
On the Mining of Artful Processes

Dipartimento di Ingegneria Informatica, Automatica e Gestionale
Antonio Ruberti

Dottorato di Ricerca in Ingegneria Informatica – XXV Ciclo

Candidate
Claudio Di Ciccio
ID number 795152

Thesis Committee
Prof. Tiziana Catarci
Dr. Massimo Mecella
Prof. Stefano Leonardi
Prof. Marlon Dumas (thesis reviewer)
Dr. Marco Montali (thesis reviewer)

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy in Ingegneria Informatica
2013, September the 4th

Thesis defended on 2013, October the 7th
in front of a Board of Examiners composed by:

Prof. Andrea Clementi (chairman)
Prof. Paolo Ferragina
Prof. Roberto Basili

On the Mining of Artful Processes
Ph.D. thesis. Sapienza – University of Rome

© 2013 Claudio Di Ciccio. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Version: 2013, October the 7th

Website: http://www.dis.uniroma1.it/ cdc

Author’s email: cdc@dis.uniroma1.it

http://www.dis.uniroma1.it/~cdc
mailto:cdc@dis.uniroma1.it

iii

Extended abstract

Motivation and rationale

Process (“prō-,-ses”, noun: a series of actions or operations conducing to an end1)
is the term by which we denote the sequence of activities performed by human
or non-living beings to yield a result. Business process management is based on
the observation that each product that a company provides to the market is the
outcome of a number of activities performed. Nowadays, business processes are the
key instrument to organize these activities and improve the understanding of their
interrelationships. For a long time, formal business processes (characterizing, e.g.,
public administrations, insurance/financial institutions, etc.) have been the main
subject of workflow related research.

Informal processes, a.k.a. “artful processes”, are carried out by those people
whose work is mental rather than physical (managers, professors, researchers, etc.),
the so called “knowledge workers”. With their skills, experience and knowledge, they
are used to performing difficult tasks, which require complex, rapid decisions among
multiple possible strategies, in order to fulfill specific goals. In contrast to business
processes, which are formal and standardized, often informal processes are not even
written down, let alone defined formally, and can vary from person to person even
when those involved are pursuing the same objective. Knowledge workers create
informal processes “on the run” to cope with many of the situations that arise in
their daily work. Though informal processes are frequently repeated, they are not
exactly reproducible even by their originators – since they are not written down
– and can not be easily shared either. Artful processes have goals and methods
that change quickly over time, making them difficult to codify in the context of an
enterprise application. We denote these kinds of processes “artful” in the sense that
there is an art to their execution. In some processes, it is primarily the content in
each process instance – rather than the process itself – that determines the outcome.
Furthermore, many highly specialized processes are developed or refined locally at
the individual or small-team level such that the process cannot easily be separated
from the specific people who perform it. Thus, while the framing process may be
stable at an abstract level, the key details are not. They depend on the skills,
experience, and judgment of the primary actors. As an example, we can consider the
coordination of an international research project. Some deadlines are fixed, such as
review meetings or annual budgeting reports, but the rest of the steps made to meet
the project’s requirements vary from case to case. The publication of deliverables,
the set-up of possible demos, the outcome of task-forces and work packages depend

1Merriam-Webster dictionary

iv Extended abstract

on the objective of the projects, the partners involved, contingencies, and so forth.
Knowledge workers are often used to convey their creativity and intuition into

their job, so to come up with innovative results. Inventing is the “fun” aspect of
their work, in most of the cases. But the “amusing” phases are intertwined with
routine tasks, which are typical of the everyday job. Though not necessarily boring,
they cannot be avoided. For instance, managing a Work Package entails both the
activities of (i) defining the architecture of a new software system for a research
project, and (ii) reminding a partner of the same project that the deadline for the
submission of their contribution to the next deliverable is expiring. The routine
phases could be allocated, at least partly, to automated systems, since they often
require no creativity. Such a system could assist knowledge workers to complete
them.

Knowledge workers cannot be realistically expected to instruct the assistive
system by modeling their artful processes: it would be time-consuming both in the
initial definition and in the potential continuous revisions. To make things worse,
time is the crucial resource that usually knowledge workers indeed lack.

