
Proceedings of the 2017 EMNLP System Demonstrations, pages 103–108
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

SUPWSD: A Flexible Toolkit for
Supervised Word Sense Disambiguation

Simone Papandrea, Alessandro Raganato and Claudio Delli Bovi
Department of Computer Science

Sapienza University of Rome
papandrea.simone@gmail.com

{raganato,dellibovi}@di.uniroma1.it

Abstract

In this demonstration we present SUP-
WSD, a Java API for supervised Word
Sense Disambiguation (WSD). This
toolkit includes the implementation of
a state-of-the-art supervised WSD sys-
tem, together with a Natural Language
Processing pipeline for preprocessing
and feature extraction. Our aim is
to provide an easy-to-use tool for the
research community, designed to be
modular, fast and scalable for training
and testing on large datasets. The source
code of SUPWSD is available at http:
//github.com/SI3P/SupWSD.

1 Introduction

Word Sense Disambiguation (Navigli, 2009,
WSD), is one of the long-standing challenges
of Natural Language Understanding. Given a
word in context and a pre-specified sense inven-
tory, the task of WSD is to determine the in-
tended meaning of that word depending on the
context. Several WSD approaches have been pro-
posed over the years and extensively studied by
the research community, ranging from knowledge-
based systems to semi-supervised and fully su-
pervised models (Agirre et al., 2014; Moro et al.,
2014; Taghipour and Ng, 2015b; Iacobacci et al.,
2016). Nowadays a new line of research is emerg-
ing, and WSD is gradually shifting from a purely
monolingual (i.e. English) setup to a wider mul-
tilingual setting (Navigli and Moro, 2014; Moro
and Navigli, 2015). Since scaling up to multiple
languages is considerably easier for knowledge-
based systems, as they do not require sense-
annotated training data, various efforts have been
made towards the automatic construction of high-
quality sense-annotated corpora for multiple lan-

guages (Otegi et al., 2016; Delli Bovi et al., 2017),
aimed at overcoming the so-called knowledge ac-
quisition bottleneck of supervised models (Pile-
hvar and Navigli, 2014). These efforts include
the use of Wikipedia, which can be considered
a full-fledged, manually sense-annotated resource
for numerous languages, and hence exploited as
training data (Dandala et al., 2013).

Beside the automatic harvesting of sense-
annotated data for different languages, a variety of
multilingual preprocessing pipelines has also been
developed across the years (Padr and Stanilovsky,
2012; Agerri et al., 2014; Manning et al., 2014).
To date, however, very few attempts have been
made to integrate these data and tools with a su-
pervised WSD framework; as a result, multilin-
gual WSD has been almost exclusively tackled
with knowledge-based systems, despite the fact
that supervised models have been proved to con-
sistently outperform knowledge-based ones in all
standard benchmarks (Raganato et al., 2017). As
regards supervised WSD, It Makes Sense (Zhong
and Ng, 2010, IMS) is indeed the de-facto state-of-
the-art system used for comparison in WSD, but it
is available only for English, with the last major
update dating back to 2010.

The publicly available implementation of IMS
also suffers from two crucial drawbacks: (i) the
design of the software makes the current code dif-
ficult to extend (e.g. with classes taking as input
more than 15 parameters); (ii) the implementation
is not optimized for larger datasets, being rather
time- and resource-consuming. These difficulties
hamper the work of contributors willing to update
it, as well as the effort of researchers that would
like to use it with languages other than English.

In this paper we present SUPWSD, whose ob-
jective is to overcome the aforementioned draw-
backs, and facilitate the use of a supervised WSD
software for both end users and researchers. SUP-

103

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/98349343?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1: Architecture design of SUPWSD.

WSD is designed to be modular and highly flex-
ible, enabling contributors to extend it with ease.
Its usage is simple and immediate: it is based on
a jar file with only 2 commands and 3 parameters,
along with an XML configuration file for specify-
ing customized settings. SUPWSD supports the
most widely used preprocessing tools in the re-
search community: Stanford coreNLP (Manning
et al., 2014), openNLP1, and TreeTagger (Schmid,
2013); as such, SUPWSD can directly handle all
the languages supported by these tools. Finally,
its architecture design relies on commonly used
design patterns in Java (such as Factory and Ob-
server among others), which make it flexible for a
programmatic use and easily expandable.

