulating daily and 

seasonal rhythms, understanding how these mechanisms impact on the animal’s physiology is 

critical. One such aspect is the circadian regulation of fatty acid metabolism and cholesterol 

homeostasis ultimately impacting fat deposition in commercially produced Atlantic salmon. 

This is an area of considerable research interest both in terms of human health and improving 

the sustainability of commercial salmon feed. In mammals a number of genes involved in 
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liver lipid and cholesterol homeostasis are rhythmically expressed under the control of clock 

genes via Rev-erb . The aim of the present work was to determine diel mRNA expression 

patterns of selected genes involved in cholesterol homeostasis (Srebp 1, Srebp 2, Fas, Lxr, 

Elovl5, Hmgcr and D6 Fad) together with circadian clocks (Bmal1, Clock, Per 1, Per 2 and 

Rev-erb ) in the liver of the Atlantic salmon. Results demonstrated significant circadian 

expression of Srebp 1 and Bmal 1, similar to previous results in mice, Lxr also exhibited 

significant circadian expression. Additionally the gene coding for the rate limiting enzyme in 

cholesterol synthesis, Hmgcr, was significantly elevated during the day. This is in contrast to 

mammals where mRNA expression and protein activity was elevated during the night. Also 

in contrast to results obtained in mammals, Per1, Per2, Fas, and Reverb  did not display 

significant circadian rhythmicity in salmon. This investigation represents the first attempt to 

correlate 24h profiles of clock gene expression to a functionally important process in 

peripheral tissues, lipid metabolism, which is an area of considerable interest for future 

research in this commercially important species. 

This thesis has significantly advanced knowledge on the expression of clock and seasonal 

genes in response to photoperiod information in the Atlantic salmon. Moreover it has given 

an important insight into the expression of clock genes in multiple tissue types and how 

clocks can regulate important physiological processes. However research is still in the early 

days and much work is needed to understand such a complex network in this highly seasonal 

and commercially important species. 
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INTRODUCTION 

1. THE ATLANTIC SALMON. 

The Atlantic salmon (Salmo salar) is an iconic species in the rivers and marine waters of 

northern Europe and North America. It is a species of considerable importance to the 

aquaculture industry. Production has increased dramatically since the mid 1980s and now 

exceeds 1.4- 1.5 million tonnes worldwide (FAO 2010) (Figure 1). In the wild the Atlantic 

salmon’s distribution ranges from the rivers of New England in the west and Portugal in the 

east to as far north as Greenland and the Barents Sea. Like many salmonid species the 

Atlantic salmon is anadromous. Juvenile Atlantic salmon spend the early part of their lives in 

freshwater prior to the smoltification process. Salmon go through considerable morphological 

and physiological changes enabling them to migrate and thrive in marine waters and return to 

natal freshwater breeding grounds in order to spawn. Unlike the pacific salmon the Atlantic 

salmon is iteroparous and capable of multiple reproduction events over the course of a life 

time. However as a result of the high energetic costs involved in salmonid reproduction most 

individuals will spawn only once or twice during their life (Oystein Aas et al. 2010). As is the 

case for a number of temperate species the Atlantic salmon displays a considerable degree of 

temporal organisation in terms of ecology, behaviour and physiology (Davie et al. 2009). 
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Figure 1: Global aquaculture production of Atlantic salmon (Salmo salar) from 1950 - 2010 

(FAO 2010)  

Fundamental biological processes such as smoltification, migration and reproduction are 

timed to coincide with optimal environmental conditions the precise mechanisms 

underpinning such timing are considered to be endogenous and internally driven by the 

organism enabling a timed reaction to predictable environmental changes (Davie et al. 2009). 

As will be presented further below a number of life history events including; spawning time 

and smolt migration are synchronised to coincide with optimal environmental conditions such 

as food availability and temperature (Oystein Aas et al. 2010). Moreover, population specific 

variance in the return of mature adults to spawning grounds has been attributed to an internal 

genetic component ( Stewart et al. 2002; Stewart et al. 2006). Such innate regulation is 

commonly linked to the body clock however in teleosts and Salmonids in particular there is a 

lack of understanding of how this mechanism could drive the temporal control of physiology 

and behaviour. 

 

2. WHAT ARE BIOLOGICAL CLOCKS?    

Life on earth exits in 24 hour cycles synchronised to the daily light-dark cycle, a consequence 

of the earth spinning as it orbits the sun (Edery 2000; Maronde & Stehle 2007). The sun’s 
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rays are consistent and concentrated at the equator where they are perpendicular to the 

tangent of the earth (Foster & Kreitzman 2009). As we move north or south of the equator 

this angle decreases yet the same amount of energy is dissipated over a larger surface area, 

generating latitudinal differences in climate and hours of daylight. Additionally as shown in 

Figure 2 over a period of 365.25 days the earth spins on its axis resulting in considerable 

annual variations in photoperiod and climactic conditions which generates the seasons. The 

degree of seasonal variation in the 24h light dark cycle over the course of the year is a direct 

result of latitude, the higher the latitude the more annual variations (Foster & Kreitzman 

2009). Over the course of evolution organisms have synchronised a variety of biological 

processes to these predictable daily and seasonal cycles (Yoshimura 2010). These rhythms 

characterise life on our planet and are present in species as diverse as neurospora and 

drosophila to mice and humans ; (Reppert & Weaver 2002; Ko & Takahashi 2006; Dekens & 

Whitmore 2008).  

Rhythmic behaviour and physiology represent ancient time keeping mechanisms enabling an 

organism to synchronise a variety of biological processes to the external environment. 

Biological rhythms occur on a wide variety of scales (Figure 3). Ultradian rhythms occur on a 

scale less than 24h such as 90 minutes cycles in rapid eye movement (Refinetti 2006) or in 

coastal marine ecosystems biological rhythms cycle to coincide with changing tidal 

conditions (Refinetti 2006). Circadian rhythms are the best characterised biological rhythm 

and occur on a near 24h basis (Refinetti 2006). Rhythms are also present on a lunar scale with 

organisms synchronising physiology and behaviour to the waxing and waning of the moon 

(Refinetti 2006). While on a larger time scale, infradian rhythms include cycles such as 

animal migrations or the human menstrual cycle (Refinetti 2006) and finally circannual 

rhythms occur on an annual basis and are characterised by endogenous persistence for several 

years (Refinetti 2006). This thesis focuses on the circadian rhythms and the common 
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molecular mechanisms that underpin circadian and seasonal physiology. The occurrence of 

cyclic physiology and consequent behaviour is not purely a reaction to external 

environmental conditions but an internal endogenous response, allowing organisms to 

anticipate and react to predictable environmental changes( Hazlerigg & Wagner 2006; 

Dardente et al. 2010).  

 

 

Figure 2: The earth is tilted on its axis at an angle of 23.5°. The earth spins on this axis over 

the duration of a year. Consequently outside of the tropics seasonal changes in photoperiod 

and climate occurs over the course of a year. Above displays the impact of the sun’s rays 

during the southern hemisphere summer and northern hemisphere winter.  

 

Circadian rhythms occur on a near 24h scale, however not all rhythms observed on a daily 

scale are circadian. The term daily has been reserved for rhythms with a period of 24h that 

have not been proven to be endogenous in nature (Aschoff 1981; Refinetti 2006). Jürgen 

Aschoff, one of the pioneers of circadian research, formalised the criteria for a 24h rhythm to 

be termed circadian(Aschoff 1981; Refinetti 2006). Firstly it must be endogenously generated 

i.e. it must be internally driven from within an organism as opposed to a reaction to external 

stimuli. Secondly the rhythm is required to free run with a period of approximately 24h 

(between 19 and 28 hours). Under constant conditions true circadian rhythms persist in near 
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24h cycles in the absence of environmental cues. There are however exceptions to this rule. 

Some circadian rhythms are inhibited by environmental signals, for example constant light or 

constant darkness. 

 

Figure 3: Scales of rhythmic physiology and biological rhythms from ultradian to circannual 

rhythms. 

 

Moreover circadian rhythms can be disrupted by drugs such as methamphetamine and 

deuterium oxide (Refinetti 2006). Finally circadian rhythms are flexible and can be 

synchronised by environmental cycles with 24 hour periods, such as the 24h light dark cycle. 

However, the base value or free running time of the rhythmicity is genetic and species 

specific. In mammals the most well known genes to impact the period of circadian 
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rhythmisity are Casein kinase 1 epsilon (CK1in Syrian hamsters (Mesocricetus auratus) 

and Circadian Locomotor Output Cycles Kaput (Clock) in domestic mice (Mus musculus) 

(Refinetti 2006). Internally driven endogenous circadian rhythms are regulated at a molecular 

level by a number of clock genes in an auto-regulatory feedback loop commonly referred to 

as the clock gene system (McWatters et al. 1999). In summary, a number of clock genes 

including Clock, Brain and muscle aryl hydrocarbon receptor nuclear translocator (ARNT)-

like (Bmal), Period (Per) and Cryptochrome (Cry) are involved in the auto-regulatory 

feedback loop. In its simplest sense the CLOCK and BMAL proteins form the positive arm of 

the feedback loop while the negative arm of the feedback loop is comprised of CRY and PER 

proteins. Together these components make up the core oscillator of the molecular circadian 

clock (Ko & Takahashi 2006). 

The components of the circadian feed back loop are synchronised to external environment, 

directly or indirectly receiving input from environmental signals called zeitgebers. A range of 

external signals have been implicated in the regulation of the circadian clock including 24h 

light dark cycle, temperature, food availability, social interactions and reward systems such 

as those associated with drugs. Of the variety of zeitgeber signals that have been described 

photoperiod appears to be the dominant signal entraining the circadian oscillator (McWatters; 

et al. 1999 Dibner et al. 2010; Golombek & Rosenstein 2010). In many organisms the 

duration of photoperiod acts as a reliable indicator of time of year. This is of particular 

importance in temperate and higher latitudes where other signals such as temperature or food 

availability can vary considerably on an inter-annual basis (Dardente. 2012; Ikegam and 

Yoshimura. 2012) Circadian molecular oscillators are also hypothesised to be involved in the 

regulation of seasonal rhythmic processes (Ikegam and Yoshimura. 2012).  

Biological rhythms are present on a wide degree of biological scales from clock gene 

oscillations in individual cells to seasonal rhythms observed in population ecology. Moreover 
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the mechanisms of the circadian clock are highly conserved across an extraordinary degree of 

taxa from single cell organisms to humans and are present in the majority of tissue types. 

There are a diverse range of neural, endocrine, physiological and even behavioural processes 

that occur on a periodic basis. From cyclic melatonin production, core body temperature to 

the opening and closing of flowers in plants and sleep wake cycle. In humans a wide 

assortment of everyday processes are regulated in a circadian manner including mental 

alertness, reaction time, cardiovascular and muscular efficiency and even bowel movements. 

In salmonids, in particular rainbow trout (Oncorhynchus mykiss), rhythmic behaviour and 

physiology have been observed on a variety of temporal scales. Feeding, locomotor and 

hormonal rhythms and have been reported on a circadian scale (Sanchez-Vazquez & Tabata 

1998; Zaunreiter et al. 1998; Zaunreiter et al. 1998). Over a longer time frame, seasonal and 

circannual rhythms in maturation of Atlantic salmon and reproduction in rainbow trout have 

previously been described (Bromage et al. 1988; Duston & Bromage 1988; Duston & 

Saunders 1992). The energetic costs of reproduction and related processes are high and it is 

necessary to time maturation and reproduction with optimal environmental conditions for 

offspring to have the best chance of survival. This is particularly important in temperate and 

Polar Regions (Ikegam and Yoshimura. 2012). While for mammalian seasonality the duration 

of the melatonin signal appears to be the messenger synchronising internal seasonal 

physiology to external photoperiod (Dardente. 2012), the link in teleosts between clocks, 

photoperiod and melatonin and seasonal physiology and behaviour is somewhat unclear 

(Davie et al. 2009; Migaud et al. 2010). 

In salmonids circadian as well as seasonal rhythms in physiology and behaviour have been 

described. Daily locomotor activity and seasonal regulation of reproduction and immunity 

have previously been attributed to an internal, endogenous biological clock (Bromage et al. 
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2001; Morgan et al. 2008). Work by Davie et al (2009) has identified the presence and 

photoperiod specific rhythmic activity of a number of core clock genes. However the 

mechanisms of the salmonid clock are largely unknown. Before we consider the mechanisms 

of the Atlantic salmon biological clock we must first understand the basic model of the clock 

as derived from the mammalian system. It is later necessary to consider the fundamental 

differences between the mammalian and teleost clocks. Amongst teleosts, the majority of 

research has focused on the model organism the zebrafish (Danio rerio) and clockwork 

mechanisms have been relatively well described in the species (Vatine et al. 2011). However 

recent research in the field of the teleost clock has demonstrated an extraordinary degree of 

diversity (Kulczykowska and Popek 2010). Within the teleostei there appears to be 

considerably more variation than has previously been describe amongst mammals 

(Kulczykowska and Popek 2010). Consequently the Atlantic salmon clockwork system must 

be considered in relation to the teleost and mammalian clock work mechanisms, bearing in 

mind the diversity of the teleost group. 

 3. MOLECULAR CLOCKWORK MECHANISMS 

The molecular basis of the biological clock 

For hundreds of years scientists have observed the presence of biological rhythms yet the 

underlying molecular mechanisms driving endogenous rhythms remained elusive. However 

recent decades have seen major advances in this field initially through the study of circadian 

mutations that occur in many organisms. In 1971 the first circadian mutants were identified in 

the fruit fly, Drosophila melanogaster. A mutant screen on 2000 fruit flies revealed three 

separate circadian mutants that were either arrhythmic or that had a truncated or extended 

circadian period (19 or 28 hours) (Konopka & Benzer 1971). These circadian phenotypes in 

D. melanogaster were later attributed to mutations in a gene which was given the name 
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Period (Per) to indicate its importance in the circadian clock (Bargiello et al. 1984; Reddy et 

al. 1984). In 1988 the Tau mutants in the Syrian hamster were identified. In wild type animals 

a circadian period of ~24h was observed. This was shortened to 22 and 20h in Tau 

heterozygous and homozygous individuals respectively (Ralph & Menaker 1988). Meanwhile 

in mice the first clock mutant was characterized in 1994 (Vitaterna et al. 1994) and the core 

components Clock (Antoch et al. 1997; King et al. 1997), Bmal (Ikeda & Nomura 1997) and 

Per (Darlington et al. 1998) were identified and their role in auto-regulatory feedback loops 

were recognised in 1998 (Sangoram et al. 1998). This was then followed by subsequent 

discoveries in non mammalian vertebrates such as the Japanese quail (Yoshimura et al. 2000) 

and the zebrafish (Whitmore et al. 1998). However, overall our knowledge of the underlying 

molecular mechanisms of clocks is still largely based on the mammalian model.  

Clock mechanisms are believed to be highly conserved at a molecular level across a wide 

variety of taxa, tissue and cell types (Dibner et al. 2010; Edery 2000). The molecular clock of 

vertebrates can be summarised as a pair of auto-regulatory feedback loops that cycle with a 

period of approximately 24 hours (Figure 4). These genes include: Clock, Bmal, Per and Cry. 

The auto-regulatory feedback loop is comprised of a positive arm (Clock and Bmal) and 

negative arm including the Per and Cry gene. In terms of the positive components both genes 

(Clock and Bmal) are members of the Basic helix-loop-helix (bHLH)-PAS (Period-Arnt-

Single-minded) transcription factor family (Ko & Takahashi 2006; Layeghifard et al. 2008). 

The feed back loop begins with CLOCK and BMAL proteins which form a heterodimer in 

the cell cytoplasm and is then translocated to the nucleus where it binds to DNA regulatory 

elements called E-boxes (CACGTG). When bound to the E-box the BMAL/CLOCK dimer 

then promotes the transcription of down-stream target genes including the negative portion of 

the feedback loop (Per and Cry). A number of genes, including arylalkylamine N-

acetyltransferase-2 (Aanat2) (Gothilf et al. 2002; Zilberman-Peled et al. 2007) are regulated 
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by E-box elements in their promoters. These genes are up-regulated on a daily cycle as one of 

the main output connections of the body clock and are referred to as clock controlled genes 

(Ko & Takahashi 2006). Per and Cry transcripts migrate out of the nucleus to generate the 

resulting PER and CRY proteins. PER and CRY then accumulate dimerise and translocate to 

the nucleus where they inhibit their own transcription by blocking E-box binding of the 

CLOCK: BMAL heterodimer. The PER and CRY proteins are then inactivated or removed 

by post-translational modifications such as phosphorylation and by degradation (Gallego & 

Virshup 2007). This in essence then initiates the beginning of a new circadian cycle a process 

which takes around 24h to compete and is the core of the circadian clock. 

There are however secondary loops/processes that play important roles in the molecular clock 

work. These are not the components that drive circadian rhythms but are fundamental to the 

regulation and accuracy of the clock. The CLOCK: BMAL hetrodimers also activate the 

transcription of nuclear receptor subfamily 1, group D, member (Rev-erb and Retinoic acid 

related orphan nuclear receptors (Ror, which form a secondary loop to regulate the core 

clock component, Bmal. REV-ERBand RORcompete to bind to Retinoic acid-related 

orphan receptor response elements (ROREs) in the gene promoter of Bmal. While RORs (, 

 and ) activate its transcription, REV-ERB represses Bmal’s transcription. The 

CLOCK:BMAL heterodimer then controls the rhythmic expression of other clock controlled 

genes and pathways and subsequent physiology and behaviour via E-box and D-elements  

(binding sites for PAR bZip factors) ( Ueda et al. 2005; Ko & Takahashi 2006).  
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Figure 4: A network of transcriptional–translational feedback loops constitutes the 

mammalian circadian clock from Ko & Takahashi (2006). The feed back loop begins with 

CLOCK and BMAL proteins which form a hetrodimer in the cell cytoplasm which is 

translocated to the nucleus where it binds to DNA regulatory elements called E-boxes. The 

BMAL/CLOCK dimer then promotes the transcription of down-stream target genes including 

the negative portion of the feedback loop (Per and Cry). PER and CRY then accumulate 

before dimerising and then translocating into the nucleus to inhibit their own transcription by 

blocking the CLOCK: BMAL heterodimer. The PER and CRY proteins are then removed by 

post translational modifications such as phosphorylation and degradation (Gallego & Virshup 

2007). This in essence then initiates the beginning of a new circadian cycle a process which 

takes around 24h to compete and is the core of the circadian clock.  

Underlying these loops, and fundamental to the accuracy of the circadian clock, are processes 

that control phosphorylation and ubiquitytation (Gallego & Virshup 2007). Casein kinases 

(CK1 and CK1) have a fundamentally important role in the regulation of the molecular 

circadian clock through phosphorylation. CK1 and  regulate the turnover of key circadian 

proteins. CK1 regulates circadian timing and the molecular feedback loop via a number of 

routes and primarily, but not exclusively, acts on the PER: CRY complex. Firstly it regulates 

the nuclear localisation of PER. This is achieved in a number of ways. In some cell types 

cytoplasmic accumulation of PER1 occurs as a result of CK1 activity. In others this mediates 
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the nuclear translocation of Per1 (Gallego & Virshup 2007). In another regulatory pathway it 

is thought that the phosphorylation of PER proteins at a number of CK1 sites may be linked 

to the repression of transcription. As such phosphorylation of the PER proteins has been 

shown to be up-regulated while the positive elements of the molecular clock (CLOCK & 

BMAL) are under the highest degree of suppression. The CK1 phosphorylation of PER also 

has a significant impact on protein stability, therefore providing another route by which CK1 

exercise regulation over the clockwork system. CK1 phosphorylation of the PER1 and PER2 

proteins marks the proteins for ubiquitin-mediated degradation (via 26S proteasome). This 

then allows the CLOCK: BMAL heterodimer to begin the cycle again. The CK1s also exerts 

control over BMAL1 transcription activity via phosphorylation (Gallego & Virshup 2007). 

Other kinases such as Casein kinases 2 (CK2), Glycogen synthase kinase-3 (GSK3) have 

been implicated in the regulation of clocks in non-vertebrates and mammals, respectively. 

Moreover protein phosphatases (PP1 and PP2A) play a role in PER protein stability (Ko & 

Takahashi 2006; Gallego & Virshup 2007;). Crucially ubiquitylation is also important in 

regulation of the circadian molecular clock. This has been well described in Drosophila 

(Peschel and Helfrich-Foerster. 2011). Specific substrates are identified (mediated by proteins 

containing an F-box domain) by an E3 ubiquitin ligase which, in combination with an E2 

ubiquitin-conjugating enzyme catalyses ubiquitinylation. F-box domain containing protein 

Supernumerary limbs (SLMB). has been shown to be involved in the circadian clockwork in 

D. melongaster , and in mammals PER protein ubiquitinylation is regulated by orthologues of 

SLMB ( Ko & Takahashi 2006; Gallego & Virshup 2007). The underlying molecular 

mechanisms of circadian clock, although based around a negative feedback loop, are 

increasingly appearing to be reliant on a multitude of regulatory mechanisms.  
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Mutation effects on clock cycling 

As described above the identification of mutations that have a profound effect on circadian 

functions has been instrumental in identifying the core molecular components of the circadian 

clock. Since the characterisation of the vertebrate circadian clock in the 1990’s a wide variety 

of mutations have now been characterised. A number of relevant examples will be described 

in the following paragraphs to illustrate the importance of the genes and processes previously 

described.  

In mammals the Tau mutant hamster was the first circadian mutant to be characterised (Ralph 

& Menaker 1988). The Tau mutant was later found to be a result of a mutation in 

CK1Lowrey et al. 2. In the Tau CK1 allele there is a G to C mutation. This alteration 

induces a BstAP1 restriction site, consequently changing an arginine to a cysteine at amino 

acid residue 178 (Lowrey et al. 2000; Monecke et al. 2011). The change in amino acids 

increases CK1 phosphorylation of PER proteins. It is hypothesised that the increased speed 

of PER phosphorylation and eradication from the circadian feedback loop is responsible for 

the shortened circadian rhythm observed in Tau mutants (Gallego et al. 2006; Meng et al. 

2008). The consequence of the altered Tau CK1e in hamsters was a 22h circadian period in 

heterozygote animals (DD) and a 20h period in homozygote animals (SS). More recently the 

breeding of Tau homozygote hamsters has resulted in additional shorting of the circadian 

period to 17.8h in a circadian mutant named “duper” (Monecke et al. 2011). However the 

mechanisms of how this mutation alters the circadian clock remain elusive. 

The Tau allele has also been observed in mice resulting in a 4h reduction in circadian period. 

A mutation in CK1a homologue of CK1(Lowrey et al. 2000), additionally reduced the 

wild type circadian period by 30 minutes (Xu et al. 2005). Mutations have also been 

described in the clock genes of the primary feedback loop in mice and can have a dramatic 
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phenotypic effect (Ko & Takahashi 2006). An alteration to the mouse Bmal gene results in 

complete arrhythmicity (Bunger et al. 2005), as does the Per2
ldc

 mutation (Bae et al. 2001). A 

mutation in the mouse clock gene (Clock
∆19/∆19

) can additionally result in an arrhythmic or 

elongated (28h) circadian phenotype (Vitaterna et al. 1994). Outside of laboratory animals 

mutations in clock genes can have a profound effect on human pathologies. 

The most well known effect of clock gene mutation in humans is familial advanced sleep 

phase syndrome (FASPS). The resulting phenotype is a circadian rhythm considerably 

advanced in comparison to the majority of the population. Individuals with FASPS exhibit 

the onset of sleep at approximately 19:30 and awake at 04:30 (Jones et al. 1999). This was 

found to be a result of two separate mutations in circadian clock components that have 

similar impact on the timing of the circadian clock. Initially a serine to glycine point mutation 

on the PER2 protein CK1 binding region was identified as the basis for FASPS. The 

disruption to the CK1 binding resulted in hypophosphorylation of the Per2 gene in the auto-

regulatory feedback loop (Toh et al. 2001). In 2005 another mutation, this time in CK1 was 

identified as a cause of FASPS. On this occasion it was an A-to-G missense mutation 

inducing a threonine to alanine modification to the CK1 protein that resulted in the 

hypophosphorylation of the Per2 (Xu et al. 2005). 

The above examples clearly demonstrate the effect mutation can have on clock genes and 

resulting phenotypes. The discovery of such circadian mutants has not only provided us with 

the tools to unveil the individual components of the circadian clock but it has enabled the 

detailed evaluation of the roles of the core mechanisms of the circadian clock.  

Molecular clocks in fish.  

In mammals the mechanisms of the circadian clock are relatively well described. This is not 

the cases in teleost fish. The first evidence for endogenous clocks in fish originated in the 
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study of the pineal. In the 1980’s and 90’s Jack Falcon was one of the first researchers to 

describe circadian rhythms in a number of pineal hormones in the Northern pike (Esox 

lucius), including the nocturnally synthesised hormone melatonin (Falcon et al. 1984; Falcon 

et al. 1987; Falcon et al. 1989; Falcon et al. 1994). Rhythms in pineal melatonin were later 

found to be endogenous and regulated by an internal circadian clock ( Falcon et al. 1989; 

Bolliet et al. 1996; Falcon 1999;). Moreover enzymes involved in the biosynthesis of 

melatonin were also found to be regulated by the circadian clock in zebrafish and pike ( 

Bolliet et al. 1997; Begay et al. 1998; Coon et al. 1998). However in more recent years the 

majority of studies concerning clocks in fish have utilised the zebrafish as a model. 

The zebrafish is a well established model organism amongst teleost and has proven to be 

most useful in unravelling the circadian clockwork (Vatine et al. 2011). The zebrafish 

provides a number of key advantages in the study of circadian rhythms. Development is fast 

and easily observed in a non invasive manner. The species reaches sexual maturity at around 

3 months and reproduction is easily achieved. Moreover the species is easy to maintain in a 

lab and relatively inexpensive (Vatine et al. 2011). The capacity to cultivate transgenic cell 

lines with fluorescent reporter genes and the capacity to carry out forward genetic screening 

has now been established (Vatine et al. 2011), atool that has also proved invaluable in the 

investigation of the circadian clock in mammals and drosophila. 

In a 1995 Cahill and Besharse reported that zebrafish could be used as a model system for the 

study of circadian rhythms in teleost fishes. They hypothesised that if zebrafish expressed a 

strong circadian rhythm it would be an ideal candidate for genetic studies on the teleost clock 

because of the advantages described above. (Cahill & Besharse 1995). Results demonstrated 

robust circadian rhythms of melatonin production in the pineal organ and to some extent the 

retina (Cahill & Besharse 1995). Since this publication the D. rerio clock has been the subject 

of numerous investigations. A number of clock genes, homologous to mammalian clock 
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genes, have now been identified and expression characterised (Whitmore et al. 1998; 

Whitmore et al. 2000a; Whitmore et al. 2000b; Carr et al. 2006). Results have shown that the 

molecular mechanisms underpinning the zebrafish clock to be remarkably similar to those of 

the mammalian clock. 

The molecular feedback loops that instigate and regulate endogenous rhythmicity have been 

remarkably conserved throughout vertebrate evolution (Figure 5) (Vatine et al. 2011). 

However there are some important differences at a molecular level between the zebrafish and 

the mouse clock model. As a result of the teleost genome duplication multiple copies of 

zebrafish clock genes have been identified in comparison to the mammalian and D. 

melanogaster circadian mechanisms (Cahill 2002). The most prominent example of this is the 

number of Cry genes identified in the zebrafish. In comparison to the two copies of Cry in 

mammals, there are six copies of Cry (zCry) in the zebrafish, and all 6 zCry genes are 

rhythmically expressed in zebrafish tissues. Four of the zCry genes (1a, 1b, 2a and 2b) have 

been shown, by phylogenetic analysis, to be homologues of the mammalian mouse Cry1. 

These have also been shown to inhibit transcriptional activation by mammalian CLOCK: 

BMAL1 dimers (Vatine et al. 2011). The circadian profiles of the zCry1s and 2s exhibited 

different acrophase or peak in rhythmic mRNA expression. zCry1a and b peak during the day 

whilst zCry2a and b peak later in the evening, suggesting the extra copies of the genes are not 

entirely redundant ( Kobayashi et al. 2000; Cahill 2002;; Vatine et al. 2011). zCry3 and 

zCry4 also appear to be homologues of mouse Cry1 and are rhythmically expressed with 

highest levels of mRNA expression in the morning. However unlike zCry1a/b and zCry2a/b 

neither inhibited the transcriptional activation of the mammalian CLOCK: BMAL1 dimmers 

(Cahill 2002; Vatine et al. 2011). zCry4, which is not as closely related to mouse Cry1,is 

thought to have a role in photoreception, based the role of a similar Cry protein in D. 

melanogaster as a blue light photoreceptor (Cahill 2002; Vatine et al. 2011). 
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 In the zebrafish clock mechanism both mammalian orthologs of Bmal1 and Bmal2 have been 

described. The 2 Bmal (zBmal) genes in Zebrafish are expressed rhythmically in a number of 

peripheral tissues, inferring their involvement in the circadian system (Cahill 2002). There 

are however some important differences form mammals in the activities and expression 

patterns of these two zBmal genes and their proteins. zBMAL1 appears to bind more tightly 

to CLOCK than zBMAL2, while zBMAL2 is a more potent transcriptional activator, 

inferring the two copies have slight differences in function within the circadian system 

(Cahill 2002; Cermakian et al. 2000). In the zebrafish there also appears to be differences in 

the regulation of the Per genes in comparison to mammals. In the zebrafish Per2 appears to 

be stimulated by light and has been proposed as a mode of circadian entrainment to light 

(Cahill 2002). This is comparable to per2 regulation in the retina of the amphibian Xenopus 

laevis (Zhuang et al. 2000). Although, the clock mechanisms of vertebrates appear to be 

largely conserved throughout evolution, the zebrafish system does posses some important 

difference in comparison to mammals. Whether these differences extend to other teleost 

species is unclear. 

 

http://en.wikipedia.org/wiki/Xenopus_laevis
http://en.wikipedia.org/wiki/Xenopus_laevis
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Figure 5: Current model of the core molecular components of the zebrafish circadian. As in 

mammals the CLOCK: BMAL hetrodimer drives the expression of the PER and CRY 

proteins. Additionally the regulatory loop involving Rev-Erbα and Rora is present. The 

primary differences between mammalian and zebrafish models include multiple copies of the 

clock, genes. Light-induced expression of the clock genes Cry1a and Per2 . This provides a 

pathway for light to directly modulate the Per and Cry and resulting effects on the clock. 

From Vatine et al (2011). 

In recent years there has been a drive to understand molecular clock mechanisms in a number 

of cultured and tropical fish species such as Senegalese sole (Solea senegalensis) (Martin-

Robles et al. 2011), European seabass (Sanchez et al. 2010), goldfish (Carassius auratus) ( 

Velarde et al. 2009; Feliciano et al. 2011) and the rabbitfish (Siganus guttatus) (Park et al. 

2007). Amongst the salmonids there have been a limited number of studies on various aspects 

of clock gene expression and have mainly been concerned with the links between clocks and 

seasonality, including expression during early ontogeny in the rainbow trout (Oncorhynchus 

mykiss). In the Atlantic salmon clock gene expression in the brain and pineal of parr, smolts 

and postsmolts (Huang et al. 2010a; Huang et al. 2010b) and daylength dependent clock gene 
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expression in the brain has previously been observed in salmon parr (Davie et al. 2009). A 

number of clock genes have additionally been associated with seasonal processes involved in 

key life history events (including migratory runtime and maturation) in a number of salmonid 

species (Aubin-Horth et al. 2005; Leder et al. 2006; O'Malley et al. 2007; O'Malley & Banks 

2008; O'Malley & Banks 2008; Davie et al. 2009;; O'Malley et al. 2010; O'Malley et al. 

2010; Paibomesai et al. 2010). 

Research to date in teleosts has primarily focused on the zebrafish. However it is clear that 

clock mechanisms are present in  all other species investigated. There also appears to be a 

high degree of conservation in clock gene sequences between teleost species and mammals. 

Yet the teleostei are an incredibly diverse infraclass of species and it is unclear how the 

circadian clockwork may have adapted over the course of evolution to cope with the 

multitude of different habitats and ecological niches the group inhabits. Moreover 

investigations of clocks in the zebrafish are not useful for seasonal studies as the zebrafish is 

not a highly seasonally teleost. Considerably more work is necessary to reveal the specific 

molecular mechanisms of the teleost biological clock. 

Central and peripheral clocks 

Mammalian clocks 

Clock genes appear to be present in almost every tissue and cell type. However in mammals 

there appears to be a clear distinction between central and peripheral tissues. It has previously 

been hypothesised that clock genes in the peripheral tissues are regulated by a central 

circadian pacemaker. Recent research now points towards a central pacemaker as a 

synchronising tissue as opposed to a master circadian pacemaker (Schibler & Sassone-Corsi 

2002). In any case this brain region has been identified as the suprachiasmatic nucleus (SCN). 

The SCN is located in the anterior hypothalamus just above the optic chiasm and consists of 
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around 20,000 neural and glia cells (mice) divided into a paired structure, each cell with their 

own molecular clockwork (Meijer et al. 2010; Welsh et al. 2010; Mohawk & Takahashi 

2011) . Previously, the SCN was believed to consist of two distinct regions, the shell 

(dorsomedial SCN) and the core (ventrolateral SCN) (Welsh et al. 2010). However it is now 

understood that the SCN structure is more heterogeneous than initially supposed and is 

thought to vary considerably across a number of mammalian species (Welsh et al. 2010; 

Mohawk & Takahashi 2011;). Despite the presence of the independent cellular oscillators 

that encompass the SCN it is now understood that the coupling between these cells is 

fundamental to the synchronising properties of the region and its status as the “master 

pacemaker of the circadian clockwork” (Mohawk & Takahashi 2011). The cells of the SCN 

are tightly coupled to form the SCN oscillators. Coupling between the cells involves 

coordination of electrical activity between the cells of the SCN and is thought to be achieved 

via electrical connections between cells via gap junction channels. This coordination enables 

fast entrainment of the SCN region to alterations in the external photoperiod (Dibner et al. 

2010). Moreover communication between cells in the region enables coupled endogenous 

cycling of circadian oscillations in the absence of environmental cues (Dibner et al. 2010). 

The SCN then orchestrates rhythmicity in the periphery (Meijer et al. 2010). An array of 

experiments, primarily in rodents has demonstrated that damage and destruction of the SCN 

region result in the abolition of a number of rhythmic outputs (Stephan & Zucker 1972; 

Moore & Bernstein 1989; Welsh et al. 2010). Moreover rhythmicity can be restored to some 

extent when foetal SCN tissue is implanted to the desynchronised organisms (Lehman et al. 

1987; Welsh et al. 2010). In mammals, at least, it is becoming clear that although most tissues 

investigated do possess the underling mechanisms driving circadian rhythmicity it is the SCN 

that synchronises many of these peripheral clocks to generate robust cyclic physiology. 
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In mammals the rhythmic activity of the SCN is synchronised to the environment via the 

input of photic information from the retina. Daily 24h photoperiod information is transmitted 

from the photoreceptors in the retina via the retinohypothalamic tract to the SCN 

coordinating the rhythmic electrical activity of the SCN. This in turn activates the nocturnal 

secretion of pineal melatonin which consequently regulates a wide variety of daily and 

seasonal physiology throughout the body. The retina, SCN and the nocturnal production of 

pineal melatonin encompass the initial synchronising components of the 

photoneuroendocrine system (PNES). Among vertebrates there is considerable diversity in 

the entrainment of the PNES (Migaud et al. 2010). The mechanisms of the mammalian and 

fish PNES will be discussed further below. Additionally the SCN is responsible for the 

synchronisation and coordination of circadian clock gene expression and rhythmic 

physiology in a variety of peripheral tissues. 

The SCN coordinates rhythmicity in other brain regions and in the periphery in a number of 

ways, including hormonal pathways and the transfer of information from the central nervous 

system to peripheral clock via the autonomic nervous system (Balsalobre et al. 2000; Le 

Minh et al. 2001; Nakamura et al. 2008; Dibner et al. 2010; Welsh et al. 2010). In mammals 

the coupling of the SCN neurons and the consequent synchronising rhythmicity exerts 

considerable control over a number of peripheral tissues. Peripheral clocks have been 

observed in tissues including the heart, lung, liver, kidney and a number of cell types 

including fibroblast cells. A number of rhythmic outputs have been observed in these tissues 

for example heart rate, systolic blood pressure (maximum blood pressure between 

heartbeats), vasodilation (widening of blood vessels). Additionally in the liver various aspects 

of metabolism and detoxification have been observed on a circadian time scale (Bell-

Pedersen et al. 2005). Indeed clocks are hypothesised to be present in the majority of tissue 
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and cell types consisting of systems similar to the basic molecular organisation of the SCN 

(Bell-Pedersen et al. 2005).  

There are however a number of fundamental differences between the mechanisms of the SCN 

and those of the peripheral tissues. Firstly the SCN is entrainable by light. In mammals there 

is no consistent data to suggest the presence of a light entrainable clock  in peripheral tissues 

(Bell-Pedersen et al. 2005). Moreover there is generally a 4 to 12h time lag between central 

and peripheral clock gene expression (Zylka et al. 1998). Importantly, the presence of an 

intact SCN has been shown to be fundamental to the persistence of rhythmic output. In 

isolated tissue cultures luciferase reporting has additionally shown circadian rhythms to 

persist endogenously for several weeks (Bell-Pedersen et al. 2005). In non SCN tissues 

circadian rhythms in gene expression dampen when isolated in tissue culture (Yamazaki et al. 

2000). These observations are consistent with the assumption of a hierarchal structure of the 

mammalian circadian network (SCN regulating peripheral clocks (Bell-Pedersen et al. 2005). 

The SCN acts as an intermediate between photic input and circadian physiology. The phase 

delay observed between central and peripheral tissues indicates the time taken for photic 

information to travel from the retina to the SCN and on to the various peripheral oscillators 

(Bell-Pedersen et al. 2005). The role of peripheral clocks in regulation of tissue specific 

rhythmic outputs is largely unclear. Although in mammals it appears the SCN is necessary, 

rhythmic gene expression in non-SCN tissues is highly tissue specific (Panda et al. 2002; 

Storch et al. 2002; Duffield 2003; Bell-Pedersen et al. 2005).  

In mammals it is now becoming increasingly evident that clocks in peripheral tissues, in 

particular the liver, can be entrained by a number of zeitgeber signals. The SCN was 

previously hypothesised to be essential to rhythmic output, however more recent evidence 

suggests that it may not be essential for the synchronisation of hepatic clocks (Welsh et al. 

2010) . Of these factors, feeding time is thought to entrain tissues such as the liver, pancreas, 
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kidney, heart and skeletal muscles (Welsh et al. 2010). The timing of feeding is comparable 

with the organism’s rest/ activity cycle under a natural photoperiod and clock gene 

oscillations in the peripheral organs reflect this. However under restricted feeding conditions 

(i.e. diurnal feeding in nocturnal rodents) the pattern of gene expression is inverted to mirror 

the feeding schedule and is decoupled from rhythms in the SCN (Damiola et al. 2000; 

Stokkan et al. 2001; Dibner et al. 2010). It is thought that occurrence of feeding entrainment 

and the presence of SCN entrainable clock mechanisms in tissues such as the liver facilitates 

the temporal separation of biologically incompatible processes such as those involved in 

metabolism (Schibler 2007; Dibner et al. 2010).  The entrainment of hepatic clocks may 

occur via the SCN or direct to the liver. The pathways by which feeding entrainment may 

occur are still under debate but are thought to involve the redox state of the cell, hormonal 

pathways and the presence of food metabolites such as cholesterol (Dibner et al. 2010; 

Schibler et al. 2010). One area of particular interest is the relationship between peripheral 

clocks and metabolism. While outputs of cellular metabolism have been shown to affect the 

molecular clockwork, a number of genes involved in metabolism also display clear circadian 

profiles of expression (Dibner et al. 2010). Although many of the mechanisms and pathways 

involved in the expression and entrainment of clocks in peripheral tissues as well as the 

degree of involvement of the SCN are still not fully understood, it is clear that it is not only 

light and the SCN that regulate temporal processes outside of the brain in mammals. 

Teleost clocks 

In teleosts the hierarchical structure of clocks is not so clear and the presence of an SCN or 

SCN-like structure has yet to be identified. The majority of work has been carried out in the 

zebrafish. In comparison to mammals, zebrafish peripheral clock gene oscillations are not 

under the control of a SCN-like structure but are self sustaining and individually entrainable 

by light (Whitmore et al. 1998; Carr et al. 2006; Kaneko et al. 2006; Vatine et al. 2011). 
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Furthermore the presence of self sustaining peripheral circadian oscillators has been 

documented. Tissues such as the heart and kidney possess independent circadian oscillators 

persisting in vitro as do individual cells in cultured cell lines. Additionally under constant 

darkness circadian clock gene expression in peripheral tissues display considerable 

differences in free running period (circadian period when not entrained to 24 light dark 

cycle), demonstrating the importance of light of synchronising and stabilising rhythmisity not 

only to external conditions but throughout the body (Carr et al. 2006; Kaneko et al. 2006; 

Vatine et al. 2011). It has been hypothesised that each cell is photoreceptive with possible 

candidates including extra retinal opsins, flavin containing oxidase or photoreceptive 

cryptochrome genes (Vatine et al. 2011). In spite of the growing body of work on peripheral 

clocks in the zebrafish, rolesin the PNES are largely unknown. 

 

In other teleosts very little information is available on the presence and expression of clocks 

in peripheral tissues outside of the liver. However clock gene expression in the liver has been 

described in a relatively large number of species. Yet no clear pattern of expression has been 

established. For example in the European seabass rhythmic Per1 expression has been 

reported in the brain, heart and liver with the acrophase  synchronised in all tissues occurring 

at similar times during the circadian cycle. Similarly in the Golden rabbit fish(Siganus 

corallines)  (Sanchez et al. 2010) comparable patters of day/ night expression were observed 

between the brain, retina and the liver (Park et al. 2007). However in the gold fish (Carassius 

auratus auratus) differential expression was reported, with Per3 expressed rhythmically in 

the liver while Per2 and Per3 displayed significant rhythmic expression in the gut and retina. 

Discrepancies in the expression of Cry 1- 3 was also observed between central and peripheral 

tissues with all three cry genes rhythmically expressed in the retina while only Cry2 and Cry3 

displayed circadian expression in the gut and the liver(Velarde et al. 2009). Moreover the 
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acrophase of the circadian cycles and levels of expression varied between the central (retina) 

and peripheral tissues (gut and liver) (Velarde et al. 2009). In the Senegalese sole (Solea 

senegalensis) it was Per3 that displayed prominent rhythmic expression in liver 

tissue(Martin-Robles et al. 2011). Overall no clear pattern of clock gene expression in the 

liver can be established amongst teleosts. 

As has been reported for mammals and reviewed for zebrafish above, feeding entrainment of 

clocks in the liver has been observed. A recent study has demonstrated the presence of a food 

entrainable circadian oscillator and robust regulation of clock gene expression in the goldfish 

liver (Feliciano et al. 2011). Moreover Per1 expression in the liver has been linked to food 

availability in zebrafish (Lopez-Olmeda et al. 2010). Preliminary work in salmon has shown 

that clock genes are present in central and peripheral tissues ranging from the liver to the 

intestine and spleen (Davie et al. 2009). Daily patters of clock gene expression appear to 

differ under 12hL: 12hD between the brain, pineal and the liver for a number of clock genes 

(Huang et al. 2010). However the role of feeding entrainment or mechanisms controlling 

clock gene expression in the liver of the Atlantic salmon is not yet known.  

Although clock machinery has been described in most tissues and cell types in mammals, 

rhythms in peripheral clocks are thought to be driven and synchronised to external 

environmental conditions, in the most part, by the SCN. This is not the case in the zebrafish 

as individual cells and tissues appear to contain independently light entrainable and self 

sustaining clocks (Vatine et al. 2011). Moreover to date no SCN, master clock like structure 

has been found in the teleost brain. Consequently in the zebrafish it is clear that regulation of 

peripheral clocks is considerably different to mammals. However the specific mechanisms in 

the regulation of clocks in the zebrafish remain elusive (Vatine et al. 2011). In other teleost 

species the situation is especially unclear. The expression of clock genes has not been 

investigated in a wide variety of peripheral tissues. Investigations have primarily focused on 
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the liver as a consequence of the importance in understanding metabolism, cholesterol 

homeostasis and ultimately fat deposition in commercially important species. Patterns of 

clock gene expression also appear to be dependent on species. Additionally in the absence of 

photic cues, feeding appears to act as a zeitgeber to entrain clocks in the liver (Kornmann et al. 

2009). As a result of the interesting developments in the study of clock regulation of liver 

lipid metabolism in mammals, for example clock gene regulation of cholesterol and fatty acid 

metabolism in rodents (Le Martelot et al. 2009)it is important to investigate the role of clocks 

in the regulation of liver lipid metabolism in the Atlantic salmon. Within the aquaculture 

industry this is an area of particular interest, as regulation of processes associated with fat 

deposition has fundamental importance for feed formulation and product quality. 

 

4. PHOTONEUROENDOCRINE AXIS 

The mechanisms of the circadian clock described in detail in the sections above are directly 

involved in the regulation of a wide variety of molecular and physiological processes. 

However clocks, in particular central clocks, also act as a component of the vertebrate 

photoneuroendocrine axis (PNES). The PNES is the system that connects photic perception 

to the brain-pituitary-gonadal (BPG) axis (Migaud et al. 2010). As with aspects of the 

circadian clock, knowledge of the PNES is considerably more advanced in mammals and in 

invertebrates such as drosophila.  

The mammalian PNES 

In mammals, the retina is fundamental to the perception of non-visual photic information. 

However the rods and cones essential for visual perception are not required for the perception 

of non-visual photic information and entrainment of the circadian system (Freedman et al. 
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1999; Golombek & Rosenstein 2010). In recent years photoreceptive retinal ganglion cells 

(pRGCs) have been identified as playing a key role in the transduction of photic cues to the 

SCN, where photic information is deciphered (Berson et al. 2002; Hattar et al. 2002; 

Golombek & Rosenstein 2010). Melanopsin, a photo pigment present in pRGCs, is thought to 

be a primary component responsible for the transduction of photic information through the 

retino-hypothalamic tract (RHT) and the initiation of the PNES (Golombek & Rosenstein 

2010). The RHT is the primary input pathway to the SCN. The importance of the RHT to the 

SCN has previously been demonstrated in lesion and stimulation experiments (Johnson et al. 

1988; Shibata & Moore 1993; Golombek & Rosenstein 2010). The RHT utilises glutamate, 

asparate, pituitary adenylate cyclase-activating polypeptide (PACAP) as neurotransmitters to 

transmit photic information to the SCN (Ebling 1996; Chen et al. 1999; Hannibal 2002; 

Golombek et al. 2003; Fahrenkrug 2006; Hannibal 2006; Golombek & Rosenstein 2010). 

Substance P is additionally thought to be involved in the process ( Hannibal 2002; Golombek 

& Rosenstein 2010). Of these neuropeptides glutaminergic SCN fibres are hypothesised to be 

the primary signal innervating the clock by making synaptic connections and transmitting 

electrical signals to SCN neurons (Golombek & Rosenstein 2010).  

As described above the SCN is a heterogeneous paired structure, situated in the anterior 

hypothalamus and drives circadian rhythmicity. The structure is crudely divided into two 

primary elements. The ventrolateral SCN (VL-SCN i.e. the core) and the shell, the 

dorsomedial SCN (DM-SCN). The RHT transmits directly to VL-SCN neurons (Dibner et al. 

2010; Golombek & Rosenstein 2010; Colwell 2011;). This then activates the expression of 

Per genes via the extracellular signal- regulated kinase (ERK) pathway and cAMP response 

elements in the promoter regions of the Per1 and Per2 genes (Dibner et al. 2010). The VL-

SCN neurons then transmit this information to the DM–SCN where clock genes oscillate 
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endogenously (Colwell 2011). This is the core mechanism entraining the endogenous clock 

of the SCN to environmental photoperiod 

 

.Melatonin 

Both photoperiod entrainment and the endogenous circadian clock come together to regulate 

the mammalian PNES (Migaud et al. 2010). This regulation is primarily achieved via SCN 

stimulation of the pineal melatonin biosynthesis. Photoperiod information is then transmitted  

to the pineal via a succession of processes involving: paraventricular nuclei or PVN of the 

hypothalamus, intermediolateral cell column of the spinal cord, the superior cervical ganglia  

(Klein 1985) to the pineal organ. At night SCN stimulates the release of norepinephrine into 

the pineal perivascular space. Norepinephrine then activates adenylyl cyclase, via 1-

adrenergic receptors, and increases intracellular Ca 
2+

 and protein kinase C activity via 1b-

andrenergic receptors, consequently potentiating the 1-adrenergic receptor activation of 

adenylyl cyclase. This process causes a large rapid increase in cAMP. In unglates and 

primates this is the only cellular mechanism known to control AANAT activity. Research in 

rodents has shown that cAMP also controls AANAT transcription but a number of other 

factors also appear to modulate its transcription. Including: -[Ca
2+

]I, unidentified rapid 

turnover protein repressor and endogenous clock control of cAMP(Coon & Klein 2006; Klein 

2007). The melatonin pathway (Tryptophan  Hydroxytryptophan N-acetylserotonin  

Melatonin) (Figure 6) and the daily rhythms in circulating melatonin levels are highly 

associated with the changes in AANAT activity, the penultimate enzyme involved in the 

production of melatonin (Coon & Klein 2006; Klein 2007). AANAT activity mirrors a 24h 

profile in the retina as well as the pineal which plays a unique role in vertebrate biology. The 

activity of AANAT has been observed increasing by 10-100 fold during the night and results 
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in an increase in the biosynthesis of melatonin (Coon & Klein 2006; Klein 2007). The 

mammalian melatonin biosynthesis pathway is dependent on light information being 

transmitted from the retina, as opposed to the photoreceptive pineal present in teleosts. 

Figure 6: Melatonin biosynthesis pathway encompassing the conversion of serotonin to the 

nocturnally occurring hormone melatonin from Borjigin et al 1999.  

 

 

Melatonin and seasonality 

Pineal melatonin synthesis mirrors the dark period of the 24h light dark cycle. Changes in 

duration of melatonin signal provide information on seasonal changes over the course of the 

year. Melatonin is the primary output of the mammalian PNES from the SCN and pineal 

organ. The hormone binds to melatonin receptors at a variety of sites in order to stimulate 

reproduction (Simonneaux & Ribelayga 2003). In a number of seasonally breeding species 

melatonin binds to melatonin receptors in the pars tuberalis (PT) of the pituitary and 

stimulates the expression of clock gene expression and thyroid stimulating hormone (TSH) in 
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the region. Consequently, this activates the deiodinases 2 and 3 (DIO2 and DIO3) in the 

mediobasal hypothalamus and regulates the bioactivity of the thyroid hormones by mediating 

the conversion of T4 to T3 by DIO2 and vice versa DIO3 catalyses the conversion of 

biologically active T3 to an inactive form. The biologically active T3 in turn regulates 

reproductive processes (Yasuo et al. 2007). Melatonin additionally stimulates the hormone 

kisspeptin by the activation of the Kiss-1 gene in the hypothalamus. This ultimately mediates 

sexual development via regulation of GnRH (Smith & Clarke 2007). In mammals these 

mechanisms of the PNES appear relatively conserved among a wide variety of species. 

Difference in the timing of reproductive initiation (i.e. short day breeding species such as 

sheep and long day breeders such as hamsters) have been hypothesised to occur at the 

junction where melatonin and brain pituitary gonadal axis (BPG axis) interact (Dardente. 

2012). Clock genes have also been implicated in the regulation of reproduction ( Kennaway 

2005; Boden & Kennaway 2006), however the precise mechanisms mediating this are 

unclear. In mammals the pathways, mechanisms and components underpinning the 

mammalian PNES are relatively well understood in comparison to other vertebrates. 

The teleost PNES 

In teleosts there is very little information on the PNES organisation as a whole. One of the 

aspects of the teleost PNES that has received the most attention is melatonin. Yet studies on 

the direct role of melatonin in reproduction, as for the physiological functions, have given 

contrasting results depending on; species, gender, photoperiod and reproductive status 

(Falcon et al. 2007; Migaud et al. 2010). Melatonin has been shown to influence growth, 

maturation and reproductive processes in a number of teleost species. Low concentrations of 

melatonin have been shown to stimulate the release of luteinizing hormone (LH) from the 

pituitary and consequent elevation in the Atlantic Croaker (Micropogonias undulatus) while 

melatonin implants in the eel (Anguilla anguilla) resulted in a decrease LH and follicle-
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stimulating hormone FSH(Khan & Thomas 1996; Sebert et al. 2008). This has also been 

demonstrated in the Pacific salmonid species, the masu salmon (Oncorhynchus masou) 

(Amano et al. 2003; Amano et al. 2004; Amano et al. 2006). The administration of melatonin 

reduced both gonadotropin-releasing hormone (GnRH) and LH within the pituitary however 

FSH was stimulated. It was speculated that melatonin acts directly on the pituitary as a 

number of melatonin binding sites are present in the tissue (Amano et al. 2003; Amano et al. 

2004; Amano et al. 2006; Falcon et al. 2011) . In salmon removal of the pineal organ 

(pinealectomy) has suggested that pineal melatonin may be involved in the regulation of 

spawning time, however other mechanisms are likely to be involved as removal of the pineal 

does not fully abolish reproductive processes such as maturation (Mayer 2000; Migaud et al. 

2010). In contrast to the mammalian PNES there are some fundamental differences in the 

teleost production of pineal melatonin and the role of the pineal. 

In contrast to mammals, the pineal of the majority of teleost species studied to date, 

excluding tilapia (Oreochromis niloticus) and catfish (Clarias gariepinus), is directly 

photoreceptive (Migaud et al. 2007). It is entrainable by light and is the primary site for the 

endogenous production of circulating melatonin. In culture the mammalian pineal is unable to 

synthesise melatonin in vitro, the addition of nor-epinephrine to the culture medium is 

necessary for the hormone to be synthesised (Falcon 1999). Isolated in organ culture, the 

teleosts pineal remains directly photoreceptive and light entrainable (Bolliet et al. 1995; Iigo 

et al. 2007). In non salmonid teleosts the production of melatonin is endogenous. This is 

mediated in the pineal via clock control of AANAT2. As in peripheral tissues rhythmic clock 

gene expression is present in the zebrafish pineal. As a result the pineal is considered to be 

the central circadian pacemaker in this species (Vatine et al. 2011). However it is difficult to 

extrapolate these results and apply generalisations to the whole teleost group as a result of the 

diversity found amongst species in the group. 
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In general in non-mammalian vertebrates photoperiod dictates the rhythmic AANAT activity 

and melatonin synthesis. For example the presence of light during the night will inhibit the 

dark induced rise in levels of AANAT activity and subsequent melatonin production within 

the pineal (Falcon 1999). In a number of non-mammalian vertebrates melatonin rhythms 

appear to be driven by an internal endogenous clock, with photoperiod acting to entrain the 

clock to external environmental conditions (Falcon 1999). In fish, summer melatonin rhythms 

have a short duration and high amplitude, the situation is converse in winter photoperiods 

with rhythmic production of the hormone displaying a long duration and lower amplitude. 

Spring and autumn exhibit intermediate rhythms (Besseau et al. 2006). In most species these 

rhythms persist in constant darkness thus demonstrating the endogenous nature of these 

rhythms (Migaud et al. 2010), however there are exceptions (Falcon 1999; Iigo et al. 2007). 

Among salmonid species no rhythmicity appears to exist in the synthesis of pineal melatonin 

under constant conditions inferring the lack of circadian regulation over pineal melatonin 

production within this group (Falcon 1999; Abe et al. 2002). Extensive studies in salmonids 

have demonstrated photo-entrainable non-endogenous synthesis of pineal melatonin. Under 

constant darkness rhythmic melatonin production is lost in all salmonid species investigated 

to date (Gern & Greenhouse 1988; Max & Menaker 1992; Iigo et al. 2007). A 2007 study 

(Iigo et al. 2007) set out to monitor the secretion of pineal melatonin in seven salmonids and 

their relatives, the osmerids (2 species), in order to determine the evolutionary history of the 

pineal organ. 24h profiles of melatonin synthesis from individual salmonid pineals, common 

whitefish (Coregonus lavaretus), grayling (Thymallus thymallus), Japanese huchen (Hucho 

perryi), Japanese charr (Salvelius leucomaenis pluvius), brook trout (Salvelius fontinalis), 

brown trout (Salmo trutta) and chum salmon (Oncorhynchus keta), and from individual 

osmerid pineals from ayu (Plecoglossus altivelis altivelis) and Japanese smelt (Hypomesus 

nipponensis) were determined under a light dark/cycle and under constant darkness. In 
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response to a light/dark cycle all species displayed rhythmic melatonin synthesis with 

elevated levels of melatonin produced during the night. Under constant darkness rhythmic 

production of melatonin persisted endogenously, displaying elevated melatonin during the 

previously entrained nocturnal period. However in all salmonid species investigated the 

synthesis of melatonin from the isolated pineal organ was not rhythmic and levels were 

continually elevated during the 24 hour period. This was not the case in the osmerid species 

studied. The authors hypothesised that ancestral salmonids lost the endogenous circadian 

regulation of pineal melatonin synthesis after divergence from the osmerids (Iigo et al. 2007). 

 

The study by Iigo et al (2007) concentrated on the circadian control of melatonin in the pineal 

and not the retina. In another study in 2007 Migaud et al addressed this issue, demonstrating 

that the role of melatonin within the circadian system of teleost fishes varies to a far greater 

extent than initially realised. This report described three different ways in which light acts on 

the circadian axis of teleost fish. In the two salmonid species studied (Atlantic salmon and 

rainbow trout) circulating levels of melatonin were not affected by the removal of the eye, 

inferring that pineal photo-receptor cells are solely responsible for regulating circulating 

levels of melatonin. The situation was very different in seabass and cod. The removal of the 

eye resulted in a significant reduction in night time levels melatonin suggesting that both the 

eye and the pineal are responsible for regulating melatonin rhythms. It is possible that light 

perceived by the eye could regulate melatonin synthesis in the pineal via neural projections 

into the brain as is the case in mammals but it is also possible the system is dependent on 

deep brain receptors present in non-mammalian vertebrates (Migaud et al. 2007). The 

situation was different again in tilapia and catfish, suggesting a third kind of circadian 

control, whereby the pineal is not light sensitive or has significantly reduced sensitivity. This 

is similar to the situation in mammals, except with the lack of central circadian pacemaker 
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which would drive the production of melatonin in the absence of the eye. It was hypothesised 

that this system may also be dependent on deep brain photoreceptors (Migaud et al. 2007). 

Further studies into the circadian control of melatonin production in the Nile and 

Mozambique tilapia have shown there to be a combination of both  direct light and circadian 

control (Martinez-Chavez et al. 2008; Nikaido et al. 2009). Nikaido et al additionally 

hypothesised that a circadian pacemaker may exist in the retina or perhaps that a transducing 

network relays photic information from the retina to the pineal organ. To date the 

mechanisms of the salmonid circadian axis and the role of clocks in melatonin synthesis are 

not fully understood in the Atlantic salmon. There has however been some speculation as to 

why a lack of endogenous melatonin production in the salmonid pineal may have evolved. 

One hypothesis is that salmonids migrate long distances in order to return to their natal 

grounds, often experiencing extreme variations in photoperiod. The loss of endogenous 

melatonin production may have evolved as an adaptation to suit such environmental 

conditions (Iigo et al. 2007). However further work is necessary to unravel the mechanisms 

behind the circadian light axis in salmonid species. 

 

5. CLOCKS, PNES AND PHYSIOLOGY 

Mammals 

Amongst mammals the effect of the PNES and clocks on physiology is evident. The 

regulation of seasonal reproductive physiology by melatonin and clocks is relatively well 

described. The importance of melatonin and clocks to human physiology is a subject that has 

received considerable attention in recent years, in particular with regard to disease and health. 

Various aspects of clock and PNES dysfunction have been shown to result in pathologies 

such as cancer, metabolic syndrome, type 2 diabetes, hypertension and a number of mood and 

cognitive disorders (Hardeland et al. 2012). With regard to the auto-regulatory feed back loop 
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that drives the molecular mechanism of the clock disruption of various elements can have a 

substantial impact on human physiology. For example the CLOCK protein appears to play a 

fundamental role in stimulating the cell cycle and is hypothesised to act in a potential tumour 

promoting manner (Hardeland et al. 2012). Furthermore, it has been hypothesised that the 

hypermethylation of the CLOCK promoter region may suppress the growth of tumours 

(Hoffman et al. 2010; Hardeland et al. 2012). More over disruption of the circadian system 

has previously been associated with the formation of tumours and incidence of cancer. In 

addition to clocks disruption of melatonin, a key component of the vertebrate PNES system 

can have a profound effect on physiology and disease. For example polymorphisms in the 

melatonin receptor MT2 have been associated with type two diabetics and disruption of MT1 

has previously been associated with prostate cancer (Hardeland et al. 2012). Interruption of 

the melatonin system has additionally been associated with breast cancer, obesity and various 

forms of depression and mood disorder (Hardeland et al. 2012). In humans outside of the 

reproductive axis it is becoming increasingly evident that clocks and the PNES system have a 

profound effect on human physiology and disruption can result in profound health problems. 

In other vertebrates much of the research has focused on reproduction. 

 

Teleosts 

In teleosts both the PNES and molecular clocks have been shown to impact physiology, in 

particular with respect to reproduction. In addition to the effects of melatonin on 

reproduction, molecular circadian clocks have been implicated in the teleost PNES at 

different levels of organisation. As described above in non-salmonid teleosts the endogenous 

production of pineal melatonin in the isolated pineal is strongly suggested to be under the 

control of molecular clock work (Iigo et al. 2007). Moreover clock genes have been 

associated with maturation and reproductive processes. Clock has been mapped to 
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quantitative trait loci (QTL) regions for spawning time in rainbow trout. Additionally Cry2b 

and Clock1b were mapped to (QTL) regions for growth in the Coho Salmon. Length 

polymorphisms in Clock1b polyglutamine domains were found to be associated with 

differential migratory run times in the Chinook salmon (O'Malley & Banks 2008; O'Malley & 

Banks 2008). The gene is also implicated in the reproductive timing of a number of pacific 

salmon species (O'Malley et al. 2010). In Atlantic salmon Bmal1 was found to be up-

regulated in prematurely maturing males (Aubin-Horth et al. 2005). Finally a 2010 

publication mapped Clock1, Npas2 and Clock3 to QTL life history regions in salmonids 

(Paibomesai et al. 2010). The role of clocks and clock mechanisms in salmonid maturation 

and reproduction will additionally be discussed further in the section below. In spite of the 

numerous publications linking clock genes to maturation, migration and reproduction and the 

clear control photoperiod exerts on salmonid life history events, the mechanisms linking 

clocks to seasonal processes are largely un-described in teleosts. 

Kisspeptin also is likely to be of importance to the teleost PNES. In mammals kisspeptin is an 

important regulator of reproductive processes (Pinilla et al. 2012). In teleost the role of 

kispeptin appears to be relatively conserved (Migaud et al. 2010). In fish, kisspeptin has been 

associated with regulation of GnRH and the onset of puberty (Filby et al. 2008; Martinez-

Chavez et al. 2008; Elizur 2009). In fish two KISS proteins and two GPR54 receptor proteins 

are present in fish, possibly as a result of the teleost genome duplication event (Felip et al. 

2009; Mechaly et al. 2009). However further work is necessary to fully determine the role of 

the Kiss system in the teleost PNES. 

As yet the teleost PNES has not yet been fully described. In a 2010 review Migaud et al 

proposed a potential model for the teleost PNES (Figure 7), although it is becoming apparent 

that the teleost PNES is more diverse than in mammals (Figure 8). In fish the pineal is 

photoreceptive to at least some degree and has the capacity to produce melatonin when 
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isolated in culture. In most fish the pineal organ appears to harbour the molecular clock work 

necessary for the endogenous production of pineal melatonin. Interestingly in salmonids this 

does not appear to be the case. The production of pineal melatonin does not persist in the 

absence of photic cues and appears to be decoupled from the circadian clock work. However 

the implications for this in the salmon PNES and subsequent impacts on physiology are 

unclear and require further investigation.  

 

Figure 7. Suggested evolution of the regulation of pineal melatonin synthesis in teleosts. In 

addition to the two types of circadian organization already proposed in fishes (A and B), a 

third type could exist where pineal light sensitivity would be dramatically reduced (C). The 

regulation of pineal activity would have thus evolved from an independent light-sensitive 

pineal gland, without pacemaker activity, as seen in salmonids, e.g. Salmo salar (A), to an 

intermediary state where the pineal gland remains light sensitive and could possess a 

circadian pacemaker, but is also regulated by photic information perceived by the retina as 

seen in Dicentrarchus labrax (B) (and Gadus morhua), to reach a more advanced system 

closer to higher vertebrates where light sensitivity of the pineal gland would be significantly 

reduced and its melatonin synthesis activity primarily regulated by a circadian pacemaker 

(unknown location) entrained by photic information perceived by the retina, e.g. 

