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ABSTRACT
Emerging share-everything Parallel Discrete Event Simula-
tion (PDES) platforms rely on worker threads fully shar-
ing the workload of events to be processed. These plat-
forms require efficient event pool data structures enabling
high concurrency of extraction/insertion operations. Non-
blocking event pool algorithms are raising as promising so-
lutions for this problem. However, the classical non-blocking
paradigm leads concurrent conflicting operations, acting on
a same portion of the event pool data structure, to abort and
then retry. In this article we present a conflict-resilient non-
blocking calendar queue that enables conflicting dequeue op-
erations, concurrently attempting to extract the minimum
element, to survive, thus improving the level of scalability
of accesses to the hot portion of the data structure—namely
the bucket to which the current locality of the events to
be processed is bound. We have integrated our solution
within an open source share-everything PDES platform and
report the results of an experimental analysis of the pro-
posed concurrent data structure compared to some literature
solutions.

1. INTRODUCTION
The advent and large diffusion of multi-core machines

has impacted the way Parallel Discrete Event Simulation
(PDES) platforms are built. They still adhere to the archety-
pal organization [6] where the overall simulation model is
partitioned into interacting distinct entities—the so called
simulation objects—yet they do no longer necessarily follow
the classical multi-thread organization [27] where objects are
(temporarily) bound to specific worker threads. Indeed, the
possibility to share any PDES-engine data structure across
threads, as well as the actual simulation objects’ state, has
led to the raise up of new architectural paradigms.

A current trend is the one of building PDES platforms as
“share-everything” systems [14]. In this paradigm, an event
(which may target any simulation object) can be picked by
any worker thread for actual processing. As an extreme,
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multiple worker threads can even pick events destined to
the same simulation object at the same time [19], lead-
ing the simulation object to no longer figure out as a se-
quential entity [17]. Clearly, share-everything PDES plat-
forms allow concentrating the computing power—namely,
the worker threads which are operating within the PDES
environment—on the higher-priority pending events. In-
deed, each worker thread picks events with lower times-
tamps without considering any partial view of the pend-
ing event set—the view generated by partitioning simula-
tion objects across threads. PDES platforms adhering to
the share-everything paradigm, or at least tending to this
type of architectural organization, can be found in [4, 19,
10, 5, 14].

This re-organization demands for some efficient global pool
of pending events. Indeed, a core challenge when designing
share-everything PDES platforms is to ensure that fully-
shared data structures—most notably,the ones used at the
level of the simulation engine—guarantee scalability of con-
current accesses. In particular, the pool keeping the pend-
ing events destined to whichever simulation object plays a
core role to enable scalability of the overall PDES platform.
Such a pool should in fact guarantee high concurrency of the
accesses for both extraction of the events to be processed,
and insertion of newly-scheduled events that result from the
processing activities at some object.

Handling concurrent accesses to a fully-shared event pool
by relying on critical sections protected via locks (e.g. spin-
locks) does not ensure scalability, thus figuring out as an
adequate approach limited to a reduced number of threads.
For this reason, recent studies [10, 5, 14] have targeted the
design of event pool data structures based on the lock-free
paradigm. Here concurrent threads attempt to perform their
operations—either an extraction or an insertion—without
the need to take any lock. To leave the data structure in
a consistent state, threads determine whether the operation
can be correctly finalized by relying on atomic Read-Write-
Modify (RMW) machine instructions [20], offered by off-the-
shelf architectures, such as Compare-and-Swap (CAS). These
instructions are used to determine whether the snapshot of
the data structure (or a portion of it) accessed by a thread
has been concurrently altered by some other thread. If this
occurs, the operation has observed a stale snapshot, and
is therefore deemed invalid. Therefore, it is aborted and
then retried. In some sense, the operation is seen like an
in-memory transaction, which is committed or aborted de-
pending on whether it faces a conflict with a concurrent op-
eration. Although this approach explicitly avoids blocking
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threads, thus enabling resilience versus thread reschedules,
it may still be considered sub-optimal in scenarios where
the likelihood of conflicts among concurrent operations is
non-minimal. In fact, we may still experience a significant
volume of operation aborts/retries.

In this article, we take the lock-free calendar queue pre-
sented in [14] as our reference and present the design of an
innovative version that has the property of being conflict-
resilient1. Conflict resilience is achieved in relation to con-
current extractions. This is a relevant objective since, in
share-everything PDES, concurrent extractions are highly
likely bound to the same bucket of the calendar—thus touch-
ing the same portion of the whole data structure—namely
the bucket containing the event with the minimum times-
tamp. This bucket is somehow the “hot” one in the whole
calendar, since any thread will attempt to pick its next
event exactly from that bucket. On the other hand, newly-
produced events will more likely carry timestamps associ-
ated with different buckets (i.e., buckets in the future), which
automatically decreases the likelihood of conflicting on con-
current insertion operations.

As opposed to the approach in [14], the lock-free calendar
queue we present in this article makes an extraction oper-
ation still valid (i.e., committable) in scenarios where some
concurrent extraction has changed the snapshot of the cur-
rently hot bucket. Rather, the extraction will be aborted
only in case the hot bucket becomes (logically) empty while
attempting to extract from it. This is the scenario where a
new bucket becomes the hot one, meaning that the locality
of the processing activities within the simulation model has
moved to a subsequent logical time interval.

We also discuss (and investigate experimentally) how to
dynamically resize the width of the buckets in the calen-
dar, which in turn affects the length of the chain of events
that are expected to fall within the hot bucket. As we will
show, when allowing conflict-resilient lock-free concurrent
accesses to the calendar queue, classical policies for resizing
the buckets (like the one proposed in the context of sequen-
tial accesses to the classical calendar queue presented in [3])
are no longer optimal. This is because the length of the
chain of events associated with the buckets affects both:
• the time complexity for the access to the bucket chain,

which in our case still stands as amortized constant
time; this aspect was already captured by the work
in [14];
• the actual number of concurrent extractions from the

same bucket which are allowed to be still committable,
even if the snapshot of that bucket-chain concurrently
changes; this aspect is intrinsically new and specifically
related to our conflict-resilient lock-free calendar queue
proposal.

The experimental data we report in support of the ef-
fectiveness of our proposal, in terms of scalability in face
of concurrent accesses, have been collected in differentiated
scenarios: one where we test the conflict-resilient lock-free
calendar queue as a stand-alone component via synthetic
workloads based on the hold model [26], and a second one
where the calendar queue has been integrated with a share-
everything PDES platform [4], allowing us to test its effects
on scalability and performance via both the PHOLD syn-

1The source code of our implementation can be found at
https://github.com/HPDCS/CRCQ

thetic benchmark for PDES [7] and an agent-based simula-
tion model [12].