2 SUPWSD: Architecture

In this section we describe the workflow of SUP-
WSD. Figure 1 shows the architecture design of
our framework: it is composed of four main mod-
ules, common for both the training and testing

1opennlp.apache.org/

phase: (i) input parsing, (ii) text preprocessing,
(iii) features extraction and (iv) classification.

Input parsing. Given either a plain text or an
XML file as input, SUPWSD first parses the
file and extracts groups of sentences to provide
them as input for the subsequent text preprocess-
ing module. Sentence grouping is used to paral-
lelize the preprocessing module’s execution and
to make it less memory-intensive. Input files are
loaded in memory using a lazy procedure (i.e. the
parser does not load the file entirely at once, but
processes it according to the segments of inter-
est) which enables a smoother handling of large
datasets. The parser specification depends on the
format of the input file via a Factory patterns, in
such a way that new additional parsers can eas-
ily be implemented and seamlessly integrated in
the workflow (c.f. Section 3). SUPWSD currently
features 6 different parsers, targeted to the various
formats of the Senseval/SemeEval WSD compe-
tition (both all-words and lexical sample), along
with a parser for plain text.

Text preprocessing. The text preprocessing
module runs the pre-specified preprocessing
pipeline on the input text, all the way from sen-
tence splitting to dependency parsing, and re-
trieves the data used by the feature extraction mod-
ule to construct the features. This module con-
sists of a five-step pipeline: sentence splitting, to-
kenization, part-of-speech tagging, lemmatization
and dependency parsing. SUPWSD currently sup-
ports two preprocessing options: Stanford and Hy-
brid. Both can be switched on and off using the
configuration file. The former (default choice)
provides a wrapper for the Stanford NLP pipeline,
and selects the default Stanford model for each
component. The latter, instead, enables the user
to customize their model choice for each and every
preprocessing step. For instance, one possible cus-
tomization is to use the openNLP models for tok-
enization and sentence splitting, and the Stanford
models for part-of-speech tagging and lemmatiza-
tion. In addition, the framework enables the user
to provide an input text where preprocessing infor-
mation is already included.

The communication between the input parsing
and the text preprocessing modules (Figure 1) is
handled by the Analyzer, a component that han-
dles a fixed thread pool and outputs the feature in-
formation collected from the input text.

104



Figure 2: The XML configuration file used by SUPWSD.

Features extraction. The feature extraction
module takes as input the data extracted at pre-
processing time, and constructs a set of features
that will be used in the subsequent stage to train
the actual SUPWSD model. As in the previous
stage, the user can rely on the configuration file
(Figure 2) to select which features to enable or
disable. SUPWSD currently supports five stan-
dard features: (i) part-of-speech tag of the target
word and part-of-speech tags surrounding the tar-
get word (with a left and a right window of length
3); (ii) surrounding words, i.e. the set of word
tokens (excluding stopwords from a pre-specified
list) appearing in the context of the target word;
(iii) local collocations, i.e. ordered sequences of
tokens around the target word; (iv) pre-trained
word embedding, integrated according to three dif-
ferent strategies, as in Iacobacci et al. (2016);2 (v)
syntactic relations, i.e. a set of features based on
the dependency tree of the sentence, as in Lee and
Ng (2002). SUPWSD allows the user to select ap-
propriate cutoff parameters for features (i) to (iii),
in order to filter them out according to a minimum
frequency threshold.

Classification. The classification module con-
stitutes the last stage of the SUPWSD pipeline.
On the basis of the feature set constructed in the
previous stage, this module leverages an off-the-
shelf machine learning library to run a classifi-
cation algorithm and generate a model for each
sense-annotated word type in the input text. The
current version of SUPWSD relies on two widely
used machine learning frameworks: LIBLIN-

2We implemented a cache mechanism in order to deal ef-
ficiently with large word embedding files.

EAR3 and LIBSVM4. The classification module
of SUPWSD operates on top of these two libraries.

