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Abstract
The amount of variation in species composition among sampling units or beta diversity 
has become a primary tool for connecting the spatial structure of species assemblages 
to ecological processes. Many different measures of beta diversity have been devel-
oped. Among them, the total variance in the community composition matrix has been 
proposed as a single-number estimate of beta diversity. In this study, I first show that 
this measure summarizes the compositional variation among sampling units after non-
linear transformation of species abundances. Therefore, it is not always adequate for 
estimating beta diversity. Next, I propose an alternative approach for calculating beta 
diversity in which variance is substituted by a weighted measure of concentration (i.e., 
an inverse measure of evenness). The relationship between this new measure of beta 
diversity and so-called multiple-site dissimilarity measures is also discussed.
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1  | INTRODUCTION

The concept of beta diversity dates back to the work of Whittaker 
(1960), which coined this term to define the amount of variation in 
species composition among sampling units (or communities, assem-
blages, plots, relevés, sites, quadrats, etc.). Since then, the measure-
ment of beta diversity has become a fundamental topic for connecting 
the spatial structure of species assemblages to ecological processes, 
such as species coexistence or environmental control (Anderson, 
Ellingsen, & McArdle, 2006; Tuomisto, 2010a,b).

Given a set of N plots, Whittaker (1960) proposed to summarize 
beta diversity as the ratio of two inventory diversities measured at 
different scales (i.e., local scale diversity or alpha diversity and regional 
diversity or gamma diversity), such that β = γ/α, where α is the average 
diversity of the N plots and γ is the total diversity of the pooled set of 
plots (for details, see Jost, 2007).

An alternative approach, first proposed by McArthur, Recher, 
and Cody (1966) and recently revitalized by Lande (1996), consists 
in measuring beta as the excess of regional diversity with respect 

to local diversity: β = γ − α. However, in both cases, beta diversity is 
a derived quantity that depends on alpha and gamma (Chao, Chiu, 
& Hsieh, 2012; Jost, 2007). Therefore, several authors pointed out 
that it would be desirable to develop a method for calculating beta 
diversity without reference to alpha and gamma (e.g., Ellison, 2010; 
Legendre & De Cáceres, 2013).

Among the measures of beta diversity which do not directly de-
pend on alpha and gamma, those based on average dissimilarity be-
tween pairs of plots are probably the most commonly used (e.g., Izsák 
& Price, 2001; Ricotta & Marignani, 2007). However, as emphasized 
by Diserud and Ødegaard (2007), measures of average dissimilarity 
across all plots are generally unable to tell us to what extent there 
is a change in shared species between pairs of plots. To get infor-
mation on the species shared across more than two plots, so-called 
multiple-site dissimilarity measures (i.e., generalizations of pairwise 
dissimilarity measures to more than two plots) are required. Examples 
are the multiple-site measures of Diserud and Ødegaard (2007), 
Baselga, Jiménez-Valverde, and Niccolini (2007), Chao et al. (2012) 
and Ricotta and Pavoine (2015).
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Legendre, Borcard, and Peres-Neto (2005) and Legendre and De 
Cáceres (2013) proposed to use the total variance in the community com-
position matrix of P species × N plots as a single-number estimate of beta 
diversity. This total variance can be calculated either directly or through 
a dissimilarity matrix obtained using any dissimilarity index suitable for 
comparing community composition data. However, this method usu-
ally calculates variance-based beta from transformed abundance data. 
Therefore, it is not always adequate for estimating beta diversity.

In this study, I propose a new approach for calculating beta diver-
sity, inspired by the work of Legendre and De Cáceres (2013) in which 
variance is substituted by a weighted measure of concentration (i.e., 
an inverse measure of evenness). The study is organized as follows: 
First, a short overview on the variance-based approach is presented. 
Next, a new index of beta diversity is proposed, which is obtained by 
averaging the concentration values of single species in the commu-
nity composition matrix. Finally, to show the behavior of the proposed 
metric, a worked example is used with data from a belt transect across 
the beech timberline in the central Apennines (Italy).

2  | BETA DIVERSITY AS THE VARIANCE OF 
COMMUNITY DATA

Recently, Legendre et al. (2005) and Legendre and De Cáceres (2013) 
proposed to measure beta diversity as the total variance of a com-
munity composition data table. Using a notation similar to that of 
Legendre and De Cáceres (2013), let Y = [yjn] be a community compo-
sition matrix containing the presence/absence or the abundance val-
ues of P species (row vectors yj = y1, y2, … yP of Y) in N plots (column 
vectors xn = x1, x2 … xN of Y). The total variance of the data table, 
Var(Y), can be computed directly from the squared deviations from 
the row (species) means. Let sjn be the squared difference between the 
value of species j in plot n, and the mean value of species j such that 
sjn=

(

yjn− ȳj+
)2with ȳj+ =

∑N

n=1
yjn∕N. Summing all values sjn the total 

sum of squares of Y is obtained:

where SS(yj)=
∑N

n=1

�

yjn− ȳj+
�2. The total sum of squares SS(Y) can be 

directly used to summarize the amount of variation in species com-
position (or beta diversity) in Y. However, transforming SS(Y) into the 
classical unbiased estimator of variance Var(Y)=SS(Y)∕

(

N−1
)

, a more 
general measure of beta diversity is obtained, which can be used for 
comparing data matrices with different numbers of plots (Legendre 
et al., 2005).