The remainder of this article is structured as follows. In
Section 2, we discuss related work. The baseline implemen-
tation of the lock-free calendar queue we take as the refer-
ence for our work is discussed in Section 3. Our conflict-
resilient lock-free calendar queue is presented in Section 4.
Experimental data are provided in Section 5.

2. RELATED WORK
Event pools constitute core components in both sequential

and parallel simulation engines, and the literature on this
topic offers a set of differentiated solutions, each one aimed
at optimizing the effectiveness of the event pool data struc-
ture under specific workloads or execution scenarios. The
original Calendar Queue presented in [3] is a timestamp-
ordered data structure based on multi-lists, each one asso-
ciated with a time bucket, which offers amortized constant
time insertion of events with generic timestamps and con-
stant time extraction of the event with the minimum times-
tamp. The Ladder Queue [24] is a variant of the Calen-
dar Queue which is more suited for skewed distributions of
the timestamps of the events, thanks to the possibility of
dynamically splitting an individual bucket in sub-intervals
(i.e., sublists of records) if the number of elements associ-
ated with the bucket exceeds a given threshold. The LOCT
Queue [16] is an additional variant which allows reducing
the actual overhead for constant time insertion/extraction
operations thanks to the introduction of a compact hierar-
chical bitmap indicating the status of any bucket (empty
or not). None of these proposals has been devised for con-
current accesses. Therefore, their usage in scenarios with
sharing among multiple threads would require a global lock
for serializing the accesses, which would be detrimental to
scalability, as shown in [8].

The work in [2] provides an event-pool data structure en-
abling parallel accesses via fine-grain locking of a sub-portion
of the data structure upon performing an operation. How-
ever, the intrinsic scalability limitations of locking still lead
this proposal to be not suited for large levels of parallelism,
as also shown in [18].

As for lock-free management of sets by concurrent threads,
various proposals exist (e.g., lock-free linked lists [9] or skip-
lists [21]), which anyhow do not offer constant time oper-
ations. The lock-free linked list pays a linear cost for or-
dered insertions, while the skip-list pays logarithmic cost
for this same type of operation. The proposal in [13] is
based on lock-free access to a multi-bucket data structure,
and provides amortized O(1) time complexity for both in-
sertion and extraction operations. However, it does not pro-
vide a lock-free scheme for the dynamical resize of the bucket
width. Hence, to achieve adequate amortizing factors, all the
threads would need to (periodically) synchronize to change
the bucket width and redistribute events over the reshaped
buckets. On the other hand, avoiding at all the synchronized
reshuffle of the buckets might give rise to non-competitive
amortizing factors (say too many elements associated with
a bucket). The proposal in [14] enables non-blocking reshuf-
fle of the bucket width, but does not guarantee conflict re-
silience of extraction operations targeting the “hot” bucket
to which the locality of the activities within the simulation
model is bound. Hence as soon as two or more extraction
operations are executed concurrently and conflict, just one



of them is allowed to be finalized with no retry cycle. Our 
present proposal exactly tackles this problem.

Lock-free operations in combination with constant time 
complexity have also been studied in [8], which presents a 
variation of the Ladder Queue where the elements are at 
any time bound to the correct bucket, but the bucket list 
is not ordered. Constant time is achieved since the extrac-
tion from an unordered bucket returns the first available 
element, which does not necessarily corresponds to the one 
with the minimum timestamp. This proposal is intrinsically 
tailored for PDES systems relying on speculative processing, 
where unordered extractions leading to causal inconsisten-
cies within the simulation model trajectory are reversed (in 
terms of their effects on the simulation model trajectory) via 
proper rollback mechanisms. However, still for speculative 
PDES, a few recent results [4, 19] have shown the relevance 
of fetching events from the shared pool in correct order, as
a means to build efficient synchronization schemes able to 
exploit alternative forms of reversibility, which stand aside 
of the traditional Time Warp protocol [11]. Correct order of 
delivery is guaranteed in our proposal, since we always de-
liver the highest priority event currently in the event pool, 
which has been inserted by any operation that is linearized 
prior to the extraction.

The recent proposal in [10] explores the idea of managing 
concurrent accesses to a shared pool by relying on Hardware 
Transactional Memory (HTM) support. Insertions and ex-
tractions are performed as HTM-based transactions, hence 
in non-blocking mode. However, the level of scalability of 
this approach is limited by the level of parallelism in the 
underlying HTM-equipped machine, which nowadays is rel-
atively small. Also, HTM-based transactions can abort for 
several reasons, not necessarily related to conflicting con-
current accesses to a same portion of the data structure. 
As an example, they can abort because of conflicting ac-
cesses to the same cache line by multiple CPU-cores, which 
might be adverse to PDES models with, e.g., very large event 
pools. Our proposal does not require special hardware sup-
port, thus fully eliminating the secondary effects caused by, 
e.g., HTM limitations on the abort rate of the operations.

3. RECAP ON THE REFERENCE SOLUTION
As mentioned, our reference solution is the one presented 

in [14]. The main idea behind this work is to build a lock-free 
pending event set directly inspired to the classical calendar 
queue [3]. More in detail, the presented variant is composed 
of an array of entries referred to as physical buckets, each 
of which is the head element of a lock-free ordered linked 
list implemented according to [9], with some modifications. 
The list in [14] relies on the two least-significant bits of the 
pointer to the next node2 to represent four different states of 
a node. The time axis is divided into equal slots, called vir-
tual buckets, each of which covers a time interval bw called 
bucket width. Each virtual bucket is associated with a phys-
ical bucket in a circular fashion.

In order to ensure consistency with concurrent accesses, 
the operations on the lock-free calendar queue rely on atomic 
RMW instructions, in particular CAS and Fetch-and-Add
(Fetch&Add). The first type of instruction is used to update
a given memory location only if its current content is equal

24-bytes alignment ensures that such bits are always set to
zero.

to a given value, otherwise no memory update takes place
and we say that the CAS instruction fails. The second type
of instruction gathers the value stored in a given memory lo-
cation, while atomically incrementing it of a given amount,
so any read on that same memory location that is linearized
after the execution of Fetch&Add necessarily observes the
updated value.