Oreochromis niloticus (C) from Migaud et al (2010).  
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6. PHOTOPERIOD AND SEASONAL REPRODUCTION 

Mammals and Birds 

In order to better understand the underling mechanisms driving the temporal control of 

seasonal process we must again look to mammalian and avian models, where the underlying 

mechanisms driving seasonal reproduction are becoming increasingly well understood. It is 

now evident that duration of photoperiod appears to be fundamental in the synchronisation of 

endogenous rhythms to external environmental conditions. Melatonin appears to be the link 

between clocks and seasonal reproduction in mammals (Yoshimura 2010; Dardente 2012).  

Thyroid hormone metabolism in the brain is an integral part of the seasonal regulation of 

reproductive physiology (Figure 8) and is regulated by the seasonally changing melatonin 

signal in mammals (Dardente 2012). Melatonin binds to the high density of melatonin 

receptors present in the pars tuberalis (PT) of the pituitary and alters the expression of clock 

genes per and cry. However the removal of the thyroid in a number of mammals has been 

shown to block photoperiodic response; while response is reinstated by thyroxin 

administration (Yasuo et al. 2007). The production of thyroxin is induced by thyroid 

stimulating hormone (TSH) by cells in the PT and can be altered by seasonally shifting Per 

and Cry expression in these cells (Yasuo et al. 2007). TSH then acts on the ependymal cells 

in the hypothalamus to control the release of thyroxin. Circulating thyroxin T4 displays very 

little biological activity (Dardente et al 2010). However when an iodine is removed, 

biologically active T3 is formed via the activity of the deiodinase enzyme DIO2. Additionally, 

DIO3 catalyses the conversion of the active T3 to the biologically inactive form of thyroxin 

(Lechan & Fekete 2005). DIO2 and DIO3 are under the control of external photoperiod via 

TSH, when external photoperiod is increasing the discharge of TSH from the PT cells of the 

pituitary is high and triggers conversion of T4 to T3 via the action of DIO2. Conversely under 
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short day photoperiod release of TSH is low and DIO3 is stimulated to convert T3 to its 

inactive form (Lechan & Fekete 2005). The action of DIO2 and DIO3 on thyroxin pathway is 

highly conserved amongst vertebrates. 

The role of deiodinases on the regulation is fundamental in the control of seasonal 

reproduction in vertebrates. Common to all the deiodinase genes a selenocysteine (sec) region 

is present. This changes the stop codons to a sec amino acid forming a selenocysteine 

interaction sequence (SECIS). This then functions as a binding site for a number of accessory 

proteins, this may have regulatory effects on the properties of the deiodinase genes (Arrojo & 

Bianco 2011). Moreover the deiodinases are homodimers and appear necessary for optimal 

catalytic activity (Arrojo & Bianco 2011). Importantly the DIO2 enzyme has a short half life. 

This is, in part, a result of the interaction with T4 acceleration of ubiquitination and 

proteasome uptake, this in turn regulates the stability of T3 (Arrojo & Bianco 2011). The 

residency of Diodinase 3 in the endoplasmic reticulum additionally contributes to the short 

half life of the enzyme (Arrojo & Bianco 2011). Consequently the properties of the 

deiodinase genes and enzyme regulate not only its own stability but also the stability of the 

thyroxin pathway. 
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Figure 8: Schematic diagram of photoperiod regulation of seasonal reproduction in mammals adapted from Foster and Kreitzman et al 2009. 

Seasonal photoperiod information is perceived in the retina and transmitted to the SCN where electrical activity is adjusted to photoperiod. This 

regulates nocturnal melatonin synthesys so it reflects the nocturnal portion of the 24h cycle. The binding of melatonin to M1 melatonin receptors 

then alters the timing of clock gene expression in the pars tuberalis (PT) of the pituitary. While Per peaks around sunrise the expression of Cry 

follows the beginning of the nocturnal phase. The coincidence of per/Cry expression then regulates levels of thyroid stimulating hormone (TSH). 

Elevated TSH in turn stimulates Dio2 expression and catalyses the conversion of T4 to the biologically active T3 resulting in breeding in long 

day breeders such as the hamster. Conversely the down-regulation of TSH results in the DIO3 mediated conversion of T3 to its biologically 

inactive for. While this suppresses breeding in long day breeders, in short day breeders such as the sheep breeding is stimulated.
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As a result of their action on the thyroid hormone the deiodinases have a fundamental role in 

a number of biological processes, including development and metabolic functions. In 

mammals the role of deiodinase appears to be conserved between long day and short day 

breeders. Dio2 mRNA is up-regulated under the long day photoperiod and down-regulated 

under short days. Similarly Dio3 mRNA is up-regulated under short day and down-regulated 

when exposed to the long day photoperiod in a number of rodent species including the 

European hamster (Cricetus cricetus)(Hanon et al. 2010), Djungarian / Siberian (Phodopus 

sungorus)(Watanabe et al. 2007) and Syrian hamsters (Mesocricetus auratus)(Revel et al. 

2006; Yasuo et al. 2007) and the photoperiodic strain(the wistar rat) of brown rat (Rattus 

norvegicus) (Yasuo et al. 2007). This has also been observed in lager seasonal mammals such 

as the sheep (Wagner et al. 2008). The seasonal expression of the deiodinases is largely 

governed by the actions of melatonin (Revel et al. 2006; Yasuo et al. 2007). In Syrian 

hamster under long day photoperiod the administration of melatonin before sunset resulted in 

the suppression of Dio2 mRNA expression. This effect lasted for a further 2 day after 

administration (Yasuo et al. 2007), consequently demonstrating the control of melatonin on 

DIO2 enzyme and resulting influence on the thyroid hormones and the reproductive system. 

Although melatonin is not thought to be essential for the seasonal control of reproduction in 

aves, the expression of deiodinases and their actions on thyroxin are largely conserved in 

relation to mammals. Work primarily conducted on the seasonally breeding Japanese quail 

has demonstrated similar long day and short day expression and actions of DIO2 and DIO3 

conversion of T4 to T3 (Yoshimura et al. 2003; Nakao et al. 2008; Yoshimura 2010). 

However the mechanism linking the deep brain photoreceptors, the seasonal clock in the 

MBH and the control of deiodinases on the reproductive system is largely unknown 

(Dardente. 2012). Deiodinases have previously been identified in a number of teleost species; 

however the majority of work has focused on its role in developmental processes as opposed 
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to seasonal control of thyroxin and reproductive processes. It is thought functions of 

deiodinases are similar to those in other vertebrates (Johnson & Lema 2011). 

In mammals the function of clocks and melatonin in transmitting seasonal photic information 

through the photo-neuroendocrine system is largely conserved between long day and short 

day breeders. The reproductive process will be initiated at different time in different species, 

as a consequence of the differential use of temporally available resources and gestation 

period. As a result seasonal mammals are generally categorised as either long day or short 

day breeders with reproduction triggered by increasing or decreasing daylength 

respectively(Hazelrigg and Loudon 2008; Hanon et al 2010). Although the exact mechanisms 

are unclear it is thought that T3 regulates the GnRH neurons in the hypothalamus. In short 

day breeders such as sheep there is a high pulse of GnRH under a short day photoperiod 

stimulating the activation of the reproductive system. When exposed to long day photoperiod 

a long duration GnRH pulse is observed. As a result the pituitary is not stimulated to release 

the reproductive hormones. In smaller seasonal mammals, such as the hamster, breeding is 

stimulated by increasing daylength, as the gestation period is considerably shorter than in 

larger mammals (Hazelrigg and Loudon 2008). The GnRH pulse is high in the spring/summer 

and low during the winter months. Resulting in reproductive initiation as daylength is 

increasing. In both the long and short day breeders GnRH is released in seasonal pulses that 

via the portal blood supply act on the pars distalis (PD) of the pituitary. Here GnRH instigates 

the release of LH and FSH, that travel through the circulatory system and trigger the release 

of the sex steroids testosterone and oestrogen and activate reproductive activity (Hazelrigg 

and Loudon. 2008) 

In many vertebrates seasonal reproduction is not simply triggered by external photoperiod, 

melatonin and the SCN, it has been hypothesised that seasonal physiology is also regulated 

by a circannual oscillator ( Lincoln et al. 2005; Lincoln et al. 2005; Lincoln 2006;). Under 
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constant photic conditions the seasonal occurrence of reproductive physiology has been 

shown to persist for a number of years. Sheep maintained under 12L: 12D will still continue 

to display seasonal reproduction for a number of years in the absence of annual variations in 

external photoperiod (Lincoln et al. 2005). Circannual rhythms in spawning have also been 

observed in a number of teleost species including the rainbow trout (Bromage et al. 1988; 

Duston & Bromage 1988; Duston & Bromage 1991; Bromage et al. 2001) and seabass 

(Bromage et al. 2001; Prat et al. 1999). Despite evidence supporting the endogenous annual 

control of reproduction and other physiological the location of such a circannual oscillator is 

not currently known (Ikegami and Yoshimura 2012). 

 . 

Although the molecular and neuroendocrine mechanisms underlying the seasonal control of 

reproduction are becoming increasing clear in mammals and to a lesser extent in birds the 

situation is still unclear in teleosts. However, photoperiod manipulation has a profound effect 

on seasonal physiology and reproduction in some salmonids has been observed to cycle 

endogenously (Bromage et al. 2001). Within the salmon aquaculture industry photoperiod 

manipulations are utilised in three primary areas of commercial production: firstly to control 

the timing of spawning in broodstock, secondly to regulate the timing of smoltification and 

finally to suppress early maturation (Bromage et al. 2001). Under natural conditions Atlantic 

salmon broodstock will spawn as the daylength is decreasing, however the maturation 

process is triggered almost a year earlier after the winter solstice as daylength begins to 

increase (Bromage et al. 2001). Photoperiod manipulation can advance spawning by exposing 

fish to long day followed by short day photoperiods. A delay in spawning can also be induced 

by delaying exposure to the long day photoperiod (Bromage et al. 2001). The elongation and 

condensing of photoperiod is widely used to regulate spawning. Under ambient conditions 

juvenile Atlantic salmon undergo the smoltification process and are transferred to sea water 
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in the spring. After on growing in marine environment fish are ready for harvest around 18 

months later in the late summer. However as a consequence of higher year round demand 

photoperiod manipulation in combination with temperature is utilised to produce smolts out 

of season (in autumn) that are ready for harvest in the winter over a year later. A compressed 

short day followed by long day photoperiod is applied in order to achieve this. Smolts 

produced in this way are termed 0+ or S0 (Duston & Saunders 1990; Duston & Saunders 

1992; Duston & Saunders 1995; Duston & Saunders 1995). The maturation process is 

initiated after the winter solstice as daylength increases under ambient conditions. However 

in order to inhibit maturation and maximise growth and flesh quality constant light is 

administered earlier than the long day signal under natural photoperiod (Bromage et al. 

2001). The addition of constant light implies the early onset of summer and maturation is 

initiated, however as individuals do not yet have the energy resources necessary for the 

maturation process, they do not mature. The earlier constant light is applied, the fewer 

number of individuals will mature (Bromage et al. 2001; Migaud et al. 2010). The use of 

photoperiod in the aquaculture is now commonplace however the underlying mechanisms are 

as yet not fully described. The Atlantic salmon is one of the only farmed animals in which 

photoperiod manipulation is central to the industries profitability. Yet in spite of the capacity 

for photoperiod to regulate physiology the underlying mechanisms need considerable further 

investigation. 

 

7. CONCLUSIONS AND AIMS 

While many aspects of salmon physiology and behaviour have been well studied there 

remains a lack of understanding of the mechanisms that regulate the robust temporal 

organisation of its physiology and behaviour. Based on work in a diverse range of organisms, 
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from mammals to plants, it is evident that the circadian clockwork that drives both circadian 

and seasonal rhythmicity is of fundamental importance to an organisms fitness, enabling the 

timing of essential daily and seasonal events to coincide with optimal environmental 

conditions. The body clock of Atlantic salmon and in fact most teleosts remain largely un-

described. The core molecular mechanisms that drive the clocks are highly conserved 

amongst vertebrates; however investigations in the tropical zebrafish have demonstrated 

some important differences between clocks in fish and clocks in other vertebrates. Moreover 

in fish the presence of a master circadian clock has yet to be identified. 

In some fish species it is hypothesised that the pineal may be the site of central circadian 

control as, unlike in mammals, the salmon pineal is photoreceptive and contains all the 

molecular components of the circadian clock. It is also the primary site of synthesis of 

circulating melatonin, the so called “timekeeping hormone”. However the role of the pineal 

and the production of melatonin appear to differ between teleosts. In any case the 

fundamental differences between the mammalian and teleost circadian light axes and PNES 

make teleosts an interesting group to investigate.  

Due to the gap in the knowledge on circadian and seasonal clocks in temperate teleosts the 

aim of the present thesis has been to further investigate various aspects of clock gene 

expression in the Atlantic salmon primarily in relation to seasonality. This thesis sets out to 

investigate various components of the Atlantic salmon clockwork mechanisms and PNES. 

These include the seasonal expression of clock genes and genes involved in mammalian 

seasonal regulation. The role of clocks in the pineal organ of the Atlantic salmon in 

comparison to the European seabass and finally how do clocks regulate circadian function 

such as the liver lipid metabolism. In order to achieve this project set out with a number of 

aims. 
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Seasonal melatonin and clock gene expression in the brain fin and liver of the Atlantic 

salmon (Chapter 3) 

This chapter aimed to investigate how diel clock gene expression varies as a result of 

exposure to artificial long day, short day and 12L: 12D photoperiod in the brain, specifically 

how does expression differ between central and peripheral tissues, and, how are clock genes 

expressed under natural seasonal photoperiods over the course of a year?  

 Photoperiod regulation of Deiodinase, Eyes Absent 3 and Thyroid stimulating 

hormone betain the Atlantic salmon (Chapter 4) 

This chapter aimed to determine seasonal gene expression and identify elements of the 

molecular switch for photoperiod response, based on known elements in mammals. 

Specifically how are expression of these elements related to photoperiod? 

 

 In vitro and in vivo expression of clock genes and the endogenous production of 

pineal melatonin in the Atlantic salmon and the European seabass (Chapter 5) 

This chapter aimed to characterise functional clocks in the pineal of the Atlantic salmon. Are 

clock genes expressed in the pineal organ of the Atlantic salmon in vivo and in vitro? If so 

are they endogenous and entrainable by light? How does the expression of pineal clocks 

compare with other teleost species such as the European seabass? 

 Circadian Expression of Clock Genes, Sterol Regulatory Element-Binding Proteins 

and SREBP Targets in the Liver of the Atlantic salmon. (Chapter 6) 

This chapter aimed to characterise clocks and examine rhythmic gene expression in the Liver. 

What initial functional links can be made with clocks in peripheral tissues? Is there a 

correlation between clocks in the liver and the liver lipid metabolism?
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MATERIALS AND METHODS 

In order to investigate the mechanisms underpinning Atlantic salmon (Salmo salar) circadian 

and seasonal physiology this thesis has investigated the photoperiod regulation of molecular 

clocks and seasonal physiology in the species. This chapter is a summary of the general 

materials and methods employed during the course of this work. 

1. FISH STOCK AND HOUSING 

Fish origin and housing 

 Fish all originated from Howietoun fishery (56.0728, -3.9532) (for further details see Table 

1). In all experiments fish were held in flow-though tank systems ranging from 1-2m
 
in 

diameter in fresh water and aproximatly 3m
 
in diamater in marine systems (7 m

3
). Freshwater 

rearing was performed at the Niall Bromage Freshwater Research Facilities (Institute of 

Aquaculture, Stirling, UK, 56: 02N) while the marine stages were housed at Machrihanish 

Marine Environmental Research Laboratories (Institute of Aquaculture, Machrihanish, UK 

55.4333333 N, -5.75 W) (Table 1). All fish were maintained at ambient temperatures under a 

simulated natural photoperiod (SNP) unless otherwise stated. In chapter 3 experiment 2 fish 

were held under constant light (LL) from first feeding (March 2009) prior to exposure to SNP 

photoperiods in June 2009.  In chapter 5 “Comparative study of clock gene expression and 

melatonin in the Atlantic salmon and European seabass pineal” experiments were also 

performed on European Seabass. Fish were obtained from CULMAREX (Aguilas, Murcia, 

Spain). Fish were housed at the Department of Physiology, Faculty of Biology, University of 

Murcia, Chronobiology laboratory at the Algameca naval station (37.6 N, -0.98333 W) near 

Cartagena where they were maintained under ambient environmental conditions before 

experimentation (Table 1). 
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In all experiments fish were sacrificed via a schedule 1 killing method. Salmon were exposed 

to a lethal anaesthesia (2-phenoxyethanol 1ml/L sigma) and subsequently decapitated. 

Similarly in seabass fish were euthanized using clove oil (Eugenol, Guinama, Valencia, 

Spain) dissolved in 10 ml of ethanol at a final concentration of 50 μl/l, followed by 

decapitation. All experiments were performed following review by the local ethical review 

committees and in the UK, complied with the Home Office Animal (Scientific Procedures) 

act 1986, UK. 

Blood sampling. 

Where blood samples were required, up to 1ml of blood was removed with a 1ml sterile 

syringe previously heparinised (heparin ammonium salt, 4mg/ml Sigma-Aldrich (Gillingham, 

UK). Samples removed during the dark were done so with the aid of a dim red head torch 

with minimal light exposure. Blood samples were maintained at 4
o
C until centrifugation. In 

order to separate blood plasma, samples were centrifuged at 2500rpm for 15 minutes. Plasma 

was removed, frozen over liquid nitrogen vapour and stored at -70
o
C for further analysis. 

 

24 hour sampling and tissue dissection 

In all experiments, with the exception of the in vitro seabass and salmon pineal culture, 

sampling was carried out over 24 hours. To characterise a diel cycle of expression, tissue 

samples were removed every 4 hours at seven time points over the 24h period. Sampling was 

carried out rapidly and tissues removed during the nocturnal portion of the 24h cycle were 

carried out under a dim red light.  

For the dissection of the brain a section of the skull cap was removed above the brain and the 

whole brain including the pituitary was removed dorsally. For peripheral tissues the whole 

left pectoral fin was removed and approximately 100 mg of liver tissue was removed. All 
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tissue were instantly frozen over liquid nitrogen vapour after removal and stored at -70
 o

C for 

later analysis. In order to remove the salmon pineal in vivo a section of cranial tissue 

encompassing the pineal situated in the pineal cavity was removed. Tissue was then stored in 

RNA stabilisation solution (RNAlater® ©2011 Applied Biosystems) for 24h at 4
o
C. With the 

aid of a dissection microscope pineals were delicately removed from surrounding tissue and 

instantly frozen over liquid nitrogen vapour before being stored at - 70
 o
C for later analysis. 
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Table 1. Origin and housing for fish used for all experimental chapters 

Species  Experimental chapter Origin  Year class Housing  

Salmo salar   Seasonal Melatonin and Clock Gene Expression in the Brain, Fin and Liver 

of the Atlantic Salmon (Experiment 1, Chapter 3) 

 Photoperiod Regulation of Dio1-3, Eya3 and Tshin the Atlantic Salmon 

(Chapter 4) 

 Circadian Expression of Clock Genes, Srebp and SREBP Targets in the 

Liver of the Atlantic Salmon (Chapter 6) 

Howietoun Fishery  Jan 08   Niall Bromage freshwater research facilities 

(Institute of Aquaculture) 

Salmo salar  Seasonal Melatonin and Clock Gene Expression in the Brain, Fin and Liver 

of the Atlantic Salmon (Experiment 2, Chapter 3) 

Howietoun Fishery Jan 09   Niall Bromage freshwater research facilities 

(Institute of Aquaculture) 

 Machrihanish Environmental Research 

Laboratories (Institute of Aquaculture) 

Salmo salar  Comparative study of clock gene expression and melatonin in the Atlantic 

salmon and European seabass pineal ( S. salar in vitro)(Chapter 5) 

Howietoun Fishery Jan 09   Niall Bromage freshwater research facilities 

(Institute of Aquaculture) 

Salmo salar  Comparative study of clock gene expression and melatonin in the Atlantic 

salmon and European seabass pineal ( S. salar in vivo)(Chapter 5) 

Howietoun Fishery Jan 10   Niall Bromage freshwater research facilities 

(Institute of Aquaculture) 

Dicentrarchus labrax   Comparative study of clock gene expression and melatonin in the Atlantic 

salmon and European seabass pineal (D. labrax in vitro) (Chapter 5) 

CULMAREX, Aguilas, 

Murcia, Spain 

2010  Chronobiology Laboratory at Algameca naval 

station (Department of Physiology, Faculty of 

Biology, University of Murcia) 



Chapter 2 

56 
 

2. ORGAN CULTURE 

In Chapter 5 “Comparative study of clock gene expression and melatonin in the Atlantic 

salmon and European seabass pineal.” the in vitro performance of isolated pineal organs were 

studied as follows. 

Collection of the pineal organs 

Atlantic salmon parr housed at the Niall Bromage Freshwater Research Facilities under 

ambient temperature conditions (2.2 ± 0.1 
o
C) were acclimated to 12L:12D photoperiod with 

the light phase running from 07:00 to 19:00 daily. After 4 weeks ~70 salmon parr, for the 

12L:12D pineal culture, were sacrificed using a schedule 1 killing method as described 

above. Pineal organs were dissected out of the pineal cavity from a section of skull and tissue 

removed from the head above the brain with the aid of a dissection microscope and light. 

Once dissected out, isolated pineals were maintained (35 pineals in 100 ml of culture medium 

(see below)) at 8
o
C for a maximum of three hours until placed under culture conditions. The 

same protocol was used for the 12D:12L and 24hD pineal cultures however 140 fish were 

used for each of these cultures.  

For a comparative study in European seabass approximately 70 seabass (169.9 ± 10.6 g) were 

acclimated for 2 weeks at the Department of Physiology, Faculty of Biology, University of 

Murcia Chronobiology laboratory at the Algameca naval station under ambient temperature 

conditions (16 
o
C) to 12L:12D (lights on 06:00, lights off 18:00). After acclamation fish were 

sacrificed using a schedule 1 killing method as described above. Pineals were removed 

dorsally by thinning the tissue and bone around the pineal window then carefully removing 

the whole pineal with the aid of a dissection microscope. Isolated pineal organs were then 

maintained in culture medium (35 per 100 ml) until culture conditions were established.  
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Culture medium 

Both salmon and seabass pineal cultures were carried out in light and temperature controlled 

chamber using RPMI – 1640 without phenol red culture medium (Sigma ref R8755-10X1L, 

Gillingham, UK). Medium was supplemented with 4.77 g Hepes Sodium salt per litre, 

10mg/L Penicillin-streptomycin (Sigma-aldrich, Gillingham, UK) solution and 5 mg/L 

Fungizone (amphotericn # B from Streptomyces Sp) (Sigma-aldrich, Gillingham, UK)  to 

avoid fungal and bacterial growth. All medium was made with distilled water and pH was 

adjusted to 7.4. Media was sterile filtered to 0.4 µm with a pneumatic pump into a sterile 

bottle and stored at 4
 o

C for no more than 3 days to avoid contamination. Before use the 

required volume of medium were warmed to culture temperature before being introduced to 

the cultured organs. 

Culture conditions (temperatures and three photoperiods LD, DL and DD) 

All pineal culture experiments were preformed in static organ culture. Atlantic salmon culture 

experiments were carried out at 8 
°
C. Seabass culture was conducted at 18

 °
C. In both species 

the 12L:12D pineal cultures were carried out as follows. Seventy pineal were divided into 

seven (one per time point) glass vials, each containing 20 ml culture medium and 10 pineal 

organs under a sterile nylon fine mesh. For 12D:12L reversed photoperiod and 24h dark 

photoperiod  140 pineal organs were used for each as culture was extended from 48h to 96h 

with two 24h sample cycles (Figure 1). 

Sampling and medium exchange 

In all pineal culture experiments pineal organs were maintained in culture for 24 h prior to 

sampling. In the initial acclamation period 15 ml of the 20 ml total culture medium was 

exchanged every 6 h. During sampling periods pineals were instantly removed and frozen 

over liquid nitrogen vapour while culture medium was frozen for melatonin analysis and at 
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the remaining time points culture medium was exchanged every four hours.  A 12L:12D 

photoperiod (the same period to which the experimental source fish were initially exposed) 

was used in the salmon and seabass 12L:12D experiments. (Figure 1a). For the 12D:12L 

salmon pineal culture the photoperiod was reversed during the first nocturnal phase of the 

culture (Figure 1b). Similarly in the 24h Dark experiment the photoperiod was switched to 

constant darkness during the first nocturnal phase of the 24h cycle and maintained for the 

duration of the experiment (Figure 1c). Once removed from culture pineal tissue and culture 

medium were frozen at -70
o
C until RNA extraction and melatonin radioimmunoassay was 

performed. 

3. MELATONIN RADIOIMMUNOASSAY (RIA) 

Levels of circulating melatonin in blood plasma (Chapters 3 and 5) as well as melatonin 

released by isolated pineal glands into culture media (Chapter 5) were measured by 

radioimmunoassay. The assay protocol has previously been validated by Migaud et al (2007) 

however in-order to ensure measured levels stayed within the functional range of the assay 

samples had to be differentially diluted. For blood plasma samples were diluted 1:2 with 

assay buffer (see below) while for culture media samples were diluted 1:10  with assay 

buffer. 

Buffer 

The buffer for the melatonin RIA was used not only to dilute samples but also to dilute the 
3
H 

(tritium) melatonin label and antibody. Buffer consisted of 2.688 g Tricine [N-Tris 

(hydroxymethyl)methylglycine] (Sigma-aldrich, Gillingham, UK), 1.350 g sodium chloride 

(NaCl) (Sigma-aldrich, Gillingham, UK)  and 0.15 g of gelatine (Sigma-aldrich, Gillingham, 

UK). This was dissolved in 150 ml nanopure H2O (DNA and RNA free sterile H2O). Once all 

components were dissolved, buffer was stored at 4 
°
C until use.  
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A. 

 

B. 

 

C. 

 

 

Figure 1: Experimental photoperiods of the salmon and seabass 12L:12D culture (A) 

reversed photoperiod 12D:12L salmon culture (B) and 24h dark salmon culture (C). The 

figure also shows times of medium changes and sampling times. 

24h acclimation 
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Antibody 

A freeze dried sheep anti-melatonin antiserum (Stockgrand Ltd, Surrey, UK) was rehydrated 

in 2 ml of nanopure H2O. This was then aliquoted into 100 l samples and stored at -20 
°
C. 

One 100 l was used per assay and diluted in 19.9 ml assay buffer. 

Radiolabel  

From an initial stock of tritated melatonin [O-methyl -
3
H] melatonin (Amersham Pharmacia 

Biotech, UK Ltd, little Chalfort, UK) an intermediate stock consisting of 20 l in 2 ml of 

ethanol was created and stored at -20 
°
C. For each assay preformed a new working dilution of 

the radiolabel were made from 16 l 
3
H intermediate stock in 10ml of buffer. 

Standards 

A 1mg/ml stock of melatonin standard solution (10 mg melatonin in 10 ml absolute ethanol) 

was used to generate 4 standards (A – D) 

Composition of standards of melatonin RIA: 

Standard   Standard concentration 

A 100 l (1 mg/ml) + 9.9 ml buffer 10 g/ml 

B  100 l (10 g/ml = A) + 9.9 ml buffer 100 ng/ml 

C 100 l (100 ng/ml = B) + 9.9 ml buffer 1 ng/ml 

D 100 l (100 ng/ml = B) + 4.9 ml buffer 2 ng/ml 

 

A standard curve using standards D and a serial dilution from C was then generated in 

duplicate in 22 tubes (Table 2). Duplicate line standards were also used to calculate assay 

variability. 
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RIA protocol 

The standard melatonin RIA assay is carried out over 2 days. 

Day 1 –  

- All samples and standards were diluted to 500 l with the addition of 250 l of buffer and 

vortexed to mix. 

- 200 l of antibody was added to all tubes except the non specific binding (NSB) tubes. 

Samples were mixed by vortexing and incubated at 20 
°
C for 30 minutes. 

- 100 l of 
3
H radiolabel was added to all tubes, vortex all samples and incubate at 4 

°
C for 

18 hours 

- In addition to standards and samples, 100 l of 
3
H was added to the totals in to 2 

scintillation vials with 4ml scintillation fluid and vortex to mix. 

Day 2 –  

- Dissolve 0.48 g dextran coated charcoal in 50ml buffer and stir on ice for 30 minutes 

- 500 l of charcoal solution was added to each tube. Tubes were vortexed to mix and 

incubated at 4 
°
C for 15 minutes. 

- Samples were then centrifuged at 2000 RPM at 4 
o
C for 15 minutes. 

- 1ml of supernatant was then transferred to scintillation vials with 4ml of scintillation fluid 

including one blank. 

- Samples were vortexed to mix and radio activity was counted for 10 minutes in a 

scintillation counter. 
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Table 2: Composition of Melatonin RIA standard curve. 

Tube number Standard conc  + bufferl 

1 & 2 500 Standard D none 

3 & 4 250 Standard C none 

5 & 6 125 Standard C 250 

7 & 8 62.5 5 & 6 250 

9 & 10 31.3 7 & 8 250 

11 & 12 15.6 9 & 10 250 

13 & 14 7.8 11 & 12 250 

15 & 16 3.9 13 & 14 250 

17 & 18 1.95 15 & 16 250(mix & remove 250) 

19 & 20 0.0 None 250 

21 & 22 None specific 

binding 

None 450 

 

Analysis  

Results from the unknown samples were compared to the standard curve and concentration of 

melatonin in pico grams (pg) per tube was then calculated using Riasmart software (Perkin 

Elmer, Waltham, Massachusetts, USA). Results were then converted to pg per ml of blood 

plasma or culture media.  

 

4. MOLECULAR EXPRESSION ANALYSIS 

In Chapters 3, 4, 5 and 6 the mRNA expression of a number of different targets were 

measured using either Microarray (Chapter 4) or quantitative Real-time PCR (qPCR). The 
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analytical approaches used to isolate and identify targets of interest and thereafter quantify 

expression are summarised below. 

 

RNA EXTRACTION, DNase TREATMENT AND cDNA SYNTHESIS  

RNA Extraction 

For all brain, fin and liver samples approximately 100 mg of tissue was homogenised in 1 ml 

in guanidinium/phenol extraction reagent (TRIzol®;Invitrogen UK), according to 

manufactures instructions. The homogenised samples were then centrifuged at 12,000 g at 4 

o
C for 10 minutes in order to separate tissue debris. The supernatant was removed into a fresh 

DNA and RNA free eppendorf tube and incubated at room temperature for 5 minutes. 100 l 

of 1-Bromo-3-chloropropane (BCP) (Sigma-Aldrich, Gillingham, UK) was added to each 

sample and samples were vortexed to mix and incubated at room temperature for 10 minutes. 

RNA extractions were then centrifuged for 15 minutes at 4 
o
C at 12,000 g. The clear aqueous 

layer was removed into a fresh eppendorf and totRNA was precipitated from sample by 

adding 500l of isopropanol and vortexed to mix. Extractions were then incubated at room 

temperature for 10 minutes to precipitate RNA. Extractions were centrifuged at 4 
o
C, 12,000 

g for a further ten minutes (RNA pellet should be visible at this point). The remaining liquid 

was then removed and discarded while the RNA pellet was then washed in 75 % ice cold 

ethanol and pellet air dried. RNA pellets were then rehydrated in an appropriate volume of 

nanopure H2O to achieve a concentration ≤ 1000 µg/µl.  

In the case of the pineal RNA extractions individual tissues were homogenised in 500 l of 

TRIzol®. The remainder of the extraction was carried out at half the reaction volume. 

However during RNA precipitation step samples were precipitated overnight at -20
 o

C. 

Reactions were then centrifuged for 30 minutes and RNA pellet was washed in 75% ice cold 

ethanol. Pellet was rehydrated in 12 l nanopure H2O. 
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RNA Quality control 

Total RNA concentration and quality was determined using a ND-1000 Nanodrop 

spectrophotometer (Labtech Int., East Sussex, UK).  When the 260/280 ratio was between 1.8 

and 2.0 the RNA is considered to be pure. Furthermore in samples with a sufficient excess 

volume of total RNA 1g was analysed on a 1 % agarose denaturing RNA gel electrophoresis 

(Figure 2). 

 

Figure 2: Typical example of mRNA quality assessment by visualising the quality of the 

ribosomal RNA bands in a 1 µg totRNA sample on 1 % agarose denaturing RNA gel. 

DNase treatment 

After the totRNA was extracted and the quality assessed, all samples were DNase treated in 

order to eliminate genomic contamination using a commercial kit (DNA-free™: Applied 

biosystems, UK). 5 g Brain, Fin and Liver RNA in 19.5 l was combined with 2.5 l of 

reaction buffer and 0.5 l of DNAfree enzyme in each reaction and gently mixed and samples 

were incubated at 37 
o
C for 27 minutes. After incubation reactions were immediately placed 

on ice. 2.5 l of the resuspended DNase inactivation reagent was then added to each sample 

to give a total volume of 25 l. Each reaction was mixed by vortex and incubated at room 

temperature for 2 minutes while continuously mixing. Reactions were then centrifuged for 

1.5 minutes at maximum speed. The supernatant was then removed into fresh eppendorf. 
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Final DNase treated RNA was quality and concentration was analysed by nanodrop 

spectrophotometer and stored at -70 
o
C, just as totRNA. 

In the case of the pineal the entire volume of totRNA was DNase treated. 1 l of buffer and 

0.5 l DNAfree enzyme was added to each reaction.  The reaction was carried out as above 

with using 2l of inactivation reagent.  

cDNA synthesis  

cDNA was then reverse transcribed from DNase treated RNA using a high capacity reverse 

transcription kit without RNase inhibiter (Applied biosystems, UK). RNA was diluted to 10 

l. 10 l of master mix (see below) was then added to each reaction. 

cDNA master mix 

- 4.2 l H2O 

- 2.0 l 10 x Buffer 

- 0.8 l 25 x DNTP mix (100 mM) 

- 2.0 l 10 x RT Random primers 

- 1.0 l MultiScribe™ reverse transcriptase 50 U/μL 

The 20 l reaction is then incubated in a thermocycler at 25 
o
C for 10 minutes followed by 37 

o
C for 120 minutes and 85

 o
C for 5 minutes. Samples were then diluted as described in Table 

3. In addition to cDNA to be synthesised for qPCR, cDNA was also generated to test primers 

and for general use. Reactions were carried out as described above and diluted 1:10 to a final 

volume of 200 l. All cDNA samples were then stored at -20 
o
C. 

  



Chapter 2 

66 
 

Table 3: Concentration of totRNA used for cDNA synthesis for qPCR experiments 

Tissue/ Experiment Concentration of 

RNA used 

Dilution with 

H2O 

Total 

volume (l) 

Brain (Chapter 3, 

Experiment 1 & Chapter 4) 

1 g 1/10 200 

Fin (Chapter 3, Experiment 

1) 

1 g 1/10 200 

Liver (Chapter 3, 

Experiment 1 & Chapter 5) 

1 g 1/10 200 

Brain (Chapter 3, 

Experiment 2) 

1 g 1/5 100 

Pineal (LD salmon In vitro 

)(Chapter 5) 

500 ng 1/2.5 50 

Pineal (DL and DD salmon 

In vivo) (Chapter 5) 

1g 1/5 100 

Pineal ( salmon in vivo) 

(Chapter 5) 

1g 1/5 100 

Pineal ( LD Seabass in 

vitro)(Chapter 5) 

500ng 1/2.5 50 

 

5. GENE DISCOVERY AND BIOINFORMATICS 

For the majority of genes investigated sequences had previously been identified and reported. 

primers pairs were used (Table 4). However for Atlantic salmon it was necessary to identify, 

clone, sequence and design appropriate qPCR primers for Aanat2, Dio2, Per1 and Rev-erb 

Table 5) 
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Table 5: All genes investigated with full name and sequence source. 

Species  Short 

name 

Full name GenBank accession 

number  

S.salar Aanat2 arylalkylamine N-acetyltransferase 2 Unpublished 

 -Actin Beta - Actin AF012125 

  Clock Circadian Locomotor Output Cycles Kaput CA038738 

 Bmal Brain and muscle aryl hydrocarbon receptor 

nuclear translocator (ARNT)-like 

DY735402 

  Cry2 Chryptochrome 2 DY730105 

 D6 Fad Delta 6 fatty acyl desaturase AY458652 

 Dio1 Type 1 Iodothyronine deiodinases EG868394 

  Dio2 Type 2 Iodothyronine deiodinases Unpublished 

 Dio3 Type 3 Iodothyronine deiodinases DW562425 

  EF-  Elongation factor 1-alpha NM_001141909 

 Eya 3 Eyes Absent 3 CU071998 

 ElovL5 Elongation of very long chain fatty acids protein 5 AY170327 

  Fas Fatty acid synthase DW551395 

 Hmgcr HMG-CoA reductase DW561983 

 Lxr Liver x receptor FJ470290 

  Per1  Period 1 Unpublished 

  Per2 Period 2 FM877775 

 Rev-erb  nuclear receptor subfamily 1, group D, member 1  Unpublished 

 Srebp 1 Sterol Regulatory Element-Binding Protein 1 TC148424 

 Srebp 2 Sterol Regulatory Element-Binding Protein 2 TC166313 

 Tsh  Thyroid stimulating hormone, beta NM_001123528 

D. 

labrax 
 Actin Beta - Actin AJ537421 

 Aanat2 arylalkylamine N-acetyltransferase 2 European seabass 

genome project 

  Clock Circadian Locomotor Output Cycles Kaput Provided by University 

of Murcia 

  Per1 Period 1 GQ353293 
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Gene discovery 

Although sequences were available and primers were previously designed for the majority of 

clock genes investigated (Davie et al 2009) some target genes had not been previously 

reported therefore it was necessary to identify Aanat2, Dio2 per1 and Rev- erb  in the 

Atlantic salmon. In order to identify new genes, first we had to perform in silico sequence 

analysis on the same gene in a number of teleost species. Sequence information from a 

number of teleosts were aligned and compared in BioEdit v7.1.3 (Ibis Biosciences). In 

BioEdit conserved regions between different teleost species were identified. BLAST searches 

were performed against salmon ESTs . In 2010 the first draft Atlantic salmon Genome 

sequence became available, although it was too late to help with initial gene discovery work 

however it did enhance subsequence in silico analysis (Davidson et al. 2010). From the 

available sequence information various primer pairs were designed in Primer Select as part of 

Lasergene® core suite applications (DNASTAR). Primers are then tested by PCR on 

appropriate cDNA. PCR products are then sequenced directly for smaller products or, for 

longer products the PCR reaction is cloned and the plasmid is consequently sequenced. 

TBlastX (NCBI http://blast.ncbi.nlm.nih.gov) was then used to confirm the identity of 

sequence. This process is fully described below in the description of the identification of 

individual genes. 

Arylalkylamine N-acetyltransferase-2 (Aanat 2) (Chapter 5). 

Aanat2 sequence information for a variety of teleosts was acquired from NCBI search 

(National Centre for Biotechnology Information http://www.ncbi.nlm.nih.gov/) (Table 6). 

Sequences information was compiled in BioEdit with the addition of a number of predicted 

salmon sequences generated from salmon expressed sequence tag (EST) database ASalBase 

(http://www.asalbase.org/sal-bin/index) (Table 6). A number of primer pairs were then 

designed to amplify the rainbow trout Aanat2 mRNA sequence (accession no 

http://www.ncbi.nlm.nih.gov/)%20(
http://www.asalbase.org/sal-bin/index
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NM_001124257.1), and a salmon Aanat2 theoretical mRNA contig from a salmon EST 

contig cluster, and genomic sequence (Table 6). Primer locations were designed with regard 

to the additional teleost sequence information. Primers designed were then tested by PCR on 

pineal and brain cDNA. Amplicons were cloned and sequenced as described below. Gene 

identity was established by the alignment of Aanat2 sequences in clustalW2 

(http://www.ebi.ac.uk/Tools/msa/clustalw2/). The salmon cDNA fragments displayed an 

identity score of 96% with the rainbow trout mRNA. Salmon-specific qPCR primers for 

Aanat2 were designed to amplify a sub-fragment using Primer Select (Lasergene® 

DNASTAR). 

 

In order to establish sequence identify for Atlantic salmon, Aanat2 primer pairs (Table 7) 

were tested by PCR. PCR products were then cloned and sequenced in order to generate 

standards for each qPCR assay. Partial cDNA sequences were generated by PCR using 0.5 

µM of primers (Eurofins MWG Operon, Edersberg, Germany) (Table 7) one fortieth of the 

original cDNA synthesis reaction, Klear Taq polymerase with supplied buffer (Kbiosciences, 

UK), and 1 mM MgCl2 in a final volume of 20 µl using a routine PCR strategy: 15 min 95 

°C followed by 30 cycles of 95 °C 20 s, X °C 20 s, 72 °C 1 min. The annealing temperature is 

denoted as X °C in the description as it varied with the different primer pairs (Table 7). All 

primer pairs generated a single PCR product and those products used for qPCR standards 

were cloned into a pGEM-T Easy vector (Promega, UK) and sequenced (CEQ-8800 

Beckman Coulter Inc., Fullerton, USA). The identities of the cloned PCR products were then 

verified (100% overlapping) using BLAST (http://www.ncbi.nlm.nih.gov/BLAST/). 

Sequencing was performed using a Beckman 8800 autosequencer. Lasergene SEQman 

software (DNASTAR, www.dnastar.com) was used to edit and assemble DNA sequences. 

ClustalW was used to generate multiple alignments of deduced protein sequences (Thompson 

http://www.ncbi.nlm.nih.gov/nucleotide/185133506?report=genbank&log$=nucltop&blast_rank=11&RID=EF1TEAE6016
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et al.. 2000) MEGA version 4 was used to deduce and bootstrap phylogenetic trees using the 

neighbour joining method (Saitou & Nei 1987; Tamura et al. 2007). 

Table 6: Available teleost Aanat2 sequences and Atlantic salmon ESTs utilised for the 

generation of a salmon Aanat2 partial sequence. 

Species (Latin)  Species (Common) Ascension number Source 

Danio rerio Zebrafish NM_131411.1 

NCBI 

Carassius auratus Gold fish GU205782.1 NCBI 

Oryzias latipes Medaka NM_001104846.1 NCBI 

Solea senegalensis Senegalese sole GQ340973.1 NCBI 

Paralichthys olivaceus Olive flounder HQ883478.1 NCBI 

Oncorhynchus mykiss Rainbow trout NM_001124257.1 NCBI 

Scophthalmus maximus Turbot EF033250.1  NCBI 

Sparus aurata Gilt head seabream AY533403.2 NCBI 

Esox lucius Pike AF034082.1 NCBI 

Salmo salar Atlantic Salmon Cluster ID# 3912632 ASalBase 

Salmo salar Atlantic Salmon Cluster ID# 3920741 ASalBase 

Salmo salar Atlantic Salmon S0250N08SP6 ASalBase 

 

  

http://www.ncbi.nlm.nih.gov/nucleotide/18858240?report=genbank&log$=nucltop&blast_rank=1&RID=EF1TEAE6016
http://www.ncbi.nlm.nih.gov/nucleotide/270266976?report=genbank&log$=nucltop&blast_rank=7&RID=EF1TEAE6016
http://www.ncbi.nlm.nih.gov/nucleotide/157278426?report=genbank&log$=nucltop&blast_rank=8&RID=EF1TEAE6016
http://www.ncbi.nlm.nih.gov/nucleotide/262411029?report=genbank&log$=nucltop&blast_rank=9&RID=EF1TEAE6016
http://www.ncbi.nlm.nih.gov/nucleotide/340796348?report=genbank&log$=nucltop&blast_rank=10&RID=EF1TEAE6016
http://www.ncbi.nlm.nih.gov/nucleotide/185133506?report=genbank&log$=nucltop&blast_rank=11&RID=EF1TEAE6016
http://www.ncbi.nlm.nih.gov/nucleotide/120407316?report=genbank&log$=nucltop&blast_rank=12&RID=EF1TEAE6016
http://www.ncbi.nlm.nih.gov/nucleotide/88606624?report=genbank&log$=nucltop&blast_rank=13&RID=EF1TEAE6016
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Table 7: Aanat2 primer pairs, sequences, and location on rainbow trout partial sequence. 

Primer  Region Location on  O. 

mykiss 

 Primer sequence 5' - 3' Annealing 

temperature °C 

Aanat2 A ORF 372bp - 1040bp F: 

AGGTCAGCCGCTCTCCGT

TCC 

 

60 

      R: 

CCAGTGCTAGGGTTGATG

TGATTATGA 

 

Aanat2 B ORF + 3'  373bp - 1620bp F: 

GGTCAGCCGCTCTCCGTT

CCT 

 

61 

      R: 

TGGTGCTGCAGCTGAGAT

TGATGG 

 

Aanat2 C ORF + 3'  373bp- past end 

of RT sequence 

F: 

GGTCAGCCGCTCTCCGTT

CCTC 

 

62 

      R: 

CTGCAGCGCCTCAATGAC

AAAGTG 

 

Aanat2 D 5'+ ORF 

(partial) 

115bp- 796bp F: 

AGACAGGCAGATAGAAA

GCACAGAGCA 

 

61 

      R: 

CAGGTAGCGCCACAGCAG

GATG 

 

Aanat2 E ORF(part

ial)+ 3' 

771bp - 1566bp F: 

TCAGCCCAGTAAGTGACC

ATCATGACACAT 

 

63 

      R: 

GTTGCAACCTGGTCTGGA

CGGTCAAC 
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Type II iodothyronine deiodinase (Dio2) (Chapter 4) 

Identification of the Atlantic salmon Dio2 was based on the published rainbow trout Dio2 

sequence (AF207900) (Sambroni et al. 2001). BLAST analysis identified two salmon 

expressed sequence tags (EST’s) (GE782599 and DY713483) aligning to the published 

rainbow trout sequence. Specific Atlantic salmon Dio2 primers were then designed on the 

salmon EST’s with reference to the rainbow trout sequence (Primer Select Ver.6.1 

DNASTAR Lasergene, www.dnastar.com) (Table 8).  

Primers were tested on various Atlantic salmon cDNA samples using PCR with SuperTaq™ 

Plus (Ambion, Applied Biosystems, Warrington, UK) producing a product size of 

approximately 2Kb. Several PCR Atlantic Salmon Dio2 reactions were cloned using illustra 

GFX PCR DNA and GelBand Purification Kit (GE Healthcare) according to manufactures 

instructions. The purified product was then added to a ligation reaction at ratio of 3:1 insert to 

vector using a pGEM®-T Easy vector system (promega). Colonies were grown on 

LB/ampicillin/IPTG/ X-gal plates. Plasmids were prepared using a GenElute™ Plasmid 

Miniprep Kit (Sigma Aldrich, Gillingham, UK) plates. Plasmids were sequenced Beckman 

8800 auto sequencer. Sequence results were then analysed using SEQman as part of 

Lasergene software package (DNASTAR). Due to the size of the product further sequencing 

runs were required on the clones to obtain a complete sequence read. This was achieved using 

two additional primer pairs, (Dio2seqaF/R, Dio2seqbF/R)(Table 8), and aforementioned 

plasmid to gain 2kb salmon Dio2 sequence. Percentage identities of the partial sequence with 

that of Dio1, Dio2 or Dio3 in other vertebrates were obtained by performing a BLAST 

analysis. The partial sequence was copied into BioEdit (http://www.mbio.ncsu.edu/), where 

ClustalW analysis was executed to generate multiple alignments with Dio genes of other 

vertebrates. MEGA Ver.4.1 (http://www.megasoftware.net/) was used to deduce a 

phylogenetic tree using the neighbour joining method. qPCR primers (Table 8) were designed 

http://www.dnastar.com/
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within this partial sequence using Primer select also as part of the Lasergene software 

package (DNASTAR). ClustalW was used to generate multiple alignments of deduced 

protein sequences (Thompson et al. 2000). MEGA version 4 was used to deduce and 

bootstrap phylogenetic trees using the neighbour joining method (Saitou & Nei 1987; Tamura 

et al. 2007). 

Table 8: Primers sequences used (5’-3’ )and annealing temperatures. For PCR and qPCR 

assays, including primer pairs for Dio2 identification. 

 

Primer 

Name  

Primer sequence Forward 5’-3’ Primer sequence reverse 5’-3’ Anneal 

°C  

Dio2 GGCAGCGCATGCTGACCTCG  ACCAGCCCCGTCTCGACCCA  62  

Dio2seqa CCATGGGCCCGTGCTCCTT  CATGTGGCGTAAGTCTGGGTTGCT  65  

Dio2seqb AACGTGGGCCTACGGCGTGT  TGCTGTGCCTTGCTCTACGGCT  65  

Dio2qPCR GGACGAGTGCCGCCTGCTGGACTT  GAAGGCGGGCAGGTGGCTGATGA  68  

 

Period 1 Per1 (Chapter 3, 5 and 6) 

The Atlantic salmon Per1 assay was designed as follows: sequence information from a 

variety of teleost Per1 sequences were assembled in BioEdit and sequences were aligned 

using Clustal W 4. Primers were designed in conserved regions of the coding sequence of 

medaka (NM_001136520), seabass (GQ353293), partial rainbow trout CDS(AF228695), and 

construct of salmon ESTs (DW576689, DW584143, DY698298) from NCBI (National 

Center for Biotechnology Information http://www.ncbi.nlm.nih.gov). PCR primer pairs 

(Table 9) were designed in the coding sequence. The product generated was cleaned using 

illustra GFX PCR DNA and GelBand Purification Kit (GE Healthcare) according to 
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manufactures instructions and then cloned into the pGEM®-T Easy vector system (Promega, 

Southampton, UK).  Plasmids were harvested from discrete colonies using a GenElute™ 

Plasmid Miniprep Kit (Sigma Aldrich, Gillingham, UK) and the presence of an insert 

checked by enzymatic digestion (ECoR1, Invitrogen Paisely, UK). Plasmids with the correct 

sized insert were sequenced through a Beckman 8800 auto sequencer and sequence results 

were then analysed using SEQman as part of Lasergene software package (DNASTAR, 

Madison, Wisconsin, USA). qPCR primers were designed within this partial sequence using 

Primer select also as part of the Lasergene software package (DNASTAR Madison, 

Wisconsin, USA). ClustalW was used to generate multiple alignments of deduced protein 

sequences (Thompson et al. 2000). MEGA version 4 was used to deduce and bootstrap 

phylogenetic trees using the neighbour joining method (Saitou & Nei 1987; Tamura et al. 

2007). 

 

Table 9: PCR primer names and sequences used for Per1 identification. 

Primer 

Name  

Forward  Reverse  

RTper1 pub  AGAGCCCATCCCCACCCAGCAGTT  TCGGCCCGTCAGGAAGGAGA  

1Per1  CTGCTGTCGACCAGCTCGGAGCAC

GAC  

GGCGCCAAAAGCTCCGAAAACATGGTG  

2Per1  CTGCGCTGCAAGCCAGAGCGTCTC

C  

GCAGCTGGGAGTGTGACTGGTGGTGAA

GAT  

3Per1  GCCCTGCCGCCTGCCCAACTG  GCGCCCGACGATAAACGCCACCTTC  

 

Nuclear receptor subfamily 1, group D, member 1 Rev-erb1(Chapter 4)

Rev-erb1α was identified as follows: two Atlantic salmon expressed sequence tag clones 

(Genbank ID: DY724083 and DY731913) were identified by BLAST analysis of published 



Chapter 2 

75 
 

vertebrate rev-erb1α sequences. 5’ and 3’ ends from the constructed contig were amplified 

using Rapid Amplification of cDNA Ends (RACE)-PCR with the RACE cDNAs generated 

from 1 μg of salmon whole brain total RNA as described in the manual using the SMART™ 

RACE kit (Clontech, USA). The 5’ and 3’ RACE amplicons were generated by two rounds of 

PCR using Rev-erb 5’R1 and Rev-erb 5’R2 primers or Rev-erb 3’F1 and Rev-erb 3’F2 

respectively (Table 10). The final full-length sequence was confirmed by two rounds of PCR 

using nested primers designed to amplify end to end full length cDNAs (Rev-erb_full_F1: 

Rev-erb_full_R1 & Rev-erb_full_F2: Rev-erb_full_R2) (Table 10). All PCRs were run at an 

annealing temperature as listed in Table 10 and the extension time was 1 min/Kb of predicted 

PCR product, and 3 min were applied for unpredictable RACE PCR products. All primers 

were designed using Primer Select Ver. 6.1 program (DNASTAR, www.dnastar.com).  

 

Table 10: Primer pairs and sequences for Rev-erb  identification including primer name, 

purpose, sequence and annealing temperature. 

 

Name Purpose Sequence 5’-3’ Anneal 

Temperature 

Rev-erb 5’R1 RACE-PCR GCCCCAGTTGTCCACCTCTCCGTTATGT 60 °C 

Rev-erb 5’R2 RACE-PCR AATGGCGGGCTTTGGGTGGATG 60 °C 

Rev-erb 3’F1 RACE-PCR TACCCCCAAGACGAACCCAACA 60 °C 

Rev-erb 3’F2 RACE-PCR GGGAGGCTTGCTAGACACCAT 60 °C 

Rev-erb_full_F1 Full length 

outer PCR 

AGGCCGACTTGGAAACTGC 57 °C 

Reverb_full_R1 GTCTATTGGCCTTACCCCTATCA 

Rev-erb_full_F2 Full length 

inner PCR 

GTTCAGACCTGCACCGATAGAGC 62 °C 

Rev-erb_full_R2 TAGCCGCCCAACCACCACTGTC 

 

 

http://www.dnastar.com/
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6. MOLECULAR TECHNIQUES 

PCR  

Routine PCR was used to test all of the primers for qPCR, cloning and sequencing. For the 

majority of PCR reactions, general use such as test PCR and cloning reactions) cDNA was 

used as part of a 20l reaction with Klear Taq Hot Start DNA polymerase (KBiosciences 

Hoddesdon, Herts, UK). For a typical PCR reaction primers were reconstituted to a stock 

concentration of 100 pmol/l. Stock primers were then diluted 1/10 and 1.6 l of each 

forward and reverse primer were used per 20 l reaction. 2.5 – 5 l cDNA is used in each 

reaction with 15 – 17.5 l of master mix. 

Routine PCR Master Mix for 20l reaction: 

- 1.6 l Forward primer 

- 1.6 l Reverse primer 

- 2 l 10x Klear taq buffer no MgCl2 no detergent. 

- 1.8 l MgCl2 50mM 

- 0.5 l dNTP 

- 0.08 l Klear taq 

- DNA/ RNA free H20 to 20 ml (7.42 – 9.92 l) 

Each PCR reaction is mixed and briefly centrifuged to collect all of the reaction components 

at the bottom of the tube. All reactions are then placed in a themocycler. The cycle begins 

with 15minutes at 95
o
C followed by 35 cycles of 95 

o
C for 30 seconds, anneal for 30 seconds 

(anneal temperatures were generally first tested at mean TM of primer pair – 4 
o
C) followed 

by 72 
o
C extension (1 minute per Kb of expected product) this is followed by a final 

extension step of 72
 o

C for 7 minutes. Individual reaction samples were then visualised using 

gel electrophoresis on a 1 % agarose gel.  
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Cloning and sequencing 

Cloning and plasmid preparation 

PCR products for cloning were initially purified either directly from reaction or from agarose 

gel using an Illustra GFX PCR DNA and GelBand Purification Kit (GE Healthcare) 

according to manufactures instructions. The purified product was then added to a ligation 

reaction at ratio of 3:1 insert to vector using a pGEM®-T Easy vector system (Promega). 

Concentration of the purified PCR product was determined by nanodrop spectrophotometer. 

Amount of insert was calculated by the following equation.  

[(ng of Vector x kb size of insert)/ (Kb size of vector)] * insert:vector molar ratio = ng of 

insert. 

Volume of inset was then determined from known insert concentration ligation reactions 

were then set up as follows. 

- 2.5 l 2X rapid Ligation buffer, T4 DNA ligase 

- 0.5 l pGEM®-T Easy vector (50 ng) 

- < 1.5 l PCR product 

- 0.5 l T4 DNA ligase (3 weiss units/l) 

-  Nuclease free H2O to 5 l 

The ligation reaction is then mixed by pipetting gently and incubated overnight at 4 
o
C to 

obtain the maximum number of transformations. After the ligation is complete 2 l of 

reaction is added to 50 l just defrosted JM109 High Efficiency Competent cells and mix by 

flicking gently. Incubate on Ice for 20 minutes then heat shock for 45 seconds at 42 
o
C. Tubes 

were immediately returned to ice for 2 minutes. 

 

Transformed cells were then added to 950ml of room temperature LB broth and incubated at 

37 
o
C for 90 minutes. Cells were then gently centrifuged to collect cells at the bottom of the 
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tube half of the LB broth was removed in order to concentrate cells. 100 l was then plated 

on two LB/ampicillin/IPTG/ X-gal plates. Plates were incubated overnight for 16 h at 37 
o
C. 

Plates were then stored at 4 
o
C until colonies were picked and grown in LB broth for 16h. 

Plasmids were then harvested using a GenElute™ Plasmid Miniprep Kit (sigma Aldrich). 

Each tube containing individual colonies grown overnight was then centrifuged at 4500RPM 

for 18 minutes to pellet cells and remove remaining liquid. Cells are then resuspended in 200 

l resuspension solution. 200 l lysis solution is then added and tubes are rested for 5 

minutes at room temperature. 350 l neutralisation is added and tubes are centrifuged for a 

further 10 minutes at maximum speed. Supernatant is then place on a prepped GenElute 

Miniprep Binding Column and centrifuged in a desk top centrifuge for 1 minute at 13,000 g 

and liquid is discarded. 750 ml of was buffer is then added to the column and centrifuged for 

1 minute. The liquid was then discarded and column was placed in a fresh DNA and RNA 

free tube and eluted in 50 l nanopure H2O Plasmids are then digested using ecoR1 to 

determine the presence of the insert as the vector consist of an EcoR1 site either side of the 

inserted sequence (Figure 3). Insert was then sequence using M13 forward and reverse 

primers. EcoR1 Digest reactions were maintained at 37 
o
C for 2 hours. Reactions were then 

run on a 1 % agarose gel to visualise results. 

- 5 l Plasmid 

- 2 l Enzyme buffer 

- 0.2 l EcoR1 Enzyme 

- 2.8 l H2O 

LB Broth and Agar Plates

LB Broth 500 ml 

- 5 g tryptone  

- 5 g NaCl 

- 2.5 g yeast extract 
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- 500 ml dH2O 

- 500 l Ampicillin (added after Autoclave) 

 

LB Agar 250 ml 

- 2.5 g tryptone 

- 2.5 g NaCl 

- 1.25 yeast extract 

- 3.75 g Agar 

- 250 ml dH2O 

- 250 l ampicillin 100 mg/ml 

- 500 l 20 mg xgal 5-bromo-4-chloro-indolyl-β-D-galactopyranoside 

- 1250 l IPTG Isopropyl-β-D-thio-galactoside 0.1 

-  

Figure 3: pGEM-T easy vector map. 
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Sequencing 

Sequencing was carried out using a Beckman 8800 auto sequencer. Sequence results were 

then analysed using SEQman as part of Lasergene software package (DNASTAR). Amount 

of DNA was selected according to product size (Table 10). Between 25 and 100 fmol are 

used per reaction according to size of template, number of reactions and volume of template 

available.  

Sequencing was prepared in a 200 l DNA/RNA free PCR tube and all reagents and reactions 

were stored on ice. For each template DNA four sequencing reactions were prepared, two 

reactions using the forward M13 primer and 2 using the reverse M13 primer. For PCR 

reactions forward or reverse primers for the specific sequence (PCR primers) were used. Each 

reaction was prepared in 5 l reaction volume as follows. 

-  Up to 2.5 l Nanopure H20 

- <2.5 l DNA template (Table 11) 

- 0.5 l Primer(m13F or R or PCR F or R) 

- 2.0l DTCS Quick start Master Mix 

Reaction components were mixed by vortexing and briefly centrifuged to collect all the 

components at the bottom of the PCR tube and run in a thermo cycling program of 30 cycles 

of 96 
o
C for 20 seconds, 50 

o
C for 20 seconds and 60 

o
C for 4minutes. 
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Table 11:  Quantity of DNA template for sequencing from Beckman 8800 auto sequencer 

protocol dependent on product size. 

Size 

(Kb) 

ng for 

25fmol 

ng for 

50fmol 

Ng for 

100fmol 

0.2 3.3 6.5 13 

0.3 4.9 9.8 20 

0.4 6.5 13 26 

0.5 8.1 16 33 

1.0 16 33 65 

2.0 33 65 130 

3.0 50 100 195 

4.0 65 130 260 

5.0 80 165 325 

 

The sequencing reaction was then precipitated with ethanol. All samples were diluted to 20 µl 

and 5 l of STOP solution was added.  

 

STOP solution per reaction: 

- 2 l of 3 M Sodium Acetate (pH 5.2) 

- 2 l of 100 mM Na2- EDTA (pH 8.0) 

- 1 l of 20 mg/mg of glycogen 

 

Mix STOP solution well with each reaction before adding 60 l ice cold (from -20 
o
C 

freezer) 95 % ethanol/ nanopure H2O and vortex to mix. Centrifuge at 14,000 rpm for 15 

minutes at 4 
o
C. After centrifugation a pellet should be visible. Supernatant was then removed 

and pellet was washed a further 2 times in 200l 70 % ethanol (14,000 rpm 4  
o
C for 
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2minutes) Samples are air dried and reconstituted in 30l sample loading solution. Samples 

were loaded to appropriate wells of the CEQ sample plate. One drop of light mineral oil is 

added to each sample to prevent evaporation. Loading buffer is then added to the 

corresponding wells on the buffer plate and all samples are loaded into Beckman 8800 auto 

sequencer and sequencing procedure was initiated. 

 

Sequences were then assembled using SEQman as part of Lasergene software package 

(DNASTAR) and alignments were performed using BioEdit (Ibis Biosciences) and clustalW2 

(http://www.ebi.ac.uk/Tools/msa/clustalw2/). Sequencing of PCR reactions and plasmids was 

used for a number of purposes including gene discovery and generation of plasmid standards 

for use in qPCR. 

 

qPCR 

In order to quantify gene expression, absolute quantification qPCR assays were designed and 

validated for all genes shown in Table 12. Each qPCR assay was carried out in a 96 well plate 

(Figure 4). Where possible all qPCR analysis was performed in accordance with the 

Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) 

guidelines (Bustin et al. 2009). Each qPCR reaction consisted of primer pairs (Table 12) at a 

concentration of 0.5 M, 5 l of cDNA (diluted either at 1/20 or 1/10 depending on the 

experiment), 3 l DNA/RNA free H2O and 10 l ABsolute™QPCR SYBR Green master 

mix, (Thermo scientific, Leon-Rot, Germany) in a total reaction volume of 20 l. The 

ABsolute™QPCR SYBR Green Mix was made up of Thermo-Start™ DNA polymerase, a 

proprietary reaction buffer, dNTP's and SYBR Green I with Mg++ at a concentration of 3 

mM in the final 1× reaction. All qPCR assays were carried out in a Techne Quantica 

thermocycler (Techne, Quantica, Cambridge, UK) in a thermo cycling programme consisting 

http://www.ebi.ac.uk/Tools/msa/clustalw2/
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of a 15 minute initiation stage at 95 °C this is followed by 45 cycles of 3 temperature steps; 

95
 o

C for 15 s anneal x°C (See Table 12 for target specific annealing temperatures) for 15 s 

and 72
 o

C for 30 s. This was followed by a temperature ramp from 70 – 90 °C for melt-curve 

analysis to verify that no primer–dimer artefacts were present and only one product was 

generated from each qPCR assay. Quantification was achieved by a parallel set of reactions 

containing standards consisting of serial dilution of spectrophotometrically determined, 

linearised plasmid containing target cDNA sequences. All samples were run in duplicate and 

each assay contained no-template controls. 