The repetitive patterns could be learnt by machines, tracking the operations of
a human. Smart solutions to known artful processes frequently change instead, thus
computers are by far less likely to infer the inventions. On the other hand, knowledge
workers would not find any interference in their creative work useful. Therefore, a
system which is able to learn the routine part of ever-changing processes, and assist
the users accordingly, may leave more time to the knowledge workers for the creative
aspects of their work.

Outcomes and ideas are often shared by means of email conversations, which are
a fast, reliable, permanent way of keeping a track of the activities that knowledge
workers fulfill. Despite the advent of structured case management tools, many
enterprise processes are still “run” over emails. Thus, reverse engineering workflows
of such processes and their integration with artefacts and other structured processes
can accurately depict the enterprise’s process landscape. A system able to infer
the models of the processes laying behind the email messages exchanged would be
valuable and the result could materialize almost freely: the set-up time would be
heavily reduced indeed.

This is the purpose of our approach, which is the core of this thesis and is named
MailOfMine. Its investigation mainly resides in the Machine Learning area. More
specifically, it relates to Information Retrieval (IR) and Process Mining (PM). We
adopted well-known IR techniques in order to extract the activities out of the email
messages. We proposed new algorithms for PM in order to discover the temporal
rules that such activities adhere to. The set of such rules, intended as temporal
constraints, constitute the so called declarative modeling of workflows. Declarative
models differ from the imperative in that they do not explicitly represent every
possible execution that a process can be enacted through. I.e., there is no graph-like
structure determining the whole evolution of a process instance, from the beginning
to the end. It just establishes a set of constraints that must hold true, whatever
the evolution of the process instance will be. What is not explicitly declared to be
respected, is allowed. The reader can easily see that it is better suited to processes
subject to frequent changes, with respect to the classical approach.

Analyzing the problem from a more abstract perspective, this work challenges
the problem of discovering highly flexible workflows (such as artful processes), out

v

of semi-structured information (such as email messages).

Research contribution
During the development of our approach, we contributed to the research fields of
Knowledge Discovery and Process Mining. Here we briefly summarize our research
contribution in these areas.

R1 In order to define semantics of the state-of-the-art taxonomy of constraints for
declarative workflow models, namely Declare, LTL (Linear Temporal Logic)
over finite strings (LTLf) was the standard. We made use of regular expressions,
instead. Such a choice allowed us to exploit the rich scientific machinery of tools
and algorithms for modeling, altering and updating finite state automata in
order to model, alter and update declarative process models.

R2 We developed a new algorithm, named MINERful, able to discover a declarative
process model out of logs. Its main innovation resides in the two-step nature
of the execution, where the first phase builds a knowledge base containing
statistical information on every single task read, and the second discovers the
validity of Declare constraints over the log by querying that knowledge base.
Two main versions of MINERful have been developed.

(a) The first release was able to infer whether constraints of the declarative
workflow held or not, and returned a process model accordingly.

(b) The second release improved the preceding one, by associating a numerical
Support to each constraint, rather than asserting whether it was verified
or not in a boolean fashion. Namely, it computed a statistical-based value,
according to which constraints were more or less likely to be verified in
the discovered process. Moreover, it associates every constraint to metrics
estimating a level of relevance, on the basis of the number of appearances
of the involved activities in the log.

We proved MINERful to be polynomial in the size of the input, and faster
than the current state-of-the-art algorithms. We checked the performances of
MINERful over both synthetic logs (Research Constribution R3), synthetic
error-injected logs (R4), and case study benchmarks.

R3 We realized an automated tool for the generation of synthetic logs, defined
on the basis of either Declare constraints or any other regular expression (see
Research Constribution R1). Usually, the tool adopted for this kind of task was
CPNTools, which is a software suite for the management of Colored Petri Nets –
hence, more appropriate for imperative rather than declarative models.

R4 Also thanks to the results obtained in Research Constributions R1 and R3, we
could create a controlled error injector for logs, i.e., a software module able to
insert user-tunable noise into existing logs. This tool has been utilized in order
to study how mined processes change when logs are affected by errors.