When a new event e with timestamp Te is enqueued, the
index Ipb of the target physical bucket for the insertion is
computed as Ipb = (Ivb mod L), where L is the calendar
length, namely the number of physical buckets, and Ivb is
the index of the virtual bucket associated with the time slot
TS such that Te ∈ TS. Ivb is computed as Ivb =

⌊
Te
bw

⌋
. Fi-

nally e is inserted into the Ipb-th physical bucket applying
the lock-free list-insertion logic defined in [9]. In more detail,
the enqueue scans the physical bucket list and when it finds
the correct position in the list, it inserts the new event by
executing a CAS instruction that manipulates the pointer of
the node that must precede the one to be inserted. Clearly,
given the execution semantic of CAS, two concurrent conflict-
ing attempts to manipulate that same pointer will lead one
of the operations to fail, thus ensuring consistency of the
manipulated list—namely, correct linking of its nodes. The
failed insertion operation, if any, is then retried.

An integer C is associated with the calendar, which stores
the index of the virtual bucket containing the event with
the minimum timestamp, namely the event with the high-
est priority. A dequeue operation starts by retrieving the
value C in order to extract the first node stored into the C-
th virtual bucket, which is actually stored into the Cphy-th
physical bucket, where Cphy = (C mod L). A node is re-
moved by marking it as invalid, flipping the least significant
bit of the pointer to the next node with a CAS instruction.
Clearly, if two concurrent extractions of the minimum try to
mark the same node as invalid, then one of them will fail.
When the virtual bucket identified by C is empty, the event
to extract has to be searched on the next one, then C is
incremented by one and the whole operation is restarted.

Going back to enqueue operations, an additional challenge
consists in handling insertions in the past of the current
minimum timestamp, which may occur either in the current
bucket or in a previous one. Although it is known that this
type of insertion will never occur for the case of sequential
simulation engines, where there is a guarantee of model-
wide causality of the generation of the events during model
execution, one needs to face this issue when adopting a lock-
free calendar queue as the shared pool in the context of
PDES systems. As an example, if speculative processing
schemes are enabled by the PDES engine, then the current
minimum timestamp stored by the calendar queue might not
correspond to an event which is causally safe. To cope with
such a scenario the proposal in [14] makes the enqueue that
inserts an event with timestamp lower than the currently
queued minimum repeatedly try to update the value of C
with Ie =

⌊
Te
bw

⌋
by CAS, until it has assumed a value C′ ≤ Ie.

Anyhow, this is not sufficient to guarantee correctness.
Let us consider an execution where a process P1 is executing
a dequeue and reads a value C1 of current. After that, P1 is
descheduled and a second process P2 takes control and exe-
cutes two consecutive enqueues. The first enqueued event ea
has a timestamp Ta such that Ia = bTa

bw
c and Ia < C1. The

second event eb has a timestamp Tb such that Ib = b Tb
bw
c and

Ib = C1. Moreover, let us assume that eb is now the event
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Figure 1: Scheme of the data structure.

with the minimum timestamp in the C1-th virtual bucket.
At this point P1 is scheduled and continues its operation.
In particular it scans the C1-th bucket and returns eb. This
execution is incorrect since it violates the priority queue se-
mantics, in fact there is a dequeue which returns eB while
eA was the minimum. For this reason in [14] a dequeue op-
eration re-checks the value of C after it has retrieved the
first node from the bucket. If it is unchanged, it means that
there has been no enqueue which has been finalized, namely
has passed its linearization point, and has inserted a node
in a previous bucket.

Clearly, any concurrent priority queue has an inherent
bottleneck in the retrieval of the element with the minimum
timestamp, since at any time it is materialized in a single
element, located into a specific bucket [1], while insertion
operations can be scattered across different buckets depend-
ing on the distribution of the timestamps of the events that
are dynamically generated. Given that concurrent dequeues
in the approach in [14] try to update the same pointer in
the lock-free list via CAS, once hit a same node for extrac-
tion, just one of them can succeed, leading any other to fully
restart. This problem is clearly exacerbated when increas-
ing the level of concurrency of extraction operations. In
other words, such concurrent dequeues always try to com-
mit by hitting the first node of the current bucket, thus not
attempting to adopt a fall back on the extraction of a sub-
sequent node, without the need to fully restart the dequeue
operation. This type of fall back behavior is what we term
conflict resilience, which would lead an ongoing extraction
operation to slide towards the subsequent element of the
bucket list. The complexity of this type of approach stands
in how we still allow linearizability of the concurrent oper-
ations on the calendar queue, including the possible mix of
dequeues and enqueues bound to the same bucket, as we
shall discuss.

4. THE CONFLICT-RESILIENT LOCK-FREE
CALENDAR QUEUE

The basic organization of the data structure of our con-
flict resilient calendar queue, which is similar to the one
presented in [14], is provided in Figure 1. Essentially it con-
sists of a pointer to a table called Set Table which maintains
the metadata required for its management. In particular: i)
bw stores the actual bucket width of the data structure; ii)
length is the number of buckets in the calendar; iii) size

keeps the number of stored events; iv) current is a pair
〈index, epoch〉 such that index is the index of the virtual
bucket containing the minimum and epoch is a value whose

role will be explained later; v) buckets is a pointer to the
array that keeps the physical buckets; vi) new_table is a ref-
erence initialized to null which is used only during the resize
phase of the calendar. To ensure consistency of concurrent
accesses to our data structure, we rely on three different
RMW instructions, namely CAS, Fetch&Add and Fetch and
Or (Fetch&Or).

To avoid the effects of conflicts while concurrently extract-
ing elements from the current bucket, we have introduced a
set of capabilities oriented to reduce the need to fully restart
the operations, reducing in this way the amount of wasted
work. Indeed, reducing the CPU-time required to actually
extract a node, by avoiding fully restarting the extraction in
case of conflicts, we can reduce the negative performance
effects possibly caused by a larger number of conflicting
threads.

To achieve this target, we have exploited the newly in-
troduced data-structure field, called epoch. As hinted it is
stored inside current and is used to identify the instant in
time at which an operation is performed, in order to recon-
struct a partial temporal order among operations. A new
epoch starts each time a new node is inserted in the past
or in the current virtual bucket. This represents a critical
instant in the state trajectory of the calendar queue since
it means that a change in the minimum, or in the recorded
timestamps that can be close to the minimum, is happened.

When enqueue or dequeue operations are invoked, the
ReadTable() procedure is performed to retrieve a pointer
to a valid set table. The objective of this procedure is to
check if there is a resize operation currently in place on the
calendar queue with the goal to assist the threads involved
in this operation until it is completed. When no resize op-
eration is in place, the reference to the current valid version
of the table can be returned for actually performing extrac-
tions or insertions. All the operations on the lock-free cal-
endar queue, including the resize, are described in detail in
the next sections.