Due to the additive nature of SS(Y) and Var(Y), both quantities can 
be partitioned into per-species contributions (a measure of the degree 
of variation of individual species across the study area) and per-plot 
contributions (a measure of the degree of compositional/ecological 
uniqueness of single plots).

Given a square N × N dissimilarity matrix D=
[

dkn
]

 of Euclidean dis-
tances between plots k and n, SS(Y) can be also obtained as:

where dkn is the classical Euclidean distance dkn=
�

∑P

j=1

�

yjk−yjn
�2. 

Hence, according to Eq. (2), a different pathway for calculating SS(Y) 
consists in summing the squared Euclidean distances in one half of the 
dissimilarity matrix D and dividing the result by the number of objects 
N (Legendre & Fortin, 2010; Legendre et al., 2005).

A subtle although relevant shortcoming of this approach recog-
nized by Legendre and De Cáceres (2013) is that the relative disper-
sion of species abundances within the row vectors yj that maximizes 
variance does not coincide with the dispersion of abundances that 
maximizes beta diversity. An intuitive requirement for beta diversity 
measures is that beta is maximized if all plots in Y do not have any 
species in common. That is, beta is maximized if all species in Y occur 
only in one plot, meaning that all plots are maximally dissimilar from 
each other (Ricotta & Pavoine, 2015). Given a hypothetical community 
composition matrix Y composed of four species (S1–S4) in four plots 
(P1–P4), for species presence and absence data, if the number of pres-
ences for each species is allowed to vary freely and excluding empty 
species and plot vectors, beta diversity is intuitively maximized at

P1 P2 P3 P4

S1 1 0 0 0

S2 0 1 0 0

S3 0 0 1 0

S4 0 0 0 1

whereas SS(Y) and Var(Y) are both maximized at

P1 P2 P3 P4

S1 1 1 0 0

S2 0 1 1 0

S3 0 0 1 1

S4 1 0 0 1

Also, for presence and absence data, the community composition 
matrix

P1 P2 P3 P4

S1 1 1 1 0

S2 0 1 1 1

S3 1 0 1 1

S4 1 1 0 1

produces the same values of SS(Y) and Var(Y) than the first matrix, 
whereas, intuitively, the beta diversity of both matrices is substantially 
different.

Therefore, SS(Y) and Var(Y) should not be calculated directly on 
raw species abundances. This is because calculating these quantities 
on raw species abundances implies that the dissimilarity between pairs 
of plots is calculated with the Euclidean distance, which is generally 

(1)SS(Y)=

P
∑

j=1

SS(yj)=

P
∑

j=1

N
∑

n=1

sjn

(2)SS(Y)=
1

N

N
∑

n=1

N
∑

k>n

d2
kn
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considered inappropriate for compositional data. The raw species 
abundances should be first transformed in ecologically meaningful 
ways, such as those proposed in Legendre and Gallagher (2001) and 
Legendre and De Cáceres (2013, Appendix S1). One can then calculate 
SS(Y) from either the transformed species abundance data or from a 
Euclidean distance matrix D calculated from the transformed data.

A consequence of the conceptual difference between variance and 
beta diversity is that, after data transformation, the relative dispersion 
of species abundances within row vectors is no longer linearly related 
to the original dispersion of raw species abundances. To understand 
why transformed data do not measure the same degree of beta di-
versity as the non-transformed data, take, for example, the following 
matrix with the raw abundances of four species in four plots:

P1 P2 P3 P4

S1 10 10 10 0

S2 0 10 10 0

S3 0 0 10 0

S4 0 0 0 10

After Hellinger transformation (i.e., one of the “appropriate” data 
transformations listed in Legendre & De Cáceres, 2013, Appendix S1), 
which consists in transforming the raw abundances yjn into relative 
values per plot by dividing each value by the plot sum y+n=

∑P

j=1
yjn 

and then taking the square root of the resulting values such that 
y�
jn
=
√

yjn∕y+n, we obtain the transformed matrix:

P1 P2 P3 P4

S1 1 0.71 0.58 0

S2 0 0.71 0.58 0

S3 0 0 0.58 0

S4 0 0 0 1

in which the transformed species abundances within rows are no lon-
ger linearly related to the original ones.

This nonlinear relationship between the raw and the transformed 
species abundances may be a problem for a correct partition of beta 
diversity into per-species and per-plot contributions. For instance, the 
preservation of the linear relationship between the relative dispersion 
of species abundances within row vectors after data transformation 
is a crucial aspect of the calculation of beta diversity. As shown by 
Eq. (1), beta is obtained as the sum of the squared deviations from the 
means of single species regardless of the abundances of the other spe-
cies, meaning that the species vectors yj of Y act as independent units 
for the calculation of beta diversity (see also Ricotta & Pavoine, 2015).

