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Many systems in nature, from ferromagnets to flocks of birds, exhibit ordering phenomena on the large
scale. In condensed matter systems, order is statistically robust for large enough dimensions, with relative
fluctuations due to noise vanishing with system size. Several biological systems, however, are less stable
and spontaneously change their global state on relatively short time scales. Here we show that there are two
crucial ingredients in these systems that enhance the effect of noise, leading to collective changes of state on
finite time scales and off-equilibrium behavior: the nonsymmetric nature of interactions between
individuals, and the presence of local heterogeneities in the topology of the network. Our results might
explain what is observed in several living systems and are consistent with recent experimental data on bird
flocks and other animal groups.
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Ordering phenomena are ubiquitous in nature, spanning
from ferromagnetism and structural transitions in condensed
matter, to collective motion in biological systems, and
consensus dynamics in social networks. Order by itself
requires a notion of robustness: the degree of global
coordination must be stable in spite of noise, at least on
certain time scales. This concept is quantified rigorously in
equilibrium statistical physics: a system exhibits long range
order when the relative fluctuations of the global order
parameter are vanishingly small in the thermodynamic limit.
In a finite system, due to noise, global order can fluctuate,
but fluctuations are so small that bringing the system away
from its original state would take a huge amount of time; the
larger the size of the system, the longer the time.
Many ordered biological systems, however, exhibit a

larger sensitivity to noise and can change their state on
relatively short time scales. Flocks of birds, for example,
have very large polarization but they spontaneously turn
and change their flight direction very frequently [1,2].
Consensus in social networks can swiftly switch from a
selected choice to another [3]. Fluctuations appear to have a
dominant role and one might wonder what kind of
mechanism is responsible for this behavior, and whether
it implies a disruption of long range order in the statistical
physics sense.
In this Letter we show that there are two crucial

ingredients in these systems that enhance the effect of
noise leading to collective changes of state: the nonsym-
metric nature of interactions between individuals, and
the presence of local heterogeneities in the topology of
the interaction network. Surprisingly, the consequences of

these two features can be larger the larger the system size
leading to a relaxation time that remains finite at large
sizes. The system keeps changing its global state in time,
being constantly driven out of equilibrium by spontaneous
fluctuations. Besides, we show that big fluctuations typi-
cally build up at the boundary, peripheral nodes acting as
triggers for the global change. Our analysis might explain
what is observed in several living systems and is consistent
with recent experimental results on wild flocks [1] and
laboratory fish schools [4].
The archetypical case of global order in statistical physics

is the ferromagnet, described by the classical Heisenberg
model on a d-dimensional lattice. The Hamiltonian of the
system is H ¼ −J=2

P
ijnij~σi · ~σj where ~σi ∈ Rd are norm

one vectors, and the adjacency matrix nij ¼ nji is equal to 1
for neighboring sites in the lattice, and 0 otherwise. For
d > 2, the Heisenberg model has an ordering transition at
finite temperature Tc. For T < Tc, the system exhibits a

spontaneous magnetization ~M ¼ ð1=NÞPi ~σi ¼ M~n, all
spins pointing on average in the same direction ~n. For a
system of size N, the time needed for the system to change
the direction of themagnetization—the relaxation time τN—
grows with the system size, ensuring stability of order in the
thermodynamic limit [5–7]. The Heisenberg model offers
the simplest example of imitative interaction rules that
are commonly used to model biological and social groups
[8–11]. For these systems, however, interactions are often
nonreciprocal and individuals do not sit on a lattice. Wewill
therefore consider a generalization of the Heisenberg model
where nij can be nonsymmetric and has an irregular spatial
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structure, and explore how these features affect the relax-
ation behavior of the system.
The mechanism of relaxation at low temperature can be