R5 We applied document indexing techniques in order to find out the possible
witnesses of the execution of activities inside email messages.

vi Extended abstract

R6 We assessed the quality of our approach, in terms of compliance of the overall
discovered process to the expected behavior. To this extent, we conducted an
extensive analysis together with an expert, over a real case study concerning
the management of several European Research Projects.

R7 We proposed a novel visualization framework for declarative workflows. Rather
than visualizing only the whole process model at once, i.e., in a single graph,
we also considered an alternative view, focusing on single activities and the
constraints specifically related to them. To this aim, we used a paradigm for
the representation of constraints essentially based on the concept of Cartesian
diagrams, putting causality on the abscissae and time on the ordinates. We
called it “local view”, as opposed to the “global view” representing the whole
interconnection of constraints over activities. We adopted the global view as an
bird’s eye perspective on the process. We made use of the local view to show
the executable alternatives, once a given activity was assumed to be done.

R8 We designed a modular architecture for extracting activities out of email archives
(mailboxes) and then discover the models of processes of which those email
messages reported the execution.

Parts of our work were published in the following papers. Each is labeled with
the research challenges addressed.

[35] Di Ciccio, C., Mecella, M. “Studies on the Discovery of Declarative Control
Flows from Error-prone Data”. Full paper at 2013 International Symposium on
Data-Driven Process Discovery and Analysis, SIMPDA 2013, Riva del Garda,
Italy, August 30, 2013.
Research Constributions R1, R3, R2b.

[36] Di Ciccio, C., Mecella, M. “A Two-Step Fast Algorithm for the Automated
Discovery of Declarative Workflows”. Full paper at 2013 IEEE Symposium on
Computational Intelligence and Data Mining, CIDM 2013, Singapore, 15-19
April 2013.
Research Constributions R1, R3, R2b.

[32] Di Ciccio, C., Marrella, A., Russo, A., “Knowledge-intensive Processes: An
Overview of Contemporary Approaches”. Proceedings of the 1st International
Workshop on Knowledge-intensive Business Processes, KiBP 2012, Rome, Italy,
June 15, 2012.
R2a, R7.

[34] Di Ciccio, C., Mecella, M., “Mining Constraints for Artful Processes”. in
Proceedings of the 15th International Conference on Business Information
Systems, BIS 2012, Vilnius, Lithuania, May 21-23, 2012.
Research Constributions R1, R3, R2a.

[33] Di Ciccio, C., Mecella, M., “MINERful, a Mining Algorithm for Declarative
Process Constraints in MailOfMine”. Technical Report of Dipartimento di In-
gegneria Informatica, Automatica e Gestionale “Antonio Ruberti” - SAPIENZA,
Università di Roma. March 2012.
Research Constributions R1, R3, R2a.

vii

[41] Di Ciccio, C., Mecella, M., Scannapieco, M., Zardetto, D., Catarci, T.,
“MailOfMine – Analyzing Mail Messages for Mining Artful Collaborative
Processes”. Data-Driven Process Discovery and Analysis, Springer, 55-81 (ex-
tended paper for SIMPDA 2011 post- conference proceedings [40]).
Research Constributions R1, R8, R6.

[31] Di Ciccio, C., Mecella, M., Catarci, T., “Representing and Visualizing Mined
Artful Processes in MailOfMine”. HCI-KDD workshop, Information Quality in
e-Health - 7th Conference of the Workgroup Human-Computer Interaction and
Usability Engineering of the Austrian Computer Society, USAB 2011, Graz,
Austria, November 25-26, 2011.
Research Constributions R1, R7.

[38] Di Ciccio, C., Mecella, M., Scannapieco, M., Zardetto, D., “Groupware Mail
Messages Analysis for Mining Collaborative Processes”. Proceedings of the
19th Italian Symposium on Advanced Database Systems, SEBD 2011, Maratea,
Italy, June 26-29, 2011 (poster paper).
Research Constribution R8.

[39] Di Ciccio, C., Mecella, M., Scannapieco, M., Zardetto, D., Catarci, T., “Group-
ware Mail Messages Analysis for Mining Collaborative Processes”. Technical
report of Dipartimento di Ingegneria Informatica, Automatica e Gestionale
“Antonio Ruberti” - SAPIENZA, Università di Roma. January 2011.
Research Constribution R8.