 

qPCR normalisation and statistical analysis 

Results generated from brain and fin and pineal samples in the Atlantic salmon and European 

seabass were normalised to expression levels of a-actin reference gene as described in Davie 

et al. (2009) and Herrera- perez (2011). For liver samples, geNorm analysis was carried out 

on three potential house keeping genes tested on the long day liver samples to determine the 

most suitable reference gene including -Actin, ELF- and GAPDH. In the Atlantic salmon 

liver samples, ELF- displayed the least variation and was therefore used for normalisation in 

this liver (Figure 5). Results were then converted to external time in accordance with Daan et 

al. (2002) whereby the external time 0 (ExT 0) is the middle of the dark phase for chapter 3 

and 4. For example ExT 0 of experiment 1 long day treatment occurs at 04:00 when lights off 

occurs at 00:00 and lights on occurs at 08:00.Gene expression data are expressed as copy 

number per g total RNA. Results for chapters 5 and 6 were converted to zeitgeber (ZT), 

whereby 00:00 is the onset of light as no comparison between photoperiods were made. 
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Table 12: All qPCR primer pairs and annealing temperatures 

Species Primer Name Sequence (5’-3’) Anneal 

Salmo salar Actin - Forward ATCCTGACAGAGCGCGGTTACAGT 61
o
C 

Reference 

genes 

Actin - Reverse TGCCCATCTCCTGCTCAAAGTCCA 61
o
C 

  EF -  - Forward TCTGGAGACGCTGCTATTGTTG 61
o
C 

 EF -  - Reverse GACTTTGTGACCTTGCCGCTTGAG 61
o
C 

Clock genes Aanat2 - Forward GCTCTCCCTGGGCTGGTTTGAAG 62
o
C 

  Aanat2 - Reverse CATGGATGTGCACTGCCGAGGTT 62
o
C 

  Bmal - Forward GCCTACTTGCAACGCTATGTCC 64
 o
C 

  Bmal - Reverse GCTGCGCCTCGTAATGTCTTCA 64
 o
C 

  Cry2 - Forward GAGGGCATGAAGGTGTTTGAGGAG 59
 o
C 

  Cry2 - Reverse GTGGAAGAACTGCTGGAAGAAGGA 59
 o
C 

  Clock - Forward AGAAATGCCTGCACAGTCGGAGTC 64
o
C 

  Clock - Reverse CCACCAGGTCAGAAGGAAGATGTT 64
o
C 

  Per1 -  Forward AGGGGGTCATGCGGAAGGGGAAGT 66
o
C 

  Per1 -  Reverse TGGGCCACCTGCATGGGCTCTGT 66
o
C 

  Per2 -  Forward GCTCCCAGAATTCCTAGTGACAAG 60
o
C 

  Per2 -  Reverse GAACAGCCCTCTCGTCCACATC 60
o
C 

 Rev-erb Forward CCCCCAAGACGAACCCAACAAGAC 61
o
C 

 Rev-erb Reverse AGAGGGAGGCAAAGCGCACCATTA 61
o
C 

Seasonal 

genes 

Dio1 - Forward GACAACAGACCACTGGTGTTGACT 62
o
C 

 Dio1 - Reverse GCCTGCGCAATGTAGACCACC 62
o
C 

 Dio2 - Forward GGACGAGTGCCGCCTGCTGGACTT 68
o
C 

 Dio2 - Reverse GAAGGCGGGCAGGTGGCTGATGA 68
o
C 

 Dio3 - Forward CCTGGCTGCGTTTCAGCGCGT 64
o
C 

 Dio3 - Reverse ATCTGGTAAGGCGCGTCGGAG  64
o
C 

 Eya3 - Forward GGGCATCACGGACGGACGCTT 64
o
C 
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 Eya3 - Reverse CCCAACCCCAATCAATGCTGCCTC 64
o
C 

 Tsh - Forward GAGCTCGCCGGACCACGTTTCCT 66
o
C 

 Tsh-Reverse AGTGGCAGCTGAGGGCTACGGG 66
o
C 

Liver lipid 

genes 

D6 Fad- Forward GTGAATGGGGATCCATAGCA 60
o
C 

 D6 Fad - Reverse AAACGAACGGACAACCAGAC 60
o
C 

 Elovl5-Forward ACAAGACAGGAATCTCTTTCAGATTAA 58
 o
C 

 Elovl5-Reverse TCTGGGGTTACTGTGCTATAGTGTAC 58
 o
C 

 Fas-Forward ACCGCCAAGCTCAGTGTGC 60
o
C 

 Fas-Reverse CAGGCCCCAAAGGAGTAGC 60
o
C 

 Hmgcr - Forward CCTTCAGCCATGAACTGGAT 60
o
C 

 Hmgcr - Reverse TCCTGTCCACAGGCAATGTA 60
o
C 

 Lxr - Forward GCCGCCGCTATCTGAAATCTG 58
 o
C 

 Lxr - Reverse CAATCCGGCAACCAATCTGTAGG 58
 o
C 

 Srebp1 - Forward GCCATGCGCAGGTTGTTTCTTCA 63
 o
C 

 Srebp1 - Reverse TCTGGCCAGGACGCATCTCACACT 63
o
C 

 Srebp2 - Forward TCGCGGCCTCCTGATGATT 63
 o
C 

 Srebp2 - Reverse AGGGCTAGGTGACTGTTCTGG 63
o
C 

Dicentrarchus  Actin - Forward TGGCCGCGACCTCACAGAC 59
 o
C 

labrax  Actin - Reverse TCCAGGGCGACATAGCACAGTTT 59
 o
C 

  Aanat2 - Forward ACGCCGCAGGATGCCATCAGTGTA 62
 o
C 

  Aanat2 - Reverse TCCTTGTCCCAGCCAGAGCCAATG 62
 o
C 

  Clock - Forward CAGACAAGTGCCAGGATTCAG 55
 o
C 

  Clock - Reverse CAGCGGTGTGCGAGGATTT 55
o
C 

  Per1 -  Forward CGGACAGCAGGTTTTTATCGA 54
 o
C 

  Per1 -  Reverse GAAAAAACACCAGCACAGGC 54
 o
C 
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 1  2  3  4  5  6  7  8  9  10  11  12  

A  NTC  ITC1  1 5 9 13 17 21 25 29 33 37 

B  NTC  ITC1 1 5 9 13 17 21 25 29 33 37 

C  10x  ITC2  2 6 10 14 18 22 26 30 34 38 

D  10x  ITC2  3 6 10 14 18 22 26 30 34 38 

E  10x  ITC3  3 7 11 15 19 23 27 31 35 39 

F  10x  ITC3  3 7 11 15 19 23 27 31 35 39 

G  10x   ITC4  4 8 12 16 20 24 28 32 36 40 

H  10x   ITC4  4 8 12 16 20 24 28 32 36 40 

Figure 4: Typical layout of a qPCR 96 well plate lay out including non template controls 

(NTC) Internal template controls (ITC) and linerised quantified plasmid standards (10
x
). 
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Figure 5: 24h expression of Actin, EF and Gapdh in the liver of Atlantic salmon parr 

acclimated to experimental long day photoperiod for potential use as a housekeeping gene in 

the liver. While Actin was used in all other tissue types investigated EFwas used as a 

reference gene in the liver. 

 

Microarray (Chapter 4) 

In order to identify novel genes expressed on a daylength dependent basis, a pilot global gene 

expression analysis of brain tissue was undertaken. A custom-designed Atlantic salmon 

oligoarray with 44k features per array on a four-array-per-slide format (Agilent Technologies, 

Cheshire, U.K.), with each feature printed singly was utilized 

(http://www.ebi.ac.uk/arrayexpress/arrays/A-MEXP-2106). Each biological replicate (Cy3 –

labelled) was co-hybridized in a dual dye experiment with a single pooled reference sample 

(Cy5 labelled).  The pooled reference sample comprised equal amounts of amplified RNA 

from each of the 16 experimental fish. The study comprised 16 hybridisations: 2 states (long 

day / short day) × 2 time-points (midday/midnight) × 4 biological replicates (Individual 

http://www.ebi.ac.uk/arrayexpress/arrays/A-MEXP-2106
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Atlantic salmon parr 26.0 ± 4.0 g (as described above). Amplified RNA amplification, dye 

labelling and hybridisations were performed as detailed in Morais et al. (2012). Each 

replicate was competitively hybridised with a pooled reference sample. An indirect labelling 

methodology was utilised to prepare microarray targets. For each sample 500 ng of purified 

total RNA was used to generate antisense amplified RNA (aRNA) (Amino Allyl 

MessageAmpTM II aRNA amplification kit, Ambion Applied Biosystems). Samples were 

then subject to Cy3 or Cy5 fluor incorporation mediated by a dye coupling reaction. All 

experimental reactions were labelled with Cy3 dye and pooled reference was labelled with 

Cy5 dye. The incorporation of the dye and aRNA yield was quantified by spectrophotometry 

(NanoDrop ND-1000). The quality of the assay was further controlled by the separation of 

0.4 l sample through a mini agarose gel. Products were displayed on a Typhoon trio 

florescence scanner (GE Healthcare). Hybridisation of microarray was carried out in a 

Lucidea semi-automated system (GE Healthcare) with no pre-hybridisation step.  

In the hybridisation of each array, the sample and pooled reference sample, consisting of 40 

pmol dye and 150 ng aRNA, were pooled and combined to the hybridisation solution (185 l 

0.7X UltraHyb buffer from Ambion, 20 l Poly(A), 10 l herring sperm, 10 ml ultra pure 

BSA all at a concentration of 10 mg/ml and from Sigma-Aldrich, Dorset UK)(Morais et al. 

2011). Prior to scanning microarray, hybridisations were subjected to two post-hybridisation 

automatic and six manual washes to a stringency of 0.1 xSSC (EasyDipTM Slide staining 

system; Canemco Inc., Quebec Canada). The scanning was carried out at a resolution of 10 l 

in an Axon GenePix 4200AL scanner (MDS analytical technologies, Wokingham, Brekshire 

U.K) with laser power constant (80 %) and “auto PMT” enabled to adjust PMT for each 

channel so that less than 0.1 % of features were saturated and mean intensity ratio of Cy3 and 

5 signals was close to 1, as described in Morais et al 2011.This was followed by a manual 

spot removal procedure and the duplication of spot data (BlueFuse proprietary algorithm) 
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Florescence intensity values were extracted from TIF images of microarray slide with the use 

of BlueFuse software (BlueGenome, Cambridge, UK). Data was exported to GeneSpring GX 

version 10.0.2 (Agilent Technologies, Wokingham, Berkshire, U.K) after block Lowess 

normalisation. The data was then transformed and subject to quality filtering and all control 

features. Consequently 5893 genes were subject to statistical analysis.  

 

7. STATISTICAL ANALYSIS 

The majority of data presented in this thesis was taken over a 24h period. Consequently the 

statistical analysis implemented was largely concerned with the analysis of circadian 

rhythms. Analysis of Variance (ANOVA) was used to determine a significant effect of time 

and Turkey’s test was used to determine the significance of differences between sample time 

points (Minitab16 Statistical Software, Minitab inc 2011). Data from each tissue/ photoperiod 

was then fitted to a cosine wave in order to determine the presence of a significant circadian 

rhythm. Raw data was analysed using acro circadian analysis programs (Refennetti R., 

University of South Carolina, USA; http://www.circadian.org/softwar.html). Acro analysis 

determines both the significance, acrophase (peak in expression) mean and amplitude of raw 

data using the equation Y= A + B * cos (C *X –D) whereby Y is level of gene expression as 

a percentage of the mean A is the baseline, C is the frequency multiplier and D is the 

acrophase of the data set (Davie et al. 2009; Refinetti 2006). Microarray data was analysed by 

two-way ANOVA with the use of GeneSpring GX version 10.0.2 (Agilent Technologies, 

Wokingham, Berkshire, UK). Data is presented with respect to P value and fold change. 

Minimum P value and fold change was determined for photoperiod (LD vs. SD) and 

day/night (day vs. night) differences. In addition to photoperiod/ day night interaction 

differences were analysed with regards to minimum p value and maximum fold change 

http://www.circadian.org/softwar.html
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across all interactions. A significant circadian rhythm was deemed present when p value was 

less than 0.05 in for all statistical analysis. 
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SEASONAL MELATONIN AND CLOCK GENE EXPRESSION IN THE BRAIN, FIN 

AND LIVER OF THE ATLANTIC SALMON. 

 

1. ABSTRACT 

The Atlantic salmon is a highly seasonal teleost species, displaying distinct temporal 

organisation of his physiology and behaviour. Amongst vertebrates temporal organisation is 

endogenously regulated by the molecular circadian clock and synchronised to the 

environment by photoperiod. In salmonids photoperiod is important in the synchronisation of 

physiology and photoperiod manipulation is commonly used to regulate maturation and 

reproduction in the aquaculture industry. More recently daylength dependent expression of 

clocks has been described in the salmon brain. In order to better understand the role of 

photoperiod in the seasonal regulation of clocks, the current study examined 24h profiles of 

clock gene expression and levels of plasma melatonin in Atlantic salmon acclimated to long 

day, short day, 12L:12D (experiment 1) and simulated natural photoperiods (experiment 2). 

Photoperiod dependent clocks were also investigated in the fin and the liver. Results show 

circadian profiles of melatonin under all photoperiods. In experiment 1 both Clock and Per2 

displayed significant circadian expression under the long day treatment. This is in contrast to 

previous results where rhythmic clocks were observed under a short day photoperiod. 

Comparisons between experiment 1 and 2 reveal no clear pattern of long day, short day or 

intermediate photoperiod expression. Additionally photoperiod dependent clock gene 

expression was observed in the liver, at a different phase to the rhythms in the brain. No 

rhythmic expression was observed in the fin. Results infer photoperiod dependent control of 

clocks in the brain however other factors such as temperature, salinity, food availability and 

life history may also be of importance. Moreover results differed form previous expression 

results in other vertebrate and fish species. 
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2. INTRODUCTION 

In temperate regions photoperiod provides a robust indicator of external seasonality when 

other environmental signals such as temperature and food availability may vary from year to 

year. As such, photoperiod is believed to be the key proximate factor in temperate fish 

species used to entrain and synchronise most physiological processes (Bromage et al. 2001; 

Golombek & Rosenstein 2010). However additional environmental signals, such as 

temperature, are also likely to be of importance in synchronising an organism to its 

environment (Golombek & Rosenstein 2010). Amongst teleosts, salmonids display some of 

the clearest seasonal phenotypes with the timing of most life history events such as migration, 

smoltification and spawning being synchronised by seasonal environmental cues, in 

particular photoperiod (Bromage et al. 1988; Randall et al. 1998; Stefanson et al. 2008). The 

pivotal role that photoperiod plays in the regulation and synchronisation of seasonal 

processes to the environment is evident from the widespread use of photoperiod manipulation 

in the aquaculture industry to manipulate broodstock spawning and produce eggs out-of-

season, produce out-of-season smolts for year round stocking to sea cages and suppress 

puberty/early maturation during seawater ongrowing (Bjornsson et al. 1994; Duncan et al. 

1998; Porter et al. 1998). However, while the principle of photoperiod control of physiology 

is widely accepted, the actual mechanisms by which photoperiod information is perceived 

and then integrated to regulate these processes is poorly understood. 

 

It is believed that photoperiod regulates seasonal physiology via the photoneuroendocrine 

system (PNES) (Migaud et al. 2010). The PNES has not been accurately defined yet in 

teleosts, however, in its simplest conceptual form it is believed to consist of three main 

elements (see review by Falcon et al. 2010). Firstly light is perceived via a number of non 

visual photoreceptors. This information is then relayed to the clock mechanism which cycles 
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with a period of approximately 24 hours and can maintain its rhythm in the lack of external 

cues. This clock mechanism then relays synchronised timing information to the final element 

of the PNES which include various possible neuroendocrine output messengers that relay this 

time information throughout the animal’s physiology (see review by Migaud et al. 2010). To 

date the majority of research into the PNES has focused on the first and last elements of the 

system. Studies of the clock mechanisms are lacking in most teleost species with the 

exception of zebrafish ( Whitmore et al. 1998; Whitmore et al. 2000; Whitmore et al. 2000). 

From this body of work it is evident the underlying molecular mechanisms bear a clear 

similarity to the mammalian models e.g. mouse which is indicative that the circadian clock 

mechanisms may be highly conserved amongst vertebrates (Ko & Takahashi 2006). The core 

clock cycle consists of a positive and negative arm which combine to form a self-sustaining 

feedback loop which takes approximately 24 hours to cycle and drives the circadian rhythms 

in the expression of core genes involved (Ko & Takahashi 2006). CLOCK and BMAL 

proteins form a heterodimer that makes up the positive arm of the auto-regulatory feedback 

loop. The CLOCK:BMAL heterodimer then initiates the accumulation of PER and CRY 

proteins that comprise the negative arm of the molecular feedback loop. The PER: CRY 

complex then translocates back into the nucleus, inhibiting its own transcription by acting on 

the CLOCK:BMAL heterodimer. This process takes around 24h to complete and is 

synchronised to the daily light dark cycle. Consequently, the expression of corresponding 

mRNAs follows a circadian profile over a 24h period and the phase expression is dependent 

of photoperiod. The CLOCK:BMAL heterodimer additionally acts on E-box and D-elements 

in target genes, which in turn regulate circadian physiology via clock controlled genes 

(CCG)(Crane 2012).  
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While clock genes and the molecular feedback loop are well known to regulate daily cycles 

there is also increasing evidence that clock genes can also reflect seasonal information. In 

mammals, clock gene expression localised in the pars tuberalis (PT) of the pituitary have 

been shown to exhibit seasonal patterns of expression over and above their diel rhythms. 

These patterns, in per and Cry in particular, have been reported in a number of mammalian 

species and are expressed as amplitudinal differences, phase shifts in gene expression or a 

combination of both (Lincoln et al 2003; Wagner et al 2008). Comparable work in teleosts is 

lacking despite the fact that that temperate species such as the Atlantic salmon display robust 

seasonal organisation of a number of biological processes. In salmonids a number of clock 

genes have previously been associated with reproduction and migration. Two core genes of 

the circadian feedback loop, Clock and Per 1, have been linked to spawning time in rainbow 

trout (Leder et al. 2006). In Atlantic salmon, Bmal1 has been linked to male reproductive 

strategy as expression of the circadian gene was found to be up-regulated in early maturing 

“sneaker” males in comparison to immature males of the same age (Aubin-Horth et al. 2005). 

Furthermore, variation in the length of PolyQ region of Clock in the Pacific Chinook salmon 

have been associated with differences in migratory run times (O'Malley & Banks 2008; 

O'Malley et al. 2007). Davie et al (2009) was the first study to suggest that daylength 

dependent patterns of clock gene expression existed within Atlantic salmon brain. In their 

study, Clock, Per2, Bmal and Cry2 all displayed a circadian pattern of expression under a 

short day/winter seasonal photoperiod (8h light: 16h dark) while only Cry 2 was rhythmically 

expressed under the long day/summer seasonal photoperiod (16h light: 8h dark).  

 

Outwith the brain, clock genes are apparently present in the majority of vertebrate tissues and 

cell types (Dibner et al. 2010). In mammals the expression of clock genes in peripheral 

tissues is relatively hierarchical. The majority of peripheral oscillators are synchronised to 
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external photoperiod via retinal input and clock gene expression in the suprachiasmatic nuclei 

(SCN), the master oscillator in the mammalian circadian organisation (Dibner et al. 2010). In 

fish the situation is not as clear as a master circadian oscillator has not yet been identified 

though its existence has been hypothesised (Ali 1992). In the zebrafish clock genes are 

constitutively expressed and reactive to light throughout a number of central and peripheral 

tissues in vitro (Whitmore et al. 1998; Whitmore et al. 2000). However it is unclear whether 

these independently entrainable and self-sustaining peripheral oscillators are synchronised to 

any potential master circadian clock. Davie et al. (2009) demonstrated in Atlantic salmon parr 

that clock genes are expressed in both central and peripheral tissues ranging from the liver to 

the intestine and spleen however this work did not characterise diel expression profiles in 

these tissues. Huang et al 2010 (a and b) thereafter demonstrated that, in contrast to zebrafish, 

there were different circadian patterns of clock gene expression in the brain, pineal and liver 

in salmon parr.  

 

To build on this work and further our understanding of seasonal clock gene expression in 

salmonids, the aim of the present study was two fold. The first aim was to compare daylength 

dependent circadian expression of core circadian clock genes (Clock, Per1 and Per2) in the 

brain and two peripheral tissues (fin and liver) of Atlantic salmon parr. The second aim was 

to compare circadian clock gene expression (Clock, Cry2, Per1 and Per2) in the brain over 

the course of a year at the natural equinox and solstices. The expression of Per1 was analysed 

in both experiments in addition to Per 2 which has known importance in the seasonal control 

of physiology  in mammals (Dardente 2012). 
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 3. MATERIALS AND METHODS 

Animals and tissue Sampling 

Both experiments were carried out in accordance with the UK Animals (Scientific 

Procedures) Act 1986. Experimental animals were sacrificed via a lethal anaesthesia 

(phenoxyethanol 2ml/L) followed by decapitation.  

 

Experiment 1- Effect of photoperiod on circadian clock gene expression and melatonin. 

Atlantic salmon parr (n=100 per treatment, mean 24.9 ± 5.4 g, 140.6 ± 7.8 mm) were 

acclimated during one month (from 02/03/2009) to either long day (16h light: 08h dark, LD), 

short day (08h light: 16h Dark, SD) or 12h light: 12h dark photoperiod (12/12). Fish were 

stocked into a 1m
3 

light proofed tank (one tank per treatment) at the Niall Bromage 

Freshwater Research Facilities (Institute of aquaculture, Stirling, UK, 56: 02N). The tanks 

were illuminated using a 28W, fluorescent light with a spectral content comparable to a 3700 

°K black-body radiator (IP65 prismatic 2D round bulkhead 28W HF, RS Components Ltd, 

Glasgow, UK) connected to an automatic timer to regulate photoperiod. In all treatments 

lights were switched on at 08:00h and switched off at 16:00h (SD), 20:00h (12/12) and 

00:00h (LD). Over the course of the study water temperature averaged 4.6 ± 0.73 
o
C. Fish 

were sampled on the 6
th

 and 7
th

 of April 2009. Brain (including pituitary), left pectoral fin and 

liver tissue samples were removed (n = 6 individuals per sample point) every four hours over 

a 24h period. Blood was withdrawn from n = 6 individuals per sample using a 1 ml sterile 

heparinized syringe with 21G gauge needle. Tissue and plasma samples (previously separated 

by centrifugation at 2000 g for 15 mins) were instantly frozen over liquid nitrogen vapour 

and then stored at -70 °C until use. Samples retrieved during the nocturnal phase of each 24 h 

light dark cycle were done so with the use of a dim red light. 
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Experiment 2 - Seasonal/Life history changes in circadian clock gene expression and 

melatonin. 

In June 2009, approximately 700 salmon parr (approximately 7 months post-hatch) were 

stocked into a 2 m
3 

light proofed tank illuminated by a 28W, fluorescent light with a spectral 

content comparable to a 3700 °K black-body radiator (IP65 prismatic 2D round bulkhead 

28W HF, RS Components Ltd, Glasgow, UK) which was then regulated by digital electronic 

timer. Fish were maintained on a simulated natural photoperiod that was adjusted on a 

weekly basis to local changes in photoperiod (max. daylength 17h39 min, min. daylength 

07h30min). Prior to acclamation to SNP fish were held under constant light from first feeding 

(March 2009) A total of 5 diel profiles were sampled coinciding with the autumn (6
th

 and 7
th

 

of October 2009 and 7
th

 and the 8
th

 of October 2010) and spring (29
th

 and 30
th

 of March 

2010) equinoxes and the summer (01
st
 and 2

nd
 of July 2010) and winter (12

th
 and the 13

th
 of 

January 2010) solstices (Table 1, Figure 1). At each time point, following euthanasia, blood 

was withdrawn via a 1 ml heparinised syringe with 21G gauge needle by superficial 

venepuncture (5 per time point) before the whole brain (including pituitary) was dissected out 

(6 per sample point). Tissue and plasma samples (previously separated by centrifugation at 

2000 g for 15 mins) were instantly frozen over liquid nitrogen vapour and then stored at -70 

°C until use. Samples retrieved during the nocturnal phase of each 24 h light dark cycle were 

done so with the use of a dim red light. 
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Table 1: Experiment 2 seasonal sample points; photoperiod, date, sample location, mean 

weight and length of salmon and mean water temperature. NBFRF: Niall Bromage Freshwater 

Research facilities (IoA); MERL: Marine Environmental Research Laboratory, Machrihanish. (IoA). 

 

Sample  Photoperiod  Date  Sample points  Location  Mean Length 

and Weight  

Water 

Temp °C  

1  Sunrise 7:30  

Sunset 18:04  

06/10/09 – 

07/10/09  

09:00, 13:00, 

17:00, 21:00, 

01:00, 05:00, 

09:00  

NBFRF 

 

135 ± 4 mm 

31.1 ± 0.9 g  

11.4  

2  Sunrise 08:40  

Sunset 16:10  

12/01/10 – 

13/01/10  

14:00, 18:00, 

22:00, 02:00, 

06:00, 10:00, 

14:00  

NBFRF  154 ± 2 mm 

41.3 ± 1.4 g  

1.5  

3  Sunrise 06:50  

Sunset 19:50  

29/03/10 – 

30/03/10  

13:00, 17:00, 

21:00, 01:00, 

05:00, 09:00 *  

NBFRF  162 ± 3 mm 

42.2 ± 1.6 g  

3.8  

4  Sunrise 04:34  

Sunset 22:05  

01/07/10 – 

02/07/10  

15:00, 19:00, 

23:00, 03:00, 

07:00, 11:00, 

15:00.  

MERL 

 

197 ± 4 mm 

77.9 ± 4.6 g  

13.4  

5  Sunrise 07:31  

Sunset 18:39  

07/10/10     

–  

08/10/10  

13:30, 17:30, 

21:30, 01:30, 

05:30, 09:30, 

13:30.  

MERL  260 ± 7 mm 

188 ± 15.3 g  

13 

* Last sample point was unable to be repeated due to adverse weather conditions. 
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Figure 1: Photoperiod and temperature variations over the course of the experiment showing 

times of sampling for experiment 2. 

 

RNA Extraction, DNase Treatment and cDNA synthesis 

Whole brain, fin and liver samples were individually homogenised in TRIzol® (Invitrogen 

UK) in accordance with the manufacturer’s protocol at a ratio of 100 mg of tissue per 1 ml of 

reagent. RNA extraction was carried according to manufacturer’s instructions. RNA pellets 

were rehydrated in MilliQ water in varying volumes to achieve a final RNA concentration of 

approximately 1000 ng/ul. Total RNA concentration was calculated using a ND-1000 

Nanodrop spectrophotometer (labtech Int., East Sussex, UK). In order to eliminate any DNA 

contamination 5 g of totRNA was treated with a DNase enzyme following DNA-free™ kit 

guidelines (Applied biosystems, UK). cDNA was then synthesised using 1 g of DNase 

treated totRNA in a 20 l reaction volume using random primers according to manufacturer’s 

protocol (High capacity reverse transcription kit without RNase inhibiter, Applied 

October 2009 

January 2010 

March 2010 

July 2010 

October 2010 

June 2009 
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biosystems, UK). Final reactions were then diluted with MilliQ water to a final volume of 

200 l (experiment 1) and 100 l (experiment 2). Brain, fin and liver cDNA reactions were 

then stored at -20
 o

C. 

 

In Silico Atlantic salmon Per1 partial Identification. 

All qPCR assays used were previously established and verified by Davie et al. (2009) with 

the exception of Period 1. This assay was designed as follows: sequence information from a 

variety of teleost Per1 sequences were assembled in BioEdit and sequences were aligned 

using Clustal W 4. Primers were designed in conserved regions of the coding sequence of 

medaka (NM_001136520), seabass (GQ353293), partial rainbow trout CDS(AF228695), and 

construct of salmon ESTs (DW576689, DW584143, DY698298) from NCBI (National 

Center for Biotechnology Information http://www.ncbi.nlm.nih.gov). PCR primer pairs 

(Table 2) were designed in the coding sequence. The product generated was cleaned using 

illustra GFX PCR DNA and GelBand Purification Kit (GE Healthcare) according to 

manufacturer’s instructions and then cloned into the pGEM®-T Easy vector system 

(Promega, Southampton, UK). Plasmids were harvested from discrete colonies using a 

GenElute™ Plasmid Miniprep Kit (sigma Aldrich, Gillingham, UK) and the presence of an 

insert checked by enzymatic digestion (ECoR1, Invitrogen Paisely, UK). Plasmids with the 

correct sized insert were sequenced through a Beckman 8800 auto sequencer and sequence 

results were then analysed using SEQman as part of Lasergene software package 

(DNASTAR, Madison, Wisconsin, USA). qPCR primers were designed within this partial 

sequence using Primer select also as part of the Lasergene software package (DNASTAR 

Madison, Wisconsin, USA). 
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Table2: PCR primer names and sequences used for Per1 identification. 

Primer  Forward  Reverse  

RTper1 pub  AGAGCCCATCCCCACCCAGCAG

TT  

TCGGCCCGTCAGGAAGGAGA  

1Per1  CTGCTGTCGACCAGCTCGGAGC

ACGAC  

GGCGCCAAAAGCTCCGAAAACA

TGGTG  

2Per1  CTGCGCTGCAAGCCAGAGCGTC

TCC  

GCAGCTGGGAGTGTGACTGGTG

GTGAAGAT  

3Per1  GCCCTGCCGCCTGCCCAACTG  GCGCCCGACGATAAACGCCACC

TTC  

 

Quantitative PCR 

In order to determine diel patterns of clock gene mRNA expression, absolute quantification 

qPCR assays were established for Clock, Cry2, Per1, and Per2. -Actin was used as a 

housekeeping reference gene for all analysis or brain and fin samples while Elongation factor 

1α (ELF-1α) was used for liver samples (justification of the selection of housekeeping genes 

is explained further below). Each qPCR reaction consisted of primer pairs (Table 3) at a 

concentration of 0.5 M, 5 l of cDNA (1/20 for experement1 and 1/10 for experiment 2), 3 

l DNA/RNA free H2O and 10 l ABsolute™QPCR SYBR Green master mix (Thermo 

scientific, Leon-Rot, Germany) in a total reaction volume of 20 l. The ABsolute™QPCR 

SYBR Green Mix was made up of Thermo-Start™ DNA polymerase, a proprietary reaction 

buffer, dNTP's and SYBR Green I with Mg++ at a concentration of 3 mM in the final 1× 

reaction. All qPCR assays were carried out in a Techne Quantica thermocycler (Techne, 

Quantica, Cambridge, UK) in a thermo cycling programme consisting of a 15 minute 

initiation stage at 95 °C this is followed by 45 cycles of 3 temperature steps; 95
 o

C for 15 s 

anneal x°C (see Table 3 for target specific annealing temperatures) for 15 s and 72
 o
C for 30s. 

This was followed by a temperature ramp from 70 - 90°C for melt-curve analysis to verify 
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that no primer-dimer artefacts were present and only one product was generated from each 

qPCR assay. Quantification was achieved by a parallel set of reactions containing standards 

consisting of serial dilution of spectrophotometrically determined, linearised plasmid 

containing partial cDNA sequences generated. All samples were run in duplicate and each 

assay contained non-template controls. 

 

Table 3: Names of qPCR primer, sequence information and annealing temperature for primer 

pairs used in experiments 1 and 2. 

Primer Name Sequence (5’-3’) Anneal 

Actin - Forward ATCCTGACAGAGCGCGGTTACAGT 61
o
C 

 Actin - Reverse TGCCCATCTCCTGCTCAAAGTCCA 61
o
C 

Clock - Forward AGAAATGCCTGCACAGTCGGAGTC 64
o
C 

Clock - Reverse CCACCAGGTCAGAAGGAAGATGTT 64
o
C 

Cry2  - Forward GAGGGCATGAAGGTGTTTGAGGAG 61
o
C 

Cry2 - Reverse GTGGAAGAACTGCTGGAAGAAGGA 61
o
C 

EF -  - Forward TCTGGAGACGCTGCTATTGTTG  61
o
C 

EF -  - Reverse GAC TTGTGACC TTGCCGCTTGAG  61
o
C 

Per1 -  Forward AGGGGGTCATGCGGAAGGGGAAGT 66
o
C 

Per1 -  Reverse TGGGCCACCTGCATGGGCTCTGT 66
o
C 

Per2 -  Forward GCTCCCAGAATTCCTAGTGACAAG 60
o
C 

Per2 -  Reverse GAACAGCCCTCTCGTCCACATC 60
o
C 

 

qPCR normalisation and statistics 

Results generated from brain and fin samples were normalised using -Actin as described in 

Davie et al. (2009). For liver samples, geNorm analysis was carried out on three potential 

house keeping genes tested on the long day liver samples to determine the most suitable 
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reference gene including -Actin, ELF- and GAPDH. In the Atlantic salmon liver samples, 

ELF- displayed the least variation and was therefore used for normalisation in this liver 

(Figure 2). Results were then converted to external time in accordance with Daan et al. 

(2002) whereby the external time 0 (ExT 0) is the middle of the dark phase. For example ExT 

0 of experiment 1 long day treatment occurs at 04:00 when lights off occurs at 00:00 and 

lights on occurs at 08:00. Gene expression data are expressed as copy number  of the target 

gene per g total RNA (normalised to the appropriate reference gene). 

 

 

Figure 2: 24h expression of Actin, EF and Gapdh in the liver of Atlantic salmon parr 

acclimated to experimental long day photoperiod for potential use as a housekeeping gene in 

the liver. 

Melatonin Radioimmunoassay 

Relative levels of circulating melatonin from blood plasma were determined by melatonin 

radioimmunoassay (RIA) according to Randall et al. (1995). In experiments 1 and 2 blood 



Chapter 3 

105 
 

plasma was pooled in order to achieve a volume of 250 l and a total of n = between 3 and 6 

pools were analysed per time point. In all cases, plasma (250 l) was diluted to 500 l with 

assay buffer. For further details of melatonin RIA see chapter 2.  

 

Statistical analyses 

Analysis of Variance (ANOVA) was used to determine a significant effect of time and 

Turkey’s test was used to determine significant differences between sample time points and 

mean of different sample sets (InStat® 3.1, Graphpad software inc). Data from each tissue/ 

photoperiod was then fitted to a cosine wave in order to determine the presence of a 

significant circadian rhythm. Raw data was analysed using the acro circadian analysis 

program (Refennetti R., University of South Carolina, USA; 

http://www.circadian.org/softwar.html). Acro analysis also determines both the significance, 

acrophase (peak in expression) mean and amplitude of raw data using the equation Y= A + B * 

cos (C *X –D) whereby Y is level of gene expression as a percentage of the mean A is the 

baseline, C is the frequency multiplier and D is the acrophase of the data set (Refinetti 2006; 

Davie et al. 2009). Significance was determined by a p value less than 0.05. 

 

4. RESULTS 

Per1 

An 899 bp partial sequence was isolated which contained an 844 bp coding sequence and a 

55bp 3’untranslated region (UTR) (Figure 3). Within the coding sequence the Period 

circadian-like C terminal domain, also referred to as the CRY binding domain can be seen 

(Figures 3 and 4). Phylogenetic analysis of the deduced a sequence for Period 1 in relation to 

other vertebrate Period sequences shows the transcript grouped within the teleost Period 1 

http://www.circadian.org/softwar.html
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cluster >80% identity with other teleost Per1’s and 60-70% identity with mammalian Per1 

sequences (Figure 5).  

         10        20        30        40        50        60        70        80        90                  

....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

CCGCCTGCCTGGCCGAGTGCACGGGGACAGGGTCGCTCCAGCACCCTGGACGCCCTCCGTTACGCCCTGAACTGTGTGAAGCAGGTGCGA  

 P  P  A  W  P  S  A  R  G  Q  G  R  S  S  T  L  D  A  L  R  Y  A  L  N  C  V  K  Q  V  R  

 

        100       110       120       130       140       150       160       170       180         

....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

GXCCAGGATGGTGAATCCACCCCCAGTGACCTACTGGACCTGCTCCTGCAAGAGGACTCCCGCTCAGGCTCCGGCTCAGCTGCCTCTGGG  

 X  Q  D  G  E  S  T  P  S  D  L  L  D  L  L  L  Q  E  D  S  R  S  G  S  G  S  A  A  S  G  

 

        190       200       210       220       230       240       250       260       270         

....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

TCAGGGTCCTCTGGGTCAGGGTCCTCTGGGTCAGGGTCCTCAGGGTCGGGTTCTGTCTCCTTGGGCACTGTGTCCAACGGCTGCAGCTCC  

 S  G  S  S  G  S  G  S  S  G  S  G  S  S  G  S  G  S  V  S  L  G  T  V  S  N  G  C  S  S  

 

        280       290       300       310       320       330       340       350       360         

....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

TCAGGCAGTGGAACTAGTCGCAGTCGGAGTAGCCACACCAGCAAGTACTTTGGCAGCATCGACTCGTCAGAGAACGACCACTCCCGCAAG  

 S  G  S  G  T  S  R  S  R  S  S  H  T  S  K  Y  F  G  S  I  D  S  S  E  N  D  H  S  R  K  

 

        370       380       390       400       410       420       430       440       450         

....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

CAGCCAGCAGGTGGCAGCAGAGCCAGAGGAGACGGGGAGGAGCAGTTGATTAAGTGTGTCCTGCAGGATCCCATCTGGCTCCTCATGGCC  

 Q  P  A  G  G  S  R  A  R  G  D  G  E  E  Q  L  I  K  C  V  L  Q  D  P  I  W  L  L  M  A  

 

        460       470       480       490       500       510       520       530       540         

....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

AACACCGACCACAAGGTGATGATGACCTACCAGCTGCCGACCAAGGACAGGGAGACGGTGCTGCGGCAGGACCGCGAGGCCCTGCGGGCC  

 N  T  D  H  K  V  M  M  T  Y  Q  L  P  T  K  D  R  E  T  V  L  R  Q  D  R  E  A  L  R  A  

 

        550       560       570       580       590       600       610       620       630         

....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

ATGCACAAACACCAGCCTCGCTTCACTGAGGACCAGAAGAGAGAACTGAGCCAGGTCCACCCCTGGATACGGACCGGGCGCCTGCCCCGT  

 M  H  K  H  Q  P  R  F  T  E  D  Q  K  R  E  L  S  Q  V  H  P  W  I  R  T  G  R  L  P  R  

 

        640       650       660       670       680       690       700       710       720         

....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

GCCATCAACGTCTCGGCATGTATGGGGTGCAAGTCTTCCCCCTTACCAGAGAGCACCATGGACCAGGGAGGAGAGGCTTGCAGAGAAGAG  

 A  I  N  V  S  A  C  M  G  C  K  S  S  P  L  P  E  S  T  M  D  Q  G  G  E  A  C  R  E  E  

 

        730       740       750       760       770       780       790       800       810         

....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| 

GGGCATGCGGCGCACTCCGAAACACAAGGCAACGACCAGGAAATGACAACAGAGGAGCAGGAAGTGACCTGGCCAACGGAGGAGGAGCAA  

 G  H  A  A  H  S  E  T  Q  G  N  D  Q  E  M  T  T  E  E  Q  E  V  T  W  P  T  E  E  E  Q  

 

        820       830       840       850       860       870       880       890              

....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|... 

GCAAGGGCTGCCGATACCGACATGACCCACTGAAAGGTTGAGAATGGATCAAGAACACTTAAGTTATTGTGAATTTTTCACCTGACAG  

 A  R  A  A  D  T  D  M  T  H  *   

 

 

 

Figure 3: Partial Atlantic salmon Per1 sequence including 844 bp coding sequence. 
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                     10         20         30         40         50         60         70         80                       

            ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  

D Rerio     MSDDNSDSAP SNDADSGAGG IEKKAG---- ---------R SCGMSESSPS SNPESSGSGG LSGPKG---- --SAGGNRGV   

D Labrax    MSYDNSKSMP SSSTRGRVAR ADGKDNDQEA VSGGLNSPKT SGGQPGANVA TQEQ--RSGG ASSPSGGSGS GSSSGDRRGH   

S Guttatus  MSYDNPKSTP SSSTRGRVVR ADDKDNEREA DPERLSSPKA SGGQPGANGA SQEQGSRSGG GSSPSAGSGS GSSSGERRGP   

S Salar     ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------   

                     90        100        110        120        130        140        150        160                

            ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  

D Rerio     NSDDTDGLSS GNDSGERESE GGMQRGSGSR GRQSNRSYQS SSSQNGKDSA MGMETTESNK SSNSHSPSPP SSSLAYSLLS   

D Labrax    NSDDMDGLSS GNDSGERESE GGMERESGSR GRQSTRSSHS SS--NGKDSG MMLENTESNK SSNSQSLSPP SGSLAYSLLS   

S Guttatus  HSDDMDGLSS GNDSGERESE GG--RESGSH GRQSTRSSHS SS--NGKDSG MMLETTESNK SSNSHSLSPP SGSLAYSLLS   

S Salar     ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------   

                    170        180        190        200        210        220        230        240               

            ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  

D Rerio     ASSEQDPPST SGCSSDQSAR VQTQKELMRA LNELKIRLPP ERKMKGRSST LNALKYALSC VRQVRANQEY YHQWNVEECH   

D Labrax    TSSEHDPPST SGCSSDQSAR VQTQKELMKA IKELKLRLPS ERKAKGHSST LNALKYALQC VKQVRANKEY YHQWSVEECH   

S Guttatus  NSSEHDPPST SGCSSNQSAK VQSQKELMKA IKELKLRLPS ERRAKGHAST LNALKYALQC VKQVRANKEY YHQWSVEECH   

S Salar     ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------   

                    250        260        270        280        290        300        310        320               

            ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  

D Rerio     GCSLDLSTFT VEELDNITSE YTLKNTDTFT MAVSFLSGKV VYISPQGSSL LRSKPERLHG VLFSELLAPQ DVSTFYSNTA   

D Labrax    GCSLDLSAFT IEELDNITSE YTLKNTDTFS MAVSFLSGKV VYVSPQGSSV LRCKPECLQG TVFSELLAPQ DVSTFYSGTA   

S Guttatus  GCSLDLSAFT IEELDNITSE YTLKNTDTFS MAASFLSGKV VYVSPQGSSL LRCKSECLQG TVFSDLLAPQ DVSTFYSGTA   

S Salar     ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------   

                    330        340        350        360        370        380        390        400               

            ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  

D Rerio     PCKLPAWASC IGSVSPPMEC TQEKSMFCRI SGDVSSSSDV RYYPFRLTPY LLTLRDSDMA FPQPCCLLIA ERVHSGYEAP   

D Labrax    PCRLPPWASC IGSASPPVDC TQEKSMFCRI SADRMQGGEM RYHPFRLTPY QLTIRDSDAS EPQPCCLLIA EKVHSGYEAP   

S Guttatus  PCRLPPWASC IGSASSPVDC TLEKSMFCRI SADRTQSGEM RYYPFRLTPY QLTIKDSDAA EPQPCCLLIA ERVHSGYEAP   

S Salar     ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------   

                    410        420        430        440        450        460        470        480               

            ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  

D Rerio     RIPLDKRIFT TSHTPSCVFQ EVDERAVPLL GYLPQDLVGT PVLLCIHPDD RHIMVAIHKK ILQFAGQPFE HSPLRMCARN   

D Labrax    RIPPDKRIFT TSHTPSCLFQ EVDERAVPLL GYLPQDLVGT PTLLYIHPED RPLMVAIHEK IFQFAGQPFE YSPLRMCARN   

S Guttatus  RIPPDKRIFT TSHTPSCLFQ EVDERAVPLL GYLPQDLVGT PTLLYIHPED RPMMVAIHEK IFQFAGQPFE YSPLRMCARS   

S Salar     ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------   

                    490        500        510        520        530        540        550        560               

            ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  

D Rerio     GEYMTIDTSW SSFINPWSRK VAFIVGRHKV RTSPLNEDVF TPPRGLEERA LTPDIVQLSE QIHRLLVQPV HCGSSQGYGS   

D Labrax    GEYLTIDTSW SSFVNPWSRK VAFIVGRHKV RTSPLNEDVF TTPQGCESRV TTPDVVQLSE QIHRVLVQPV HSGSSQGYSS   

S Guttatus  GEYLTIDTSW SSFVNSWSRK VAFIIGRHKV RTSSLNEDVF TTPQGCESRV TTPDIVQLSE QIHRVLVQPV HSGGSQGYSS   

S Salar     ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------   

                    570        580        590        600        610        620        630        640               

            ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  

D Rerio     LPSNG----- -SHEHQPSA- -ASSSDSSGP GLEDPS---Q LHKPMTFQQI CKDVHMVKTN GQQVFIDSRN RPPPKKHSTA   

D Labrax    LGSSGSRGSR RSHQQHLSA- -ASSSDSNGP AMEEAAAVVA LHKPMTFQQI CKDVHMVKTN GQQVFIESRN RPLPRKNTST   

S Guttatus  LGSSGSRGSR RSHQQHLSAS AASSSDSNGP ALDKAAAATA LHKPMTFQQI CKDVHLVKTN GQQVFIESRN RPPPRKTTTI   

S Salar     ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------   

                    650        660        670        680        690        700        710        720               

            ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  

D Rerio     G-ALKAGQSA EVCRSLVPCA APPSKSSAPS LIVQKEPPTT FSYQQINCLD SIIRYLESCN VPNTVKRKCG SSSCTASSTS   

D Labrax    GPTGIRAVTS DPIRGLIADL TKPPKAVVPA PFVQKEAPTG YSYQQINCLD SIIRYLDSCN IPNTVKRKCG SSSCTS--TS   

S Guttatus  GAASIRAVSS DPIRGLIADM TKPTKALVPA PLVQKEPPTG YSYQQINCLD SIIRYLESCN IPNTIKRKCG SSSCTS--TP   

S Salar     ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------   

                    730        740        750        760        770        780        790        800               

            ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  

D Rerio     DDDKQQEAPG NAKGPSVSLV DDSALLPPLA LHNKAESVAS VTSQCSFSST IVHVGDKKPP ESDIVMEEAP PTPNTAL---   

D Labrax    DDDKQQEASG NNKGGSVSIV GEPPSLPPLT MATKAESVAS VTSQCSFSST IVHVGDKKPP ESDIVMEEAP TTPTLAP---   

S Guttatus  DEDKQ-EASG NSKGGPVSLV GEAPSLPPLA MVTKADSVAS VPSVCSFSST IVHVGDKKPP ESDIVMEEAP TTPTLPPATV   

S Salar     ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------   

                    810        820        830        840        850        860        870        880               

            ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  

D Rerio     ---PVTQPQF PPMATPSLP- ---------L SPAPDRDAGR RGGPGASAGG ERLGLTKEVL SAHTQQEEQN FMCRFGDLSK   

D Labrax    ---PTTTLTR LAIAAPPLPP PPPPP----Q ATQPERDSRR NGS-VGGGGG GRMGLTKEVL SAHTQQEEQA FLDRFKDLSK   

S Guttatus  PTRPASGPTP PAANAPVTPP PPPPLPSSSQ ASQPERESRR SGSGAGGGAG GRMGLTKEVL SAHTQQEEQA FLDRFKDLSK   

S Salar     ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------   

                    890        900        910        920        930        940        950        960               

            ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  

D Rerio     LRVFDPTSAV RRR----PNA PLSRGVRCSR DYPAAGSS-G RRRGRGGKRL KHQESSEQTG SCSPAGPIRG LLPGVPALGR   

D Labrax    LRVFDQTASS TLRCHTPAAN PLSRGVRCSR DYPAAGSSNG HRRGRGGKRL KHQESSDQHS SLGMSGSPCD PRTSAAPMPL   

S Guttatus  LRVFDQTTSS AVRGHTPAAN PLSR-VRCSR DYPAAGSGTG HRRGRGGKRL KHQESSDQHS SLGLSGSRHD PRTSTAPMPL   

S Salar     ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------   

                   970        980        990        1000       1010       1020       1030       1040              

            ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  

D Rerio     PSNPSIPMGP TASSSSWPTS GSQASVPNVQ YPP-TVLPLY PVYPPISHPV SDPSMQSGLR FPLQNSQMAP PMVPPMMALV   

D Labrax    NMPINMPLGP PTNSSSWPSV GSQASIPAAP FAPPGMLPIY PVFPPMAQPF PQAVPDP-SR FPP------T QMVPPMMALV   

S Guttatus  ----NIPLGP ATTSSSWPSV GSQAGIPAAP FAP-GMLPIY PVYPPLTQPF PQPVPDP-SR FPP------T QMVPPMM-FV   

S Salar     ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------   

                    1050       1060       1070       1080       1090       1100       1110       1120              

            ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  

D Rerio     LPNYMFPQPS VGMA------ -QPFYSPNSA FPFAAANMG- ----SPAPCQ IQTPIQRAHS RSSTPHSYSQ RENGAEREGA   

D Labrax    LPNYMFPQMG APIP-QPGPT PGHFYNPNFP YPVATPAAIP TVVPTVVANP IPLPGTGAPS RSSTPQSYSQ TP--ADREGA   

S Guttatus  LPNYMFPQMG APIPPQPSPA PGHFYNPNFA NPTAAAAAP- -VIPTAVSNP VSVPATGAQS RSSTPHSYSQ TP--AEREGA   

S Salar     ---------- ---------- ---------- ---------- ---------P PAWPSARGQG RSST------ ----------   

                    1130       1140       1150       1160       1170       1180       1190       1200              

            ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  

D Rerio     ESPLFQSRCS SPLNLLQLEE SPSNRFEVAS GQQTTSPMVG --QGGGAGGQ ASSNQRGSAV DS-KTNENGE TNESNQDAMS   

D Labrax    ESPLFQSRCS SPLNLLQLEE SPSNRLDFAT ALGASQQATP SVQGGAAGGQ TSANQG-SSD DISKENENGE ANESNQDAMS   
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S Guttatus  ESPLFQSRCS SPLNLLQLEE SPSNRLEVAT ALAASQQAPP SVQGGAAGGQ SAANQGGSSD DTSKENENNE TNESNQDAMS   

S Salar     ---------- --LDALRY-- ---------- ALNCVKQVRX ---------- ---------- ---------- -----QDGES   

                    1210       1220       1230       1240       1250       1260       1270       1280              

            ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  

D Rerio     TSSDLLDLLL QEDSRSGTGS AASGSGSSGT GSSGSG-SGS S----GSGSN GCSSSG-SGT RSSQSSNTSK YFGSVDSSEN   

D Labrax    TSSDLLDLLL QEDSRSGTGS AASGSGSSGT RSSGSG-SGS ---------N GCSSSGTSGT S---GSHTSK YFGSIDSSEN   

S Guttatus  TSSDLLDMLL QEDSRSGTGS AASGSGSSGT RSSGSG-SGS ---------N GCSSSGTSGT SSSQGSHTSK YFGSIDSSEN   

S Salar     TPSDLLDLLL QEDSRSGSGS AASGSGSSGS GSSGSGSSGS GSVSLGTVSN GCSSSG-SGT SRSRSSHTSK YFGSIDSSEN   

                    1290       1300       1310       1320       1330       1340       1350       1360              

            ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  

D Rerio     SHSRKQTAEG D-------GE AQFIKCVLQD PIWLLMANTD EKTMMTYQLP IRDRDSVLKE DRAALRAMQK HQPRFTEEQK   

D Labrax    DHSRKQPAGG SSSAGGEGGE EQFIKCVLQD PIWLLMANTD DKVMMTYQLP VRDMETVLRE DREALRSMQK HQPRFTEDHK   

S Guttatus  DHSRKQPAGG SSNAGGDGGE EQFIKCVLQD PIWLLMANTD DKIMMTYQLP IRDMETVLRE DREALRSMQK HQPRFTEEQK   

S Salar     DHSRKQPAGG SRARG--DGE EQLIKCVLQD PIWLLMANTD HKVMMTYQLP TKDRETVLRQ DREALRAMHK HQPRFTEDQK   

                   1370       1380       1390       1400       1410       1420       1430       1440              

            ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  

D Rerio     SELSQVHPWI RTGRLPRAIN ISACAGCRSP PSVPSATPFD VEIHEMEFCS VLAVAEEKQT PTDTVMEKSE TDGQNETCKE   

D Labrax    RELSQVHPWI RTGRLPRAIN ISGCTGCKSP PFVPPTAPFD VEIHEMELCN VLKAQEEGAR EGKKNQSVTA MDETHPGDED   

S Guttatus  RELSQVHPWI RTGRLPRAVN ISGCTGCRSP PSVPPAAPFD VEIHEMELCS VLKCQEEGAS EDKKNQSESL MDGVHPEEEE   

S Salar     RELSQVHPWI RTGRLPRAIN VSACMGCKSS P-LPEST--- -----MDQG- ----GEACRE EGHAAHSETQ GNDQEMTTEE   

                    1450       1460       1470       1480       1490                

            ....|....| ....|....| ....|....| ....|....| ....|....| ....| 

D Rerio     NNG------- -----TVTTA QINDQEMLTE EQEMTSQIEE EMGASHTQMT H----  

D Labrax    EE-------- -------DEA EEKGTKTQDS NQEMP-AEER RASSESVKEK SHMTH  

S Guttatus  EEEVVEDEEE EEEVEEEEGA QEKGTKTQDR NQDMAAAEEQ SAASDSV--- -----  

S Salar     QE-------- -------VTW PTEEEQARAA DTDMTHKVEN GSRTLKLLIF HLT— 

Figure 4: Partial Atlantic salmon Per1 protein alignment with other available teleost 

sequence information. 

 

Figure5: Phylogenetic tree of teleost Period genes. The partial sequence of Atlantic salmon 

Per1 shows highest similarity to other teleost Per1 genes . The evolutionary history was 

inferred using the Neighbor-Joining method (Saitou & Nei 1987). The percentage of replicate 

trees in which the associated taxa clustered together in the bootstrap test (500 replicates) are 

shown next to the branches (Felsenstein 1985). The evolutionary distances were computed 

using the Maximum Composite Likelihood method (Tamura et al. 2007) and are in the units 

of the number of base substitutions per site. Phylogenetic analyses were conducted in 

MEGA4 (Tamura et al., 2007). 
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Experiment 1 – Effect of photoperiod on circadian clock gene expression and melatonin. 

Plasma melatonin levels showed a significant circadian rhythm in fish exposed to all 

experimental photoperiods (Figure 6). In all cases levels were significantly elevated during 

the night in comparison to during the day. Under all experimental treatments the acrophase or 

peak of levels of plasma melatonin occurred during (SD and 12:12) or just following (LD) 

the nocturnal phase of the 24h cycle (Figure 6, Table 4). A significant difference was only 

observed between the acrophase of the SD and 12:12 in comparison to the LD treatments. No 

significant difference was observed in mean diurnal melatonin levels between photoperiodic 

treatments. However, mean nocturnal melatonin levels were significantly elevated in fish 

reared under LD in comparison to SD and 12:12 (Figure 6).  

 

All clock genes investigated were expressed under all treatments and in totRNA extracted 

from all three tissues studied. In the brain samples, in smolts acclimated to LD, both Clock 

and Per2 displayed a significant circadian expression rhythm (Figure 7). The peak 

(acrophase) of Clock and Per2 expression occurred at the onset of the diurnal phase at ExT 

05:00 h (Table 4). In fish exposed to SD and 12:12, none of the clock genes investigated 

displayed a significant circadian rhythm of expression in the brain. In addition, no Per1 

rhythmic expression was observed under any of the experimental photoperiods tested (Figure 

7). In the fin samples, a significant circadian rhythm was only observed for Clock in salmon 

acclimated to SD (Figure 8). However, ANOVA analyses showed no significant difference 

between time points (P = 0.143). No other genes displayed significant circadian rhythms 

however Clock under 12:12 and Per 2 under all three photic conditions did have significant 

differences in expression during the 24 hr period. In the liver Clock expression profile 

displayed a significant circadian rhythm under 12:12 treatment only while Per1 displayed 

significant rhythmic expression in salmon parr exposed to SD (Figure 9). The acrophase of 
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Clock and Per1 occurred at ExT 15:00 ± 2.33 h and 13:00 ± 2.64 h, respectively (Table 4). 

Irrespective of circadian rhythms, significant differences in expression over the 24 hour 

period were observed in Clock 12:12 and LD; Per1 SD and 12:12 and Per 2 in all three 

photic conditions (Figure 9). 

 

Mean expression (copy number per μg of totRNA normalised using -Actin) over the 24h 

profiles showed significant differences both in relation to the photoperiod treatments and the 

tissue types (Figure 10). Clock in Brain samples were 2.5 and 2.3 fold higher in fish 

acclimated to LD and 12:12 in comparison to SD photoperiod. Clock in fin and liver showed 

no response to photoperiod and had low expression levels being statistically comparable to 

the brain SD pool. For Per1 expression both brain and liver samples showed a significant 

response to photoperiod. In the brain mean SD levels were 1.5 fold higher compared to 12:12 

with LD levels being intermediate to these. In the liver, levels were 3 and 4 fold elevated 

under LD compared to SD or 12:12 respectively. Per1 levels in the fin were low and showed 

no response to photoperiod (Figure 10). In the brain and fin mean expression levels of Per2 

expression were not significantly different between the three experimental photoperiods 

levels were significantly lower however in the fin in comparison to the brain. In the liver 

there was a significant effect of photoperiod on mean expression levels with 3.7 fold higher 

mean expression level of Per2 being observed under SD in comparison to 12:12 (Figure 10). 
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Table 4: Significance of 24h profiles of clock gene expression and levels of plasma 

melatonin, as defined by Acro and ANOVA analysis, in Atlantic salmon parr acclimated to 

long day, Short day and 12L12D treatments (Experiment 1). 

 

Gene / 

Photoperiod/ tissue  

Acro  analysis  ANOVA  Significant Circadian Rhythm 

Brain  P Value  Acrophase 

(ExT±SEM)  

P Value  Sig/NS 

Clock SD  >0.05 - <0.05 NS 

Clock 12:12  >0.05 - >0.05 NS 

Clock LD  <0.05  05:00 ± 2.68  <0.05  Sig  

Per1 SD  >0.05 - <0.05 NS 

Per1 12:12  >0.05 - >0.05 NS 

Per1 LD  >0.05 - <0.05 NS 

Per2 SD  >0.05 - <0.05 NS 

Per2 12:12  >0.05 - >0.05 NS 

Per2 LD  <0.05  05:00 ± 2.45  <0.05  Sig  

Fin      

Clock SD  <0.05  21±2.2  >0.05  NS  

Clock 12:12  >0.05 - <0.05 NS 

Clock LD  >0.05 - >0.05 NS 

Per1 SD  >0.05 - >0.05 NS 

Per1 12:12  >0.05 - >0.05 NS 

Per1 LD  >0.05 - >0.05 NS 

Per2 SD  >0.05 - <0.05 NS 

Per2 12:12  >0.05 - <0.05 NS 

Per2 LD  >0.05 - >0.05 NS 

Liver      
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Clock SD  >0.05 - >0.05 NS 

Clock 12:12  <0.05  15:00 ± 2.33  <0.05  Sig  

Clock LD  >0.05 - <0.05 NS 

Per1 SD  <0.05  13:00 ± 2.64  <0.05  Sig  

Per1 12:12  >0.05 - <0.05 NS 

Per1 LD  >0.05 - =0.05 NS 

Per2 SD  >0.05 - <0.05 NS 

Per2 12:12  >0.05 - <0.05 NS 

Per2 LD  >0.05 - <0.05 NS 

Melatonin      

SD  <0.05  01:00 ± 1.33 <0.05  Sig  

12:12  <0.05 23:00 ± 0.95 <0.05 Sig  

LD  <0.05 05:00 ± 1.56 <0.05 Sig  
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Figure 6: 24h profiles and mean plasma melatonin from experimental seasonal photoperiods 

with spread of data in addition to SEM (experiment 1). Panels A to C display 24h profiles of 

melatonin in relation to external time (whereby ExT 0 is the midpoint of the dark phase). The 

presence of a cosine wave denotes a significant circadian rhythm by acro analysis and * 

represents the acrophase (peak) of the 24h cycle. D shows mean nocturnal (dark grey) and 

diurnal (white) levels of melatonin with SEM. In all graphs the presence of different letters 

represents statistically significant difference between samples by way of ANOVA and 

Turkeys test where by P<0.05  
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Figure 7: Daily profiles of clock (Clock, Per1 and Per2) gene expression in the Brain of 

Atlantic salmon parr acclimated to experimental long day short day and 12L: 12D 

photoperiod experiment 1. Results are displayed in relation to external time, where by ExT 0 

is the mid point of the nocturnal phase. Gene expression data is displayed as the percentage 

of the mean ± the SEM and includes the spread of the data.The presence of a cosine wave 

denotes a significant circadian rhythm by acro analysis and * represents the acrophase (peak) 

of the 24h cycle. The presence of different letters represents statistically significant difference 

between samples by way of ANOVA and Turkeys test where by P<0.05  
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Figure 8: Daily profiles of clock (Clock, Per1 and Per2) gene expression in the fin of 

Atlantic salmon parr acclimated to experimental long day short day and 12L: 12D 

photoperiod (Experiment 1. Results are displayed in relation to external time, where by ExT 0 

is the mid point of the nocturnal phase. Gene expression data is displayed as the percentage 

of the mean ± the SEM and includes the spread of the data.The presence of a cosine wave 

denotes a significant circadian rhythm by acro analysis and * represents the acrophase (peak) 

of the 24h cycle. The presence of different letters represents statistically significant difference 

between samples by way of ANOVA and Turkeys test where by P<0.05   
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Figure 9: Daily profiles of clock (Clock, Per1 and Per2) gene expression in the liver of 

Atlantic salmon parr acclimated to experimental long day short day and 12L: 12D 

photoperiod (Experiment 1). . Results are displayed in relation to external time, where by 

ExT 0 is the mid point of the nocturnal phase. Gene expression data is displayed as the 

percentage of the mean ± the SEM and includes the spread of the data.The presence of a 

cosine wave denotes a significant circadian rhythm by acro analysis and * represents the 

acrophase (peak) of the 24h cycle. The presence of different letters represents statistically 

significant difference between samples by way of ANOVA and Turkeys test where by 

P<0.05  



Chapter 3 

117 
 

 

Figure 10: Mean levels of clock gene (Clock, Per1 and Per2) expression over 24h in the 

Brain Fin and the Liver from experiment 1. Gene expression data is displayed as the  copy 

number per g totRNA ± the SEM. The presence of different letters represents statistically 

significant difference between samples by way of ANOVA and Turkeys test where by 

P<0.05   
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Experiment 2 – Seasonal/Life history changes in circadian clock gene expression and 

melatonin. 

Melatonin displayed circadian rhythms under each seasonal photoperiod and the acrophase of 

levels of plasma melatonin occurred during the nocturnal phase of the circadian cycle in all 

treatments (Table 5 and Figure 11). In comparison to all other seasonal sample sets, the 

acrophase of the June 2010 sample was significantly later in the circadian cycle at 

approximately one hour after the mid dark, as opposed to one hour prior to mid dark as was 

observed in all other sample sets. Nocturnal levels of plasma melatonin appear to be 

suppressed during the winter and early spring and appear elevated after transfer to seawater 

with mean nocturnal levels being highest in the October 2010 samples (Figure 11). 

In the autumn and spring equinox, in the freshwater phase, no significant circadian rhythm 

for clock gene expression (Clock, Cry2, Per1 & Per2) were present (Figure 12 and Table 5). 

Only in the winter solstice sample was a circadian rhythm observed in Cry2 with expression 

peaking at sunrise (06:00 ± 2.75). Following seawater transfer, in the summer solstice 

sample, a significant circadian rhythm in expression of Clock and Cry2 was observed with 

peak expression at 01:00 ± 2.3 and 05:00 ± 2.0 respectively. In the autumn equinox sample, a 

significant circadian rhythm was only observed in Per2 with expression peaking at 23:00 ± 

2.44. Per1 did not display any significant circadian profile of expression in any of the 

photoperiods investigated however in the freshwater phase winter solstice sample there were 

significant variation in expression levels over the 24 hour period.  

 

All four clock genes studied showed significant differences in mean expression level with 

respect to seasonal time (Figure 13). Clock expression levels were significantly higher in 

samples collected in the freshwater phase autumn equinox (October 2009) and winter solstice 
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(January 2010) samples compared to all others. In contrast Cry2 expression was lowest in the 

Autumn equinox samples both in the freshwater and seawater phase (October 2009 and 2010) 

with the freshwater winter solstice (January 2010) and sea water summer solstice (June 2010) 

being comparable and significantly higher to these. Freshwater spring equinox sample 

(March 2010) were significantly higher than all others. Similarly Per1 expression was 

statistically higher in January and March 2010 sample sets. Finally, Per2 displayed the 

highest levels of mRNA expression in the summer solstice sample (seawater phase, June 

2010) and lowest in the autumn equinox samples (both the freshwater and seawater phase in 

October 2009 and 2010 respectively). 
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Table 5: Significance of 24h profiles of clock gene expression and levels of plasma 

melatonin, as defined by Acro and ANOVA analysis, in Atlantic salmon acclimated to SNP 

(Experiment 2). 

