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Abstract 

The horizontal-vertical illusion, in which the vertical dimension is overestimated relative to the 

horizontal direction, has been explained in terms of the statistical relationship between the lengths of 

lines in the world, and the lengths of their projections onto the retina (Howe C.Q. & Purves D. (2002) 

Range image statistics can explain the anomalous perception of length, Proceedings of the National 

Academy of Sciences of the United States of America, 99, 13184-13188). The current study shows that 

this illusion affects the apparent aspect ratio of shapes, and investigates how it interacts with binocular 

cues to surface slant. One way in which statistical information could give rise to the horizontal-vertical 

illusion would be through prior assumptions about the distribution of slant. This prior would then be 

expected to interact with retinal cues to slant. We determined the aspect ratio of stereoscopically 

viewed ellipses that appeared circular. We show that observers’ judgements of aspect ratio were 

affected by surface slant, but that the largest image vertical:horizontal aspect ratio that was considered 

to be a surface with a circular profile was always found for surfaces close to fronto-parallel. This is not 

consistent with a Bayesian model in which the horizontal-vertical illusion arises from a non-uniform 

prior probability distribution for slant. Rather, we suggest that assumptions about the slant of surfaces 

affect apparent aspect ratio in a manner that is more heuristic, and partially dissociated from apparent 

slant.  
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1. Introduction 

 

Forming an accurate understanding of the shapes and positions of objects in the world is a difficult 

computational problem, due to the ambiguity of the information reaching the eyes. The image created 

on the retina by any given object is consistent with any number of possible physical projections from 

the real world.  A simple and much considered example of this problem (e.g. Thouless, 1931a,b) occurs 

when an observer views a flat, elliptical surface. Although the surface has a fixed size and shape (e.g. 

circular), the size and shape of the image of the disc projected onto the retina is also determined by its 

distance from the observer, and its slant. This is a problem because the same retinal image would be 

created by a surface of a different size or shape, if it were presented at a different distance, or with a 

different slant. There is no way to unambiguously determine the actual shape and size of the surface 

from the shape and size of the elliptical contour projected onto the retina in this simple example. 

However, in most everyday situations, there will be many useful sources of visual information for 

determining the distance and slant of the surface.  For example, motion parallax, binocular disparity, 

linear perspective and texture can all provide information about the three-dimensional structure of the 

environment (Cutting, 1997). Here, we consider the information that is available from binocular cues, 

and how this is used in the perception of the slant and shape of surfaces.  

In addition to the immediate sensory information available to an observer, prior knowledge or 

assumptions about the environment may also usefully influence our interpretation of depth.  Bayes’ rule 

(see for example Knill and Richards, 1996) provides the optimal means of combining uncertain visual 

information with such prior knowledge of the environment. Consider for example the problem of 

estimating the slant of a surface from binocular visual information. In this case, Bayes’ equation can be 

formulated as follows: 

 



  

p S | B( ) µ p B | S( ).p S( )          (1) 

  

Here 

  

p(B | S) is the likelihood function for the binocular disparity cue, and expresses the probability 

that the current disparity estimates B would have been obtained given a surface of true slant S.  

   

p S( ) is 

the prior, expressing the probability of encountering any particular slant S, irrespective of the current 

visual information. This therefore embodies our prior statistical knowledge of the structure of our 

environment.  Finally, 

  

p S | B( ) is the posterior, expressing the probability that the particular slant is S, 

given the available binocular disparity information.  The posterior is the totality of information 

available for making decisions about (i.e. estimating) the slant of the surface. In order to act upon this 

information, a decision rule must be applied. Two commonly used decision rules are to calculate the 

mean of the posterior distribution, or its maximum. The former is also referred to as minimum mean 

squared error estimation, since it minimises this error in estimation, as defined by the difference 

between the true and estimated values. The latter, referred to as maximum likelihood estimation 

(MLE), selects the most likely value of the slant of the surface given all the available information (see 

for example Brainard and Freeman, 1997). 

The advantage of a Bayesian approach is that, provided prior assumptions accurately reflect the 

observer's environment, inaccuracy in estimation can be reduced. Both precision and accuracy can be 

improved through the application of an appropriate prior. This theoretical approach also provides a 

compelling explanation of many biases that have been observed in such situations. For example, 

Bayesian priors have been used to account for perceptual biases is the cases of motion (Weiss, 

Simoncelli & Adelson, 2002; Stocker & Simoncelli, 2006), distance (Yang & Purves, 2003), depth 

(Burge, Fowlkes & Banks, 2010) and orientation (Girshick, Landy & Simoncelli, 2011). It is thus 

possible to provide putative explanations of perceptual biases as reflections of the nature of the 

underlying priors, which are, in turn, based on the statistical regularity of information in the world. This 



logic has been used to relate natural scene statistics to observed psychophysical phenomena. One 

particularly relevant example of this is the explanation of the horizontal-vertical illusion proposed by 

Howe and Purves (2002). 