well illustrated by a simple computation. Each spin can be
rewritten in terms of a longitudinal and a perpendicular
component, ~σi ¼ σLi ~nþ ~πi. At low T, M ∼ 1, j~πij2 ≪ 1,
and σLi ∼ 1 − j ~πij2=2. The system is then fully described by
the perpendicular fluctuations. To compute the relaxation
time, we need to specify what is the dynamics followed
by the system. We consider a Langevin dynamics with
both dissipative and inertial terms, covering a variety of
dynamical behaviors in condensed matter [6,7,12,13] and
biological groups [1,2,9,14,15]. The alignment force acting

on each spin i is ~F al
i ¼ J

P
jnij~σj. The only part of this

force preserving the norm of ~σi (and therefore entering the

dynamical equations) is ~F i ¼ ½ ~F al
i �⊥ ¼ ~F al

i − ð ~F al
i · ~σiÞ~σi.

Expanding at low T we get ~F i ∼ −J
P

jΛij~πj, where Λij ¼
−nij þ δij

P
knik is the discrete Laplacian. The dynamical

equations for the f~πig then read [16]

χ
d2~πi
dt2

¼ −J
X

j

Λij~πj − η
d~πi
dt

þ ~ξi; ð1Þ

where χ and η represent, respectively, a rotational inertia

and a rotational viscosity; and ~ξi is a Gaussian noise with

h~ξiðtÞ · ~ξjðt0Þi ¼ 2Tðd − 1Þηδijδðt − t0Þ. By taking the limit
χ=η2 → 0 we recover a purely overdamped dynamics
[6,7,14,17–20], while η → 0 corresponds in the symmetric
case to a reversible Hamiltonian dynamics [1,2,13].
Let us assume that at time t ¼ 0 the system is in a

polarized state with ~M ¼ ~M0. The magnetization then
fluctuates in time due to the spontaneous noise. From
Eq. (1) one can compute the perpendicular fluctuation
δ ~M⊥ ¼ ð1=NÞPi~πi of the magnetization with respect to
~M0, measuring how much the system has departed from
the original direction. One finds (see Supplemental
Material [21])

hjδ ~M⊥j2i ¼ D
t
η
þ FdynðtÞ;

D ¼ 2ðd − 1ÞT
N

X

i

ðu0i Þ2; ð2Þ

where h� � �i are averages over the noise, and we introduced
the diffusion coefficient D. Here u0 is the N-dimensional
left lowest eigenvector of the Laplacian, and corresponds to
a zero (Goldstone) mode resulting from the rotational
symmetry of the interactions. FdynðtÞ is a subdominant

(in time) contribution. When jδ ~M⊥j ∼Oð1Þ, the system has
changed its global direction. Since the term inD dominates
in Eq. (2), this occurs when t=η ∼ 1=D, giving the
relaxation time

τ

η
∼

1

D
: ð3Þ

Equations (2) and (3) connect the relaxation of the system
(a dynamical quantity) with the spectral properties of the
Laplacian (a topological feature of the network).
For the standard Heisenberg model on a regular lattice,

Eq. (3) further simplifies. In this case nij and Λij are
symmetric and left and right eigenvectors coincide. Given
that

P
jΛij ¼ 0, u0 is a real constant vector. For a system of

size N one has u0i ¼ 1=
ffiffiffiffi
N

p
, giving a diffusion coefficient

D ∼ 1=N and the well-known scaling for the relaxation
time τN ∼ N [6,7]. The interpretation of this result is
illuminating. When the system orders, it spontaneously
chooses a direction among all the possible ones. There
remain, however, “easy fluctuations” in the manifold
perpendicular to ~M that is described by the zero eigenspace
of the Laplacian. In the presence of noise, the systemmoves
along these soft modes: fluctuations are small but build up
in time leading to the diffusive behavior of the magneti-
zation. Because of the homogeneity of the interaction
network, fluctuation modes are delocalized: each spin
equally contributes with a vanishing weight leading to
the divergence of the relaxation time with size, and to
stability of order in the thermodynamic limit. There are also
nontrivial space-time correlations [5,12] describing how
fluctuations are transmitted through the system, and getting
contributions from all modes. The average effect of
fluctuations on the magnetization is captured by the zero
mode only, see Eq. (2).
Let us now consider an nij matrix better characterizing