Sample Set  Arco  analysis  ANOVA  Significant Circadian 

Rhythm  

Clock  P value  Acrophase  P Value  Sig/NS  

October 09  >0.05 NS >0.05  NS 

January 10  >0.05 NS >0.05  NS 

March 10  >0.05 NS >0.05 NS  

July 10 <0.05 01±02:30 <0.05  Sig 

Oct 10  >0.05 NS <0.05  NS 

Cry2      

October 09  >0.05 NS >0.05 NS 

January 10  <0.05 06±02.75 <0.05  Sig 

March 10  >0.05 NS <0.05  NS 

July10  <0.05 05±02.00 <0.05  Sig  

Oct 10  >0.05 NS <0.05  NS 

Per1      

October 09  >0.05 NS >0.05 NS 

January 10  >0.05 NS <0.05  NS 

March 10  >0.05 NS >0.05 NS 

July 10  >0.05 NS >0.05 NS 

Oct 10  >0.05 NS >0.05 NS 

Per2      

October 09  >0.05 NS <0.05  NS 

January 10  >0.05 NS >0.05 NS 

March10  >0.05 NS >0.05 NS 

July 10  >0.05 NS >0.05 NS 

Oct 10  <0.05 23±2.44 <0.05  Sig 

Melatonin      

October 09  < 0.05 23.00±2.80 <0.05 Sig 

January 10  < 0.05 22.00±2.18 <0.05 Sig 

March 10  < 0.05 23.00±2.15 <0.05 Sig 

July 10  < 0.05 01.00±2.12 <0.05 Sig 

Oct 10  < 0.05 23:00±1.61 <0.05 Sig 
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Figure 11: Five daily profiles of melatonin in Atlantic salmon parr acclimated to SNP and 

mean nocturnal and diurnal levels of melatonin from experiment 2 Panels 1 to 5 display 24h 

profiles of melatonin in relation to external time (whereby ExT 0 is the midpoint of the dark 

phase). The presence of a cosine wave denotes a significant circadian rhythm by acro analysis 

and * represents the acrophase (peak) of the 24h cycle. D shows mean nocturnal (dark grey) 

and diurnal (white) levels of melatonin with SEM. In all graphs the presence of different 

letters represents statistically significant difference between samples by way of ANOVA and 

Turkeys test where by P<0.05  



Chapter 3 

122 
 

 

Figure 12: Daily clock gene (Clock, Cry2, Per1 and Per2) expression in the brain of Atlantic 

salmon parr acclimated to an SNP and sampled at 5 seasonal sample points (Experiment 2). 

Results are displayed in relation to external time, where by ExT 0 is the mid point of the 

nocturnal phase. Gene expression data is displayed as the percentage of the mean ± the SEM 

and includes the spread of the data.The presence of a cosine wave denotes a significant 

circadian rhythm by acro analysis and * represents the acrophase (peak) of the 24h cycle. The 

presence of different letters represents statistically significant difference between samples by 

way of ANOVA and Turkeys test where by P<0.05  
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Figure 13: Mean clock gene (Clock, Cry2, Per1 and Per2) expression in the Brain of 

Atlantic salmon parr acclimated to an SNP and sampled at 5 seasonal sample points 

(Experiment 2). Gene expression data is displayed as the copy number per g totRNA ± the 

SEM. The presence of different letters represents statistically significant difference between 

samples by way of ANOVA and Turkeys test where by P<0.05 

 

5. DISCUSSION 

The seasonal control of Atlantic salmon physiology is primarily entrained by environmental 

cues (e.g. photoperiod and temperature; refs).It is believed that this is achieved via the 

transmission of neuroendocrine messengers, such as the hormone melatonin, SCN electrical 

activity and the expression of clock and clock controlled genes, and these are entrained to 
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endogenous biological clocks.(Davie et al. 2009). To investigate this hypothesis, daily 

profiles of plasma melatonin and clock gene expression in the brain, fin and liver of salmon 

parr acclimated to different seasonal photoperiod treatments, were measured. Thereafter diel 

profiles of brain clock gene expression and plasma melatonin concentrations in salmon reared 

under a simulated natural photoperiod for one year, during which time they transitioned from 

freshwater parr to seawater post-smolt, were investigated. The specific aims of these 

experiments were to explore further seasonal dependent clock gene cycling; to determine if 

rhythmic expression in the brain was reflected in peripheral tissues and to determine if the 

effects observed following short term acclimation were replicated during normal 

development. Results displayed a clear correlation between photoperiodic conditions and 

clock gene cycling and melatonin. Moreover daylength dependent expression of clock genes 

was observed in the brain, however results appear to be dependent on photoperiod history as 

rhythmic clock gene expression is observed under photic conditions that best follow the 

natural seasonal progression. Moreover amplitude differences in seasonal clock gene 

expression appear to be dependent on photoperiod alterations and expression of clock genes 

in peripheral tissues differs considerably to the brain. Overall results in salmon clock gene 

expression differed from previous results in mammals and other teleosts previously 

investigated. Potentially highlighting differences clock mechanisms amongst cerebrates and 

in particular amongst the diverse teleost group.  

 

As was confirmed in both experiments 1 & 2 melatonin synthesis and release in salmon, like 

all vertebrates, accurately reflects external photoperiod (Falcon et al. 2010; Falcon et al. 

2011). Daily melatonin profiles closely mirror the external photoperiod expanding and 

contracting to adjust to seasonally changing ratio of light and dark. Interestingly, in 

experiment 1, mean levels of nocturnal melatonin were significantly higher in fish acclimated 
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to long day treatment irrespective of the equal temperature under all treatments (4.6 ± 0.7 

°C). In experiment 2 the phase of melatonin rhythm mirrors photoperiod. However melatonin 

amplitude varied considerably over trial duration even under similar photic conditions. This 

could potentially be the result of annual variations in temperature. Indeed, water temperature 

in October 2010 was approximately 1.5  C higher than October 2009 (Figure 1 and Table 1). 

Teleost fish are ectotherms consequently their internal body temperature and physiology, 

including melatonin, is regulated by external temperature (Falcon et al. 2010). In a number of 

teleosts temperature has been shown to regulate the amplitude of nocturnal melatonin 

(Randall et al. 1995; Bromage et al. 2001; Falcon et al. 2010; Falcon et al. 2011). Randall et 

al (1995) reported this effect in the Atlantic salmon under natural conditions and a 6 month 

out of phase photoperiod. The authors observed that melatonin was elevated during the 

summer irrespective of photic conditions, moreover, melatonin was highest in June and 

August coinciding with the natural elevation in water temperature (Randall et al. 1995). 

Additionally a correlation was observed between melatonin amplitude and temperature in 

rainbow trout (Tabata & Meissl 1993; Tabata et al. 1993). Temperature effect on melatonin 

amplitude has also been documented in seabass (Garcia-Allegue et al. 2001) and goldfish 

(Iigo et al. 1995) in vivo and the rainbow trout (Tabata & Meissl 1993; Tabata et al. 1993), 

white sucker (Zachmann et al. 1991), lamprey (Bolliet et al. 1993) and pike (Falcon et al. 

1994) in vitro. In vitro the species specific temperature dependent regulation of AANAT2, 

the rate limiting enzyme in the synthesis of pineal melatonin has been studied (Klein 2007). 

Peak AANAT2 activity coincides with the optimal physiological temperature of the species 

(Falcon et al. 2010), 12 °C in rainbow trout, 25 °C in pike, 27 °C in seabream and 30 °C in 

zebrafish (Falcon et al. 1996; Coon et al. 1998; Benyassi et al. 2000; Zilberman-Peled et al. 

2004; Falcon et al. 2010). This is in contrast to AANAT1, where optimum enzymatic activity 

occurs at 37 °C in the majority of the teleosts investigated (Kulczykowska et al. 2010). 
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However the precise mechanisms underpinning the temperature dependent regulation of 

AANAT2 are largely unclear. 

 

There are however other potential influences of melatonin amplitude. In euryhaline fish for 

example, the amplitude of melatonin is altered by salinity. In salmonids such as the Coho 

salmon and rainbow trout, increased melatonin was observed after seawater transfer (Gern et 

al. 1984). In seabass and seabream, elevated melatonin was correlated with decreasing 

salinities, independent of photoperiod or temperature (Kleszczynska et al. 2006; Lopez-

Olmeda et al. 2009). It was hypothesised by Lopez-Olmeda et al, 2009 that the inverted 

relationship between melatonin and salinity is a consequence of reversed migratory 

behaviours; salmon migrate to freshwater to breed while seabass spawn at sea and migrate to 

lower salinities to feed. Consequently elevated melatonin occurs with low salinity in 

seabass/bream and at high salinity in salmonids (Lopez-Olmeda et al. 2009). This is 

consistent with results in the current investigation where highest melatonin was observed in 

samples after salt water transfer. Animal size/stage of development has also been shown to 

influence melatonin release in a range of vertebrates. The fish studied in experiment 2 were 

reared over the duration of a year, during this period the size of the fish increased from 31.1 

to 188.0 g. In sheep, increased amplitude of melatonin in the blood plasma has previously 

been attributed to pineal size (Coon et al. 1999). However the size of the pineal was 

determined to be a consequence of genetic influence. In salmon the pineal organ increases in 

size as the fish grows in size. The presence of genetic variations in melatonin amplitude is 

unknown. While work in rats correlated increased weight gain to low levels of melatonin 

(Rios-Lugo et al. 2010). However the effect of growth and nutritional status on melatonin 

amplitude remains unknown in teleosts. Despite the many potential regulators of amplitude, 

melatonin displays an extraordinarily close affiliation with external photic conditions and 
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closely mirrors the seasonally expanding and contracting photoperiod. Consequently 

melatonin has regularly been implicated in the involvement of seasonal regulation in 

salmonids (Bromage et al. 2001). Although the exact mechanisms and pathways are largely 

unknown in fish melatonin is thought to be involved in the main annual physiological 

processes such as smoltification, growth and reproduction ( Falcon et al. 2007; Ebbesson et 

al. 2008; Falcon et al. 2010). Clock genes are additionally considered to play a role in the 

regulation of seasonal physiology and behaviour. In order to investigate the expression of 

clock genes in brain and peripheral tissues of the Atlantic salmon it was necessary to clone 

and sequence Per1 gene. Per1 has previously been shown to be of importance to seasonal 

processes in seasonal mammals and birds (Foster & Kreitzman 2009).  

 

In experiment one, daylength dependent (DLD) circadian expression of Clock and Per2 was 

observed in brains sampled from fish exposed to LD. Per1 did not display significant 

circadian expression under any photoperiod. This is in contrast to previous results by Davie et 

al. (2009) who described DLD expression of Clock, Bmal and Per2 in the brain of salmon 

parr under SD photoperiod. Yet the phase and shape of the Clock and Per2 expression 

between the two contrasting results share important characteristics. Results from Davie et al. 

(2009) and the present the acrophase of Clock and Per2 expression occurs at similar times 

during the circadian cycle. Peak expression of Clock was ExT 01:00 ± 1:45 h (Davie et al. 

2009) and displayed an overlapping SEM with current study 05:00 ± 02.38 h. Similarly Per2 

peak expression occurred at 05:00 ± 02.38 h and 05:00 ± 2:45 h in the previous and current 

investigations respectively. Differential DLD expression of Clock and Per2 may be a result of 

different photoperiod history prior to acclimation to experimental photoperiods. In the current 

investigation salmon parr were acclimated to long day, 12L: 12D and short day photoperiods 

in March 2009 (11L: 13D) as daylength was increasing towards the summer solstice. Results 
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showed circadian expression of Clock and Per2 in LD brain, the experimental photoperiod 

that best follows the natural seasonal progression. In the previous study acclimation was 

carried out during early October (10.5L; 13.5D) and DLD clocks were shown in SD salmon 

(Davie et al. 2009). Consequently it is hypothesised that circadian clock genes expression 

was therefore observed in the experimental photoperiods that provided the best fit to the 

natural seasonal progression at the time of acclimation. Such a theory requires further 

investigations. In mammals results in the Soay sheep have shown that the expression of clock 

genes expression in the SCN follows photoperiod for a period of time. Subsequently the 

animal become refractory to photoperiod and physiology begins to change after prolonged 

exposure to a particular photoperiod (Lincoln et al. 2005). However this study was concerned 

with photorefractoriness as opposed to photoperiod history. 

 

The impact of photoperiod history on salmonid physiology has previously been documented 

and photoperiod manipulation is commonplace in commercial fish farm production. 

Photoperiod history is fundamental to physiology in species such as rainbow trout. Randall 

and Bromage (1998) demonstrated that it is not a specific daylength that triggers seasonal 

process but daylength in relation to previous photoperiod experienced. Photoperiods usually 

considered to represent long days (18L: 06D) are recognised as short if fish have been 

previously exposed to extreme long days (22L: 02D). Similarly spawning can be advanced 

under conventional short day photoperiods (e.g. 06L: 18D) if fish have previously been 

acclimated to extreme Short Days (02L: 22D) ( Randall & Bromage 1998; Randall et al. 

1998; Bromage et al. 2001). Investigation of clocks over a natural seasonal cycle will enable 

the hypothesis of photoperiod history to be put into context Data from experiment 1 

demonstrated robust clock gene oscillations under long day photoperiod where results were 

generated from fish acclimated to rigid artificial photoperiods. Under natural conditions in 
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temperate latitudes the light dark ratio will not remain stationary for periods of up to one 

month. In central Scotland daylength expands and contract by 4 – 5 minutes per day, 30 

minutes per week, around the autumnal and vernal equinoxes. Therefore a simulated natural 

photoperiod (SNP), adjusted on a weekly basis, would not provide as rigid entrainment signal 

as an artificial SD, LD or 12L: 12D photoperiod. 

 

In experiment two fish were held under a SNP photoperiod for a period of a year 

encompassing the transfer from fresh water to marine environment. Expression of clock 

genes in the brain was analysed over five 24h periods over the trial period. As in experiment 

1, Per1 was not rhythmically expressed in the brain under any photoperiod (see above). 

Seasonal specific circadian profiles of clock genes were observed for Clock, Cry2 and Per2. 

In agreement with experiment 1 Clock displayed a significant circadian profile of expression 

under LD (July 2010). This is in contrast to Davie et al. (2009) where clock appeared to be 

cycling under SD. In accordance with previous results significant circadian expression of 

Cry2 was present in samples taken during the natural SD (January 2010) and LD 

photoperiods (June 2010). However the peak of Cry2 expression occurred around the onset of 

the photophase in contrast to a nocturnal peak in previous work (Davie et al. 2009). Per2 was 

rhythmically expressed in October 2010 (seawater). This is in contrast to previous reports 

using experimental photoperiods where Per2 was rhythmic in fish acclimated to LD 

(experiment 1) and SD (Davie et al. 2009) treatments. Moreover Per2 did not display 

circadian expression in the October 2009 samples. Rhythmic Per2 has previously been 

reported in salmon post-smolts (marine) acclimated to 12L: 12D photoperiod (Huang et al. 

2010). Mean levels of clock gene expression in the brain were additionally compared 

between SD, 12L: 12D and LD photoperiods and between the 5 natural sample points. 

However no clear pattern was observed between genes and sample sets.  
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Significant difference in the amplitude of clock gene expression, up to 7.9 fold change over 

the course of the year (Cry2 march 2010 vs., October 09) (Figure 13), were observed in fish 

acclimated to SNP conditions. These changes can not be explained by photoperiod variations 

alone as results differed between fish acclimated to SNP and experimental photoperiods 

(Figure 10 and 13). Moreover amplitudinal changes were not consistent across all clock 

genes. Consequently clock mechanisms as a whole are not changing with varying seasonality. 

Under SNP fish were subject to a number of seasonally changing non photic potential 

zeitgeber signals including temperature and salinity. Importantly, over the duration of this 

trial Atlantic salmon parr underwent the smoltification process in transfer from freshwater to 

marine environment. It is unknown what effect such physiological events may have on the 

expression of clock genes. On the other hand the expression of a number of clock genes have 

been identified as quantitative trait loci (QTLs) for a number of life history events in 

salmonids (Leder et al. 2006; O'Malley et al. 2010). However it is unclear how amplitude 

changes in gene expression may impact on physiology. Determining how clock gene 

expression regulates seasonal physiology and the location of seasonality specific sites of 

clock gene expression would additionally enable a better understanding of how amplitude 

changes in clock gene expression effect physiology. 

Regarding the 24h profiles of clock gene expression in the brain some important similarities 

were observed between experiments 1 and 2, such as the expression of Clock in the brain. 

Differences in the profile and mean expression between experimental and stimulated natural 

photoperiods may be a consequence of the more rigid experimental photoperiod regime in 

comparison to the weekly adjusted SNP. Moreover in experiment 2 the time frame of the 

study encompassed the transfer from freshwater to seawater. The smoltification process 

includes a wide variety of physiological and morphological changes and may result in 

differential molecular responses to photoperiod. In spite of this results from the current study 



Chapter 3 

131 
 

infer some degree of photoperiod history may be involved in seasonal clock gene expression. 

In experiments 1 and 2 photoperiod and seasonal dependent rhythmic clock gene expression 

has been demonstrated in the brain. However the photoperiod dependent expression of clock 

genes outside of the brain has yet to be described.  

 

In the Atlantic salmon clock gene expression has been described in a wide variety of central 

and peripheral tissues. Significant day night variations have been observed in clock gene 

expression in peripheral tissues such as muscle (Clock), Intestine and spleen (Per2) (Davie et 

al. 2009). However the photoperiod dependent 24h profiles of molecular clocks are unknown 

in peripheral tissues. In the present study, expression levels of all clock genes investigated 

were higher in the brain than in the fin or the liver. In the Liver the mean expression of Per1 

and Per2 was elevated in comparison with Clock in the liver and Clock Per1 and Per2 in the 

fin. In the fin no significant circadian rhythm was observed when expression of Clock, Per1 

and Per2 was analysed by ANOVA, turkey’s test and Acro analysis for all treatments. This is 

in contrast to reports in the zebrafish where constitutive expression of a number of clock 

genes has been described in vitro (Whitmore et al. 2000; Whitmore et al. 1998). However in 

vivo tissue specific differences have been observed in response to light and temperature in the 

zebrafish (Kaneko et al. 2006). In Atlantic salmon liver, the profile of clock gene expression 

was very different to both the brain and the fin. A significant circadian rhythm for clock was 

observed under the 12L: 12D treatment as opposed to LD (present results) or SD (Davie et al. 

2009) in the brain. Moreover the acrophase was considerably later in the day (ExT 16:11) in 

comparison to the brain. Additionally Per1 as opposed to Per2 was significantly rhythmic 

under the SD photoperiod. Differences in clock gene expression have previously been 

described between the brain and the liver in Atlantic salmon post-smolts acclimated to a 12L: 

12D photoperiod (Huang et al. 2010b). Both Clock and Per1 show significant circadian 
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expression in the liver, with peak expression several hours prior to the brain (Huang et al. 

2010b). However it is difficult to make comparisons with the present study due to the 

different environmental conditions tested and the physiological status of experimental 

animals (freshwater vs. marine stages). Moreover fish had previously been subjected to 

artificial photoperiods in order to induce smoltification (Huang et al. 2010b). As discussed 

above there is evidence to suggest that photoperiod history can have a significant influence 

on clock gene expression. In contrast to other peripheral tissues, clock gene expression has 

been described in the liver of a wide variety of teleost species. Nevertheless a clear pattern of 

clock gene expression is yet to be established. In the European seabass similar profiles of 

Per1 expression have been reported across the brain, heart and liver under 12:12 photo 

treatment (Sanchez et al. 2010). Similarly, comparable expression of clocks was shown in the 

Golden rabbitfish brain, retina and the liver (Park et al. 2007). However in the goldfish 

differential expression of Per1-3 and Cry1-3 was reported between retina, liver and the gut 

tissues (Velarde et al. 2009). Amongst teleosts clock gene expression appears species and 

tissue specific. Differences in expression may be influenced by the presence of non photic 

zeitgebers such as temperature and food availability or differences in circadian axis 

organisation. The majority of studies conducted on clocks in teleost have focused on light as 

the primary mode of entrainment via the retina or pineal while other zeitgebers are present. 

Temperature has been shown to differentially regulate peripheral oscillations of Per3 in 

zebrafish (Kaneko et al. 2006); moreover, in the absence of photic cues Per1 expression in 

the liver is speculated to be dependent on feeding time in zebrafish (Sanchez & Sanchez-

Vazquez 2009; Lopez-Olmeda et al. 2010;). In the goldfish food entrainable oscillators 

(FEOs) have been implicated in the regulation of clock gene oscillations and locomoter 

activity (Vera et al. 2007; Feliciano et al. 2011;). In mammals restricted feeding in both mice 

and rats has resulted in altered clock gene expression between the brain and the liver 



Chapter 3 

133 
 

(Damiola et al. 2000; Stokkan et al. 2001).  Atlantic salmon feeding time could not explain 

differential expression between the brain and the liver and between photoperiod as fish were 

fed in excess throughout the day. Moreover feeding and food availability was equal across all 

experimental treatments..Results highlight considerable differences in the expression of clock 

genes in central and peripheral tissues in salmon in comparison to other teleosts, potentially 

inferring the presence of divergent clock mechanisms within the diverse teleost group. 

Moreover results illustrate the need for further research into the presence and entrainment of 

peripheral clocks in teleosts as no clear generalisations can be made between species or tissue 

type.  

 

 Findings from the current investigation illustrate that under experimental photoperiods the 

circadian expression of clock genes is daylength dependent in the brain and expression in 

peripheral tissues was considerably different to the brain. This supports the conclusion that 

clock mechanisms in different tissues are subject to differential entrainment signals. The 

effect of this in central and peripheral tissues is unknown in fish. Under SNP amplitude of 

clock gene expression varied with season between genes. Variations could not be explained 

by photoperiod alone. Clock genes have previously been associated with seasonal physiology 

however the effects of seasonal amplitude alterations are unclear on seasonal physiology. 

Moreover expression results in salmon differ considerably from previous investigations in 

other fish species. Further comparative investigations should be carried out in order to 

investigate the difference in clock gene expression between the Atlantic salmon and other 

teleosts and better understand the potential presence of deferential clock mechanism and 

pathways amongst vertebrates and fish in particular. 
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6. CONCLUSIONS 

The present study investigated the expression of clock genes and levels of circulating 

melatonin in Atlantic salmon parr acclimated to either fixed experimental photoperiods 

(experiment 1) or SNP (experiment 2) treatments. In experiments 1 and 2 levels of circulating 

melatonin mirrors the external light dark cycle and follows a significant circadian profile in 

the blood. There is evidence to suggest that the amplitude of the melatonin rhythm changes in 

response to daylength and to temperature, salinity and size/stage of development. In terms of 

clock gene expression, results from experiment 1 show clear daylength dependent expression 

of Clock and Per2 in the brain of long day fish. Differences in DLD expression of clocks in 

experiment1 and previous results are proposed to be a consequence of differential 

photoperiod history. In order to investigate this, experiment 2 characterised expression of 

clock genes over the duration of a year (SNP). Comparison between clock genes in 

experiment1 and experiment 2 revealed no consistent pattern of long day, short day or 

intermediate photoperiod expression. However mean amplitude of clock genes across 

seasonal photoperiods varied considerably, up to 7.9 fold difference. Such amplitude changes 

could not be explained by photoperiod alone as differences were observed between 

experiment1 and experiment 2 results. Moreover amplitude changes differed between clock 

genes, indicating the clock mechanism is not shifting as a whole. The effect of clock gene 

amplitude on seasonal physiology is unclear. However with respect to the identification of a 

number of clock genes as QTLs for important life history processes and the role of clock 

genes in mammalian physiology, seasonal amplitudinal changes in clock gene expression is 

an interesting area of future research. In addition to characterising clock gene expression in 

the brain, photoperiod dependent clock gene expression was observed in the liver, but no 

rhythmic expression was observed in the fin. Moreover photoperiod dependent cycling of 

liver clock genes was observed under four different photoperiods and at a different phase to 
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the rhythms in the brain. This research is the first characterisation 24h profiles of clock gene 

expression in central and peripheral tissues and under natural seasonal photoperiods. Future 

research in this field would benefit from long term trials in other salmonid species, such as 

the rainbow trout, that don’t migrate from freshwater to seawater. Moreover the effect of 

restricted feeding and temperature should be investigated on clocks in the liver and the brain.  
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PHOTOPERIOD REGULATION OF DEIODINASE, EYES ABSENT 3 AND 

THYROID STIMULATING HORMONE BETA GENES IN THE ATLANTIC 

SALMON. 

1. ABSTRACT 

The Atlantic salmon (Salmo salar) is a highly seasonal teleost species. Within the aquaculture 

industry photoperiod manipulation is widely utilised in order to maximise growth and control 

reproduction in Atlantic salmon. Yet the molecular mechanisms underlying photoperiodic 

regulation of seasonality are unknown. In mammals and birds expression of key components 

of the molecular switch for photoperiod response such as Eya3, Tsh and deiodinase genes 

(Dio1, 2 and 3), are initiated hours after exposure to the first long day and persist under 

chronic long day conditions. This pathway regulates thyroid hormone bioactivity and 

reproductive physiology. In order to understand the molecular mechanisms underpinning 

seasonal photoperiodic response in salmon, a microarray study was first carried out. Results 

showed differences in the seasonal expression of a wide variety of target genes including 

Eya3 and Dio1-3 in relation to photoperiodic conditions. In order to further investigate the 

presence of conserved molecular mechanisms for photoperiod responsiveness in salmon, 

daily expression of key seasonal genes (Dio1-3, Eya3 and Tsh was analysed by qPCR in 2 

sample sets (microarray validation and qPCR study sets). Results showed photoperiod 

dependent up-regulation and circadian mRNA expression of Eya3, Tsh and Dio2. Dio2 was 

up-regulated and subjected to circadian expression under long day photoperiod in both 

sample sets, while Eya3 and Tsh were responsive to short day in the microarray validation 

set and long day in the second sample set, as has been previously reported for clock genes. 

This is consistent with previous reports in mammals describing clock dependent regulation of 

Eya 3 and photoperiod regulation of deiodinase genes. This is the first analysis of highly 

conserved vertebrate seasonal molecular mechanisms in salmonid species.  



Chapter 4 

138 
 

2. INTRODUCTION 

Vertebrates display considerable temporal organisation in their biological processes (Foster & 

Kreitzman 2009) which represents an evolutionary adaptation to the changes in 

environmental conditions that occur over the course of a year. Temperate organisms use 

seasonal changes in daylength and temperature to synchronise their biological processes to 

the predictable environmental changes (Dardente et al. 2010; Dupre 2011). Within the 

teleosts, Atlantic salmon (Salmo salar) is an excellent example of a highly seasonal species 

where the seasonal changes in environmental conditions entrain and ultimately regulate most 

of its physiology including general growth, behaviour and  developmental processes such as 

smoltification and reproduction (Hemre & Sandnes 2008; Morgan et al. 2008; Davie et al. 

2009). To date research has mainly focused on the seasonal control of reproduction and 

smoltification. Moreover photoperiodic manipulation is widely used commercially to control 

puberty and manipulate broodstock reproduction (Bromage et al. 2001).  

However, in the absence of photoperiodic cues seasonal reproduction persists endogenously 

in salmonids (Bromage et al. 1988; Duston & Bromage 1988; Duston & Bromage 1991). It 

has been proposed by Randall et al. (1998) that this is under the control of an endogenous 

clock mechanisms which was latterly supported by a number of studies which showed a link 

between clock genes and seasonal reproduction (Aubin-Horth et al. 2005; Leder et al. 2006; 

O'Malley et al. 2007; O'Malley & Banks 2008; O'Malley et al. 2010). Yet the underlying 

photoneuroendocrine mechanisms linking photoperiod and clocks to the regulation of 

reproduction remain unclear in teleosts.  

In mammals and birds the molecular mechanisms underpinning photoperiodic regulation of 

reproduction are better described. In mammals photoperiod synchronises clock gene 

expression and the circadian feedback loop within the suprachiasmatic nuclei (SCN). 

Signalling from the SCN entrains the nocturnal production of pineal melatonin. Consequently 
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the synthesis of pineal melatonin mirrors the external photoperiod. This melatonin then binds 

to the high density of melatonin receptors (MT1) in the pars tuberalis (PT) of the anterior 

pituitary (Dardente 2012). The action of the MT1 binding then alters the expression profiles 

of clock genes such as Cryptochrome (Cry) and Period (Per) in the PT. Expression of Cry 

peaks early in the evening with rising melatonin while Per follows the decline in melatonin at 

the end of the nocturnal phase (Dardente 2012). Consequently the interval between the Cry 

and Per acrophase expands and contracts to accurately reflect the seasonally changing 

photoperiod (Dardente 2012) As a result of the changing profile of clock genes in the PT 

Eyes absent homologue three (Eya3) is up-regulated in response to long day photoperiod. 

This is achieved via clock gene regulation of 3 E-box elements in the promoter region of the 

Eya3. Eya3 then forms a dimer complex with sine oculis homeobox 1 (Six1) potentiating 

thyrotroph embryonic factor (Tef). The EYA3/SIX1/TEF complex then initiates long day 

Tsh up-regulation in the PT. TEF regulates TSH expression, via conserved D-elements 

close to the transcriptional start site in the promoter region of the gene. Leaving the PT TSH 

binds to TshR receptors in the ependymal cell layer (EC) and leads to the subsequent up-

regulation of Dio2 and down-regulation of Dio3 mRNA. Dio2 then catalyses the conversion 

of biologically inactive T4 to biologically active T3 regulating thyroid hormone function and 

long day regulation of seasonal physiology (Dardente et al. 2010). While clock mechanisms 

and the seasonal signalling pathway (described further below) appear to be conserved in birds  

a key difference exits in that the disruption of melatonin synthesis has no effect on bird 

seasonal reproductive physiology (Yasuo & Koff 2011).. It has been suggested that the 

system is reliant on deep brain photoreceptors in the mediobasal hypothalamus (MBH), as 

opposed to melatonin, for the transmission of seasonal photoperiodic information (Follett et 

al. 1985; Nakane & Yoshimura 2010). 
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In recent years there have been considerable advances in the understanding of the molecular 

mechanisms involved in the photoperiodic regulation of seasonal reproduction. Analysis of 

seasonal gene expression in birds (Nakao 2009), sheep (Dardente et al. 2010) and rodents 

(Scherbarth & Steinlechner 2010) has identified a number of genes fundamental in the 

response to changing photoperiod. In 2008, Nakao et al. reported two successive waves of 

elevated gene expression in Japanese quail (Coturnix japonica). The first wave was observed 

14 hours after dawn on the first long day and consisted of two genes: Tsh  and Eya 3 (Nakao 

et al. 2008; Nakao et al. 2008). In the second wave Dio2 was elevated approximately 4 hours 

later in the ependymal cells (EC) of the third ventricle and the infundibular nucleus of the 

MBH. The mRNA expression of another deiodinase, Dio3 was significantly inhibited in birds 

exposed to long day photoperiod in comparison to short day photoperiod (Figure 1). (Yasuo 

et al. 2006; Nakao et al. 2008)  

The DIO2 enzyme functions as the rate limiting factor in the conversion of the biologically 

inactive thyroxine (T4) to the biologically active form triiodothyronine (T3) (Dardente et al. 

2010; Arrojo E Drigo & Bianco 2011). Additionally Type I iodothyronine deiodinase protein 

(DIO1) is also involved in the conversion of T4 to T3 (Lechan & Fekete 2005) (Figure 2). In 

mammals and birds DIO1 is predominantly found in the circulatory system while DIO2 

action is localised to the brain (Walpita et al. 2009). Conversely DIO3 catalyses the 

conversion of T3 to biologically inactive forms including inactive reverse T3 (rT3) and 3’, 

3’-diiodothyronine (T2) (Figure 2) ( Bianco et al. 2002; Bianco 2011;). All three deiodinase 

enzymes have also been identified in teleosts including rainbow trout, a close relative of the 

Atlantic salmon (Power et al. 2001). However, their role in salmonid seasonal physiology has 

yet to be described (Power et al. 2001).  
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Figure 1: Molecular mechanisms underpinning photoperiod responsiveness in birds and 

mammals (adapted from Yasuo et al. 2009). In birds photoperiod information is perceived by 

deep brain photoreceptors present in the mediobasal hypothalamus (MBH) and the Pars 

tuberalis (PT) of the pituitary. In mammals photoperiod information is perceived by the retina 

and transmitted via the SCN to the pineal. The consequent melatonin signal then binds 

receptors in the PT. In the PT of both mammals and birds the phase of clock gene expression 

is altered. This in turn mediates the expression of Eya3 via three conserved E-boxes in the 

promoter of the gene. Eya3 forms a dimmer complex with Six1 potentiating Tef. 

EYA3/SIX1/TEF initiates long day Tsh up-regulation in the PT. TSH binds to TshR 

receptors in the ependymal cell layer (EC) and leads to the subsequent up-regulation of Dio2 

and down-regulation of Dio3 mRNA. 
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Figure 2: The DIO2 mediated conversion of biologically inactive T4 to biologically active 

T3 under long day photoperiod and DIO3 mediated conversion of T3 to an inactive form by 

DIO3 under short day photoperiod (adapted from). 

 

Amongst vertebrates photoperiodic initiation of thyroid hormone bioactivity is essential to 

the stimulation of reproductive physiology. In the Japanese quail the administration of T3 in 

the MBH has been shown to initiate testicular growth (Yasuo et al. 2009). Moreover T3 

administration resulted in the reduced encasement of gonadotropin - releasing hormone 

(GnRH) nerve terminals; an effect similar to that of long day photoperiod conditions (Yasuo 

et al. 2009). The release of GnRH then stimulates the secretion of luteinizing hormone (LH). 

In the Japanese quail the two waves of long day gene expression were subsequently followed 

by an increase in plasma LH. The long day surge in LH subsequently initiates the quail 

reproductive access. Similar pathways have also been described in sheep and rodents 
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(Unfried et al. 2009; Yasuo & Yoshimura 2009;Dardente et al. 2010; Dupre et al. 

2010;Scherbarth & Steinlechner 2010; Dupre 2011). 

A better understanding of the molecular components of the salmonid photoneuroendocrine 

system (PNES) is fundamental to unravel the complex biological mechanisms driving 

photoperiodic regulation of seasonal reproduction. The aim of this study was to better 

understand the molecular mechanisms underpinning seasonal photoperiodic response in 

salmon. To do so, the first phase of the work employed microarray analysis to identify 

photoperiod (long day vs. short day) and day vs. night variation in the brain transcriptome. 

This was carried out in brain cDNA from Atlantic salmon parr previously acclimated to 

experimental long day and short day photoperiod obtained from Davie et al (2009) (referred 

to throughout as microarray validation study). Results were subsequently verified by qPCR 

for seasonal genes Dio1, Dio2, Dio3 and Eya3 with the addition of Tsh not present in the 

microarray. Further investigation was subsequently carried utilising a qPCR expression study 

to determine 24h patterns of Dio2, Eya3 and TshmRNA expression in salmon parr 

acclimated to short day, 12L:12D and long day photoperiod (referred to as qPCR study). This 

was carried out with samples previously obtained in chapter 3. This work is the first attempt 

to characterise components of the molecular switch for photoperiod response in mammals in 

a commercially important species of teleost fish. 

 

3. MATERIALS AND METHODS 

Animals and tissue sampling 

Samples obtained for microarray, microarray validation and qPCR studies were previously 

utilised to determine 24h of seasonal clock gene expression in Davie et al 2009 (microarray 

and microarray validation) and chapter 3 (qPCR study). Source and housing of both sample 
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sets was carried out in the same manner. Atlantic salmon parr of a farmed stock origin (mixed 

sex) were reared under an ambient photo-thermal cycle at the Niall Bromage Freshwater 

Research Facilities (microarray study: 26.0 ± 4.0 g; qPCR study: 24.9 ± 5.4 g) (Institute of 

Aquaculture, Stirling, Scotland, 56: 02 N). Fish were stocked into a 1m
3 

tank light proofed 

tank (n=100 fish/tank, one tank per treatment). The tanks were illuminated using a 28W, 

fluorescent light with a spectral content comparable to a 3700 °K black-body radiator (IP65 

prismatic 2D round bulkhead 28W HF, RS Components Ltd, Glasgow, UK) connected to an 

automatic timer to regulate photoperiod. Samples for microarray investigation were 

previously used to determine clock gene expression in a previous study by Davie et al (2009). 

In early October, Atlantic salmon parr were transferred from ambient photoperiod (10.5L: 

13.5D) to either a long (LD: 16L: 8D) or short day (SD: 8L: 16D) photoperiod at ambient 

temperature (10.4 ± 0.4 °C). For the qPCR study, salmon parr (n=100 per treatment, mean 

24.9 ± 5.4 g, 140.6 ± 7.8 mm) were acclimated during one month (from 02/03/2009) to either 

long day (16h light: 08h dark, LD), short day (08h light: 16h Dark, SD) or 12h light: 12h dark 

photoperiod (12L:12D). Over the course of the study water temperature averaged 4.6 ± 0.7 

°C. Food was offered in excess throughout the day and night. Experimental animals were 

sacrificed via a lethal anaesthesia (1mL/L, 2-phenoxyethanol, Sigma- Aldrich Co. Ltd, Poole, 

UK) and rapid decapitation. After 1 month acclimation to experimental photoperiods, brains 

(including pituitary and excluding pineal organ) were removed every four hours over a 24h 

period (n= 6 per sample point/ per photo treatment). Tissue samples for microarray study 

were homogenized in 1 ml TRIzol Reagent (Invitrogen, UK) per 100 mg of tissue over ice, 

rapidly frozen, and stored at -70 °C. For qPCR study tissue was instantly frozen over liquid 

nitrogen vapour and stored at -70 °C until use. Dim red light was used for night sampling. 

Experiments were carried out in accordance with accordance with the UK Animals (Scientific 

Procedures) Act 1986. 
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RNA extraction, DNase treatment and cDNA synthesis 

All samples (approximately 100 mg) were individually homogenised in 1 ml of TRIzol® 

(Invitrogen UK). RNA extraction was carried according to manufacturers’ instructions. RNA 

pellets were rehydrated in MilliQ DNA and RNA free water in varying volumes to achieve a 

final RNA concentration of approximately 1000 ng/ul. Total RNA concentration was 

assessed using ND-1000 Nanodrop spectrophotometer (Labtech Int., East Sussex, UK). In 

order to eliminate any DNA contamination 5 g of RNA was treated with DNase enzyme 

following DNA-free™ kit guidelines (Applied biosystems, UK). cDNA was then synthesised 

using 1 g of DNase treated total RNA in 20 l reaction and random primers according to 

manufacturer protocol. High capacity reverse transcription kit without RNase inhibiter was 

used (Applied biosystems, UK). Final reactions were then diluted with DNA/RNA free H
2
O 

to a final volume of 200 l (experiment 1) and 100 l (experiment 2). Brain cDNA reactions 

were then stored at -20
 o

C. 

Microarray 

In order to identify novel genes expressed on a daylength dependent basis, a pilot global gene 

expression analysis of brain tissue was undertaken. A custom-designed Atlantic salmon 

oligoarray with 44k features per array on a four-array-per-slide format (Agilent Technologies, 

Cheshire, U.K.), with each feature printed singly was utilized 

(http://www.ebi.ac.uk/arrayexpress/arrays/A-MEXP-2106). Each biological replicate (Cy3 –

labelled) was co-hybridized in a dual dye experiment with a single pooled reference sample 

(Cy5 labelled).  The pooled reference sample comprised equal amounts of amplified RNA 

from each of the 16 experimental fish. The study comprised 16 hybridisations: 2 states (long 

day / short day) × 2 time-points (midday/midnight) × 4 biological replicates (Individual 

Atlantic salmon parr 26.0 ± 4.0g as described above). Amplified RNA amplification, dye 

http://www.ebi.ac.uk/arrayexpress/arrays/A-MEXP-2106
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labelling and hybridisations were performed as detailed in Morais et al. (2012). Each 

replicate was competitively hybridised with a pooled reference sample. An indirect labelling 

methodology was utilised to prepare microarray targets. For each sample 500 ng of purified 

total RNA was used to generate antisense amplified RNA (aRNA) (Amino Allyl 

MessageAmpTM II aRNA amplification kit, Ambion Applied Biosystems). Samples were 

then subject to Cy3 or Cy5 fluor incorporation mediated by a dye coupling reaction. All 

experimental reactions were labelled with Cy3 dye and pooled reference was labelled with 

Cy5 dye. The incorporation of the dye and aRNA yield was quantified by spectrophotometry 

(NanoDrop ND-1000). The quality of the assay was further controlled by the separation of 

0.4 l sample through a mini agarose gel. Products were displayed on a Typhoon trio 

florescence scanner (GE Healthcare). Hybridisation of microarray was carried out in a 

Lucidea semi-automated system (GE Healthcare) with no pre-hybridisation step.  

 

In the hybridisation of each array, the sample and pooled reference sample, consisting of 40 

pmol dye and 150 ng aRNA, were pooled and combined to the hybridisation solution (185 l 

0.7X UltraHyb buffer from Ambion, 20 l Poly(A), 10 l herring sperm, 10 ml ultra pure 

BSA all at a concentration of 10 mg/ml and from Sigma-Aldrich, Dorset UK) (Morais et al 

2011). Prior to scanning microarray, hybridisations were subjected to two post-hybridisation 

automatic and six manual washes to a stringency of 0.1 xSSC (EasyDipTM Slide staining 

system; Canemco Inc., Quebec Canada). The scanning was carried out at a resolution of 10 l 

in an Axon GenePix 4200AL scanner (MDS analytical technologies, Wokingham, Brekshire 

U.K) with laser power constant (80 %) and “auto PMT” enabled to adjust PMT for each 

channel so that less than 0.1 % of features were saturated and mean intensity ratio of Cy3 and 

5 signals was close to 1, as described in Morais et al 2011.This was followed by inspection to 

remove fluorescent features which were obvious artifacts, before fusing of duplicate spot 



Chapter 4 

147 
 

intensity data  (BlueFuse proprietary algorithm) Florescence intensity values were extracted 

from TIF images of microarray slide with the use of BlueFuse software (BlueGenome, 

Cambridge, UK). Data was exported to GeneSpring GX version 10.0.2 (Agilent 

Technologies, Wokingham, Berkshire, U.K) after block Lowess normalisation. The data was 

then transformed and subject to quality filtering and removal of all microarray slide control 

features. Data were normalised using a lowess transform with feature intensities <1.0 being 

set to 1.0. The normalised data were quality filtered by removal of saturated features, those 

showing non-uniform features, those representing population outliers and those features not 

significantly different from background. Consequently 5893 genes were subject to statistical 

analysis.  

Isolation and identification of Atlantic Salmon Dio1-3, Eya3 and TSHβ partial mRNA 

sequences 

Transcriptomic analysis identified elements of the mammalian and avian seasonal signalling 

mechanism thus it was decided to identify salmon specific partial sequences for Dio1, Dio2, 

Dio3, Eya3 and then verify expression using qPCR. In addition qPCR primers and standards 

were designed, cloned and sequenced based on a published Atlantic salmon Tsh sequence 

(NM_001123528). For Dio1 - 3 and Eya3 were designed on Atlantic salmon expressed 

sequence tags (ESTs)(EG868394, DW562425 and DW551395) Identification of the Atlantic 

salmon Dio2 was based on the published rainbow trout Dio2 sequence (AF207900) 

(Sambroni et al. 2001). BLAST analysis identified two salmon expressed sequence tags 

(EST’s) (GE782599 and DY713483) aligning to the published rainbow trout sequence. All 

primer pairs were then designed on the salmon EST’s and published Tsh sequence using 

Primer Select Ver.6.1 (DNASTAR Lasergene, www.dnastar.com). See Table 1 for all primer 

sequence information.  
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Partial fragments were produced from salmon brain cDNA by PCR using Klear Taq Hot Start 

DNA polymerase (KBiosciences, Hoddesdon, Herts, UK) for fragments <1 kb (Dio1, Dio3, 

Eya3 and Tsh) or SuperTaq™ Plus (Ambion, Applied Biosystems, Warrington, UK) for 

products > 1kb (Dio2). Following visualisation on a 1 % agarose gel PCR products were 

excised and purified using illustra GFX PCR DNA and GelBand Purification Kit (GE 

Healthcare) according to manufacturer’s instructions. The purified products were then cloned 

by adding to a ligation reaction at ratio of 3:1 insert to vector using a pGEM®-T Easy vector 

system (promega Madison, WI, USA). Transformed competent cells were grown overnight 

on LB/ampicillin/IPTG/ X-gal plates with positive colonies (identified by colour reaction to 

selective agar) being selected and bulk produced in isolation overnight in LB media. Plasmids 

were then harvested using a GenElute™ Plasmid Miniprep Kit (sigma Aldrich, Gillingham, 

UK). Plasmids were sequenced using a Beckman 8800 auto sequencer. Sequence results were 

then analysed using SEQman as part of Lasergene software package (DNASTAR). In the 

case of Dio2 the size of the product required further sequencing runs to obtain a complete 

sequence read which was achieved using two additional primer pairs (Dio2seqaF/R, 

Dio2seqbF/R) (Table 1). All sequences were assembled and edited on Lasergene SeqMan 

(DNASTAR, www.dnastar.com). Identity of salmon partial sequences was identified in silico 

by performing a BLAST analysis. MEGA Ver.4.1 (http://www.megasoftware.net/) was used 

to deduce a phylogenetic tree using the neighbour joining method. Plasmids produced were 

subsequently utilised as standards for qPCR assays. 

Quantitative PCR 

In order to determine diel patterns of clock gene mRNA expression, qPCR assays capable of 

absolute quantification were established for Dio1-3, Eya3, Tsh. -actin was used as a 

housekeeping reference gene for all analysis as described by Davie et al (2009). Each qPCR 
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reaction consisted of primer pairs (Table 1) at a concentration of 0.5 M, 5 l of cDNA (1/20 

for sample set 1 and 1/10 for sample set 2), 3 l DNA/RNA free H2O and 10 l 

ABsolute™QPCR SYBR Green master mix (Thermo scientific, Leon-Rot, Germany) in a 

total reaction volume of 20 l. The ABsolute™QPCR SYBR Green Mix was made up of 

Thermo-Start™ DNA polymerase, a proprietary reaction buffer, dNTP's and SYBR Green I 

with Mg++ at a concentration of 3 mM in the final 1× reaction. All qPCR assays were carried 

out in a Techne Quantica thermocycler (Techne, Quantica, Cambridge, UK) in a thermo 

cycling programme consisting of a 15 minute initiation stage at 95 °C followed by 45 cycles 

of 3 temperature steps; 95
 o

C for 15 s anneal x°C (See Table 1 for target specific annealing 

temperatures) and 72
 o

C for 30s. This was followed by a temperature ramp from 70 - 90 °C 

for melt-curve analysis to verify that no primer–dimer artefacts were present and only one 

product was generated from each qPCR assay. Quantification was achieved by a parallel set 

of reactions containing standards consisting of serial dilution of spectrophotometrically 

determined, linearised plasmid containing partial cDNA sequences generated. All samples 

were run in duplicate and each assay contained non-template controls. 

Statistical analysis and qPCR normalisation. 

Microarray data was analysed by two-way ANOVA with the use of GeneSpring GX version 

10.0.2 (Agilent Technologies, Wokingham, Berkshire, UK).  False discovery correction was 

off for all analyses as it was considered to be overly conservative in its performance. Data is 

presented with respect to P value and fold change. Minimum P value and fold change was 

determined for photoperiod (LD vs. SD) and day/night (day vs. night) differences. In addition 

to photoperiod/ day night interaction differences were analysed with regards to minimum p 

value and maximum fold change across all interactions.  
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qPCR results are presented with respect to external time in accordance with Daan et al 2002 

whereby the external time 0 (ExT 0) is the central point in the dark phase(Daan et al. 2002). 

Analysis of Variance (ANOVA) was used to determine significant time effects and Turkey’s 

test was used to determine differences between the 6 sample points over the 24h sample 

period and mean differences between photoperiods (InStat® 3.1, Graphpad software inc). 

Data from each tissue/ photoperiod was then fitted to a cosine wave in order to determine the 

presence of a significant (p<0.05) circadian rhythm. Raw data was analysed using acrophase 

circadian analysis programs (Refennetti R., University of South Carolina, USA; 

http://www.circadian.org/softwar.html). Acro analysis also determined both the significance, 

acrophase (peak in expression), mean and amplitude of raw data using the equation Y= A + B 

* cos (C *X –D) whereby Y is level of gene expression as a percentage of the mean, A is the 

baseline, C is the frequency multiplier and D is the acrophase of the data set  A significant 

circadian rhythm was deemed present when p value was less than 0.05 in for all statistical 

analysis. 

 

Table1 Primers sequences used (5’-3’) and annealing temperatures for PCR and qPCR 

assays, including primer pairs for Dio2 identification. 

Primer 

Name  

Primer sequence Forward 5’-3’ Primer sequence reverse 5’-3’ Anneal 

°C  

Dio2 GGCAGCGCATGCTGACCTCG  ACCAGCCCCGTCTCGACCCA  62  

Dio2seqa CCATGGGCCCGTGCTCCTT  CATGTGGCGTAAGTCTGGGTT

GCT  

65  

Dio2seqb AACGTGGGCCTACGGCGTGT  TGCTGTGCCTTGCTCTACGGCT  65  

Actin 

qPCR  

ATCCTGACAGAGCGCGGTTACA

GT  

TGCCCATCTCCTGCTCAAAGTC

CA  

61  

Dio1qPCR GACAACAGACCACTGGTGTTGA

CT  

GCCTGCGCAATGTAGACCACC  62  

Dio2qPCR GGACGAGTGCCGCCTGCTGGAC

TT  

GAAGGCGGGCAGGTGGCTGAT

GA  

68  

http://www.circadian.org/softwar.html
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Dio3qPCR CCTGGCTGCGTTTCAGCGCGT  ATCTGGTAAGGCGCGTCGGAG  64  

Eya3qPCR GGGCATCACGGACGGACGCTT  CCCAACCCCAATCAATGCTGC

CTC  

64  

Thsb qPCR  GAGCTCGCCGGACCACGTTTCC

T  

AGTGGCAGCTGAGGGCTACGG

G  

66  

 

 

 

 

 

4. RESULTS 

Microarray 

In order to identify genes that showed differential expression both with respect to 

photoperiod (LD vs. SD) and photophase (day vs. night) the single factor as well as the 

interaction ANOVA lists were examined from the microarray study. There were 2989, 2832 

and 957 features that displayed significantly different expression with respect to photoperiod, 

day vs. night and the photoperiod/photophase interaction (Table 3). Of these features 2301, 

2161 and 620 were unique to their respective specific condition (Figure 3). When p value was 

set at <0.001, 120, 128 and 10 features were significantly differentially expressed between 

photoperiods (SD vs. LD), time of the day (day vs. night) and photoperiod/time of the day 

interaction, respectively (Table 3, Appendix 1a-c). When microarray results were analysed in 

terms of fold change, close to 6000 probes displayed a fold change greater than 1 for any of 

the conditions (Table 4). This was reduced to 30, 13 and 111 probes when the fold change 

was increased to a threshold of 5 for photoperiod, time of day and photoperiod/time of the 

day interaction, respectively (Table 4, Appendix 2 a-c). Within the dataset as a whole, 13 

features related to published results in the molecular switch for photoperiod responsiveness in 

mammals (Figure1 and Table 2). These included Eya3, Dio1, Dio2 and Dio3 which all 

displayed a significant difference in expression with relation to photoperiod (Table 5). 
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However, only Eya3 expression was significantly different between day and night. Other 

genes of interest include circadian clock genes i.e. Cryptochrome 1 and 2 (Cry1 and Cry2) 

and the period 1 (Per1) gene in addition to CCAAT enhancer binding protein beta (CCAAT 

beta) and CCAAT enhancer binding protein beta 2 (CCAAT beta 2) (Table 5). Both Cry1 and 

Per1 expression were significantly different between day and night (<0.001 and <0.05 

respectively). Two CCAAT SSA#CL285CTG1 and SSA#STIR07904) and two CCAAT 

 (SSA#CL344CTG1 and SSA#535694434) displayed differential expression in relation to 

seasonal photoperiod and day night differences. All four CCAATs displayed a significant 

difference, all down-regulated, in relation to day vs. night, all with a minimum P value <0.01. 

In terms of photoperiod (LD vs. SD) differences, one CCAAT  (SSA#STIR07904) and 

bothCCAAT s were up-regulated under LD photoperiod treatment. However, there was 

no significant difference between photoperiod / day vs. night interactions. The fold change 

observed for Dio genes and Eya3 ranged from 1.2 to 1.6 fold between photoperiod conditions 

with Dio1 and Eya3 being down-regulated and Dio2 and Dio3 up-regulated under LD (Table 

5). In addition, these genes were all down-regulated during the day except Eya3. 

Table 2 Key genes involved in the mammalian and avian molecular switch for photoperiod 

response. 

Gene  Full name  References  

Eya3  Eyes absent homolog 3  (Dardente et al. 2010) 

Six1  SIX-family protein 1  (Dardente et al. 2010) 

Tef  Thyrotroph embryonic factor  (Dardente et al. 2010) 

Tshb  Thyroid stimulating hormone beta  (Hanon et al. 2008) 

Tshr  Thyroid stimulating hormone receptor (Dardente et al. 2010) 

Dio1  Type I iodothyronine deiodinase  (Lechan & Fekete 2005) 

Dio2  Type II iodothyronine deiodinase (Lechan & Fekete 2005) 

Dio3  Type III iodothyronine deiodinase (Lechan & Fekete 2005) 
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Table 3: Numbers of microarray probes displaying significant differences between 

experimental conditions. 

P value Photoperiod SD vs. LD Day vs. Night Photoperiod/Day night interaction 

<0.05 2989 2832 957 

<0.02 1449 1259 338 

<0.01 802 707 174 

<0.005 453 308 71 

<0.001 120 128 10 

 

Table 4 Numbers of microarray probes displaying different fold changes between 

experimental conditions. 

Fold Change Photoperiod SD vs. LD Day vs. Night Photoperiod/Day night interaction 

>1 5892 5892 5892 

>1.5 532 494 1418 

>2 192 175 598 

>3 79 54 250 

>5 30 13 111 
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Table 5 Microarray results for known seasonally important genes including: probe name, blast results, P value and fold change subject to 

photoperiod, day/ night, and photoperiod/ day night interaction. 

Description    P value   Fold 

change 

  

Probe  Blast type Blast result Short 

name 

Photo Day / 

Night 

Photo/ 

Day 

night 

Photo 

(LD 

/SD) 

Day 

/Night  

Photo/ 

Day 

night 

Ssa#STIR1861

4 

RefSeq_Hit

Def 

Salmo salar selenocysteine lyase (scly), mRNA 

&gt;gi|223648997|gb|BT059544.1| Salmo salar 

clone ssal-rgf-511-328 Selenocysteine lyase 

putative mRNA, complete cds 

Cry1 0.9946 0.0001 

 

0.0038  

 

-1.0008 -

1.9871 

2.9787 

Ssa#DW579347 RefSeq_Hit

Def 

PREDICTED: Oreochromis niloticus 

cryptochrome-1-like (LOC100694774), mRNA 

Cry1 0.1112 0.0005 0.0050 -1.1818 -

1.6146 

2.1461 

Omy#S2758307

3 

RefSeq_Hit

Def 

Oncorhynchus mykiss selenoprotein Ja (selja), 

mRNA 

Cry2 0.0034 0.0613 0.2778 1.5029 1.2602 -

1.8940 

Ssa#S30289725 RefSeq_Hit

Def 

PREDICTED: Cavia porcellus period circadian 

protein homolog 2-like (LOC100713579), mRNA 

Per1  0.0735 0.0322 0.9397 -1.1302 -

1.1632 

1.3147 

Ssa#CL285Ctg

1 

RefSeq_Hit

Def 

Salmo salar CCAAT/enhancer binding protein 

(C/EBP), beta (cebpb), mRNA 

&gt;gi|209152840|gb|BT044870.1| Salmo salar 

clone ssal-rgf-506-052 CCAAT/enhancer-binding 

protein beta putative mRNA, complete cds 

CCAAT

 

0.0586 0.0012 0.4554 1.1194 -

1.3055 

1.2585 

Ssa#STIR0790

4 

RefSeq_Hit

Def 

Salmo salar CCAAT/enhancer binding protein 

(C/EBP), beta (cebpb), mRNA 

&gt;gi|209152840|gb|BT044870.1| Salmo salar 

clone ssal-rgf-506-052 CCAAT/enhancer-binding 

protein beta putative mRNA, complete cds 

CCAAT

 

0.0013 0.0028 0.8080 1.2139 -

1.1905 

1.2044 

Ssa#CL344Ctg

1 

RefSeq_Hit

Def 

Oncorhynchus mykiss CCAAT/enhancer binding 

protein beta2 (LOC100379112), mRNA 

&gt;gi|90019517|gb|DQ423470.1| Oncorhynchus 

mykiss CCAAT/enhancer binding protein beta2 

mRNA, complete cds 

CCAAT

2 

0.0017 0.0131 0.3282 1.3225 -

1.2239 

-

1.4194 
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Ssa#S35697434 RefSeq_Hit

Def 

Oncorhynchus mykiss CCAAT/enhancer-binding 

protein beta (LOC100136165), mRNA 

&gt;gi|33304537|gb|AY144611.1| Oncorhynchus 

mykiss CCAAT/enhancer-binding protein beta 

mRNA, complete cds 

CCAAT

2 

0.0404 0.0029 0.9566 1.1808 -

1.3101 

1.3049 

Ssa#S35582016 RefSeq_Hit

Def 

PREDICTED: Oreochromis niloticus Type I 

iodothyronine deiodinase (dio1), mRNA 

DIO 1 0.0322 0.9269 0.0183 -1.2021 -

1.0231 

1.5336 

Ssa#STIR1545

8 

RefSeq_Hit

Def 

Oncorhynchus mykiss deiodinase, iodothyronine, 

type II (dio2), mRNA 

&gt;gi|16550969|gb|AF207900.1|AF207900 

Oncorhynchus mykiss type II iodothyronine 

deiodinase mRNA, complete cds 

DIO 2 0.0076 0.5060 0.8359 1.6111 -

1.1074 

-

1.5612 

Omy#TC15186

9 

B2GO_Blas

txHit 

iodothyronine deiodinase type III DIO 3 0.0068 0.5118 0.1950 1.2026 -

1.0389 

-

1.0389 

Ssa#DW562425 B2GO_Blas

txHit 

IOD3_SPAAURecName: Full=Type III 

iodothyronine deiodinase; AltName: Full=Type-III 

5'-deiodinase; AltName: Full=Type 3 DI; 

AltName: Full=DIOIII; AltName: Full=5DIII 

DIO 3 0.0443 0.2534 0.8150 1.2068 -

1.0202 

-

1.3343 

Omy#S3442487

4 

RefSeq_Hit

Def 

PREDICTED: Oreochromis niloticus eyes absent 

homolog 3-like (LOC100705151), mRNA 

EYA3 0.0041 0.0131 0.9030 -1.3561 1.2844 1.2844 
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Figure 3: Venn diagram detailing the number of features from the microarray which showed 

significant differences in expression (P<0.05) with regard to Photoperiod (SD vs. LD), Day 

vs. Night and photoperiod/day night interaction and all possible combinations of conditions. 

 

Seasonal gene sequence analysis 

In order to set up qPCR assays for seasonal genes Dio1, Dio2, Dio3, Eya3 and Tsh it was 

necessary to clone and sequence partial fragments of each gene. Dio2 sequence information 

will be discussed in further detail below. For Dio1, Dio3 Eya3 and Tsh133 - 172bp 

fragments were isolated (data not shown) bearing a high identity to desired product when 

subjected to NCBI TblastX (http://www.ncbi.nlm.nih.gov/). Dio1 (134bp) displayed 93% 

identity with Scorpion fish (Sebastiscus marmoratus) Dio1 (JX135096). Dio3 (172bp) 

displayed 98 % identity with gold fish Dio3 (EF190704). Eya3 (164bp) displayed 93 % 

identity with AGENAE Rainbow trout multi-tissues library (tcce) (CU071998) the sequence 
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the salmon Eya3 was designed against. Tsh (133bp) displayed 100 % identity with the 

published Dio2 sequence (AY819642 ). 

 

From the cloning of the Dio2 fragment in the Atlantic salmon a 2027 bp fragment was 

successfully sequenced (Figure 4) and displayed 96 % identity with the rainbow trout 

sequence (AAL25715) and 71 % and 66 % sequence identity with the Japanese quail 

(ACB59241)and sheep (ACX31206). The sequenced product contained the majority of the 

coding sequence (CDS) and the 3’untraslated region (UTR). Interestingly the salmon Dio2 

CDS contains TGA sequence that codes for a selinocysteine as opposed to the usual stop 

codon. The function of the stop codon is suppressed by a selenocysteine insertion sequence 

SECIS element present in the 3’UTR. In the Atlantic salmon sequence the isolated 3’UTR 

contains four AU-rich elements (ARE’s) and a region aligning with the beginning of the 

SECIS element found in the rainbow trout Dio2 sequence. The presence of selinocysteine 

residue is fundamental to the enzymatic properties of the DIO2 enzyme. In silico analysis of 

the partial Atlantic salmon Dio2 sequence confirmed a high level of sequence identity with 

the rainbow trout Dio2 sequence (95 % tBLASTX). The sequence also shared close identity 

with other teleost species, mammalian and avian Dio2 sequences (Figures 4-6). The salmon 

sequence was shown to be firmly grouped within the teleost D2 node of the Deiodinase 

phylogenetic tree (Figure 6).  
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Figure 4: Partial sequence of Atlantic salmon Dio2. CDS is shown with a numbered margin, 

together with the amino acid residues. The selenocysteine codon (TGA) is indicated by a box. 

5'UTR is shown in boldface, indicating part of the SECIS region by a box. The broken lines 

indicate the ARE regions. 

 

  



Chapter 4 

159 
 

  

Figure 5 The partial amino acid sequence of Atlantic salmon compared with Dio2 genes in 

other vertebrate species. The salmon gene shows highest identity with rainbow trout Dio2, 

followed by that in other teleost species. The percentage values shown in parentheses are the 

identities of the respective protein with that of the Atlantic salmon partial sequence, obtained 

through protein BLAST. The shading across the different amino acid sequences indicates 

50% or more similarity. Accession numbers: Rainbow trout Dio2 (AAL25715), Mummichog 

Dio2 (AAL62449), Flounder Dio2 (BAG15907), Zebrafish Dio2 (AAH59608), Japanese 

quail Dio2 (ACB59241), Sheep Dio2 (ACX31206). 
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Figure 6: Phylogenetic tree of the Atlantic salmon partial Dio2 sequence in relation to other 

species. The partial sequence of Atlantic salmon shows highest similarity to the rainbow trout 

Dio2. The evolutionary history was inferred using the Neighbor-Joining method (Saitou & 

Nei 1987). The percentage of replicate trees in which the associated taxa clustered together in 

the bootstrap test (500 replicates) are shown next to the branches (Felsenstein 1985). The 

evolutionary distances were computed using the Maximum Composite Likelihood method 

(Tamura et al. 2007) and are in the units of the number of base substitutions per site. 

Phylogenetic analyses were conducted in MEGA4 (Tamura et al. 2007). Accession numbers: 

rainbow trout Dio2 (AF207900), Japanese flounder Dio2 (AB362422), golden rabbitfish 

Dio2 (GU372962), pufferfish Dio2 (AB360768), Japanese killifish Dio2 (AB383147), 

mummichog Dio2 (U70869), zebrafish Dio2 (BC059608), Australian lungfish Dio2 

(AF327438), chicken Dio2 (NM_204114), frog Dio2 (L42815), mouse Dio2 (NM_010050), 

cow Dio2 (NM_001010992), sheep Dio2 (GQ468498), Nile tilapia Dio1 (Y11109), Nile 

tilapia Dio3 (Y11111). 

