
A Survey of Formal Methods Applied to Leader Election

in IEEE 1394

Savi Maharaj

University of Stirling

FK9 4LA

United Kingdom

sma@cs.stir.ac.uk

Carron Shankland

University of Stirling

FK9 4LA

United Kingdom

ces@cs.stir.ac.uk

Abstract: We present a survey of formal speci�cation techniques applied to the Tree
Identify Protocol of the IEEE 1394 High Performance Serial Bus1. Speci�cations writ-
ten in a variety of formalisms are compared with regard to a number of criteria including
expressiveness, readability, standardisation, and level of analysis.

Key Words: formal methods, comparative case study, standards, networks, leader
election protocol, concurrency

Category: D.2.1,F.3.1

1 Introduction

Formal Methods are increasingly becoming accepted within the system develop-

ment process. There is growing recognition of the advantages of using a precise,

formal description technique which is amenable to formal analysis. However,

there is also a plethora of available formalisms, and it is di�cult to keep up with

developments or to decide which formalism to choose for a particular applica-

tion. Case studies therefore have an important role to play at several stages in

the development of a formal method. Initially they are useful in assessing the

capabilities of a new formalism. Once the method becomes stable case studies

are a convenient way to disseminate information about the method. They may

also illustrate typical circumstances in which the method performs well (or per-

haps in which it does not perform well), and give design patterns for solutions

to certain kinds of problem.

1 The diagram in Section 4.1 reprinted with permission from IEEE Std 1394-1995
\IEEE Standard for a High Performance Serial Bus" Copyright 1996, by IEEE. The
IEEE disclaims any responsibility or liability resulting from the placement and use
in the described manner.

Journal of Universal Computer Science, vol. 6, no. 11 (2000), 1145-1163
submitted: 16/6/00, accepted: 19/9/00, appeared: 28/10/00 Springer Pub. Co.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Stirling Online Research Repository

https://core.ac.uk/display/9834807?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Comparative case studies, in which di�erent formal methods are applied to

the same speci�cation problem, are especially illuminating because the similar-

ities and di�erences between the methods are thrown into sharp relief. These

studies can also function as a Rosetta stone for speci�cation languages, mak-

ing it easy for the practitioners of each method to become conversant in other

languages, and thereby broadening the range of techniques at their disposal. Fi-

nally, these studies can also serve as benchmarks to be used in assessing new

developments in formal methods. For all these reasons, there has been consider-

able interest in comparative case studies, leading to such examples as the steam

boiler control problem [ApL96], the invoicing case study [AAH98], and the robot

production cell [LL95]. Our aim in this paper is to add to this literature with a

comparative study based on speci�cations of part of the IEEE 1394 standard.

The IEEE 1394 Multimedia Serial Bus [IEE95] (\FireWire") is a particularly

useful source of case studies for several reasons. It is an international standard

in communications with a clear, widely available statement of its de�nition.

It is an important and ubiquitous component of modern multimedia systems

so that there is widespread commercial interest in its correctness: companies

such as Sun Microsystems, Apple, Philips, Microsoft, Sony and many others

have been involved in its development. Finally, it is a complex system with a

variety of aspects which pose a challenge to the capabilities of formal description

techniques.

In this paper we focus on a speci�c component of the FireWire system: the

network leader election protocol, or Tree Identify Protocol. This protocol has

been speci�ed and analysed in a variety of formalisms, including I/O automata,

E-LOTOS, and �CRL. We examine four di�erent (groups of) speci�cations of

this protocol, comparing the advantages and disadvantages of each approach,

and assessing each speci�cation on a number of criteria including expressiveness,

degree of standardisation, means of analysis, and readability.

The paper is organised as follows: we begin by describing the system to be

speci�ed, the Tree Identify Protocol of the IEEE 1394 FireWire. In Section 3

we state the criteria by which speci�cations are to be assessed, and explain the

method used to arrive at each assessment. In Section 4 we describe the formal

speci�cations and assess each of them according to our criteria. We conclude

by discussing the limitations of our survey and outlining our plans for further

development.

2 The FireWire and its Tree Identify Protocol

The Firewire is a serial bus used to transport digitized video and audio signals

within a network of multimedia systems and devices. It has a scalable architec-

ture, and it is \hot-pluggable", meaning that devices and peripherals can easily

be added or removed from the network at any time.

1146 Maharaj S., Shankland C.: A Survey of Formal Methods ...

1(a) initial network

1

6

52

4

3

1(b) leaf nodes declare parents

1

6

52

4

3

1(c) inner nodes declare parents

1

6

52

4

3

1(d) contention

1

6

52

4

3

Figure 1: Some snapshots of network evolution during the Tree Identify phase

The system as a whole is complex, comprising a number of distributed com-

municating components and using a number of di�erent protocols for di�erent

tasks (e.g. data transfer between nodes in the network, bus arbitration, leader

election). The IEEE standard [IEE95] provides a layered description in the style

of OSI, with physical, link, and transaction layers. Each layer is in turn split

into di�erent phases. In this paper we are concerned only with the Tree Identify

phase of the physical layer.

In essence, the Tree Identify phase of IEEE 1394 is a leader election protocol

which takes place after a bus reset in the network (i.e. when a node is added

to, or removed from, the network). Immediately after a bus reset all nodes in

the network have equal status, and know only to which nodes they are directly

connected. A leader (root) needs to be chosen to act as the manager of the bus

for subsequent phases of the 1394. The protocol is designed for use on connected

networks, will correctly elect a leader if the network is acyclic, and will report

an error if a cycle is detected.

