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DEGENERATE FLAG VARIETIES OF TYPE A AND C

ARE SCHUBERT VARIETIES

GIOVANNI CERULLI IRELLI, MARTINA LANINI

Abstract. We show that any type A or C degenerate flag variety is in fact
isomorphic to a Schubert variety in an appropriate partial flag manifold.

1. Introduction and Main Result

Appeared for the first time in the 19th Century to encode questions in enu-
merative geometry, flag varieties and their Schubert varieties had been intensively
studied since then, constituting an important investigation object in topology, ge-
ometry, representation theory and algebraic combinatorics. In the years, several
variations of these varieties have been considered (affine flag and Schubert vari-
eties, Kashiwara flag varieties, matrix Schubert varieties, toric degenerations of
flags, ...). Among them, we want to focus on a class introduced recently by E. Fei-
gin in [7]: the degenerate flag varieties. These are flat degenerations of (partial) flag
manifolds and turned out to be very interesting from a representation theoretic and
geometric point of view. For instance, they can be used to determine a q-character
formula for characters of irreducible modules in type A [9, 11] and C [12, 13]. As
for the geometry, degenerate flag varieties share several properties with Schubert
varieties: they are irreducible, normal locally complete intersections with terminal
and rational singularities [7, 9, 13]. In this work we show that any degenerate flag
variety of type A or C not only has a lot in common with Schubert varieties, but it
is actually isomorphic to a Schubert in an appropriate partial flag variety. In short:

Theorem 1.1. Degenerate flag varieties of type A and C are Schubert varieties.

This result is based on the realization of degenerate flag varieties in terms of
linear algebra, which is due to E. Feigin in type A [8, Theorem 2.5] and to E. Feigin,
M. Finkelberg and P. Littelmann in type C [13, Theorem 1.1]. This description
does not use any further information on the geometry of such varieties, and hence
the theorem provides an independent proof of their geometric properties such as
normality, irreducibility, rational singularities, cellular decomposition, which have
been established in [7], [8], [9] and [13] by direct analysis.

We now state the precise version of Theorem 1.1 in the case of complete flags
of type A (in Section 3 we discuss the case of partial flags, while in Section 4
we discuss the symplectic case). Let n ≥ 1 and B ⊂ SL2n be the subgroup
of upper triangular matrices. For a weight λ of SL2n, let Pλ be its stabilizer.
Let ω1, . . . , ω2n be the fundamental weights and let P := Pω1+ω3+...+ω2n−1

from
now on. The Weyl group of SL2n is Sym2n (the symmetric group on 2n letters)
and P corresponds to the subgroup WJ of Sym2n generated by the traspositions
J = {(2i, 2i+1)i=1,...,n−1}. The variety SL2n/P is naturally identified with the set
of partial flags W1 ⊂W2 ⊂ . . . ⊂Wn in C2n such that dim(Wi) = 2i− 1.
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The subgroup B acts on SL2n/P (by left multiplication) and its orbits give the
Bruhat decomposition:

(1.1) SL2n/P =
∐

τ∈SymJ
2n

BτP/P,

where SymJ
2n is the set of permutations τ in Sym2n such that τ(2i) < τ(2i+1), for

i = 1, . . . , n− 1. This is the set of minimal length representatives for the cosets in
Sym2n/WJ . For a permutation τ ∈ SymJ

2n, let Cτ be the corresponding Schubert

cell in SL2n/P , that is BτP/P , and denote by Xτ = BτP/P its closure, that is
the associated Schubert variety. Then each Schubert cell Cτ has exactly one point
which is fixed by the action of the subgroup of diagonal matrices T ⊆ B, namely

〈eτ(1)〉 < 〈eτ(1), eτ(2), eτ(3)〉 < . . . < 〈eτ(1), eτ(2), eτ(3), . . . , eτ(2n−1)〉.

(For a collection of vectors v of a complex vector space, we always denote by 〈v〉
the subspace spanned by v.) Let σ = σn ∈ Sym2n be the permutation defined as

(1.2) σn(r) =

{

k if r = 2k,
n+ 1 + k if r = 2k + 1.

For example, for n = 5 the permutation σ is given by
(

1 2 3 4 5 6 7 8 9 10
6 1 7 2 8 3 9 4 10 5

)

.

Notice that σ ∈ SymJ
2n, indeed σ(2i) = i < σ(2i+ 1) = n+ 1+ i for 1 ≤ i ≤ n− 1.

Let F lan+1 denote the complete degenerate flag variety associated with SLn+1

(see Section 2 for a definition of such a variety). In [3] it is shown that F lan+1 is
acted upon by the maximal torus T of SL2n (this is recalled in Section 2).

We are now ready to state the precise version of Theorem 1.1 in the case of
complete flags (the general result for partial flags is Theorem 3.1).

Theorem 1.2. There exists a T-equivariant isomorphism of projective varieties

ζ : F lan+1
≃ // Xσ ⊂ SL2n/P

where σ is the permutation given in (1.2) and P = Pω1+ω3+...+ω2n−1
.

We notice that since the isomorphism ζ is T -equivariant, it is possible to compute
the stalks of the local T -equivariant intersection cohomology of F lan+1 by using the
parabolic analogue of Kazhdan-Lusztig polynomials, defined by Deodhar in [6].
This answers a question posed in [3] (and it was the original motivation for this
project). Another corollary of the theorem is that the median Genocchi number
hn = χ(F lan+1) (see [8]) has another interpretation: it is the number of elements

τ ∈ SymJ
2n which are smaller than σ in the (induced) Bruhat order.

As the anonymous referee has kindly pointed out, it would be interesting to
analyze Theorem 1.1 in the light of the recent theory of Favourable Modules [10].
Moreover, She/He also asks what is the interplay between the Borel subgroup B ⊂

G̃ and the “degenerate group” Ga (see [8]), where G̃ = SL2n (resp. G̃ = Sp4n−2)

and G = SLn+1 (resp. G = Sp2n). Indeed both G and G̃ act on the corresponding

degenerate flag varieties (see Theorem 1.2 and 4.1 for the action of G̃ and [8, 13]
for the action of Ga). This will be the subject of a future project.