A different solution consists in calculating SS(Y) with Eq. (2) using 
dissimilarity indices other than the Euclidean distance. These indices, 
which were developed to summarize plot-to-plot dissimilarity from 
many different perspectives and motivations, should conform to a set 
of properties listed in Legendre and De Cáceres (2013) that render 
them adequate for summarizing beta diversity. Like in the previous 
case, this operation implies some sort of nonlinear standardization 

of the raw abundance data in Y by row sums, column sums, or both, 
which necessarily change the relative dispersion of species abun-
dances within row and column vectors (Anderson et al., 2006). This 
transformation is performed automatically by the index. Therefore, 
computing the total sum of squares SS(Y) from a dissimilarity matrix D 
using an appropriate dissimilarity coefficient other than the Euclidean 
distance equals to transforming the original community composition 
matrix Y to a new matrix Y′ = [y′jn] and then computing SS(Y′) from 
the new species abundances y′

jn
 (Legendre & Fortin, 2010). From 

SS(Y), one can then compute Var(Y) in the usual way by dividing SS(Y) 
by (N − 1).

Note that calculating beta diversity with Eq. (2) is conceptually 
identical to the usual way of obtaining beta diversity from the av-
erage dissimilarity between pairs of plots. The only difference is 
that the average dissimilarity between pairs of plots d̄kn is usually 
calculated by summing all pairwise dissimilarities (not necessarily 
Euclidean distances) dkn between plots k and n in D (with k ≠ n) and 
then dividing the result by N×

�

N−1
�

: d̄kn=1∕N
�

N−1
�
∑N

n=1

∑N

k=1
dkn. 

By contrast, in Eq. (2), only the upper or lower half of the dissimilar-
ity matrix is considered, such that Var(Y)=1∕N

�

N−1
�
∑N

n=1

∑N

k>n
dkn. 

Accordingly, both quantities differ only by a factor two: d̄kn=2Var(Y).
The key lessons learned from this short overview are that: (1) 

The total variance of the raw community composition matrix does 
not provide a correct estimate of beta diversity because the rela-
tive dispersion of species abundances that maximizes beta diversity 
does not correspond to the dispersion that maximizes variance. Chao 
and Chiu (2016) showed that, although the calculation of the total 
variance of the raw community composition matrix does not nec-
essarily require α and γ formulas, nonetheless variance is implicitly 
constrained by α, γ, and the total species abundances in Y. Therefore, 
it cannot be compared across multiple sets of communities with dif-
ferent α, γ, or total species abundances. Before beta diversity is com-
puted, the raw species abundance data in Y should be transformed in 
an appropriate, usually nonlinear way. This transformation will thus 
affect the partition of beta diversity into per-species and per-plot 
contributions.

(2) The average dissimilarity between pairs of plots d̄kn rep-
resents an adequate way for calculating beta diversity directly 
from raw species abundances, provided that the selected dissim-
ilarity coefficients conform to a set of empirical properties listed 
in Legendre and De Cáceres (2013). Half this quantity can be 
also interpreted as the variance of a new (usually unknown) ma-
trix Y′ = [y′jn] obtained by nonlinear transformation of the original 
community composition matrix Y. However, being based on plot-
to-plot dissimilarities, this “distance-based option” does not allow 
to decompose overall beta diversity into the contributions of indi-
vidual species or plots.

In the following sections, building on Legendre and De Cáceres 
(2013), I will show that beta diversity can be adequately summarized 
by a weighted average of the concentration values of the species 
vectors yj of Y. The proposed method gives rise to a new family of 
multiple-site dissimilarity measures, which preserve the relative dis-
persion of species abundances within rows.
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3  | BETA DIVERSITY AS THE WEIGHTED 
CONCENTRATION OF COMMUNITY DATA

Given a community composition matrix Y= [yjn] containing the pres-
ence/absence scores, number of individuals, cover or biomass values 
of P species in N plots, to coherently frame the notion of beta diversity, 
I will start from three fundamental requirements that an index β in the 
range 0–1 should meet to reasonably behave in ecological research: 
(1) β takes the value one, denoting maximum diversity, if all species in 
Y occur only in one plot; (2) β takes the value zero, denoting minimum 
diversity if each species occur in all plots with the same abundance; (3) 
the species vectors yj of Y should act as independent units for the cal-
culation of beta diversity, meaning that each species should contribute 
to beta diversity regardless of the abundance of the other species in Y. 
The first two requirements are related to the extreme values of β, while 
the third requirement makes a distinction between classical measures 
of beta diversity and measures of ecological complexity, which take 
into account the amount of “correlation” between the system compo-
nents, such as the degree of co-occurrence between species and their 
spatial arrangement (for details, see Ricotta & Anand, 2006).

Hence, for calculating the overall beta diversity of the community 
composition matrix Y, we first have to calculate the beta diversity of 
single row vectors β(yj). To this purpose, we need a family of measures 
attaining their maximum values if species j occurs only in one plot and 
its minimum value if j occurs in all N plots with equal abundance. This is 
usually performed with concentration measures. These measures, also 
known as dominance or inequality measures, are typically expressed as 
the complement of evenness, with indices of evenness being basically 
relative diversity measures or normalizations of diversity measures in 
the range 0–1. Given a set of Q objects with relative abundances pi 

(i = 1, 2, …, Q) such that 0 ⩽ pi ⩽ 1 and 
∑Q

i=1
pi=1, evenness measures 

quantify the equality of the relative abundances of the Q objects, max-
imum evenness arising for an equiprobable object distribution, and the 
more the relative abundances of objects differ the lower the evenness 
is. While in ecology, evenness is traditionally used for calculating the 
equality of P species in one single plot, here I suggest to use the com-
plement of evenness to quantify the (in)equality of the relative abun-
dances of one single species in the N plots.