The picture in Figure 1 shows a network evolving through several stages

of the Tree Identify Protocol. Diagram 1(a) shows the initial network, with

connections between nodes but no child/parent relations identi�ed (shown by

the dashed lines). Essentially, each node has two phases based on the number of

1147Maharaj S., Shankland C.: A Survey of Formal Methods ...

children, c, and the number of neighbours, n. If n� c > 1 the node waits for \be

my parent" requests from its neighbours. If n� c = 1 then the node sends a \be

my parent" request to the neighbour which isn't a child, provided that it hasn't

already received a \be my parent" request from that neighbour. In diagram 1(b)

all the leaves (which by de�nition have n � c = 1 initially) have successfully

requested to be the child of their only neighbour. The established child/parent

link is shown as a solid line, with the arrow pointing to the parent. In diagram

1(c), nodes 3 and 6 have requested to be the children of node 4, which will then

be the root of the network. The node which has n� c = 0 is the leader.

The protocol may not proceed this straightforwardly because \be my par-

ent" requests are not atomic and may not be sucessful. Actually, a request must

be followed by an acknowledgement, and an acknowledgement of the acknowl-

edgement! Diagram 1(d) illustrates the situation in which node 4 has become

the parent of node 6, and then contention has arisen as nodes 3 and 4 simulta-

neously send \be my parent" requests to each other. Since only one node can

be the leader contention must be resolved; this is done by a scheme which uses

timing. Each node chooses nondeterministically whether to wait for a long or

short time. If, after the wait period is over, there is a message from the other

node saying \be my parent" then the node becomes the root. If there is no such

message then the node resends its own \be my parent" message (and contention

may result again).

This protocol is similar to a leader election protocol presented in [Lyn96],

page 501, though it uses a di�erent method of contention resolution (in [Lyn96]

the node with the highest identi�er becomes the root). This approach will not

work for IEEE 1394 because the nodes do not have identi�ers during the Tree

Identify phase. The two protocols were developed independently.

3 Criteria for Comparison

In the IEEE standard [IEE95] the Tree Identify Protocol is de�ned using a

mixture of formal techniques (state machine diagrams and C++ code) and

informal text. The protocol has also been formally speci�ed using the meth-

ods of E-LOTOS [SV99a], I/O automata [DGRV00, GV98, Rom99, SV99b], and

�CRL [SvdZ98]. In order to e�ectively compare all of these approaches, we must

�rst establish some general criteria by which the speci�cations can be judged. We

have formulated these criteria based on our own experience of formal methods,

but, rather pleasingly, they turn out to be very similar to the criteria proposed

by Wing [Win90] and Bowen and Hinchey [BH99].

Our list of criteria is far from exhaustive: there are many interesting criteria

which are not considered in our survey, either because they could not be assessed

based on the available data, or because they were not relevant to this case study.

We shall say more about these in Section 5.

1148 Maharaj S., Shankland C.: A Survey of Formal Methods ...

The criteria upon which our assessment is based are expressiveness, stan-

dardisation, readability, and type of analysis.

3.1 Expressiveness

Although the Tree Identify Protocol is a relatively small part of the IEEE 1394,

there are many variables in the way in which it can be described. The criterion

of expressiveness reects the aspects of the protocol captured in each speci�ca-

tion. The results of the comparison based on expressiveness are summarised in

Figures 2 and 3 and discussed at greater length in Section 4.

The tables in Figures 2 and 3 are divided into 4 horizontal sections. Each

corresponds to a di�erent speci�cation method: IEEE 1394 standard, I/O Au-

tomata, E-LOTOS and �CRL. There is only one description associated with the

IEEE 1394 standard, therefore it only has one row in the table. The remaining

sections have a number of rows: each one relates to a particular named speci�-

cation in that formal method (usually covering di�erent aspects of the protocol

as described below). For example, TIP3 is an I/O Automata speci�cation. The

names are taken from the original references describing the speci�cations. Each

speci�cation is described in more detail in Section 4.

The columns of Figures 2 and 3 relate to particular aspects of expressiveness

of the description of the protocol. A
p
in a column indicates that the speci�cation

models that feature of the protocol. For example, the SyncImp description of E-

LOTOS has nodes communicating synchronously, denoted by a
p

in column 6

of Figure 2.

The �rst aspects of expressiveness we consider are the way in which the ba-

sic components of the system, and communication between them, are modelled.

For example, at the most abstract level, all aspects of internal communication

between nodes can be ignored and the system behaviour described as a whole

(some node declares \leader" but the identity of the node is not important). This

corresponds to column 1 of Figure 2. In the remainder of Figure 2 a lower level

of detail is considered where the system is described by the interaction of iden-

tical communicating nodes. Columns 2 and 3 of Figure 2 relate to the means of

communication, which can be concrete (voltages) or abstract (messages), respec-

tively. Columns 4 and 5 of Figure 2 consider how the network itself is modelled;

as a set of nodes and edges (column 4 of Figure 2) or more concretely as a set

of devices and their ports (column 5 of Figure 2). Lastly, the communication

mechanism can be synchronous or asynchronous, (columns 6 and 7 of Figure 2).