The paper is organized as follows: in Section 2 we prove Theorem 1.2, in Sec-
tion 3 we discuss its analogue for partial degenerate flags and in Section 4 we prove
the analogous results for type C. In the Appendix we prove that the desingulariza-
tion of the degenerate flag varieties provided in [9] coincides with a Bott-Samelson
resolution of the Schubert variety Xσ.
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2. Proof of Theorem 1.2

Given an integer n ≥ 1, let F lan+1 denote the complete degenerate flag variety
associated with SLn+1. In [8, Theorem 2.5] it is proven that F lan+1 can be realized
as follows: let {f1, . . . , fn+1} be an ordered basis of a complex vector space V ≃
Cn+1 and let prk : V → V be the linear projection along the line spanned by fk,
i.e. prk(

∑

aifi) =
∑

i6=k aifi. Then there is an isomorphism

F lan+1 ≃ {(V1, . . . , Vn) ∈

n
∏

i=1

Gri(V )| pri+1(Vi) ⊂ Vi+1 ∀i = 1, . . . n− 1}.

For convenience of notation, up to an obvious change of basis of V , we prefer to
realize F lan+1 as follows:

(2.1) F lan+1 ≃ {(V1, . . . , Vn) ∈
n
∏

i=1

Gri(V )| pri(Vi) ⊂ Vi+1 ∀i = 1, . . . , n− 1}.

Let {e1, . . . , e2n} be an ordered basis of a vector space W ≃ C2n. For any
i = 1, 2, . . . , n, we consider the coordinate subspace Un+i := 〈e1, . . . , en+i〉 ⊆ W

and the surjection πi : Un+i // // V defined on the basis vectors as

(2.2) πi(ek) =







0 if 1 ≤ k ≤ i− 1,
fk if i ≤ k ≤ n+ 1,
fk−n−1 if n+ 2 ≤ k ≤ n+ i.

and extended by linearity to Un+i. This induces a chain of embeddings of projective
varieties

Gri(V )
�

� // Gr2i−1(Un+i)
�

� // Gr2i−1(W )

U
✤ // π−1

i (U)
✤ // π−1

i (U)

We call ζi : Gri(V ) →֒ Gr2i−1(W ) the concatenation of the above maps. We hence
have a diagonal embedding

(2.3) ζ :
∏n
i=1 Gri(V ) // ∏n

i=1 Gr2i−1(W )

(V1, V2, · · · , Vn)
✤ // (ζ1(V1), ζ2(V2), · · · , ζn(Vn))

Let us show that ζ restricts to a map F lan+1 → SL2n/P . We consider a point
(V1, · · · , Vn) ∈ F lan+1 ⊂

∏n

i=1 Gri(V ); thus, pri(Vi) ⊂ Vi+1 for any i = 1, . . . , n− 1.
We notice that πi+1 coincides with pri ◦ πi on Un+i ⊂ Un+i+1. Denoting by Wi :=
ζi(Vi), we get

Wi ⊆ π−1
i+1πi+1(Wi) = π−1

i+1priπi(Wi) = π−1
i+1pri(Vi) ⊆ π−1

i+1(Vi+1) =Wi+1.

Therefore ζ restricts to an embedding ζ : F lan+1 →֒ SL2n/P .
We now recall the action of the maximal torus T ⊂ SL2n on F lan+1 defined in [2,

Section 3.1]. Let T0 be a maximal torus of GLn+1(C). Up to a change of basis, we
assume that T0 acts on V by rescaling the basis vectors fi’s. This induces a diagonal

action of n copies T
(1)
0 ×· · ·×T

(n)
0 of T0 on the direct sum V (1)⊕· · ·⊕V (n) of n copies

of V . More precisely we endow every copy V (i) with a basis {f
(i)
1 , · · · , f

(i)
n+1} and the

torus acts by rescaling the f
(i)
k ’s. We consider the linear map pri : V

(i) → V (i+1)

defined on the basis vectors by sending f
(i)
k to f

(i+1)
k for k 6= i, and f

(i)
i to zero, and

extended by linearity. We define T1 ⊂
∏n

i=1 T
(i)
0 to be the maximal subgroup such

that each projection pri : V
(i) → V (i+1) is T1–equivariant. It can be checked that



4 GIOVANNI CERULLI IRELLI, MARTINA LANINI

T1 has dimension 2n and hence T1 is isomorphic to a maximal torus of GL2n(C).
More explicitly, an element λ = (λ1, . . . , λ2n) ∈ T1 acts by

(2.4) λ · f
(i)
k :=

{

λkf
(i)
k if i ≤ k ≤ n+ 1

λn+1+kf
(i)
k if 1 ≤ k ≤ i− 1

Moreover, since the action of T0 on V induces an action on each Grassmannian

Gri(V ), then the action of T
(1)
0 × · · · × T

(n)
0 on V (1) ⊕ · · · ⊕ V (n) induces an action

of T1 on the product of Grassmannians
∏n
i=1 Gri(V

(i)) =
∏n
i=1 Gri(V ). Since each

projection pri is T1-equivariant, this action descends to an action on F lan+1. Notice
that the action of a point λ ∈ T on F lan+1 coincides with the action of any of its
multiples; we hence see that T := T1 ∩ SL2n also acts on F lan+1.

We now prove that the map ζ : F lan+1 →֒ SL2n/P is T -equivariant. The maximal
torus T in SL2n acts onW (and hence on each GrassmannianGrk(W )) by rescaling
the basis vectors ek’s : given λ = (λ1, . . . , λ2n) ∈ T

(2.5) λek := λkek.

From (2.4) and (2.5) it follows that each map πi is T -equivariant and hence each
ζi is T -equivariant and hence ζ itself is T -equivariant.