 Atlantic salmon D2

 Rainbow Trout D2

 Flounder D2

 Rabbitfish D2

 Pufferfish D2

 Killifish D2

 Mummichog D2

 Zebrafish D2

 Lungfish D2

 Chicken D2

 Frog D2

 Mouse D2

 Cow D2

 Sheep D2

 Tilapia D3

 Tilapia D1

100

100

100

99

64

59

99

73

97

100

98

46

77
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Diel expression of seasonal genes  

Microarray validation study: long day (LD), short day (SD) 

The diel expression profiles of three Dio genes (Dio1-3), Eya3 and Tsh was confirmed in 

brains sampled from fish acclimated to either LD or SD which had previously been used as 

part for the microarray study (Figure 7). For all genes, excluding Dio2, levels of mRNA 

expression over a 24h period were significantly elevated under SD. No significant difference 

in mean Dio2 mRNA expression levels was found between LD and SD. With respect to the 

diel expression profiles Dio2 and Tsh displayed a significant circadian profile of gene 

expression under LD and SD respectively. Dio2 expression peaked at ExT 05:00 ± 2.13 while 

the acrophase of Tsh occurred at ExT 13:00 ± 2.34 when subjected to acro analysis. 
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Figure 7 Diel and mean expression of Eya3, Tsh and Dio1-3 under long day and short day 

photoperiod for microarray validation. Expression is displayed as copy no per g totRNA 

with SEM and are displayed in relation to external time, where by ExT 0 is the mid point of 

the of the nocturnal phase. The presence of a cosine wave denotes a significant circadian 

rhythm by acro. The presence of different letters represents statistically significant difference 

between samples by way of ANOVA and Turkeys test where by P<0.05  
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qPCR study: Long day (LD), short day (SD) and 12L:12D 

In sample set 2, the expression of Dio2, Eya3 and Tsh was analysed over 24h in LD, SD and 

12L:12D photoperiod (Figure 8). The expression of Dio2, Eya3 and Tsh displayed 

significant circadian rhythms under LD only. Acrophase over the 24h profile were ExT 05:00 

± 2.61, 05:00 ± 2.61 and 01:00 ± 3.19 respectively. Mean expression of Dio2 over the 24h 

period was significantly higher under LD as opposed to SD and 12L:12D photoperiods. Mean 

expression of Eya3 and Tshover the 24h period was significantly higher under LD in 

comparison to 12L:12D only.  
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Figure 8 Diel and mean expression of Eya3, Tsh and Dio2 under long day, 12L:12D and 

short day photoperiod in qPCR study Expression is displayed as copy no per g totRNA with 

SEM and are displayed in relation to external time, where by ExT 0 is the mid point of the of 

the nocturnal phase. The presence of a cosine wave denotes a significant circadian rhythm by 

acro. The presence of different letters represents statistically significant difference between 

samples by way of ANOVA and Turkeys test where by P<0.05  
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5. DISCUSSION 

This study is the first investigation attempting to unravel temporal organisation mechanisms 

and identify elements of the molecular switch for photoperiod response in a commercially 

important teleost. Microarray results revealed photoperiod dependent expression of 

deiodinase genes and Eya3. These results were subsequently validated by qPCR for Dio2, 

Eya3 and Tsh which provided evidence for the long day regulation of Dio2 and the 

photoperiod dependent regulation of Eya3 and Tshdependent on sample set 

In order to better understand the molecular mechanisms underpinning seasonal physiology in 

Atlantic salmon, a microarray study was first carried out to determine gene expression 

changes at the transcriptome level in response to photoperiodic conditions (seasonal cue) and 

time of the day (circadian cue). Significant differences between conditions were observed for 

three different clock genes of interest (Cry1, Cry2 and Per1). Significant differences in the 

expression of Cry 1 and Per1 were shown between day and night while Cry2 differences 

were shown between photoperiods. This is consistent with results in chapter 3 whereby the 

amplitude of Cry2 expression varied considerably with photoperiod. Two CCAAT and two 

CCAAT2s were also identified with significant differences in expression shown between 

photoperiods and time of the day independently (no significant interaction difference). 

CCAAT-enhancer-binding-proteins interact with CCAAT box promoters present in a number 

of genes and act as co-activators promoting the expression of particular genes (Ramji & Foka 

2002). Nakao et al (2008b) previously identified CCAATas one of nine genes present in the 

second wave of gene expression, with Dio2, after exposure to first LD photoperiod in the 

Japanese quail and is suggested to be regulated by first wave genes including Tsh. Genes 

previously implicated in the mammalian molecular seasonal photoperiod switch i.e. Dio 1-3 

and Eya3 and CCAATs displayed significant differences in LD in comparison to SD 
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photoperiods. Dio2 was up-regulated in LD in comparison to SD as previously been reported 

in mammals. However, in contrast to mammals, Eya3 was down-regulated under LD 

conditions.  

In order to confirm and expand upon the microarray results, expression of a series of genes 

known to be involved in photoperiod regulation of seasonal physiology in mammals (i.e. 

Dio1, Dio2 and Dio3, Eya3 and Tsh were analysed by qPCR firstly in the data set used to 

generate the microarray results (microarray validation) to confirm observations and then in a 

second unrelated dataset (qPCR study) to test the robustness of the expression patterns 

observed. 

Results from both qPCR investigations showed significant differences in gene expression 

patterns between photoperiods however profiles of gene expression were notably different 

between sample sets. In the microarray validation study results confirmed the long day up-

regulation of Dio2 and down-regulation of Dio1 and Eya 3 as previously described in the 

microarray results. However Dio3 expression displayed contrasting results between 

microarray (up-regulated under LD) and microarray validation (up-regulated under SD). 

While microarray validation results are consistent with observations in mammals and in birds 

the up-regulation of this gene in the microarray may be an artefact of investigating expression 

at mid night and mid day as opposed to over a complete 24h period. In addition, a significant 

circadian rhythm in the expression of TshmRNA was observed under SD. In both 

microarray validation and qPCR studies, diel Dio2 mRNA expression displayed a significant 

circadian profile under LD with acrophase at comparable times of day (i.e. ExT 05:00 ± 2.13 

and 05:00 ± 2.61 in microarray validation and qPCR studies respectively). This is consistent 

with reports in mammals and birds according to which Dio2 is up-regulated under LD and 

displays a significant circadian profile of expression (Nakao et al. 2008a; Nakao et al. 2008b; 
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Dardente et al. 2010). While Dio2 results are in agreement between microarray, microarray 

validation and qPCR study, contrasting patters of Eya 3 and Tshwere observed. In the 

qPCR study Eya3 and Tsh displayed a significant circadian profile of expression under LD. 

However results in the current investigation provide contradictory evidence for the role of 

Eya 3 and Tsh in the long day seasonal response and regulation of Dio2 in the reproductive 

axis which will be discussed further below.  

In birds and mammals the expression and function of the genes involved in the regulation of 

the long day photoperiod response are better understood. Despite differences in the role of 

melatonin (mammals) and deep brain photoreceptors (birds) in the transmission of seasonal 

photoperiodic cues to the MBH and the PT, the molecular mechanisms regulating the 

photoperiodic control of reproduction are remarkably conserved (Dardente et al. 2010). In 

birds, studies suggested photoperiod information is perceived by deep brain photoreceptors 

present in the MBH and the PT of the pituitary (Nakao et al. 2008a; Nakao et al. 2008b). In 

mammals, photoperiod information is perceived by the retina and transmitted via the SCN to 

the pineal (Dardente et al. 2010). In the PT of both mammals and birds the phase of clock 

gene expression is altered. This, in turn, mediates the expression of Eya3 via three conserved 

E-box elements in the promoter region of the gene. Eya3 forms a dimer complex with Six1 

potentiating Tef. In response to the EYA3/SIX1/TEF complex is Tsh is up-regulated under 

long day photoperiod. TSHthen binds to Tsh receptors (TshR) in the ependymal cell layer 

(EC) and leads to the subsequent up-regulation of Dio2 and down-regulation of Dio3 mRNA 

(Figure1). Therefore, in birds and mammals, two waves of gene expression, prior to LH 

secretion, have been described after exposure to the first long day photoperiod (Nakao et al. 

2008a & b; Nakao 2009). At around 14:00 after dawn on the first long day a significant 

increase in the expression of both Eya3 and Tsh was observed. This was then followed by a 

second wave of gene expression approximately four hours later. The second wave included 



Chapter 4 

168 
 

the up-regulation of the Dio2 gene and down-regulation of Dio3. Conversely under SD 

photoperiod Dio2 was suppressed while Dio3 was up-regulated. In the Japanese quail the two 

waves of gene expression occur during the photoinducible phase when the quail is responsive 

to light at a particular time of the circadian cycle (Nakao et al. 2008 a & b). It is the 

alternating seasonal profile of DIO2 and DIO3 that regulates the seasonal control of 

reproduction in both birds and mammals. In the current investigation results confirm the 

presence of similar molecular mechanisms in the Atlantic salmon in comparison to mammals 

and birds and elude towards the highly conserved nature of the molecular seasonal 

photoperiod switch in vertebrates. However the precise mechanisms connecting the various 

elements of this pathway are yet to be investigated in the Atlantic salmon. 

In vertebrates Tshin particular,has been shown to be instrumental in the photoperiodic 

control of Dio2 (Unfried et al. 2009). The administration of TSH resulted in the up-regulation 

of Dio2 expression and other second wave genes. This is achieved by regulation of the 

thyroid hormones. DIO2 regulates the conversion of T4 into the bioactive form T3. 

Conversely increased concentrations of DIO3 convert T4 to a biologically inactive form rT3 

(Figure 2). Seasonal differences in thyroid hormones then control the seasonal regulation of 

reproduction via GnRH and LH stimulation (Arrojo E Drigo & Bianco 2011). Accordingly 

the administration of an anti-TSH antibody suppressed Dio2 expression under LD 

conditions. Tsh is hypothesised to regulate the expression of the second wave of genes via 

TSHR-Gs-cAMP signalling pathway (Dardente et al. 2010). Moreover the promoter 

sequence of DIO2 and other second wave genes were shown to contain highly conserved 

cAMP response elements (Unfried et al. 2009). In the current study, microarray validation 

study showed Eya3 and Tshwere up-regulated under SD photoperiod while qPCR study 

displayed a significant circadian profile under LD photoperiod. However in both the qPCR 

and microarray investigations Dio2 was consistently up-regulated under LD conditions as 
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previously reported in mammals and birds. This eludes towards the differential regulation of 

the first and second wave genes in the Atlantic salmon. Moreover this pattern of SD 

regulation of genes in the microarray validation set and LD in qPCR study has previously 

been reported for the expression of clock genes. 

The expression of a number of the core clock components have previously been investigated 

in microarray validation (Davie et al. 2009) and qPCR study (Chapter 3). Similar to the 

seasonal genes (i.e. Eya3 and Tsh), clock genes (i.e. Clock and Per2) displayed a significant 

rhythm of expression under SD photoperiod in the microarray validation and LD in the qPCR 

study. It has been hypothesised that this may be a consequence of the different photoperiodic 

history between the two sample sets. Atlantic salmon parr used for microarray validation 

were acclimated to experimental LD and SD photoperiods when the natural daylength was 

decreasing from the autumnal equinox towards the winter solstice. Conversely the salmon 

parr utilised for qPCR study were acclimated to LD, SD and 12L:12D photoperiods around 

the vernal equinox when the ambient daylength was increasing towards the summer solstice. 

It was therefore suggested that circadian profiles of clock gene expression in the Atlantic 

salmon brain were present in the photoperiod that best represented the natural photoperiod 

seasonal progression. Accordingly in microarray validation and qPCR studies significant 

circadian expression was observed in fish exposed to SD photoperiod when the natural 

daylength was decreasing and LD when natural daylength was increasing (Chapter 3). 

However, as yet, no link has been identified between clocks and the regulation of Eya3 and 

Tshin fish. 

In mammals regulation of Eya3 and subsequent Tsh expression has been shown to be 

regulated by the circadian clock (Dardente et al. 2010). The promoter region contains three 

conserved E-box elements sensitive to CLOCK and BMAL1 accounting for the rhythmic 
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expression of the gene (Dardente et al. 2010). Results reported previously in the thesis 

(Chapter 3) from qPCR study showed rhythmic clock gene expression in the brain under LD 

photoperiod while as previously reported by Davie et al (2009) clock gene expression in the 

microarray validation set was present under SD treatment. This supports the argument that 

Eya3 may be regulated by clocks in an Atlantic salmon molecular photoperiod switch. In 

mammals Tshand subsequent deiodinase regulation has also been shown to be directly 

under the control of clocks in addition to melatonin and regulation by Eya3 and Tef via D-

elements. For example Per1 knock out mice displayed an inverted pattern of Tsh expression 

in comparison to wild type mice (Unfried et al. 2009). It has therefore been hypothesised that 

Per1 suppresses Tsh during the day and counteracts the suppressive effects of melatonin 

during the night (Unfried et al. 2009). The 5’ up-stream region of mouse Tshcontains 11 E-

box like elements and has the capacity to be regulated by clock genes. Consequently the 

CLOCK and BMAL1 proteins together have been shown to induce an up to 71 fold increase 

in Tsh activity via action on the genes promoter (Unfried et al. 2009). Certainly in mice 

these results demonstrate the importance of clock components in the regulation of Tshand 

consequent regulation of deiodinase and thyroid hormone metabolism. However in the 

mammalian PT the expression of clock genes is regulated by melatonin binding. (Unfried et 

al. 2009). In teleosts the regulatory mechanisms linking both melatonin and clocks to thyroid 

hormone metabolism remain to be elucidated however results from this study clearly 

demonstrate the presence of highly conserved seasonal mechanisms in the Atlantic salmon 

with “first wave genes” potentially regulated by photoperiod dependent clock gene 

expression in the brain. 

Previous studies in mammals and birds have focused on the expression of the molecular 

mechanisms responsible for photoperiod response in the PT of the pituitary while this study 

investigates the expression of the genes involved in this pathway in the whole brain including 
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the pituitary. It is possible that a number of the seasonal genes may be expressed differently 

throughout the brain. For example Eya 3 is a member of a developmental regulatory network 

thought to have a role in a number of other seasonal processes including the development of 

the eyes, pineal organ and pituitary gland (Jemc & Rebay 2007; Dardente et al. 2010). 

Consequently photoperiod specific expression may be biased in whole brain samples in 

comparison to isolated brain regions. As yet in teleosts neither the presence of circadian 

(SCN- like structure) or seasonal control centres have been identified. Considerable 

differences are present in the way in which photoperiodic information is perceived in teleosts, 

in particular in comparison to mammals. Future research in the Atlantic salmon would benefit 

from determining localised expression of both clock and seasonal genes within the brain. 

Moreover determining the mechanisms regulating individual seasonal genes, such as the 

presence of E-boxes and D-elements in gene promoters would be of further benefit. Also of 

interest may be the investigation of such conserved mechanisms in more ancient vertebrate 

species such as hag fish or lampreys. In any case this study has been the first investigation 

describing the presence of the highly conserved molecular switch for photoperiod response 

amongst commercially important teleost species.  

6. CONCLUSIONS 

The current study is the first to investigate 24h profile of expression of seasonal genes in 

Atlantic salmon, one of the more clearly seasonal fish species. An investigatory microarray 

was initially carried out to investigate transcriptome level alterations in seasonal gene 

expression. Results highlighted the photoperiod dependent expression of elements of the 

mammalian and avian molecular switch for photoperiod response (Dio1-3 and Eya3) in the 

Atlantic salmon. Results were subsequently verified by qPCR where the expression of Dio1-

3, Eya3 and Tsh was analysed over 24h in response to LD and SD photoperiods. The 
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expression of three deiodinase Dio1-3, Eya3 and Tsh was then investigated in the brain in an 

unrelated qPCR in an attempt to identify potentially conserved molecular components 

involved in vertebrate seasonal physiology. Results demonstrate photoperiod effect on the 

mean levels and 24h profiles of mRNA expression in the brain. Dio2 was consistently up-

regulated under LD photoperiod or circadian in expression in microarray, microarray 

validation and qPCR study as has been reported in other vertebrates. However Eya3 and Tsh 

were responsive to SD in microarray validation and LD in qPCR study. A pattern previously 

observed for clock genes in these samples. Contrasting results between microarray 

verification and qPCR study may be a consequence of photoperiodic history as is 

hypothesised for clock genes in chapter 3 or direct regulation of Eya3 and Tsh by clock 

genes as has been reported in mammals. Interrogation of the promoter regions of Dio2 would 

enable a better understanding of what regulates its expression and why differences were 

observed in the expression of its potential regulator Tshin both sample sets. Future work 

would additionally benefit from the localisation of the expression of both clock and seasonal 

genes within the brain and the pituitary. The identification of an SCN-like structure and a 

seasonally centre within the brain would enable considerable advances in the understanding 

of biological rhythms in fish. Current results represent the first attempt to identify the 

expression of a number of seasonally important genes in the Atlantic salmon. Understanding 

the way in which the teleost PNES functions is not only essential for the commercialisation 

of cultured species, it also highlights the incredible level of diversity amongst teleost 

physiology in comparison to other vertebrate species. 
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COMPARATIVE STUDY OF CLOCK GENE EXPRESSION AND MELATONIN IN 

THE ATLANTIC SALMON AND EUROPEAN SEABASS PINEAL. 

1. ABSTRACT 

The photoreceptive pineal organ of teleost fish is considered by many to be essential to the 

generation, synchronisation and maintenance of biological rhythms, primarily via the action 

of melatonin. Amongst salmonids the production of pineal melatonin is regulated directly by 

light and levels are elevated under constant darkness. In non salmonid teleosts the rhythmic 

high at night / low at day melatonin profile persist endogenously under constant darkness and 

are hypothesised to be governed by light and clock genes in the pineal. In order to better 

understand the role of clocks in the Atlantic salmon pineal this study aimed to characterise 

the expression of clock genes in vitro under different photoperiodic conditions: 12L:12D, 

reversed 12D:12L and 24D. Clock gene expression was also determined in vivo in salmon 

acclimatised to a 12L:12D photoperiod. Results were then compared with an in vitro 

(12L:12D) investigation in the European seabass, a species displaying endogenous melatonin 

synthesis. Results revealed no rhythmic clock gene (Clock, per1 and per2) expression in 

salmon pineals in vitro under any culture conditions. In seabass, Clock and Per1 did not 

display circadian expression in vitro. However rhythmic expression of Cry2 and Per1 in the 

salmon pineal was observed in vivo. This infers some degree of extra pineal regulation of 

clocks in the Atlantic salmon. With regard to Aanat2 no rhythmic expression was observed in 

the Atlantic salmon under any experimental conditions. In the seabass rhythmic expression of 

Aanat2 mRNA under 12L:12D treatment was observed in the pineal. This is consistent with 

the hypothesis that in salmonids AANAT2 is regulated directly at the protein level by light 

while in other teleosts AANAT2 is regulated by clocks at the of mRNA level and then light at 

the protein level. In silico analysis of the Aanat2 5’region revealed the absence of a 

functional E-box element in the promoter region of the salmon gene in comparison to other 
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teleosts, including the European seabass. This would explain the differences seen in Aanat2 

mRNA expression between species with no clock regulation of Aanat2 mRNA in salmon. 
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2. INTRODUCTION  

The pineal is considered by many to be fundamental in the making and maintenance of 

biological rhythms. This is particularly true in non-mammalian vertebrates where the pineal 

organ is directly photosensitive and is the primary source of circulating melatonin (Falcon et 

al. 2010; Migaud et al. 2010). In teleosts, the pineal organ is a vesicle of differing size, colour 

and transparency depending on the species. In adult Atlantic salmon, rainbow trout and pike 

the pineal organ is large and covers the telencephalon while in other species such as Nile 

tilapia, Atlantic cod and seabass the pineal is considerably smaller (Ekstrom and Meissl 1997; 

Migaud et al. 2007; Herrera-Perez et al. 2011). The vesicle itself is located above the 

telencephalon and below an area of thinned skull and tissue which has the greatest optical 

transparency (pineal window) and is connected to the brain (diencephalon) via the pineal 

stalk (Ekstrom & Meissl 1997; Falcon 1999; Falcon et al. 2010; Vera et al. 2010). 

In teleosts the pineal shares a number of common features with the retina (Ekstrom & Meissl 

1997; Falcon et al. 2010). In most species studied, both tissues are directly photosensitive. In 

fact the epithelium of the teleost pineal is made up of photoreceptor cells that structurally and 

functionally resemble retinal cones (Ekstrom & Meissl 1997; Falcon et al. 2010). 

Additionally pineal photoreceptors have similar lipids to the retina and similar proteins that 

make up the photic transduction cascade such as opsin, arrestin and cyclic nucleotide gated 

channel. The pineal also resembles the retinal cones with respect to response to light. As a 

result of exposure to light cells become hyperpolarized, inhibiting the excitatory 

neurotransmitters asparatate and/or glutamate (Falcon et al. 2010). In the pineal the 

neurotransmitters extend to the ganglion cells, this in turn relays information to the brain 

(Falcon et al. 2010). These similarities are explained by the fact that during development both 

the pineal and the retina are formed from invaginations of the primary forebrain (Ekstrom & 

Meissl 1997). However, the pineal, unlike the retina, does not have the capacity to 
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discriminate between rapid and more gradual changes in light (Ekstrom & Meissl 1997). This 

is thought to be a consequence of a slower time course of photoreceptor response in the 

pineal in comparison to the retina. For example time from onset to peak potential is up to 300 

ms under saturating light flashes in the rainbow trout pineal (Meissl & Ekstrom 1988). This is 

between 5 and 6 fold less than the retina of other vertebrates (Baylor & Hodgkin 1974; 

Cervetto et al. 1977). Moreover, in the pineal organ response time of up to 60 s have been 

observed for membrane recovery (Meissl and Ekstrom. 1988). As a result of the relatively 

slow reactivity of pineal photoreceptors, rapid changes in photic stimuli cannot be detected. 

This is consistent with the pineal organs proposed role as a photoreceptive tissue capable of 

deciphering of daylength information as opposed to more complex “visual” photic 

information (Meissl and Ekstrom. 1988). 

In the pineal, as in the retina, photic transduction is initiated as a response to light. 

Photoreceptor cells become hyperpolarised which in turn inhibits neural signalling by 

excitatory neurotransmitters and release of aspartate or glutamate as well as hormonal 

signalling by melatonin (Meissl & Ekstrom 1988; Meissl & Ekstrom 1988; Ekstrom & Meissl 

1997; Falcon 1999; Falcon et al. 2010 . The two signalling pathways are believed to target 

different locations with neurotransmitters stimulating ganglion cells whose axons extend 

directly into the brain while the hormonal signal conveys photic information to the rest of the 

central nervous system and peripheral tissues via the cerebrospinal fluid and blood circulation 

(Ekstrom & Meissl 1997; Falcon 1999; Forsell et al. 2001). It is the hormonal signalling 

pathway which has received greater research focus and forms the basis of our understanding 

of light perception and entrainment in teleosts. 

Melatonin biosynthesis begins with the uptake of tryptophan by the pineal and subsequent 

hydroxylation catalysed by tryptophan hydroxylase (TPOH) to create 5 - hydroxytryptophan. 
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Serotonin is then produced via decarboxylation by aromatic amino-acid decarboxylase 

(AAAD) (Falcon et al. 2010; Falcon et al. 2011). Interestingly serotonin displays an inverse 

pattern of synthesis in comparison to melatonin with elevated levels during the day and 

suppression at night (Falcon et al. 2011). Serotonin is then converted, via the catalytic action 

of the light mediated arylalkylamine N-acetyltransferase (AANAT) to N-acetyltransferase. N-

acetyltransferase is then converted into melatonin by Hydroxyindol - O- methyltransferase 

(HIOMT)(Falcon et al. 2011). Of the two enzymes involved in the conversion of serotonin 

into melatonin the expression of the aanat genes and action of AANAT enzymes in the pineal 

is closely mirrored by the profile of circulating melatonin and is commonly described as the 

rate limiting enzyme for melatonin synthesis (Falcon et al. 2010). In comparison to mammals, 

that have one form of AANAT, teleosts have at least two forms following the teleost wide 

genome duplication. AANAT1 is preferentially expressed in the retina while AANAT2 in the 

pineal. However expression of both is not limited to the pineal and the retina and is observed 

in other tissues such as the brain. Furthermore in some teleost species two forms of AANAT1 

(a & b) have been described in the retina. This was first identified in puffer fishes including 

fugu (Takifugu rubripes) however this was not observed in the Zebrafish (Danio rerio) (Coon 

& Klein 2006; Zilberman-Peled et al. 2011).  

Rhythmic melatonin synthesis in teleosts is driven by the daily cycling in AANAT2 activity 

and is up-regulated in the dark in most teleost species. In non salmonid teleosts Aanat2 

mRNA transcription mirrors enzymatic activity (Klein et al. 1997; Ganguly et al. 2002; 

Falcon et al. 2003; Appelbaum et al. 2004; Falcon et al. 2011;). This rhythmic 

abundance/activity is regulated in two ways. The activity of the AANAT2 enzyme is 

regulated, in most teleosts, directly via the 24h light/dark cycle and endogenous circadian 

clocks. In darkness conditions, photoreceptors become depolarised, intracellular calcium 

(Ca
2+

) is accumulated which then regulates the light dependent action of AANAT2 by 
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increasing the efficiency of  1-adrenergic receptor activation of adenylyl cyclase (Klein 

2007). This consequently results in an elevation of cAMP which in turn results in the 

formation of the AANAT/14-3-3 complex (Klein 2007). When light is present Ca
2+

 is 

depleted, AANAT2 is degraded and melatonin synthesis ceases (Falcon et al. 2011). Direct 

regulation by light occurs at the protein level through the AANAT2 enzyme however 

regulation by the circadian clock occurs at a transcriptomic level. The CLOCK:BMAL 

heterodimer, a component of the core molecular clock up, regulates Aanat2 mRNA 

transcription by binding to E-box elements in the promoter region of the Aanat2 gene 

(Appelbaum et al. 2004; Appelbaum & Gothilf 2006; Appelbaum et al. 2006). In fact it is 

hypothesised that it is the circadian clock that drives the rhythmic activity and expression of 

AANAT2 in the pineal, while phosphorylation induced by Ca
2+

 (direct regulation by light) 

protects AANAT2 against degradation. Melatonin is highly lipophilic and therefore released 

continuously into circulation when synthesised. With the onset of light both AANAT activity 

and melatonin are rapidly degraded (halving time of approximately 3.5 minutes) (Falcon 

2007; Klein 2007). Melatonin has therefore a low residency time within the plasma and levels 

of circulating melatonin are directly reflective of AANAT2 activity and melatonin synthesis. 

Melatonin acts as an accurate internal chemical signal of external daylength (Iigo et al. 2007).  

Endogenous regulation of AANAT2 and melatonin by clocks is evident in the majority of 

teleost species. In vivo and in vitro studies have shown that melatonin day/night cycling can 

persist under constant darkness in most teleosts studied. Moreover pineal melatonin synthesis 

is independently entrainable by light. When exposed to alter Light: Dark cycles the pineal can 

re-entrain the melatonin rhythm to the external conditions (Iigo et al. 2007; Migaud et al. 

2007). However, amongst teleosts it appears that the salmonids are exceptions. Under 

continuous darkness melatonin production does not follow an endogenous circadian profile, 

instead levels of melatonin are consistently high throughout as shown in both in vivo and in 
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vitro conditions (Amano et al. 2004; Iigo et al. 2007; Iigo et al. 2007; Migaud et al. 2007; 

Falcon et al. 2010; Migaud et al. 2010). Following a comparison of salmonids and closely 

related Osmerids and Pike species, Iigo et al. (2007) proposed that the pineal organ of 

ancestral protacanthopterygians harbour the circadian clock but ancestral salmonids lost the 

circadian regulation of melatonin production in the pineal organ during evolution after the 

divergence from osmeriformes / esociformes. It is widely recognised that the salmonid pineal 

has lost endogenous clock regulation of melatonin synthesis (Iigo et al. 2007; Migaud et al. 

2007). However it remains unclear whether clock gene cycling has become decoupled from 

melatonin synthesis or if in fact functional circadian clocks are no longer present in the 

salmonid pineal.  

In order to better understand the role of clock genes in the pineal the current study aimed to 

study the expression of clock genes in the Atlantic salmon and seabass pineal. To do so, 

mRNA expression of a suite of clock genes and Aanat2 as well as melatonin concentrations 

were first analysed in isolated Atlantic salmon pineal organs exposed to standard photoperiod 

(12L:12D), reversed photoperiod (12L:12D – 12D:12L) and 24 hours darkness (DD). The 

aims of these in vitro trials were to determine if circadian clocks and Aanat2 expression are 

present in salmon, test the ability of the pineal to independently re-entrain itself to a different 

photoperiod and establish whether the candidate clock genes and Aanat2 expression can be 

sustained under un-entrained conditions, respectively. Then, in vivo experiments were carried 

out to compare clock gene expression and plasma melatonin levels in the pineal of salmon 

and seabass reared under a 12L: 12D photoperiod. Seabass is a teleost species suggested to 

display endogenous clock controlled production of pineal melatonin (Migaud et al. 2007). 

Finally, post-hoc analyses of salmon and seabass 5’ region of the Aanat 2 sequences were 

carried out in order to determine the role E-box elements may have in the clock gene 

regulation of Aanat2 and endogenous melatonin synthesis. 
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3. MATERIALS AND METHODS  

Animals, housing and tissue sampling 

Atlantic salmon in vitro and in vivo studies 

For both the in vitro and in vivo studies fish used were a standard farmed stock origin (mixed 

sex) and were housed at the Niall Bromage Freshwater Research Facilities (Institute of 

Aquaculture, Stirling, UK, 56.04N, -4.00E) under ambient thermal conditions (2.2 ± 0.1 
o
C in 

vitro study, 4.6 ± 0.2 
o
C in vivo study) and were fed in excess throughout the day hours with 

the use of automated feeders. 

In late January 2010, ~400 (46.1 ± 2.7 g) salmon parr were acclimated to 12L:12D 

photoperiod with the light phase extending from 07:00 to 19:00. After 4 weeks acclimation 

period, ~70 salmon parr were sacrificed by lethal anaesthesia (2-phenoxyethanol 1ml/L 

Sigma) followed by decapitation. Pineal organs were dissected out by exposing the dorsal 

surface of the brain by making a rostro-caudal incision in the horizontal plane extending from 

the eyes to the end of the cranium. During this incision the pineal stalk was severed and the 

pineal gland was found resting in the pineal window in the liberated inverted cranial cap. 

Where necessary the pineal gland was removed with the aid of a dissection microscope and 

light. Once isolated the pineals were placed into fresh culture media (see below) maintained 

at 8
o
C for a maximum of three hours before being placed under experimental culture 

conditions (see below). This tissue harvesting was repeated on two subsequent occasions with 

140 fish for the 12D:12L and 24hD experiments.  

 

The in vivo experiment was performed during March 2011. Seventy (64.0 ± 2.3 g) parr were 

acclimated to a 12L:12D photoperiod with the light phase extending from 07:00 to 19:00. 

After 4 weeks acclimation starting at 09:00 and then every four hours thereafter until 09:00 

the following day, ten fish were anaesthetised in a lethal dose of 2-phenxoyethanol and 1 ml 
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of blood was withdrawn from the caudal peduncle using a heparinised syringe. Fish were 

decapitated and then a section of cranial cap removed as described above which encompassed 

the pineal window and was then stored in a RNA stabilisation solution (RNAlater®, Applied 

Biosystems). Within one hour of removing the blood samples, plasma was separated by 

centrifugation (30 minutes at 1500 G). Plasma aliquots were frozen in liquid nitrogen vapour 

prior to storage at - 70
 o

C. The cranial caps were stored in the RNA stabilisation solution for 

24h at 4 
o
C and then with the aid of a dissection microscope the pineals were delicately 

removed from the cranial cap and frozen individually over liquid nitrogen vapour before 

being stored at - 70
 o

C. Nocturnal sampling was carried out under minimal dim red light 

according to Davie et al. (2009). 

 

European seabass in vivo study 

Fish for the seabass in vitro experiment were housed at the University of Murcia, circadian 

biology aquarium facility at the Algameca naval station (37.6 N, -0.98333W) near Cartagena, 

Spain. Seventy seabass (169.9 ± 10.6 g) were acclimated for 2 weeks to 12L:12D (lights on 

06:00, lights off 18:00) at an ambient temperature of 16 
o
C. After the acclimation period all 

fish were sacrificed via lethal anaesthesia using clove oil, eugenol, (Guinama, Valencia, 

Spain) dissolved in 10 ml of ethanol at a final concentration of 50 μl/l. Lethal anaesthesia was 

rapidly followed by decapitation. Pineals were removed dorsally by thinning the tissue and 

bone around the pineal window then carefully removing the whole pineal with the aid of a 

dissection microscope. The pineal organ itself was then removed by carefully cutting the 

pineal stalk close to its origin and placing it into fresh culture media (see below) and 

maintained in at 17
 o

C  in groups (35 per 100 ml) until culture conditions were established 

(see below).  
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Pineal cultures 

Atlantic salmon pineal culture 

All salmon pineal cultures were carried out at 8
 o

C in a light and temperature controlled 

chamber using RPMI – 1640 without phenol red culture medium (Sigma-aldrich ref R8755-

10X1L Gillingham, UK) according to Migaud et al. (2007). Media was supplemented with 

4.8 g Hepes Sodium salt (Sigma-aldrich, Gillingham, UK) per litre (buffer), 10 mg/L 

Penicillin-streptomycin solution and 5 mg/L Fungizone (amphotericn # B from Streptomyces 

Sp) to prevent any fungal and bacterial growth (Sigma-aldrich, Gillingham, UK). Prior to use 

the media pH was adjusted to 7.4 by adding hydrochloric acid (HCL) and was then sterilised 

through 0.2 µm filtration before being stored at 4
 o

C for no more than 72 hours. Aliquots of 

media were pre-warmed to the culture temperature prior to being used in the culture 

experiment. In all salmon in vitro experiments pineals were maintained in 20 ml glass vials 

(10 pineals/20 ml culture media) with a fine nylon mesh to prevent the pineals from floating 

on the surface of the media. Every 4 hours, 15 ml of media was removed from the culture vial 

and replaced with fresh, temperature equilibrated, media.  

Three different experimental photoperiods were tested 12L:12D, 12D:12L and 24D using 70, 

140 and 140 pineals respectively (Figure 1). For the 12L:12D experiment pineals were 

harvested between 09:00 and 12:00 on Day 0 and placed in culture vials by 13:00 and 

subjected to a 12L:12D photoperiod in synchrony with that experienced prior to harvest with 

a photophase from 07:00 to 19:00. Pineals were left in culture overnight undergoing regular 

media changes and then from ZT 13:00 on Day 1, 10 pineals were removed every 4 hours 

until 13:00 on Day 2 and instantly frozen over liquid nitrogen vapour and then samples were 

stored at -70
 o
C for later RNA extraction. At the same time three aliquots of culture media per 

time point were frozen for melatonin analyses. For the 12D:12L trial, at the end of the first 
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night the photoperiod was reversed to 12D:12L (Figure 1b) pineals (n=10) were then 

harvested from ZT 13:00 on Day 1, every 4 hours until 13:00 on Day 2, a further 24h cycle 

was then sampled from ZT 13:00 on Day 3, every 4 hours until 13:00 on Day 4. For the 24D 

trial, at the end of the first night the photoperiod was transferred to continuous darkness 

(Figure 1c) and pineals (n=10) were then harvested at comparable times as outlined for the 

12D:12L trial. 

European seabass pineal culture  

As with the salmon 12L:12D culture the seabass in vitro culture was carried out over a 48 

hour period during which pineal were exposed to 12L:12D with lights on at 06:00 and off at 

18:00 at a constant temperature of 18 °C. The Culture medium was exchanged every 6 hours 

for the first 24 hrs and every 4h over the 24 hr culture duration. 1ml culture medium (for 

melatonin analysis) and individual pineals were removed and snap frozen on dry ice every 4 

hours for 7 sample points. All nocturnal samples were carried out with the aid of a dim red 

light and were stored at -70°C. 
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 Figure 1: Schematic showing light dark cycles and sample points for the three in vitro culture conditions tested in salmon. 
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RNA extraction, DNase treatment and cDNA synthesis. 

Individual pineal were homogenised in 500 l of TRIzol® (Invitrogen UK) and total RNA 

extracted in accordance with the manufactures instructions. RNA pellets were rehydrated in 

12l MilliQ water to achieve a final RNA concentration of approximately 100-500 ng/ul. 

Total RNA concentration was determined using ND-1000 Nanodrop spectrophotometer 

(Labtech Int., East Sussex, UK). In order to eliminate any genomic DNA contamination the 

remaining 10.5 l totRNA was DNase treated following DNA-free™ kit guidelines for 

minimum volumes (Applied biosystems, Warrington, UK). cDNA was then reverse 

transcribed from 500 ng or 1 g of DNase treated total RNA from the cultured and in vivo 

pineals respectively using random hexamer primers in a 20 l total reaction volume 

according to manufactures protocol (High capacity reverse transcription kit without RNase 

inhibiter Applied biosystems). Final reactions were then diluted with DNA/RNA free H
2
O to 

a final volume of 50 l for both the seabass and salmon cultured pineal organs and 100 l 

from the in vivo salmon pineal which equates to a 1:10 dilution in every case. Diluted cDNA 

samples were then stored at -20 °C prior to analysis. 

 

Molecular cloning of AANAT 2 and qPCR standards. 

Sequences primers were available for the majority of clock genes investigated (Davie et al. 

2009). However it was necessary to identify the Aanat2 sequence in the Atlantic salmon. 

Aanat2 sequence information for a variety of teleosts was acquired from NCBI search 

(National Centre for Biotechnology Information  Table 1). Sequences information was 

compiled in BioEdit with the addition of a number of predicted salmon sequences generated 

from salmon expressed sequence tag (EST) database ASalBase (http://www.asalbase.org/sal-

http://www.asalbase.org/sal-bin/index
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bin/index) (Table 2). A number of primer pairs were then designed on the rainbow trout 

Aanat2 sequence (ascension no NM_001124257.1), and a salmon Aanat2 theoretical contig 

from a salmon contig cluster, EST cluster and genomic sequence (Table 2). Primer locations 

were designed with regard to the additional teleost sequence information. Primers designed 

were then tested by PCR on pineal and Brain cDNA. cDNA reactions sequence was cloned 

and sequenced as described below. Sequence identity was established via the alignment of 

Aanat2 sequences in clustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/). The salmon 

fragments displayed an identity score of 96 % with the rainbow trout. qPCR primers for 

Aanat2 were designed on this fragment using Primer Select (Lasergene® DNASTAR). 

For each gene to be investigated qPCR primer pairs (Table 3) were tested by PCR. PCR 

products were then cloned and sequenced in order to generate standards for each qPCR assay. 

Partial cDNA sequences were generated by PCR using 0.5 µM of primers (Eurofins MWG 

Operon, Edersberg, Germany) (Table 3) one fortieth of the original cDNA synthesis reaction, 

Klear Taq polymerase with supplied buffer (Kbiosciences, UK), and 1 mM MgCl2 in a final 

volume of 20 µl using a routine PCR strategy: 15 min 95 °C followed by 30 cycles of 95 °C 

20 s, X °C 20 s, 72 °C 1 min. The annealing temperature is denoted as X °C in the description 

as it varied with the different primer pairs (Table 3). All primer pairs generated a single PCR 

product and those products used for qPCR standards were cloned into a pGEM-T Easy vector 

(Promega, UK) and sequenced (CEQ-8800 Beckman Coulter Inc., Fullerton, USA). The 

identities of the cloned PCR products were then verified (100 % overlapping) using BLAST 

(http://www.ncbi.nlm.nih.gov/BLAST/). Sequencing was performed using a Beckman 8800 

autosequencer. Lasergene SEQman software (DNASTAR, www.dnastar.com) was used to 

edit and assemble DNA sequences. ClustalW was used to generate multiple alignments of 

deduced protein sequences (Thompson et al. 2000). MEGA version 4 was used to deduce and 

http://www.asalbase.org/sal-bin/index
http://www.ncbi.nlm.nih.gov/nucleotide/185133506?report=genbank&log$=nucltop&blast_rank=11&RID=EF1TEAE6016
http://www.ebi.ac.uk/Tools/msa/clustalw2/
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bootstrap phylogenetic trees using the neighbour joining method (Saitou & Nei 1987; Tamura 

et al. 2007) (Figure 2). 

Table 1: Available teleost Aanat2 sequences and Atlantic salmon ESTs utilised for the 

generation of a salmon Aanat2 partial sequence. 

Species (Latin)  Species (Common) Ascension number Source 

Danio rerio Zebrafish NM_131411.1 
NCBI 

Carassius auratus Gold fish GU205782.1 NCBI 

Oryzias latipes Medaka NM_001104846.1 NCBI 

Solea senegalensis Senegalese sole GQ340973.1 NCBI 

Paralichthys olivaceus Olive flounder HQ883478.1 NCBI 

Oncorhynchus mykiss Rainbow trout NM_001124257.1 NCBI 

Scophthalmus maximus Turbot EF033250.1 NCBI 

Sparus aurata Gilt head seabream AY533403.2 NCBI 

Esox lucius Pike AF034082.1 NCBI 

Salmo salar Atlantic Salmon Cluster ID# 3912632 ASalBase 

Salmo salar Atlantic Salmon Cluster ID# 3920741 ASalBase 

Salmo salar Atlantic Salmon S0250N08SP6 ASalBase 

 

  

http://www.ncbi.nlm.nih.gov/nucleotide/18858240?report=genbank&log$=nucltop&blast_rank=1&RID=EF1TEAE6016
http://www.ncbi.nlm.nih.gov/nucleotide/270266976?report=genbank&log$=nucltop&blast_rank=7&RID=EF1TEAE6016
http://www.ncbi.nlm.nih.gov/nucleotide/157278426?report=genbank&log$=nucltop&blast_rank=8&RID=EF1TEAE6016
http://www.ncbi.nlm.nih.gov/nucleotide/262411029?report=genbank&log$=nucltop&blast_rank=9&RID=EF1TEAE6016
http://www.ncbi.nlm.nih.gov/nucleotide/340796348?report=genbank&log$=nucltop&blast_rank=10&RID=EF1TEAE6016
http://www.ncbi.nlm.nih.gov/nucleotide/185133506?report=genbank&log$=nucltop&blast_rank=11&RID=EF1TEAE6016
http://www.ncbi.nlm.nih.gov/nucleotide/120407316?report=genbank&log$=nucltop&blast_rank=12&RID=EF1TEAE6016
http://www.ncbi.nlm.nih.gov/nucleotide/88606624?report=genbank&log$=nucltop&blast_rank=13&RID=EF1TEAE6016
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Table 2: Aanat2 primer pairs, sequences, and location on rainbow trout partial sequence. 

Primer  Region Location on  RT   Primer sequence 5' - 3' 

Aanat2 A ORF 372bp - 1040bp F: AGGTCAGCCGCTCTCCGTTCC 

      R: 

CCAGTGCTAGGGTTGATGTGATTATGA 

Aanat2 B ORF + 3'  373bp - 1620bp F: GGTCAGCCGCTCTCCGTTCCT 

      R: TGGTGCTGCAGCTGAGATTGATGG 

Aanat2 C ORF + 3'  373bp- past end of RT 

sequence 

F: GGTCAGCCGCTCTCCGTTCCTC 

      R: CTGCAGCGCCTCAATGACAAAGTG 

Aanat2 D 5'+ ORF 

(partial) 

115bp- 796bp F: 

AGACAGGCAGATAGAAAGCACAGAGC

A 

      R: CAGGTAGCGCCACAGCAGGATG 

Aanat2 E ORF(partial)

+ 3' 

771bp - 1566bp F: 

TCAGCCCAGTAAGTGACCATCATGACA

CAT 

      R: GTTGCAACCTGGTCTGGACGGTCAAC 
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Figure 2: Phylogenetic tree of the Atlantic salmon Aanat2 sequence in relation to other 

teleost Aanat1 and 2 sequences and mammalian Aanat. The Atlantic salmon sequence 

displays highest similarity to the rainbow trout Aanat2. The evolutionary history was inferred 

using the Neighbor-Joining method (Saitou & Nei, 1987). The percentage of replicate trees in 

which the associated taxa clustered together in the bootstrap test (500 replicates) are shown 

next to the branches (Felsenstein, 1985). The evolutionary distances were computed using the 

Maximum Composite Likelihood method (Tamura et al., 2004) and are in the units of the 

number of base substitutions per site. Phylogenetic analyses were conducted in MEGA4 

(Tamura et al 2007). Assention numbers: Gilt head seabreem Aanat2 AY533403, Seabass 

Aanat2 DLA_VIII_005510|aanat2|arylalkylamine, N-

acetyltransferase |LG8|11349220|11350343|-|ENSDARP00000002650 in linkage group 8 

from the European seabass genome sequencing project draft 1 (unpublished), Medaka Aanat2 

NM_001104846, Olive flounder H Aanat2 Q883478, Senegalese sole Aanat2 GQ340973, 

Turbot Aanat2 EF033250, Pike Aanat2 AF034082, Rainbow trout Aanat2 NM_001124257, 

Zebrafish A2 NM_131411, Goldfish Aanat2 GU205782 Zebrafish Aanat1 AY349158 

Seabass aanat 1 EU378922, Senegalese sole Aanat 1 GQ340971, Human Aanat NG_015976, 

Mouse Aanat BC119139. 
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qPCR 

Expression of the target genes was measured by absolute quantification with all samples 

being normalised with -actin mRNA expression a proven stable reference gene in the 

Atlantic salmon and European seabass (Davie et al. 2009; Herrera-Perez et al. 2011). All 

cDNA for qPCR were synthesised as described previously and qPCR primers (Table 3) were 

used at a concentration 0.7 pM, with one tenth (in vitro) and one fifth (in vivo) of the total 

cDNA synthesis reaction and 10 l ABsolute™QPCR SYBR-green qPCR master mix 

(Thermo scientific, Leon-Rot, Germany). The ABsolute™QPCR SYBR Green Mix was 

made up of Thermo-Start™ DNA polymerase, a proprietary reaction buffer, dNTP's and 

SYBR Green I with Mg++ at a concentration of 3 mM in the final 1× reaction. Additionally 

3l DNA/RNA free H2O.was added to each reaction to a total reaction volume of 20 l. All 

qPCR assays were carried out in a Techne Quantica thermocycler (Techne, Quantica, 

Cambridge, UK) in a thermo cycling programme consisting of a 15 minute initiation stage at 

95°C this is followed by 45 cycles of 3 temperature steps; 95
 o

C for 15 s anneal x°C (See 

Table 3 for target specific annealing temperatures) for 15 s and 72
 o

C for 30s. This was 

followed by a temperature ramp from 70 – 90 °C for melt-curve analysis to verify that no 

primer–dimer artefacts were present and only one product was generated from each qPCR 

assay. Quantification was achieved by translating CT values of unknown samples from a 

parallel set of reactions containing a serial dilution of spectrophotometrically determined 

linearised plasmid containing partial cDNA sequences generated as described above. All 

samples were run in duplicate. Each qPCR plate included non-template controls. In the in 

vitro salmon 12L:12D experiment the expression of Aanat2, Clock, Per1 and Per2 was 

assayed. After analysis of 12L:12D qPCR results Aanat2 and Per1 were analysed in the in 

vitro 12D:12L and 24 D experiments (due to absence of rhythmic expression in the 12L:12D 

experiment). For the salmon in vivo experiment, qPCR for Aanat2, Cry2, Clock, Per1 and 
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Per2 was carried out (Cry2 was analysed in order to compare with previous investigations) 

while for the seabass in vitro experiment Clock, Per1 and Annat2 were analysed (due to 

limited RNA extracted from the tissue).   

 

Table 3: Primer sequences and annealing temperatures used for qPCR. 

Primer Name Sequence (5’-3’) Anneal 

Actin - Forward ATC CTG ACA GAG CGC GGT TAC AGT 61oC 

Actin - Reverse TGC CCA TCT CCT GCT CAA AGT CCA 61oC 

Aanat2 - Forward GCT CTC CCT GGG CTG GTT TGA AG 62oC 

Aanat2 - Reverse CAT GGA TGT GCA CTG CCG AGG TT 62oC 

Cry2 - Forward GAG GGC ATG AAG GTG TTT GAG GAG 59 oC 

Cry2 - Reverse GTG GAA GAA CTG CTG GAA GAA GGA 59 oC 

Clock - Forward AGA AAT GCC TGC ACA GTC GGA GTC 64oC 

Clock - Reverse CCA CCA GGT CAG AAG GAA GAT GTT 64oC 

Per1 -  Forward AGG GGG TCA TGC GGA AGG GGA AGT 66oC 

Per1 -  Reverse TGG GCC ACC TGC ATG GG CTC TGT 66oC 

Per2 -  Forward GCT CCC AGA ATT CCT AGT GAC AAG 60oC 

Per2 -  Reverse GAA CAG CCC TCT CGT CCA CAT C 60oC 

Actin - Forward TGG CCG CGA CCT CAC AGA C 59 oC 

Actin - Reverse TCC AGG GCG ACA TAG CAC AGT TT 59 oC 

Aanat2 - Forward ACG CCG CAG GAT GCC ATC AGT GTA 62 oC 

Aanat2 - Reverse TCC TTG TCC CAG CCA GAG CCA ATG 62 oC 

Clock - Forward CAG ACA AGT GCC AGG ATT CAG 55 oC 

Clock - Reverse CAG CGG TGT GCG AGG ATT T 55oC 

Per1 -  Forward CGG ACA GCA GGT TTT TAT CGA 54 oC 

Per1 -  Reverse GAA AAA ACA CCA GCA CAG GC 54 oC 
 

Melatonin radioimmunoassay 

Melatonin in blood plasma and culture medium from the in vitro and in vivo pineal 

experiments was measured by radioimmunoassay (RIA) using a protocol adapted from 

Migaud et al (2007). The sensitivity of the assay, defined as the smallest quantity of 

melatonin statistically distinguishable from the zero standard was 1.95 pg ml
−1

. The assay 

was performed on 250 l of plasma while in vitro culture medium samples were diluted 1:50 
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with assay buffer (20l culture medium and 230l buffer). All samples were assayed in 

duplicate. 

Data analysis 

Results are presented according to zeitgeber time ZT where 0 = when lights are switched on 

(Table 4). The effect of time on mean expression levels was first analysed by one-way 

analysis of variance (ANOVA) followed by Turkey post-hoc test (where P ≤ 0.05) (Minitab 

16 Statistical Software, Minitab inc, United States). To analyse circadian rhythms of 

expression, the goodness of fit of each daily expression profile was checked against a cosine 

wave function using acro circadian analysis programs (Refennetti R., University of South 

Carolina, USA; http://www.circadian.org/softwar.html). (Refinetti 2006). Acro analysis 

determines both the significance, acrophase (peak in expression) mean and amplitude of raw 

data using the equation Y= A + B * cos (C *X –D) whereby Y is level of gene expression as 

a percentage of the mean A is the baseline, C is the frequency multiplier and D is the 

acrophase of the data set (Davie et al. 2009). In order to determine if there was a significant 

difference between the acrophase of melatonin acrophase as determined by acro ± SEM was 

converted to degrees (24h cycle = 360, 1 min = 0.25°). Data was log transformed and 

ANOVA with turkey’s test performed using Instat statistical software (V. 3.01 GraphPad 

Software Inc., La Jolla, California, USA). A significant circadian rhythm was deemed present 

when p value was less than 0.05 in for all statistical analysis. 

  

http://www.circadian.org/softwar.html
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Table 4: Zeitgeber Time (ZT) and Real Time (RT) conversion for each experiment 

  Sample  Point        

Atlantic 

salmon 

(Salmo 

salar)  

Light 

on 

1  2 3 Light 

off 

4 5 6 

12L:12D 

Salmon 

In vitro  

Zeitgeber 

Time  

00:00 02:00 06:00 10:00 12:00 14:00 18:00 22:00 

 Real 

Time  

07:00 09:00 13:00 17:00 19:00 21:00 01:00 05:00 

12D:12L 

Salmon 

In Vitro  

Zeitgeber 

Time  

00:00 02:00 06:00 10:00 12:00 14:00 18:00 22:00 

 Real 

Time  

19:00 21:00 01:00 05:00 07:00 09:00 13:00 17:00 

24D:00L 

Salmon 

In Vitro  

Zeitgeber 

Time  

X 02:00 06:00 10:00 X 14:00 18:00 22:00 

 Real 

Time  

X 09:00 13:00 17:00 X 21:00 01:00 05:00 

12L:12D 

Salmon 

In Vivo  

Zeitgeber 

Time  

00:00 03:00 07:00 11:00 12:00 15:00 19:00 23:00 

 Real 

Time  

07:00 10:00 14:00 18:00 19:00 22:00 02:00 06:00 

12L:12D 

Seabass 

In Vitro  

Zeitgeber 

Time  

00:00 02:00 06:00 10:00 12:00 14:00 18:00 22:00 

 Real 

Time  

06:00 08:00 12:00 16:00 18:00 20:00 00:00 04:00 

 

Post hoc In silico analysis of the 5’ Aanat2 promoter  

Since the completion of the qPCR assays, Atlantic salmon and European seabass genome 

information has been made available. Two Aanat2 sequences containing the 5’ region were 

identified using a NCBI whole genome shotgun (WGS) sequence blast in the Salmo salar 

genome (ascension numbers AGK01021084 and AGK001091293). The 5’ region of each 

sequence compared to similar regions in non salmonid teleosts. Consequently CRX/OTX 

sites and E-box elements were identified and locations compared between species. In the 

European seabass the Aanat2 coding sequence was identified 
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(DLA_VIII_005510|aanat2|arylalkylamine, N-acetyltransferase |LG8|11349220|11350343|-

|ENSDARP00000002650) in linkage group 8 from the European seabass genome sequencing 

project draft 1 (unpublished). After initial investigation of E-box elements and CRX/OTX 

elements, the sequence was trimmed to 7124bp with approximately 3kb 5’ and 3’ either side 

of the coding sequence. Using the available sequence information it was not possible to 

determine extent of the seabass Aanat2 mRNA sequence and the start and end of the 5’ and 

3’ UTR respectively.  

 

4. RESULTS 

Gene expression results are presented as a percentage of the mean totRNA expression for 

each photoperiod normalised to Actin. Melatonin results are presented as pg.ml
-1

. All data is 

displayed as mean value per time point ± standard error of the mean (SEM). 

Salmon in vitro 

In the 12L:12D pineal culture mRNA for all genes investigated were expressed with mean 

expression levels ranging from 11,911,442 copies/ g totRNA (Aanat2) to 100,207 copies/ 

g (Per2) (Table 5) however no targets (Aanat2, Clock, Per1 or Per2) displayed significant 

variation in expression over the 24 hour period (Figure 3). Melatonin measured within the 

culture media did display significantly rhythmic daily oscillations with peak levels occurring 

at the end of the nocturnal phase at ZT 01:00 ± 2.2h. Under the 12D:12L cycle and the 24h 

dark cycle no significant variation in expression could be measured in Per1 or Aanat2 mRNA 

levels (Figures 4 & 5). However, in both conditions, levels of melatonin in the medium did 

follow the experimental photoperiod pineal were exposed to. When exposed to the reversed 

photoperiod of 12D:12L peak melatonin levels were observed during the subjective dark 

phase at ZT 21:00 ± 2.6 (Table 5, Figure 3). Under constant darkness there was no significant 
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rhythm in melatonin levels over the duration of the 24h cycle however levels were 

comparable throughout to those measured at night in the 12L:12D trial (Figures 4 and 5). 

Table 5: P value, Acro and ANOVA analysis (P < 0.05) with acrophase where appropriate. 

Time refers to Zeitgeber time (ZT) whereby 0 = lights on.  

Conditions Gene/ 

Melatonin 

P value–Acro 

analysis 

Acrophase –

Acro (ZT± 

SEM) 

Significant 

Circadian 

Rhythm 

Salmon In vitro  Clock > 0.05 x NS 

12L:12D Per1 > 0.05 x NS 

 Per2 > 0.05 x NS 

 Aanat2 > 0.05 x NS 

 Melatonin <0.05 01:00±2.22 Sig 

12D12L Per1 > 0.05 x NS 

 Aanat2 > 0.05 x NS 

 Melatonin <0.05 21:00±2.59 Sig 

24D Per1 > 0.05 x NS 

 Aanat2 > 0.05 x NS 

 Melatonin > 0.05 x NS 

Salmon In Vivo Clock > 0.05 x NS 

12L:12D Cry2 <0.05 20:00±2.30 Sig 

 Per1 <0.05 00:00±2.03 Sig 

 Per2 > 0.05 x NS 

 Aanat2 > 0.05 x NS 

 Melatonin <0.05 20:00±2.50 Sig 

Seabass In Vitro Clock > 0.05 x NS 

12L:12D Per1 > 0.05 x NS 

 Aanat2 <0.05 13:00±2.19 Sig 

 Melatonin <0.05 21:00±1.32 Sig 
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Table 6: Mean mRNA expression as copy numbers per g totRNA over 24 hrs sampling 

period for each gene/ condition. 

Experiment Photoperiod/Gene Mean copy no/ mg totRNA SEM 

Salmon in vivo    

12L:12D  Aanat2  18332385.60  1015936.77  

 Clock  60528.70  4543.10  

 Cry2  981172.06  49901.82  

 Per1  971463.50  51522.86  

 Per2  15811.32  1007.37  

Salmon in vitro    

12L:12D  Aanat2  11911442.85  1041731.67  

 Clock  658747.62  71727.08  

 Per1  1733338.98  94047.81  

 Per2  100207.53  12076.89  

12D:12L  Aanat2  7329494.88  626102.60  

 Per1  2025735.69  109402.07  

24D  Aanat2  7713770.44  489822.07  

 Per1  2255335.64  144366.38  

Seabass in vitro    

12L:12D  Aanat2  1834792.64  167446.53  

 Clock  544232.24  345805.87  

 Per1  925596.87  163462.21  
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Figure 3: Diel profiles of Clock, Per1, Per2, Aanat2 mRNA and melatonin from salmon 

pineal exposed in vitro to 12L:12D. Gene expression data is shown as a percentage of mean 

expression ±SEM. All results are presented in relation to zeitgeiber time (ZT) wherby ZT0 is 

the onset of light. The presence of a cosine wave denotes the presence of a significant 

circadian rhythm and different letters represents statistically significant difference between 

samples by way of ANOVA and Turkeys test where by P<0.05  
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Figure 4: Diel profiles of Per1 and Aanat2 mRNA and melatonin from salmon pineal 

exposed in vitro to 12D:12L Gene expression data is shown as a percentage of mean 

expression ±SEM. All results are presented in relation to zeitgeiber time (ZT) wherby ZT0 is 

the onset of light. The presence of a cosine wave denotes the presence of a significant 

circadian rhythm and different letters represents statistically significant difference between 

samples by way of ANOVA and Turkeys test where by P<0.05  

  

A 

B 
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 Figure 5: Diel profiles of Per1 and Aanat2 mRNA and melatonin from salmon pineal 

exposed in vitro to 24D Gene expression data is shown as a percentage of mean expression 

±SEM. All results are presented in relation to zeitgeiber time (ZT) wherby ZT0 is the onset of 

light (corisponding to 12L:12D In Vitro). The presence different letters represents statistically 

significant difference between samples by way of ANOVA and Turkeys test where by 

P<0.05  

Salmon in vivo 

Of the five target genes measured from pineal glands harvested from salmon both Cry2 and 

Per1 displayed a significant circadian cycle in expression with peaks in expression four hours 
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apart. The peak expression of Cry2 occurred at ZT 20:00 ± 2.3h while Per1 expression 

peaked at ZT 00:00 ± 2.0h. However Aanat2, Clock, and Per2 displayed no significant 

variation in expression over the 24 hour period. Levels of circulating melatonin displayed a 

significant circadian rhythmicity with levels peaking in the middle of the dark phase at ZT 

20:00 ± 2.5h (Table 5, Figure 6).   

 

Figure 6: Diel profiles of Clock, Cry 2, Per1, Per2 and Aanat2 mRNA and melatonin from 

pineal sampled in salmon exposed to 12L:12D in vivo. Results are displayed in relation to 

Zeitgeiber time (ZT), whereby ZT 0 is the onset of light. Gene expression data is displayed as 

the percentage of the mean ± the SEM and includes the spread of the data.The presence of a 

cosine wave denotes a significant circadian rhythm by acro analysis and  The presence of 

different letters represents statistically significant difference between samples by way of 

ANOVA and Turkeys test where by P<0.05  



Chapter 5 

202 
 

Seabass in vitro 

In the seabass in vitro experiment neither Clock nor Per1 displayed significant variation in 

expression over the 24 hour period however Aanat2 did show rhythmic expression with the 

acrophase occurring at ZT 13:00 ± 2.2h just following lights off. The levels of melatonin 

released into the culture media also displayed a significantly circadian profile with the peak 

in release occurring at ZT 21:00 ± 1.3h towards the end of the dark phase (Tables 5 and 6, 

Figure 7).  

 

Figure 7: Diel profiles of Clock, Per1 and Aanat2 mRNA and melatonin from seabass pineal 

exposed in vitro to 12L:12D. Different letters for each time point denote statistical 

differences data while cosine wave represents the presence of a circadian rhythm. * 

represents the acrophase. Results are displayed in relation to Zeitgeiber time (ZT), whereby 

ZT 0 is the onset of light. Gene expression data is displayed as the percentage of the mean ± 

the SEM and includes the spread of the data.The presence of a cosine wave denotes a 

significant circadian rhythm by acro analysis and  The presence of different letters represents 

statistically significant difference between samples by way of ANOVA and Turkeys test 

where by P<0.05  
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In silico analysis of the 5’ Aanat2 promoter 

Post hoc analysis of the Atlantic salmon genome revealed the presence of two Atlantic 

salmon Aanat2 sequences (AGKD01021084 and AGKD010091293), potentially a 

consequence of the salmonid genome duplication. In silico analasyis of the Aanat2 5’ region 

revealed the presence of an E-box element in the 5’region of the AGKD01021084 sequence 

(Apendix 1 and 2). E-box elements were located 1053 bp and 466 bp up-stream of the coding 

sequence and within the Atlantic salmon Aanat2 5’ UTR. In the AGKD010091293 sequence 

2 imperfect E-box elements (CATGTG and TACGTG) were additionally observed in the 

5’UTR in locations corresponding to the E-box elements present in the AGKD01021084 

sequence, approximatly 1kb and 466bp up-stream of the start codon. Photoreceptor conserved 

elements (PCEs) CRX/OTX were also identified up and down-stream of the coding sequence 

and within and outwith 5’ and 3’ UTR (Apendixes 1 and 2). For AGKD01021084, one 

CRX/OTX element (TAATC) was located in the 5’UTR 770 bp up-stream of the start codon. 

Down-stream of the stop codon 4 (T) and 3 (C) CRX/OTX elements were located in the 

3’UTR. Nine CRX/OTX PCEs (6 TAATT and 3 TAATC) were present down-stream of the 

transcriptional start of thegene. For the AGKD010091293 sequence 5 PCEs (twoTAATT and 

three TAATC) were identified up-stream of the 5’ UTR. One TAATT and one TAATC was 

located within the 5’ UTR up-stream of the start codon. Four (T) and two (C) CRX/OTXs 

were present in the 3’UTR in this sequence. 

Within the 3kb up-stream of the coding sequence of the seabass Aanat2 gene 15 CRX/OTX 

elements and one E-box were identified (Apendixes 1 and 2). Two variants of CRX/OTX 

elements were found in this region, TAATT (10) and TAATC (5).  The E-box element was 

319 bp up-stream of the start codon. Down-stream of the coding sequence six CRX/OTX 

TAATC and two TAATT elements were present. In addition two E-box elements were 

located 2095 bp and 2143 bp down-stream of the stop codon (Figure 8, Apendixes 1 and 2). 
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Figure 8: Schematic of the Atlantic salmon Aanat2 contig with 5’ region in comparison to zebrafish and European seabass 

(DLA_VIII_005510|aanat2|arylalkylamine N-acetyltransferase  |LG8|11349220|11350343|-|ENSDARP00000002650).
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5. DISCUSSION 

Previous work on the teleost pineal has primarily focused on 24h profiles of melatonin in the 

pineal and plasma. In the majority of teleosts investigated the presence of endogenous 

melatonin rhythms have been described and have largely been attributed to regulation by a 

pineal clock. Salmonids appear to be the exception. In salmonid species pineal melatonin 

appears to not be endogenously regulated under constant conditions. It has been proposed that 

it may be a consequence of either clocks becoming decoupled from the melatonin synthesis 

pathway or the lack of a functional circadian clock in the salmonid pineal (Iigo et al. 2007). 

Results from the present experiment suggest that while clock mechanisms are present in 

Atlantic salmon pineal it is not capable of endogenous cycling and entrainment and thus the 

lack of endogenous rhythmic melatonin synthesis in pineal is most likely due to the 

decoupling of the melatonin synthesis pathway from the clock mechanisms. 

The analysis of melatonin release acts as a verification of the pineal function. In all 

experiments performed, melatonin levels reflected the photic conditions as expected with 

significant circadian rhythms in melatonin being observed in all salmon and seabass 

experiments with the exception of the salmon 24D treatment. Under these conditions 

melatonin was continually elevated over the 24 hour period. The peak in melatonin release 

was in all cases during the dark phase. No significant difference was observed between the 

melatonin acrophase in all experiments with a significant circadian rhythm. Importantly 

current results are consistent with previous reports inferring a lack of endogenous melatonin 

production in the cultured Atlantic salmon pineal (Iigo et al. 2007). This consequently led to 

the hypothesis that pineal melatonin production in the salmonid pineal was somehow 

decoupled from the circadian clock.  

In the current investigation no cycling of clock genes mRNA was observed in all salmon and 

seabass in vitro experiments. However rhythmic clocks were present in the salmon in vivo 
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experiment. Rhythmic expression of Cry2 and Per1 was only observed in vivo under 

12L:12D photoperiod. Information on clock gene expression in the pineal, in vivo or in vitro, 

is sparse in teleosts. The studies by Huang et al. (2010 a & b) are the only in vivo reports of 

clock gene expression in pineal sampled from Atlantic salmon parr, smolts and post smolts. 