Moving on to Figure 3, columns 1, 2 and 3 relate to contention resolution. If

asynchronous message passing is used then contention and its resolution must

also be described. Resolution of contention for leadership can be modelled ab-

stractly (by nondeterminism) or more accurately by adding time and/or proba-

bility measures. These three di�erent methods of modelling contention resolution

1149Maharaj S., Shankland C.: A Survey of Formal Methods ...

are indicated in columns 1, 2 and 3 of Figure 3 respectively.

In column 4 of Figure 3 we consider the extra complexity introduced to the

system by considering real time aspects a�ecting system decisions. In particu-

lar, the standard mentions a parameter called FORCE ROOT which is used to

increase the probability of a particular node becoming root (by adding timing

conditions to the point when a node moves from phase 1 (gaining children) to

phase 2 (gaining a parent)). A
p

in column 4 of Figure 3 indicates that the

description successfully models the FORCE ROOT parameter.

Lastly, columns 5, 6 and 7 of Figure 3 summarise how the di�erent descrip-

tions model cycle detection in the network. This is important because the pres-

ence of loops and unconnected components in the network cause the algorithm

to behave incorrectly. These erroneous network con�gurations can be excluded

from consideration by initial assumptions, indicated by column 5 of Figure 3,

labelled implicit because the loop detection is assumed to be carried out prior to

the Tree Identify Protocol. More realistically they can be explicitly checked in

the speci�cation, either by looking at network properties (column 6 of Figure 3),

or by using timeouts (column 7 of Figure 3).

It should be noted that the formalism may also introduce new information

which is not present in the original standard. In particular, in order to talk

about the nodes in the network they must be given unique names, but these

names are not part of the standard. The speci�ers must be careful not to use

this information unfairly by, for example, exploiting distinctions between nodes

which are indistiguishable in the standard. We did not detect any instances of

such unfair use.

3.2 Readability

Readability is of course a very subjective criterion, depending greatly on the

reader's familiarity with the notation being used. Our main concern is with read-

ers who are trained software engineers, with some mathematical background but

with no previous experience of formal methods. We have not attempted a sci-

enti�c experiment to assess readability, but have instead conducted an informal

survey of �ve computer scientists (systems administrators and research assis-

tants) all of whom �t the description above. These subjects were given a verbal

explanation of the Tree Identify Protocol, and then shown fragments of spec-

i�cation in each of the four formalisms. The fragments were matched so that

they covered roughly the same section of the protocol at about the same level of

abstraction. The subjects then �lled in a questionnaire in which they recorded

how readable and understandable they found each fragment to be.

1150 Maharaj S., Shankland C.: A Survey of Formal Methods ...

single messages network communicating nodes

\leader" volts abstract edges ports synch. asynch.

IEEE 1394
p p p p

I/O Automata

SPEC/Spec
p p p

TIP
p p p

TIP1
p p p

TIP2
p p p

TIP3
p p p

TIP4
p p p

Impl
p p p

E-LOTOS

Spec
p p p

SyncImp
p p p

AsyncImp
p p p

TimedImp
p p p

�CRL

Spec
p p p

ImpA
p p p

ImpB
p p p

Figure 2: Di�erent Levels of Expressivity: Messages and Communication

3.3 Standardisation

This criterion is really a property of the formal method rather than the individual

speci�cation. For each method, we ask what is the current degree of stability or

standardisation of that method. This is an important consideration, because no

method will achieve widespread acceptance if its de�nition or semantics is in

a state of ux or constant revision. Standardisation may mean that the formal

method is the subject of an ISO, IEEE, or other standard, or that a de facto

standard has arisen through common usage. Stability is related, and has to do

with whether the syntax or semantics of the method is still currently under

development. Finally, we also look at popularity, by estimating the number of

users of each method.

3.4 Analysis

For this criterion, we consider what kinds of analysis have been applied to each

speci�cation. This has two aspects: �rst we must determine what kinds of anal-

1151Maharaj S., Shankland C.: A Survey of Formal Methods ...

contention cycle detection?

nondet time prob FORCE ROOT implicit network time

IEEE 1394
p p p p

I/O Automata

SPEC/Spec
p

TIP
p p

TIP1
p

TIP2
p

TIP3
p p

TIP4
p p

Impl
p p p

E-LOTOS

Spec
p

SyncImp
p

AsyncImp
p p p

TimedImp
p p p p

�CRL

Spec
p

ImpA
p

ImpB
p p

Figure 3: Di�erent Levels of Expressivity: Contention, Timing and Errors

ysis are made possible by each formal method, both in terms of having a theo-

retical foundation and in terms of the existence of tool support. Second, we also

look at which of the possible analysis techniques have actually been used, and

what results were obtained.

The kinds of analysis that are possible include simple syntax checking, type

checking, animating or executing speci�cations, testing of implementations, or

veri�cation through traditional proof, interactive machine-checked proof, or fully

automatic procedures such as model-checking. For each of these, and especially

for the more sophisticated kinds of analysis involving proof, it is interesting to

consider the question of what exactly is being proved. If a speci�cation is shown

to be \correct", how does this relate to the \real-world" correct behaviour of the

Firewire? We do not attempt a complete answer to this question, but we make

some observations.