We now describe the image ζ(F lan+1) ≃ F lan+1. We claim that it is given by

(2.6) Yn :=







W1 ⊂W2 ⊂ . . . ⊂Wn

∣

∣

∣

• dimWi = 2i− 1
• 〈e1, e2, . . . , ei−1〉 ⊂Wi

•Wi ⊂ 〈e1, . . . , en+i〉







⊂ SL2n/P.

Indeed, ζ(F lan+1) is clearly contained in Yn; viceversa, given a flag W• := (W1 ⊂
W2 ⊂ . . . ⊂ Wn) in Yn, then by definition ker πi ⊂ Wi ⊂ Un+i and hence Wi =
π−1
i (πi(Wi)) = ζi(πi(Wi)). It follows that W• = ζ((π1(W1), . . . , πn(Wn))) ∈ Im ζ.

It remains to show that (π1(W1), . . . , πn(Wn)) ∈ F lan+1. This is immediately veri-
fied as follows: pri(πi(Wi)) = πi+1(Wi) ⊆ πi+1(Wi+1), for any i = 1, . . . , n− 1.

In order to show that Yn ∼= Xσ, we observe that for any i = 1, . . . , n we have

#{l ≤ 2i− 1 | σ(l) ≤ k} =















k if 1 ≤ k ≤ i− 1,
i− 1 if i− 1 ≤ k ≤ n,

i− 1 + k − n if n+ 1 ≤ k ≤ n+ i,
2i− 1 if n+ i ≤ k ≤ 2n.

It follows that for a partial flag W• ∈ SL2n/P , condition 〈e1, e2 . . . , ei−1〉 ⊆ Wi ⊆
〈e1, e2 . . . , en+i〉 is equivalent to

(2.7) dim(Wi ∩ 〈e1, e2, . . . , ek〉) ≥ #{l ≤ 2i− 1 | σ(l) ≤ k}

for any i = 1, . . . , n and k = 1, . . . , 2n. By [14, Corollary of the proof of Proposition
7, §10.5], Xσ is precisely the locus of partial flags in SL2n/P satisfying (2.7). This
concludes the proof of Theorem 1.2.

Remark 2.1. Theorem 1.2 and its proof have a nice and clean interpretation in
terms of quivers, in the spirit of [2], [3] and [4].

3. Parabolic case

In this section we discuss the parabolic analogue of Theorem 1.2. Recall the
vector space V ≃ Cn+1 with basis {f1, . . . , fn+1} and let d = (di)

s
i=1 be a collection

of positive integers 1 ≤ d1 < d2 < . . . < ds ≤ n. For any pair of indices 1 ≤ i < j ≤
n we consider the linear map pri,j : V → V defined by pri,j = prj−1 ◦ . . .◦pri+1 ◦pri
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where pri is the projection along fi as before. Then, following [8, Theorem 2.5],
the partial degenerate flag variety F la

d
is given by

F la
d
≃ {(V1, · · · , Vs) ∈

s
∏

l=1

Grdl(V )|prdl,dl+1
(Vl) ⊂ Vl+1}.

The maximal torus T ⊂ SL2n acts on F la
d
, in a similar way as for complete flags (see

[2]). Let λ := ω2d1−1 + ω2d2−1 + . . .+ ω2ds−1 and let P = Pλ be the corresponding
parabolic subgroup in SL2n. The variety SL2n/P is naturally identified with the
variety of partial flags W1 ⊂ · · · ⊂ Ws ⊂ W such that dim Wi = 2di − 1 (i =
1, 2, . . . , s). We introduce the sets K := {1, 2, . . . , 2n} \ {2di − 1| i = 1, 2, . . . , s},
J := {(k, k+1)| k ∈ K}, and the subgroup WJ of Sym2n generated by J . We have
the Bruhat decomposition

SL2n/P ≃
∐

τ

BτP/P

where this time τ runs over the set of minimal length representatives for the cosets
in Sym2n/WJ . This set corresponds to the permutations τ ∈ Sym2n such that

τ(2di) < τ(2di + 1) < · · · < τ(2di+1 − 1). We denote by Xτ = BτP/P the
corresponding Schubert variety. Let σd be the minimal length representative of the
coset σnWJ ∈ Sym2n/WJ (σn is defined in (1.2)); explicitly, σd is given by

(3.1) σd(k) =

{

k − di if k ∈ {2di, . . . , di + di+1 − 1},
n+ 1 + k − di+1 if k ∈ {di + di+1, . . . , 2di+1 − 1},

with the conventions d0 := 0 and ds+1 := n + 1. For example, for n = 8 and
d = (2, 5, 7), we have

σd =

(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 9 10 2 3 4 11 12 13 5 6 14 15 7 8 16

)

Notice that for d = (1, 2, . . . , n), the permutations σd and σn (1.2) coincide.

Theorem 3.1. There exists a T-equivariant isomorphism

ζ : F la
d

≃ // Xσd
⊂ SL2n/Pλ.

Proof. Recall the vector space W ≃ C2n with basis {e1, . . . , e2n} and the surjec-
tions πi : Un+i // //V defined in (2.2) for i = 1, 2, . . . , n. The map ζ is defined
by sending (V1, · · · , Vs) ∈ F la

d
to the tuple (W1, · · · ,Ws) ∈ SL2n/Pλ given by

Wi := π−1
di

(Vi). It can be checked in the same way as in Section 2, that the image
of ζ consists of partial flags W1 ⊂ W2 ⊂ . . . ⊂ Ws such that dimWi = 2di − 1
and 〈e1, e2, . . . , edi−1〉 ⊆Wi ⊆ 〈e1, . . . , en+di〉. The proof now finishes as for Theo-
rem 1.2. �

4. Symplectic case

In this section we state and prove the analogue of Theorem 1.2 in the case of
the symplectic group. In order to fix notation, we start with a brief overview about
symplectic flag varieties (see e.g. [16, Chapter 6]). We consider a positive integer
n ≥ 1 and a complex vector space W ≃ C2n of dimension 2n with ordered basis
{e1, e2, . . . , e2n}. We fix the bilinear form bW [·, ·] on W given by the following
2n× 2n matrix