4.1 Enqueue Operation
The pseudo-code for the Enqueue() operation is shown

in Algorithm 1. This operation takes in input an event e
and the timestamp Te associated with it. Once retrieved a
valid set table reference using the ReadTable() procedure,
the enqueue determines the correct physical bucket associ-
ated with the timestamp Te, computing it as i = (

⌊
Te
BW

⌋
mod B) where BW is the (current) bucket width and B
is the size of the calendar, namely the number of physical
buckets. Since the i-th bucket is a lock-free linked list im-
plemented according to the indications in [9], we can use the
provided search procedure to identify the right point for the
insertion of the new node, with minimal changes due to the
different states a node can pass through in our implementa-
tion. Executing the search procedure we retrieve a couple
of nodes, called left and right, that would surround the new
one. When performed, the search procedure tries to compact
the nodes marked as deleted that are between the left and
the right one, with the aim to return a coherent snapshot of
the list. To manage events with the same timestamp, each
event stores an increasing sequence number, unique with re-
spect to the nodes with the same timestamp. In this way
the couple 〈timestamp, sequence number〉 provides a total
order among all stored nodes.



Algorithm 1 lock-free Enqueue

1: procedure Enqueue(event e)
2: tmp← new node(e)
3: repeat
4: h← ReadTable( )

5: nc←
⌊ n

h.bw

⌋
6: bucket← h.table[nc mod h.length]
7: 〈left, right〉 ← bucket.Search(tmp.t, VAL| MOV)
8: tmp.next ← right
9: old← h.current

10: tmp.epoch← old.epoch
11: until CAS(&left.next, UNMARK(right), tmp)
12: repeat
13: old← h.current
14: if nc > old.value then
15: break
16: until CAS(&h.current, old, 〈nc, old.epoch + 1〉)
17: Fetch&Add(&h.size, 1)

Once retrieved the surrounding nodes, the node to be in-
serted is updated with a reference to the right node and with
the epoch number retrieved from the current field. Finally
the node is physically inserted into the list by performing a
CAS operation on the next field of the left node making it
point to the new one. If the CAS fails, the whole operation
starts again from scratch. However, concurrent insertion op-
erations, as we discussed, are typically less critical in terms
of conflicts since they likely span different buckets of the
calendar, or different surrounding nodes within a bucket.

To complete the update of the structure, the procedure
checks if the inserted node belongs to a virtual bucket less
than or equal to the one pointed by current, namely if the
new event stands in the past or around the minimum. In
the positive case, it updates the index kept by current. As
hinted before, the enqueue of a node in the past modifies the
minimum element of the queue. Therefore, the epoch num-
ber kept by current is incremented by one when updating
this variable, starting in this way a new epoch of the whole
calendar queue. As last operation, the size field is incre-
mented by one to reflect the fact that the queue has been
increased, in terms of kept elements. Atomicity of all these
operations is guaranteed by relying on CAS and Fetch&Add

instructions.

4.2 Dequeue Operation
Compared to the work in [14], the Dequeue() opera-

tion has been fully reshuffled so that the largest amount
of carried-out work is useful also in case of conflicts, thus
achieving conflict resilience. The pseudo-code of the De-
queue() operation is shown in Algorithm 2. Similarly to
the enqueue operation, a dequeue starts by issuing a call to
ReadTable(), in order to retrieve a valid table reference. It
then fetches the current field, in order to extract the index
of the virtual bucket storing the minimum-timestamp event
and the current epoch. The physical bucket from which to
start the extraction procedure is determined as i = (index
mod B), where B is the size of the calendar. Once the cor-
rect physical bucket is identified, it is scanned from the head,
looking for a node valid for extraction.

However, we must ensure that the pointed node belongs
to the current virtual bucket, since the list associated with
a physical bucket might cover multiple virtual buckets. To
this end, for each node, we check if the timestamp of the

Algorithm 2 lock-free Dequeue

1: procedure Dequeue( )
2: while true do
3: h← ReadTable()
4: oldCur ← h.current
5: cur ← oldCur.value
6: myEpoch← oldCur.epoch
7: bucket← h.table[cur + + mod h.t_size]
8: left← bucket.next
9: min next← left

10: if ISMARKED(left,MOV) then
11: continue
12: while left.local epoch ≤ myEpoch do
13: right← left.next
14: if ¬ISMARKED(right) then
15: if left.ts < cur · h.bw then
16: right← Fetch&Or(&left.next, DEL)
17: if ¬ISMARKED(right) then
18: Fetch&Add(&h.size, -1)
19: return left.event
20: else
21:
22:
23:
24:
25:

if left = tail ∧ h.t_size = 1 then
return null

CAS(&bucket.next, min next, left)
CAS(&h.current, oldCur, 〈cur, myEpoch〉) 
break

26: if ISMARKED(right,MOV) then
27: break
28: left← UNMARK(right)

node belongs to the current virtual bucket. Moreover, to
avoid the extraction of a node which has just been deleted
(unlinked) or marked as invalid (logically deleted), we check
whether the two last bits of the next field of the node keep
some mark. Finally, according to the new conflict-resilient
organization of the queue, we also need to check whether
the node is valid with respect to the semantic of the de-
queue operation. To this end, we must verify that the node
belongs to an epoch earlier than the one read from cur-

rent at the begin of the dequeue operation, or it belongs to
the same one. If this condition is true, then the node was
inserted before the beginning of the dequeue operation or,
alternatively, it was placed in the future (with respect to
the current bucket). In this scenario the state of the node is
compliant to the semantic of the dequeue operation, thus it
can be safely dequeued. In fact, its insertion was correctly
linearized before the current (concurrent) extraction. Dif-
ferently, if the above condition is not verified, then the node
was inserted after the beginning of the current dequeue pro-
cedure, in particular after the initialization of a new epoch.
Therefore, its insertion might have occurred after that a new
minimum has been enqueued. In this latter case, the node
cannot be extracted.

If the end of the current virtual bucket is reached without
finding a valid node, either the current physical bucket is
empty or the present nodes belong to a future time slot. In
both cases, the procedure must continue the search for the
minimum in the next bucket. Hence, current is atomically
updated using a CAS. Regardless of the outcome of the CAS

machine instruction, the procedure is restarted from the be-
ginning. In this way, if current is concurrently updated, the
new value becomes visible, even if it identifies a bucket in
the past. Moreover, before updating the current bucket, the
procedure tries to compact the virtual bucket, by cutting



off (unlinking) all the traversed nodes that are found to be
marked as invalid.