Thesis Outline
Chapter 1 introduces this work, with more insights on the problem and the motiva-

tion for our research.

Chapter 2 analyzes the current state of the art in the areas of (i) Information Re-
trieval, with a deeper insight on email-related tools, techniques and approaches,
(ii) Process Modeling, especially focusing on declarative approaches such as
Declare, and (iii) Process Mining.

Chapter 3 depicts the modular architecture of MailOfMine, seen as a system.
There, the discovery of process models out of logs extracted by email archives is
subdivided in functional elements, abstracted as high-level software components.
A brief explanation of the techniques adopted in each of them is thus provided,
in order to link them to a given stage of the computation. There, the software
tools that we implemented or integrated as a realization are specified. We used
as third-party components MySQL for storing data, JBoss Application Server
for containing the components deployed as Java Enterprise Beans, Apache Solr
for the information retrieval task of determining which email messages could
be the evidence of an executed activity, dk.bricks.automaton library for the
generation and management of finite state automata.

Chapter 4 details the new Process Mining algorithm that we introduced, for the
discovery of declarative workflows. We present it into two versions: the first,
determining whether any constraint among the possible Declare templates

viii Extended abstract

hold or not. The second, giving each constraint a degree of Support, in terms
of likelihood for a constraint to hold true, together with Confidence Level and
Interest Factor for estimating the relevance of the mined constraints. Both
compute their result on the basis of the same statistical information gathered
from the log. We prove that, even though the second is more sophisticated,
the complexity remains the same.

Chapter 5 shows the results of performance tests over synthetic data, the observation
of the results gathered when dealing with artificially error-injected logs, and the
evaluation of our system applied to a real case study, based on the mailboxes
of people involved in this research work. Finally,

Chapter 6 concludes the discussion and traces some future developments that might
arise from the basis of this work.

Additional work

The author of this thesis has also been involved in another research project during
the earlier stages of the Ph.D. programme. He has been a member of the SM4All2

FP7 European Research Project (2009-2011) team, for SAPIENZA, University of
Rome. The aim of SM4All was the development of a comprehensive system, able
to assist differently abled people in their everyday life at home. As a distributed
pervasive computing architecture, it was thought to orchestrate the domotic devices
spread around the house, so to let users achieve their goals independently. I.e.,
it had to guarantee the least degree of intervention possible for nurses. In other
words, it aimed at being an innovative way to overcome the barriers that disabilities
might oppose to the autonomy of users. The contribution of SAPIENZA was the
development of an automated composition engine, applied to domotic sensors and
actuators abstracted as services. We report it here in terms of published papers for
sake of completeness, though the themes covered in their subject is out of scope for
this thesis.

[26] De Giacomo, G., Di Ciccio, C., Felli, P., Hu, Y., Mecella, M., “Goal-based
Composition of Stateful Services for Smart Homes”. Proceedings of the 20th
International Conference on Cooperative Information Systems, CoopIS 2012,
On the Move to Meaningful Internet Systems (OTM 2012) Confederated
International Conferences , Rome, Italy, September 10-14, 2012.

[14] Caruso, M., Di Ciccio, C., Iacomussi, E., Kaldeli, E., Lazovik, A., Mecella, M.,
“Service Ecologies for Home/Building Automation”. Proceedings of the 10th
International IFAC Symposium on Robot Control, SYROCO 2012, Dubrovnik,
Croatia, September 05-07, 2012.

[37] Di Ciccio, C., Mecella, M., Caruso, M., Forte, V., Iacomussi, E., Rasch, K.,
Santucci, G., Tino, G., “The Homes of Tomorrow: Service Composition and
Advanced User Interfaces”. ICST Transactions on Ambient Systems, 11 (10-12),
e2, 2011.

2http://www.sm4all-project.eu/

http://www.sm4all-project.eu/

ix

[15] Catarci, T., Di Ciccio, C., Forte, V., Iacomussi, E., Mecella, M., Santucci, G.,
Tino, G., “Service Composition and Advanced User Interfaces in the Home
of Tomorrow: the SM4All Approach”. Proceedings of the 2nd International
ICST Conference on Ambient Media and Systems, AMBI-SYS 2011, Porto,
Portugal, March 24-25, 2011.