(4.1) E =

(

0 J
−J 0

)

where J is n× n anti-diagonal matrix with entries (1, 1, . . . , 1), as usual. In partic-
ular the form is non–degenerate and skew-symmetric. Moreover e∗k = e2n+1−k, for
k = 1, · · · , 2n. The group Sp2n consists of those matrices A in SL2n which leave
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invariant the given form, i.e. bW [Av,Aw] = bW [v, w] for every v, w ∈ W . More ex-
plicitly, we consider the involution ι : SL2n → SL2n which sends a matrix A to the
matrix E(tA)−1E−1; then the group Sp2n consists of ι–invariant matrices. The ad-
vantage of choosing the form as above is that the intersection B∩Sp2n = Bι ⊂ SL2n

consisting of ι–fixed upper triangular matrices, is indeed a Borel subgroup of Sp2n
whose maximal torus is precisely the subgroup T ι = T∩Sp2n of ι–invariant diagonal
matrices.

The parabolic subgroup P = Pω1+···+ω2n−1
of SL2n considered in Section 1 is

mapped into itself by ι and the group of fixed points Q := P ι = P ∩ Sp2n is
a parabolic subgroup of Sp2n. The projective variety Sp2n/Q can be described as
follows: for a subspace U ∈ Grk(W ) we denote by U⊥ ∈ Gr2n−k(W ) the orthogonal
space of U in W . The map

(4.2) ιk : Grk(W ) → Gr2n−k(W ) : U 7→ U⊥

is an isomorphism of projective varieties. The variety SL2n/P sits inside the product
∏n

i=1 Gr2i−1(W ) and we consider the involution (still denoted by ι)

(4.3) ι :=
n
∏

i=1

ι2i−1 :
n
∏

i=1

Gr2i−1(W ) →
n
∏

i=1

Gr2i−1(W )

The involution ι restricts to an involution on SL2n/P and the variety Sp2n/Q =
(SL2n/P )

ι consists of ι–invariant flags.
Moreover, the involution ι (on SL2n) induces an involution on the symmetric

group Sym2n as follows: it sends τ 7→ ι(τ), where ι(τ)(r) := 2n+1− τ(2n+1− r),
for r = 1, . . . , 2n. The Weyl group of Sp2n coincides with the subgroup Symι

2n

of ι–fixed elements. The element σn ∈ Sym2n defined in (1.2) is easily seen to be
fixed by ι and it hence belongs to the Weyl group of Sp2n. The left action of Bι on
Sp2n/Q induces the Bruhat decomposition:

Sp2n/Q =
∐

τ∈(SymJ
2n)

ι

BιτQ/Q.

Each Schubert cell BιτQ/Q coincides with the set of ι-fixed points Cιτ of the Schu-

bert cell Cτ of SL2n and the same holds for each Schubert variety, Zτ = Bιτ Q/Q =
Xι
τ (cf. [16, Proposition 6.1.1.2]).
We now state the analogue of Theorem 1.2 in type C. We denote by SpF la2m the

complete degenerate flag variety associated with Sp2m (see below for a definition).

Theorem 4.1. There exists a T ι-equivariant isomorphism of projective varieties

(4.4) ζ : SpF la2m
≃ // Xι

σn
⊂ Sp2n/Q

where n := 2m− 1, σn is the permutation given in (1.2) and Q = P ι as above.

In Section 4.1 we prove Theorem 4.1 and in Section 4.2 we state and prove its
parabolic analogue.

4.1. Proof of Theorem 4.1. Fix an integer m ≥ 1, a complex vector space V
of dimension 2m with basis {f1, · · · , f2m} and a non-degenerate skew-symmetric
bilinear form bV [·, ·] on V such that

(4.5) f∗
k =

{

f2m−1−k if 1 ≤ k ≤ 2m− 2,
f2m if k = 2m− 1,

so that V = 〈f1, . . . , fm−1, f
∗
m−1, . . . , f1, f2m−1, f

∗
2m−1〉. We define n := 2m− 1, so

that V has dimension n+1 as in the previous sections. The degenerate flag variety
F lan+1 sits inside the product of Grassmannians

∏n

i=1 Gri(V ). It can be checked
that the map ι =

∏

i ιi :
∏n

i=1 Gri(V ) →
∏n

i=1 Gri(V ) (where ιi is defined in (4.2))
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restricts to a map from F lan+1 to itself, and the fixed points form the degenerate
symplectic flag variety associated with Sp2m [13, Proposition 4.7], i.e.

(4.6) SpF la2m = (F lan+1)
ι.

Thus Theorem 4.1 will follow once we show that the diagram

(4.7) F lan+1
ι //

ζ

��

F lan+1

ζ

��
Xσn

ι // Xσn

commutes, where the vertical arrows denote the T-equivariant isomorphism pro-
vided by Theorem 1.2 and the horizontal arrow in the bottom is induced by the
involution (4.3). In Section 2 we proved that the isomorphism ζ is the restriction
of the map ζ :

∏n

i=1 Gri(V ) →
∏n

i=1 Gr2i−1(W ) given in (2.3). In order to prove
(4.7), it is enough to show that the following diagram

(4.8)
∏n

i=1 Gri(V )
ι //

ζ

��

∏n

i=1 Gri(V )

ζ

��
∏n

i=1 Gr2i−1(W )
ι // ∏n

i=1 Gr2i−1(W )

commutes. We therefore need to check that for every point (Vi)
n
i=1 ∈

∏n

i=1 Gri(V )
and for every i = 0, . . . ,m− 1, we have

(4.9) ζm−i(Vm−i)
⊥ = ζm+i(V

⊥
m−i).

Recall that for every i = 1, . . . , n, ζi(Vi) := π−1
i (Vi), where πi : Un+i → V

is the map given in (2.2) and Un+i is the coordinate subspace of W generated
by e1, e2, . . . , en+i. We prove the following (stronger) statement: for every i =
0, . . . ,m− 1, v ∈ Un+m−i and w ∈ Un+m+i we have

(4.10) bV [πm−i(v), πm+i(w)] = bW [v, w].