1152 Maharaj S., Shankland C.: A Survey of Formal Methods ...

4 Formal speci�cations of the Tree Identify Protocol

The existing speci�cations of the IEEE 1394 Tree Identify protocol can be

grouped into four main approaches: the semi-formal approach of the standard

itself [IEE95], the program-like, time-oriented approach of E-LOTOS [SV99a],

the many re�nements using di�erent kinds of I/O automata [DGRV00, GV98,

Rom99, SV99b], and the mathematical veri�cation-oriented approach of �CRL

[SvdZ98]. In each section below we try to give a avour of each approach, and

analyse how each performs with respect to the criteria outlined in Section 3

above.

4.1 IEEE Standard

The main description of the Tree Identify Protocol is in Section 4.4.2.2 of the

IEEE standard [IEE95]. The major transitions of the protocol are described

using state machine diagrams, and the actions of the states themselves are de-

scribed by C++ implementations and informal text. Other information about

the protocol (such as the physical realisation of messages as voltages, and tim-

ing information can be found elsewhere in Section 4 (Cable PHY Speci�cation).

There is an informative example of operation of the protocol in Annex E of the

standard [IEE95].

Expressiveness of the method is measured by which aspects of the protocol are

described, and at what level of abstraction. As one would expect, the standard

itself covers all concrete aspects of the protocol as shown in Figures 2 and 3;

however, the standard does not present more abstract levels of description of the

protocol. For example, although the state machine diagram of Figure 42 describes

the major transitions of a single node in an abstract way, the states T0, T1

and T3 are also associated with C++ code (the functions tree id start actions,

child handshake actions, and root contend actions). Therefore, the behaviour of

the protocol cannot be understood without also understanding the accompanying

C++ code, knowing the values of the timing parameters, how the network is

constructed, and how the abstract names map to voltages.

The IEEE description rated highly on our readability exercise, although that

was more due to the C++ code, which is certainly understandable by most

programmers, than to the state machine notation. A problem of the standard

is that information concerning behaviour is spread throughout the 372 page

document, which makes understanding the system more di�cult. Also, the lack

of an abstract level of speci�cation causes the reader to be easily confused by,

for example, issues of cable and physical connector make-up, or of the services

and protocols of other layers of the standard.

2 From IEEE Std 1394-1995. Copyright 1996 IEEE. All rights reserved.

1153Maharaj S., Shankland C.: A Survey of Formal Methods ...

T0: Tree−ID Start
tree_ID_start_actions

child_handshake_complete();
T1: T2

(child_count == NPORT) ||
((arb_timer >= (force_root ?
FORCE_ROOT_TIMEOUT:0)) &&
(child_count == NPORT − 1))

T0: T1

(arb_timer >= CONFIG_TIMEOUT:0)
&& (child_count < NPORT − 1)

signal PH_STATE.ind
(CONFIG_TIMEOUT);

T3: T1
child(parent_port) = true;
/* node is now root */

(portR(parent_port) ==
RX_PARENT_NOTIFY) &&
(arb_timer > contend_time) T2: T3

portR(parent_port)==
RX_ROOT_CONTENTION

T2: S0
to S0: Self−ID Start

R1: T0
from R1:
Reset
Wait

T1: Child Handshake
child_handshake_actions

T2: Parent Handshake

T3: Root Contention
root_contend_actions

T3: T2
(portR(parent_port,
TX_PARENT_NOTIFY);

(portR(parent_port)==IDLE
&&
(arb_timer > contend_time))

T0: T0

(root ||
(portR(parent_port) ==
RX_PARENT_
HANDSHAKE

Figure 4: The state machine of a node in IEEE 1394

We now consider the question of the degree of standardisation of the nota-

tions used in the IEEE standard. A mixture of techniques are used to describe

the protocol, some informal and therefore not standardised, and some formal.

For example, the state machine diagrams are a formal method, and the C++

programming language can certainly be regarded as a formal description which

is stable and extremely popular.

Development of IEEE standards proceeds by peer review, and there were at

least 6 independent groups involved with development of the PHY layer of IEEE

1394. Since they all came to similar conclusions about fundamental behaviour

of the protocol there is substantial evidence that the solution proposed in the

standard is correct. However, no formal veri�cation is known to have taken place,

nor is it known if any rigorous approach to testing was used.

4.2 E-LOTOS

E-LOTOS [ISO98] (also known as Enhancements to LOTOS [ISO88]) is a new

formal description technique currently undergoing the ISO (International Stan-

dards Organisation) standardisation process. E-LOTOS allows the speci�cation

of behaviour using process algebra, with some features borrowed from impera-

tive programming languages, and data using abstract data types, described in a

style similar to ML and Haskell. A goal of the development of E-LOTOS was to

create a language for describing large timed computer systems which was easily

accessible to software engineers. For this reason E-LOTOS has a module system

to structure larger speci�cations, and operators to describe real time events.

The Tree Identify Protocol is described at four di�erent levels of abstraction

in [SV99a]. These are named Spec, SyncImp, AsyncImp and TimedImp. The moti-

1154 Maharaj S., Shankland C.: A Survey of Formal Methods ...

vation behind these descriptions was to demonstrate that E-LOTOS can describe

a system at many di�erent levels of abstraction, and that it might be easier to

understand the protocol behaviour at a high level before dealing with low-level

details. Spec is just the simple process which declares a leader without know-

ing which node was declared leader. SyncImp models a network of nodes which

communicate synchronously (therefore there is no possibility for contention to

arise). This is very similar to ImpA of [SvdZ98] and TIP2 of [GV98] in its level

of abstraction; however, the style is very di�erent because E-LOTOS emphasises

programming language operators. See below for an example of E-LOTOS.