According to their results, Per1 and Cry2 were consistently expressed in parr and post smolts 

(under 12L:12D) but not in smolts (under constant light) (Huang et al. 2010a; Huang et al. 

2010b). With regard to the current investigation the in vivo rhythmic expression of Per1 and 

Cry2 bares considerable resemblance to the Huang et al. (2010 a & b) experiments. The peak 

in expression of both clock genes was observed during the dark phase of the 24h cycle with 

the acrophase of Cry2 observed 4h prior to that of Per1 in current and previous results 

(Huang et al. 2010a; Huang et al. 2010b). 

The current study additionally investigated 24h profiles of clock gene expression (in vitro) in 

the pineal of the European seabass, a species that was shown to display endogenous 

regulation of melatonin synthesis. As was the case in the cultured Atlantic salmon pineal 

organ neither of the Per1 or Clock genes displayed significant rhythmic expression. This was 

surprising as the endogenous production of melatonin in teleost species such as the European 

seabass had previously been attributed to the cyclic expression of clocks in the pineal. 

However due to the small size of the seabass pineal, in comparison to the salmon pineal, only 

a limited amount of RNA (~ 5 g totRNA) could be extracted from the individual pineal. As 

a result the expression of only two clock genes (Clock and Per1) could be investigated. The 

expression of other clock genes and homologs is unknown in the seabass pineal and further 

studies are clearly needed.  

Knowledge on the cyclic clock gene expression in the pineal are much more advanced in 

mammals. Mammalian work provides a useful insight into the extra-pineal regulation as 
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mammalian pineals are not light sensitive. In rats, clock genes (Bmal, Clock, Cry1, Cry2, 

Per1 – 3 and Rev-erb  have all been shown to cycle in the pineal ( Namihira et al. 1999; 

Fukuhara et al. 2000; Nakamura et al. 2001; Simonneaux et al. 2004; Wongchitrat et al. 2009; 

Wongchitrat et al. 2011;). However regulation of clock genes in the rodent pineal is gene 

dependent. Per1 and Cry2 mRNA expression is regulated by the suprachiasmatic nucleus 

(SCN) via the nocturnal release of the neurotransmitter norepinephrine (NE) while the other 

transcription factors appear to be endogenous in the rat (Rattus norvegicus) (Wongchitrat et 

al. 2011) and Syrian hamster (Mesocricetus auratus)(Wongchitrat et al. 2009). Wongchitrat 

et al. (2011) hypothesised that the endogenously expressed clock genes are synchronised by 

the SCN via NE control of Per1 and its role in the circadian feedback loop. In aves, 

neurotransmitters have also been implicated in the control of clocks in the pineal in vivo 

(Nagy & Csernus 2007). In the current investigation clock gene expression in the salmon 

pineal shares a number of characteristics with that of vertebrate species. In the rodent cyclic 

Cry2 and Per1expression is lost in the isolated pineal, in the absence of NE input. Similarly 

in Atlantic salmon in vivo studies, both genes displayed circadian expression over a 24 hour 

Light Dark cycle. In vitro, under the same photic conditions, Cry2 and Per1 cycling ceases. 

This is a potential consequence of extra-pineal regulation as observed in rodents. However, in 

contrast to mammals and birds, no central circadian clock or SCN like structure has yet been 

identified in teleosts (Kulczykowska et al. 2010).  

While not the primary focus of this investigation comparison between in vivo and in vitro 

results provide some insight into the extra-pineal clock gene regulation and the Atlantic 

salmon circadian axis. In comparison to mammals the salmon circadian axis is hypothesised 

to be dependent on a photosensitive pineal and lack of a central circadian pacemaker (Migaud 

et al. 2010). The pineal has changed dramatically over the course of evolution, from a true 

photoreceptor in lower vertebrates to an endocrine gland (pinealocyte) in mammals (Migaud 
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et al. 2010). In mammals the circadian axis begins in the retina where photic information is 

interrogated in melanopsin containing retinal ganglion cells and transmitted via the 

retinohypothalamic tract (RHT) to the SCN (Foster & Hankins 2002; Foster & Hankins 

2007). In the SCN the RHT interacts with the circadian clock and elevates NE release from 

post ganglionic sympathetic fibres to the pineal leading to melatonin synthesis (Maronde & 

Stehle 2007). In birds the situation appears to be more complex. Indeed, the retina, pineal and 

deep brain photoreceptors have all been implicated in the avian circadian axis. Moreover the 

relative contribution of each has been found to be highly species specific (Gwinner & 

Brandstatter 2001; Underwood et al. 2001; Karaganis et al. 2009). The generalised avian 

model represents an intermediate evolutionary state between the mammalian and teleost 

circadian axis (Migaud et al. 2010).  

The teleost circadian axis was initially hypothesised to be simplified in comparison to 

mammals and birds. The phototransduction and melatonin synthesis pathways are 

considerably shortened. However more recently the teleosts this system has been shown to be 

highly species specific and considerably more diverse than initially described (Migaud et al. 

2007). As previously described two circadian pathways for melatonin synthesis (salmonid 

and non salmonid) were initially hypothesised. However in 2007, Migaud et al. described 

three modes for the photic and circadian regulation of melatonin synthesis. In salmonids the 

pineal is predominantly responsible for both photo perception and the synthesis of melatonin. 

In species such as seabass photic input from the eye contributes significantly to the regulation 

of  pineal melatonin synthesis. The relative contribution of the eye is even more important in 

tilapia and catfish whereby, removal of the eye results in the loss of elevated nocturnal levels 

of plasma melatonin (Migaud et al. 2007). The way in which photic information is perceived 

and the contribution of the retina and pineal in the control of melatonin synthesis had 

therefore been altered dramatically over the course of teleost evolution. From non clock 
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controlled photoreceptive organ to secretary gland containing a functional clock requiring 

photic input from retinal and the pineal to ultimately the loss of the photoreceptive pineal 

(Migaud et al. 2007; Migaud et al. 2010). 

If the circadian axis has changed over the course of vertebrate evolution; however the 

melatonin biosynthesis pathway has remained much conserved. The nocturnal activity of 

AANAT regulates the highly conserved profile of melatonin synthesis and secretion and 

activity mirrors melatonin profile (Ganguly et al. 2001). In the absence of light the activity of 

the AANAT enzyme will increase (doubling time ~15 min.) and are rapidly inhibited with the 

onset of light (having time ~3.5 min.) (Klein 2007). However despite the conserved nature of 

the vertebrate melatonin profile and the action of AANAT in the melatonin biosynthesis 

pathway the regulation of AANAT is not conserved amongst vertebrates.  

Teleosts are unique amongst vertebrates in that they have two forms of AANAT. AANAT1 

and AANAT2 primarily located in the retina and the pineal. The tissue specific expression is 

regulated by photoreceptor conserved elements (PCEs) in the promoter region of the Aanat 

gene (Appelbaum & Gothilf 2006). PCEs control the expression of a number of genes 

involved in the synthesis of melatonin and photo transduction by binding to members of the 

orthodentical CRX/OTX transcription factor family expressed in both the pineal and the 

retina (Appelbaum et al. 2004). As a result of pineal specific expression in fish AANAT2’s 

participation in the melatonin biosynthesis pathway regulates the nocturnal synthesis of the 

hormone (Falcon et al. 2011; Falcon et al. 2010).  

In the majority of teleosts studied so far AANAT2 has been shown to be regulated at the level 

of protein activity and mRNA translation. At a protein level AANAT 2 activity is inhibited 

directly by the presence of light. In the absence of light the melatonin biosynthesis pathway is 

initiated. As part of this pathway elevated cAMP promotes the formation of the AANAT2/14-
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3-3 protein complex via direct phosphorylation (Coon & Klein 2006). When light is present 

the pineal photoreceptors become hyperpolarized and cAMP and Ca
2+ 

and levels are reduced. 

Under these conditions the AANAT2/14-3-3 complex becomes dissociated. Protein action 

then ceases and melatonin synthesis stops as AANAT2 is subjected to proteasomal 

degradation(Coon & Klein 2006) At a translational level the Aanat2 gene is regulated by an 

independent circadian clock in the pineal via interactions with E-box elements present in the 

promoter region of the Clock and Bmal genes and the 5’ end of the teleost Aanat2 gene in 

species such as zebrafish(Coon & Klein 2006) However salmonids appear to be an exception 

to this. 

In salmonids previous work has demonstrated that regulation of AANAT2 occurs at the level 

of protein activity only, and is independent of circadian clock work. As a result the AANAT 

driven rhythm of nocturnal melatonin would be directly regulated by light and not by the 

molecular mechanisms of the circadian clock ( Falcon et al. 2010; Falcon et al. 2011). 

Absence of clock regulation of Aanat2 has additionally been observed in the rainbow trout, 

another salmonid species (Coon et al. 1998; Falcon et al. 1998; Falcon et al. 2001; Falcon et 

al. 2003). The present investigation analysed the expression of Aanat2 mRNA in the Atlantic 

salmon pineal in vivo and in vitro and in comparison to the European seabass, a species 

displaying endogenous regulation of melatonin and Aanat2 ( Migaud et al. 2007; Migaud et 

al. 2010Falcon et al. 2010) In salmon in vivo and in vitro Aanat2 mRNA expression was 

continuously expressed under all treatments. Over the 24h sample period no significant 

difference in nocturnal / diurnal expression were observed. This is clearly confirming 

previously suggested lack of clock regulation of AANAT2 transcription. 

In the seabass, Aanat2 did display a circadian expression and elevated mRNA levels were 

observed at the beginning of the nocturnal phase (zt 12:38). This is consistent with the 

hypothesis that in teleosts displaying endogenous melatonin production AANAT2 activity is 
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regulated, in part, at a transcriptional level. In all probability this is achieved via E-box 

interaction between clock genes and Aanat2 (Zilberman-Peled et al. 2007). Previous work in 

seabass has also described elevated nocturnal levels of Aanat2 mRNA (Herrera-Perez et al. 

2010). Similarly in the zebrafish pineal Aanat2 mRNA is elevated at the end of the diurnal/ 

early nocturnal phase ( Ziv et al. 2005; Falcon et al. 2010;). Clock gene regulation of the 

Aanat2 gene has additionally been observed in the pike (Coon et al. 1998; Falcon et al. 1998; 

Falcon et al. 2001; Falcon et al. 2003)  

Post-hoc in silico analysis of the Atlantic salmon 5’ Aanat2 sequence retrieved from a NCBI 

blast in the WGS revealed the presence of numerous photoreceptor conserved elements. 

CRX/OTX elements (TATT/C) were observed in the 5’ sequence, the 5’ UTR and down-

stream of the Aanat2 start codon within and down-stream of the 3’UTR. This is concurrent 

with results obtained in other teleosts such as gilthead seabream (Sparus aurata), pike (Esox 

lucius) and zebrafish (Zilberman-Peled et al. 2007). The importance of the single nucleotide 

change in the PCE in salmon and other teleosts is unknown. In the zebrafish the CRX/OTX 

elements are known to recruit orthodenticle homolog 5(OTX5) and mediate the pineal 

specific expression of Aanat2 in the zebrafish pineal (Appelbaum & Gothilf 2006). In the 

Atlantic salmon it is unclear whether this function persists as the down-stream regulatory 

element,  pineal – restrictive down-stream module (PRDM) has not been located in the 

3’UTR. In zebrafish the PRDM, containing CRX/OTX elements, and E-box and 13bp 

repetitive motif, interacts with PCEs in the 5’ region to mediate extra pineal expression of the 

Aanat2 gene. In the current investigation Atlantic salmon Aanat2 expression was not only 

observed in the pineal but in RNA extracted from whole brain homogenates. However levels 

were not quantified by qPCR and the significance of this on melatonin production is unclear. 

Two complete E-box elements in the Aanat2 AGKD01021084 sequence and 2 imperfect E-

box elements (GACCTG) AGKD010091293 were identified approximatly 1kb and 466bp up-
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stream of the start codon. However in contrast to other teleosts the 5’ UTR extends up-stream 

encompasing the E-box elements in both sequences. In teleosts displaying clock controled 

regulation of the Aanat2 gene functional E-box elements are located up-stream of the 5’UTR 

as is the case in seabream, pike  and zebrafish in which conical E-box are present in this 

region (Gothilf et al. 2002;Appelbaum & Gothilf 2006; Appelbaum et al. 2006; Zilberman-

Peled et al. 2007). In the zebrafish this has been shown to be functional and the Aanat2 

circadian expression is driven by Clock and Bmal expression in the pineal (Appelbaum & 

Gothilf 2003).The absence of an E-box element up-stream of the 5’UTR in the Atlantic 

salmon Aanat2 gene may account for the lack of circadian regulation and consequent 

melatonin production in the species.  

In silico analysis of the seabass Aanat2 5’region revealed the presence of 15 PCEs within 3kb 

up-stream of the seabass Aanat2 start codon and an E-box element 319 bp up-stream of the 

start codon. The current investigation could not determine the extent of the seabass Aanat2 5’ 

and 3’ UTR with available seabass sequence information. However this is similar to results in 

the zebrafish and the gilthead seabream where E-boxes are present within a 300bp of the 

coding sequence and up-stream of the end of the transcriptional gene and 5’ UTR. It is the E-

boxes up-stream of the 5’UTR that are considered to be functionally important in the clock 

gene regulation of Aanat2 expression and subsequent endogenous control of pineal melatonin 

production in teleosts. As in the zebrafish two E-box elements were additionally observed 

approximately 2kb down-stream of the coding sequence (Figure 8). In the zebrafish, an E-box 

is present approximately 4kb down-stream of the transcriptional stop site and comprises part 

of the down-stream regulatory element, pineal – restrictive down-stream module (PRDM) 

(Appelbaum et al. 2004). This PRDM encompasses E-box elements, three CRX/OTX 

photoreceptor conserved elements and a 13bp repeated motif. The PRDM functions not only 

to enhance pineal specific expression but also interacts with up-stream elements to restrict 
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extra pineal Aanat2 expression (Appelbaum et al. 2004). In silico analysis of the salmon 

Aanat 2 gene has provided convincing evidence that support the lack of clock gene regulation 

of Aanat 2 via E-box element and subsequent loss of endogenous pineal melatonin 

production. 

6. CONCLUSIONS 

Amongst teleosts a considerable number of reports have eluded to the presence of a 

functional clock in the pineal. However very little information is available on the presence 

and expression of clock genes in this tissue. The present study showed a lack of circadian 

expression in isolated pineal gland placed in culture of all clock genes investigated. In vivo 

results differed with Per1 and Cry2 genes in the pineal displaying circadian expression. 

These results confirm that clock genes are expressed in the salmon pineal but are not capable 

of independent cycling when isolated. Pineal clocks in vivo are likely driven by extra-pineal 

clocks located in the brain. Aanat2 results were also contrasting between salmon and seabass 

with mRNA levels remaining high throughout the 24 h cycle in salmon while showing a 

significant circadian profile of expression in seabass. These results are consistent with the 

hypothesis that Aanat2 mRNA is regulated by pineal clocks in non salmonid teleosts. This 

probably occurs via E-box interactions with clock genes, resulting in the endogenous 

production of melatonin. In silico analysis of the salmon and seabass 5’ Aanat2 promoter 

revealed the absence of an E-box element up-stream of the 5’ UTR in salmon. The absence of 

this conserved element may account for the lack of clock gene regulation and endogenous 

cycling of the Atlantic salmon Aanat2 gene and melatonin production in the pineal. Potential 

future work would likely focus on the localisation of clock gene expression in the brain and 

pineal organ of the Atlantic salmon. This may determine whether hierarchical structure is 

present in the Atlantic salmon brain and pineal clock work. 
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CIRCADIAN EXPRESSION OF CLOCK GENES, STEROL REGULATORY 

ELEMENT-BINDING PROTEINS AND SREBP TARGETS IN THE LIVER OF THE 

ATLANTIC SALMON. 

1. ABSTRACT 

In peripheral tissues such as the liver a number of clock genes and clock controlled gene 

mRNAs are expressed in a circadian manner. In mammals a number of genes involved in 

liver lipid and cholesterol homeostasis are rhythmically expressed and expression has been 

shown to be regulated by clock genes via Rev-erb . In the Atlantic salmon liver lipid and 

cholesterol homeostasis is an area of considerable research interest both in terms of human 

health and improving the sustainability of commercial salmon feed. In order to better 

understand clock gene regulation of genes involved in the Atlantic salmon liver lipid 

metabolism the current investigation describes 24h expression of clock genes (Bmal1, Clock, 

Per 1 and Per 2), and cholesterol regulatory genes (Srebp 1, Srebp 2, Fax, Lxr, Elovl5, 

Hmgcr and D6 Fad) in the liver of salmon parr acclimated to a long day photoperiod, which  

have previously elicited rhythmic clock gene expression in the brain (see chapter 3). Results 

demonstrated the significant circadian expression of the clock gene Bmal1 and cholesterol 

regulatory genes Srebp1 and Lxr. The gene coding for the rate limiting enzyme in cholesterol 

synthesis, Hmgcr, was significantly elevated at ZT10 in comparison to ZT 22, this in contrast 

to mammals where mRNA expression of the gene and protein activity was elevated during 

the night. The rhythmic circadian expression of Srebp 1 and Bmal 1 is similar to previous 

results obtained in mice. However in contrast to mammals, Per1, Per2, Fas, and Rev-erb  

did not display significant circadian rhythmicity in salmon. This investigation represents the 

first attempt to characterise 24h profiles of gene expression in the liver in the Atlantic salmon 
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which is an area of considerable interest for future research in this commercially important 

species.  
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2. INTRODUCTION 

In most vertebrates clocks and clock genes are present in the majority of tissues and cell 

types. Their presence and cyclic expression drives circadian rhythms across a number of 

biological facets by initiating rhythmic transcription of a number of clock controlled genes in 

central and peripheral tissues (Ko and Takahashi. 2006). Amongst peripheral tissues, 

rhythmic expression in the liver transcriptome has been an area of considerable interest (Le 

Martelot et al. 2009) in the mammalian field while in teleosts research in this area is lacking. 

However to the aquaculture industry, factors which affect the regulation of fatty acid 

metabolism and cholesterol homeostasis in the tissue is an area of considerable importance 

(Minghetti et al. 2011). Cholesterol is fundamental to a number of biological processes 

including membrane fluidity and the synthesis of the bile acids necessary for the 

emulsification of dietary lipids. Excessive levels can lead to considerable health problems 

such as the formation of gallstones and hardening of the arteries (Schibler et al. 2010). In 

salmon lack of adequate cholesterol and long chain fatty acids and the regulation of 

processesinvolved in fat deposition have become an issue due to restriction of fish oil in the 

diet. Consequently the circadian regulation of cholesterol and fatty acid metabolism and the 

genes and enzymes involved is necessary for cholesterol homeostasis is of great interest (Le 

Martelot et al. 2009).  

Understanding the mechanisms involved in regulation and absorption of fatty acids is of 

increasing importance, in particular with reference to the aquaculture industry (Minghetti et 

al. 2011). Salmon are an important source of omega 3 and polyunsaturated fatty acids 

(PUFA) in the human diet, an essential dietary component and vital for metabolism and 

healthy cardiovascular and neurological function (Eilander et al. 2007; Ruxton et al. 2007). 

Omega 3 have also been shown to be advantageous in the treatment of inflammatory diseases 

amongst others (Ruxton et al. 2007). This has resulted in increased demand and affordability 



Chapter 6 

218 
 

of oily fish species for human consumption. In order to meet this rising demand the culture of 

suitable species such as the Atlantic salmon is increasing, however, salmon are carnivorous 

and commercial diets have principally been based on fishmeal and oil from wild fisheries, 

exerting considerable pressure on the marine environment (Tacon & Metian 2008). 

Accordingly research has focused on the addition of novel lipid sources to dietary formulas. 

Lipid sources such as vegetable oils do not contain PUFA, or bioavailable cholesterol and, in 

the case of PUFA, vertebrates do not have the capacity to synthesise them from the nutrients 

available in vegetable oils (Burdge & Calder 2005; Tocher 2010). As a result further 

understanding of lipid regulation in commercially important species such as the Atlantic 

salmon is of fundamental importance (Minghetti et al. 2011). However reports of clock 

controlled genes and circadian regulation of fatty acid metabolism in the liver is limited in 

teleosts. In rodents research is considerably more advanced. 

In rodents liver microarray investigations have shown between 8 to 10% of all mRNAs to be 

rhythmically expressed (Akhtar et al. 2002; Kornmann et al. 2007; Schibler et al. 2010). Most 

of these mRNAs encode for enzymes and regulators of specific importance to liver functions 

including fatty acid metabolism and cholesterol regulation (Schibler et al. 2010). In mice a 

number of genes intrinsically involved in cholesterol homeostasis and lipid metabolism have 

been shown to be mediated by REV-ERB(nuclear receptor subfamily 1, group D, member 

1) an essential component of the molecular clockwork (Akhtar et al. 2002; Le Martelot et al. 

2009). These include SREBP 1c and targets of the Sterol Regulatory Element-Binding 

Proteins (SREBP) pathway such as hydroxymethylglutaryl-CoA reductase (HMG CoA-R). 

RE-VERBis a key protein of the circadian feedback loop. Rev-erb mRNA is 

rhythmically expressed and is subject to regulation by the negative components of the 

molecular clock, Cryptochrome (Cry) and Period (Per). Moreover the REV-ERB protein 

has the capacity to influence the timing of the BMAL and the positive arm of the molecular 
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clockwork. Rev-erb is not essential for the cycling of the molecular clock, however it is 

fundamental in the accuracy and fine tuning of the clock and has been implicated in 

adiposeness and fatty acid metabolism (Le Martelot et al. 2009) It is known to regulate a 

number of genes involved in cholesterol and lipid homeostasis in particular through sterol 

regulatory element binding protein pathways and SREBP target genes ( Table 1 and Figure 1) 

(Le Martelot et al 2009). 

 

In mammals the SREBP pathway is initiated in the liver with the circadian transcription of 

Insulin induced gene 2 (insig2) (Le Martelot et al 2009). The INSIG2 protein is resident in the 

endoplasmic reticulum (ER) and sequesters SREBP proteins to the ER where, it forms a 

complex with SREBP-cleavage activating proteins (SCAP). The formation of the 

SREBP:SCAP complex facilitates transfer from the ER to the golgi apparatus were it is 

cleaved by S1P and S2P. SREBP then moves to the nucleus were it acts on a number of target 

genes in the cholesterol synthesis pathway via presence of sterol regulatory elements (eg 

TCACNCCAC) which often contain an E-box element  (Sato 2010). Under high 

concentrations of cellular cholesterol this processes is inhibited by the binding of SCAP to 

INSIG and SREBP is maintained in the ER (Sato 2010). In the nucleus the transcriptionally 

active SREBP triggers the synthesis of Hmg-coA reductase (Hmgcr) the rate limiting enzyme 

in cholesterol biosynthesis (Le Martelot et al. 2009). REV- ERB also been demonstrated to 

be involved in the conversion of cholesterol to bile acid. It regulates the circadian expression 

of Cholesterol 7 alpha-hydroxylase CYP7A1, the rate limiting enzyme in the conversion of 

cholesterol to bile acid in hepatocyte cells (Le Martelot et al. 2009). This is hypothesised to 

be achieved via the circadian production of oxysterol, an oxidized derivative of cholesterol 

that mirrors the activity of HMG-CoA reductase and production of cholesterol. This likely 
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regulates LXR and the circadian transcription of Cyp7a1 (Le Martelot et al. 2009). The 

temporal regulation of cholesterol and bile acid is necessary as constantly elevated levels can 

be toxic to cells (Schibler et al. 2010). The mechanisms involved in the synthesis of 

cholesterol conversion to bile acid appear to be under degree of circadian regulation via the 

orphan nuclear receptor REV-ERB. 

In the Atlantic salmon homologues of the genes involved in the circadian regulation 

cholesterol and bile acid homeostasis have been identified. Two Srebp sequences have been 

identified coding for proteins that align to mammalian SREBP1a and SREBP2 proteins with 

54% and 49% identity respectively (Minghetti et al. 2011). In mice the presence of elevated 

cholesterol induces an increase in Srebp 1 and 2 mRNA in addition to HMG-CoAR, Elovl5a, 

LXR and ACOX (Le Martelot et al. 2009). These sequences have additionally been identified 

in the Atlantic salmon (Morais et al. 2009; Minghetti et al. 2011). In mammals SREBPs and 

HMG-CoAR have been shown to be regulated by the circadian system via REV-ERB. 

However in teleosts circadian regulation of the SREBP pathway is unknown. The aim of the 

present study was to determine daily patterns of mRNA expression for genes involved in 

cholesterol homeostasis and key components of the circadian clock in the liver of the Atlantic 

salmon.  
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Table 1: Abbreviation, full name, accession number and function of all genes investigated 

Gene  Full Name  Ascension 

number  

Gene Function  

Srebp1  Sterol Regulatory Element-

Binding Protein 1  

TC148424  Indirectly involved in cholesterol 

synthesis. In mammals  involved in 

sensing cholesterol availability in the ER  

Srebp 2  Sterol Regulatory Element-

Binding Protein 2  

TC166313  Indirectly involved in cholesterol 

synthesis by regulating Hmgcr.  

Lxr  Liver x receptor  FJ470290  Regulates cholesterol and fatty acids by 

activating Cyp7a , the rate limiting 

enzyme in the conversion of cholesterol to 

bile acid.  

FadsD6  D6 – Fatty acid desaturase  AY458652  Required for the synthesis of  highly 

unsaturated fatty acids  

Elovl5a  Elongation of very long 

chain fatty acids protein 5  

AY170327  Participates in the biosynthesis of long 

chain poly unsaturated fatty acids. 

Primarily the elongation of C18 and C20.  

Hmgcr  3-hydroxy-3-methyl-

glutaryl-CoA reductase  

DW561983  Resulting HMGCoA reductase enzyme is 

the rate limiting enzyme in cholesterol 

synthesis.  

Fas  Fatty acid synthesis  DW551395   Corresponding protein catalyzes fatty 

acid synthesis  

Bmal1  Brain and muscle aryl 

hydrocarbon receptor 

nuclear translocator 

(ARNT)-like  

DY 735402  Forms part of the positive arm the 

circadian molecular clock. BMAL forms 

hetrodimer with CLOCK and initiates the 

transcription of Per and Cry genes.  

Clock  Circadian Locomotor 

Output Cycles Kaput  

CA 038738  In conjunction with BMAL forms the 

positive arm of the circadian clock and 

regulates negative elements Cry and Per.  

Per 1  Period1   In conjunction with Cry genes forms 

negative components of the circadian 

clock.  

Per 2  Period2  FM877775  In conjunction with Cry genes forms 

negative components of the circadian 

clock.  

Rev-erb 

a  

nuclear receptor subfamily 

1, group D, member 1  

 REV-ERBa is regulated in a circadian 

manner by BMAL and via E-box elements 

regulates a number of clock controlled 

genes.  
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Figure 1. Circadian regulation of lipid and bile acid homeostasis, via Rev-erb  in mice. 

From Le Martelot et al 2009. The schematic above illiterates the circadian regulation of the 

liver lipid and bile acid homeostasis via REV-ERBα control of SREBP accumulation in the 

nucleus. In liver hepatocytes, REV-ERBα accumulates to maximal levels at ZT8–ZT12 and 

represses Insig2 transcription, promoting the proteolytic activation and nuclear accumulation 

of SREBP proteins. In turn, the circadian activation of SREBP transcription factors drives the 

cyclic transcription of Hmgcr, encoding the rate-limiting enzyme of cholesterol biosynthesis. 

As a consequence the levels of oxysterols, which serve as ligands for LXR, also oscillate 

during the day, and cyclically activated LXR then controls rhythmic Cyp7a1 transcription (Le 

Martelot et al. 2009) 

 

3. MATERIALS AND METHODS 

Experimental animals and sampling procedures 

Liver samples previously reported in chapter 3 experiment 1 (LD photoperiod) were used for 

this investigation. In brief, these Atlantic salmon parr (Mean 24.9 ± 5.4g, 140.6 ± 7.8mm) 
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were acclimated to a LD (16h light: 08h dark) in early March 2009 when water temperature 

was on average 4.6 ± 0.7
o
C at the Niall Bromage Freshwater Research Facilities (Institute of 

Aquaculture, Stirling, UK, 56: 02N). After 1 month liver tissue samples were collected (n = 6 

individuals per sample point) every four hours over a 24h period. Experimental animals were 

sacrificed via a lethal anaesthesia and decapitation. Tissue samples were instantly frozen in 

liquid nitrogen stored at -70°C until use. A dim red light was used for nocturnal sampling. All 

experiments were carried out in accordance with accordance with the UK Animals (Scientific 

Procedures) Act 1986. 

RNA extraction – cDNA synthesis 

Approximately 100mg of liver tissue was homogenised in 1ml of TRIzol® (Invitrogen UK). 

RNA extraction was carried according to manufacture instructions. RNA pellets were 

rehydrated in MilliQ water in varying volumes to achieve a final RNA concentration of 

approximately 1000ng/ul. Total RNA concentration was determined by ND-1000 Nanodrop 

spectrophotometer (labtech Int., East Sussex, UK). In order to eliminate any DNA 

contamination 5g of totRNA was treated with DNase enzyme following DNA-free™ kit 

guidelines (Applied biosystems, UK). cDNA was then synthesised using 1g of DNase 

treated totRNA in 20l reaction and random primers according to manufactures protocol, 

High capacity reverse transcription kit without RNase inhibiter. (Applied biosystems, UK) 

Final reactions were then diluted with DNA/RNA free H2O to a final volume of 200l. All 

cDNA reactions were stored at -20°C until use in qPCR. 

Atlantic salmon Rev-erb1α Identification. 

All qPCR assays used were previously established and verified in previous work (Chapter 3: 

Per1) by Davie et al. (2009) (Clock, Bmal & Per2) and Minghetti et al (2011) (Srebp-1, 

Srebp2, Fas, Lxr, ElovL5, Hmgcr and D6 Fad) with the exception of Rev-erb1α. Salmo salar 
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Rev-erb1α was identified as follows: two Atlantic salmon expressed sequence tag clones 

(Genbank ID: DY724083 and DY731913) were identified by BLAST analysis of published 

vertebrate Rev-erb1α sequences. 5’ and 3’ ends from the constructed contig were amplified 

using Rapid Amplification of cDNA Ends (RACE)-PCR with the RACE cDNAs generated 

from 1 μg of salmon whole brain total RNA as described in the manual using the SMART™ 

RACE kit (Clontech, USA). The 5’ and 3’ RACE amplicons were generated by two rounds of 

PCR using Rev-erb 5’R1 and Rev-erb 5’R2 primers or Rev-erb 3’F1 and Rev-erb 3’F2 

respectively (Table 2). The final full-length sequence was confirmed by two rounds of PCR 

using nested primers designed to amplify end to end full length cDNAs (Rev-erb_full_F1: 

Rev-erb_full_R1 & Rev-erb_full_F2: Rev-erb_full_R2) (Table 2). All PCRs were run at an 

annealing temperature as listed in Table 2 and the extension time was 1 min/Kb of predicted 

PCR product, and 3 min were applied for unpredictable RACE PCR products. All primers 

were designed using Primer Select Ver. 6.1 program (DNASTAR, www.dnastar.com).  

 

Table 2: Primer pairs and sequences for Rev-erb  identification including primer name, 

purpose, sequence and annealing temperature. 

Name Purpose Sequence 5’-3’ Anneal 

Temperature 

Rev-erb 5’R1 RACE-PCR GCCCCAGTTGTCCACCTCTCCGTTATGT 60 °C 

Rev-erb 5’R2 RACE-PCR AATGGCGGGCTTTGGGTGGATG 60 °C 

Rev-erb 3’F1 RACE-PCR TACCCCCAAGACGAACCCAACA 60 °C 

Rev-erb 3’F2 RACE-PCR GGGAGGCTTGCTAGACACCAT 60 °C 

Rev-erb_full_F1 Full length 

outer PCR 

AGGCCGACTTGGAAACTGC 57 °C 

Reverb_full_R1 GTCTATTGGCCTTACCCCTATCA 

Rev-erb_full_F2 Full length 

inner PCR 

GTTCAGACCTGCACCGATAGAGC 62 °C 

Rev-erb_full_R2 TAGCCGCCCAACCACCACTGTC 

 

http://www.dnastar.com/
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qPCR 

In order to determine diel patters of clock gene expression qPCR was carried out on clock 

genes Bmal 1, Clock, , Per1, Per2, Rev-erb1α and cholesterol regulating genes Srebp-1, 

Srebp2, Fas, Lxr, ElovL5, Hmgcr and D6 Fad. Elongation factor alpha (EF-) was used as a 

reference gene in the liver as it displayed the highest degree of stability in comparison to 

other potential house keeping genes (See further details below). qPCR primer sequences and 

annealing temperatures are described in Table 3. All samples were run in duplicate and 

assays were preformed as follows 95
 o

C for 15 minutes and 45 cycles of 95
 o

C for 15s, anneal 

for 15s and 72
 o

C for 30s. This was followed by a temperature ramp from 70 – 90°C for melt-

curve analysis to verify that no primer–dimer artefacts were present and only one product was 

generated from each qPCR assay. Quantification was achieved by a parallel set of reactions 

containing standards consisting of serial dilution of spectrophotometrically determined, 

linearised plasmid containing partial cDNA sequences. 

qPCR normalisation and statistical analysis 

In the liver, geNorm analysis was carried out on three potential house keeping genes over the 

long day liver diel profile to determine the most stable and appropriate reference gene for this 

tissue. Of the three genes studied (-Actin, EF- and GAPDH) analysis highlighted elongation 

factor  (EF-) as the most appropriate housekeeping gene (Figure 2).  

 

  



Chapter 6 

226 
 

Table 3: Primer sequence information and annealing temperature for qPCR assays 

Gene  Primer Sequence F 5’-3’ Primer Sequence R 5’-3’ Anneal°

C  

Srebp

1  

GCCATGCGCAGGTTGTTTCTTCA  TCTGGCCAGGACGCATCTCAC

ACT  
63  

Srebp 

2  

TCGCGGCCTCCTGATGATT  AGGGCTAGGTGACTGTTCTGG  63  

Lxr  GCCGCCGCTATCTGAAATCTG  CAATCCGGCAACCAATCTGTA

GG  
58  

D6Fa

ds  

GTGAATGGGGATCCATAGCA  AAACGAACGGACAACCAGAC  60  

Elovl5

a  

ACAAGACAGGAATCTCTTTCAGA

TTAA  

TCTGGGGTTACTGTGCTATAGT

GTAC  
58  

Hmgc

r  

CCTTCAGCCATGAACTGGAT  TCCTGTCCACAGGCAATGTA  60  

Fas  ACCGCCAAGCTCAGTGTGC  CAGGCCCCAAAGGAGTAGC  60  

Bmal1  GCCTACTTGCAACGCTATGTCC  GCTGCGCCTCGTAATGTCTTCA  64  

Clock  AGAAATGCCTGCACAGTCGGAGT

C  

CCACCAGGTCAGAAGGAAGAT

GTT  

64  

Per 1  AGGGGGTCATGCGGAAGGGGAA

GT  

TGGGCCACCTGCATGGGCTCT

GT  

66  

Per 2  GCTCCCAGAATTCCTAGTGACAA

G  

GAACAGCCCTCTCGTCCACATC  60  

Rev-

erba  

CCCCCAAGACGAACCCAACAAG

AC 

AGAGGGAGGCAAAGCGCACCA

TTA 

61 

Ef1a  CTGGAGACGCTGCTATTGTTG  GACTTTGTGACCTTGCCGCTTG

AG  

61  

 

Analysis of Variance (ANOVA) was used to determine a significant effect of time and 

Turkey’s test was used to determine the significance of differences between sample time 

points and mean of different sample sets. (InStat® 3.1, Graphpad software inc). Data from 

each tissue/ photoperiod was then fitted to a cosine wave in order to determine the presence 

of a significant circadian rhythm. Raw data was analysed using acro circadian analysis 

programs (Refennetti R., University of South Carolina, USA; 
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http://www.circadian.org/softwar.html) Acro analysis determines both the significance, 

acrophase (peak in expression) mean and amplitude of raw data using the equation Y= A + B * 

cos (C *X –D) whereby Y is level of gene expression as a percentage of the mean A is the 

baseline, C is the frequency multiplier and D is the acrophase of the data set.(Davie et al. 

2009) A significant circadian rhythm was deemed present when p value was less than 0.05 

for all statistical analysis. The expression of a number genes involved in the circadian clock 

and genes involved in salmon parr liver lipid metabolism were was analysed over a 24h 

period in fish acclimated to a long day photoperiod (16L:08D). All results are presented in 

relation to zeitgeber time (ZT) where by ZT 00:00 occurred at lights on and lights of was at 

ZT 16:00.  

 

Figure 2: 24h expression of Actin, EF and Gapdh in the liver of Atlantic salmon parr 

acclimated to experimental long day photoperiod for potential use as a housekeeping gene in 

the liver. 

 

http://www.circadian.org/softwar.html
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4. RESULTS 

Rev-erb1α 

A 2984bp sequence was isolated which contained an 1818bp coding sequence and a 352bp 

5’untranslated region (UTR) and a 814bp3’ UTR (Figure 3). Within the coding sequence the 

predicted DNA binding domain and ligand binding can be seen (Figure 4). Phylogenetic 

analysis of the deduced amino acid sequence for Rev-erb1α in relation to other vertebrate 

Rev-erb1α & β sequences shows the transcript grouped within the teleost Rev-erb1α cluster 

with 65-77% identity with other vertebrate Rev-erb1α sequences (Figure 5).  
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3     ATG GGG GAG CAA AAC CAG GCC GAC TTG GAA ACT GCG GTT CAG ACC   47                                                                 

48    TGC ACC GAT AGA GCC TGT GAC AGC ATA GAC GCT TTT CGT AAT TTT   92                                                                   

93    TTT CAC TGG CAG TGC TCA CAG AGA AGT GAT TCA CAT TAC GCG GGA   137                                                                   

138   ACT TGC TCG ATA GCA GAT GCA TCC TTT GGT ATA GTT TAT TAA CCT   182                                                                   

183   TGG TTC TAA GTA TTT TAA TGA GTA TTC GAA CTC AAA CAG AGC TTT   227                                                                   

228   TAT TAT AGT TAC ATA ATG ACA TCG TTA TAR CAG AGA ATA GAG GAC   272                                                                   

273   CTG CTT TTT TGC CAA GAA CCT CGC CAG AAG GGA AAT TAT CCT TTC   317                                                                   

318   CTA AAC TGT TTT CTA TTT TCA CCG ATA TCT ATA TGA ATG TTT TGG   362 

                                                       M   F   W    2 

363   AGC TCA GGA TGG CAA CAA CAG CAA TGG ACA AAT AAC AAC AAT ACA   407 

3      S   S   G   W   Q   Q   Q   Q   W   T   N   N   N   N   T    17 

408   GGG GGC GTA ATC TCC TAC ATT GGC TCC AGT GGC TGC TCA CCG AAT   452 

18     G   G   V   I   S   Y   I   G   S   S   G   C   S   P   N    32 

453   CAC ACC AGC CCG GTG TCT ATG TAC AGT GAG AAC TCC TTC GGA GCC   497 

33     H   T   S   P   V   S   M   Y   S   E   N   S   F   G   A    47 

498   TCC TTC CCT CCC TCC CCC AAT GGT TCC CAG AGC TTC TCC AAT GCC   542 

48     S   F   P   P   S   P   N   G   S   Q   S   F   S   N   A    62 

543   TAC TCT GGC AGC GGC AGC TCC AGC TCC TCC AAT GGT GAT GAT GGC   587 

63     Y   S   G   S   G   S   S   S   S   S   N   G   D   D   G    77 

588   AAC TCC TCT TCC GGT TCC GGA GGG TCC CCA AGG CCT AGG GGT CGT   632 

78     N   S   S   S   G   S   G   G   S   P   R   P   R   G   R    92 

633   AAT GAC AGC AGC ATC TCT CGC TGC TCC CCC AGC AAG TCC GTG GCA   677 

93     N   D   S   S   I   S   R   C   S   P   S   K   S   V   A    107 

678   AGC CTT ACC AAA CTG AAT GGG ATG GTG CTG CTG TGT AAA GTG TGT   722 

108    S   L   T   K   L   N   G   M   V   L   L   C   K   V   C    122 

723   GGA GAC GTC GCC TCA GGC TTC CAC TAT GGG GTC CAT GCC TGT GAG   767 

123    G   D   V   A   S   G   F   H   Y   G   V   H   A   C   E    137 

768   GGC TGC AAG GGA TTC TTC CGA CGC AGT ATC CAG CAG AAC ATC CAG   812 

138    G   C   K   G   F   F   R   R   S   I   Q   Q   N   I   Q    152 

813   TAC AAA AAG TGC CTG AAG AAC GAG ACC TGC ACC ATC ATG AGG ATT   857 

153    Y   K   K   C   L   K   N   E   T   C   T   I   M   R   I    167 

858   AAC CGC AAC CGC TGC CAG CAG TGC CGC TTC AAA AAG TGT CTG TCC   902 

168    N   R   N   R   C   Q   Q   C   R   F   K   K   C   L   S    182 

903   GTG GGC ATG TCC CGC GAT GCT GTT CGC TTT GGC AGA ATA CCT AAA   947 

183    V   G   M   S   R   D   A   V   R   F   G   R   I   P   K    197 

948   CGT GAG AAG CAG CGC ATG CTG GCA GAG ATG CAG AGC GCC ATG AAC   992 

198    R   E   K   Q   R   M   L   A   E   M   Q   S   A   M   N    212 

993   AAC ATG AAC AAC ATG CAA AAC GAG TTC CAG CTG GCC AGC CTG ACT   1037 

213    N   M   N   N   M   Q   N   E   F   Q   L   A   S   L   T    227 

1038  CAC AAC TCT CCC CCT TCT CCC ACT TCC TCT TCT CCC TGC CCG GGT   1082 

228    H   N   S   P   P   S   P   T   S   S   S   P   C   P   G    242 

1083  CTG ACT GTG GCA CCC CAG CCT CAG GCC CTG CCT TTT GCC CCT TCC   1127 

243    L   T   V   A   P   Q   P   Q   A   L   P   F   A   P   S    257 

1128  CCT TCT CCT CCA GCA CAA GCT CCT GCT TCC CTT CTG CCC CCA CCA   1172 

258    P   S   P   P   A   Q   A   P   A   S   L   L   P   P   P    272 

1173  TCC ACC CAA AGC CCG CCA TTG TTG GCC AGC TCT CCA CCC CTG TGC   1217 

273    S   T   Q   S   P   P   L   L   A   S   S   P   P   L   C    287 

1218  CCC AGC CCT GGG GTG GAC TGC ACC ATA ACG GCC ATT GCC CGG GCG   1262 

288    P   S   P   G   V   D   C   T   I   T   A   I   A   R   A    302 

1263  CAC CGT GAG ACC TTC GTC TAC GCC CAC GAC AAG CTG GGC GAG TCC   1307 

303    H   R   E   T   F   V   Y   A   H   D   K   L   G   E   S    317 

1308  ACG AGA CAA CAT AAC GGA GAG GTG GAC AAC TGG GGC TCC AAC TAC   1352 

318    T   R   Q   H   N   G   E   V   D   N   W   G   S   N   Y    332 

1353  TGC CCT GCT GGC TAC CAT CAG AAC GGC CTC AAC ACA ATC TAC CAC   1397 

333    C   P   A   G   Y   H   Q   N   G   L   N   T   I   Y   H    347 

1398  CAC AAC AAC AAC GTG GCC CTC CAG CAC CAT GGC TTC CAC GCC ATG   1442 

348    H   N   N   N   V   A   L   Q   H   H   G   F   H   A   M    362 

1443  TCT GAC AGA CAT CAC CAG AAC AAC GGC AAG CAG TTC CAC AAC ACC   1487 

363    S   D   R   H   H   Q   N   N   G   K   Q   F   H   N   T    377 

1488  AAC CTG TTC GGG AGC CAC CAA AGC ACT GAG ACC AGC AGC GTC CCC   1532 

378    N   L   F   G   S   H   Q   S   T   E   T   S   S   V   P    392 

1533  CAG GGG CAG AAC TTC CCA TGG AAA AAC CAC AAG GAC ATT GTG CTG   1577 

393    Q   G   Q   N   F   P   W   K   N   H   K   D   I   V   L    407 

1578  GCA TGT CCA ATG AAC ATG TAC CCC CAA GAC GAA CCC AAC AAG ACC   1622 

408    A   C   P   M   N   M   Y   P   Q   D   E   P   N   K   T    422 

1623  CCC CAG GAG ATC TGG GAA GAC TTC TCA CTC AGC TTC ACG CCG GCT   1667 

423    P   Q   E   I   W   E   D   F   S   L   S   F   T   P   A    437 
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1668  GTG CGT GAG GTG GTG GAG TTC GCC AAG CAC ATT CCA GGG TTC AGT   1712 

438    V   R   E   V   V   E   F   A   K   H   I   P   G   F   S    452 

1713  GCA CTC TCY GAG AAC GAC CAA GTC ACC CTG CTC AAG GCC GGC ACC   1757 

453    A   L   X   E   N   D   Q   V   T   L   L   K   A   G   T    467 

1758  TTT GAG GTC TTA ATG GTG CGC TTT GCC TCC CTC TTC AAC ATG AAG   1802 

468    F   E   V   L   M   V   R   F   A   S   L   F   N   M   K    482 

1803  GAG CAG ACT GTC ACC TTC ATC TCG GGT ACC ACC TAC AGC CTG GAG   1847 

483    E   Q   T   V   T   F   I   S   G   T   T   Y   S   L   E    497 

1848  GCC CTG AAG GGC ATG GGC ATG GGA GGC TTG CTA GAC ACC ATG TTT   1892 

498    A   L   K   G   M   G   M   G   G   L   L   D   T   M   F    512 

1893  GAA TTC AGC GAG AAG CTC AAC TCC CTG GAG CTC ACG GCC GAG GAG   1937 

513    E   F   S   E   K   L   N   S   L   E   L   T   A   E   E    527 

1938  CTG GGT CTC TTC ACC GCT GTA GTG CTA GTG TCT GCA GAT CGC TCA   1982 

528    L   G   L   F   T   A   V   V   L   V   S   A   D   R   S    542 

1983  GGC ATC GAG AAC CTA AAC TCT GTG GAG CTG CTT CAG GAG TCT CTG   2027 

543    G   I   E   N   L   N   S   V   E   L   L   Q   E   S   L    557 

2028  ATC AAA GCG CTG CGT GCC CTG GTC AGC AAG AGC AAC CCC TGC GAC   2072 

558    I   K   A   L   R   A   L   V   S   K   S   N   P   C   D    572 

2073  GCC TCT CGC TTC ACC AAG CTG CTG CTC AAG ATG CCC GAC CTG CGC   2117 

573    A   S   R   F   T   K   L   L   L   K   M   P   D   L   R    587 

2118  ACA CTC AAC AAT GTG CAC TCA GAG AAG CTG CTG TCC TTC CGC ATC   2162 

588    T   L   N   N   V   H   S   E   K   L   L   S   F   R   I    602 

2163  GAC GTA TAA GAC TGT CAC CAC TGA TGA CAA GAA AAC CCA TCT GGA   2207 

603    D   V   *                                                   

2208  CCC GTC GCC CAT CTC CAC CTC ACA GAC AGT GGT GGT TGG GCG GCT   2252 

2253  AAG GTG CGG GGC AAG TTT GGG GAG GTG ACA GGG GAT CTG ATT CCG   2297                                                                   

2298  CCT GCT CGC TTG CTC CCT TCA GGG ACA CCC GCC TCC GAG TTG ACT   2342                                                                   

2343  GAT GTG CGC ATC AGC CAA TGA CAT GGC CGA AAG ACA TTG ACT GAC   2387                                                                   

2388  AAC TGA TAG GGG TAA GGC CAA TAG ACC CAT GGA GAT TAG GGA GAC   2432                                                                   

2433  AAA GCC CTC TAC ATA AAT TAT TTT TGG AGG TTG GGG TGG TCG CAG   2477                                                                   

2478  CTC AAG ACT GCC CAG AAC AAG TGC CCC CTC TAC ACC AGC TGG TCT   2522                                                                   

2523  GAG GGG GCC AGA GAC CAT TTG TTG GTT GAG CCG AAC CAA AAG AAG   2567                                                                   

2568  CAA TTG GGC TTT ACT ACC CCA CAT GTC CAG CTA GGC CTG GTT CCT   2612                                                                   

2613  TCC AAG ATT CTG CTA GAT GCA TTT TAA AAC CAT CTG CTC TGT TTT   2657                                                                   

2658  ATC ATG ACT GTA AAT AAT TAG TAA AAT ATG TGC AGT GTT GTA AAC   2702                                                                   

2703  TTT ATT CAT ACT CCA AAC TGA GTT TGT ACA AAT TTG TAA ATA TCT   2747                                                                   

2748  AGC TAC AAA CAT CAA TAA GCT TAA CTT GAA ATG TTT GAA AAA TGT   2792                                                                   

2793  GTA TAA TAT ATA TAT TTT TTT GTT AAG ATG AAA TTC TCT AGT GCT   2837                                                                   

2838  CAT AGT TAT AAA TGT GTG GGT ACA AAT GTA TAA AAT ACA AAT TGA   2882                                                                   

2883  GTG TAT GCG TAC AAA AAA TAA TAT CCA GAA CTG TAT TTC AAA AAT   2927                                                                   

2928  GTT TTA TGT AAT GAA GAC AAT TAT AAA AAA AAA AAA AAA AAA AAA   2972                                                                   

2973  AAA AAA AAA AAA   2984 

 
 

Figure 3: Atlantic salmon Rev-erb sequence with deduced protein sequence. 
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                       10         20         30         40         50         60         70         80                       

              ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  

S. Salar      ---------- ---------- --------MF WSSGWQ---- ----QQQWTN NNNTGGVISY IGSSGCSPNH TSPVSMYSEN   

O. Niloticus  MPLCEEQPPP RARRFKRAAA AQRRGGKVCH WGTRLSPRSH VTTAAMDTNN NNNSGGVISY VGSSGGSPTR TSPVSMYSEN   

D. Rerio      ---------- ---------- ---------M TLLGLN---- ----MTTAVD TNNTGGVISY IGSCGGSPNR TSPVSMYSEN   

H. Sapiens    ---------- ---------- ---------- ---------- ----MTTLDS NNNTGGVITY IGSSGSSPSR TSPESLYSDN   

 

                       90        100        110        120        130        140        150        160                

              ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  

S. Salar      S--------- --FGASFPPS PNGSQSFSNA YSG------- SGSSSSS-NG DDGNSSS--G SGGSPRPRGR NDXSXSRCSX   

O. Niloticus  SN-------- ---SQSFFTS ---SSSLTPP FLS------- SGSSSGS-AG DDGSSSASSS AGGSPR--GR DDGGSLRTSP   

D. Rerio      SNSSMQSLTQ PCFGSSFPPS PNGSHDSSRM YTS------- SSSSSSSGSG EDGNSS---C SGGSPR--GR DDGGSARNSP   

H. Sapiens    SNGSFQSLTQ G-CPTYFPPS PTGSLTQDPA RSFGSIPPSL SDDGSPSSSS SSSSSSSSFY NGSPPGSLQV AMEDSSRVSP   

 

                      170        180        190        200        210        220        230        240               

              ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  

S. Salar      SKSVASLTKX NGMVLLCKVC GDVASGFHYX VHACEGCKGF FRRSIQQNIQ YKKCLKNETC TIMRINRNRC QQCRFKKCLS   

O. Niloticus  SKSVASLTKL NGMVLLCKVC GDVASGFHYG VHACEGCKGF FRRSIQQNIQ YKKCVKNESC TIVRINRNRC QQCRFKKCLS   

D. Rerio      NKSVATLTKL NGMVLLCKVC GDVASGFHYG VHACEGCKGF FRRSIQQNIQ YKKCLKNETC TIMRINRNRC QQCRFKKCLS   

H. Sapiens    SKSTSNITKL NGMVLLCKVC GDVASGFHYG VHACEGCKGF FRRSIQQNIQ YKRCLKNENC SIVRINRNRC QQCRFKKCLS   

 

                      250        260        270        280        290        300        310        320               

              ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  

S. Salar      VGMSRDAVRF GRIPXREKQR MXAEMQSXMN XMNN--MQNE FQLASLTHX- -----SPPSP TSX---SPCP GLTVAPQPQ-   

O. Niloticus  VGMSRDAVRF GRIPKREKQR MLAEMQSAMN NMVNDQLQSD FQLASLSSS- -----SSSSS SSS---SPCP GVTIAPQPQP   

D. Rerio      VGMSRDAVRF GRIPKREKQR MLAEMQNAMN NMVNNQLQNE FQLASITSNT PCPSSSSPSN TSSSSSSPCP GLTVGPQPQP   

H. Sapiens    VGMSRDAVRF GRIPKREKQR MLAEMQSAMN LANN------ -QLS------ ---------- ------SQCP -LETSPTQHP   

 

                      330        340        350        360        370        380        390        400               

              ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  

S. Salar      -ALPFAPS-P XPPXQAPASL LPPPSTQSPP LLASSPPLCP SPGVDCTITA IARAHRETFV YAHDKLGEST RQHNG-EVDN   

O. Niloticus  SALPPAPSSP SPPASASSSS PPPPPLPAHQ RSSPSCSPPP SPGMDSTISA IARAHRETFL YAHDKLANNH IHHNG-EAEL   

D. Rerio      PAVPVAQS-P SSP--APTSP T-VQLAQSPP PLTSTPPPCT SPGVDKTIAA ITRAHRETFI YAHDKLGSPL LPHNS-ELDN   

H. Sapiens    TPGPMGPS-- PPP--APVPS PLVGFSQFPQ QLTPPRSPSP EPTVEDVISQ VARAHREIFT YAHDKLGSSP GNFNANHASG   

 

                      410        420        430        440        450        460        470        480               

              ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  

S. Salar      WGSNYCPAGY HQNGLNTIYH HNNNVALQHH GFXAM-SDR- ---------- ---HHQNXGK QFHNTNLFGS HQSXETSSXP   

O. Niloticus  WQPNRCPNGY HANGLNTIYH HNNNLAAECY LPENS-RTH- ---------- ---HHRSNGR Q--------S QQSGPAGHVT   

D. Rerio      RSNNRCMAGY HLNGHNTIYH HDNNVAHHCN NFEVQ-QDNS LHFQASQTPE KHQQHNNNSQ RPPNSNFYSI HHGTRDEQRI   

H. Sapiens    SPPATTPHRW ENQGCPPAPN DNNTLAAQRH NEALNGLRQA PSSYPPTWPP GPAHHSCHQS NSNGHRLCPT HVYAAPEGKA   

 

                      490        500        510        520        530        540        550        560               

              ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  

S. Salar      QXQNFPWKNH KDIVLACPMN MXPQDEPNKT PQEIWEDFXL SFTPAVREVV EFXKHIPGFS ALXENDQVTL LKAGTFEVLM   

O. Niloticus  QEQRCPVKKQ TGIVLACPMN MQPHADPSKT PQQIWEDFSL SFTPAVREVV EFAKHIPGFS DLSQNDQVTL LKAGTFEVLM   

D. Rerio      PGSELSMEKH KEILLACPMN MHPYSDPNKT PQEIWEDFSL SFTPAVREVV EFAKHIPGFS TLSQNDQVTL LKAGTFEVLM   

H. Sapiens    PANSPRQGNS KNVLLACPMN MYPHGRSGRT VQEIWEDFSM SFTPAVREVV EFAKHIPGFR DLSQHDQVTL LKAGTFEVLM   

 

                      570        580        590        600        610        620        630        640               

              ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....|  

S. Salar      VRFASLFNMK EQTVTFISGT TYSLEALKGM GMGGLLDTMF EFSEKLNSLE LTAEELGLFT AVVLVSADRS GIENLNSVEL   

O. Niloticus  VRFASLFNMK EQTVTFVSGA TYSLEELRAM GMRDLLGAMF DFSHKLAALE LDSEELGLFT AVVLVSADRS GIEDVVSVEQ   

D. Rerio      VRFSSLFNVK EKTVTFISGA TYSLEALKSM GMGDLLGTMF DFSEKLNSLE LSAEELGLFT AVVLVSADRS GIENVNSVEM   

H. Sapiens    VRFASLFNVK DQTVMFLSRT TYSLQELGAM GMGDLLSAMF DFSEKLNSLA LTEEELGLFT AVVLVSADRS GMENSASVEQ   

 

                      650        660        670        680        690        700             

              ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| .. 

S. Salar      LQESLIKALR ALVSKS---N P------CDA SRFTKLLLKM PDLRTLNNVH SEKLLSFRID V-  

O. Niloticus  LQENLIRALR SLVNKSP-VA PESEHLDVDS PRFTKLLLKL PDLRTLNNMH SEKLLSFRID V-  

D. Rerio      LQESLIRALR TLVSKS---A P------TDA SRFTKLLLKL PDLRTLNNMH SEKLLSFRID A-  

H. Sapiens    LQETLLRALR ALVLKNRP-- -------LET SRFTKLLLKL PDLRTLNNMH SEKLLSFRVD AQ  

 

Figure 4: Alignment of the deduced amino acid sequence for salmon, tilapia, zebrafish and 

human Rev-erbα. The conserved amino acids are shaded. Predicted DNA binding domain 

(top) and ligand binding domain (bottom) identified using a CDD search (Marchler-Bauer et 

al. 2011) are boxed. 
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Figure 5: Phylogenetic analysis of the deduced amino acid sequence for Rev-erb1α in 

relation to other vertebrate Rev-erb1α & β sequences The evolutionary history was inferred 

using the Neighbor-Joining method (Saitou & Nei, 1987). The percentage of replicate trees in 

which the associated taxa clustered together in the bootstrap test (500 replicates) are shown 

next to the branches (Felsenstein, 1985). The evolutionary distances were computed using the 

Maximum Composite Likelihood method (Tamura et al., 2004) and are in the units of the 

number of base substitutions per site. Phylogenetic analyses were conducted in MEGA4 

(Tamura et al., 2007). 

Liver lipid and cholesterol homeostasis gene expression  

Of the five clock genes investigated all were expressed in the liver. However, only Bmal 1 

displayed a significant circadian pattern of expression when results were fitted to a cosine 

wave using Acro analysis (Refinetti 2006). Amongst the genes involved in the liver lipid 

metabolism Lxr and Srebp1 displayed a significant circadian profile of expression. However 

for LxR no significant effect of time was observed when expression per time point was 

analysed by ANOVA and turkey’s test for difference. The acrophase of both Bmal1 and 

Shrebp1 occurred at between 3 and 4 hours prior to lights off at ZT13:00±3.9 and 13:00±2.4 

respectively. Peak Lxr expression occurred at ZT 13:00±2.7, (see Table 4 and Figure 6). 
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Table 3: P value of 24h profiles of gene expression Acro and ANOVA analysis and 

acrophase where significant rhythm is present. 

 Acro   ANOVA 

Gene P value  Acrophase 

ZT  

P value 

Bmal1  <0.05  13:00±3.9  <0.05 

Clock  >0.05  -  <0.05 

Per 1  >0.05  -  >0.05 

Per 2  >0.05  -  <0.05 

Rev-erb a  >0.05  -  >0.05 

D6Fads  >0.05  -  >0.05 

Elovl5a  >0.05  -  >0.05 

Fas  >0.05  -  >0.05 

Hmgcr  >0.05  -  <0.05 

Lxr  <0.05  13:00±2.73  >0.05 

Srebp1  <0.05  13:00±2.41  <0.05 

Srebp 2  >0.05  -  >0.05 
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Figure 6: 24h expression profiles of clock genes and genes involved in the liver lipid 

metabolism in the liver of salmon parr acclimated to LD photoperiod. Results are displayed 

in relation to Zeitgeiber time (ZT), whereby ZT 0 is the onset of light. Gene expression data 

is displayed as the percentage of the mean ± the SEM and includes the spread of the data.The 

presence of a cosine wave denotes a significant circadian rhythm by acro analysis.  The 

presence of different letters represents statistically significant difference between samples by 

way of ANOVA and Turkeys test where by P<0.05  
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5. DISCUSSION 

In vertebrates it is now recognised that the expression of a number of genes involved in 

cholesterol, bile acid and liver fatty acid homeostasis are under circadian regulation (Le 

Martelot et al. 2009). In the Atlantic salmon lipid and cholesterol regulation is an area of 

considerable interest, in particular, the regulation of dietary lipid uptake and the optimisation 

of polyunsaturated fatty acids synthesis with regard to human consumption. Understanding 

the molecular mechanisms underpinning fatty acid homeostasis and potential endogenous 

regulation is an essential component of this. In order to provide a preliminary evidence for 

the role of the circadian clock in cholesterol and fatty acid homeostasis the mRNA expression 

of five clock genes, Bmal1, Clock, Per1, Per2 and Rev-erb, and seven genes involved in 

the regulation of lipid metabolism, D6 Fad, Elovl5a, Fas, Hmgcr, Lxr Srebp1 and Srebp2, 

were measured over a 24h period in the liver. Long day liver cDNA from chapter 3 was used 

for the current investigation as rhythmic clock gene expression in the brain was previously 

observed (Chapter 3).  

Results showed that the clock gene Bmal1 in addition to Srebp1 and Lxr were rhythmically 

expressed in the salmon liver. Mammalian homologues of these genes have also been shown 

to follow a circadian pattern of expression over a 24h period. In rodents Srebp1a is known to 

be regulated by the circadian clock via the actions of Rev-erb and in mice rhythmic 

expression of Srebp1c has been observed in the liver (Le Martelot et al. 2009) and adipose 

tissue (Yang et al. 2006). In salmon Srebp1 mRNA displayed a circadian profile with a peak 

of expression at ZT 12:24 during the photophase of the LD cycle. This is not consistent with 

previous reports in mice where the acrophase of Srebp1expression occurred during the dark 

phase. In addition Fas mRNA profile was not significantly rhythmic in salmon as opposed to 

previous findings in rodents. Le Martelot et al (2009) reported the circadian expression of 

Fas mRNA in mice to be regulated via the action of the SREBP1c protein in Rev-erb  



Chapter 6 

236 
 

knockout mice. In the Atlantic salmon only one Srebp1 isoform has been identified that 

displays considerable similarities in sequence identity with the mammalian Shrebp1a and 

Shrebp1c (Morais et al. 2011). However despite the rhythmic expression of Srebp1 in the 

Atlantic salmon liver Fas did not display a circadian profile of mRNA expression. Moreover 

previous reports have described Fas mRNA expression as being strongly associated with 

dietary composition (Morais et al. 2011). In salmon the expression of Hmgcr was not 

circadian, although mRNA expression was significantly different with elevated expression at 

ZT 10:00 in comparison to ZT22:00. This contrasts with rodents where Hmgcr displays a 

circadian profile of expression and the acrophase occurred during the night (Sahar & 

Sassone-Corsi 2012) or at the onset of the scotophase at ZT 12:00. Similarly in humans 

HMGCR enzyme activity is elevated during the night. Consequently cholesterol lowering 

drugs that target HMGCR as the rate limiting enzyme in cholesterol biosynthesis work more 

effectively at night (Sahar & Sassone-Corsi 2012). In mammals circadian regulation of 

cholesterol and lipid homeostasis additionally occurs via Lxr and the corresponding protein 

LXR. 

In salmon Lxr displayed a statistically significant circadian regulation. In mammals LXR is 

thought to be regulated by clocks via Rev-erb However regulation appears to be at protein 

level as opposed to transcriptional level of mRNA expression. Consequently Lxr mRNA is 

not rhythmically expressed however circadian rhythms are observed in protein levels and 

activity in mammals. In mice mRNA levels of lxr and lxr remain unchanged in Rev-erb  

knockout compared to wild type mice (Akhtar et al. 2002). In salmon Lxr mRNA did display 

a statistically significant circadian regulation. In salmon initial differences in the circadian 

expression of a number of genes in comparison to mammals were observed and further 

evidence is required to determine if this may be attributed to differential expression of clock 

genes in the liver. In rodents REV-ERB is considered to be fundamental in the in clock 
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mediated regulation of the SREBP pathway (Figure 1)(Le Martelot et al. 2009). Accordingly 

Rev-erb mRNA displays robust circadian expression in the mammalian liver in addition to 

other metabolically important tissues such as adipose tissue and muscle (Yang et al. 2006). In 

the liver of the Atlantic salmon this was not the case. Rev-erb mRNA was not rhythmically 

expressed and there was no statistical difference between diurnal and nocturnal levels of 

mRNA as has previously been reported in rodents. In mammals Rev-erb  is the key 

connection between the liver molecular clock and the liver lipid metabolism. In order to 

investigate such processes in the Atlantic salmon it was necessary to identify and characterise 

the Rev-erb  gene in the Atlantic salmon. A 2984bp sequence was isolated containing 

1818bp of coding sequence. The sequence identified bared considerable similarity to other 

vertebrate Rev-erb sequences. Within the coding sequence a DNA binding domain and ligand 

binding regions were identified. A 2984bp sequence was isolated which contained an 1818bp 

coding sequence and a 352bp 5’untranslated region (UTR) and a 814bp3’ UTR. 