The horizontal-vertical illusion is an example of the more general phenomenon that the apparent length 

of a line depends on its orientation. Typically, horizontal lines are perceived as shorter in extent than 

vertical lines of the same physical length. Indeed, the apparent length of a line varies systematically 

with orientation, with lines around 20-30º from vertical having the greatest apparent length (Shipley, 

Nann & Penfield, 1949; Pollock & Chapanis, 1952; Cormack & Cormack, 1974; Craven, 1993). This 

phenomenon has been demonstrated in a wide variety of stimuli. These include the apparent distance 

between pairs of points; the relative lengths of horizontal and vertical lines, for example when 

presented in a 'T' (the bisection illusion) or an 'L' (the horizontal-vertical illusion) configuration and the 

apparent aspect ratio of simple geometrical figures such as ellipses and rectangles (Fick, 1851 (cited by 

Künnapas, 1955); Sleight & Austin, 1952; McManus, 1975). For example, Sleight and Austin (1952) 

found that observers presented with a perfect circle displayed what they referred to as a 'classical' 

illusion. That is, the circle appeared to be elongated in the vertical direction. Their results were more 

mixed when observers judged the shape of rectangles. However, using a much larger group of 

participants, McManus (1975) found that on average squares tended to appear elongated in the vertical 

direction by a factor of 1.58%.   

 

A variety of explanations for this phenomenon have been proposed. One suggestion is that the bias 

reflects differences in the horizontal and vertical extent of the visual field of a binocular observer 

(Künnapas, 1955). Since the binocular visual field is wider than it is tall, a horizontal line will cover a 

smaller proportion of the extent of the field than will a vertical line of the same length. Differences in 

the apparent magnitude of horizontal and vertical extents then reflect the fact that extent is measured 



relative to the size of the field of view. Support for this account comes from the finding that the illusion 

is smaller under monocular viewing, when the visual field is more isotropic (Prinzmetal & Gettleman, 

1993). Another type of explanation implicates properties of image formation in the retina, including 

imperfections in refractive properties (Avery & Day, 1969; Thompson & Shiffman, 1974; Valentine, 

1912), the spacing of photoreceptors (Begelman & Steinfeld, 1971) or the distribution of retinal 

pigments (Bayer & Pressey, 1972). It has also been suggested that the phenomenon might be related to 

differences in the way that eye-movements are made in different directions. Because eye-movements in 

the vertical direction require more effort than those in the horizontal direction, a movement of the same 

extent will appear longer, simply as a result of the greater effort that would be required to make a 

saccade from one end of the line to the other (Schiffma & Thompson, 1974; Stacey, 1969). 

 

A limitation of such accounts is that, while they all provide a clear route via which the phenomenon 

arises, they do not provide a theoretical explanation for why it should occur. In each case one may 

counter that, since the particular property of the visual system that is implicated in the phenomenon is 

stable (the shape of the binocular field; asymmetries in the refractive properties of the eyes; the 

distributions of photoreceptors and retinal pigments; the energy expended to make eye-movements), it 

might reasonably be taken into account when judging the lengths of lines. Indeed, it is well known that 

the visual system is able to calibrate itself readily to changes in its environment, for example in prism 

adaptation, and other adaptation effects (Webster, 2011), and this calibration might be expected to 

allow the above factors to be taken into account. 

 

An alternative class of explanations, of particular relevance to the current discussion, provides a 

functional account of the phenomenon. These explanations suggest that biases reflect the fact that the 

possible three-dimensional layout giving rise to the retinal image is taken into account. If the goal of 

the observer is to determine the likely length of a line in 3D space on the basis of the retinal image, 



then one would only expect this to be unaffected by orientation if equal physical extents, at different 

orientations in the world, tended to project lines of the same extent in the retinal image. Howe and 

Purves (2002) tested this assumption directly by comparing the projected lengths of lines in the image 

with the actual 3D length of the projected features in the real world. They found that lines of the same 

length in the retinal image, but different orientations, tended to be projected by different 3D distances. 

Here, 3D distance refers to the magnitude of the separation in 3D space between the locations forming 

the endpoints of the line in the retinal image.  In particular, they found that a constant retinal image 

separation tended to correspond to the smallest 3D separation in the horizontal direction, rose to a 

maximum for lines oriented approximately 20-30˚ away from vertical, then fell again slightly towards 

vertical. This pattern provides an excellent match to empirical data on the effects of orientation on line 

length. It also provides a very direct account of the phenomenon: the apparent length of a line depends 

on its orientation because the actual lengths of the projections of lines onto the retinal image depend on 

orientation. If the same retinal separation tends to correspond to greater distances between two points in 

the world for vertical image separations that for horizontal separations, then it might come as no 

surprise that observers see vertical lines as longer than horizontal ones. A similar explanation was 

proposed by Craven (1993), based on an analysis of the density of zero-crossings in filtered images. 

Note that these explanations are very different from the explanations criticized above. Other 

explanations attribute the bias to properties of the visual system that are not taken into account when 

making judgements of shape.  The explanations proposed by Craven (1993) and Howe and Purves 

(2002) suggest that it is the fact that the visual system takes account of statistical regularities in our 

environment that gives rise to the bias.  