The search for a valid node halts when it finds a node
which respects all the following properties: i) it is not marked,
ii) it belongs to a correct epoch, iii) it is associated with the
minimum timestamp in the current virtual bucket. Then,
the dequeue operation tries to mark it as logically deleted
(DEL), in order to finally extract and deliver it to the request-
ing worker thread. Differently from the proposal in [14], the
node is marked by relying on Fetch&Or. The advantage com-
ing from the reliance on this RMW instruction, rather than
the classical CAS, is that it successfully completes even if the
address of the node is concurrently updated (e.g., due to a
concurrent enqueue of a new node). This is clearly favorable
to concurrency since we are interested just in marking the
node, regardless of a possible next node’s update. Fetch&Or

returns as well the value stored in the target memory loca-
tion, therefore it is possible to verify the outcome of the
marking attempt: if the original value is unmarked, the
procedure has successfully marked the node obtaining the
event, otherwise the worker thread detects that a concur-
rent takeover by another thread took place. In this case,
the dequeue operation doesn’t have to be restarted. Indeed,
it is enough to continue the bucket list traversal, since the
epoch field can tell whether the enqueue of a node is serial-
ized before or after the current dequeue. Finally, the size

field is decremented to signal the extraction of an element
from the queue.

4.3 Resizing the Queue
O(1) amortized time complexity is guaranteed by the fact

that, on average, the number of elements within each bucket
is balanced, in a way similar to the original calendar queue.
As said before, every time an operation on the queue is per-
formed, a ReadTable() procedure is called to retrieve a
reference to a valid table. During this procedure, the num-
ber of elements per bucket is checked to determine whether
it is still balanced. If this is not the case, a resize operation
is executed. In particular, the resize is executed if size over-
steps a certain threshold. The value of this threshold is a
function of the desired number of events per bucket (denoted
as DEPB), and the percentage of non-empty buckets.

The pseudocode of the ReadTable() operation (where
the resize operation is implemented) is shown in Algorithm 3.
When the resize condition is met, to announce its upcoming
execution, the new_table field of the old set table is pointed
to a new (just-allocated) set table. This somehow “freezes”
the old table, preventing any new insertion/extraction op-
eration into/from it. From now on, any thread executing a
ReadTable() operation will be aware that a resize opera-
tion is taking place, and will start to participate.

Once the reference to the new table is published (prevent-
ing any thread from using the old one), before starting to
migrate the nodes from the old to the new table, we must
mark as MOV every entry of the bucket array, and all the first
valid nodes of the associated lock-free lists. This is necessary
to abort the execution of any dequeue operation. In fact, de-
queue operations are restarted any time a node marked as
MOV is found. In particular, a dequeue operation is restarted
(and possibly joins the queue resize operation) if it attempts
to dequeue any first valid node, or it tries to insert a new
node to a list’s head.

Algorithm 3 lock-free ReadTable

1: procedure ReadTable( )
2: h← array
3: curSize← h.size
4: if h.new = null ∧ resize is NOT required then
5: return h
6: compute newSize
7: CAS(&h.new, null, new array(newSize))
8: newH ← h.new
9: if newH.bw≤ 0 then

10: begin← random()
11: for j ← 0 to h.t_size−1 do
12: i← (begin+ j)modcurSize
13: retry-loop to mark i-th head as MOV
14: retry-loop to mark first node of i-th bucket as

MOV
15: MST ← compute bucket width
16: CAS(&newH.bw, −1.0, MST )

17: for i← 0 to h.length−1 do
18: while j-th bucket of h is non-empty do
19: i← (begin+ j)modcurSize
20: get first node of bucket i as right
21: get the next node of right as right next
22: if right = tail then
23: break
24: if right next 6= tail then
25: retry-loop to mark it as MOV

26: create a copy of the right node
27: while true do
28: search for right.ts in a virtual bucket vb

of newH
29: if found node n with same key then
30: release copy
31: copy ← n
32: break
33: else if successful to insert copy as INV

with a CAS then
34: break
35: if CAS(&right.replica, null, copy) then
36: Fetch&Add(&newH.size, 1)
37: else if right.replica6= copy then
38: try-loop to mark copy as DEL

39: retry-loop to ensure that
newH.current.value ≤ vb

40: retry-loop to mark right.replica as VAL
41: retry-loop to mark right as DEL

42: CAS(&q.array, h, newH)
43: return newH

We are therefore sure that no one will extract nodes from
the queue, making stable the portion of the time axis close
to the minimum. This assumption allows us to safely de-
termine the new bucket width, and the length of the bucket
array—how to determine the bucket width will be discussed
in Section 4.4. To this end, in a way similar to [3], a certain
amount of events (starting from the minimum) is inspected
to compute the mean timestamp separation. This is the av-
erage distance between the timestamps of consecutive events
along the time axis. This value is multiplied by the desired
number of events per bucket, in order to compute the bucket
width. The result is stored in the bw field of new_table, by
relying on a single-shot CAS (i.e., the operation is not retried
if it fails).

In order to ensure lock-freedom during the resize opera-
tion (without introducing multiple copies of the same node),
we rely on a mark-and-clone strategy. Before migrating a
node, a thread must ensure that the node itself and its suc-
cessor are marked as MOV. If they are not, it tries to do so



by relying on CAS. This is done in order to avoid any in-
terference with concurrent threads, executing any enqueue/
dequeue operation, which did not notice that a resize opera-
tion is taking place. If the CAS succeeds (or if the nodes are
already marked as MOV), the thread allocates a copy of the
node, this time marked as invalid (INV). This copy is placed
in the new structure, and the node (marked as INV) is ig-
nored by any other dequeue operation until it is validated.
By using a copy of the node, it is guaranteed that no node
is lost. When placing the node’s copy into new_table, if a
copy of the same node is already present, it means that some
other thread has already performed this operation. In this
case, the copy is released and a reference to the one already
installed into new_table is returned. Then, the node in the
old structure is atomically updated so as to keep a reference
to the found new copy. By traversing this reference, the
node’s copy in new_table is transitioned to the valid state
VAL, and the original node is marked as logically deleted
(DEL). It will be later physically deleted (i.e., unlinked from
the list), still using CAS. To understand the reason behind
this protocol, we should consider the insertion of a copy of
one node performed by a delayed thread. In this scenario,
the resize operation might be already finished, and a copy
of the node could be already placed in new_table. Thanks
to the validation of the new copy, realized by publishing a
pointer to it in the original node, we are sure that the new
copy will be not validated. In fact, until the original node is
not removed, it will reference its copy. This copy-based pat-
tern allows to enforce lock-freedom. In fact, any thread can
take on the job of concurrently migrating the same node,
trying to finally flag the original node and its new copy.

4.4 Varying the Bucket Width
In the original calendar queue [3], a strategy is defined to

compute the bucket width, which estimates the mean sep-
aration time (MST ) between two consecutive events. The
obtained MST is then multiplied by a constant equal to 3,
which represents the desired number of events per bucket
(denoted as DEPB). This guarantees that the number of
events in a bucket is bounded by a constant and thus the cal-
endar queue delivers O(1) amortized time complexity for its
operations. The value of DEPB is chosen according to an
experimental evaluation performed by Brown, which shows
that such a value delivers good performance under different
distributions of the timestamps.