Using the configuration file (Figure 2) the user
can select which library to use and, at the same
time, choose the underlying sense inventory. The
current version of SUPWSD supports two sense
inventories: WordNet (Miller et al., 1990)5 and
BabelNet (Navigli and Ponzetto, 2012)6. Specify-
ing a sense inventory enables SUPWSD to exploit
the Most Frequent Sense (MFS) back-off strategy
at test time for those target words for which no
training data are available.7 If no sense inventory
is specified, the model will not provide an answer
for those target words.

3 SUPWSD: Adding New Modules

In this section we illustrate how to implement new
modules for SUPWSD and integrate them into the
framework at various stages of the pipeline.

Adding a new input parser. In order to
integrate a new XML parser, it is enough
to extend the XMLHandler class and im-
plement the methods startElement,
endElement and characters (see the
example in Figure 3). With the global variable
mAnnotationListener, the programmatic
user can directly specify when to transmit the
parsed text to the text preprocessing module.
Instead, in order to integrate a general parser for
custom text, it is enough to extend the Parser

3http://liblinear.bwaldvogel.de
4https://www.csie.ntu.edu.tw/˜cjlin/

libsvm
5https://wordnet.princeton.edu
6http://babelnet.org
7The MFS is based on the lexicographic order provided

by the sense inventory (either WordNet or BabelNet).

105



Figure 3: An example of XML parser.

class and implement the parse method. An
example is provided by the PlainParser class
that implements a parser for a plain textual file.

Adding a new preprocessing module. To add
a new preprocessing module into the pipeline,
it is enough to implement the interfaces in the
package modules.preprocessing.units.
It is also possible to add a brand new step to
the pipeline (e.g. a Named Entity Recognition
module) by extending the class Unit and im-
plementing the methods to load the models asyn-
chronously.

Figure 4: The abstract class modeling a feature
extractor.

Adding a new feature. A new feature for SUP-
WSD can be implemented with a two-step pro-
cedure. The first step consists in creating a class

Figure 5: The abstract class modeling a classifier.

that extends the abstract class Feature. The
builder of this class requires a unique key and
a name. It is also possible to set a default
value for the feature by implementing the method
getDefaultValue. The second step consists
in implementing an extractor for the new fea-
ture via the abstract class FeatureExtractor
(Figure 4). Each FeatureExtractor has a
cut-off value and declares the name of the class
through the method getFeatureClass.

Adding a new classifier. A new classifier for
SUPWSD can be implemented by extending the
generic abstract class Classifier (Figure 5),
which declares the methods to train and test the
models. Feature conversion is carried out with the
generic method getFeatureNodes.

Figure 6: Command line usage for SUPWSD.

4 SUPWSD: Usage

SUPWSD can be used effectively via the com-
mand line with just 4 parameters (Figure 6): the
first parameter toggles between the train and test
mode; the second parameter contains the path to
the configuration file; the third and fourth parame-
ters contain the paths to the dataset and the associ-
ated key file (i.e. the file containing the annotated
senses for each target word) respectively.

Figure 2 shows an example configuration file
for SUPWSD. As illustrated throughout Section 2,
the SUPWSD pipeline is entirely customizable by
changing these configuration parameters, and al-
lows the user to employ specific settings at each
stage of the pipeline (from preprocessing to ac-
tual classification). The working directory
tag encodes the path in the file system where
the trained models are to be saved. Finally, the
writer tag enables the user to choose the pre-
ferred way of printing the test results (e.g. with or
without confidence scores for each sense).

SUPWSD can also be used programmatically
through its Java API, either using the toolkit (the

106



Tr. Corpus System Senseval-2 Senseval-3 SemEval-07 SemEval-13 SemEval-15

SemCor

IMS 70.9 69.3 61.3 65.3 69.5
SUPWSD 71.3 68.8 60.2 65.8 70.0
IMS+emb 71.0 69.3 60.9 67.3 71.3