AsyncImp also models a network of nodes, this time communicating asyn-

chronously via a network of Buffer processes. This is similar to TIP of [DGRV00]

and ImpB of [SvdZ98], but with the addition of timing parameters to resolve con-

tention. Further timing details regarding delays introduced by passing messages

in bu�ers (modelling the cables) are added in the �nal description TimedImp.

This enables more detailed description of the loop detection mechanism, in the

same fashion as TIP4 of [Rom99], and also introduces the FORCE ROOT pa-

rameter. The expressiveness of these descriptions is summarised in Figures 2

and 3.

The module features of E-LOTOS allow the descriptions to be split into three

modules. The �rst is shared by all descriptions and speci�es the data types and

associated functions. The second module describes the process behaviour and

is di�erent for each level of abstraction. The third module describes the timing

constraints of the system and is used only by AsyncImp and TimedImp.

The emphasis in the design of E-LOTOS was on increasing readability and

easy understanding. As a result E-LOTOS borrows many features from program-

ming languages. For example, the following fragment describes how contention

is resolved:

process Contention [leader, s:comm, r:comm](id:iden, p:connections) is

(* There will be only one j in p. *)

var j:iden, b:bool, t:time in

?b := any bool;

?j := any iden [isin(j,p)];

if b then ?t := ROOT_CONTEND_SLOW

else ?t := ROOT_CONTEND_FAST

endif;

(wait(t); s(!id, !j, !parent); WaitParent[...](id, p)

[] r(!j, !id, !parent); SendAcks[...](id, {}, {j}))

endvar

endproc

Here any is a wildcard allowing nondeterministic choice of a value from a range

of values, and wait(t) blocks the s actions until after time t has passed.

The example above shows howmuch like a programming lanaguage E-LOTOS

can be. However, there are also some less familiar operators. For example, the

1155Maharaj S., Shankland C.: A Survey of Formal Methods ...

following extract uses the par and synchronization operators to make n inter-

leaved instantiations of TreeIDAsync, corresponding to the members of a list l,

and combine those processes in parallel with a network of Bu�ers:

?n := sizeof(NW);

?l := (0 upto (n-1));

hide s:comm, r:comm in

par ?id in l

||| TreeIDAsync[...](id, neighbours(NW,id), {}, false)

endpar

|[s,r]|

Buffers[s,r](n)

endhide

E-LOTOS was preferred amongst the formal methods in our readability test.

E-LOTOS is a proposed international standard. Its predecessor, LOTOS

[ISO88], an ISO standard, gained some level of popularity and has a number

of tools to support development of speci�cations. Therefore, E-LOTOS has po-

tentially many users; however, delays in the standardisation process, a lack of

speci�c tool support, and some complex features have hindered its take-up. Cur-

rently, although participants from ten di�erent countries were involved in de-

veloping the E-LOTOS standard, that language is used only at two main sites

(Stirling and Madrid). However, variant extensions of LOTOS are used else-

where, notably at INRIA (where, incidentally, their version of E-LOTOS was

used to demonstrate an error in a di�erent part of the IEEE 1394 [SM97]).

The authors of [SV99a] stress that the four descriptions given constitute

informal re�nements of the system. Each of the descriptions Spec, SyncImp,

AsyncImp and TimedImp were executed by hand to increase con�dence in their

correctness, but lack of tool support prevented any further, more rigorous anal-

ysis. A further barrier to analysis is that there is currently no theoretical frame-

work on which to base analysis (for example, re�nement or equivalence rela-

tions, related logics, theories of testing). The close relation between LOTOS

and E-LOTOS means that such a framework should be easily constructed once

standardisation is complete.

4.3 I/O Automata

Several papers [DGRV00, GV98, Rom99, SV99b] contribute descriptions of the

Tree Identify Protocol using I/O Automata. Each paper has a di�erent emphasis,

concentrating on a di�erent level of abstraction from the others, and some use

I/O automata extended by time and/or probability.

I/O automata were developed by Lynch and Tuttle [LT89] as a labelled

transition system model for components in asynchronous concurrent systems.

Although the semantics is similar to that of process algebras, the standard nota-

tion is to specify operations in terms of their preconditions and e�ects. Thus the

1156 Maharaj S., Shankland C.: A Survey of Formal Methods ...

method has a more declarative feel than other operational techniques. The be-

haviour of an I/O automaton can be described in terms of traces (or fair traces).

I/O automata have been used for describing and reasoning about many di�er-

ent types of systems, including network resource allocation algorithms, commu-

nication algorithms, concurrent database systems, shared atomic objects, and

dataow architectures.

The Tree Identify Protocol is described at many di�erent levels of abstraction

in the four papers selected. In [DGRV00] there are two descriptions: the very

abstract SPEC which only allows a single root action to be performed, and

the more concrete TIP which assumes a network of nodes communicating via

message queues to achieve the leader election. The main focus of [GV98] is the

veri�cation technique of normed simulations, and the IEEE 1394 is used as

an illustrative example. Three speci�cations, TIP1 through TIP3, model the

network as a set of devices and ports and de�ne operations over the network as

a whole. The abstract TIP1 performs a single leader action after checking for

loops in the network (and hence is slightly more complex than SPEC). TIP2

models a global child set and is thus similar in behaviour to ImpA of [SvdZ98]

and SyncImp of [SV99a], although no inter-device communication takes place.