The ecological literature is full of evenness measures with differ-
ent properties and different sensitivity to rare and common species 
(Hill, 1973; Jost, 2010; Ricotta, 2003), such that the practitioner can 
select the index that best matches his specific requirements. Among 
the multitude of available evenness measures, Pielou’s (1966) index 
seems an adequate choice for estimating beta. First, the raw abun-
dances yjn in each row are normalized into relative values by dividing 
each value by the row sum yj+ =

∑N

n=1
yjn such that pjn=yjn∕yj+ This data 

transformation preserves the relative dispersion of abundances within 
species vectors. Next, Pielou’s evenness of each row is calculated as 
EVE(yj) = H(yj)/log N, where H(yj)=−

∑N

n=1
pjn log pjn is the Shannon en-

tropy of species yj and N is the number of plots in the community 
composition matrix. The beta diversity of single-species vectors is 
then obtained as:

For a fixed number of plots N, β takes the value one if species j is 
present only in one plot with relative abundance pjn = 1 and the value 
zero if j is present in all plots with relative abundance 1/N. Note that 
β(yj) can be interpreted as a rescaled version of Theil’s (1967) inequal-
ity measure Th(yj) = log N − H(yj) used in econometrics for summariz-
ing the inequality of household incomes. For instance, according to 
Eq. (3) β(yj) = 1 − H(yj)/ log N = Th(yj)/ log N.

Finally, the total beta diversity of Y can be obtained as the weighted 
average of the single-species values β(yj):

the weights wj (with 0 ≤ wj ≤ 1 and 
∑P

j=1
wj=1) can be determined ac-

cording to the users’ requirements within the specific context of the 
analyses. If all species are considered equally important, like for pres-
ence and absence data, the weights can be uniformly set to 1/P. On 
the other hand, for species abundance data, a reasonable approach 
is to set the weights proportional to the total species abundances 
within the community composition table, such that wj = yj+/y++ where 
y++ =

∑P

j=1

∑N

n=1
yjn is the grand total of all species abundances in Y.

As shown in Eq. (4), being a weighted average of single-species 
values, β(Y) can be additively decomposed into the contribution of 
its constituting elements wjβ(yj), such that the relative contribution of 
species j to overall β is 

∑N

n=1
wj×β(yj)∕β(Y).

4  | WORKED EXAMPLE

To illustrate how the proposed metric works, I used data from a belt 
transect across the beech timberline in central Italy. The data were 
collected by Di Giustino, Stanisci, Acosta, and Blasi (2002) on the west 
side of Majella, in the central Apennines, to investigate the vegetation 
dynamics at the timberline following grazing abandonment. The high-
est peak is Mt. Amaro (2,793 m) and the substrate consists mainly of 
carbonate rocks. Annual precipitation is about 1,500 mm, and mean 
annual temperature is 5–6°C with no dry season.

A belt transect composed of 23 quadrats of 1 m × 1 m was laid 
out across the upper forest line between the Fagus sylvatica forest 
and a dry Brachypodium genuense grassland at an altitude of 1,750 m 
on a gentle slope with deep soil (i.e., about 150 m below its potential 
upper limit; Stanisci, Lavieri, Acosta, & Blasi, 2001). In each quadrat, all 
vascular plants were recorded and the cover of each species was visu-
ally estimated by an experienced botanist using a 10% interval scale 
(Table 1). The quadrats were then hierarchically clustered using the 
Chord distance and a contiguity-constrained segmentation method 
(see Legendre & Legendre, 2012). With this clustering method, only 
adjacent quadrats are considered for merging, such that the transect is 
divided into a hierarchical structure of compositionally homogeneous 
clusters of adjacent plots, or segments (Figure 1).

(3)β(yj)=1−EVE(yj)

(4)β(Y)=

P
∑

j=1

wj×β(yj)=1−

P
∑

j=1

wj×EVE(yj)
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Finally, using Eq. (4), I calculated the beta diversity for each node 
of the dendrogram in Figure 1. For the calculation of the beta diver-
sity of a given node, all species were weighted proportionally to their 
total cover within the corresponding segment. All calculations were 
performed with the R script available in Appendix S1.

5  | RESULTS

In the study area, like in many other regions of high grazing pressure in 
the central Apennines, the beech forest reaches the timberline giving 
rise to an abrupt contact with grasslands without the presence of an 
intermediate transition belt of shrub species, such as Juniperus alpina, 
Arctostaphylos uva-ursi, Rhamnus alpina, Rosa pendulina, Rubus idaeus or 
Lonicera alpigena (Stanisci et al., 2001). Such abrupt contacts are usually 
found about 100–200 m below the potential upper limit of the treeline, 
in physiographic conditions which favor intense grazing activity. In such 
conditions, vegetation dynamics is blocked by disturbance and beech for-
est may spread only slowly to higher altitudes (Di Giustino et al., 2002).

As a result, the transect in Table 1 can be clearly divided into two 
main compositionally distinct clusters with only two transitional quad-
rats represented by plots 12 and 13 (Figure 1). As expected, the floris-
tic homogeneity within each group of adjacent plots is generally high 
(i.e., beta diversity is low) and tends to decrease more or less grad-
ually along the nodes of the dendrogram, meaning that community 
composition tends to become more and more “beta diverse” along the 
hierarchy of the dendrogram when the different groups of adjacent 
plots are merged into a higher-level cluster. The highest compositional 
heterogeneity is associated with the upper node of the dendrogram 
when the forest plots are pooled with the grassland plots.