SUPWSD+emb 72.7 70.6 63.1 66.8 71.8
IMS-s+emb 72.2 70.4 62.6 65.9 71.5

SUPWSD-s+emb 72.2 70.3 63.3 66.1 71.6
Context2Vec 71.8 69.1 61.3 65.6 71.9

MFS 65.6 66.0 54.5 63.8 67.1

SemCor +
OMSTI

IMS 72.8 69.2 60.0 65.0 69.3
SUPWSD 72.6 68.9 59.6 64.9 69.5
IMS+emb 70.8 68.9 58.5 66.3 69.7

SUPWSD+emb 73.8 70.8 64.2 67.2 71.5
IMS-s+emb 73.3 69.6 61.1 66.7 70.4

SUPWSD-s+emb 73.1 70.5 62.2 66.4 70.9
Context2Vec 72.3 68.2 61.5 67.2 71.7

MFS 66.5 60.4 52.3 62.6 64.2

Table 1: F-scores (%) of different models in five all-words WSD datasets.

main class SupWSD, provided with the two static
methods train and test, shares the same usage
of the command line interface) or using an HTTP
RESTful service.

5 Evaluation

We evaluated SUPWSD on the evaluation frame-
work of Raganato et al. (2017)8, which includes
five test sets from the Senseval/Semeval series and
two training corpus of different size, i.e. Sem-
Cor (Miller et al., 1993) and OMSTI (Taghipour
and Ng, 2015a). As sense inventory, we used
WordNet 3.0 (Miller et al., 1990) for all open-class
parts of speech. We compared SUPWSD with the
original implementation of IMS, including the best
configurations reported in Iacobacci et al. (2016)
which exploit word embedding as features. As
shown in Table 1, the performance of SUPWSD
consistently matches up to the original implemen-
tation of IMS in terms of F-Measure, sometimes
even outperforming its competitor by a consider-
able margin; this suggests that a neat and flexible
implementation not only brings benefits in terms
of usability of the software, but also impacts on
the accuracy of the model.

5.1 Speed Comparisons
We additionally carried out an experimental eval-
uation on the performance of SUPWSD in terms
of execution time. As in the previous exper-
iment, we compared SUPWSD with IMS and,

8http://lcl.uniroma1.it/wsdeval

IMS SUPWSD
train Semcor/sec. ∼ 360 ∼ 120
train Semcor+OMSTI/sec. ∼ 3000 ∼ 510
test/sec. ∼ 110 ∼ 22

Table 2: Speed comparison for both the training
and testing phases.

given that both implementations are written in
Java, we tested their programmatic usage within a
Java program. We relied on a testing corpus with
1M words and more than 250K target instances to
disambiguate, and we used both frameworks on
SemCor and OMSTI as training sets. All exper-
iments were performed using an Intel i7-4930K
CPU 3.40GHz twelve-core machine. Figures in
Table 2 show a considerable gain in execution time
achieved by SUPWSD, which is around 3 times
faster than IMS on Semcor, and almost 6 times
faster than IMS on OMSTI.

6 Conclusion and Release

In this demonstration we presented SUPWSD, a
flexible toolkit for supervised Word Sense Disam-
biguation which is designed to be modular, highly
customizable and easy to both use and extend for
end users and researchers. Furthermore, beside the
Java API, SUPWSD provides an HTTP RESTful
service for programmatic access to the SUPWSD
framework and the pre-trained models.

Our experimental evaluation showed that, in ad-
dition to its flexibility, SUPWSD can replicate or
outperform the state-of-the-art results reported by

107



the best supervised models on standard bench-
marks, while at the same time being optimized in
terms of execution time.

The SUPWSD framework (including the source
code, the pre-trained models, and an online demo)
is available at http://github.com/SI3P/
SupWSD. We release the toolkit here described
under the GNU General Public License v3.0,
whereas the RESTful service is licensed under a
Creative Commons Attribution-Non Commercial-
Share Alike 3.0 License.

Acknowledgments

The authors gratefully acknowledge the
support of the Sapienza Research Grant
‘Avvio alla Ricerca 2016’.

References
Rodrigo Agerri, Josu Bermudez, and German Rigau.

2014. Ixa pipeline: Efficient and ready to use multi-
lingual nlp tools. In LREC, pages 3823–3828.

Eneko Agirre, Oier Lopez de Lacalle, and Aitor Soroa.
2014. Random Walks for Knowledge-Based Word
Sense Disambiguation. Computational Linguistics,
40(1):57–84.