 

The difference in 3D distances corresponding to equal intervals in images arises from statistical 

regularities in the 3D environment. Of most relevance here is the presence of a horizontal ground plane. 

In many scenes, there is a clear relationship between the vertical location of a point in the image, and 



its distance from the observer: points higher in the image tend to be further away. This relationship can 

be seen in the existence of height-in-the-field as a powerful depth cue (Cutting 1997).  There is no 

similar relationship between the horizontal location of a point and its distance. This means that, while 

on average the depth separation between horizontally separated points will be zero, for vertically 

separated points it will not. As a result, a given pair of horizontally separated points in the image is 

likely to correspond, on average, to a smaller 3D separation in the environment than a pair of points 

that are separated vertically in the image. 

 

This account of the phenomenon is related to other explanations (Woodworth, 1938; Gregory, 1963, 

1973) collectively referred to as perspective theories by Wolfe, Maloney and Tam (2005). These 

theories explain the bias as a consequence of the differential size scaling of lines of different 

orientations. According to this view, the arrangement of lines in an image represents a configural depth 

cue, and some of the lines will therefore be interpreted as if extended in depth out of the fronto-parallel 

picture plane. This is consistent with Howe and Purves' (2002) explanation, in which vertical lines in 

the image appear longer because the estimation of their length takes account of the fact that they are 

likely to be slanted away from frontoparallel.  

 

An important limitation of this specification is that it does not take account of perceptual information 

about depth.  Such information would be available in most situations, and would be expected to affect 

the apparent aspect ratio of the surface. Von Collani (1985) provided clear evidence that perspective 

depth cues in photographs do in fact affect the strength of the horizontal-vertical illusion. When an 'L' 

shape was presented against a scene containing clear perspective cues to a receding surface (e.g. a road) 

a larger effect was found than when it was presented against a scene without variation in depth (a wall).  

One complication here, raised by Gregory (1998), is that in many situations in which the horizontal-

vertical illusion is present, the stimulus does not appear to be slanted in depth. For example, Von 



Collani (1985) showed just as strong an illusion for the 'L' shape presented on its own, as when it was 

presented against a background with clear perspective depth cues.  Only when a clearly frontoparallel 

wall was presented in the background did the effect diminish. Thus, while shape biases might arise 

from considerations of the perspective projection of slanted surfaces, this might be dissociated from the 

actual apparent slant of the surface. Gregory (1998) argued that, when stimuli are presented in the dark, 

the paradoxical conflict between apparent shape and apparent depth is removed. Gregory discussed the 

situation in which the stimuli are drawn with luminous paint and viewed in a dark room. Similar 

conditions can be created with the presentation of stimuli on a computer monitor. Informally he stated 

that, in these conditions, stimuli do actually appear to be slanted in depth, in a manner consistent with 

the interpretation of their shape and size.  

Aspect ratio biases, when accounted for in terms of the expected depth structure of the environment, 

can be considered to reflect prior assumptions about the distributions of slants of surfaces. The goal of 

the current research is to determine whether aspect ratio biases can be accounted for in terms of such 

prior assumptions about slant, by formulating the perception of slant and shape as a problem of 

Bayesian estimation. An implicit assumption here is that, for a given aspect ratio in the image, apparent 

slant and apparent shape are mutually consistent (Koffka, 1935). Numerous studies in which both slant 

and shape have been measured have reported results that are inconsistent with this principle of shape-

slant invariance (Beck and Gibson, 1955; Stavrianos, 1945; Epstein, Hatfield and Muise, 1977; Eby 

and Braunstein, 1995).  In contrast, Li and Durgin (2010) tested this assumption in a series of 

experiments in which observers both made verbal estimates of the slant of surfaces, and judged the 

relative distance between points, forming an ‘L’-shape, in the saggital and frontal planes. Verbal 

estimates and the slant inferred from the judged aspect ratios were in good agreement, suggesting that 

biases in apparent aspect ratio reflected biases in the apparent slant of the surfaces. This study was 

restricted to an analysis of surfaces whose slant was within 24º of horizontal.  

Other studies have demonstrated clear biases in the perception of slant, over a wider range of 



orientations. The particular pattern of bias in judgements of apparent slant appears to be inconsistent 

with the slant bias explanation of the horizontal-vertical illusion, when this is coupled with the idea of 

shape-slant invariance. For example, Durgin, Li and Hajnal (2010) showed a vertical tendency in 

verbal judgements; the judged slant of surfaces within 15º of horizontal were drawn towards horizontal, 

while the slant of all other surfaces was drawn towards vertical. The effect of this tendency was that the 

greatest bias, of around 14º, was found for surfaces with a slant of 54º away from horizontal. This 

tendency is towards surfaces of vertical orientation, defined with respect to gravity, and was found to 

be invariant to changes in gaze direction; this is distinct from the idea of a frontal tendency, which 

would predict that surface slant would be biased towards an orientation that is gaze-normal (Gibson, 

1950). Biases in apparent slant, with respect to a gravitationally-defined horizontal, are well modelled 

as a sine function of actual slant (Durgin and Li, 2012). Todd, Christensen and Guckes (2010) also 

reported accurate perception of slant, for surfaces containing binocular depth cue whose orientation 

was close to frontoparallel. 