Anyhow, the original calendar queue might suffer from
reduced performance in at least two pathological scenarios.
The first one occurs when the queue has reached a steady
size, but the priority increment distribution changes over
time, leading to a different MST compared to the one mea-
sured during the last resize. It follows that the bucket width
is inappropriate and performance deteriorates. In the sec-
ond case, the priority increment distribution makes events
be clustered into two buckets distant from each other and
reduces the efficiency, since enqueues traverse a significant
amount of events during insertions and dequeues scan a large
number of empty buckets.

There are several works that try to resolve these issues
by triggering the data-structure reshuffle more frequently
and designing new strategies to individuate a more accurate
bucket width. In particular, the authors in [15] state that
the sampling of events should be obtained from the most
dense buckets, namely, those that contain the highest per-

centage of events stored into the queue. An analytical model
is presented in [23] for computing a scale factor for the actual
bucket width such that the new bucket width minimizes (in
the model) the cost of queue operations. The final bucket
width computation resorts to a combination of the sampling
technique described in [15] and a minimization technique.
Moreover the condition triggering the data-structure reshuf-
fle is checked periodically. The time period is selected ac-
curately in order to maintain O(1) amortized access time.
The authors in [24] define a new data structure able to recur-
sively split individual and dense buckets, making the bucket
width be chosen properly for each bucket.

Anyhow, these works define heuristics and algorithms for
computing MST , DEPB and the bucket width for the case
of sequential accesses. So they do not account for the effec-
tiveness of the proposals with concurrent, scalable, conflict-
resilient multi-list event pools, like the one we are presenting.
They try to minimize the average cost of queue operations
by modeling properties of events, in particularMST , so they
cannot capture dynamics and behaviors connected to inter-
actions between concurrent threads. In order to cope with
such aspects, so as to determine a suited bucket width for
our concurrent event pool, we had to take into account the
impact of retries on the cost of queue operations, which lead
to repeat some computational steps, such as atomic instruc-
tions. In particular, when a dequeue finds an empty bucket,
it tries to increase current with a CAS instruction. Updating
such variable is an expensive operation, since it is likely con-
tended among threads, and might at worst lead to thrashing
behaviors, just like for the Treiber Stack [25]. Consequently,
it is reasonable that the number of events in a bucket should
be at least Td in our approach, where Td is the number of
cores expected to concurrently access a bucket for dequeue
operations, which can be clearly less than the total number
of cores available for running the share everything PDES
system, which we denote as n. Anyhow, Td can be much
greater than the value of DEPB used to compute the bucket
width according to the rule proposed with, e.g., the origi-
nal calendar queue. On one hand, this should not affect the
asymptotic cost of dequeue operations, since a wider bucket
width decreases the probability to scan a large amount of
empty buckets. On the other hand, longer bucket lists af-
fect the enqueue access time, since the enqueue has to scan
an increased number of events before finding the position
for the insertion. However, as shown in [13], a highly con-
current event pool based on a multi-list approach can have
O(n2) times longer bucket lists than a baseline solution rely-
ing on spinlocks, and obtain comparable performance under
high concurrency levels. Therefore, it follows that an aver-
age number DEPB of elements within a bucket such that
Td < DEPB << n2 can be a desirable value for optimizing
the cost of both enqueue and dequeue operations in our pro-
posal. Given that Td ≤ n independently of the actual access
pattern to the queue by concurrent threads, we suggest a
value DEPB ≈ n as a suited one. In any case, in the exper-
imental section, we report data with different configurations
of the parameter DEPB, just to capture the effects of possi-
bly different parameterizations while determining the bucket
width.

5. EXPERIMENTAL DATA
We experimentally evaluated the performance of our data

structure with two different test settings. In the first one
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Figure 2: Results with the Hold-Model (each plot refers to a different queue size).
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Figure 3: Hold-Model wall-clock times with queue size equal to 32000 and varied DEPB.

we exploited a synthetic workload based on the well known
Hold-Model, where hold operations, namely a dequeue fol-
lowed by an enqueue, are continuously performed on top
the queue, which is pre-populated with a given number of
items at startup (referred to as queue size). This test allows
evaluating the steady-state behavior of the queue and, when
executed in a multi-threaded fashion, its scalability and re-
silience to performance degradation in scenarios with scaled
up volumes of concurrent accesses. The second test set-
tings is related to the integration of the presented lock-free
queue within an open source share-everything PDES envi-
ronment, on top of which we run both the classical PHOLD
benchmark for PDES systems and a multi-robot exploration
model, called TCAR. The platform used in all the exper-
iments is a 32-core HP ProLiant machine running Linux
(kernel 2.6) equipped with 64 GB of RAM. The number
of threads running the test-bed programs has been varied
from 1 to 32.

5.1 Results with the Hold-Model
With the Hold-Model workload, the event pool is gradu-

ally populated with a given number of elements (queue size)
and then each concurrent thread performs dequeue/enqueue
operations with equal probability set to 0.5. Each run termi-
nates when the total number of operations executed by the
threads reaches 106. We run experiments with 4 different
distributions of the priority increment for the generation of
new elements to be inserted into the queue, which are shown
in Table 1. For each distribution, we executed 4 tests with
varies queue size, say 25, 400, 4000 and 32000. The per-
formance of the proposed conflict-resilient calendar queue
(CRCQ) is compared with the classical Calender Queue [3]
(SLCQ), whose concurrent accesses are synchronized via

spin-locking, and the lock-free O(1) event pool presented
in [14] (NBCQ).

The results are shown in Figure 2, where each sample
is obtained as the average of 10 different runs of the same
configuration. We report the wall-clock times required to
perform the target number of operations while varying the
number of threads from 1 to 32. As expected the evaluated
data structures have O(1) access time, in fact, once the num-
ber of running threads is fixed, the wall-clock time is con-
stant for different combinations of queue sizes and priority
increment distributions. Both the two tested lock-free solu-
tions outperform SLCQ. However, our new proposal CRCQ
shows an improved performance wrt the NBCQ in almost ev-
ery scenario, just thanks to conflict resilience on dequeues.
Moreover, any number of threads larger than 4 is enough to
make CRCQ be the most efficient implementation among all
the tested alternatives.