It is easy to verify that (4.10) implies (4.9): Indeed dim ζm−i(Vm−i)
⊥ = 2m+2i−

1 = dim ζm+i(V
⊥
m−i) and (4.10) implies at once that ζm+i(V

⊥
m−i) ⊆ ζm−i(Vm−i)

⊥.
We will prove (4.10) by induction on i ≥ 0. For i = 0 we need to show that
πm : Un+m → V is a map of symplectic spaces, i.e. for every v, w ∈ Un+m
we have bV [πm(v), πm(w)] = bW [v, w]. This follows easily from the definitions:
Indeed, for a given k = 1, . . . , n, the coordinate vector subspace Un+k of W is
given by Un+k = 〈e1, . . . , en, e

∗
n, . . . , e

∗
n−k+1〉. In particular, Un+m is generated by

e1, . . . , em, . . . , en, e
∗
n, . . . , e

∗
m and πm is defined on the symplectic basis as follows

πm(ek) =







0 if 1 ≤ k ≤ m− 1,
f∗
n−k if m ≤ k ≤ n− 1,
fn if k = n,

πm(e∗k) =

{

fn−k if m ≤ k ≤ n− 1,
f∗
n if k = n.

We hence assume that (4.10) is true for i ≥ 0 and we prove it for i+ 1. In view
of (4.5), the map prm−1+k : V → V (1 ≤ k ≤ m − 1) is the projection along the
line spanned by the basis vector f∗

m−k and we denote pr(m−k)∗ := prm−1+k. We
notice that the adjoint map pr∗i of pri : V → V is pri∗ , i.e.

(4.11) bV [pri(v), v
′] = bV [v, pri∗(v

′)]

for every v, v′ ∈ V . We have already observed that πi+1 : Un+i+1 → V restricted
to Un+i ⊂ Un+i+1 coincides with pri ◦ πi and, using the notation just introduced,
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this means that the following diagram
(4.12)

V
pr1 // V

pr2 // · · · // V
prm−1 // V

pr∗m−1 // V // . . .
pr∗2 // V

pr∗1 // V

Un+1

π1

OO

// Un+2

π2

OO

// · · · // Un+m−1

πm−1

OO

// Un+m

πm

OO

// Un+m+1

πm+1

OO

// . . . // U2n−1

πn−1

OO

// U2n

πn

OO

commutes (the chain of horizontal arrows in the bottom row is given by the canon-
ical embeddings Un+i →֒ Un+i+1).

We can now prove (4.10). We write a non-zero element w ∈ Un+m+(i+1) as
w = µe∗n−m−i + w′ for some w′ ∈ Un+m+i and some µ ∈ C; given v ∈ Un+m−(i+1)

we need to compute bV [πm−(i+1)(v), πm+(i+1)(w)]. Let us first deal with the case
when w′ = 0, i.e. w = µe∗n−m−i: we have

bV [πm−(i+1)(v), πm+(i+1)(w)] = µ bV [πm−(i+1)(v), πm+(i+1)(e
∗
n−m−i)]

= µ bV [πm−(i+1)(v), fm+i]

= µ bV [πm−(i+1)(v), f
∗
m−1−i].

By writing v =
∑

k ckek in the symplectic basis {ek}, since πm−i−1(en−m−i) =
fn−m−i = fm−1−i, we get

(4.13) bV [πm−(i+1)(v), πm+(i+1)(w)] = µcn−m−i = bW [v, µe∗n−m−i] = bW [v, w].

We now consider the case when w′ 6= 0. In view of (4.11), (4.12), (4.13) and the
induction hypothesis we get:

bV [πm−(i+1)(v), πm+(i+1)(w)]

= bW [v, µe∗n−m−i] + bV [πm−(i+1)(v), πm+(i+1)(w
′)]

= bW [v, µe∗n−m−i] + bV [πm−(i+1)(v), pr
∗
m−i−1 ◦ πm+i(w

′)]

= bW [v, µe∗n−m−i] + bW [prm−i−1 ◦ πm−i−1(v), πm+i(w
′)]

= bW [v, µe∗n−m−i] + bV [πm−i(v), πm+i(w
′)]

= bW [v, µe∗n−m−i] + bW [v, w′]

= bW [v, w]

as desired.

4.2. Parabolic case. We conclude by discussing the parabolic version of Theorem
4.1, which is the type C analogue of Theorem 3.1. Let m ≥ 1 be a positive integer
as in Section 4.1, and let d = (di)

s
i=1 be a collection of positive integers 1 ≤

d1 < d2 < . . . < ds ≤ 2m preserved by the map di 7→ 2m − di. The involution
ι =

∏

ιi :
∏s

i=1 Grdi(V ) →
∏s

i=1 Grdi(V ) is hence well-defined and restricts to a
map from F la

d
to itself. The fixed points form the partial degenerate symplectic

flag variety SpFa
d
[13, Proposition 4.9], i.e. SpFa

d
= (F la

d
)ι.

Let λ and Pλ as in Section 3, so that Xσd
⊂ SL2m/Pλ. Let Q := P ιλ be

the parabolic subgroup of Sp2m. The projective variety Sp2m/Q coincides with
the ι-fixed points of SL2m/Pλ, i.e Sp2m/Q = (SL2m/Pλ)

ι. Moreover, since the
permutation σd is fixed by ι, the corresponding Schubert variety in Sp2m/Q is the
variety of ι-fixed points Xι

σd
of Xσd

. From the commutativity of Diagram (4.8),
together with Theorem 3.1, we obtain the following result.

Theorem 4.2. There exists a T ι-equivariant isomorphism of projective varieties

ζ : SpFa
d

≃ // Xι
σd

⊂ Sp2n/Q

where σd is the permutation given in (3.1).
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APPENDIX: Desingularizations

In [9] a resolution of the singularities of a type A degenerate flag variety is con-
structed. In view of Theorem 1.2 it is natural to ask if such a desingularization
coincides with a Bott-Samelson resolution of the corresponding Schubert variety.
In this section, we show that this is indeed the case. In order to state and prove the
result we need a combinatorial model that we discuss in Section 4.3. In Section 4.4
we recall the construction of Feigin and Finkelberg. In Section 4.5 we construct
a Bott-Samelson resolution of Xσn

. In Section 4.6 we prove that the two desin-
gularizations coincide (see Theorem 4.8). In the whole section n ≥ 1 is a fixed
integer.