 

The goal of the current study is determine the effects of changes in slant on the perception of surface 

aspect ratio, and whether aspect ratio biases can be explained in terms of apparent slant.  We present 

observers with a task in which they are shown surfaces with a rectangular or elliptical outline in the 

retinal image, and asked to determine the aspect ratio of the surface relative to a square or a circle. That 

is, they are asked to consider whether the surface is taller or shorter than it is wide. The slant of the 

surfaces is defined by both binocular and texture cues. By measuring the point of subjective equality in 

this task, at which the surface appears to be square or circular, we are able to infer its apparent slant (Li 

and Durgin, 2010). This allows us to determine the extent to which slant cues affect the apparent shape 

of the surface.  A given aspect ratio in the image is expected to appear as a surface that is progressively 

taller as the slant away from frontoparallel is increased. 



This task also allows us to determine whether the horizontal-vertical illusion can be interpreted as a 

bias in apparent slant. When a surface, with a circular outline, is presented with a frontoparallel 

orientation, it is predicted that it will appear taller than it is wide. This bias could reflect a bias in the 

apparent slant of the surface, consistent with the statistical regularities that typify our environment. If 

so, then it would be expected that a surface with a circular outline in the retinal image would appear 

circular if binocular cues specified that the surface was slanted so that the top of the surface was closer 

than the bottom. This would counteract the bias attributed to prior assumptions about surface slant. 

 

We present two experiments that address these questions. In the first experiment, we measure biases in 

the perception of aspect ratio, under conditions of uncertainty about shape. Under these conditions, we 

expect the effect of any prior to be relatively large. In the second experiment, we measure biases in 

apparent aspect ratio across a range of disparity-defined slants. These results are used to determine 

whether the aspect-ratio bias is affected by manipulations of slant in a manner consistent with the 

influence of prior assumptions on apparent slant along the lines proposed by Howe and Purves (2002).  

2. Experiment One: Bias in the estimation of aspect ratio 

 

Experiment one reports biases in the estimation of aspect ratio for simple rectangular stimuli. Rather 

than using figures with well-defined edges, we used sparse random dot stimuli in which the locations of 

the dots were confined to lie within a rectangular region. This increases uncertainty in the visual 

information provided about shape, and should thus increase the influence of any prior. The observer’s 

task was to decide whether the rectangular region containing the dots was taller or shorter than it was 

wide. The use of sparse stimuli would be expected to considerably increase uncertainty in the shape of 

the object, and thus the effect of any priors on its estimation. Given that there has been some variability 

in results reporting a horizontal-vertical illusion for geometric shapes (Sleight and Austin, 1952; 



McManus, 1978) it is important to establish a robust effect for the kinds of stimuli used in this study. 

 

2.1 Material and Methods 

 

2.1.1 Apparatus 

 

Stimuli were generated, and the experiment controlled, using MATLAB and the Psychophysics toolbox 

(Brainard, 1997; Pelli, 1997; Kleiner, Brainard & Pelli, 2007) running on a PC computer. Stimuli were 

presented on a 21-inch Sony Trinitron CRT monitor, viewed from a distance of 80 cm. Observers 

completed the experiment in a dark laboratory, with their head positioned in a chin-rest to control the 

viewing distance. 

 

2.1.2. Stimuli and Procedure 

 

Stimuli were presented against a black background on the monitor, and consisted of red, anti-aliased 

circular dots, presented within a rectangular region centered in the observer's visual field. The diameter 

of the dots was 5arcmin. The background luminance of the screen was 0.14cdm
-2

, and the luminance of 

the dots was 21.2cdm
-2

. Dots were presented in a rectangular region of width 6cm. The height of the 

region was varied from trial-to-trial. Seven aspect ratios were presented, ranging from 0.7 to 1.2. 100 

dots were presented randomly, following a uniform distribution, within the specified area. Each aspect 

ratio was presented ten times within a block of trials. Two blocks were run, giving a total of 20 

repetitions of the seven aspect ratios. At the beginning of each block of trials, the observer was 

presented with a central fixation cross. When the observer pressed a response key, this was replaced by 

a stimulus, which was presented for 1s. After this time, the stimulus disappeared, and was replaced by 

the fixation cross until the observer made a response. Observers responded in a two-alternative forced 



choice task by making a key press to indicate whether the rectangular region containing the dots was 

taller or shorter than it was wide. The next stimulus appeared once a response had been given. 

 

It should be noted that these data were collected as part of a wider project to investigate the effect of 

motion adaptation on perceived shape (Hibbard, Scarfe, Robertson and Windeatt, 2010). Observers also 

completed the above procedure after a period of motion adaptation. The data presented here are 

baseline conditions in observers that had not been presented with any adapting stimuli. The results are 

included as they represent a clear demonstration of the aspect ratio biases that are of interest. 