Finally, TIP3 models inter-device communication via message queues. This is

similar to TIP but more operational in style as it focuses on devices and their

ports rather than the network as a graph. TIP3 is roughly equivalent to ImpB

of [SvdZ98] and AsyncImp of [SV99a] in level of abstraction.

The two remaining works deal with timed and probabilistic descriptions. A

timed extension to TIP3, called TIP4, is given in [Rom99]. The main di�erences

are the addition of delays between messages sent and received, and a timer

to detect loops in the network. Root contention is solved in a single step and

does not involve time; however, the �nal model Impl of [SV99b] does incorporate

time and probability into contention resolution, making it a much more accurate

model of the IEEE standard. Intermediate descriptions are introduced to ease the

veri�cation process. The simple Spec is equivalent to SPEC, but the others (I1,

I2, I3) include probability details and are unlike any of the other speci�cations

considered here.

The I/O automaton Impl has two advantages over the E-LOTOS TimedImp.

First, probability is used to evenly weight the choice between a long and a short

delay, instead of relying on assumptions of fairness to guarantee that eventually

contention will be resolved. Second, the behaviour of the standard says the device

should wait for the chosen time, then check the appropriate port for an incoming

\be my parent" message from the other node, then resend \be my parent" if no

incoming message is present. The model of communication in process algebras

generally does not allow a test to see if a communication is ready. The solution

to this problem presented in the E-LOTOS speci�cation AsyncImp is to use a

1157Maharaj S., Shankland C.: A Survey of Formal Methods ...

wait action. Only the receive action is enabled during the wait, but as soon as

the time expires the send action is also enabled, therefore the receive action no

longer has priority. Since message queues are used in the I/O automaton Impl

it is possible to wait for a speci�ed time and then check the message queue to

see if a message has arrived at a port.

The di�erent levels of expressiveness achieved in the I/O automata descrip-

tions are summarised in Figures 2 and 3.

An example of the style of I/O automata speci�cation is given below. This de-

scribes the preconditions and e�ects of the action of RESOLVE CONTENTION.

Several such de�nitions make up the automaton.

RESOLVE CONTENTION (e: E)

Precondition:

^ contention[source(e)]

^ contention[target(e)]

E�ect:

child[e] := 1

contention[source(e)] := 0

contention[target(e)] := 0

The network is described as a collection of edges e, with source and target nodes,

contention is a predicate indicating if a particular node is in a contentious state,

and child indicates if the edge leads to a child node. This is nondeterministic reso-

lution of contention because each node has this description therefore either of the

nodes source(e) or target(e) may perform the action RESOLVE CONTENTION.

This style of speci�cation was deemed to be \prettiest" or most readable by

one of our survey respondents, but not understandable without further training.

Otherwise, I/O automata came out in the middle of our readability exercise.

I/O automata are standard in the sense that there is a formal de�nition

and users do not deviate from that de�nition; however, there are many di�erent

extensions of the basic I/O automata model to choose from. I/O automata are

used by researchers at a (small) number of sites, including the home of I/O

automata at M.I.T. and several in the Netherlands.

The standard proof technique for I/O automata is to show a re�nement

relation between two automata. Di�erent relations are used depending on the

features of the I/O automata model. There are a number of generalised theorem

provers which have been customised to support reasoning about re�nements

between I/O automata.

For example, in [DGRV00] veri�cation means showing that the fair traces of

TIP are included in the fair traces of SPEC, i.e. that each run of the automaton

TIP can be simulated by the automaton SPEC (which can only perform a single

1158 Maharaj S., Shankland C.: A Survey of Formal Methods ...

ROOT action), and that all executions of TIP are �nite. The proof proceeds by

showing a number of invariants hold over the operations de�ned in TIP. PVS

was used to check the proofs, thus avoiding problems with book-keeping errors.

This veri�cation demonstrates that the more complex automaton performs

the basic action ROOT (or leader) exactly once. This corresponds to the safety

and liveness properties that a single leader is chosen, and a leader is eventually

chosen. The other I/O automata veri�cations also prove the same properties

hold.

The normed simulations developed in [GV98] are equivalent to branching

bisimulation, which is the equivalence relation used in the �CRL veri�cation.

The proofs of [GV98] are carried out by hand.

The proofs in [Rom99] used timed trace inclusion, and were carried out by

hand. The emphasis in that paper is on checking that the timed approach to

detecting cycles in the network worked correctly.

Finally, although the correctness proofs for the timed probabilistic automata

of [SV99a] were carried out by hand, automated proofs of very similar systems

have been carried out in Uppaal [SS00].

4.4 �CRL

Like LOTOS and E-LOTOS �-CRL [GP95] is also a process algebra extended

with a formal treatment of data. The style of �CRL descriptions is much more

mathematical than the others here, and the descriptions rather terse. The em-

phasis in the �CRL approach in general is to keep the descriptions small and

therefore easier to reason about.

The Tree Identify Protocol is described at three di�erent levels of abstrac-

tion in [SvdZ98]. These are named Spec, ImpA and ImpB, and correspond to the

others in expressiveness as shown in Figures 2 and 3. Spec is the simplest pro-

cess which merely declares leader. Both ImpA and ImpB are parallel collections

of nodes and correspond broadly to SyncImp and AsyncImp of the E-LOTOS

descriptions.

Each node is designed as a state machine parameterised by identi�er, set of

connected nodes and state variable for ImpA with the addition of a set of children

for ImpB. Each process has a number of possible branches, but depending on

the value of the state variable and the parent set only some of those branches

are available at any given time.