[27] De Masellis, R., Di Ciccio, C., Mecella, M., Patrizi, F., “Smart Home Planning
Programs”. Proceedings of the 7th International Conference on Service Systems
and Service Management, ICSSSM 2010, Tokyo, Japan, June 28-30, 2010.

[7] Baldoni, R., Di Ciccio, C., Mecella, M., Patrizi, F., Querzoni, L., Santucci,
G., et al., “An Embedded Middleware Platform for Pervasive and Immersive
Environments for-All”. Proceedings of the 6th Annual IEEE Communica-
tions Society Conference on Sensor, Mesh and Ad Hoc Communications and
Networks, SECON 2009, Rome, Italy, June 22-26, 2009.

xi

Contents

Extended abstract iii

1 Introduction and rationale 1

2 Background and State of the Art 5
2.1 Information Retrieval and Text Mining 5

2.1.1 Analysis of email messages 6
2.2 Process Modeling . 7

2.2.1 Automaton-based models . 7
2.2.2 Petri-Net-based models . 9
2.2.3 Declarative models . 11
2.2.4 Constraint Templates in Declare 15

2.3 Process Mining . 23
2.3.1 Analysis of email messages 26

3 Architecture and design 27
3.1 Architecture of MailOfMine as a software system 27
3.2 Database . 31
3.3 Specification of declarative workflows as constraints 34

3.3.1 An example . 36
3.4 Process visualization . 40

3.4.1 Process schema . 40
3.4.2 Running instances . 45

4 The Workflow Discovery Algorithm 49
4.1 MINERful . 49

4.1.1 MINERfulKB . 50
4.1.2 The algorithm: a bird’s eye view 53
4.1.3 Construction of the MINERfulKB 53
4.1.4 Discovery of constraints . 60
4.1.5 Discovery of constraints and their metrics 65
4.1.6 The complexity of the MINERful algorithm 77

5 Experiments and evaluation 79
5.1 Experiments . 79

5.1.1 Experiments over artificial error-injected logs 86
5.2 Evaluation on a real case study . 88

xii Contents

6 Conclusions 105
6.1 Further development . 105

6.1.1 Distance computing in Relation Constraints 105
6.1.2 Refinement of constraints filtering 106
6.1.3 Uncertain logs . 106
6.1.4 Branching Declare . 107
6.1.5 Biochemistry and forensics 107

A From indicia to log 109
A.1 The SQL query . 109
A.2 The XML result of the query for creating the log 111
A.3 The XSLT stylesheet to transform the XML log into the XES format 146
A.4 The XES log . 149

B The discovered process 169
B.1 The local Finite State Automata, generated on the basis of the dis-

covered process’ constraints . 169
B.2 The discovered process’ Finite State Automaton 178
B.3 The discovered process, as in the output of the run of MailOfMine 179

1

Chapter 1

Introduction and rationale

For a long time, formal business processes (e.g., the ones of public administrations,
of insurance/financial institutions, etc.) have been the main subject of workflow
related research.

Process management systems (PMSs) hold the promise of facilitating the everyday
operation of many enterprises and work environments. However, PMSs remain
especially useful in a limited range of applications where business processes can
be described with relative ease. Current modeling techniques are used to codify
processes that are completely predictable: all possible paths along the process are
well-understood, and the process participants never need to make a decision about
what to do next, since the workflow is completely determined by their data entry or
other attributes of the process. This kind of highly-structured work includes mainly
production and administrative processes. However, most business functions involve
collaborative features and unstructured processes that do not have the same level of
predictability as the routine structured work [93].

In [52] processes have been classified on the basis of their “degree of structure”.
Traditional PMSs perform well with fully structured processes and controlled in-
teractions between participants. A major assumption is that such processes, after
having been modeled, can be repeatedly instantiated and executed in a predictable
and controlled manner. However, even for structured processes, the combination
and sequence of tasks may vary from instance to instance due to changes in the
execution context such as user preferences, or modifications in the environment such
as exceptions and changes in the business rules. In such cases (structured processes
with ad hoc exceptions), processes should be adapted accordingly (e.g. by adding,
removing or generating an alternative sequence of activities). In general, structured
processes can be described by an explicit and accurate model. But in scenarios
where processes are to a large extent unclear and/or unstructured, process modeling
cannot be completed prior to execution (due to lack of domain knowledge a priori
or to the complexity of task combinations). Hence the classical axiom “first model,
then execute” – valid for the enactment of structured processes – fails. As processes
are executed and knowledge is acquired via experience, it is needed to go back to
the process definitions and correct them according to work practices. This is the
case of unstructured processes with predefined fragments, where processes cannot
be anticipated, and thus cannot be studied or modeled as a whole. Instead, what
can be done is to identify and study a set of individual activities, and then try to
understand the ways in which these activities can precede or follow each other. At