 

In mammals a number of other clock genes have been shown to cycle over 24h in the liver 

including Bmal1 and Per genes. In mice the acrophase of Bmal, Per1 and Per2 occurred 

between ZT 10:00-14:00 and 14:00 – 18:00 respectively (Akhtar et al. 2002). This is in 

accordance with current results where peak Bmal1 expression occurred at approximately 

ZT13:00h. In contrast to results obtained in mice, Per1 and Per2 were not rhythmically 

expressed in the salmon liver. In rodents the cyclic expression of genes involved in lipid 

metabolism and cholesterol homeostasis is largely attributed to top down-regulation from the 

suprachiasmatic nucleus (SCN), known as the master circadian oscillator, via Rev-erb  and 

the positive and negative components of the molecular feedback loop.The SCN has been 

shown to mediate cyclic expression of rhythmically expressed genes in the mouse liver 
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(Akhtar et al. 2002). When the intact SCN is lesioned or destroyed the hepatic expression of 

clock genes Per2 and Bmal1 amplitude of circadian rhythm was considerably suppressed 

(Akhtar et al. 2002). Significant rhythmic expression of genes not part of the core circadian 

clock was also abolished in liver in the absence of an intact SCN (Akhtar et al. 2002). In mice 

it is clear that the expression of clock genes and a number of clock controlled genes in the 

liver is highly regulated by the SCN. It is thought that this extends to the regulation of 

rhythmically expressed genes involved in cholesterol and lipid homeostasis in the liver. In 

mammals the SCN is fundamental in the synchronisation of molecular clocks and biological 

rhythms in central and peripheral tissues. However in teleosts the hierarchical structure of 

clocks is not so clear and the presence of an SCN or SCN-like structure has yet to be 

identified. Amongst teleosts the majority of work on clocks has been conducted in the 

zebrafish. In contrast to mammals peripheral clock gene oscillations are not under the control 

of a SCN-like structure but clocks are self sustaining and individually entrainable by light and 

have been documented persisting in in vitro tissue culture experiments and cultured cell lines 

(Carr et al. 2006; Kaneko et al. 2006; Vatine et al. 2011; Whitmore et al. 1998). It has been 

hypothesised that each cell is photoreceptive with possible candidates including extra retinal 

opsins, flavin containing oxidase and photoreceptive cryptochrome genes (Vatine et al. 

2011). Previous work in the Atlantic salmon, as described in chapter 3, has shown clock gene 

expression in the liver in comparison to central tissues. Moreover 24h profiles of gene 

expression differed with regard to differing seasonal photoperiod. Consequently results from 

this chapter and chapter 3 provide evidence of functional clocks in the liver with the potential 

to regulate a number of physiological processes.  

This study has shown the significant circadian expression of important genes in the regulation 

of cholesterol and lipid homeostasis in Srebp1 and Lxr. However in this preliminary 

investigation we are unable to determine whether this is a result of regulation by the circadian 
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clock or food availability. In higher vertebrates the genes involved in the cholesterol and lipid 

metabolism are additionally regulated by the feeding/ fasting cycle and diet. In mammals the 

SREBP pathway and target genes have been shown to be regulated by food (Horton et al. 

1998; Le Martelot et al. 2009; Schibler et al. 2010). In fish, as in rodents, food has been 

shown to entrain clocks in the liver and result in altered rhythms in clock gene expression 

between the central tissue and the liver (Damiola et al. 2000; Stokkan et al. 2001). In both 

goldfish and zebrafish the expression of clock genes in the liver has been attributed to feeding 

(Feliciano et al. 2011; Lopez-Olmeda et al. 2010). This is most likely a result of the presence 

of food availability as a zeitgeber signal in the liver. Under constant conditions (24 hours 

light) feeding time was able to entrain Per1 rhythms in the liver (Lopez-Olmeda et al. 2010). 

However central clock regulation in the liver and potential control of SREBP pathway 

remains to be characterised in fish. 

Peripheral clocks such as those in the liver are considered to be highly flexible and have the 

capacity to be synchronised by a number of entrainment cues and are modulated by a variety 

of different pathways. In particular, in fish, clockwork mechanisms in the liver have been 

demonstrated to be entrained by photoperiod, food availability and temperature (Feliciano et 

al. 2011; Lopez-Olmeda et al. 2010). In mammals a variety of regulatory mechanisms have 

been hypothesised including the role of clock gene Per1, feeding (via PPARa and heat shock 

proteins), glucocorticoid signals from the SCN and cytoskeleton signalling (Escobar et al. 

2009; Schibler et al. 2010). However the mechanisms linking feeding as a zeitgeber signal, 

clocks in the liver and rhythmically expressed lipid metabolism genes in the liver are not 

understood, particularly in teleosts. 
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6. CONCLUSIONS 

In summary the current investigation provides preliminary evidence for the circadian 

expression of a number of genes involved in cholesterol and lipid homeostasis in the liver. In 

the Atlantic salmon Bmal1, Srebp1 and Lxr were all rhythmically expressed in the liver. 

Furthermore peak expression for Bmal1 in the present study match previous results obtained 

in mammals. However in contrast to previous results in mice the rhythmic mRNA expression 

of SREBP target genes was not observed in the Atlantic salmon. Moreover the diurnal 

elevation of Hmgcr contrasts with the nocturnal peak in the expression of the same gene in 

rodents. In mammals the molecular components of the liver lipid metabolism, as described 

above, are regulated by clock genes via Rev-erb The mRNA expression of which is 

circadian in nature (Le Martelot et al. 2009). However in the Atlantic Salmon Rev- erb was 

constitutively expressed over a 24h period in the liver. The significance of this is unknown in 

the Atlantic salmon requires and further investigation. Any future investigations will first 

need to determine whether the genes involved in cholesterol and lipid homeostasis display 

significant circadian expression in the liver independently from feeding. Furthermore the 

identification of other genes involved such as CYP7A1or Insig2 and identification of 

Regulation by other nuclear receptors such as Ppar  and may also be beneficial to future 

research in this area. 
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CHAPTER 7 

 

 

 

SUMMARY OF CONCLUSIONS 
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SUMMARY OF CONCLUSIONS 

The section below details a summary of the main findings and conclusions from each chapter. 

Chapter 3: Seasonal melatonin and clock gene expression in the brain, fin and liver of 

the Atlantic salmon (Salmo salar). 

 Large differences in the presence and phase of significant circadian rhythms in clock gene 

mRNA expression was shown between the brain, fin and liver in experiment 1. 

 Daylength dependent clock gene expression was observed in the brain and liver for Clock 

and Period genes. In the brain both Clock and Per2 were rhythmically expressed under 

long day photoperiod in contrast to previous reports of SD dependent expression. 

However no apparent consensus between genes and 24h circadian expression between 

experement1 and 2 was found. 

 Amplitudinal changes were present, in mean clock gene expression between seasonal 

sample points. Mean expression individual clock genes responded differently to seasonal 

sample point and amplitudinal changes differed between experiments 1 and 2 inferring 

that changes can not be accounted for by photoperiod alone and may be dependent on 

other factors such as salinity, temperature or life history.  

 Seasonal amplitudinal differences in mean nocturnal levels of melatonin were observed 

and could not be accounted for by photoperiod alone as results differed between artificial 

and SNP photo treatments. 
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Chapter 4: Photoperiod regulation of Deiodinases, Eyes absent 3 and Thyroid stimulating 

hormone betain the Atlantic salmon (Salmo salar). 

 Genes involved in the mammalian molecular switch for photoperiod responsiveness in 

mammals (Dio1, Dio2, Dio3, Eya3 and CCAATs ) displayed photoperiod differences in 

expression when analysed by microarray. 

 qPCR studies revealed daylength dependent differences in the circadian and mean 

expression of Dio1 – 3, Eya3 and Tsh. Dio2 and Dio3 were responsive to LD and SD 

photoperiods, respectively. However Eya3 and Tsh were responsive to SD photoperiod 

in microarray validation and LD photoperiod in qPCR study. 

Chapter 5: Comparative study of clock gene expression and melatonin in the Atlantic 

salmon (Salmo salar) and European seabass (Dicentrarchus labrax) pineal. 

  Significant circadian clock gene expression was present in vivo but was absent in vitro in 

the Atlantic salmon pineal. 

 Constitutively elevated Aanat2 mRNA expression in the Atlantic salmon was present 

under all conditions. In the seabass significant circadian, nocturnally elevated, Aanat2 

mRNA expression was observed. 

 Comparative post hoc in silico analysis of the Atlantic salmon and European seabass 5’ 

promoter region of the Aanat2 gene reviled the presence of conserved E-box elements in 

a location similar to that previously describe in teleosts with clock controlled Aanat2. In 

the Atlantic salmon no functional E-box element was present in the promoter of the gene. 
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Chapter 6: Circadian expression of clock genes, Sterol Regulatory Element-Binding 

Proteins and SREBP targets in the liver of the Atlantic salmon. 

 Rhythmic expression of Bmal and liver lipid genes Srebp1 and Lxr was observed in liver 

of LD acclimated Atlantic salmon parr. However in contrast to mammals Per1, Per2, 

Fas, and Rev-erb  did not display significant circadian rhythmicity in salmon. 
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CHAPTER 8 

 

 

 

GENERAL DISCUSSION 
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GENERAL DISCUSSION  

This investigation was undertaken in order to gain a better understanding of photoperiod 

regulation of molecular clocks and the genes involved in the seasonal control of physiology 

in the Atlantic salmon (Salmo salar). The molecular components of the circadian clock are 

relatively well characterised in mammals and involvement of clock genes and circadian 

melatonin production from the pineal has been demonstrated in the regulation of seasonal 

physiology, in particular via deiodinase regulation of thyroid hormone bioactivity (Dardente 

et al. 2010). In teleosts the majority of work has been carried out in the zebrafish where the 

expression of clock genes has now been relatively well described in a wide variety of tissues 

and cell types (Vatine et al. 2009). However the zebrafish is a tropical species lacking distinct 

seasonal organisation of physiology. The Atlantic salmon, on the other hand, is a highly 

seasonal teleost species displaying a high level of temporal organisation of its physiology 

(Davie et al. 2009). Furthermore photoperiod, melatonin and clock genes have all been 

associated with seasonal migration; maturation and reproduction in salmonid species (Aubin-

Horth et al. 2005; Leder et al. 2006; Randall et al. 1995).  

Davie et al (2009) demonstrated photoperiod dependent circadian expression of clock genes, 

i.e. Clock, Bmal and Per2 in the Atlantic salmon brain, inferring the presence of a functional 

circadian clock under a short day as opposed to long day seasonal photoperiod. This thesis set 

out to further investigate the photoperiod control of clock and seasonal gene expression in the 

species. In order to achieve this, four primary lines of investigation were established. Chapter 

3 focuses was to determine whether circulating melatonin and clock gene expression in the 

brain, fin and liver are subjected to differential regulation by experimental and simulated 

natural seasonal photoperiod treatments. This led to chapter 4 which looked at the expression 

of genes involved in the molecular switch for photoperiod response in mammals (Dio1-3, 

Eya3 and Tsh Chapter 5 then progressed to the pineal and the expression of clock genes in 
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vivo and in vitro and expression in relation to melatonin production in salmon in comparison 

to European seabass. The final experimental chapter (Chapter 6) provides one of the first 

examinations of a functional output of clocks in the Atlantic salmon targeting hepatic clocks 

and regulation of the liver lipid metabolism, an area of considerable commercial interest 

within the aquaculture industry. The following discussion outlines the key conclusions drawn 

from the four experimental chapters and the potential for future research in these areas.  

During early studies it became apparent that clock genes are not homogeneously expressed in 

the Atlantic salmon across different tissue types. Results showed significant differences in 

clock gene expression with regard to the presence and phase of a significant circadian 

rhythm, between the brain, and peripheral tissues. The presence of differential clock gene 

expression have previously been described between the brain and the liver in Atlantic salmon 

post-smolts acclimated to a 12L: 12D photoperiod (Huang et al. 2010b). However it is 

difficult to make comparisons with the present investigation due to the different 

environmental conditions and physiological stages (freshwater vs. marine stages). Amongst 

other species of teleost fish there have been contrasting reports concerning the expression of 

clocks in central and peripheral tissues. In the zebrafish comparative circadian clock gene 

expression has been described in a wide variety of tissue and cell types (Whitmore et al. 

1998). Moreover rhythms in mRNA expression have been shown to persist and have the 

capacity to be photo entrainable even when isolated in organ and cell culture (Whitmore et al. 

2000). In other fish species such as the European seabass (Dicentrarchus labrax) (Sanchez et 

al. 2010) and Golden rabbitfish (Siganus corallinus) (Park et al. 2007) comparable Per1 

expression has been reported in brain, heart and liver and in the brain, retina and the liver 

respectively. However in the goldfish (Carassius auratus) differential expression of Per1-3 

and Cry1-3 was reported between retina, liver and the gut tissues (Velarde et al. 2009). 

Amongst teleosts clock gene expression appears to be species and tissue specific. The 
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differences in central and peripheral expression may be a consequence of the potential 

presence a hierarchal structure present in the Atlantic salmon clock work. 

A comparatively well described hierarchal structure for the mammalian circadian axis has 

now been described. Fundamental to this is the existence of the SCN as a central circadian 

pacemaker acting to synchronise clock gene oscillations throughout the body. However 

amongst teleosts no such structure has been identified. As previously described initial work in 

the zebrafish suggested each cell has the capacity to be entrained by light and sustain 

endogenous clock gene oscillations under constant conditions (Whitmore et al. 1998). The 

absence, as yet, of master circadian clock or SCN-like structure in teleosts lead to the 

hypothesis that the clear hierarchical structure observed in mammalian clocks may not be 

present in fish.  

Despite more recent research suggesting the lack of a master circadian pacemaker in teleosts 

the evidence for a central oscillator in fish was reviewed by Holmqvist, Ostholm and Ekstrom 

in a 1992 book chapter of the same name. The authors summarised that the brain and neural 

organisation of vertebrates was varied and had the potential to be species specific. The review 

then suggested that a central oscillator in fish may not be present in the same location as in 

mammals and birds. The review then focused on areas of retinohypothalamic innervations in 

the Atlantic salmon as sites of a potential central oscillator. The authors identified 

hypothalamic areas located close to the floor of the third ventricle and the ventral 

hypothalamus in addition to the anterior periventricular nucleus as areas of particular interest. 

In addition to receiving an input from the retina there are a number of similarities between 

these structures and central oscillators in other vertebrates. For example the anterior 

periventricular nucleus is composed of densely packed neurons as in the SCN. However the 

presence of endogenous rhythmic activity in these regions is yet to be described. Possible 

future work should focus on the localisation of clock gene expression in the brain and pineal 
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organ of the Atlantic salmon using laser microdissection techniques. In situ hybridisation 

expression studies for a number of clock genes would be of assistance in determining 

concentrated regions of clock gene expression in the brain and whether or not differential 

circadian expression occurs throughout different central brain structures and the pituitary or 

the pineal organ. This could potentially lead to the identification of a master circadian 

oscillator that may be present within the Atlantic salmon brain. 

Within the mammalian brain the SCN, the master circadian clock, synchronises clock gene 

expression and regulates physiology via hormonal and neural outputs (Maywood et al. 2007). 

The SCN relays information and establishes connectivity between clocks, thus constituting 

the hierarchical structure of the clock (Maywood et al. 2007). This then enables the 

synchronisation of physiology to the external environment. In terms of hormonal signalling 

the best described example of this is SCN regulation of nocturnally produced pineal 

melatonin. The melatonin signal binds to melatonin receptors in central and peripheral tissues 

and synchronises most physiological functions to environmental photoperiod often via the 

expression of clock genes, as described in the mammalian PT (Foster & Kreitzman 2009). 

With regard to neural connectivity a multitude of pathways promote clock connectivity,  

circadian information is relayed from the SCN via a region of MBH extending from the sub-

paraven- tricular zone adjacent to the SCN, dorsally and caudally into the dorsomedial 

hypothalamus (Saper et al. 2005; Maywood et al. 2007). The neural signal is transduced into 

arousal and sleep-regulatory centres mediating sleep/ wake hormones (Maywood et al. 2007). 

In addition, extensive efferent pathways run to a diversity of autonomic centres (Kalsbeek et 

al. 2006; Kalsbeek et al. 2007; Maywood et al. 2007). Therefore providing evidence of 

connectivity and communication between clocks and linking clocks to physiological 

processes. However in spite of clear differential clock gene expression described in chapter 3 

the extent of the connectivity between clocks is unknown in the Atlantic salmon. In addition 



Chapter 8 

250 
 

chapter 5 provides further suggestion for the connectivity of clocks in the Atlantic salmon 

brain and pineal as clocks were only present in the pineal in vivo. 

The salmonid pineal has for a long time been described as the only non clock containing 

pineal amongst teleosts. However results from chapter 5 demonstrate rhythmic clock gene 

expression in the tissue in vivo but not in vitro. Thus suggesting some degree of extra-pineal 

input may be necessary to elicit circadian clock gene expression in the pineal. There are 

known to be a multitude of neural connections linking the brain with the pineal (Holmqvist et 

al. 1992) however the connectivity of clocks between the two tissues is unclear. In teleosts 

localisation of clock gene expression and identification of circadian and seasonal centres 

would be the first step in determining the connectivity and communication of clocks between 

the brain and the pineal. Secondly connectivity between clocks could be investigated by 

identifying important neural pathways in other vertebrates and with the use of lesion 

experiments.  

However amongst teleosts the extent of connectivity between clocks is likely to be highly 

species specific. This is a consequence of the diversity of the teleost circadian light axis. In 

the majority of teleosts studied the pineal highly photosensitive providing extra retinal, 

source of photic input to the brain. Photic information is transmitted via extensive neural 

connections to the brain and melatonin binding to central and peripheral tissues. Research has 

demonstrated that within the teleost group the source and degree of circadian and seasonal 

photic input varies considerably between species (Migaud et al. 2007). For example in 

salmonids melatonin synthesis is reliant on photic input directly perceived by pineal, while in 

the seabass it is dependent on both the retina and the pineal and in the tilapia photoperiod 

information is primarily perceived in the retina (Migaud et al. 2007). Thus the variation in the 

teleost circadian light axis may have an impact clock gene expression in the pineal and the 

connectivity of clocks between tissue and cell types. 
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One interesting finding in chapter 5 was the absence of rhythmic Aanat2 mRNA expression 

in the Atlantic salmon pineal in contrast to rhythmic, high at night; Aanat2 expression 

observed in seabass, a species that displays clock controlled endogenous melatonin 

production. This was hypothesised to be a consequence of the absence of clock regulation of 

salmon Aanat 2 at the transcriptome level. Unfortunately the Atlantic salmon genome was not 

publicly available during most of my doctoral work becoming available in 2012. The 

availability of the salmon genome has facilitated in silico analysis of non coding regions of 

the Aanat2 gene Analysis of the Atlantic salmon and European seabass Aanat2 5’ promoter 

region revealed the presence of functional E-box elements in the promoter of the seabass but 

not the salmon sequence, consequently providing a link between clocks and Aanat2 in the 

seabass. This demonstrates one of many applications of the Atlantic salmon genome 

publication in this field.  

As described above the availability of the salmon genome has facilitated in silico analysis of 

non coding regions of the Aanat2 gene. This methodology could be expanded to analysis of 

the 5 and 3 prime regions of a wide variety of clock, clock controlled and seasonal genes in 

the Atlantic salmon. E-box, D-elements and RORs, rhythmicity and circadian output, could 

more easily be identified in the promoter regions of a gene. This could be expanded to other 

regulatory elements in the non-coding and coding sequence. 

In addition the publication Atlantic salmon genome has enabled rapid identification of clock 

and seasonally important genes and their homologues. BLAST analysis using sequence 

information of desired target genes in other teleosts or vertebrate species would identify 

similar sequences in the Atlantic salmon. PCR primer pairs could subsequently be designed 

on the resulting sequence, as opposed to ESTs or other teleost sequences, and the product 

could be cloned or sequenced more rapidly than previously described in the general materials 

and methods (Chapter 2). In comparison to other vertebrates the salmonids have experienced 
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2 separate genome duplication events over the course of evolution from mammals(Davidson 

et al. 2010). Consequently there is the potential for the presence of multiple homologues of 

clock and seasonal genes. The publication of the Atlantic salmon genome is most likely the 

greatest advance in the study of the species biology and will continue to be of considerable 

value in the study of circadian and seasonal biology in the species. 

Prior to undertaking this thesis the presence of daylength dependent clock gene expression 

under SD photoperiod had previously been reported in the brain of Atlantic salmon (Davie et 

al. 2009). However Chapter 3 describes contrasting results daylength dependent clock gene 

expression in response to LD conditions. It was hypothesised that this was a consequence of 

photoperiod history as rhythmic clock gene expression was present in the photoperiod that 

best represented the natural seasonal progression after acclimation from SNP. Photoperiod 

history can have a profound effect on salmonid physiology Randall and Bromage (1998) 

demonstrated that it is not a specific daylength that triggers seasonal process but daylength in 

relation to previous photoperiod experienced. Photoperiods usually considered to represent 

long days (18L: 06D) are recognised as short if fish have been previously exposed to extreme 

long days (22L: 02D). Similarly spawning can be advanced under conventional short day 

photoperiods (e.g. 06L:18D) if fish have previously been acclimated to extreme short days 

(02L:22D) (Randall & Bromage 1998; Randall et al. 1998). However when the expression of 

clock genes was investigated under SNP (Chapter 3) the effects of photoperiod history on the 

expression of clock genes was not observed. It is hypothesised that expression of clock genes 

is more apparent under a ridged experimental photoperiod than under constantly adjusting 

natural photoperiod conditions. In order to better understand the impact of photoperiod 

history on gene expression a series of trials could be set up as described above by Randall et 

al (1998) and Randall and Bromage (1998). However at the end of the acclimation period the 
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expression of both the amplitude and circadian expression of clocks and seasonal genes could 

be analysed as amplitude of clock gene expression is also likely to be of importance. 

In mammals it is not only the phase shifting or presence of a significant circadian rhythm that 

is of importance. Amplitude appears to be associated with photoperiod changes in some 

cases. For example in the mammalian PT Per1 amplitudinal changes in mRNA expression is 

suppressed in response to SD, in addition to seasonal changes in the phase of gene expression 

(Messager et al. 2000; Hazlerigg & Wagner 2006). In chapter 3 significant difference in the 

seasonal amplitude of clock gene expression were observed between SNP (experiment 2) 

sample points. Up to 7.9 fold change in amplitude was observed over the course of the year 

that can not be explained by photoperiod variations alone. Moreover seasonal amplitudinal 

differences described in the chapter were not consistent across all clock genes and the clock 

mechanisms as a whole did not change consistently with varying seasonality. However over 

the duration of this trial Atlantic salmon parr went through the smoltification process and 

were transferred from freshwater to salt water. It is unknown what effect such physiological 

events may have on the expression of clock genes. Moreover genomic regions containing a 

number of clock genes have been identified as quantitative trait loci (QTLs) for a number of 

life history events in salmonids (Leder et al. 2006; O'Malley et al. 2010). However it is 

unclear how amplitude changes in gene expression may impact on physiology.  

Chapter 3 highlights differences in both the phase and amplitude of clock gene expression in 

the brain of salmon acclimated to experimental and SNP treatments. The contrasting results 

obtained may be a consequence of the differences between short term acclimation to constant 

photoperiod vs. a natural cycle of entrainment. Currently the existence of photorefractory 

states and the seasonal photoperiod mechanisms present in mammals have not yet been 

established in teleosts (Hazlerigg and Wagner. 2006). However research into these responsive 

and non-responsive conditions could be under taken in future by reporting clock and seasonal 
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gene expression under a wider variety of photoperiod treatments and differing acclamation 

periods ranging from changes in gene expression after 24h to several months. Such results 

would offer considerable insight into seasonal processes in the Atlantic salmon. 

In order obtain a better understanding of the photoperiod regulation of seasonal processes and 

physiological events key genes involved the molecular photoperiod switch in mammals and 

birds was investigated in the Atlantic salmon. Elements of the “molecular switch” (Dio1-3, 

Eya3 and CCAAT  and  were identified in the transcriptome study and displayed differing 

expression patterns between SD and LD photoperiod. Daily expression of seasonal genes was 

determined in samples from Davie et al (2009) (microarray validation) and from chapter 3 

(qPCR study). This is one of the first studies looking at the mechanisms of the highly 

conserved molecular photoperiod switch in teleosts.  

In agreement with the mammalian seasonal mechanism microarray and both qPCR reported 

LD up-regulation of Dio2. However contrasting results were obtained for Eya3 and Tsh 

expression. Eya3 and Tsh expression appeared to be dependent on photoperiod history, as 

discussed for clock gene expression. In mammals Eya3 has been shown to be regulated by 

clocks via three conserved E-box elements in the promoter region of the gene which in turn 

regulates the expression of Tsh(Dardente et al. 2010). Moreover Tshis directly regulated 

by clocks via conserved D-elements in mammals (Dardente et al. 2010).In order to 

investigate this in silico investigation identifying the presence of E-boxes and D-elements, in 

addition to other regulatory elements, could be undertaken for seasonal genes promoter 

regions in the Atlantic salmon. Despite the need for further investigation into the precise 

mechanisms and regulatory elements this highly conserved pathway is present in the Atlantic 

salmon. In order to elaborate on the evolutionary history of this mechanism it would be 

interesting to investigate the presence and expression of seasonal genes in more primitive 
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vertebrate species such as the hagfish or lamprey, thus confirming the ancestral nature of this 

highly conserved seasonal mechanism throughout vertebrate evolution.  

A multitude of cues, other than photoeriod, have been shown to regulate rhythmic gene 

expression including temperature, feeding For example temperature has been shown to 

differentially regulate peripheral oscillations of Per3 in zebrafish (Kaneko et al. 2006). In 

particular the presence of a food entrainable oscillator (FEO) with the potential to 

synchronise clock gene oscillations in metabolically important tissues such as the liver is an 

area of considerable interest. Previous reports in a number of teleosts have reported the 

presence of FEOs in teleosts. In the absence of photic cues Per1 expression in the liver is 

hypothesised to be dependent on feeding time in the zebrafish (Sanchez & Sanchez-Vazquez 

2009; Lopez-Olmeda et al. 2010). In the goldfish FEOs have been implicated in the 

regulation of clock gene oscillations and locomoter activity (Feliciano et al. 2011; Vera et al. 

2007). In mammals restricted feeding in both mice and rats has resulted in altered clock gene 

expression between the brain and the liver (Damiola et al. 2000; Stokkan et al. 2001). 

Whether differential expression between the brain and the liver in the Atlantic salmon can be 

explained by feeding time is unknown. The presence of a food entrainable oscillator in the 

liver could not explain the differential expression of Clock and Per1 as a result of exposure to 

different photic conditions. Results from the Atlantic salmon seasonal and peripheral 

expression trials clearly demonstrate the necessity for further research into the presence and 

entrainment of peripheral clocks in teleosts as no clear generalisations can be made between 

species or tissue type. Clearly, the study of clock mechanisms in fish is in its early days. 

Future investigations within this field are necessary to investigate the role of non photic 

zeitgeber signals and unravel the molecular mechanisms driving daily and seasonal 

entrainment. Potential further investigation would benefit from more exhaustive tissue 

sampling over a 24h period, including functionally important tissues such as the heart, 
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kidney, gut, spleen or eye. More specifically with regard to the liver the existence of FEO and 

entrainment of clock gene expression in the liver could be established under controlled photic 

and temperature conditions and the application of restricted feeding as has previously been 

done in rodents (Damiola et al. 2000; Stokkan et al. 2001). Unravelling the mechanisms 

driving feeding entrainment is also of considerable interest. As yet the mechanisms that 

synchronise feeding entrainment and food availability to the molecular clockwork of the 

peripheral tissues are not described. In mammals a number of pathways have been 

hypothesised, including temperature (Schmutz et al. 2012), glucocorticoid signalling (Le 

Minh et al. 2001) and peroxisome proliferator-activated receptors (PPARs) (Asher et al. 

2010). Moreover food metabolites and the hormones secreted by the feeding/ fasting cycle 

have been suggested as entrainment mechanisms (Damiola et al. 2000; Schmutz et al. 2012). 

In mammals tight coupling of the cell cycle in peripheral tissues and the molecular 

mechanisms of the clock are apparent. In particular the intracellular redox state of the cell is 

thought to mediate circadian rhythms in the liver. Nicotinamide adenine dinucleotide (NAD
+
) 

dependent protein deacetylase SIRT1 and NAD itself, via regulation of Cry1, appear to be 

involved in the resetting of the clock in mammals (Asher et al. 2008). In teleosts potential 

mechanisms that mediate food and feeding entrainment of clock gene expression in the liver 

are unknown. However the suggested pathways of entrainment in mammals could be 

investigated in the Atlantic salmon. 

To this end Chapter 6 set out as one of the first investigations linking clocks to functional 

physiological processes in teleosts. This chapter investigated the endogenous clock mediated 

regulation of cholesterol homeostasis and lipid metabolism in the liver of the Atlantic salmon. 

This is of particular importance to the aquaculture industry as the need for sustainable 

alternative feed sources for cultured species increases. Ultimately if the pathways involved in 

the entrainment of appetite and lipid metabolism and deposition can be determined then the 
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use of feed in culture can be optimised to align with the endogenous regulation of fat 

deposition with the economically optimal utilisation of nutrients. As reported in rodents 

results demonstrated significant circadian expression of some liver lipid and clock genes 

(Srebp 1 Lxr and Bmal 1). However in contrast to mammals, Per1, Per2, Fas, and Reverb  

did not display significant circadian rhythmicity in salmon. Future work in this field should 

take the form of a more exhaustive investigation where nutritional factors and levels of fatty 

acid and cholesterol are controlled and effects in relation to clock gene and liver lipid gene 

expression are analysed. Moreover microarray or next generation sequencing technology 

could be utilised in order to identify circadian regulation of the liver transcriptome under 

different conditions. Future research in this area would be of considerable interest not only to 

circadian biologists but also the aquaculture industry.  

Overall these doctoral studies have advanced knowledge on clock genes regulation and 

seasonality in the Atlantic salmon. Results from the current investigation provide new insight 

supporting a number of theories on the circadian and seasonal control of physiology at a 

molecular level in salmon. Further work is now required to confirm or reject hypotheses 

raised during this PhD 
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APPENDIX 

Appendix 1 List of microarray probes with a P value of less than 0.001 with regard to photoperiod (LD Vs SD), Day vs. night and 

photoperiod/day night interaction. 

Appendix 1a: Microarray targets (P<0.001) photoperiod. 

Probe Blast type Blast results Photoperiod P value Photoperiod 

Fold change 

Ssa#CX357917 RefSeq_Hit

Def 

Salmo salar DnaJ homolog subfamily C member 3 (dnjc3), mRNA 

&gt;gi|209156215|gb|BT046078.1| Salmo salar clone ssal-rgf-541-017 

DnaJ homolog subfamily C member 3 precursor putative mRNA, 

complete cds 

4.34271E-07 1.3597882 

Ssa#S35505093 RefSeq_Hit

Def 

Oryzias latipes geminin (LOC100049517), mRNA 1.69469E-06 1.3579277 

Ssa#STIR2604

1 

RefSeq_Hit

Def 

Salmo salar Sulfate transporter (s26a2), mRNA 

&gt;gi|223648201|gb|BT059146.1| Salmo salar clone ssal-rgf-528-110 

Sulfate transporter putative mRNA, complete cds 

3.24503E-06 1.3364023 

Ssa#STIR0000

9_3 

RefSeq_Hit

Def 

Salmo salar interferon alpha 2 (ifna2), mRNA 

&gt;gi|37499750|gb|AY216595.1| Salmo salar interferon alpha 2 (IFNA2) 

mRNA, complete cds 

4.81148E-06 1.9038987 

Ssa#TC90520 RefSeq_Hit

Def 

Danio rerio sestrin 1 (sesn1), mRNA &gt;gi|49900305|gb|BC076550.1| 

Danio rerio sestrin 1, mRNA (cDNA clone MGC:91970 

IMAGE:7041961), complete cds 

8.64328E-06 -1.2405695 

Ssa#S18889873 RefSeq_Hit

Def 

Salmo salar Stromal cell-derived factor 2-like protein 1 (sdf2l), mRNA 

&gt;gi|209735729|gb|BT048933.1| Salmo salar clone ssal-rgb2-576-085 

Stromal cell-derived factor 2-like protein 1 precursor putative mRNA, 

complete cds 

8.93747E-06 1.2741431 

Ssa#S18888857 B2GO_Blas

tnHit 

taeniopygia guttata misc_rna miscrna 1.10187E-05 1.5867685 

Ssa#TC112586 RefSeq_Hit

Def 

Salmo salar StAR-related lipid transfer protein 7 (star7), mRNA 

&gt;gi|223649091|gb|BT059591.1| Salmo salar clone ssal-rgf-527-298 

StAR-related lipid transfer protein 7 putative mRNA, complete cds 

2.61508E-05 -1.2438473 

Omy#S153303 RefSeq_Hit Salmo salar p21-activated protein kinase-interacting protein 1-like 3.07212E-05 1.1935716 
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52 Def (pk1ip), mRNA &gt;gi|221220677|gb|BT057128.1| Salmo salar clone 

ssal-eve-528-068 p21-activated protein kinase-interacting protein 1-like 

putative mRNA, complete cds 

Ssa#TC100565 B2GO_Blas

txHit 

novel protein similar to galactosidase, beta 1 (GLB1, zgc:110823) 3.11393E-05 -1.4600939 

Ssa#STIR2440

2 

RefSeq_Hit

Def 

PREDICTED: Meleagris gallopavo jmjC domain-containing protein 8-

like (LOC100547031), mRNA 

3.8124E-05 1.3847582 

Ssa#STIR1401

2 

RefSeq_Hit

Def 

PREDICTED: Oreochromis niloticus ADP-ribosylation factor 6-like 

(LOC100704590), mRNA 

3.92337E-05 1.180091 

Ssa#S30241991 RefSeq_Hit

Def 

Salmo salar Mitotic spindle assembly checkpoint protein MAD2A 

(md2l1), mRNA &gt;gi|209731291|gb|BT046714.1| Salmo salar clone 

ssal-rgb2-630-192 Mitotic spindle assembly checkpoint protein MAD2A 

putative mRNA, complete cds 

4.69544E-05 1.5237253 

Ssa#S30259657 RefSeq_Hit

Def 

Salmo salar Glyoxalase domain-containing protein 5 (glod5), mRNA 

&gt;gi|209737605|gb|BT049871.1| Salmo salar clone ssal-rgb2-546-081 

Glyoxalase domain-containing protein 5 putative mRNA, complete cds 

5.73194E-05 1.5225122 

Ssa#STIR0963

3 

RefSeq_Hit

Def 

PREDICTED: Oreochromis niloticus heterogeneous nuclear 

ribonucleoprotein U-like (LOC100696161), mRNA 

5.76409E-05 1.1871353 

Ssa#STIR2216

7 

B2GO_Blas

txHit 

ornithine decarboxylase 1 7.28839E-05 1.6053214 

Ssa#STIR2285

1 

RefSeq_Hit

Def 

PREDICTED: Oreochromis niloticus leucine-rich repeat-containing 

protein 58-like (LOC100702566), mRNA 

7.29958E-05 1.3747792 

Ssa#STIR1718

8 

B2GO_Blas

tnHit 

Gasterosteus aculeatus clone CNB77-A04 mRNA sequence 7.62252E-05 1.5995821 

Ssa#S18890581 B2GO_Blas

txHit 

Hypothetical LOC559844 8.0997E-05 1.3982209 

Ssa#S35663967 RefSeq_Hit

Def 

Drosophila simulans GD18867 (Dsim\GD18867), mRNA 8.88836E-05 -1.2218877 

Ssa#STIR0503

8 

RefSeq_Hit

Def 

Salmo salar DnaJ homolog subfamily C member 8 (dnjc8), mRNA 

&gt;gi|209735127|gb|BT048632.1| Salmo salar clone ssal-evf-515-147 

DnaJ homolog subfamily C member 8 putative mRNA, complete cds 

9.68578E-05 1.1240298 

Ssa#S35701995 B2GO_Blas

txHit 

Replication protein A 32 kDa subunit 9.83721E-05 1.3331934 

Ssa#S18892255 RefSeq_Hit

Def 

Salmo salar interferon alpha 2 (ifna2), mRNA 

&gt;gi|37499750|gb|AY216595.1| Salmo salar interferon alpha 2 (IFNA2) 

9.90275E-05 2.1395192 
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mRNA, complete cds 

Omy#CX14432

4 

RefSeq_Hit

Def 

PREDICTED: Cricetulus griseus dnaJ homolog subfamily B member 5-

like (LOC100750493), miscRNA 

0.000101577 1.4883635 

Ssa#S31968671 B2GO_Blas

tnHit 

bos taurus cysteine-rich with egf-like domains 1 complete cds 0.00010715 1.1170424 

Ssa#S30293065 B2GO_Blas

txHit 

canopy homolog 2 precursor 0.000122221 1.3484056 

Omy#S344235

17 

RefSeq_Hit

Def 

Danio rerio kinesin family member 1B (kif1b), mRNA 

&gt;gi|224830809|gb|FJ756939.1| Danio rerio strain TL Kif1b beta 

(kif1b) mRNA, complete cds 

0.000124395 -1.4643961 

Ssa#S31964109 RefSeq_Hit

Def 

Salmo salar XIAP-associated factor 1 (xaf1), mRNA 

&gt;gi|209737269|gb|BT049703.1| Salmo salar clone ssal-eve-575-311 

XIAP-associated factor 1 putative mRNA, complete cds 

0.000141673 2.5339084 

Ssa#STIR1851

3 

RefSeq_Hit

Def 

Salmo salar Hydroxyacylglutathione hydrolase (glo2), mRNA 

&gt;gi|209156247|gb|BT046094.1| Salmo salar clone ssal-rgf-541-193 

Hydroxyacylglutathione hydrolase putative mRNA, complete cds 

0.000144015 -1.3308626 

Ssa#STIR0003

0_2 

B2GO_Blas

txHit 

tumor necrosisalpha-induced protein 8-like protein 2 0.000155837 1.3888503 

Omy#TC15675

0 

B2GO_Blas

tnHit 

mus musculus protein kinase c and casein kinase substrate in neurons 2 

transcript variant mrna 

0.000165898 -1.4772913 

Ssa#S30278680 B2GO_Blas

txHit 

novel protein similar to vertebrate cell division cycle associated 7 

(CDCA7, zgc:110113) 

0.000167443 1.7135794 

Ssa#STIR1120

2 

RefSeq_Hit

Def 

PREDICTED: Taeniopygia guttata misc_RNA (LOC100224413), 

miscRNA 

0.000172111 1.3165977 

Omy#S181629

95 

B2GO_Blas

txHit 

plectin 1 0.000199266 -1.3959866 

Ssa#KSS2070 RefSeq_Hit

Def 

PREDICTED: Oreochromis niloticus aminoacyl tRNA synthase complex-

interacting multifunctional protein 1-like (LOC100705518), mRNA 

0.000204141 1.1539145 

Ssa#S18892256 RefSeq_Hit

Def 

Salmo salar interferon alpha 1 (ifna1), mRNA 

&gt;gi|37499748|gb|AY216594.1| Salmo salar interferon alpha 1 (IFNA1) 

mRNA, complete cds 

0.00020507 2.2536354 

Ssa#S35698416 RefSeq_Hit

Def 

Sus scrofa MAK16 homolog (S. cerevisiae) (MAK16), mRNA 0.000220661 1.1865376 

Ssa#S35481736 B2GO_Blas plectin 1 0.000250279 -1.1682231 
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tnHit 

Ssa#STIR2235

2 

B2GO_Blas

txHit 

f-box protein 5 0.000252149 1.6575229 

Ssa#S31990935 B2GO_Blas

tnHit 

homo sapiens subfamily member 5 transcript variant mrna 0.000254525 1.4775491 

Omy#CX03443

7 

B2GO_Blas

tnHit 

danio rerio zgc:175139 (zgc:175139) mrna 0.000261279 7.3411126 

Ssa#S35606171 RefSeq_Hit

Def 

Salmo salar HGV2 protein (hgv2), mRNA 

&gt;gi|223672950|gb|BT060297.1| Salmo salar clone ssal-rgh-513-188 

HGV2 putative mRNA, complete cds 

0.000266111 1.246705 

Ssa#STIR1883

9 

RefSeq_Hit

Def 

Salmo salar neutrophil cytosolic factor 1 (ncf1), mRNA 

&gt;gi|209156151|gb|BT046046.1| Salmo salar clone ssal-rgf-540-075 

SH3 and PX domain-containing protein 2A putative mRNA, complete cds 

0.000279317 -1.237874 

Omy#BX29913

5 

B2GO_Blas

tnHit 

rattus norvegicus transcript variant 1 mrna 0.000285092 -1.7144196 

Ssa#S35663388 RefSeq_Hit

Def 

Salmo salar thymocyte nuclear protein 1 (thyn1), mRNA 

&gt;gi|209734429|gb|BT048283.1| Salmo salar clone ssal-evd-561-107 

Thymocyte nuclear protein 1 putative mRNA, complete cds 

0.000294519 1.316333 

Ssa#KSS1929 RefSeq_Hit

Def 

Salmo salar immediate early response 2 (ier2), mRNA 

&gt;gi|209154611|gb|BT045276.1| Salmo salar clone ssal-rgf-517-071 

Immediate early response gene 2 protein putative mRNA, complete cds 

0.000301916 1.8813386 

Ssa#S32000646 RefSeq_Hit

Def 

Salmo salar Amyotrophic lateral sclerosis 2 chromosomal region 

candidate gene 4 protein (al2s4), mRNA 

&gt;gi|304376642|gb|BT048119.2| Salmo salar clone ssal-rgb2-639-071 

Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 4 

protein putative mRNA, complete cds 

0.000307145 1.3308146 

Ssa#STIR0007

2_4 

B2GO_Blas

txHit 

CNS0GHZ1Tetraodon nigroviridis full-length cDNA 0.000309485 9.332867 

Ssa#STIR1520

9 

B2GO_Blas

tnHit 

Salmo salar clone ssal-rgf-514-134, novel cds 0.000309692 1.3521045 

Ssa#STIR1147

3 

B2GO_Blas

txHit 

Salmo salar clone ssal-rgf-535-298 Nuclear factor interleukin-3-regulated 

protein putative mRNA, complete cds 

0.000313191 1.1695461 

Ssa#S18867054 RefSeq_Hit

Def 

Salmo salar hexosaminidase A (alpha polypeptide) (hexa), mRNA 

&gt;gi|209155853|gb|BT045897.1| Salmo salar clone ssal-rgf-536-069 

0.00031378 1.335907 
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Beta-hexosaminidase alpha chain precursor putative mRNA, complete 

cds 

Ssa#S35479035 B2GO_Blas

txHit 

Transcription factor jun-D 0.00032105 1.4772568 

Ssa#STIR2482

8 

RefSeq_Hit

Def 

Salmo salar Influenza virus NS1A-binding protein homolog A (ns1ba), 

mRNA &gt;gi|223647697|gb|BT058894.1| Salmo salar clone ssal-rgf-

511-317 Influenza virus NS1A-binding protein homolog A putative 

mRNA, complete cds 

0.000324203 1.1333947 

Ssa#STIR2374

6 

RefSeq_Hit

Def 

Salmo salar Abhydrolase domain-containing protein FAM108B1 (f108b), 

mRNA &gt;gi|223648771|gb|BT059431.1| Salmo salar clone ssal-rgf-

535-234 Abhydrolase domain-containing protein FAM108B1 precursor 

putative mRNA, complete cds 

0.000324644 1.1515381 

Ssa#STIR0922

3 

RefSeq_Hit

Def 

Oncorhynchus mykiss low molecular mass protein 2 (lmp2/d), mRNA 

&gt;gi|5823091|gb|AF115540.1|AF115540 Oncorhynchus mykiss low 

molecular mass protein 2 (LMP2/d) mRNA, complete cds 

0.000333325 1.7300459 

Ssa#STIR2622

1 

RefSeq_Hit

Def 

Salmo salar xeroderma pigmentosum, complementation group A (xpa), 

mRNA &gt;gi|209734029|gb|BT048083.1| Salmo salar clone ssal-evd-

532-367 DNA-repair protein complementing XP-A cells homolog 

putative mRNA, complete cds 

0.000343195 1.2263672 

Ssa#S48396675 B2GO_Blas

tnHit 

gasterosteus aculeatus clone cnb156-d12 mrna sequence 0.000352369 1.3147539 

Ssa#S18892114 B2GO_Blas

txHit 

novel protein similar to H.sapiens LGTN, ligatin (LGTN, zgc:63669) 0.00035723 1.179697 

Ssa#S35538913 RefSeq_Hit

Def 

Salmo salar B-cell CLL/lymphoma 7A (bcl7a), mRNA 

&gt;gi|209736733|gb|BT049435.1| Salmo salar clone ssal-eve-551-310 B-

cell CLL/lymphoma 7 protein family member A putative mRNA, 

complete cds 

0.000375406 1.1157467 

Ssa#S35523441 B2GO_Blas

txHit 

slowmo homolog 2 0.000423879 1.2136298 

Ssa#STIR1131

6 

RefSeq_Hit

Def 

Salmo salar Retrovirus-related Pol polyprotein from transposon 17.6 

(pol3), mRNA &gt;gi|209153405|gb|BT044897.1| Salmo salar clone ssal-

rgf-506-338 Retrovirus-related Pol polyprotein from transposon 17.6 

putative mRNA, complete cds 

0.000438722 1.2014903 

Ssa#S48420820 B2GO_Blas

tnHit 

PREDICTED: hypothetical LOC571373 0.000460623 -1.4504169 



Apendix 

289 
 

Ssa#S35688826 B2GO_Blas

tnHit 

tetraodon nigroviridis full-length cdna 0.000475488 1.1498079 

Ssa#STIR1961

4 

RefSeq_Hit

Def 

PREDICTED: Bos taurus mitochondrial import inner membrane 

translocase subunit Tim8 A-like (LOC781462), miscRNA 

&gt;gi|297477814|ref|XR_083735.1| PREDICTED: Bos taurus 

mitochondrial import inner membrane translocase subunit Tim8 A-like 

(LOC781462), miscRNA 

0.0004764 1.1715822 

Ssa#S31964618 RefSeq_Hit

Def 

Salmo salar Coiled-coil-helix-coiled-coil-helix domain-containing protein 

1 (chch1), mRNA &gt;gi|209731993|gb|BT047065.1| Salmo salar clone 

ssal-plnb-016-050 Coiled-coil-helix-coiled-coil-helix domain-containing 

protein 1 putative mRNA, complete cds 

0.000492144 1.2203999 

Ssa#STIR0987

2 

RefSeq_Hit

Def 

Danio rerio zgc:92744 (zgc:92744), mRNA 

&gt;gi|60551986|gb|BC090909.1| Danio rerio zgc:92744, mRNA (cDNA 

clone MGC:103695 IMAGE:7263700), complete cds 

0.000495066 1.2589003 

Ssa#S35483299 RefSeq_Hit

Def 

Salmo salar Ribonuclease T2 (rnt2), mRNA 

&gt;gi|209733367|gb|BT047752.1| Salmo salar clone ssal-eve-558-088 

Ribonuclease T2 precursor putative mRNA, complete cds 

0.000495789 1.4445971 

Ssa#S35667484 B2GO_Blas

txHit 

FK506-binding protein 11 precursor 0.000496809 1.3845326 

Ssa#STIR0776

6 

RefSeq_Hit

Def 

Danio rerio glycogen synthase kinase binding protein (gbp), mRNA 

&gt;gi|4240382|gb|AF060499.1|AF060499 Danio rerio glycogen synthase 

kinase binding protein (gbp) mRNA, complete cds 

0.000513417 1.1126817 

Ssa#S30242995 RefSeq_Hit

Def 

Salmo salar CDC45-related protein (cc45l), mRNA 

&gt;gi|209154837|gb|BT045389.1| Salmo salar clone ssal-rgf-520-024 

CDC45-related protein putative mRNA, complete cds 

0.000513671 1.920305 

Omy#S197109

10 

B2GO_Blas

txHit 

si:dkey-189g17.2 0.000525142 -2.0448813 

Ssa#S31984993 B2GO_Blas

txHit 

Cdc42 guanine exchange factor 9 0.000529996 -1.2590157 

Ssa#KSS2969 RefSeq_Hit

Def 

Salmo salar proteasome (prosome, macropain) inhibitor subunit 1 

(psmf1), mRNA &gt;gi|197632108|gb|BT043663.1| Salmo salar clone 

HM5_1345 proteasome (prosome, macropain) inhibitor subunit 1 (psmf1) 

mRNA, complete cds 

0.000543516 1.1183414 

Ssa#S35657423 B2GO_Blas

tnHit 

taeniopygia guttata solute carrier family 23 (nucleobase transporters) 

member 2 mrna 

0.000544248 -1.3034041 
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Ssa#TC80656 B2GO_Blas

tnHit 

danio rerio deah (asp-glu-ala-his) box polypeptide 30 mrna 0.000559073 1.215863 

Ssa#S35516272 B2GO_Blas

txHit 

danio rerio deah (asp-glu-ala-his) box polypeptide 30 mrna 0.000573261 1.1896373 

Ssa#S30257510 RefSeq_Hit

Def 

Salmo salar 26S proteasome non-ATPase regulatory subunit 14 (psde), 

mRNA &gt;gi|209736701|gb|BT049419.1| Salmo salar clone ssal-eve-

510-036 26S proteasome non-ATPase regulatory subunit 14 putative 

mRNA, complete cds 

0.000577046 1.1119843 

Ssa#S37438815 RefSeq_Hit

Def 

Salmo salar CD3zeta-2 (LOC100136514), mRNA 

&gt;gi|126362105|gb|EF421413.1| Salmo salar CD3zeta-2 mRNA, 

complete cds 

0.000579029 1.4446131 

Omy#S181435

47 

B2GO_Blas

txHit 

Cell growth-regulating nucleolar protein 0.000606254 1.2334342 

Ssa#STIR0340

0 

RefSeq_Hit

Def 

Salmo salar RING finger protein 181 (rn181), mRNA 

&gt;gi|209735201|gb|BT048669.1| Salmo salar clone ssal-evd-554-047 

RING finger protein 181 putative mRNA, complete cds 

0.00066624 1.2444069 

Ssa#STIR2467

2 

RefSeq_Hit

Def 

Plasmodium yoelii yoelii str. 17XNL hypothetical protein (PY01084) 

partial mRNA 

0 

0.000683814 1.1371344 

Ssa#STIR1839

6 

B2GO_Blas

tnHit 

Salmo salar neurogranin, TIP41-like protein (TIP41), MHC class II 

antigen beta chain (Sasa-DBB), MHC class II antigen alpha chain (Sasa-

DBA), leucine rich repeat containing 35-like protein, and alpha-tectorin-

like protein genes, complete cds 

0.000693882 2.1171832 

Ssa#KSS4925 B2GO_Blas

txHit 

FAM133 0.000708143 -1.1002774 

Ssa#CL300Ctg

1 

RefSeq_Hit

Def 

Oncorhynchus mykiss low molecular mass protein 2 (lmp2/d), mRNA 

&gt;gi|5823091|gb|AF115540.1|AF115540 Oncorhynchus mykiss low 

molecular mass protein 2 (LMP2/d) mRNA, complete cds 

0.000715702 1.6027347 

Ssa#STIR1596

4 

B2GO_Blas

tnHit 

Salmo salar clone 251P16 TCR-alpha/delta locus, genomic sequence 0.000719516 1.4593086 

Ssa#S48415453

_S 

RefSeq_Hit

Def 

PREDICTED: Oreochromis niloticus phosphofurin acidic cluster sorting 

protein 1-like (LOC100712551), mRNA 

0.000747729 -1.3209413 

Ssa#STIR1680

5 

RefSeq_Hit

Def 

Plasmodium berghei strain ANKA hypothetical protein (PB405526.00.0) 

partial mRNA 

 0 

0.000751301 1.3397809 



Apendix 

291 
 

Ssa#S35605422 B2GO_Blas

txHit 

Kinetochore protein Spc25 0.00075551 1.5677475 

Omy#S343149

58 

B2GO_Blas

txHit 

F-box protein 43 0.000757728 -2.2802875 

Ssa#TC89601 RefSeq_Hit

Def 

PREDICTED: Canis lupus familiaris dual specificity phosphatase 4 

(DUSP4), mRNA 

0.000768498 1.4027525 

Ssa#S35582968 RefSeq_Hit

Def 

PREDICTED: Oreochromis niloticus 4-hydroxybenzoate 

polyprenyltransferase, mitochondrial-like (LOC100708557), mRNA 

0.000774685 1.217724 

Ssa#CB513260 RefSeq_Hit

Def 

Mus musculus zinc finger protein 395 (Zfp395), mRNA 0.000785561 -1.6962222 

Ssa#S18889609 B2GO_Blas

txHit 

Mitochondrial 39S ribosomal protein L3 0.000786205 1.1745192 

Ssa#STIR0784

7 

B2GO_Blas

txHit 

proliferating cell nuclear antigen 0.000802636 1.1788188 

Ssa#STIR1163

8 

RefSeq_Hit

Def 

PREDICTED: Taeniopygia guttata similar to solute carrier family 9 

(sodium/hydrogen exchanger), isoform 3 regulator 1 (LOC100221704), 

mRNA 

0.000807623 -1.2586586 

Ssa#S30290706 B2GO_Blas

txHit 

Elongation factor Ts, mitochondrial precursor 0.000814043 1.1833819 

Ssa#TC77494 RefSeq_Hit

Def 

Salmo salar 26S protease regulatory subunit S10B (prs10), mRNA 

&gt;gi|209732643|gb|BT047390.1| Salmo salar clone ssal-rgb2-649-197 

26S protease regulatory subunit S10B putative mRNA, complete cds 

0.000818377 1.1397179 

Ssa#STIR2071

3 

RefSeq_Hit

Def 

Salmo salar Transmembrane protein 163 (tm163), mRNA 

&gt;gi|209154219|gb|BT045080.1| Salmo salar clone ssal-rgf-511-188 

Transmembrane protein 163 putative mRNA, complete cds 

0.000827199 1.3631165 

Ssa#STIR1358

0 

RefSeq_Hit

Def 

Salmo salar acid phosphatase-like 2 (acpl2), mRNA 

&gt;gi|209154093|gb|BT045017.1| Salmo salar clone ssal-rgf-509-370 

Acid phosphatase-like protein 2 precursor putative mRNA, complete cds 

0.00083703 1.155967 

Ssa#DW54392

9 

B2GO_Blas

txHit 

ubiquitin specific protease 16 0.000841251 1.2353141 

Ssa#STIR2287

0 

B2GO_Blas

txHit 

g-protein coupled receptor 173 0.000847638 -1.1705192 

Ssa#S35505196 B2GO_Blas

tnHit 

strongylocentrotus purpuratus kiaa1404 protein mrna 0.000872327 1.7846395 
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Ssa#S30240713 B2GO_Blas

txHit 

TRAF interacting protein TANK 0.000875307 1.2602183 

Ssa#STIR4202

7 

B2GO_Blas

txHit 

PREDICTED: hypothetical protein LOC497376 0.000886621 2.0059104 

Ssa#DW00620

0 

B2GO_Blas

txHit 

JAK1_MOUSERecName: Full=Tyrosine-protein kinase JAK1; AltName: 

Full=Janus kinase 1; Short=JAK-1 

0.000890764 1.4455134 

Ssa#S31979342 RefSeq_Hit

Def 

Oncorhynchus mykiss LBP (LPS binding protein)/BPI 

(bactericidal/permeability-increasing protein)-1 (lbp/bpi-1), mRNA 

&gt;gi|20387084|dbj|AB042025.1| Oncorhynchus mykiss LBP/BPI-1 

mRNA for LBP (LPS binding protein)/BPI (bactericidal/permeability-

increasing protein)-1, complete cds 

0.000910454 1.4020058 

Ssa#S30277130 RefSeq_Hit

Def 

PREDICTED: Oreochromis niloticus cell division cycle-associated 

protein 7-like (LOC100695219), mRNA 

0.000911391 1.556224 

Ssa#STIR0608

2 

RefSeq_Hit

Def 

Salmo salar Butyrate response factor 1 (tisb), mRNA 

&gt;gi|209155825|gb|BT045883.1| Salmo salar clone ssal-rgf-535-262 

Butyrate response factor 1 putative mRNA, complete cds 

0.000918498 1.3535284 

Ssa#STIR2254

4 

RefSeq_Hit

Def 

Salmo salar uncharacterized LOC100194706 (LOC100194706), mRNA 

&gt;gi|198285548|gb|BT043996.1| Salmo salar clone HM4_1183 

hypothetical protein mRNA, complete cds 

0.00092809 -1.3084229 

Ssa#STIR2524

9 

RefSeq_Hit

Def 

Oncorhynchus mykiss succinate-CoA ligase GDP-forming alpha subunit 

(LOC100301669), mRNA &gt;gi|223049432|gb|FJ607869.1| 

Oncorhynchus mykiss succinate-CoA ligase GDP-forming alpha subunit 

mRNA, complete cds 

0.00093096 1.3721848 

Ssa#S30275617 B2GO_Blas

txHit 

Hypothetical LOC559844 0.000931994 1.35186 

Ssa#STIR1594

3 

RefSeq_RN

A 
Sorghum bicolor hypothetical protein, mRNA 0 0.000938259 1.2566497 

Ssa#KSS1926 RefSeq_Hit

Def 

Salmo salar CL012 protein (cl012), mRNA 

&gt;gi|221220325|gb|BT056952.1| Salmo salar clone ssal-evd-522-337 

C12orf12 homolog putative mRNA, complete cds 

0.000939976 -1.2184137 

Ssa#S18888540 RefSeq_Hit

Def 

Salmo salar MCM2 minichromosome maintenance deficient 2, mitotin (S. 

cerevisiae) (mcm2), mRNA &gt;gi|223648101|gb|BT059096.1| Salmo 

salar clone ssal-rgf-525-100 DNA replication licensing factor mcm2 

putative mRNA, complete cds 

0.000943906 1.4045998 
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Ssa#S35555013 RefSeq_Hit

Def 

Salmo salar eukaryotic translation initiation factor 4e 1a (eif4e1a), mRNA 

&gt;gi|197631908|gb|BT043563.1| Salmo salar clone HM4_2316 

eukaryotic translation initiation factor 4e 1a (eif4e1a) mRNA, complete 

cds 

0.000951903 1.5291076 

Ssa#STIR0564

7 

B2GO_Blas

txHit 

cyclin-dependent kinase inhibitor 1c 0.000952302 -1.1979393 

Ssa#STIR0945

3 

RefSeq_Hit

Def 

Salmo salar UDP-xylose and UDP-N-acetylglucosamine transporter 

(s35b4), mRNA &gt;gi|209155471|gb|BT045706.1| Salmo salar clone 

ssal-rgf-529-070 UDP-xylose and UDP-N-acetylglucosamine transporter 

putative mRNA, complete cds 

0.000986975 1.2851709 

Ssa#STIR0897

8 

RefSeq_Hit

Def 

Salmo salar eukaryotic translation initiation factor 4e 1a (eif4e1a), mRNA 

&gt;gi|197631908|gb|BT043563.1| Salmo salar clone HM4_2316 

eukaryotic translation initiation factor 4e 1a (eif4e1a) mRNA, complete 

cds 

0.000987007 1.5538536 

Ssa#STIR2560

2 

RefSeq_RN

A 

PREDICTED: Cricetulus griseus hypothetical protein LOC100763491 

(LOC100763491), mRNA 0 

0.000989892 -1.1491168 

Ssa#STIR0551

4 

RefSeq_Hit

Def 

PREDICTED: Taeniopygia guttata hypothetical protein LOC100226116 

(LOC100226116), mRNA 

0.000993063 1.1572293 
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Appendix 1b: Microarray features (P< 0.001) Day vs. Night 

Probe Name Blast Type Blast result p-value 

Day/Night 

Fold change 

DAY vs 

Night 

Ssa#S1888885

7 

B2GO_BlastnHit taeniopygia guttata misc_rna miscrna 2.19E-09 -2.7527103 

Omy#S18159

750 

RefSeq_HitDef PREDICTED: Oreochromis niloticus hairy and enhancer of split-

related protein helt-like (LOC100699318), mRNA 

5.29E-09 -1.6576612 

Ssa#STIR171

88 

B2GO_BlastnHit Gasterosteus aculeatus clone CNB77-A04 mRNA sequence 7.80363E-08 -2.5095983 

Omy#CX1443

24 

RefSeq_HitDef PREDICTED: Cricetulus griseus dnaJ homolog subfamily B member 

5-like (LOC100750493), miscRNA 

9.54753E-08 -2.635506 

Ssa#S3199093

5 

B2GO_BlastnHit homo sapiens subfamily member 5 transcript variant mrna 1.36701E-07 -2.3011987 

Ssa#S3547903

5 

B2GO_BlastxHit Transcription factor jun-D 1.6395E-07 -2.7889938 

Ssa#S3554757

1 

RefSeq_HitDef Salmo salar Krueppel-like factor 2 (klf2), mRNA 

&gt;gi|209150946|gb|BT044789.1| Salmo salar clone ssal-rgf-503-

311 Krueppel-like factor 2 putative mRNA, complete cds 

3.41669E-07 -1.755981 

Ssa#STIR210

14 

 RefSeq_ RNA PREDICTED: Sus scrofa ras and Rab interactor 2-like 

(LOC100625300), mRNA 

 0 

4.09511E-07 -1.3780068 

Ssa#STIR195

61 

B2GO_BlastnHit Gasterosteus aculeatus clone CH213-128O17, complete sequence 4.58192E-07 -2.1490364 

Ssa#S3555907

2 

B2GO_BlastxHit Transcription factor jun-D 5.16809E-07 -2.1257377 

Ssa#STIR226

87 

B2GO_BlastxHit fos-like antigen 2 1.29385E-06 -2.5248806 

Ssa#TC89601 RefSeq_HitDef PREDICTED: Canis lupus familiaris dual specificity phosphatase 4 

(DUSP4), mRNA 

1.50468E-06 -1.9386196 

Ssa#STIR077 RefSeq_HitDef Danio rerio glycogen synthase kinase binding protein (gbp), mRNA 1.60343E-06 -1.2603525 
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66 &gt;gi|4240382|gb|AF060499.1|AF060499 Danio rerio glycogen 

synthase kinase binding protein (gbp) mRNA, complete cds 

Ssa#STIR114

73 

B2GO_BlastxHit nuclear factor interleukin-3-regulated protein 1.88686E-06 -1.307705 

Ssa#STIR211

37 

B2GO_BlastxHit axin1 up-regulated 1 2.24043E-06 -2.1064465 

Omy#S34313

882 

RefSeq_HitDef PREDICTED: Oreochromis niloticus fos-related antigen 2-like 

(LOC100693783), mRNA 

5.59755E-06 -2.0284927 

Ssa#STIR031

76 

RefSeq_HitDef Oncorhynchus mykiss regulator of G-protein signalling 1 (rgs1), 

mRNA &gt;gi|225705377|gb|BT074111.1| Oncorhynchus mykiss 

clone omyk-evo-508-055 Regulator of G-protein signalling 1 putative 

mRNA, complete cds 

5.9233E-06 -3.093505 

Ssa#STIR262

42 

RefSeq_HitDef Danio rerio glycogen synthase kinase binding protein (gbp), mRNA 

&gt;gi|4240382|gb|AF060499.1|AF060499 Danio rerio glycogen 

synthase kinase binding protein (gbp) mRNA, complete cds 

6.90721E-06 -1.2014744 

Ssa#STIR074

25 

RefSeq_HitDef Oncorhynchus mykiss regulator of G-protein signalling 1 (rgs1), 

mRNA &gt;gi|225705377|gb|BT074111.1| Oncorhynchus mykiss 

clone omyk-evo-508-055 Regulator of G-protein signalling 1 putative 

mRNA, complete cds 

9.92858E-06 -2.238353 

Ssa#S3029555

7 

RefSeq_HitDef Salmo salar myc target 1 (myct1), mRNA 

&gt;gi|221220719|gb|BT057149.1| Salmo salar clone ssal-rgb2-575-

330 Myc target protein 1 homolog putative mRNA, complete cds 

1.96193E-05 -1.5723212 

Ssa#STIR233

62 

RefSeq_HitDef Salmo salar processing of precursor 5, ribonuclease P/MRP subunit 

(S. cerevisiae) (pop5), mRNA &gt;gi|209735235|gb|BT048686.1| 

Salmo salar clone ssal-evf-514-117 Ribonuclease P/MRP protein 

subunit POP5 putative mRNA, complete cds 

2.19095E-05 1.4105287 

Ssa#S3029186

1 

B2GO_BlastxHit cofactor required for Sp1 transcriptional activation, subunit 8 2.20765E-05 1.2072647 