 

2.2 Results and Discussion 

 

A typical psychometric function is shown in figure 1a. This shows the proportion of “taller” responses 

as a function of the actual aspect ratio of the rectangle. For each observer, we calculated the point of 

subjective equality, which indicates the physical aspect ratio corresponding to an apparently square 

rectangle.  This was done by fitting a Weibull function to the data, using the psignifit toolbox 

(Wichmann and Hill, 2001a,b). 95% confidence intervals on the estimated PSEs were calculated using 

bootstrap analysis with 5000 repetitions. PSEs for individual observers are shown in figure 1b. 11 of 

the 14 observers showed a significant classical effect (perceptual elongation in the vertical direction 

relative to the horizontal direction). One observer showed a significant non-classical effect (perceptual 

elongation in the horizontal direction relative to the vertical direction). The remaining two observers 

showed no significant bias.  

 

The mean aspect ratio of the apparently square rectangle was 0.92, with a standard deviation of 0.07. 

This is significantly different from 1 (t(13)=4.23, p<0.001). Thus, to appear square to the average 

observer, a rectangle had to be shorter than it was wide, in line with the standard horizontal-vertical 



illusion. This 8% error is considerably larger the 1.58% error reported by McManus (1978). We 

attribute this difference to the uncertainty in shape in our stimuli, which consisted of areas sparsely 

populated by randomly located dots. We calculated the effective slant, representing the slant of a 

surface that would project a retinal image with an aspect ratio equal to that of the average apparently 

square rectangle.  This gives a value of 22.4º. That is, if the bias were to be attributed purely to a 

misperception of slant, then the results are consistent with the surface appearing to have a slant of 

22.4º.  

 

3. Experiment Two: Aspect ratio judgements for slanted surfaces 

 

The second experiment attempted to manipulate the apparent slant of the stimuli, using binocular 

disparity cues, to determine the effect of experimentally defined slant on aspect ratio judgements. If the 

biases found in experiment one arose because of the apparent slant of the stimulus, then a change in 

apparent slant should result in a change in bias.  This means that we should be able to use cues to slant 

from binocular disparity to null the bias, such that the apparent slant of the surface is frontoparallel.  At 

this point, an ellipse that had an aspect ratio of 1 in the image would appear circular. The purpose of 

this experiment was to test this directly. In so doing, we make use of measures of apparent aspect ratio, 

as a function of the geometrically specified slant of the surface, to infer the observer's prior 

assumptions about the distribution of slant.  If aspect ratio biases are a direct result of the apparent slant 

of the surface, then it should be possible to use other cues, in this case binocular disparity, to counteract 

this bias. Alternatively, it is possible that the effective slant of the surface, from the point-of-view of 

biases in its apparent shape, might be dissociated from its perceived slant (Gregory, 1998). If biases 

cannot be nulled, then apparent shape and apparent slant must be, at least partially, dissociated. 



3.1 Material and Methods 

 

3.1.1. Apparatus 

 

Stimuli were generated, and the experiment controlled, using MATLAB and the Psychophysics toolbox 

running on a PC computer as before.  Stimuli were presented on the same 21” Sony Trinitron monitor 

as in experiment one, this time viewed from a distance of 40 or 100cm. Experiments were performed in 

a fully-lit laboratory. Misperception of distance is known to be a significant factor in the misperception 

of depth from binocular disparity (Johnston, 1991; Brenner an van Damme, 1999). We wished to 

minimise any such effects, so that apparent distance was as accurate as possible. This should then 

provide the clearest assessment of the effects of slant on apparent shape. Binocular disparity was 

controlled by viewing the stimuli using CrystalEyes liquid-crystal goggles. Stimuli were presented in 

red, to minimise the cross-talk between the two eyes' views.  

 

3.1.2. Stimuli and procedure 

 

Each stimulus was created by placing 1000 dots within a predefined elliptical area on the screen. The 

dots were distributed uniformly across the surface in 3D space.  The height of the stimulus was fixed at 

8 degrees of visual angle. This corresponded to a height of 5.6cm at the 40cm viewing distance, and 

14.0cm at the 100cm viewing distance. The width of the ellipse was under the observer's control. 

Moving the mouse leftwards reduced the width of the ellipse, moving it rightwards increased the width. 

The same dots remained on the screen, and were thus moved horizontally as the settings were made. 

The positions and sizes of the dots were determined by perspective projection. At the centre of the 

surface, the size of the dots was 9.2arcmin. The background luminance of the screen was 0.14cdm
-2

, 

and the luminance of the dots was 21.2cdm
-2

. The observer's task was to vary the aspect ratio until the 



surface appeared as a circular disc. When the observer was happy with their setting, they pressed a 

mouse button to remove the stimulus from the screen and record their setting. The next trial started 

when the observer pressed the spacebar on the keyboard. 

 

The observer made 10 settings for 13 slants (0º,±5º, ±10º,±15º, ±30º, ±45º, ±60º) within a block of 

trials. Three blocks were run in total, to give 30 repetitions at each slant. Trial order was randomized 

with blocks. 