Looking at the contribution of single species to overall beta diver-
sity (Table 1), we have that the dominant species Fagus sylvatica and 
Brachypodium genuense account for roughly one-third (32.93%) of the 
beta diversity of the whole transect (i.e., to the beta diversity associ-
ated with the upper node of the dendrogram in Figure 1). By contrast, 
due to their low abundance, the 10 singleton species with just one 
presence in the whole transect (i.e., with β(yj) = 1) account for a mere 
13.05% of total beta. However, weighting all species equally, the con-
tribution of the singleton species raises to 44.63%, whereas the con-
tribution of Fagus sylvatica and Brachypodium genuense decreases to 
2.02% (data not shown). This emphasizes the crucial role of the weight-
ing criteria for the calculation of a biologically reasonable beta diversity 
figure that conforms to the specific users’ requirements.

Rare species usually constitute an heterogeneous pool of occa-
sional plants of low persistence and low fidelity of association with spe-
cific communities (Grime, 1998). As such, they are also quite unevenly 
distributed among the plots. Therefore, according to this general direct 
relationship between rarity and spatial unevenness, weighting the spe-
cies by their abundances emphasizes the role of dominant species, re-
ducing at the same time the relevance of occasional species with very 
low abundances. On the other hand, using equal weights for all species 
emphasizes the role of rare species irrespective of their overall abun-
dances and their fidelity of association with specific community types.Sp
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6  | DISCUSSION

In this study, I introduced a method for calculating the beta diversity 
of a community composition table, which preserves the relative dis-
persion of abundances within species vectors. The proposed method 
allows to shed new light on the relationships between α, β, and γ di-
versity: α and γ are computed from single plot vectors xn and from the 
vector of species sums x+ = [yj+], respectively, whereas β is computed 
from the species vectors yj. Hence, in a sense, α and γ are the warp, 
and β is the weft of the community composition table. The major dif-
ference between alpha, gamma, and beta diversity is that, for a fixed 
number of species, α and γ increase with increasing evenness, whereas 
for a fixed number of plots, β increases with decreasing evenness.

Being based on a weighted average of inverse evenness measures, 
β(Y) is very flexible and allows for various types of weighting methods, 
which can be determined depending on the specific ecological ques-
tion. For presence/absence scores, a reasonable strategy may consist 
in weighting all species equally, whereas for abundance data, the spe-
cies may be weighted proportionally to the row sums yj+.

From an ecological viewpoint, this weighting method is directly 
related to the mass-ratio hypothesis of Grime (1998), which states 
that ecosystem processes, like water balance or nutrient cycling, are 
largely determined by the functioning of the dominant species and are 
relatively insensitive to the presence of less abundant species. This 
effect is dictated by the fact that, especially for autothrophs such as 
plants, a larger body mass involves major contribution to syntheses, 
resource fluxes, and degradative processes (Grime, 1998). Accordingly, 
if our aim consists in relating the amount of variation of the species 
composition in Y to the spatial organization of ecosystem functioning, 
weighting the species according to their abundances in the data table 
may represent an adequate choice. Alternatively, within a more func-
tional context, the species weights wj may also be set proportional to 
the average or minimum functional dissimilarity of j from the other 
species in the community composition table, such that more weight is 
given to the most functionally distinct species.

As highlighted by Anne Chao (pers. comm.), when the species 
weights are proportional to their abundances (i.e., wj = yj+/y++) and 
the beta diversity of single-species vectors β(yj) is calculated with 
Pielou’s evenness, overall beta β(Y) is the same as the mutual infor-
mation measure of beta diversity derived in Chao and Chiu (2016, 
Eq. 11c). This index, which is part of a larger parametric family of 
information-theoretical measures of beta diversity, bridges the 
gap between the normalized variance of a community composition 
matrix (after removing the constraints by alpha, gamma, and total 
abundance) and traditional diversity decomposition methods (based 
on partitioning gamma diversity into alpha and beta components). 
Hence, the observed relationship between β(Y) and Chao and Chiu’s 
beta highlights once again the connection between diversity theory 
and information-theoretical measures.

Concerning the choice of an appropriate measure of evenness for 
calculating beta, in this study, I used the classical Pielou’s evenness 
(see Jost, 2010). However, in ecology, there is a plethora of available 
evenness measures such that, according to Kvålseth (2015): “a re-
searcher seeking an evenness index to use in a particular study is faced 
with a bewildering choice”. Extensive reviews of evenness measures 
and their properties can be found in Smith and Wilson (1996), Ricotta 
(2003), Tuomisto (2012), and Kvålseth (2015). While a variety of prop-
erties have been advocated for evenness, there does not appear to be 
any general consensus as to which is really necessary. With a focus on 
the measurement of beta diversity of single-species vectors, an intu-
itively relevant property is the so-called principle of transfers, which 
was introduced in econometrics by Dalton (1920) in the framework 
of income distribution. In its very essence, given a relative abundance 
distribution 

(

p1,p2,… ,pQ
)

 and two objects i and j with relative abun-
dances pi > pj, evenness is increased if the quantity Δ is transferred 
from pi to pj so long as the transfer does not reverse the ranking of the 
two abundances pi − Δ > pj + Δ. Hence, consistently with our intuitive 
notion of beta diversity, the transfer property states that, for a given 
species, evenness is increased (beta is decreased) when the species 
abundance is transferred from one plot to another plot in which the 

F IGURE  1 Dendrogram of the 
constrained cluster analysis of the belt 
transect used in the worked example. 
The clustering algorithm is based on the 
Chord distance calculated from the species 
abundance values in Table 1. For each 
node, the corresponding beta diversity 
value is shown
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species is less abundant. For mathematical details, see Patil and Taillie 
(1982) and Kvålseth (2015).