Although the wall-clock time shown by CRCQ slightly in-
creases with more than 12 threads, it is reasonable to think
that the flat line of NBCQ in Figures 2(c) and 2(d) does
not reveal a behavior similar to the ones in Figures 2(a)
and 2(b) just because the minimum wall-clock time is ex-
pected with a higher number of threads compared to the
maximum we could experiment with3. In other words, the
higher efficiency of CRCQ allows to sense earlier the inher-
ent bottleneck represented by retrieving the minimum from
the event pool since, with reduced queue size, each bucket

3In fact, experimenting with a number of threads greater
than the number of available CPU-cores in the underlying
platform would have generated scenarios of interference on
CPU usage, possibly leading to unclear motivations for win-
ning or loosing on the comparison among the different solu-
tions.



Table 1: Employed Timestamp Increment Distribu-
tions.

Probability Distribution Formula

Uniform 2·rand
Triangular 3

2
·
√
rand

Negative Triangular 3 · (1−
√
rand)

Exponential − ln(rand)

Fetch event & 

meta-data update

Process 

event

Flush new

events upon

commit

Fully shared event pool

Synchronization meta-data

Safe execution of 

native code

Event Execution Layer

Reversible execution of 

instrumented code

Figure 4: High level structure of the employed
share-everything PDES platform.

contains few items and consequently the probability that a
dequeue finds an empty bucket is higher.

To confirm this hypothesis, we have run a synthetic test
with a queue size equal to 32000, but this time with different
values of DEPB, namely 3, 6, 12, 24. As shown in Figure 3,
an increased number of items in a bucket allows to increase
the performance improvement obtained by a scaled up num-
ber of threads with CRCQ, since this reduces the probabil-
ity to find an empty bucket. Consequently the amount of
“wasted” local work of a thread is also reduced, thanks to
conflict resilience of the proposed data structure, and at the
same time there are less conflicts in updating/reading the
value of current. Moreover, longer buckets act as an im-
plicit back-off mechanism, exalting the resilience capability
of our proposal to conflicting concurrent accesses to the hot
spot of the queue, namely the minimum timestamp event.
We recall again this is materialized in only one item at any
time. This also confirms the deductions in [13] related to
the fact that the optimal bucket width in scenarios with
concurrent accesses can be significantly different from the
one characterizing sequential implementations.

5.2 Share-everything PDES Results
In order to test our proposal in a pragmatic PDES sce-

nario, we have integrated it with the last generation share-
everything PDES engine standing at the core of the RAM-
SES speculative simulation framework [4]. The basic archi-
tecture of this engine is shown in Figure 4.

A meta-data layer is used to track the simulation object
currently being run by any thread and the timestamp of
the corresponding event. Thanks to the share-everything
nature of the platform, there is only one event pool shared
among all threads. Each extraction from the underlying
event pool by some worker thread entails a meta-data up-
date, which allows to compute the commit horizon of the
simulation and to distinguish if an event can be affected
by other events in the past or not. In the first case, the

extracted event can be safely executed by triggering the na-
tive version of the application code. Otherwise, the worker
thread speculatively processes the event by running a modi-
fied version of the event handler obtained thanks to a trans-
parent instrumentation (an ad-hoc compile/link procedure)
of the native code. The instrumented code generates at
runtime undo blocks of machine instructions, which can be
used to rollback updates performed by the event process-
ing. Moreover the simulation engine exploits lookahead in
order to pinpoint events (after the commit horizon) that
will not eventually be affected by causality errors and thus
can be executed safely. The events produced by a specu-
lative execution are locally stored waiting for the commit-
ment of the event that generated them. If that event is
not eventually committed because of a causality error, the
local buffer of events is simply discarded without affecting
the pending event set. Consequently, the event pool keeps
only the schedule committed events, namely those generated
by events that will never be rolled back. The concurrent
extraction of events targeting the same simulation object
leads to conflicting accesses by multiple threads to the state
of that same object. These are resolved by synchronizing
the worker threads via read/write spin-locks (giving higher
priority to lower timestamp events). The original implemen-
tation of this simulation engine has been based on a shared
event pool implemented as a calendar queue protected via
spin-locks. Thus, resorting to the proposed conflict-resilient,
lock-free and constant-time event pool has the advantage
of confining the explicit synchronization across threads via
spin-locks (e.g. in case of concurrent accesses to the same
object) outside the lowermost layer. This is expected to
provide significantly enhanced scalability.

5.2.1 Results with PHOLD
The first test-bed application we run on top of the share-

everything engine is the classical PHOLD benchmark [7].
We configured it with 1024 simulation objects. The exe-
cution of an event leads to update the state of the target
simulation object, in particular statistics related to the ad-
vancement of the simulation, such as the number of pro-
cessed events and average values of the time advancement
experienced by simulation objects. It also leads to execut-
ing a classical CPU busy-loop for the emulation of a given
event granularity. There are two types of events: i) regular
events, whose processing generates new events of any type;
ii) diffusion events that do not generate new events when
being processed. The number of diffusion events generated
by regular ones (denoted as Fan-Out) is set to 1 and 50 in
our evaluation. This varied event pattern leads to scenarios
where the average number of events in the event pool is sta-
ble, but there are punctual fluctuations, which are more or
less intense. In turn, these can allow assessing the effects of
our proposal in scenarios where the actual locality of the ac-
tivity (in particular extraction activities) bound to the hot
bucket of the calendar queue can be more or less intense.

The timestamp increments are chosen according to an ex-
ponential distribution with mean set to one simulation-time
unit. We selected two different lookahead values, respec-
tively 10% and 0.1% of the average timestamp increment, in
order to observe the impact of more safe vs more speculative
processing on the run-time dynamics. Finally, the busy loop
while processing an event is set to generate different event
granularity in different tests, namely 60µs, 40µs and 22µs,



in order to emulate low to medium granularity events proper
of a large variety of discrete event models.

In Figure 5 and Figure 6 we show the speedup achieved
by the parallel runs wrt the sequential execution of the same
model. Speedup values are shown while varying the num-
ber of threads in the share-everything PDES system from
1 to 32, and with different lookahead values (respectively
10% and 0.1% of the average timestamp increment). When-
ever the event granularity is larger and the lookahead is
large enough to make threads process events safely with high
probability (Figure 5(c)), we observe that both the lock-free
event pools allow an almost linear speedup with coefficient
1 (ideal speedup). This is observed up to 16 threads. When
running with more threads, the speedup coefficient is 0.8
for CRCQ and 0.7 for NBCQ. Conversely, the spin-locked
calendar queue has scalability problems with more than 8
threads and its efficiency is further negatively affected by an
increased Fan-Out value. Reduced lookahead (Figure6(c))
does not affect significantly the behavior of lock-free solu-
tions and makes the spin-lock protected calendar queue to
achieve an increased speedup when the Fan-Out is set to
1. The reason behind this behavior is that a smaller looka-
head increases the probability to extract an unsafe event,
that has to be executed speculatively and requires an ex-
plicit synchronization (possibly with rollback) in the worst
case, reducing the actual concurrency in accessing the shared
event pool.