 

3. 4. Results and Discussion 

 

The mean aspect ratios set by each observer, as a function of the distance and the slant of the surface, 

are shown in figure 2.  To emphasise the effects of the specified slant on aspect ratio settings, the data 

are presented as both the aspect ratio in the retinal image, and the aspect ratio of the three-dimensional 

surface. It should be emphasized that the observers’ task was to consider the aspect ratio of the three-

dimensional surface.  

Dotted lines on figures 2a and 2b show the on-screen aspect ratios consistent with the projection of a 

circular surface, across the range of slants tested experimentally. The largest on-screen aspect ratio was 

usually set for frontoparallel surfaces. A significant bias was again observed in all cases: an ellipse that  

was shorter than it was wide was seen as circular. For all observers, at both distances, the set image 

aspect ratio for frontoparallel surfaces was significantly less than 1.0 (one-sample t-tests, in all cases 

p<10
-5

). 

 

Smaller image aspect ratios were set for both positive and negative slants away from frontoparallel. 

This shows that observers are taking binocular information into account when making their 

judgements. Figures 2c and 2d replot the data as the geometrically specified aspect ratio of the 3D 



surface. When the surface was close to frontoparallel, observers tended to overestimate the height of 

the surface, such that a surface that was shorter than it was wide appeared circular; for larger slants, the 

height tended to be underestimated.  

These results are not consistent with the predictions of a simple Bayesian model of slant, as specified in 

equation (1), in which biases in the apparent aspect ratio of the surface result from biases in the 

apparent slant. There ought to be some value of the slant specified by disparity for which the apparent 

slant, once combined with the prior, is zero. At this point, the image aspect ratio would be set to 1. The 

fact that such a point was not found would lead us to predict that it was not possible to present a surface 

so that it appeared frontoparallel. For our viewing conditions, this explanation of the aspect ratio bias is 

very unlikely, since it would be inconsistent with the well-established vertical tendency discussed 

earlier (Durgin et al, 2010). This is because, if the apparent slant of surfaces is biased towards vertical, 

we would expect aspect ratio to be judged accurately for frontoparallel surfaces. This is shown in 

figures 2e and 2f, in which the data are replotted as the equivalent slant, i.e. the slant at which the set 

image aspect ratio would be projected by a surface that was circular. Note that the data point for zero 

degrees of slant is plotted twice, with both a positive and negative value. This is because these data are 

consistent with a surface that is slanted away from frontoparallel, but there is no appropriate way to 

determine the appropriate direction of effective slant from the data. This discontinuity when the data 

are plotted in this way suggests that biases in apparent slant cannot give a complete account of biases in 

aspect ratio. Nevertheless, it is clear that simulated slant was taken into account by the observers in 

making their setting, as is evident from the positive slope for both directions of simulated slant. The 

misperception of aspect ratio is best interpreted as an addition bias, over and above that which might be 

predicted from any plausible misperception of slant.  

 

It should be noted that there were a number of unmodelled cues in our stimuli that might have biased 

the interpretation of the surface slant towards frontoparallel. These include focus cues, motion parallax 



and surface microtextures, and the presence of a frame around the monitor screen (Eby and Braunstein, 

1995).  All of these could have contributed to a bias towards frontoparallel, which would bias the set 

retinal aspect ratio towards a value of 1 (Braunstein, 1976).   

 

One possible Bayesian model of apparent slant and aspect ratio is outlined in figure 3. Figure 3a shows 

the prior, which was created by assuming a uniform probability distribution over aspect ratio, and a 

normal distribution for slant. This embodies the idea that biases in apparent aspect ratio reflect 

expectations about the distribution of depth in the natural environment.  The prior probability 

distribution is thus given by: 
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where S is slant, A is aspect ratio, and SP and P are the mean and standard deviation of the slant 

distribution. The peak is at 65º, with a standard deviation of 7.5º. These figures were used to 

approximate the distribution measured by Yang and Purves (2003). Figure 3b shows the likelihood 

function. It was assumed that the estimation of slant from disparity, 

   

ˆ S , and the aspect ratio of the 

projection of the surface onto the retinal image, 

   

ˆ a , are unbiased and subject to Gaussian error. The 

likelihood function is then given by: 
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where s and A are the standard deviations for slant and aspect ratio and S and A are the true values of 

slant and aspect ratio of the surface. In figure 3b, values of A =5% and s=5º were used, and the 



surface was frontoparallel with an aspect ratio of 1. The posterior probability distribution, shown in 

figure 3c, is then obtained by multiplying together the prior and likelihood, according to equation (1). 

Note that the peak in the posterior probability distribution is at a positive value of slant when the 

surface is frontoparallel, reflecting the fact that the peak in the prior is at a positive value. 