Another desirable property of β(Y) is its ability to be additively 
decomposed into species-level contributions, thus enabling to high-
light the relevance of single species to overall beta diversity. This 
property arises directly from the definition of β(Y) as the weighted 
average of the single-species values β(yj). Therefore, it is preserved 
even if β(Y) is calculated with an evenness index other than Pielou’s 
evenness. To the contrary, decomposing beta into plot-level contri-
butions is much less obvious, such that the role of specific plots in 
shaping overall beta diversity is best summarized by other methods; 
for example, by calculating the mean dissimilarity of a given focal 
plot from all other plots in Y. For deeper discussion on the decompo-
sition of β(Y) into single-plot contributions, see Appendix S2. Note 
that, for a single pair of plots, if β(Y) is calculated from presence/ab-
sence scores with equal weights wj = 1/P, beta reduces to the well-
known Jaccard dissimilarity coefficient, whereas if the weights wj are 
set proportional to the number of species presences in both plots, 
beta reduces to the Sørensen dissimilarity (proof in Appendix S3). As 
a result, β(Y) can be considered a multiple-site dissimilarity measure 
sensu Diserud and Ødegaard (2007), thus bridging the gap between 
beta diversity, evenness, and dissimilarity. At the same time, the 
connection between evenness and dissimilarity gives rise to a new 
family of plot-to-plot (dis)similarity coefficients based on the rich ar-
senal of available evenness and concentration measures. In addition 
to species presence/absence scores, such evenness-based dissimi-
larity measures can also include the species relative abundances and 
between-species functional and phylogenetic resemblances (see 
Ricotta & Pavoine, 2015).

Can the proposed method be further generalized to include other 
approaches to the measurement of beta diversity? For example, can 
the method be extended to other multiple-site dissimilarity coeffi-
cients, or can Pielou’s evenness be generalized to include the entire 
family of information-theoretical measures of beta diversity proposed 
by Chao and Chiu (2016)? These are critical questions, and their an-
swers may provide valuable insights into the effects of ecological, evo-
lutionary, and human-driven mechanisms on community composition.
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Appendix 1: Function betaeve for the calculation of the beta-diversity index introduced in the main text. 
 
This program is free software: you can redistribute it and/or modify it under the terms of the GNU General 
Public License http://www.gnu.org/licenses/. 
 
Disclaimer: users of this code are cautioned that, while due care has been taken and it is believed accurate, it 
has not been rigorously tested and its use and results are solely the responsibilities of the user. 
 
Description: given a community composition matrix Y composed of P species (rows) × N plots (columns), 
the R function betaeve calculates the total beta-diversity of Y by averaging the concentration values (i.e. the 
complement of Pielou’s evenness values) of the single species vectors in Y. 
 
Dependencies: the function requires the vegan package (Oksanen et al. 2016). 
 
Usage: betaeve<-function(comm) 
 
Arguments 
comm: a data.frame of P species (rows) × N plots (columns) containing the abundances of all P species in 
the N plots. 
 
Output 
the function returns a list object composed of three elements: 
1) ‘Average Beta’ = the overall beta-diversity of the community composition matrix Y calculated as the 
unweighted average of the single-species values of beta. For additional details refer to the main text. 
2) ‘Species weights’ = a vector containing the single-species weights used for calculating the weighted beta-
diversity of the community composition matrix Y. All weights are proportional to the total species 
abundances in Y. 
3) ‘Weighted Beta’ = the overall beta-diversity of the community composition matrix Y calculated as the 
weighted average of the single-species values of beta. 
 
References 
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, 

P., Stevens, M.H.H., Wagner, H. (2016) vegan: Community Ecology Package. R package version 2.3-3. 
https://CRAN.R-project.org/package=vegan. 

 
 
 
Function Syntax 
 
betaeve<-function(dataset){ 
  require(vegan) 
  n_col<-ncol(dataset) 
  n_row<-nrow(dataset) 
  total <- apply(dataset, 1, sum) 
  species_weights<-total/sum(dataset) 
  rel_abu<- sweep(dataset, 1, total, "/") 
  h_shannon<-diversity(rel_abu, index = "shannon", MARGIN = 1) 
  pielou<-h_shannon/log(n_col) 
  pielou_com<-1-sum(pielou/n_row) 
  weighted_pielou<-1-sum(pielou*species_weights) 
  output<-list("Average Beta"=pielou_com,"Species weights"=species_weights, "Weighted Beta" = 
weighted_pielou) 
  print(output) 
} 

http://www.gnu.org/licenses/
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Example 
 
data(dune) #Vegetation Dutch Dune Meadows freely available in the vegan package. Community 
composition matrix composed of 20 plots (matrix rows) and 30 species (matrix columns). 
t_dune<-t(dune) #transpose the community composition matrix 
betaeve(t_dune) #run the betaeve function 
 