4.3. The quiver Γn. We denote by Γn the quiver (i.e. the oriented graph) with

N :=
(

n+1
2

)

vertices αi,j with 1 ≤ i ≤ j ≤ n and an oriented edge αi,j → αi+1,j

(for every 1 ≤ i < j ≤ n) and an oriented edge αi,j → αi,j+1 (for 1 ≤ i ≤
j < n). The quiver Γn is the famous Auslander-Reiten quiver of the equioriented
type A quiver algebra (see e.g. [1]). For future reference we embed the quiver

Γn into the decorated quiver Γ̃n obtained from Γn by adding 2n + 1 extra ver-
tices α0,1, α0,2, α0,3, · · · , α0,n, α0,n+1, α1,n+1, α2,n+2, · · · , αn,2n and oriented edges
α0,i → α1,i (for 1 ≤ i ≤ n) and αi,n → αi,n+1 (for 1 ≤ i ≤ n). For example for

n = 4, the following is Γ̃4 with the extra vertices highlighted:

(4.14) α0,5

α0,4

##❋
❋❋

❋
α1,5

α0,3

""❊
❊❊

❊
α1,4

""❊
❊❊

❊

<<①①①①
α2,5

α0,2

""❊
❊❊

❊
α1,3

<<②②②②

""❊
❊❊

❊
α2,4

""❊
❊❊

❊

<<②②②②
α3,5

α0,1

##❋
❋❋

❋
α1,2

<<②②②②

##❋
❋❋

α2,3

<<②②②②

##❋
❋❋

α3,4

##❋
❋❋

<<②②②②
α4,5

α1,1

<<①①①
α2,2

<<①①①
α3,3

<<①①①
α4,4

<<①①①①

Given an index ℓ = 0, 1, · · · , 2n, we define the ℓ-th column of Γ̃n as the set of all
vertices αi,j such that i+ j− 1 = ℓ. For example, the vertex αi,i lies on the column

2i− 1. Similarly, given an index r = 1, 2, · · · , n+2, we define the r-th row of Γ̃n as
the set of vertices αi,j of Γ̃n such that j− i+1 = r. Notice that Γn ⊂ Γ̃n has 2n−1
columns and n rows; the row at the bottom consists of the vertices {αi,i}

n
i=1 and

the top row consists of the single vertex α1,n. Following [9] we order the vertices of
Γn as β1 < β2 < · · · < βN so that every row is ordered from left to right and every
element of a row is smaller than every element in the rows below. More precisely:
we put β1 := α1,n, and for βk := αik,jk we put

βk+1 :=

{

αik+1,jk+1 if jk < n,
α1,n−ik if jk = n.

To illustrate: β1 = α1,n, βN = αn,n and βN−k = αn−k,n−k for k = 0, 1, · · · , n− 1.
We sometimes need to extend this ordering on the vertices of Γn to an ordering on
the vertices of Γ̃n. We do this in the following way: we define β0 := α0,1 and

β−k := α0,k+1, β−n−k := αk,n+1

for every 1 ≤ k ≤ n. We notice that the vertex β−m lies on the m–th column of Γ̃n
(for 0 ≤ m ≤ 2n). We always use the following notation: the vertex βk is equal to
αik,jk and it lies on the column ℓk = ℓβk

:= ik + jk − 1. Moreover for a vertex βk
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of Γn we denote by β−
k and β+

k the vertices of Γ̃n given by:

(4.15) β−
k := αik−1,jk β+

k := αik,jk+1.

By construction, both β−
k and β+

k are strictly smaller than βk and ℓβ±

k
= ℓβk

± 1.

We will also need the following notation: for a vertex βk of Γn and a column index
ℓ ∈ [1, 2n− 1] of Γn we define the index

(4.16) (βk : ℓ) = max{βs | − 2n ≤ s ≤ k, βs lies on the ℓ-th column}.

The following equalities are a direct consequence of the definition:

(βk : ℓk) = βk(4.17)

(βk : ℓk ± 1) = β±
k(4.18)

(α1,j : ℓ) = β−ℓ ∀ 0 ≤ ℓ < j,(4.19)

(βN : 2k − 1) = βN−(n−k) ∀ 1 ≤ k ≤ n(4.20)

(βk : t) = (βk−1 : t) ∀t 6= ℓk.(4.21)

The following technical result will be used later.

Lemma 4.3. For 1 ≤ k ≤ N and 1 ≤ t ≤ 2n− 2, either (βk : t+ 1) = (βk : t)+ or
(βk : t+ 1)− = (βk : t).

Proof. Let βs := (βk : t) and βr := (βk : t + 1). Then, βs and βr lie in different
columns and either βs < βr or βr < βs. If βs < βr then β−

r = βs by maximality of
βs. If βr < βs then βr = β+

s by maximality of βr. �

4.4. The desingularization of Feigin and Finkelberg. In this section we recall
the construction of a desingularization Rn // //F lan of the complete degenerate flag
variety F lan due to E. Feigin and M. Finkelberg [9]. We fix a complex vector space
V of dimension n + 1 and ordered basis {f1, · · · , fn+1}. For every 1 ≤ k ≤ N we
consider the coordinate subspace Vβk

of V given by

(4.22) Vβk
:= Im (prjk−1 ◦ · · · ◦ prik) = 〈f1, . . . , fik−1, fjk , . . . , fn+1〉

with the convention that f0 = 0 so that V1,j = 〈fj , · · · , fn+1〉 (as before, the
parenthesis 〈· · · 〉 denotes the C-linear span of the collection of vectors enclosed
within them and prk : V → V is the projection along the line generated by fk).
Notice that the coordinate subspace Vβk

is the analogous ofWik,jk in [9] taking into
account our notation (2.1). We decorate the collection (Vβk