 

This model estimates the shape and slant of the surface simultaneously, given the shape of the surface 

in the retinal image, and information about slant; this means that any biases in apparent slant, caused by 

a non-uniform prior for slant, would have a direct effect on apparent shape. To simulate the results of 

our psychophysical experiments, we estimated the image aspect ratio that would result in an apparent 

surface aspect ratio of 1, as a function of both the slant of the surface, and the reliability of slant 

information. s was varied between 2.5º and 7.5º.  These estimates were obtained by varying the image 

aspect ratio in steps of 0.01, and for each value estimating the surface aspect ratio using a maximum 

likelihood criterion. The image aspect ratio giving a surface aspect ratio closest to one was then 

selected. These results are plotted in figure 4. For each level of reliability, there is a slant at which an 

image aspect ratio of one corresponds to a surface aspect ratio of 1. This is the point at which the 

surface appears frontoparallel. As the reliability of slant information decreases, this slant moves 

progressively further away from frontoparallel, reflecting an increased influence of the prior. It is 

important to note that the largest image aspect ratio seen as a circular surface would be 1 in all cases.  It 

is not therefore possible to account for the entirety of the bias in aspect ratio judgments using a 

Bayesian model of this type, in which biases area attributed to prior assumptions about the distribution 

of slant, since we typically found no value of slant at which an image aspect ratio of 1 appeared as a 

surface with an aspect ratio of 1.  

 



The notable features of our data are that there is an overall aspect ratio bias, and that the visually 

specified slant of the surface affected the set aspect ratio. This pattern of responses is captured by the 

following equation: 

 

  

ˆ A = kcos gS( )            (4) 

Here, k is a constant that captures the overall aspect ratio bias, and g reflects the gain with which the 

slant information is used. The best fit of this equation is shown by the solid lines in figures 2a and 2b. 

Note that this equation does not provide an explanation of the data, but a description. This might 

however represent a more heuristic use of statistical information about slant than that expressed in the 

Bayesian model (Braunstein, 1976; Caudek and Proffitt, 1993). The tendency for surfaces to be slanted 

away from frontoparallel leads to an overall bias in the estimation of aspect ratio, which is captured by 

the constant k<1; this bias does not however interact directly with perceptual information about slant. 

Across both distances, and all observers, average values of k=0.87 and g=0.66 were obtained. The 

same average estimate of the magnitude of the horizontal-vertical bias in our data was obtained when 

Durgin and Li’s (2012) sine model of apparent slant, rather than a linear model, was used. 

 

4. Conclusions 

 

We observed a considerable bias in the perception of the aspect ratio of rectangular and elliptical 

shapes. Such biases have been reported previously (Fick, 1851 (cited by Künnapas, 1955); Sleight & 

Austin, 1952; McManus, 1978), and are examples of a general class of effects related to the horizontal-

vertical illusion.  A compelling, theoretically motivated explanation of such effects attributes them to a 

depth bias: vertical extents in the retinal image are likely to correspond to greater 3D separations in the 

environment than are horizontal extents of the same magnitude. This difference reflects the fact that 



vertically separated points are likely, on average, to have a greater separation in depth. This difference 

can be attributed to the ubiquity of the ground-plane in our environment, and has been confirmed 

empirically (Howe and Purves, 2002).   

 

When applied to the perception of shape, this bias amounts to an implicit slant of the viewed shape 

around a horizontal axis. However, this bias does not appear to interact with binocular cues to the slant 

of the surface in a straightforward way, as might be expected from, for example, a Bayesian approach 

to estimating shape. Specifically, while observers’ aspect ratio settings took the slant of depicted 

surfaces into account, we were able to find no binocular-disparity defined slant at which the effective 

slant away from the frontoparallel plane was zero, such that an ellipse with an aspect ratio of 1 in the 

image appeared circular. At all slants tested, the surface that appeared to have a circular outline was 

shorter than it was tall in the image. 

 

This overall pattern of bias is difficult to account for using either Bayesian approaches, or alternatives 

such as empirical ranking theory (Howe, Lotto and Purves, 2006), if biases in apparent shape are to be 

explained in terms of biases in apparent slant. It is possible to frame the problem as one of shape 

estimation. Prior information about the distribution of shapes of objects in the environment, and how 

these are projected onto the retinal image, can then be incorporated as a Bayesian prior and likelihood, 

or as a probability distribution for the horizontal and vertical extents of retinal projections. Either of 

these approaches can be used to provide an account of the bias with reference to natural-scene 

statistics. A difficulty arises however when attempting to incorporate the role played by binocular cues 

to surface slant. Such information does affect apparent shape, and could readily be included in 

Bayesian or empirical ranking models. However, if shape biases ultimately arise from the expected 

slant of surfaces about a horizontal axis, no bias is predicted when binocular cues clearly indicate that 

the surface is frontoparallel. This is not the pattern of results observed here. Nor is it consistent with the 



finding that horizontal-vertical illusion is smaller under monocular viewing (Prinzmetal & Gettleman, 

1993). Although biases in apparent shape might reflect knowledge of the statistical distribution of depth 

in the natural environment, they do not appear to stem from biases in apparent slant.   