real biological networks. As already mentioned, inter-
actions are not necessarily symmetric. Animals in a group,
for example, usually perceive neighbors who are not
themselves able to see them. Besides, the lattice structure
is restrictive since many biological systems do not exhibit
structural order in space [8,28]. The simplest thing we can
do is to draw points uniformly in Euclidean space instead of
using a regular lattice. Then we place the spins on such
points and prescribe that each spin interacts with its first nc
neighbors. Since neighbors are not reciprocal off lattice,
what we get is an alignment model on a random Euclidean
network with a nonsymmetric nij (where nij ¼ 1 if j is one
of the first nc nearest neighbors of i, and 0 otherwise). We
call this model the nonsymmetric Euclidean random
Heisenberg (NERH) model. For d ¼ 3 and nc ¼ 6 this
system has the same dimensionality and connectivity as the
standard Heisenberg model, but with nij ≠ nji. Natural
flocks of birds exhibit a similar typology of interaction
network [10,11,29–31] and obey a dynamics of the kind of
Eq. (1) in the underdamped limit [1,15,32]. More generally,
there may be other factors contributing to the asymmetry,
like anisotropies in the interactions or individual hetero-
geneities. Here we consider the asymmetry due to mere
structural properties.
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When interactions are nonsymmetric, detailed balance is
not obeyed and we can expect off-equilibrium features
[16,33]. Besides, nij is now a random matrix belonging to
the class of non-Hermitian Euclidean random matrices
[34,35], with nontrivial spectral properties. The NERH
model might therefore lead to novel dynamical behavior.
Let us now use Eqs. (2) and (3) to investigate the

relaxation properties of the model. Contrary to the sym-
metric case, both nij and Λij have right and left eigenvec-
tors that behave differently. In particular, u0 is not a
constant vector and depends on the specific network
considered. Different networks have different u0, different
D, and, consequently, different relaxation properties. To
explore Eqs. (2) and (3) we have therefore generated many
samples of NERH networks of size N. Each network was
obtained by drawing at randomN points in a 3d sphere, and
building the asymmetric spin-spin interaction graph as
discussed above. For each network, we computed numeri-
cally u0 (see Supplemental Material [21]), and evaluated
the diffusion coefficient as defined in Eq. (2). Then, given a
network, we performed a numerical simulation of its
dynamical evolution (Eq. (1) and Supplemental Material
[21]). We considered the system in the low temperature
region (M ∼ 0.98) and evaluated the relaxation time τ as the
time where hjδ ~M⊥ðtÞj2i ∼Oð1Þ [see Fig. 1(a)]. In Fig. 1(b)
we plot the relaxation time (computed from the dynamics)
as a function of the diffusion coefficient (computed from
the network) for networks with N ¼ 1000. This figure
shows that the relaxation time indeed scales inversely with
the diffusion coefficient, independently of the dissipative or
reversible character of the dynamics, as predicted by
Eqs. (2) and (3) (with larger error bars in the overdamped
case, see Supplemental Material [21]).
The relaxation time of the system thus crucially depends

on the properties of u0, the left eigenvector. In particular,

u0i—also known as the eigenvalue centrality of node
i [36]—can vary from node to node determining different
contributions to the global fluctuations. If u0 is extended
(similarly to what happens in a regular lattice) then
centrality is homogeneously distributed through the net-
work, D ∼ 1=N and the relaxation time is proportional to
the size N of the system. If, however, u0 is localized on a
finite subset of nodes, the diffusion coefficient could be
substantially larger leading to much shorter relaxation
times. The distribution of D in the network ensemble for
N ¼ 1000, nc ¼ 6 is plotted in Fig. 1(c). This distribution
has a large main peak centered on the value D ∼ 1=N
indicating that most of the networks behave in a homo-
geneous manner and have a small diffusion coefficient, as
in the Heisenberg model on a regular lattice. There are,
however, a few networks with a substantially larger
diffusion coefficient, corresponding to the secondary peak
of the distribution. The homogenous networks with smallD
have long relaxation times, while the few ones with largeD
relax on much quicker scales.
We therefore find a bimodality in the distribution of the