For example, the branch in ImpA which corresponds to being able to declare

oneself leader is written:

leader � NodeA(i; p; 1)� s = 0 ^ empty(p)� �

where p is the set of connections and s is the state variable. This should be read

as \if the state is 0 and there are no more connections left to be made, then

1159Maharaj S., Shankland C.: A Survey of Formal Methods ...

perform a leader action and behave as NodeA in state 1, otherwise terminate

(�)".

A more complex example occurs when contention must be resolved in ImpB.

The following expresses the choice that if the state is 3 (contention) and the

remaining connection is j, then either a \be my parent" request can be sent (�s),

or one can be received (r).
P

j:N r(j; i; par) � NodeB(i; p n fjg; c [fjg; 1)� s = 3 ^ p = fjg� �+
P

j:N �s(j; i; par) � NodeB(i; p; c; 2)� s = 3 ^ p = fjg� �

where c is the set of children.

The state variable here corresponds broadly to the state numbers of the state

machine of the standard (see Figure 4).

In addition to the node descriptions, ImpB also has a lattice of bu�ers be-

tween nodes, to model asynchronous communication. The size of the bu�ers is

one; larger bu�ers are unnecessary since only one message can be sent between

a pair of processes at a time.

This is the same model of communication between nodes as used in the E-

LOTOS AsyncImp, and is interesting because it automatically excludes some

methods of introducing cycles in the network. There can be only one connection

between nodes using these bu�ers, but in reality devices can be connected by

more than one cable. This may be regarded as an additional assumption imposed

on the initial structure of the network. This over-simpli�cation does not arise in

the I/O automata of [GV98, Rom99] since devices and ports model the network

more accurately.

It can be seen that the �CRL descriptions are extremely compact, but this

must be weighed against the rather mathematical notation which might not

appeal to a software engineer. In our readability study �CRL was rated very

low; however, for a software engineer with no formal methods background this

is to be expected. Of all the notations examined in this paper, �CRL is the one

which relies the most on concise syntax, and if that syntax is unfamiliar there

are very few cues to help interpret it.

�CRL is standard in the sense that it has a stable formal de�nition which is

not deviated from by its practitioners. It is not yet widely used; most users of

�CRL are based in Amsterdam.

It is formally shown in [SvdZ98] that the three speci�cations are equivalent

using branching bisimulation and the cones and foci technique. An important

part of the development of �CRL has been the development of a supporting

proof system. The cones and foci technique evolved from earlier, more complex

and tedious proof techniques based on algebraic manipulation using the laws

of branching bisimulation. The proof is carried out by hand; however, tools for

manipulating �CRL speci�cations have since been developed. Branching bisim-

ulation seems to be an appropriate choice when using equivalence as a measure

1160 Maharaj S., Shankland C.: A Survey of Formal Methods ...

of correctness of a system since it ignores internal actions, but preserves infor-

mation about the point at which choices are made. Additionally, if two processes

are branching bisimilar then they have the same deadlock properties.

Re�nement does not play a part in [SvdZ98]. Although the three descriptions

can be seen as increasingly complex, all three were developed independently.

5 Conclusions

In summary, we have examined a variety of speci�cations of the Firewire Tree

Identify Protocol, as well as the IEEE standard in which this protocol was de-

�ned, and compared them according to four criteria. In this section we outline the

main results of our comparison, and then discuss the limitations of the present

survey and our plans for further development of this case study.

All the formal methods considered scored highly on expressiveness, in that

they all made it possible to write both highly abstract speci�cations as well

as very concrete descriptions capturing most of the aspects of the protocol as

described in the IEEE standard. No speci�cation completely captured all of

the details of the description in the standard, though the more detailed I/O

automata speci�cations came closest.

None of the formal methods examined has been o�cially standardised, though

E-LOTOS is in the process of becoming an ISO standard. All of the methods are,

however, stable, and may be thought of as having attained a de facto standard

status through common use. None of them are widely used, with I/O automata

probably scoring highest on this criterion by a small margin.

All of the formal methods scored poorly on readability in our informal survey.

E-LOTOS was judged to be the most readable, because of its programming

language-like syntax, while �CRL was generally thought to be the least readable,

perhaps because of its heavy reliance on mathematical notation. These results

on readability should not be taken too seriously, since a better measure would

be given if software engineers were �rst trained for a short time in the formalism

and then shown the speci�cations.

The main type of analysis used in the examples surveyed was formal proof.

Apart from E-LOTOS, all of the formal methods are backed by the theoretical

infrastructure to enable some form of equivalence or re�nement relation to be

proved. In all cases, this proof was done manually, either on paper or with the

help of an interactive proof checker. None of the methods have purpose-built

proof tools or any substantial support for automatic proof.

There are many interesting criteria which we were not able to cover in this

survey. For example, we do not have data on the length of time it takes to learn

to use each formal method or the length of time taken to write each speci�cation.

In general, when examining a speci�cation, it would also be interesting to know

1161Maharaj S., Shankland C.: A Survey of Formal Methods ...

the role which it plays within the system development lifecycle, and the degree

to which it is complemented by accompanying descriptions in other formal, semi-

formal, or informal notations. Considerations such as these did not seem relevant

to the speci�cations considered in the survey, as the answers were clearly going

to be the same in all cases (the speci�cations were devised as academic exercises,

outside the normal developmental lifecycle, and no integrated formal or other

methods were used).