)Nk=1 with the subspaces

Vβ0
= Vβ−k

:= {0} Vβ−n−k
:= V

for every k = 1, · · · , n. In [9, Definition 2.1], the variety Rn is defined as the variety
of collections (Zβk

)Nk=1 such that

Zβk
∈ Grik(Vβk

),(4.23)

Zβ−

k
⊂ Zβk

,(4.24)

prjk(Zβk
) ⊂ Zβ+

k
,(4.25)

with the convention that Z0,k = {0} and Zk,n+1 = V for 1 ≤ k ≤ n. The variety
Rn is a tower of P1-fibrations: for every 1 ≤ s ≤ N we consider the variety Rn(s) of
“truncated” collections (Zβk

)sk=1 satisfying conditions (4.23), (4.24), (4.23). Then
there is a natural epimorphism

pn(s) : Rn(s+ 1) // // Rn(s) : (Zβi
)1≤i≤s+1 7→ (Zβi

)1≤i≤s.

whose fiber is P1. In particular Rn is a smooth projective variety and the map

pn : Rn → F lan+1 : (Zβk
)Nk=1 7→ (Zi,i)1≤i≤n

is a desingularization of F lan+1 ([9]).



DEGENERATE FLAG VARIETIES OF TYPE A AND C ARE SCHUBERT VARIETIES 11

4.5. A Bott-Samelson resolution of Xσn
. In this Section we discuss a Bott-

Samelson resolution of the Schubert varietyXσn
(see (1.2)). We choose the following

reduced expression for the permutation σn ∈ Sym2n :

(4.26) σn = sn ◦ (sn−1 ◦ sn+1) ◦ (sn−2 ◦ sn ◦ sn+2) ◦ · · · ◦ (s1 ◦ s3 ◦ · · · ◦ s2n−1)

(si denotes the simple transposition (i, i+1)). In particular we see that the length

of σn is N =
(

n+1
2

)

and the simple reflections appearing in (4.26) are in bijection
with the vertices of Γn as follows

σn = τβ1
◦ τβ2

◦ · · · ◦ τβN
.

To illustrate: τβ1
= sn, τβ2

= sn−1, τβN
= s2n−1. By construction, τβk

= sℓk .
We fix a complex vector spaceW of dimension 2n with ordered basis {e1, · · · , e2n}.

Given two complete flags

U• = (U1 ⊂ U2 ⊂ · · · ⊂ U2n−1 ⊂W ), W• = (W1 ⊂W2 ⊂ · · · ⊂W2n−1 ⊂W )

in SL2n/B and an integer k = 1, 2, · · · , 2n − 1, the pair (U•,W•) is said to be in
relative position k if Ui = Wi for every i 6= k. Let F• be the standard flag of W ,
i.e. Fi = 〈f1, . . . , fi〉, for every 0 ≤ i ≤ 2n (F0 := {0}). Notice that the subspace
Fn+i was denoted by Un+i before and we freely use the two notations. We consider
the variety

(4.27) BSn := {(Uβk
• )Nk=0 ∈ (SL2n/B)N+1|

Uβ0
• = F• and (U

βk+1

• , Uβk
• ) is

in relative position ℓk+1
}.

This variety is the Bott-Samelson variety associated with the reduced expression
(4.26) of σn. In particular, the following result is well-known [15], [5].

Proposition 4.4. The variety BSn is smooth. The map

(4.28) ρn : BSn // // Xσn
: (Uβk

• )Nk=0
✤ // (UβN

2k−1)
n
k=1

is a desingularization.

We now give a description of BSn which will be used later.

Definition 4.5. Let Bn be the projective variety of collections (Uβk
)Nk=−2n (indexed

by the vertices of Γ̃n) such that, for every 1 ≤ k ≤ N and 0 ≤ t ≤ 2n,

Uβ−t
= Ft,(4.29)

Uβk
∈ Grℓk(W ),(4.30)

Uβk
⊂ Un+ik ,(4.31)

Uβ−

k
⊂ Uβk

⊂ Uβ+

k
.(4.32)

Proposition 4.6. The map θn : BSn → Bn which sends a point Uβ•

• = (Uβk
• )Nk=0

to the collection θn(U
β•

• ) = (Uβk
)Nk=−2n defined by

Uβk
:=







Uβk

ℓk
if k ≥ 0

Uβ0

k if k < 0

is an isomorphism of projective varieties. The inverse ψ = θ−1
n sends a point

(Uβk
)Nk=−2n of Bn to the collection of complete flags (Uβk

• )Nk=0 defined by

(4.33) Uβk

t := U(βk:t)

for every 1 ≤ t ≤ 2n− 1.

Proof. Let us prove that the map θn is well-defined. This is based on the following
technical result.
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Lemma 4.7. Let (Uβk
• )Nk=0 be a point of BSn. Then,

(i) For every 1 ≤ k ≤ N , and 1 ≤ t ≤ 2n− 1 we have

(4.34) Uβk

t = U
(βk:t)
t

(ii) For 1 ≤ k ≤ N

(4.35) Fjk−1 ⊂ Uβk

ℓk
⊂ Fn+ik

Proof. By definition, Uβk

t = U
βk−1

t for t 6= ℓk and, in particular, (4.34) holds for
k = 1. By induction on k ≥ 1, using (4.21), we get the desired (4.34) .

If βk = α1,jk then ℓk = jk and (βk : jk − 1) = β−(jk−1) (see (4.19)); in view of

(4.34) we have Uβk

ℓk−1 = Uβ0

ℓk−1 = Fℓk−1 and hence Fjk−1 = Uβk

ℓk−1 ⊂ Uβk

ℓk
. Similarly,

if βk = αi,n, then ℓk = n + i − 1 and (βk : ℓk + 1) = β+
k = β−(n+i); in view of

(4.34), Uβk

ℓk+1 = Uβ0

ℓk+1 = Fn+i and hence Uβk

ℓk
⊂ Uβk

ℓk+1 = Fn+i. We hence assume

that both β−
k and β+

k are vertices of Γn. In this case we have

U
β
−

k

ℓk−1 = Uβk

ℓk−1 ⊂ Uβk

ℓk
⊂ Uβk

ℓk+1 = U
β
+

k

ℓk+1.