diffusion coefficient and, consequently, of the relaxation
time. To understand the relevance of this result we need to
understand how the distribution PðDÞ changes with the
system size. To this aim, we have generated ensembles of
NERH networks for different values ofN ranging fromN ¼
128 to N ¼ 65536. For each ensemble of size N, we
computed the distribution PðDÞ. The resulting curves are
plotted in Fig. 2(a). What we see is that (i) the primary peak
is centered on a value of D that decreases with system size
(see inset) as would happen for symmetric networks, and
(ii) the secondary peak is instead always peaked on the same
finite value D ∼ ðd − 1ÞT=nc and its height increases with
the size N of the network. We also computed the global
probability of finding a network with finite D, defined as
the integral over the secondary peak. As can be seen from
Fig. 2(b), this probability increases with N: the occurrence
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FIG. 1. (a) Perpendicular fluctuation of the magnetization as a
function of time, for three networks with different diffusion
coefficients (underdamped dynamics). The relaxation time is the
time where hjδ ~M⊥ðtÞj2i ¼ 0.3 (black dotted line). (b) Relaxation
time vs diffusion coefficient; networks are binned in 1=D, and τ is
then averaged inside each bin (error bars are standard deviations).
(c) Probability distribution of the diffusion coefficient; we plot
the distribution of logðDÞ to better visualize the secondary peak.
NERH ensemble with N ¼ 1000 and nc ¼ 6. The parameters of
the dynamics are: J ¼ 1.2, T ¼ 0.024, χ ¼ 0.83, η ¼ 15, 30, 60
(overdamped dynamics), η ¼ 0.3 (underdamped dynamics).
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of networks with a finite diffusion coefficient is not,
therefore, a finite size effect. On the contrary, these net-
works are statistically more relevant the larger the system
size. Indeed the average over the ensemble of the diffusion
coefficient starts increasing at large enough N [Fig. 2(b),
inset]. These results hold for different values of nc, with a
faster increase for smaller nc [see Fig. 2(b)]. Nonsymmetric
interactions can therefore have a dramatic impact on the
relaxation of the system: if we draw at random a NERH
network, it will have, with finite probability, a finite
relaxation time, no matter how large the network is.
Let us now discuss the localization properties of the

eigenvector u0. We can compute the participation ratio
PR ¼ ðPiðu0i Þ2Þ2=

P
iðu0i Þ4, a quantity that scales as the

number of sites where the mode is localized [37]. While for
slow networks PR increases with N (extended mode), for
the quick networks with a finite diffusion coefficient
PR ∼ nc [see Fig. 3(a)]. This means that in the quick
networks there are approximately nc nodes that dominate
the collective fluctuations. Besides, these most influent
nodes are closely located in space and very connected
one to the other, as quantified by the high value of the
clustering coefficient ci ¼ 1=½ncðnc − 1Þ�Pjknijniknjk [for
N ¼ 1000 hcii ¼ 0.90� 0.11—see also Fig. 3(b)]. This
highly clustered region also tends to be poorly connected
with the rest of the network (due to the finite connectivity),
and it is responsible for the nonstandard response of the
system to noise. To see this, let us consider the extreme
situation where the network consists exactly of a small
cluster of nc nodes all connected with one another (ci ¼ 1),
and a large homogeneous cluster ofN − nc nodes with a few
links pointing to the small one. The small cluster evolves
independently of the large one and therefore exhibits global

fluctuations of order [according to Eq. (2)] hjδ ~M⊥j2i ∼ t=nc.
Thus, it will change its state on short scales τ ∼ nc. The large
cluster would by itself fluctuate much less, but due to the
connections to the small cluster it is dragged from its original
direction and the relaxation time of the whole network is
drastically decreased.