Ssa#S3555080

4 

B2GO_BlastxHit Transcription factor jun-D 2.21619E-05 -1.5463029 

Ssa#S4840262

5 

B2GO_BlastxHit predicted protein 2.84244E-05 1.9438599 
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Ssa#STIR101

80 

B2GO_BlastxHit jun d proto-oncogene 2.95494E-05 -2.1189778 

Ssa#STIR126

47 

RefSeq_HitDef Oncorhynchus mykiss regulator of G-protein signaling 1 (rgs1), 

mRNA &gt;gi|225705377|gb|BT074111.1| Oncorhynchus mykiss 

clone omyk-evo-508-055 Regulator of G-protein signaling 1 putative 

mRNA, complete cds 

3.28515E-05 -2.7119741 

Omy#S15286

653 

RefSeq_HitDef Salmo salar SRY-box containing gene 2 (sox2), mRNA 

&gt;gi|209151034|gb|BT044795.1| Salmo salar clone ssal-rgf-504-

016 Transcription factor Sox-2 putative mRNA, complete cds 

3.33409E-05 1.3452208 

Ssa#CL382Ct

g1 

B2GO_BlastxHit NF-kappa-B inhibitor alpha 3.37603E-05 -1.5018016 

Ssa#STIR025

11 

RefSeq_HitDef Oncorhynchus mykiss regulator of G-protein signaling 1 (rgs1), 

mRNA &gt;gi|225705377|gb|BT074111.1| Oncorhynchus mykiss 

clone omyk-evo-508-055 Regulator of G-protein signaling 1 putative 

mRNA, complete cds 

3.96779E-05 -2.5229366 

Ssa#S3023995

6 

B2GO_BlastxHit NF-kappa-B inhibitor alpha 4.13226E-05 -1.7863648 

Ssa#STIR122

77 

RefSeq_HitDef Salmo salar Butyrate response factor 1 (tisb), mRNA 

&gt;gi|209155825|gb|BT045883.1| Salmo salar clone ssal-rgf-535-

262 Butyrate response factor 1 putative mRNA, complete cds 

4.15788E-05 -1.4583147 

Ssa#STIR086

07 

RefSeq_HitDef Salmo salar Butyrate response factor 1 (tisb), mRNA 

&gt;gi|209155825|gb|BT045883.1| Salmo salar clone ssal-rgf-535-

262 Butyrate response factor 1 putative mRNA, complete cds 

4.27796E-05 -1.3105443 

Ssa#S3200829

3 

RefSeq_HitDef Salmo salar T-cell activation GTPase activating protein (tagap), 

mRNA &gt;gi|209152907|gb|BT044873.1| Salmo salar clone ssal-rgf-

506-073 T-cell activation Rho GTPase-activating protein putative 

mRNA, complete cds 

4.29211E-05 -1.6876218 

Ssa#S3568528

7 

B2GO_BlastnHit danio rerio hypothetical loc568734 mrna 4.55842E-05 -1.7405447 

Ssa#STIR188

43 

RefSeq_HitDef Salmo salar Dual specificity protein phosphatase 6 (dus6), mRNA 

&gt;gi|223647661|gb|BT058876.1| Salmo salar clone ssal-rgf-509-

353 Dual specificity protein phosphatase 6 putative mRNA, complete 

4.67651E-05 -1.4212582 
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cds 

Ssa#STIR210

64 

 RefSeq_ RNA Mus musculus neuropeptide FF-amide peptide precursor (Npff), 

transcript variant 2, non-coding RNA 0 

4.72506E-05 -1.2690678 

Ssa#S1889002

6 

RefSeq_HitDef PREDICTED: Oreochromis niloticus coenzyme Q-binding protein 

COQ10 homolog, mitochondrial-like (LOC100704234), mRNA 

4.94725E-05 -1.894962 

Ssa#S3556653

5 

RefSeq_HitDef Salmo salar CD4-like protein (LOC100136502), transcript variant 1, 

mRNA &gt;gi|167538885|gb|EU409794.1| Salmo salar CD4-1-like 

protein mRNA, complete cds 

4.98195E-05 -1.7715738 

Ssa#S3023991

9 

RefSeq_HitDef PREDICTED: Oreochromis niloticus dolichyl-

diphosphooligosaccharide--protein glycosyltransferase 48 kDa 

subunit-like (LOC100697727), mRNA 

5.06962E-05 1.2469674 

Ssa#KSS351 RefSeq_HitDef Salmo salar Krueppel-like factor 2 (klf2), mRNA 

&gt;gi|209150946|gb|BT044789.1| Salmo salar clone ssal-rgf-503-

311 Krueppel-like factor 2 putative mRNA, complete cds 

5.5467E-05 -1.463886 

Ssa#STIR186

14 

RefSeq_HitDef Salmo salar selenocysteine lyase (scly), mRNA 

&gt;gi|223648997|gb|BT059544.1| Salmo salar clone ssal-rgf-511-

328 Selenocysteine lyase putative mRNA, complete cds 

5.63276E-05 -1.9870508 

Ssa#STIR083

75 

RefSeq_HitDef Salmo salar Ubiquitin-conjugating enzyme E2 variant 2 (ub2v2), 

mRNA &gt;gi|209730345|gb|BT046241.1| Salmo salar clone ssal-

evf-551-149 Ubiquitin-conjugating enzyme E2 variant 2 putative 

mRNA, complete cds 

5.64781E-05 1.2151277 

Ssa#S3570377

8 

B2GO_BlastxHit Immediate early response gene 5 protein 7.08272E-05 -1.4284151 

Ssa#S1889209

2 

RefSeq_HitDef Salmo salar GLIPR1-like protein 1 (gprl1), mRNA 

&gt;gi|209737963|gb|BT050050.1| Salmo salar clone ssal-rgb2-539-

210 GLIPR1-like protein 1 precursor putative mRNA, complete cds 

7.2077E-05 -1.4782301 

Ssa#STIR142

58 

 RefSeq_ RNA PREDICTED: Hydra magnipapillata hypothetical protein 

LOC100204443 (LOC100204443), mRNA 

7.73055E-05 1.4320724 

Ssa#S3550104

6 

RefSeq_HitDef Oncorhynchus mykiss Group XIIA secretory phospholipase A2 

(pg12a), mRNA &gt;gi|225704885|gb|BT073865.1| Oncorhynchus 

mykiss clone omyk-evo-507-207 Group XIIA secretory 

phospholipase A2 precursor putative mRNA, complete cds 

9.97931E-05 1.1515629 
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Ssa#S3027536

1 

RefSeq_HitDef Salmo salar EH-domain containing 3 (ehd3), mRNA 

&gt;gi|209154681|gb|BT045311.1| Salmo salar clone ssal-rgf-518-

062 EH domain-containing protein 3 putative mRNA, complete cds 

0.000105953 1.3082215 

Ssa#CL65Con

tig1 

RefSeq_HitDef Salmo salar C-X-C chemokine receptor type 4 (cxcr4), mRNA 

&gt;gi|223647193|gb|BT058642.1| Salmo salar clone Contig2817 C-

X-C chemokine receptor type 4 putative mRNA, complete cds 

0.000131253 -1.8059281 

Ssa#STIR156

62 

RefSeq_HitDef Salmo salar ERBB receptor feedback inhibitor 1 (errfi), mRNA 

&gt;gi|223648511|gb|BT059301.1| Salmo salar clone ssal-rgf-540-

055 ERBB receptor feedback inhibitor 1 putative mRNA, complete 

cds 

0.000139025 -1.238496 

Ssa#STIR060

82 

RefSeq_HitDef Salmo salar Butyrate response factor 1 (tisb), mRNA 

&gt;gi|209155825|gb|BT045883.1| Salmo salar clone ssal-rgf-535-

262 Butyrate response factor 1 putative mRNA, complete cds 

0.000140482 -1.4623064 

Ssa#STIR025

85 

RefSeq_HitDef Danio rerio glycogen synthase kinase binding protein (gbp), mRNA 

&gt;gi|4240382|gb|AF060499.1|AF060499 Danio rerio glycogen 

synthase kinase binding protein (gbp) mRNA, complete cds 

0.000141513 -1.3029525 

Ssa#STIR210

02 

 RefSeq RNA Drosophila melanogaster CG13840 (CG13840), mRNA  0.000148287 -1.2362767 

Ssa#STIR131

79 

B2GO_BlastxHit kruppel-like factor 9 0.000151313 -1.4936682 

Ssa#STIR225

53 

B2GO_BlastnHit Osmerus mordax clone omor-eva-507-053 ADP-ribosylation factor-

like protein 5B putative mRNA, complete cds 

0.000160632 -1.3542436 

Ssa#S3198156

9 

RefSeq_HitDef Danio rerio heme oxygenase (decycling) 1 (hmox1), mRNA 0.00017486 -1.6563822 

Ssa#STIR044

48 

RefSeq_HitDef Danio rerio glycogen synthase kinase binding protein (gbp), mRNA 

&gt;gi|4240382|gb|AF060499.1|AF060499 Danio rerio glycogen 

synthase kinase binding protein (gbp) mRNA, complete cds 

0.000185447 -1.2435138 

Ssa#S1888668

0 

RefSeq_HitDef Salmo salar Eukaryotic translation initiation factor 2C 3 (i2c3), 

mRNA &gt;gi|223648891|gb|BT059491.1| Salmo salar clone ssal-rgf-

513-072 Eukaryotic translation initiation factor 2C 3 putative mRNA, 

complete cds 

0.000191131 1.1420635 

Ssa#S1888870 B2GO_BlastxHit novel protein similar to vertebrate proline rich region 18 (PRR18) 0.000200713 -1.3217409 
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2 

Omy#BX0840

67 

B2GO_BlastnHit dendrocolaptes certhia early growth response 1 exon 2 and partial cds 0.000206791 -2.9119499 

Ssa#STIR029

34 

RefSeq_HitDef Salmo salar ripply1 (ripp1), mRNA 

&gt;gi|304376784|gb|BT049136.2| Salmo salar clone ssal-sjb-011-

184 ripply1 putative mRNA, complete cds 

0.000217255 1.3785561 

Ssa#TC11258

6 

RefSeq_HitDef Salmo salar StAR-related lipid transfer protein 7 (star7), mRNA 

&gt;gi|223649091|gb|BT059591.1| Salmo salar clone ssal-rgf-527-

298 StAR-related lipid transfer protein 7 putative mRNA, complete 

cds 

0.000217535 1.1887021 

Ssa#S3559018

1 

B2GO_BlastxHit serpin peptidase inhibitor, clade E (nexin, plasminogen activator 

inhibitor type 1), member 1 

0.000230599 -1.7937212 

Omy#BX3094

67 

B2GO_BlastxHit AXIN1 up-regulated 1 0.000234315 -2.5670185 

Ssa#STIR055

35 

RefSeq_HitDef Salmo salar potassium voltage-gated channel, Isk-related family, 

member 4 (kcne4), mRNA &gt;gi|209730907|gb|BT046522.1| Salmo 

salar clone ssal-evd-562-054 Potassium voltage-gated channel 

subfamily E member 4 putative mRNA, complete cds 

0.000236424 -1.4670478 

Omy#S34424

830 

RefSeq_HitDef PREDICTED: Anolis carolinensis midnolin-like (LOC100552822), 

partial mRNA 

0.000242859 -2.007433 

Ssa#STIR000

09_3 

RefSeq_HitDef Salmo salar interferon alpha 2 (ifna2), mRNA 

&gt;gi|37499750|gb|AY216595.1| Salmo salar interferon alpha 2 

(IFNA2) mRNA, complete cds 

0.000247907 -1.4697614 

Ssa#STIR183

03 

RefSeq_HitDef Salmo salar vaccinia related kinase 3 (vrk3), mRNA 

&gt;gi|223647489|gb|BT058790.1| Salmo salar clone ssal-rgf-503-

077 Serine/threonine-protein kinase VRK3 putative mRNA, complete 

cds 

0.000254618 -1.151597 

Ssa#STIR021

71 

RefSeq_HitDef Salmo salar CCAAT/enhancer binding protein (C/EBP), delta 

(cebpd), mRNA &gt;gi|209737603|gb|BT049870.1| Salmo salar clone 

ssal-evf-540-010 CCAAT/enhancer-binding protein delta putative 

mRNA, complete cds 

0.000257118 -1.5041416 

Ssa#EG91722 RefSeq_HitDef Salmo salar Pleckstrin homology Sec7 and coiled-coil domains- 0.000267553 -1.7717628 
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0 binding protein (pscbp), mRNA &gt;gi|209154393|gb|BT045167.1| 

Salmo salar clone ssal-rgf-513-381 Pleckstrin homology Sec7 and 

coiled-coil domains-binding protein putative mRNA, complete cds 

Ssa#STIR124

98 

RefSeq_HitDef Salmo salar C-X-C motif chemokine 10 (cxl10), mRNA 

&gt;gi|209733803|gb|BT047970.1| Salmo salar clone ssal-evd-534-

187 C-X-C motif chemokine 10 precursor putative mRNA, complete 

cds 

0.000268533 -1.6071593 

Ssa#STIR260

68 

RefSeq_HitDef Salmo salar TRAF2-binding protein (tifa), mRNA 

&gt;gi|223648901|gb|BT059496.1| Salmo salar clone ssal-rgf-529-

067 TRAF2-binding protein putative mRNA, complete cds 

0.00027246 -1.225249 

Ssa#S3197972

1 

B2GO_BlastxHit Cytochrome P450 20A1 0.000283607 1.2420185 

Ssa#S3027729

0 

B2GO_BlastxHit Survival motor neuron protein 1 0.000306794 -1.1763536 

Ssa#STIR290

77 

RefSeq_HitDef Salmo salar DnaJ homolog subfamily C member 17 (djc17), mRNA 

&gt;gi|221221903|gb|BT057741.1| Salmo salar clone ssal-rgb2-598-

029 DnaJ homolog subfamily C member 17 putative mRNA, 

complete cds 

0.000324114 -1.1516469 

Ssa#S3556302

3 

RefSeq_HitDef Salmo salar partner of NOB1 homolog (S. cerevisiae) (pno1), mRNA 

&gt;gi|209732321|gb|BT047229.1| Salmo salar clone ssal-sjb-017-

162 RNA-binding protein PNO1 putative mRNA, complete cds 

0.000334464 1.1158783 

Ssa#STIR182

30 

RefSeq_HitDef Salmo salar C-C chemokine receptor type 9 (ccr9), mRNA 

&gt;gi|209156077|gb|BT046009.1| Salmo salar clone ssal-rgf-539-

033 C-C chemokine receptor type 9 putative mRNA, complete cds 

0.000348061 -2.1405168 

Ssa#S3198567

8 

RefSeq_HitDef PREDICTED: Oreochromis niloticus transcription factor jun-D-like 

(LOC100693920), mRNA 

0.000362643 -1.3625591 

Ssa#STIR045

46 

RefSeq_HitDef Salmo salar FAM32A-like (fa32a), mRNA 

&gt;gi|209732905|gb|BT047521.1| Salmo salar clone ssal-eve-537-

227 FAM32A-like putative mRNA, complete cds 

0.000364193 -1.1020848 

Ssa#DW5438

22 

B2GO_BlastxHit PREDICTED: G protein-coupled receptor 3 0.00037258 -1.8818725 

Ssa#STIR136 B2GO_BlastnHit Salmo salar clone ssal-rgf-527-229 BTG2 putative mRNA, complete 0.000377842 -1.2661139 
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81 cds 

Ssa#KSS4885 RefSeq_HitDef Oncorhynchus mykiss Rhag (LOC100136711), mRNA 

&gt;gi|160961518|gb|EF667352.1| Oncorhynchus mykiss Rhag 

mRNA, complete cds 

0.000387367 1.4141538 

Ssa#STIR071

61 

RefSeq_HitDef Salmo salar SRY-box containing gene 2 (sox2), mRNA 

&gt;gi|209151034|gb|BT044795.1| Salmo salar clone ssal-rgf-504-

016 Transcription factor Sox-2 putative mRNA, complete cds 

0.000388382 1.199601 

Ssa#STIR121

17 

RefSeq_HitDef Salmo salar jun B proto-oncogene (junb), mRNA 

&gt;gi|209152284|gb|BT044843.1| Salmo salar clone ssal-rgf-505-

157 Transcription factor jun-B putative mRNA, complete cds 

0.000389325 -1.5340674 

Ssa#S3028493

3 

RefSeq_HitDef Oncorhynchus mykiss Vesicle transport protein SEC20 (sec20), 

mRNA &gt;gi|225705781|gb|BT074313.1| Oncorhynchus mykiss 

clone omyk-evo-507-334 Vesicle transport protein SEC20 putative 

mRNA, complete cds 

0.000400854 1.1429853 

Ssa#STIR165

97 

RefSeq_HitDef Oncorhynchus mykiss insulin-like growth factor binding protein 3 

(igfbp3), mRNA &gt;gi|83571698|gb|DQ146966.2| Oncorhynchus 

mykiss insulin-like growth factor binding protein 3 (IGFBP3) mRNA, 

complete cds 

0.000408961 -1.2581165 

Omy#S34424

583 

RefSeq_HitDef Salmo salar Butyrate response factor 2 (tisd), mRNA 

&gt;gi|209155171|gb|BT045556.1| Salmo salar clone ssal-rgf-524-

337 Butyrate response factor 2 putative mRNA, complete cds 

0.000411628 1.2703125 

Ssa#STIR166

30 

 RefSeq_ RNA Mus musculus neuropeptide FF-amide peptide precursor (Npff), 

transcript variant 2, non-coding RNA 

0.000421923 -1.195154 

Ssa#CK87400

4 

B2GO_BlastnHit danio rerio slit and trk like 4 protein mrna 0.000441593 1.4596949 

Ssa#TC73119 RefSeq_HitDef Oncorhynchus mykiss uncoupling protein 2B (LOC100136329), 

mRNA &gt;gi|83270939|gb|DQ295328.1| Oncorhynchus mykiss 

uncoupling protein 2B mRNA, complete cds 

0.000453838 -1.3596672 

Ssa#S3555581

4 

B2GO_BlastxHit S100-A11 0.000458639 -1.7224529 

Ssa#STIR114

23 

B2GO_BlastxHit pim-1 oncogene 0.000463844 -1.3777499 
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Ssa#DW5793

47 

RefSeq_HitDef PREDICTED: Oreochromis niloticus cryptochrome-1-like 

(LOC100694774), mRNA 

0.000488018 -1.6145815 

Omy#BX8708

13 

B2GO_BlastxHit ZNF16 0.000502921 -1.7055439 

Ssa#STIR157

55 

RefSeq_HitDef Salmo salar charged multivesicular body protein 3 (chmp3), mRNA 

&gt;gi|209155515|gb|BT045728.1| Salmo salar clone ssal-rgf-529-

351 Charged multivesicular body protein 3 putative mRNA, complete 

cds 

0.000503355 -1.9297497 

Ssa#S3566988

0 

RefSeq_HitDef PREDICTED: Oreochromis niloticus probable histone deacetylase 1-

B-like (LOC100711924), mRNA 

0.000516899 -1.5937812 

Ssa#STIR164

11 

RefSeq_HitDef Salmo salar Cbp/p300-interacting transactivator 2 (cite2), mRNA 

&gt;gi|209148285|gb|BT044666.1| Salmo salar clone ssal-rgf-002-

160 Cbp/p300-interacting transactivator 2 putative mRNA, complete 

cds 

0.000535478 -1.2958548 

Ssa#STIR001

09_4 

RefSeq_HitDef Salmo salar Catalase (cata), mRNA 

&gt;gi|209155289|gb|BT045615.1| Salmo salar clone ssal-rgf-526-

219 Catalase putative mRNA, complete cds 

0.000539205 1.2198262 

Ssa#S3024015

4 

RefSeq_HitDef Salmo salar small nuclear ribonucleoprotein polypeptide A (snrpa), 

mRNA &gt;gi|209735589|gb|BT048863.1| Salmo salar clone ssal-

evd-575-331 U1 small nuclear ribonucleoprotein A putative mRNA, 

complete cds 

0.000541204 1.1201419 

Ssa#S3569401

9 

B2GO_BlastnHit gallus gallus protein phosphatase regulatory subunit 3c mrna 0.000546163 1.4049615 

Omy#S15262

412 

RefSeq_HitDef Danio rerio immediate early response 5-like (ier5l), mRNA 

&gt;gi|37590897|gb|BC059641.1| Danio rerio immediate early 

response 5-like, mRNA (cDNA clone MGC:73321 

IMAGE:4789521), complete cds 

0.000554379 1.3630253 

Ssa#STIR120

48 

RefSeq_HitDef Oncorhynchus mykiss SOX9 (LOC100135781), mRNA 

&gt;gi|2780749|dbj|AB006448.1| Oncorhynchus mykiss SOX9 

mRNA, complete cds 

0.000568897 1.26207 

Ssa#S3199065

9 

RefSeq_HitDef PREDICTED: Oreochromis niloticus partner of Y14 and mago A-like 

(LOC100711261), mRNA 

0.00061372 1.2778387 
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Ssa#KSS2112 RefSeq_HitDef Oncorhynchus mykiss Set1 complex component swd2 (swd2), 

mRNA &gt;gi|225705949|gb|BT074397.1| Oncorhynchus mykiss 

clone omyk-evo-511-066 Set1 complex component swd2 putative 

mRNA, complete cds 

0.000632403 1.187811 

Ssa#S3558155

1 

RefSeq_HitDef Caenorhabditis briggsae Hypothetical protein CBG21705 

(CBG21705) mRNA, complete cds 

0.000660146 -1.1655862 

Ssa#TC82366 RefSeq_HitDef Oncorhynchus mykiss Growth arrest and DNA-damage-inducible 

protein GADD45 beta (ga45b), mRNA 

&gt;gi|225703347|gb|BT073096.1| Oncorhynchus mykiss clone 

omyk-evn-507-243 Growth arrest and DNA-damage-inducible 

protein GADD45 beta putative mRNA, complete cds 

0.000661091 -1.2672371 

Ssa#S3029052

2 

RefSeq_HitDef Oncorhynchus mykiss T-cell activation Rho GTPase-activating 

protein (LOC100136248), mRNA &gt;gi|51949898|gb|AY606035.1| 

Oncorhynchus mykiss T-cell activation Rho GTPase-activating 

protein mRNA, complete cds 

0.000661392 -1.5076252 

Ssa#STIR066

00 

RefSeq_HitDef Salmo salar Interleukin-13 receptor alpha-2 chain (i13r2), mRNA 

&gt;gi|209154781|gb|BT045361.1| Salmo salar clone ssal-rgf-519-

098 Interleukin-13 receptor alpha-2 chain precursor putative mRNA, 

complete cds 

0.000672303 -1.4360772 

Ssa#STIR235

65 

RefSeq_HitDef Salmo salar Ras association domain-containing protein 2 (rasf2), 

mRNA &gt;gi|223648387|gb|BT059239.1| Salmo salar clone ssal-rgf-

535-320 Ras association domain-containing protein 2 putative 

mRNA, complete cds 

0.000676985 -1.4516588 

Ssa#STIR136

27 

B2GO_BlastxHit cox18 cytochrome c oxidase assembly homolog 0.000679845 1.1546925 

Ssa#STIR248

00 

B2GO_BlastxHit protein-interferon-inducible double stranded rna dependentrepressor 

of (p58 repressor) 

0.000681999 2.3024435 

Ssa#S3566436

0 

RefSeq_HitDef PREDICTED: Oreochromis niloticus regulator of G-protein signaling 

1-like (LOC100707040), mRNA 

0.00068337 -1.560424 

Ssa#S1889225

5 

RefSeq_HitDef Salmo salar interferon alpha 2 (ifna2), mRNA 

&gt;gi|37499750|gb|AY216595.1| Salmo salar interferon alpha 2 

(IFNA2) mRNA, complete cds 

0.000688507 -1.7782513 
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Ssa#STIR122

10 

RefSeq_HitDef Salmo salar thioredoxin interacting protein (txnip), mRNA 

&gt;gi|209155761|gb|BT045851.1| Salmo salar clone ssal-rgf-534-

292 Thioredoxin-interacting protein putative mRNA, complete cds 

0.000719704 1.3847609 

Ssa#CL72Con

tig1 

RefSeq_HitDef Salmo salar Transaldolase (taldo), mRNA 

&gt;gi|221219805|gb|BT056692.1| Salmo salar clone ssal-evf-517-

302 Transaldolase putative mRNA, complete cds 

0.000740438 1.2340382 

Ssa#TC11278

6 

RefSeq_HitDef PREDICTED: Danio rerio brain-specific angiogenesis inhibitor 3-like 

(LOC100331635), mRNA 

0.000744069 -1.320783 

Ssa#STIR146

63 

RefSeq_HitDef Salmo salar beta globin (LOC100136576), mRNA 

&gt;gi|452794|emb|X69958.1| S.salar mRNA for beta-globin 

0.000766158 -1.2322885 

Ssa#STIR243

29 

 RefSeq_RNA PREDICTED: Oreochromis niloticus zinc finger protein 729-like 

(LOC100710208), mRNA 

0.000766335 -1.2702931 

Ssa#S3568567

3 

B2GO_BlastxHit NCK-associated protein 1-like 0.000838522 -1.3538387 

Ssa#STIR159

64 

B2GO_BlastnHit Salmo salar clone 251P16 TCR-alpha/delta locus, genomic sequence 0.000857651 1.4470521 

Ssa#S3024207

5 

B2GO_BlastnHit unnamed protein product 0.000857935 1.284243 

Ssa#S3200191

8 

RefSeq_HitDef Salmo salar CCL4-like chemokine (LOC100136511), mRNA 

&gt;gi|126507270|gb|EF079664.1| Salmo salar CCL4-like chemokine 

mRNA, complete cds 

0.00086156 -2.4121222 

Ssa#S3567330

4 

RefSeq_HitDef PREDICTED: Oryctolagus cuniculus glutathione S-transferase mu 3 

(LOC100356052), mRNA 

0.000886549 1.1327995 

Ssa#S3197637

0 

RefSeq_HitDef PREDICTED: Oreochromis niloticus insulinoma-associated protein 

1-like (LOC100696889), mRNA 

0.000903389 1.3944714 

Ssa#STIR074

83 

B2GO_BlastnHit M.truncatula DNA sequence from clone MTH2-59B18 on 

chromosome 3, complete sequence 

0.000911307 -1.657095 

Ssa#STIR113

90 

B2GO_BlastxHit zinc finger protein 572 0.000953537 1.25753 

Ssa#S3551617

9 

B2GO_BlastnHit gasterosteus aculeatus clone ch213- complete sequence 0.000971374 -1.4470485 

Ssa#S3558277 RefSeq_HitDef Oncorhynchus mykiss Growth arrest and DNA-damage-inducible 0.000983005 -1.3245772 
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7 protein GADD45 beta (ga45b), mRNA 

&gt;gi|225703347|gb|BT073096.1| Oncorhynchus mykiss clone 

omyk-evn-507-243 Growth arrest and DNA-damage-inducible 

protein GADD45 beta putative mRNA, complete cds 

Ssa#S3024051

4 

RefSeq_HitDef Salmo salar limb and neural patterns a (lnpa), mRNA 

&gt;gi|223649177|gb|BT059634.1| Salmo salar clone ssal-rgf-521-

188 lunapark-A putative mRNA, complete cds 

0.000987987 1.2357255 
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Apendix1c: Microarray targets (P< 0.001) Photoperiod/ Day night interaction. 

ProbeName Blast type RefSeq_HitDef p-value 

Photoperiod / Day 

Night 

Fold change 

Photoperiod/ Day 

night  

Ssa#S188

88857 

B2GO_Blast

xHit 

taeniopygia guttata misc_rna miscrna 3.76495E-05 -2.382842 

Ssa#STIR

25834 

RefSeq_Hit

Def 

PREDICTED: Oreochromis niloticus heterogeneous nuclear 

ribonucleoprotein L-like, transcript variant 2 (LOC100698149), 

mRNA 

0.000111932 -1.5901239 

Ssa#STIR

19299 

 RefSeq_RN

A 

PREDICTED: Oreochromis niloticus leucine-rich repeat-containing 

protein 59-like (LOC100690486), mRNA 

0.00023968 1.138391 

Ssa#S355

97250 

RefSeq_Hit

Def 

Oncorhynchus mykiss caspase-9 (LOC100136676), mRNA 

&gt;gi|68270851|gb|DQ025755.1| Oncorhynchus mykiss caspase-9 

mRNA, complete cds 

0.000351221 -1.5712776 

Ssa#DW5

77228 

RefSeq_Hit

Def 

PREDICTED: Danio rerio kelch-like protein 20-like (LOC556381), 

mRNA 

0.000534406 1.5650208 

Ssa#S302

39693 

B2GO_Blast

xHit 

novel protein 0.000665537 -1.265366 

Omy#CX

144324 

RefSeq_Hit

Def 

PREDICTED: Cricetulus griseus dnaJ homolog subfamily B member 

5-like (LOC100750493), miscRNA 

0.000883872 -2.4088717 

Ssa#S355

96271_S 

RefSeq_Hit

Def 

Salmo salar multiple coagulation factor deficiency 2 (mcfd2), mRNA 

&gt;gi|304376408|gb|BT046423.2| Salmo salar clone ssal-evf-526-

180 Multiple coagulation factor deficiency protein 2 homolog 

precursor putative mRNA, complete cds 

0.000930625 -1.9259074 

Ssa#CB51

8090 

B2GO_Blast

xHit 

PREDICTED: leprecan-like 2 0.000949213 1.1958597 

Ssa#S356

93263 

B2GO_Blast

xHit 

pol-like protein 0.000962005 -4.457587 
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Appendix 2 List of microarray probes displaying a fold change greater than 10 with regard to photoperiod (LD Vs SD), Day vs. night and 

photoperiod/ day night interaction. 

Appendix 2a: Microarray targets (>5 x fold change) photoperiod long day vs. short day 

Probe 

Name 

Blast type RefSeq_HitDef  Fold change 

photoperiod 

p-value 

Photoperiod 

Ssa#STIR2

5944 

RefSeq_HitDef Danio rerio ankyrin repeat domain 13C (ankrd13c), mRNA 

&gt;gi|28839569|gb|BC047821.1| Danio rerio zgc:56077, mRNA 

(cDNA clone MGC:56077 IMAGE:5410010), complete cds 

-46.455067 0.010115239 

Ssa#STIR1

5680 

RefSeq_HitDef Salmo salar adenosine monophosphate deaminase 1 (isoform M) 

(ampd1), mRNA &gt;gi|197631794|gb|BT043506.1| Salmo salar 

clone HM4_0643 adenosine monophosphate deaminase 1 (ampd1) 

mRNA, complete cds 

15.261917 0.004162263 

Ssa#STIR1

7814 

RefSeq_HitDef Oncorhynchus mykiss arylalkylamine N-acetyltransferase (aanat-2), 

mRNA &gt;gi|4585222|gb|AF106006.1|AF106006 Oncorhynchus 

mykiss arylalkylamine N-acetyltransferase (AANAT-2) mRNA, 

complete cds 

-10.924063 0.040280964 

Ssa#STIR0

0072_4 

B2GO_Blastx

Hit 

interferon-inducible protein gig2 9.332867 0.000309485 

Ssa#S23871

809 

RefSeq_HitDef Salmo salar fast myotomal muscle troponin-T-2 (LOC100196675), 

mRNA &gt;gi|197632598|gb|BT043908.1| Salmo salar clone 

HM6_0331 fast myotomal muscle troponin-T-2 mRNA, complete cds 

7.943922 0.012831342 

Ssa#STIR1

8455 

RefSeq_ RNA Danio rerio zgc:56235 (zgc:56235), mRNA 7.8793855 0.003795717 

Ssa#CX357

274 

B2GO_Blastx

Hit 

PREDICTED: similar to LYST-interacting protein 8, partial -7.874486 0.008941274 

Ssa#STIR1

7552 

RefSeq_ RNA Salmo salar v-yes-1 Yamaguchi sarcoma viral related oncogene 

homolog (lyn), mRNA >gb|BT045857.1| Salmo salar clone ssal-rgf-

534-333 Tyrosine-protein kinase Lyn putative mRNA, complete cds 

7.643616 0.035028446 

Omy#CX03

4437 

B2GO_Blastx

Hit 

unnamed protein product 7.3411126 0.000261279 



Apendix 

308 
 

Ssa#S35528

745 

B2GO_Blastx

Hit 

PREDICTED: similar to interferon-inducible protein Gig2 7.2423887 0.002074441 

Omy#TC16

7443 

RefSeq_HitDef PREDICTED: Oreochromis niloticus glyceraldehyde-3-phosphate 

dehydrogenase-like (LOC100704894), mRNA 

7.077523 0.01720346 

Ssa#STIR0

0072_2 

B2GO_Blastx

Hit 

interferon-inducible protein gig2 6.637287 0.002558014 

Ssa#STIR0

0072_3 

B2GO_Blastx

Hit 

interferon-inducible protein gig2 6.3724675 0.001621204 

Ssa#KSS37

21 

RefSeq_HitDef Salmo salar RAS guanyl-releasing protein 2 (grp2), mRNA 

&gt;gi|209151713|gb|BT044818.1| Salmo salar clone ssal-rgf-504-

236 RAS guanyl-releasing protein 2 putative mRNA, complete cds 

6.264085 0.008033107 

Ssa#S35496

061_S 

B2GO_Blastx

Hit 

imap family member 8 6.234745 0.20998588 

Ssa#STIR1

9294 

RefSeq_HitDef Salmo salar Low density lipoprotein receptor adapter protein 1 (arh), 

mRNA &gt;gi|221219625|gb|BT056602.1| Salmo salar clone ssal-

rgb2-642-047 Low density lipoprotein receptor adapter protein 1 

putative mRNA, complete cds 

6.0253615 0.00652373 

Ssa#STIR2

4047 

RefSeq_HitDef Oncorhynchus mykiss zinc exporter 1 (znt1), mRNA 

&gt;gi|56406616|gb|AY742790.1| Oncorhynchus mykiss zinc 

exporter 1 (ZnT1) mRNA, complete cds 

5.983663 0.023619961 

Ssa#STIR0

0118_4 

RefSeq_HitDef Salmo salar creatine kinase-1 (ckm1), mRNA 

&gt;gi|197632378|gb|BT043798.1| Salmo salar clone HM4_0185 

creatine kinase-1 (ckm1) mRNA, complete cds 

5.7848706 0.030929605 

Ssa#STIR2

1664 

RefSeq_HitDef Salmo salar Transmembrane protein 149 (tm149), mRNA 

&gt;gi|223648349|gb|BT059220.1| Salmo salar clone ssal-rgf-534-

112 Transmembrane protein 149 precursor putative mRNA, complete 

cds 

-5.710232 0.019659145 

Ssa#STIR1

4473 

B2GO_Blastn

Hit 

Salmo salar clone ssal-rgf-528-249, novel cds 5.634237 0.014026556 

Ssa#STIR1

5776 

RefSeq_HitDef Salmo salar Hsp70-binding protein 1 (hpbp1), mRNA 

&gt;gi|209153943|gb|BT044942.1| Salmo salar clone ssal-rgf-508-

063 Hsp70-binding protein 1 putative mRNA, complete cds 

5.5901675 0.01475773 
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Ssa#EG820

908 

B2GO_Blastn

Hit 

homo sapiens myoferlin transcript variant mrna 5.484561 0.023758586 

Ssa#STIR2

5540 

RefSeq_HitDef Salmo salar Hsp70-binding protein 1 (hpbp1), mRNA 

&gt;gi|209153943|gb|BT044942.1| Salmo salar clone ssal-rgf-508-

063 Hsp70-binding protein 1 putative mRNA, complete cds 

5.451452 0.015280915 

Ssa#STIR2

3530 

RefSeq_HitDef Salmo salar Hsp70-binding protein 1 (hpbp1), mRNA 

&gt;gi|209153943|gb|BT044942.1| Salmo salar clone ssal-rgf-508-

063 Hsp70-binding protein 1 putative mRNA, complete cds 

5.408449 0.025305893 

Ssa#STIR1

5526 

B2GO_Blastx

Hit 

family with sequence similaritymember a 5.381762 0.014945637 

Ssa#STIR1

0575 

B2GO_Blastx

Hit 

apoptosis-associated speck-like protein containing a card 5.2639 0.020625941 

Con_CAND

S_07 

RefSeq_HitDef Salmo salar myxovirus resistance 2 (mx2), mRNA 

&gt;gi|1519385|gb|U66476.1|SSU66476 Salmo salar Mx2 protein 

mRNA, complete cds 

5.2614775 0.016696358 

Omy#CA38

0549 

B2GO_Blastx

Hit 

PREDICTED: wu:fb81h03 5.238579 0.023726037 

Ssa#S35496

061 

B2GO_Blastx

Hit 

PREDICTED: similar to CG5765-PA 5.1479087 0.31128702 

Omy#BX87

7417 

B2GO_Blastx

Hit 

PREDICTED: similar to CG5765-PA -5.086931 0.027065517 
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Appendix 2b: Microarray targets (> 5 x Fold change) Day vs night. 

ProbeName Blast Type RefSeq_HitDef Fold Change 

Day/ Night 

p-value Day/ 

Night 

Ssa#STIR0

3571 

RefSeq_HitDef Salmo salar CD209 antigen-like protein D (c209d), mRNA 

&gt;gi|304376625|gb|BT048043.2| Salmo salar clone ssal-evf-579-332 

CD209 antigen-like protein D putative mRNA, complete cds 

10.30289 0.03647512 

Ssa#S35542

336 

RefSeq_HitDef Salmo salar fast myotomal muscle actin (actc1), mRNA 

&gt;gi|119721175|gb|AF304406.2| Salmo salar fast myotomal muscle 

actin mRNA, complete cds 

-9.357814 0.0424916 

Ssa#TC112

890 

RefSeq_HitDef PREDICTED: Bos taurus protein phosphatase 4, regulatory subunit 1 

(PPP4R1), mRNA 

9.128924 0.02218637 

Omy#S1526

2039 

RefSeq_HitDef PREDICTED: Oreochromis niloticus O-linked N-acetylglucosamine 

(GlcNAc) transferase (UDP-N-acetylglucosamine:polypeptide-N-

acetylglucosaminyl transferase), transcript variant 2 (OGT), mRNA 

8.643788 0.00678337 

Ssa#STIR2

2740 

RefSeq_HitDef Salmo salar Retinoid-binding protein 7 (ret7), mRNA 

&gt;gi|209737323|gb|BT049730.1| Salmo salar clone ssal-eve-572-076 

Retinoid-binding protein 7 putative mRNA, complete cds 

-7.7628856 0.04234355 

Omy#CA38

0549 

B2GO_Blastx

Hit 

PREDICTED: wu:fb81h03 6.7699795 0.01150544 

Ssa#STIR1

7814 

RefSeq_HitDef Oncorhynchus mykiss arylalkylamine N-acetyltransferase (aanat-2), 

mRNA &gt;gi|4585222|gb|AF106006.1|AF106006 Oncorhynchus 

mykiss arylalkylamine N-acetyltransferase (AANAT-2) mRNA, 

complete cds 

6.4541936 0.09821406 

Ssa#TC102

889 

B2GO_Blastx

Hit 

ubinuclein 2 -6.3009925 0.03601006 

Ssa#STIR0

0118_4 

RefSeq_HitDef Salmo salar creatine kinase-1 (ckm1), mRNA 

&gt;gi|197632378|gb|BT043798.1| Salmo salar clone HM4_0185 

creatine kinase-1 (ckm1) mRNA, complete cds 

-6.099753 0.02778198 

Ssa#STIR1

7552 

 RefSeq_RNA Salmo salar v-yes-1 Yamaguchi sarcoma viral related oncogene 

homolog (lyn), mRNA >gb|BT045857.1| Salmo salar clone ssal-rgf-

534-333 Tyrosine-protein kinase Lyn putative mRNA, complete cds 

-6.0767064 0.05244112 
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Ssa#S35599

996 

RefSeq_HitDef Salmo salar Vacuolar proton pump subunit H (vath), mRNA 

&gt;gi|209154159|gb|BT045050.1| Salmo salar clone ssal-rgf-510-264 

Vacuolar proton pump subunit H putative mRNA, complete cds 

-5.444198 0.04255521 

Ssa#S35553

712 

B2GO_Blastx

Hit 

PREDICTED: similar to Protein-glutamine gamma-glutamyltransferase 

5 (Transglutaminase-5) (TGase 5) (Transglutaminase X) (TGase X) 

(TGX) (TG(X)) 

-5.3636265 0.01958431 

Omy#CX03

4437 

B2GO_Blastn

Hit 

danio rerio zgc:175139 (zgc:175139) mrna -5.1907873 0.00120107 
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Appendix 2c: Microarray targets (> 5 x Fold change) Photoperiod/ Day night interaction (maximum) 

Probe Name Blast Type RefSeq_HitDef Fold change 

Photoperiod / 

Day night 

P value 

Photoperiod/ Day 

night 

Ssa#STIR156

80 

RefSeq_HitDef Salmo salar adenosine monophosphate deaminase 1 (isoform M) 

(ampd1), mRNA &gt;gi|197631794|gb|BT043506.1| Salmo salar clone 

HM4_0643 adenosine monophosphate deaminase 1 (ampd1) mRNA, 

complete cds 

-188.05891 0.02087278 

Ssa#S2387180

9 

RefSeq_HitDef Salmo salar fast myotomal muscle troponin-T-2 (LOC100196675), 

mRNA &gt;gi|197632598|gb|BT043908.1| Salmo salar clone 

HM6_0331 fast myotomal muscle troponin-T-2 mRNA, complete cds 

-82.176384 0.02412807 

Ssa#S1889246

5 

RefSeq_HitDef Salmo salar rod opsin (LOC100136370), mRNA 

&gt;gi|7271780|gb|AF201470.1|AF201470 Salmo salar retinal rod opsin 

mRNA, complete cds 

57.997765 0.0321345 

Ssa#S3549606

1_S 

B2GO_Blastx

Hit 

imap family member 8 50.791286 0.04563181 

Ssa#STIR001

18_4 

RefSeq_HitDef Salmo salar creatine kinase-1 (ckm1), mRNA 

&gt;gi|197632378|gb|BT043798.1| Salmo salar clone HM4_0185 

creatine kinase-1 (ckm1) mRNA, complete cds 

-42.523563 0.05925008 

Ssa#S3549606

1 

B2GO_Blastx

Hit 

imap family member 8///"PREDICTED: similar to GTPase, IMAP 

family member 7" 

39.10866 0.01067536 

Ssa#TC10693

8 

RefSeq_HitDef PREDICTED: Danio rerio GTPase IMAP family member 8-like 

(LOC100332582), partial mRNA 

34.448006 0.01069007 

Ssa#S3026342

5 

B2GO_Blastx

Hit 

PREDICTED: glutamate receptor, ionotropic, kainate 1 33.054 0.01853157 

Omy#S34312

805 

RefSeq_HitDef PREDICTED: Monodelphis domestica THO complex subunit 1-like 

(LOC100013574), mRNA 

-32.516174 0.04348469 

Omy#CA3805

49 

B2GO_Blastx

Hit 

PREDICTED: wu:fb81h03 -27.956371 0.68715185 

Omy#TC1674

43 

RefSeq_HitDef PREDICTED: Oreochromis niloticus glyceraldehyde-3-phosphate 

dehydrogenase-like (LOC100704894), mRNA 

-23.803677 0.16933796 
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Ssa#STIR259

44 

RefSeq_HitDef Danio rerio ankyrin repeat domain 13C (ankrd13c), mRNA 

&gt;gi|28839569|gb|BC047821.1| Danio rerio zgc:56077, mRNA 

(cDNA clone MGC:56077 IMAGE:5410010), complete cds 

22.775366 0.4780948 

Ssa#STIR175

52 

 RefSeq_ RNA Salmo salar v-yes-1 Yamaguchi sarcoma viral related oncogene 

homolog (lyn), mRNA >gb|BT045857.1| Salmo salar clone ssal-rgf-

534-333 Tyrosine-protein kinase Lyn putative mRNA, complete cds 

-22.511501 0.3692513 

Omy#TC1698

99 

RefSeq_HitDef Salmo salar creatine kinase-1 (ckm1), mRNA 

&gt;gi|197632378|gb|BT043798.1| Salmo salar clone HM4_0185 

creatine kinase-1 (ckm1) mRNA, complete cds 

-22.344875 0.05456895 

Omy#S15262

039 

RefSeq_HitDef PREDICTED: Oreochromis niloticus O-linked N-acetylglucosamine 

(GlcNAc) transferase (UDP-N-acetylglucosamine:polypeptide-N-

acetylglucosaminyl transferase), transcript variant 2 (OGT), mRNA 

-19.644037 0.25646386 

Ssa#STIR155

26 

B2GO_Blastx

Hit 

family with sequence similaritymember a -19.496592 0.40282133 

Ssa#DY71863

1 

B2GO_Blastx

Hit 

Rho GTPase-activating protein 15 -19.19899 0.06144268 

Ssa#CO47017

9 

B2GO_Blastx

Hit 

sortilin 1 -19.01868 0.02209195 

Ssa#STIR260

62 

 RefSeq_RNA Salmo salar sarcoglycan, epsilon (sgce), mRNA >gb|BT059367.1| 

Salmo salar clone ssal-rgf-510-082 Epsilon-sarcoglycan precursor 

putative mRNA, complete cds 

17.366827 0.02664242 

Omy#BX8774

17 

B2GO_Blastx

Hit 

PREDICTED: similar to CG5765-PA 16.48222 0.09394795 

Ssa#STIR035

71 

RefSeq_HitDef Salmo salar CD209 antigen-like protein D (c209d), mRNA 

&gt;gi|304376625|gb|BT048043.2| Salmo salar clone ssal-evf-579-332 

CD209 antigen-like protein D putative mRNA, complete cds 

-16.274656 0.6528121 

Ssa#STIR001

18_3 

RefSeq_HitDef Salmo salar creatine kinase-1 (ckm1), mRNA 

&gt;gi|197632378|gb|BT043798.1| Salmo salar clone HM4_0185 

creatine kinase-1 (ckm1) mRNA, complete cds 

-15.622583 0.07504167 

Ssa#TC11059

7 

RefSeq_HitDef PREDICTED: Oreochromis niloticus hypothetical protein 

LOC100708024 (LOC100708024), mRNA 

-15.355853 0.00840261 

Ssa#DY72949 RefSeq_HitDef Salmo salar P2Y purinoceptor 8 (p2ry8), mRNA -14.605243 0.0299134 
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2 &gt;gi|209731413|gb|BT046775.1| Salmo salar clone ssal-rgb2-576-249 

P2Y purinoceptor 8 putative mRNA, complete cds 

Ssa#STIR012

37 

RefSeq_HitDef Salmo salar parvalbumin beta (prvb), mRNA -14.603089 0.06488016 

Ssa#STIR227

40 

RefSeq_HitDef Salmo salar Retinoid-binding protein 7 (ret7), mRNA 

&gt;gi|209737323|gb|BT049730.1| Salmo salar clone ssal-eve-572-076 

Retinoid-binding protein 7 putative mRNA, complete cds 

-14.582099 0.8457009 

Ssa#S4837175

7 

B2GO_Blastn

Hit 

mus musculus titin transcript variant n2- mrna 13.981991 0.04433387 

Ssa#STIR000

72_4 

B2GO_Blastx

Hit 

interferon-inducible protein gig2 -13.783437 0.45199442 

Ssa#S3551499

1 

RefSeq_HitDef PREDICTED: Anolis carolinensis 1,25-dihydroxyvitamin D(3) 24-

hydroxylase, mitochondrial-like (LOC100555767), partial mRNA 

-13.5553 0.12977287 

Ssa#DY70680

8 

RefSeq_HitDef Schizosaccharomyces japonicus yFS275 SNF2 family ATP-dependent 

chromatin-remodeling factor snf21, mRNA 

13.500755 0.04280261 

Omy#TC1723

53 

B2GO_Blastx

Hit 

hypothetical protein LOC100137110 -13.275645 0.04117857 

Ssa#KSS3721 RefSeq_HitDef Salmo salar RAS guanyl-releasing protein 2 (grp2), mRNA 

&gt;gi|209151713|gb|BT044818.1| Salmo salar clone ssal-rgf-504-236 

RAS guanyl-releasing protein 2 putative mRNA, complete cds 

-13.146598 0.313945 

Ssa#DW4700

32 

B2GO_Blastx

Hit 

PREDICTED: similar to Serine/threonine-protein kinase ULK4 (Unc-

51-like kinase 4) 

-13.085985 0.11287892 

Ssa#STIR192

94 

RefSeq_HitDef Salmo salar Low density lipoprotein receptor adapter protein 1 (arh), 

mRNA &gt;gi|221219625|gb|BT056602.1| Salmo salar clone ssal-rgb2-

642-047 Low density lipoprotein receptor adapter protein 1 putative 

mRNA, complete cds 

-12.469442 0.25085774 

Omy#S19710

960 

B2GO_Blastx

Hit 

MOXD2_DANRERecName: Full=DBH-like monooxygenase protein 2 

homolog; Flags: Precursor 

-12.218872 0.03206809 

Ssa#STIR045

14 

RefSeq_HitDef Danio rerio splicing factor 3a, subunit 3 (sf3a3), mRNA 

&gt;gi|49618980|gb|AY648757.1| Danio rerio splicesome-associated 

factor 61 mRNA, complete cds 

-12.097144 0.02794942 

Ssa#TC10288 B2GO_Blastx ubinuclein 2 11.098908 0.68151367 
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9 Hit 

Ssa#CX35459

8 

RefSeq_HitDef PREDICTED: Oreochromis niloticus mitogen-activated protein kinase 

kinase kinase 5-like (LOC100703888), mRNA 

11.048678 0.05112877 

Ssa#STIR178

14 

RefSeq_HitDef Oncorhynchus mykiss arylalkylamine N-acetyltransferase (aanat-2), 

mRNA &gt;gi|4585222|gb|AF106006.1|AF106006 Oncorhynchus 

mykiss arylalkylamine N-acetyltransferase (AANAT-2) mRNA, 

complete cds 

-10.928259 0.6217961 

Ssa#TC10862

9 

RefSeq_HitDef Oncorhynchus mykiss complement factor H1 protein (LOC100136131), 

mRNA &gt;gi|67904936|emb|AM039935.1| Oncorhynchus mykiss 

mRNA for complement factor H1 protein 

10.873915 0.23662262 

Ssa#CX35727

4 

B2GO_Blastx

Hit 

PREDICTED: similar to LYST-interacting protein 8, partial 10.862316 0.6360513 

Ssa#TC11289

0 

RefSeq_HitDef PREDICTED: Bos taurus protein phosphatase 4, regulatory subunit 1 

(PPP4R1), mRNA 

-10.806593 0.84464276 

Ssa#STIR180

85 

RefSeq_HitDef Salmo salar Zinc finger protein Xfin (xfin), mRNA 

&gt;gi|223648569|gb|BT059330.1| Salmo salar clone ssal-rgf-541-357 

Zinc finger protein Xfin putative mRNA, complete cds 

10.689163 0.02011773 

Ssa#STIR105

75 

B2GO_Blastx

Hit 

apoptosis-associated speck-like protein containing a card -10.060478 0.39479604 

Ssa#CB51284

1 

RefSeq_HitDef Salmo salar Serine/threonine-protein kinase PCTAIRE-2 (pctk2), 

mRNA &gt;gi|223648663|gb|BT059377.1| Salmo salar clone ssal-rgf-

523-300 Serine/threonine-protein kinase PCTAIRE-2 putative mRNA, 

complete cds 

9.612992 0.03735065 

Ssa#STIR184

81 

RefSeq_HitDef Salmo salar inositol 1,3,4-triphosphate 5/6 kinase (itpk1), mRNA 

&gt;gi|304376530|gb|BT047282.2| Salmo salar clone ssal-evd-502-275 

Inositol-tetrakisphosphate 1-kinase putative mRNA, complete cds 

-9.605071 0.01240713 

Omy#CX0344

37 

B2GO_Blastn

Hit 

danio rerio zgc:175139 (zgc:175139) mrna 9.415298 0.15348983 

Ssa#S1883534

2 

RefSeq_HitDef Oncorhynchus mykiss differentially regulated trout protein 1 

(LOC100136615), mRNA &gt;gi|11095802|gb|AF281355.1| 

Oncorhynchus mykiss differentially regulated trout protein 1 mRNA, 

complete cds 

9.407242 0.04288711 
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Ssa#STIR184

55 

 RefSeq_RNA Danio rerio zgc:56235 (zgc:56235), mRNA  -9.308748 0.7266945 

Ssa#STIR240

47 

RefSeq_HitDef Oncorhynchus mykiss zinc exporter 1 (znt1), mRNA 

&gt;gi|56406616|gb|AY742790.1| Oncorhynchus mykiss zinc exporter 

1 (ZnT1) mRNA, complete cds 

-9.300929 0.5430023 

Omy#CU0733

61 

B2GO_Blastx

Hit 

0 -9.117006 0.94429696 

Con_CANDS

_07 

RefSeq_HitDef Salmo salar myxovirus resistance 2 (mx2), mRNA 

&gt;gi|1519385|gb|U66476.1|SSU66476 Salmo salar Mx2 protein 

mRNA, complete cds 

-9.113772 0.5720938 

Ssa#TC10999

6 

B2GO_Blastx

Hit 

PREDICTED: similar to transmembrane protein 74 9.051912 0.10629478 

Omy#S32715

052 

RefSeq_HitDef Danio rerio glucose phosphate isomerase b (gpib), mRNA 8.825852 0.1771449 

Omy#CA3772

50 

B2GO_Blastn

Hit 

danio rerio skin mucus antibacterial l-amino acid oxidase mrna -8.788457 0.03553839 

Ssa#TC64988 RefSeq_HitDef Ixodes scapularis sodium-neurotransmitter symporter, putative, mRNA -8.787946 0.06542971 

Omy#S34421

934 

B2GO_Blastx

Hit 

Fstl4 protein 8.758008 0.3411463 

Ssa#STIR205

48 

RefSeq_RNA PREDICTED: Strongylocentrotus purpuratus uncharacterized 

LOC100892022 (LOC100892022), mRNA 

 0 

-8.568612 0.04541114 

Omy#S23945

470 

B2GO_Blastn

Hit 

salmo salar clone ssal-rgf-525-204 type-2 angiotensin ii receptor 

complete cds 

-8.563399 0.03644463 

Ssa#DY69336

9 

RefSeq_HitDef PREDICTED: Danio rerio mucolipin-3-like (LOC100001113), partial 

mRNA 

-8.499387 0.03358924 

Omy#CA3620

44 

B2GO_Blastn

Hit 

danio rerio smith-magenis syndrome chromosome candidate 7-like 

mrna 

8.331676 0.12315166 

Ssa#STIR190

14 

RefSeq_HitDef Arabidopsis thaliana uncharacterized protein (AT5G47020) mRNA, 

complete cds 

8.1190195 0.23395196 

Ssa#STIR259

65 

RefSeq_HitDef Salmo salar histidine triad nucleotide binding protein 3 (hint3), mRNA 

&gt;gi|221220801|gb|BT057190.1| Salmo salar clone ssal-sjb-013-304 

-8.089872 0.04815245 
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Histidine triad nucleotide-binding protein 3 putative mRNA, complete 

cds 

Omy#S26989

086 

B2GO_Blastx

Hit 

natriuretic peptide receptor type C/D -7.9511538 0.04854657 

Ssa#STIR216

64 

RefSeq_HitDef Salmo salar Transmembrane protein 149 (tm149), mRNA 

&gt;gi|223648349|gb|BT059220.1| Salmo salar clone ssal-rgf-534-112 

Transmembrane protein 149 precursor putative mRNA, complete cds 

7.905333 0.95997465 

Omy#BX8580

59 

RefSeq_HitDef PREDICTED: Gallus gallus regulatory associated protein of MTOR, 

complex 1, transcript variant 1 (RPTOR), mRNA 

7.7954855 0.5624641 

Ssa#STIR110

09 

RefSeq_RNA PREDICTED: Pan paniscus ATPase, Na+/K+ transporting, alpha 2 

polypeptid 

-7.6973977 0.00858717 

Ssa#S3558188

9 

B2GO_Blastx

Hit 

hypothetical protein LOC541512 -7.60477 0.03920256 

Ssa#STIR001

18_2 

RefSeq_HitDef Salmo salar creatine kinase-1 (ckm1), mRNA 

&gt;gi|197632378|gb|BT043798.1| Salmo salar clone HM4_0185 

creatine kinase-1 (ckm1) mRNA, complete cds 

-7.5966835 0.20887837 

Ssa#STIR157

30 

B2GO_Blastx

Hit 

loh11cr2a protein -7.5199966 0.10930253 

Ssa#CB51384

2 

B2GO_Blastx

Hit 

homo sapiens synaptotagmin-like 4 transcript variant mrna 7.402076 0.00562732 

Ssa#S3552874

5 

B2GO_Blastx

Hit 

danio rerio interferon-inducible protein gig2 mrna -7.377134 0.9898905 

Omy#AB0242

94 

RefSeq_HitDef PREDICTED: Oreochromis niloticus structural maintenance of 

chromosomes protein 1A-like (LOC100708270), mRNA 

7.345468 0.19001392 

Ssa#S3555371

2 

B2GO_Blastx

Hit 

gasterosteus aculeatus clone cfw240-a04 mrna sequence 7.234363 0.64013284 

Ssa#S1888571

2 

RefSeq_HitDef Salmo salar ribosomal protein L6 (rpl6), mRNA 

&gt;gi|197632288|gb|BT043753.1| Salmo salar clone HM6_0879 

ribosomal protein L6 (rpl6) mRNA, complete cds 

7.2024817 0.0319637 

Ssa#STIR000

72_3 

B2GO_Blastx

Hit 

interferon-inducible protein gig2 -7.1893277 0.8294556 

Ssa#S4841044 B2GO_Blastx p90 autoantigen 7.0981174 0.01359439 
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1 Hit 

Ssa#STIR000

72_2 

B2GO_Blastx

Hit 

interferon-inducible protein gig2 -6.681376 0.97552335 

Ssa#STIR186

45 

 RefSeq_ RNA Xenopus laevis MGC84433 protein (MGC84433), mRNA 

>gb|BC074417.1| Xenopus laevis MGC84433 protein, mRNA (cDNA 

clone MGC:84433 IMAGE:7019563), complete cds 

-6.64759 0.14692286 

Ssa#S4313484

1_S 

RefSeq_HitDef Salmo salar CD4-like protein (LOC100136502), transcript variant 1, 

mRNA &gt;gi|167538885|gb|EU409794.1| Salmo salar CD4-1-like 

protein mRNA, complete cds 

6.6394615 0.03276559 

Ssa#S1889231

7 

RefSeq_HitDef Salmo salar myxovirus resistance 1 (mx1), mRNA 

&gt;gi|1519383|gb|U66475.1|SSU66475 Salmo salar Mx1 protein 

mRNA, complete cds 

-6.432686 0.1786227 

Ssa#S3554330

0 

RefSeq_HitDef Oncorhynchus mykiss interleukin-12 beta chain (il12b), mRNA 

&gt;gi|60416861|emb|AJ548829.1| Oncorhynchus mykiss mRNA for 

interleukin-12 beta chain (il12b gene), large transcript 

6.413683 0.63579655 

Ssa#STIR001

54_2 

RefSeq_HitDef Salmo salar myxovirus resistance 1 (mx1), mRNA 

&gt;gi|1519383|gb|U66475.1|SSU66475 Salmo salar Mx1 protein 

mRNA, complete cds 

-6.401455 0.21282125 

Ssa#EG82090

8 

B2GO_Blastn

Hit 

homo sapiens myoferlin transcript variant mrna -6.3793197 0.8796511 

Omy#CA3554

82 

B2GO_Blastx

Hit 

PREDICTED: similar to G protein-coupled receptor 82 -6.3504176 0.4450548 

Omy#TC1695

98 

RefSeq_HitDef PREDICTED: Oreochromis niloticus tyrosine-protein kinase receptor 

UFO-like (LOC100708491), mRNA 

6.3148384 0.17585228 

Omy#S18100

560 

RefSeq_HitDef Salmo salar E3 ubiquitin-protein ligase RNF8 (rnf8), mRNA 

&gt;gi|223648921|gb|BT059506.1| Salmo salar clone ssal-rgf-518-310 

E3 ubiquitin-protein ligase RNF8 putative mRNA, complete cds 

-6.2592278 0.20490001 

Ssa#S4837119

1 

B2GO_Blastx

Hit 

glyceraldehyde-3-phosphate dehydrogenase-2 -6.2233033 0.17687623 

Omy#S15318

750 

RefSeq_HitDef PREDICTED: Oreochromis niloticus dihydropyrimidinase-related 

protein 2-like (LOC100711297), mRNA 

6.21713 0.03414092 
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Ssa#TC11073

5 

B2GO_Blastn

Hit 

unnamed protein product -6.0302386 0.9408544 

Ssa#DY72437

3 

RefSeq_HitDef PREDICTED: Oreochromis niloticus ubiquitin specific peptidase 15 

(USP15), mRNA 

-5.8833904 0.6674592 

Ssa#S3554978

2 

RefSeq_HitDef Salmo salar ISG15-like protein (LOC100136541), mRNA 

&gt;gi|62737687|gb|AY926456.1| Salmo salar ISG15-like protein 

mRNA, complete cds 

-5.797771 0.5944774 

Omy#BX9092

19 

RefSeq_HitDef PREDICTED: Canis lupus familiaris myosin XVIIIA, transcript variant 

3 (MYO18A), mRNA 

5.680153 0.02184267 

Omy#S15318

281 

B2GO_Blastx

Hit 

PREDICTED: similar to Intersectin 2 (SH3 domain-containing protein 

1B) (SH3P18) (SH3P18-like WASP associated protein) isoform 2 

5.6185975 0.0052072 

Ssa#S3554233

6 

RefSeq_HitDef Salmo salar fast myotomal muscle actin (actc1), mRNA 

&gt;gi|119721175|gb|AF304406.2| Salmo salar fast myotomal muscle 

actin mRNA, complete cds 

5.605844 0.56255096 

Omy#S18154

452 

B2GO_Blastn

Hit 

bos taurus chromosome 15 open reading frame 44 ortholog mrna -5.6055 0.02416926 

Omy#CA3630

99 

RefSeq_HitDef PREDICTED: Oreochromis niloticus vesicle-trafficking protein 

SEC22a-like (LOC100698971), mRNA 

5.596344 0.46691826 

Omy#S34425

192 

RefSeq_HitDef PREDICTED: Oreochromis niloticus dual specificity protein 

phosphatase 2-like (LOC100694883), mRNA 

-5.5417557 0.2868468 

Ssa#NP99342

00 

RefSeq_HitDef T cell receptor alpha -5.5125303 0.88004225 

Ssa#STIR210

48 

 RefSeq_RNA PREDICTED: Hydra magnipapillata hypothetical protein 

LOC100203825 (LOC100203825), mRNA 

5.479197 0.962878 

Ssa#EG85556

3 

RefSeq_HitDef retinal pigment epithelium-specific protein 65kDa -5.4648466 0.21535324 

Ssa#KSS3245 RefSeq_HitDef Salmo salar Ubiquitin-like protein (ubil), mRNA 

&gt;gi|209736095|gb|BT049116.1| Salmo salar clone ssal-eve-520-325 

Ubiquitin-like protein precursor putative mRNA, complete cds 

-5.424694 0.02966759 

Ssa#KSSb255

4 

RefSeq_HitDef ZC3HE_DANRERecName: Full=Zinc finger CCCH domain-containing 

protein 14 

5.408544 0.19645256 

Ssa#TC96609 RefSeq_HitDef Nectria haematococca mpVI 77-13-4 hypothetical protein, mRNA 5.395546 0.16349296 
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Omy#CX2574

35 

RefSeq_HitDef hypothetical protein LOC100036701 -5.3674746 0.04956973 

Omy#CA3421

36 

RefSeq_HitDef danio rerio bat2-like protein mrna -5.222133 0.5546996 

Ssa#DW5406

83 

RefSeq_HitDef PREDICTED: Sus scrofa megakaryoblastic leukemia (translocation) 1 

(MKL1), mRNA 

5.141159 0.04583039 

Ssa#S3554911

4_S 

RefSeq_HitDef Salmo salar SH3 and PX domain-containing protein 2B (spd2b), mRNA 

&gt;gi|223647567|gb|BT058829.1| Salmo salar clone ssal-rgf-506-005 

SH3 and PX domain-containing protein 2B putative mRNA, complete 

cds 

-5.125886 0.03425171 

Ssa#S3024127

1 

B2GO_Blastx

Hit 

salmo salar clone bac complete sequence 5.095956 0.49406898 

Ssa#DW5665

81 

RefSeq_HitDef PREDICTED: Ornithorhynchus anatinus uncharacterized protein 

KIAA0195-like (LOC100075929), mRNA 
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