Bharath Dandala, Rada Mihalcea, and Razvan
Bunescu. 2013. Multilingual word sense disam-
biguation using wikipedia. In Proceedings of the
Sixth International Joint Conference on Natural
Language Processing, pages 498–506.

Claudio Delli Bovi, José Camacho-Collados, Alessan-
dro Raganato, and Roberto Navigli. 2017. Eu-
rosense: Automatic harvesting of multilingual sense
annotations from parallel text. In Proc. of ACL.

Ignacio Iacobacci, Mohammad Taher Pilehvar, and
Roberto Navigli. 2016. Embeddings for Word Sense
Disambiguation: An Evaluation Study. In Proc. of
ACL, pages 897–907.

Yoong Keok Lee and Hwee Tou Ng. 2002. An empir-
ical evaluation of knowledge sources and learning
algorithms for word sense disambiguation. In Proc.
of EMNLP.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

George A. Miller, R.T. Beckwith, Christiane D. Fell-
baum, D. Gross, and K. Miller. 1990. WordNet:
an online lexical database. International Journal of
Lexicography, 3(4):235–244.

George A. Miller, Claudia Leacock, Randee Tengi, and
Ross T. Bunker. 1993. A semantic concordance. In
Proc. of HLT, pages 303–308.

Andrea Moro and Roberto Navigli. 2015. SemEval-
2015 Task 13: Multilingual All-Words Sense Dis-
ambiguation and Entity Linking. In Proc. of Se-
mEval, pages 288–297.

Andrea Moro, Alessandro Raganato, and Roberto Nav-
igli. 2014. Entity Linking meets Word Sense Disam-
biguation: a Unified Approach. TACL, 2:231–244.

Roberto Navigli. 2009. Word sense disambiguation: A
survey. ACM Computing Surveys, 41(2):10.

Roberto Navigli and Andrea Moro. 2014. Multilingual
word sense disambiguation and entity linking. In
COLING (Tutorials), pages 5–7.

Roberto Navigli and Simone Paolo Ponzetto. 2012.
BabelNet: The Automatic Construction, Evaluation
and Application of a Wide-Coverage Multilingual
Semantic Network. Artificial Intelligence, 193:217–
250.

Arantxa Otegi, Nora Aranberri, Antonio Branco, Jan
Hajic, Steven Neale, Petya Osenova, Rita Pereira,
Martin Popel, Joao Silva, Kiril Simov, and Eneko
Agirre. 2016. QTLeap WSD/NED Corpora: Se-
mantic Annotation of Parallel Corpora in Six Lan-
guages. In Proceedings of LREC, pages 3023–3030.

Llus Padr and Evgeny Stanilovsky. 2012. Freeling 3.0:
Towards wider multilinguality. In Proceedings of
the Language Resources and Evaluation Conference
(LREC 2012), Istanbul, Turkey. ELRA.

Mohammad Taher Pilehvar and Roberto Navigli. 2014.
A large-scale pseudoword-based evaluation frame-
work for state-of-the-art word sense disambiguation.
Computational Linguistics, 40(4).

Alessandro Raganato, Jose Camacho-Collados, and
Roberto Navigli. 2017. Word Sense Disambigua-
tion: A Unified Evaluation Framework and Empiri-
cal Comparison. In Proc. of EACL.

Helmut Schmid. 2013. Probabilistic part-of-speech
tagging using decision trees. In New methods in lan-
guage processing, page 154. Routledge.

Kaveh Taghipour and Hwee Tou Ng. 2015a. One Mil-
lion Sense-Tagged Instances for Word Sense Disam-
biguation and Induction. In Proceedings of CoNLL,
pages 338–344.

Kaveh Taghipour and Hwee Tou Ng. 2015b. Semi-
supervised word sense disambiguation using word
embeddings in general and specific domains. In
HLT-NAACL, pages 314–323.

Zhi Zhong and Hwee Tou Ng. 2010. It makes sense:
A wide-coverage word sense disambiguation system
for free text. In Proc. of ACL System Demonstra-
tions.

108