The occurrence of almost disconnected clusters has
statistical origins. When we draw nodes at random in space
and build the interaction graph, we can by mere chance
produce a clump of nc close nodes. The probability of such a
local heterogeneity can be very small (depending on the
value of nc), but it only depends on the local properties of
the network. Thus, as in typical nucleation processes, the
larger the system the larger is the chance that somewhere in
the network one of such regions occurs, explaining the
growth of the secondary peak with size. Close to the
boundary, nodes have neighbors only in half of the available
space, potentially increasing local clustering. Indeed
Fig. 3(c) shows that the regions with large u0i and ci tend
to be located at the periphery of the network, with typical
normalized distance r from the network center of order r ∼
0.9 (r ¼ 0 corresponding to the center, r ¼ 1 to the border).
Thus, even though asymmetry is the primary condition to
obtain a finite relaxation time, the network must also be
sufficiently heterogeneous to allow for localized eigenvec-
tors. NERH networks—due to their embedding in space—
allow for local clustering and localization (contrary to other
kinds of random Laplacian graphs [38]).
So far we analyzed the NERH ensemble. Our results,

however, rely on a few very general properties: a
direct interaction graph with finite connectivity (local
asymmetric interactions) and an imitative dynamics
(mutual alignment). Besides, they qualitatively hold
when changing the details of the interaction. For example,
similar results are obtained when introducing a hard core
between individuals or assuming that individuals at the
border interact with a different number of neighbors (see
Fig. S2 and Supplemental Material [21]). For this reason,
our analysis provides an attractive route to explain how
spontaneous collective swings occur in real instances of
coordinated behavior. In many biological cases, the inter-
action network is not fixed but evolves dynamically. Flocks
of birds, for example, at a given instant of time have an
interaction graph that shares some of the NERH features
(individuals homogeneously distributed in space, an average
given number of interacting neighbors [10,29]). As birds
exchange positions in space the graph will progressively
change. A single flock explores during its motion many
different realizations of asymmetric random graphs, the
dynamics playing the role of the ensemble for the NERH
model. Therefore, in the absence of predation, we expect the
flock to spontaneously change direction of motion whenever
a “quick” graph with a large diffusion coefficient is visited.
Asymmetric interactions can also modify the hydrodynamic
behavior of very large flocks, as discussed in Ref. [39] for
longitudinal asymmetries. Even though the focus of our
Letter is different, both works point out that nonsymmetric
interactions can have a fundamental role—distinct from
motility—in the nonequilibrium behavior of active systems.
Testing our predictions directly on real data is not straight-

forward,becausewedonotknowapriori the interactiongraph
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(c) Distribution probability of the normalized distance from
the network’s center for the same nodes as in panel (b).
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between individuals. In natural flocks, inference techniques
allowed us to extract the average connectivity nc [10,29–31],
but retrieving the entire graph requires experimental statistics
not available to date.There are, however, several experimental
observations that are consistent with our findings and support
our explanation. Flocks of birds indeed exhibit spontaneous
coherent turns very frequently even for large group sizes [1].
Besides, all turns start from the lateral periphery of the flock
and initiators are individuals displaying unusual directional
fluctuations [2]. A new analysis on flocks data also shows that
the network topology is heterogeneous prior to turns [40].
These facts—not explained by symmetric flocking models
[14]—are instead predicted by the NERH modeling. Recent
results on fish schools [4] show that these groups occasionally
display spontaneous evasion waves. Also in this case, ini-
tiators of the startle events are located peripherally and have a
large clustering coefficient, in line with our results.
For a biological group, controlling and regulating

collective behavior has a crucial role. The group must
maintain a large sensitivity to perturbations to ensure
efficient collective responses (as in antipredatory maneu-
vers), and at the same time retain group coherence. The
mechanism we described shows how to achieve such a
marginal stability: the system is always highly ordered but
off-equilibrium effects allow for rapid collective swings.
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