The biggest disadvantage of the current survey is the very narrow range

of formal methods which is covered. According to Bowen and Hinchey [BH99],

formal methods can be broadly grouped into three types: model-based meth-

ods such as Z and VDM; property-based descriptions, which may be further

classi�ed as being axiomatic descriptions (e.g. Larch) or algebraic descriptions

(e.g. algebraic data types); and process algebras. Of the formal methods we have

covered, E-LOTOS and �CRL are both essentially process algebras, while I/O

automata can be seen as having both model-based and process algebra aspects.

We have no speci�cations in the more popular model-based languages, and none

at all from within the category of property-based languages.

In future work, we aim to remedy the shortcomings of this survey by gath-

ering data on a larger selection of criteria and broadening the range of formal

methods which we examine. To achieve this, we are organising a workshop based

upon the Firewire case study, in the style of Abrial's Steam Boiler Speci�cation

workshop [ApL96]. Practitioners of a wide variety of formal methods will be in-

vited to specify the Tree Identify Protocol in their favourite method, and asked

to self-assess their work with respect to the broader range of criteria indicated

above. We hope that the results of this workshop will serve to expand upon the

contribution made by the present survey.

References

[AAH98] M. Allemand, C. Attiogb�e, and H. Habrias, editors. International Work-
shop on Comparing Systems Speci�cation Techniques. IRIN Press, March
1998.

[ApL96] J-R. Abrial, E. B�orger, and H. Langmaack, editors. Formal Methods for
Industrial Applications: Specifying and Programming the Steam Boiler Con-
trol, volume 1165 of Lecture Notes in Computer Science. Springer-Verlag,
October 1996.

[BH99] J.P. Bowen and M.G. Hinchey. High-Integrity Systems Speci�cation and
Design. FACIT. Springer-Verlag, 1999.

[DGRV00] M.C.A. Devillers, W.O.D. Gri�oen, J. Romijn, and F. Vaandrager. Veri-
�cation of a Leader Election Protocol - Formal Methods Applied to IEEE
1394. Formal Methods in System Design, 16(3):307{320, 2000.

[GP95] J.F. Groote and A. Ponse. The Syntax and Semantics of �-CRL. In Pro-
ceedings of Algebra of Communicating Processes, Utrecht 1994, Workshops
in Computing. Springer-Verlag, 1995.

1162 Maharaj S., Shankland C.: A Survey of Formal Methods ...

[GV98] W.O.D. Gri�oen and F. Vaandrager. Normed simulations. In Proceedings
of CAV'98, number 1427 in Lecture Notes in Computer Science, pages 332{
344, 1998.

[IEE95] Institute of Electrical and Electronics Engineers. IEEE Standard for a High
Performance Serial Bus. Std 1394-1995, August 1995.

[ISO88] International Organisation for Standardisation. Information Processing
Systems | Open Systems Interconnection | LOTOS | A Formal Descrip-
tion Technique Based on the Temporal Ordering of Observational Behaviour,
1988.

[ISO98] International Organisation for Standardisation. ISO/IEC JTC1/SC21
WG7: Enhancements to LOTOS, May 1998. Final committee draft.

[LL95] C. Lewerentz and T. Lindner. Formal Development of Reactive Systems:
Case Study Production Cell, volume 891 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, January 1995.

[LT89] N. Lynch and M. Tuttle. An Introduction to Input/Output automata.
CWI-Quarterly, 2(3):219{246, September 1989.

[Lyn96] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc, 1996.
[Rom99] J.M.T. Romijn. A Timed Veri�cation of the IEEE 1394 Leader Election

Protocol. In Fourth International Workshop on Formal Methods for Indus-
trial Critical Systems, 1999. To appear as a special issue of Formal Methods
in System Design.

[SM97] M. Sighireanu and R. Mateescu. Validation of the Link Layer Protocol of
the IEEE-1394 Serial Bus (FireWire): an Experiment with E-LOTOS. In
2nd COST 247 International Workshop on Applied Formal Methods in Sys-
tem Design (Zagreb, Croatia), June 1997. The full version of this paper is
available as INRIA Research Report RR-3172.

[SS00] D.P.L. Simons and M.I.A. Stoelinga. Mechanical Veri�cation of the IEEE
1394a Root Contention Protocol using Uppaal2k. Report CSI-R009, Com-
puting Science Institute, University of Nijmegen, Nijmegen, 2000. Submit-
ted for publication.

[SV99a] C. Shankland and A. Verdejo. Time, E-LOTOS, and the FireWire. In
M.A. Marsane, J. Quemada, T. Robles, and M. Silva, editors, Workshop
on Formal Methods and Telecommunications, pages 103{119. Prensas Uni-
versitarias de Zaragoza, 1999.

[SV99b] M.I.A. Stoelinga and F.W. Vaandrager. Root Contention in IEEE 1394.
In 5th AMAST Workshop on Real-Time and Probabilistic Systems, LNCS
1601. Springer-Verlag, 1999.

[SvdZ98] C. Shankland and M. van der Zwaag. The Tree Identify Protocol of IEEE
1394 in �CRL. Formal Aspects of Computing, 10:509{531, 1998.

[Win90] J. Wing. A Speci�er's Introduction to Formal Methods. IEEE Computer,
23(9):8{24, September 1990.

1163Maharaj S., Shankland C.: A Survey of Formal Methods ...