By induction on the row index, (using (4.15)) the desired (4.35) follows. �

Given Uβ•

• ∈ BSn, in view of Lemma 4.7 we have Uβk

ℓk
∈ Grℓk(Un+ik); moreover

U
β
−

k

ℓ
β
−

k

= Uβk

ℓk−1 ⊂ Uβk
⊂ Uβk

ℓk+1 = U
β
+

k

ℓ
β
+

k

and hence θn(U
β•

• ) satisfies all the four conditions (4.29)–(4.32) and the map θn is
well-defined and it is clearly algebraic.

With the help of Lemma 4.3 and in view of (4.34), one easily checks that the
map ψ is well-defined. It is clearly algebraic and the composition with θn is the
identity. �

4.6. Main Result. We are now ready to state and prove the main result of the
this appendix.

Theorem 4.8. There exists an isomorphism ψn : Rn //BSn of projective vari-
eties such that the following diagram

(4.36) Rn
ψ //

pn
����

BSn

ρn
����

F lan+1

ζ // Xσn

commutes (where the map ζ is the one in Theorem 1.2).

Proof. Recall that for every 1 ≤ i ≤ j ≤ n we have a commutative diagram

Un+i

πi

��

�

� // Un+j

πj

��
V

prj−1◦···◦pri // V

and it follows immediately from (4.22) that

(4.37) Vβk
= πjk(Un+ik).
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Since dim Ker (πjk ) = jk − 1 and hence ℓk = ik + dim Ker (πjk), we have an
embedding of projective varieties:

ζβk
: Grik(Vβk

)
�

� // Grℓk(Un+ik),

Z
✤ // π−1

jk
(Z).

This induces an embedding

ζ = ζn :=
∏N

k=1 ζβk
:
∏N

k=1 Grik(Vβk
) �
� // ∏N

k=1 Grℓk(Un+ik) .

In view of (4.23), the variety Rn is contained in
∏N

k=1 Grik(Vβk
) and we claim

that the image ζ(Rn) is canonically isomorphic to the variety Bn (see Definition
4.5). Indeed let U = (Uβk

)Nk=1 = ζ((Zβk
)Nk=1) ∈ ζ(Rn), i.e. Uβk

:= π−1
jk

(Zβk
). We

decorate the collection U = (Uβk
)Nk=1 with the subspaces Uβ−t

:= Ft, for 0 ≤ t ≤ 2n.

The decorated collection Ũ = (Uβk
)Nk=−2n satisfies (4.29), (4.30), (4.31) and (4.32),

i.e. Ũ ∈ Bn. Indeed, (4.29) is clearly satisfied, (4.30) follows from (4.23) and (4.31)
follows from (4.24). Since Zβk

⊂ Vβk
= πjk(Un+ik), there exists U ⊂ Un+ik such

that Zβk
= πjk (U); in view of (4.25), prjk(Zβk

) ⊂ Zβ+

k
and we have

π−1
jk+1(Zβ+

k
) ⊃ π−1

jk+1prjk(Zk) = π−1
jk+1πjk+1(U) ⊇ U = π−1

jk
(Zk)

and hence Ũ satisfies (4.32).
On the other hand, let (Uβk

)Nk=−2n be a point of Bn. We define Zβk
:= πjk(Uβk

)

(k = 1, 2, · · · , N) and we check that (Zβk
)Nk=1 ∈ Rn, i.e. it satisfies (4.23), (4.24)

and (4.25). In view of (4.37), Zβk
∈ Vβk

. Since Uβ−

k
⊂ Uβk

we have Ker πjk =

Fjk−1 ⊆ Uβk
and hence dim Zβk

= ℓk−(jk−1) = ik. It follows that Zβk
∈ Grik(Vβk

)
and (4.23) is satisfied. Since Uβ−

k
⊂ Uβk

, (4.24) follows. To prove (4.25), we notice

that

prjk(Zβk
) = prjk ◦ πjk (Uβk

) = πjk+1
(Uβk

) ⊆ πjk+1
(Uβ+

k
) = Zβ+

k

and the claim is proved.
In view of Proposition 4.6, the map ψn := θ−1

n ◦ ζn : Rn → BSn is hence an
isomorphism of projective varieties. It remains to check that the diagram (4.36)
commutes. Using (4.20), we get

ρn ◦ ψn((Zβk
)Nk=1) = (π−1

jk
(Zαk,k

))nk=1.

On the other hand, pn((Zβk
)Nk=1) = (Zαk,k

)nk=1, and

ζ ◦ pn((Zβk
)Nk=1) = (π−1

jk
(Zαk,k

))nk=1

as desired. �
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G.C.I. was financed by the national FIRB grant RBFR12RA9W. We thank Rocco
Chiriv̀ı, Francesco Esposito and Paolo Bravi for helpful discussions on a previous
version of the present paper. We are especially grateful to Corrado De Concini,
Michael Finkelberg and Evgeny Feigin for their useful comments and to Peter Lit-
telmann and Oksana Yakimova for several discussions about possible applications
of this work.



14 GIOVANNI CERULLI IRELLI, MARTINA LANINI

References

1. I. Assem, D. Simson, A. Skowronski, Elements of the representation theory of associative

algebras. Vol. 1. Techniques of representation theory. London Mathematical Society Student
Texts, 65. Cambridge University Press, Cambridge, 2006.

2. G. Cerulli Irelli, E. Feigin, M. Reineke, Quiver Grassmannians and degenerate flag varieties,
Algebra & Number Theory 6 (2012), no. 1, 165–194. arXiv: 1106.2399.

3. G. Cerulli Irelli, E. Feigin, M. Reineke, Degenerate flag varieties: moment graphs and
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