One reason we might expect a dissociation between the apparent slant of a surface, and the horizontal-

vertical illusion, is if the latter reflects a slant bias in pictorial depth (Koenderink, 1998). It would be 

entirely possible to maintain separate estimates of the slant of the picture surface, and the slant of 

objects within the picture. A horizontal-vertical illusion could then be expected even in the presence of 

reliable and unbiased information about the picture surface. This argument cannot readily explain the 

biases observed in our second experiment. This was performed in a fully lit laboratory, so that the 

orientation of the monitor surface was clearly visible; binocular disparity influenced the apparent slant 

of the surface, and subsequently the apparent aspect ratio of the disc. There was thus a clear 

dissociation between any pictorial plane, and the apparent slant of the disc. 

 

Biases in the perception of 3D shape, over a wide range of viewing conditions and for stimuli 

containing binocular depth cues, have been reported many times in the literature. Typically, objects that 

are relatively close to the observer tend to appear stretched in depth, relative to the horizontal and 

vertical dimensions, while those that are further way tend to appear relatively squashed in the depth 

dimension (Todd & Bressan, (1990); Collett, Schwarz and Sobel (1991); Johnston, 1991; Todd and 

Norman (1991); Rogers and Bradshaw (1993); Liter, Braunstein and Hoffman (1994); Tittle, Todd, 

Perotti and Norman (1995); Rogers and Bradshaw (1995); Bradshaw, Glennerster and Rogers (1996); 

Glennerster, Rogers and Bradshaw, 1996; Bradshaw & Parton (1998); Brenner and van Damme (1999); 

Brenner & Landy (1999); Bradshaw, Parton and Glennerster (2000); Todd and Norman (2003); 

Domini, Caudek and Tassinari (2006); Scarfe and Hibbard, (2006), Tassinari, Domini and Caudek, 

(2008); O’Kane and Hibbard (2010); Scarfe & Hibbard (2011)).  Such biases have been described in 

terms of the geometries of visual space (Tittle et al, 1995), and the relationship between perceptual and 



physical space (Wagner, 1985).  Such effects might have been expected to cause our stimuli to appear 

stretched in depth, leading observers to set smaller aspect ratios in our second experiment. However, 

any such effects would have been expected to be relatively modest at the 1m viewing distance, at which 

depth scaling tends to be relatively accurate (Johnston, 1991). Moreover, a slant at which the surface 

appeared frontoparallel, leading observers to set an image aspect ratio of 1, would still be expected. 

 

It is possible that, rather than any single representation accounting for our perception of 3D shape, 

multiple representations of important surface properties are independently determined. For example, it 

has been suggested that independent representations of depth, 3D orientation, curvedness and shape 

index are available (Tittle and Perotti, 1997; Koenderink, 1998; Norman, Todd, Norman, Clayton, and 

McBride (2006)). Evidence for these multiple representations comes from the fact that performance on 

tasks dependent on higher-level properties (e.g. shape index, or curvature) cannot always readily be 

accounted for on the basis of the information available in lower-level properties such as slant (Johnston 

and Passmore, 1994; Tittle and Perotti, 1997).  

 

It has been argued that a lack of consistency between performance on different perceptual tasks is to be 

expected (Koenderink, 1998; Tcheang, Gilson and Glennerster, 2005). One such view that is 

particularly at odds with the type of model under consideration here is the utilitarian view that the 

visual system might use a broad range of “tricks and rules of thumb” in order to solve specific tasks 

(Ramachandran, 1985; Hibbard, 2008). This view would however readily account for the apparent 

discrepancy between slant and aspect ratio found here; the aspect ratio bias evident in the horizontal-

vertical illusion represents a well-founded rule of thumb applied to the estimation of shape (Howe and 

Purves, 2002), but is not used in a way that ensures a representation of a surface in which all its 

perceived geometrical properties are necessarily mutually consistent (Koenderink, 1998).   
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Figures 

 

  

 

Figure 1 (a) A typical psychometric function, showing the relationship between the physical aspect ratio of stimuli, and their 

judged aspect ratio. (b) The aspect ratio of the apparently squared rectangle for each of the 14 observers. Error bars show 

±95% confidence limits. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Image aspect ratio settings made in experiment 2. The image aspect ratio that appeared to be circular is plotted as a 

function of the slant of the surface for (a) the 40cm and (b) the 100cm distance.  In each case, the plotted points are the 

mean of 30 settings, and the error bars show ±1 standard deviation. Dotted lines show veridical performance. The solid lines 

show the bet fit of the description of the data shown in equation (4). Data are replotted as the aspect ratio of the surface in 

(c) and (d). (e) and (f) show the equivalent slant for each setting. 

  

  

  



 

 

 

 

 

 

 

Figure 3 (a) The prior probability distribution for the Bayesian model. The horizontal dimension represents the slant of the 

surface, the vertical dimension its aspect ratio. Higher probabilities are represented by brighter pixels. (b) and (c) show the 

likelihood and posterior probability functions in the same format. The parameters used to generate these distributions are 

given in the text. All plots show the log of probability, to emphasise the shapes of the distributions. 

  



 

 

 

 

 

 

Figure 4 The image aspect ratio that would appear as an aspect ratio of 1, as estimated by our model, as a function of slant. 

Separate lines show model results for difference values of the reliability of the slant information provided by binocular 

disparity. 

 

 