Results 
 
$`Average Beta` 
[1] 0.4811316 
 
$`Species weights` 
   Achimill    Agrostol    Airaprae    Alopgeni    Anthodor    Bellpere    Bromhord    Chenalbu  
0.023357664 0.070072993 0.007299270 0.052554745 0.030656934 0.018978102 0.021897810 0.001459854  
   Cirsarve    Comapalu    Eleopalu    Elymrepe    Empenigr    Hyporadi    Juncarti    Juncbufo  
0.002919708 0.005839416 0.036496350 0.037956204 0.002919708 0.013138686 0.026277372 0.018978102  
   Lolipere    Planlanc     Poaprat     Poatriv    Ranuflam    Rumeacet    Sagiproc    Salirepe  
0.084671533 0.037956204 0.070072993 0.091970803 0.020437956 0.026277372 0.029197080 0.016058394  
   Scorautu    Trifprat    Trifrepe    Vicilath    Bracruta    Callcusp  
0.078832117 0.013138686 0.068613139 0.005839416 0.071532847 0.014598540  
 
$`Weighted Beta` 
[1] 0.2990298 
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Appendix 2: About the additive decomposition of β(Y) into single-plot contributions. 
 
Given a community composition matrix [ ]jny=Y  containing the presence/absence or the 
abundance values of P species (row vectors yj = y1, y2, ... yP of Y) in N plots (column vectors xn = 
x1, x2 ... xN of Y), let EVE be any evenness measure in the range 0–1. According to the main text, 
the beta-diversity of matrix Y is obtained as follows: first, the raw abundances jny  are normalized 

into relative values per row by dividing each value by the row sum 
1

N
j jnn

y y+ =
= ∑  such that 

jn jn jp y y += . Next, the beta-diversity of single species vectors is calculated from the normalized 
values pjn as: 
 

( ) 1 EVE( )j jβ = −y y                         (1) 
 
where EVE( )jy  is the evenness of row (species) j. For a fixed number of plots N, β(yj) = 1 if 
species j is present only in one plot with relative abundance equal to one, while β(yj) = 0 if j is 
present in all plots with relative abundance 1 N . Finally, the beta-diversity of Y is defined as the 
weighted average of the single-species beta: 
 

1 1
( ) ( ) 1 EVE( )

P P

j j j j
j j

w wβ β
= =

= × = − ×∑ ∑Y y y                 (2) 

 
with weights 0 1jw≤ ≤  and 

1
1P

jj
w

=
=∑ . 

 
The ability to additively decompose overall beta into species-level contributions arises directly from 
the definition of β(Y) as the weighted average of the single-species values β(yj). Therefore, this 
property is preserved independently of the evenness index used for calculating β(yj). To the 
contrary, a necessary requirement for decomposing overall beta into per-plot contributions is related 
to the property of the single-species values β(yj) to be additively decomposed into their constituting 
elements, such that ( ) ( )1

N
j jnn

yβ β
=

= ∑y , also known as sum-property. Therefore, the ability of 
β(Y) to be additively decomposed into plot-level contributions is index-dependent and hence less 
general than the ability to be decomposed into species-level contributions. 
 
Given a measure of beta that conforms to the sum property, the beta-diversity of a single plot β(xn) 
is then obtained as: 
 

( ) ( )
1

P

n j jn
j

w yβ β
=

= ×∑x                         (3) 

 
such that ( ) ( )1

N
nn

β β
=

= ∑Y x . Eq. (3) thus implies that, like for the plot-level decomposition of 
SS(Y), the quantities β(yjn), which are derived at the species level, are then reassembled at the plot 
level. Whether this operation makes biological sense is left to the judgment of the practitioner. 
 
Unfortunately, to the best of my knowledge, none of the evenness measures which conform to the 
principle of transfers (see Kvålseth 2015) is formulated such that their complement 

( ) 1 EVE( )j jβ = −y y  can be additively decomposed into its (non-negative) constituting elements. 
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For example, for single-species vectors, the complement of Pielou’s evenness 
( ) ( )1 1 logj jEVE H N− = −y y  can be additively decomposed into the contributions of single row 

elements yjn as: 
 

( ) ( )
1

loglog
log log

N
jn jn

j
n

p N pN H
N N

β
=

×−
= = ∑y                  (4) 

 
where ( ) ( )log logjn jn jny p N p Nβ = × is the contribution of element yjn to β(yj), and 

( ) 1
logN

j jn jnn
H p p

=
= −∑y  is the Shannon entropy. 

 
However, for a given number of plots N, the term ( )log jnN p×  in Eq. (4) assumes non-negative 

values only for 1jnp N≥  with 1jnp N= denoting perfect equitability. For relative abundances

1jnp N< we have ( )log 0jnN p× <  and hence ( ) 0jnyβ < . In other words, while β(yj) is always 
non-negative in the range 0–1, the contribution of the single elements yjn to beta can be either 
positive or negative. Elements with relative abundances jnp  larger than 1 N  increase unevenness 
or beta-diversity; elements with relative abundances lower than 1 N produce negative values of 
β(yjn), thus reducing beta-diversity. Therefore, those who believe the additive decomposition of beta 
into its constituting elements β(yjn) cannot produce negative values will find this approach 
unsatisfactory. 
 