A reduced event granularity leads to a higher pressure on
the shared event pool by increasing concurrent accesses. In
particular an event granularity equal to 40µs and a looka-
head set to 10% (Figure 5(b)) makes the spin-locked calen-
dar queue deteriorate after 8 threads and NBPQ after 24
threads (mostly because of conflicts and retries on dequeue
operations), while CRCQ still delivers linear speedup. A re-
duced lookahead (Figure 6(b)) leaves almost unaltered the
speedup of both the lock-free queues, but leads to a trend
reversal. In particular, a larger Fan-Out makes lock-free
solutions achieve higher performance (conversely the spin-
locked calendar goes worse) since it balances the trend of
reduction of concurrency in accessing the shared event pool
due to synchronization at the meta-data layer (thanks to
more intense bursts of enqueue operations). Anyhow also in
this adverse scenario the proposed solution still delivers an
almost linear speedup.

Finally, a very fine grain event, namely 22µs, leads to
a scenario quite similar to the tests with the Hold-Model,
where increasing the number of threads leaves unaltered
the wall-clock time spent into the conflict-resilient calendar
queue. In Figure 5(a) it is shown how the speedup slope is
reduced when moving from 24 to 32 threads in our solution
(anyhow the speedup is still 0.5 of the ideal one with 32
threads), while a smaller lookahead (see Figure 6(a)) makes
our proposal still achieve the same speedup of larger looka-
head scenarios when Fan-Out set to 50, and gives no speedup
advantages when moving from 24 to 32 number of threads
with the smallest Fan-Out, thus indicating how CRCQ does
not negatively impact the absolute performance when mov-
ing towards the usage of the maximum admitted parallelism
level.

5.2.2 Results with TCAR
As the second PDES test-bed, we used a variant of the

Terrain-Covering Ant Robots (TCAR) model presented in [12].

In this model, multiple robots (say agents) are located into a
region (the terrain) in order to fully explore it. TCAR simu-
lations are usually exploited to determine tradeoffs between
the number of employed robots, and the latency for explor-
ing the target region, e.g., for rescue purposes. Factors such
as the speed of movement (depending on, e.g., environmen-
tal conditions within the region, or even obstacles) can be
also considered.

In our implementation of TCAR, the terrain to be ex-
plored is represented as an undirected graph, therefore a
robot is able to move from one space region to another in
both directions. This mapping is created by imposing a spe-
cific grid on the space region. The robots are then required
to visit the entire space (i.e., cover the whole graph) by
visiting each cell (i.e., graph node) once or multiple times.
Differently from the original model in [12], we have used
hexagonal cells, rather than squared ones. This allows for a
better representation of the robots’ mobility featuring real
world scenarios since real ant robots (e.g., as physically re-
alized in [22]) have the ability to steer to any direction.

The TCAR model relies on a node-counting algorithm,
where each cell is assigned a counter that gets incremented
whenever any robot visits it. So the counter tracks the num-
ber of pheromones left by ants, to notify other ones of their
transit. Whenever a robot reaches a cell, it increments the
counter and determines its new destination. Choosing a des-
tination is a very important factor to efficiently cover the
whole region, and to support this choice the trail counter
is used. In particular, a greedy approach is used such that,
when a robot is in a particular cell, it targets the neighbor
with the minimum trail count. A random choice takes place
if multiple cells have the same (minimum) trail count.

The original TCAR model adopts a pull approach for
gathering trail counters from adjacent cells. Considering
the traditional PDES programming model, based on data
separation across the simulation objects, such an approach
would result in sending query/reply events across objects
modeling adjacent cells each time a robot needs to move to
some new destination cell.

To reduce the interactions across the simulation objects
(by reducing the volume of events to be scheduled along
the model lifetime) we adopted a push approach, relying on
a notification event (message) which is used to inform all
neighbors of the newly updated trail counter whenever a
robot enters a cell. Then, each simulation object modeling
a cell stores in its own simulation state the neighbors’ trail-
counters values, making them available to compute the des-
tination when simulating the transit of a robot. In the used
TCAR configuration, we included the evaluation of a new
state value for the cell whenever a robots enters it, so as to
mimic the evolution of a given phenomenon within the cells.
This computation has been based on a linear combination
of exponential functions (like it occurs for example when
evaluating fading on wireless communication systems due
to environmental conditions). Further, to model the delay
robots experience when entering a cell for correctly aligning
itself spatially, a lookahead of 10% of the average cell resi-
dence time has been added when generating new events used
to notify the update of the local trail counter to the neigh-
bors. We configured TCAR with 1024 cells, and we studied
two alternative scenarios with different ratios between the
number of robots exploring the terrain and the number of
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Figure 5: Results with PHOLD and lookahead 10% of the average timestamp increment.
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Figure 6: Results with PHOLD and lookahead 0.1% of the average timestamp increment.
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Figure 7: Results with TCAR.

cells, say 15% and 30%. We refer to this parameter as Cell
Occupancy Factor (COF).

Speedup results are shown in Figure 7, where we still keep
the PDES engine configuration with spin-lock protected cal-
endar queue as the reference. By the plot we see how, also
for this application, the maximum thread count leading the
spin-lock protected calendar queue to be competitive is be-
tween 4 and 8, depending on the value of COF. Beyond 8
threads, such configuration rapidly degrades. NBCQ scales
well up to 16 threads, but then degrades, while CRCQ pro-
vides close to linear speedup up to 32 threads, jointly guar-
anteeing at least 50% of the ideal speedup value even for
larger thread counts.

6. CONCLUSIONS
In this article we have presented a conflict-resilient non-

blocking calendar queue suited for share-everything PDES
systems. Our proposal allows multiple worker threads that

attempt to extract the element with the minimum times-
tamp from a fully shared event pool to survive in their opera-
tions, despite the conflicting access to (and attempt to mod-
ification of) the same portion of the data structure—namely
the hot bucket containing the unprocessed events with lower
timestamps. With our solution, we experimentally deter-
mined excellent scalability of the shared-everything PDES
engine on a machine with 32 CPU-cores, thus running the
PDES applications with up 32 concurrent worker threads.
We also tested our proposal with workloads related to con-
current accesses aside of the one generated by thread oper-
ating within the share-everything PDES platform. Besides
the achievement of such scalability levels, our proposal also
opens a new way of looking at non-blocking data structures,
since it leaves the classical path where a non-blocking con-
current data structure is implemented by having a conflict-
ing operations to be necessarily aborted and then retried
from scratch.
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