Likewise, as highlighted by Anne Chao (pers. comm.), when the species weights are proportional to 
their abundances (i.e. j jw y y+ ++= ) and the beta diversity of single species vectors ( )jβ y  is 
calculated with Pielou’s evenness, overall beta β(Y) is the same as the mutual information measure 
of beta diversity derived in Chao and Chiu (2016, Eq. 11c). This measure can be expressed as: 
 
 

( )
1 1

1 log
log

P N
jn

jn
j n j

y
y

y N y
β

= =++ +

= ∑∑Y                    (5) 

 
where 1 1

P N
jnj n

y y++ = =
= ∑ ∑  is the grand total of all species abundances in Y and 

1

N
j jnn

y y N+ =
= ∑ . 

According to Eq. (5), β(Y) can be decomposed into per-species and per-plot contributions such that 

the contribution from species j is ( ) 1

1 log
log

N jn
j jnn

j

y
y

y N y
β

=
++ +

= = ∑y . Therefore, we have that 

overall beta is the sum of the contributions of P species ( ) ( )1

P
jj

β β
=

= ∑Y y . At the same time, the 

contribution from plot n is ( ) 1

1 log
log

P jn
n jnj

j

y
y

y N y
β

=
++ +

= = ∑x . In this case,  overall beta is the 

sum of the contributions of N plots ( ) ( )1

N
nn

β β
=

= ∑Y x . 

However, in both cases, the term ( )log jn jy y +  in Eq. (5) is non-negative only for 1jn jy y + ≥ , 
meaning that element yjn can assume negative values. Therefore, it is easily shown that the plot-
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level contributions ( )nβ x  can also assume negative values. While this does not prevent to calculate 

a relative plot-level value of beta ( ) ( )nβ βx Y , its biological meaning may not be accepted 
unanimously by ecologists. 
 
Another line of attack may consist in substituting the notion of beta-diversity with its complement, 
beta-evenness or beta-equitability, which measures the degree of similarity in species composition 
among sampling units. According to this definition, the beta-equitability of the community 
composition matrix Y can be expressed as: 
 

( ) ( )j jP
EVE w EVE= ×∑Y y                      (6) 
 
Here, using Pielou’s evenness ( ) ( ) logj jEVE H N=y y , the beta-equitability of single rows can 
be additively decomposed as: 
 

( ) ( )
1 1

log
log

N N
jn jn

j jn
n n

p p
EVE EVE y

N= =

−
= =∑ ∑y                 (7) 

 
where all constituting elements EVE(yjn) assume non-negative values. Accordingly, the beta-
equitability of a single plot EVE(xn) can be then obtained as ( ) ( )1

P
n j jnj

EVE w EVE y
=

= ×∑x  such 

that ( ) ( )1

N
nn

EVE EVE
=

= ∑Y x . 
 
The same approach can be used for additively partitioning a number of other evenness measures, 
such as the Simpson evenness ( ) ( ) ( ) ( )2

1 1
1 1 1 1 1N N

j jn jn ijn n
EVE p p N p N

= =
= − − = −∑ ∑y  (see 

Smith and Wilson 1996), or the index of Solomon (1979) ( ) ( ) ( )1
2 1 1N

j jnn
EVE p Nρ ∗

=
= − −∑y , 

where jnp∗  are the relative abundances of species j in the N plots ranked in descending order such 

that 1 2 ...j j jNp p p∗ ∗ ∗≥ ≥ ≥  and  ρ are the corresponding ranks 1, 2, ..., N. 
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Appendix 3: Proof that, for species presence/absence scores, if all weights wj are set equal to 1 P , 
the overall beta β(Y) of a single pair of plots reduces to the Jaccard dissimilarity. Conversely, if the 
weights wj are set proportional to the number of species presences in both plots, β(Y) reduces to the 
Sørensen dissimilarity. 
 
Given two plots U and V with the presence and absence data of P species, the Jaccard (1900) and 
the Sørensen (1948) dissimilarity coefficient are defined as: 
 

b cJac
a b c

+
=

+ +
 

 
and 
 

2
b cS

a c
ør

b
+

=
+ +

 

 
where a, b and c represent the matching/mismatching components of the well-known 2 2×  
contingency table: a is the number of species present in both plots, b is the number of species 
present only in plot U, and c is the number of species present only in plot V such that a b c+ +  is 
the total number of species P in both plots. 
 
Let EVE be any evenness index (not only the Pielou evenness), which takes on values between 0 
and 1 and EVE( )jy the evenness of species vector jy . For a single pair of plots, EVE( )jy  takes 
the value one (denoting maximum evenness) if species j is present in both plots and the value zero 
(denoting minimum evenness) if j is present only in one plot, such that 

,
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a
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,
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,
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Since 

1
( ) 1 EVE( )P

j jj
wβ

=
= − ×∑Y y , using equal weights 1jw P=  we have: 

( ) ( ) ( )1
( ) 1 1 EVE( ) 1P

jj
P a a b c b c a b c Jacβ

=
= − × = − + + = + + + =∑Y y . 

 
On the other hand, setting the weights wj proportional to the number of species presences in both 
plots, we have that the weights associated to the species present in both plots are 

( )2 2jw a b c= + + , while the weights associated to the species present in a single plot are 

( )1 2jw a b c= + + , where 2a b c+ + is the number of species presences in both plots. Accordingly: 
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