2 1. Introduction and rationale

the end of the classification lies the category of unstructured processes, where it is
impossible to define a priori the exact steps to be taken in order to complete an
assignment. Since there is no pre-defined view of the process, process steps are
discovered as the process scenario unfolds, and might involve decisions not based on
some “codified policy”, but on the user expertise applied on the scenario at hand.

The class of knowledge-intensive processes is transversal with respect to the
classification proposed in [52]. In the literature, different definitions have been
proposed about what does “knowledge-intensive” mean for a business process. In [46]
a process is defined as knowledge intensive if its value can only be created through
the fulfillment of the knowledge requirements of the process participants, while
Davenport recognizes the knowledge intensity by the diversity and uncertainty
of process input and output [24]. In our view, a knowledge-intensive process is
characterized by activities that can not be planned easily, may change on the fly and
are driven by the contextual scenario that the process is embedded in. The scenario
dictates who should be involved and who is the right person to execute a particular
step, and the set of users involved may be not formally defined and be discovered as
the process scenario unfolds. Collaborative interactions among the users typically is
a major part of such processes, and new process steps might have to be defined at
run time on the basis of contextual changes. Despite the popularity of commercial
PMSs, there is still a lack of maturity in managing such processes, i.e., a lack of a
semantic associated to the models or an easy way to reason about that semantic.

Informal processes, a.k.a. “artful processes” [50], are carried out by those
people whose work is mental rather than physical (managers, professors, researchers,
engineers, etc.), the so called “knowledge workers” [102]. With their skills, experience
and knowledge, they are used to perform difficult tasks, which require complex,
rapid decisions among multiple possible strategies, in order to fulfill specific goals.
In contrast to business processes that are formal and standardized, often informal
processes are not even written down, let alone defined formally, and can vary
from person to person even when those involved are pursuing the same objective.
Knowledge workers create informal processes “on the fly” to cope with many of the
situations that arise in their daily work. Though informal processes are frequently
repeated, they are not exactly reproducible even by their originators – since they
are not written down – and can not be easily shared either. Their outcomes and
information are exchanged very often by means of email conversations, which are a
fast, reliable, permanent way of keeping track of the activities that they fulfill.

The idea to apply process mining in the context of workflow management systems
was introduced in [2]. There, processes were modelled as directed graphs where
vertices represented individual activities and edges stood for dependencies between
them. Cook and Wolf, at the same time, investigated similar issues in the context of
software engineering processes. In [21], they described three methods for process
discovery: one using neural networks, another with a purely algorithmic technique,
the last adopting a Markovian approach. The authors consider the latter two the
most promising approaches. The purely algorithmic approach builds a finite state
machine where states are fused if their futures (in terms of possible behavior in the
next k steps) are identical. The Markovian approach uses a mixture of algorithmic
and statistical methods and is able to deal with noise. Note that the results presented
in [21] are limited to sequential behavior. They further extended their work to the
discovery of concurrent processes in [22]. There, they also propose specific metrics,

3

i.e., entropy, event type counts, periodicity, and causality, so to use them in order to
discover models out of event streams.

[102] describes the “ACTIVE” EU collaborative project, coordinated by British
Telecom. Such project addresses the need for greater knowledge worker productivity
by providing more effective and efficient tools. Among the main objectives, it aims at
helping users to share and reuse informal processes, even by learning those processes
from the user’s behavior.

Understanding artful processes involving knowledge workers is becoming crucial
in many scenarios. Here we mention some of them:

• personal information management (PIM), i.e., how to organize one’s own
activities, contacts, etc. through the use of software on laptops and smart
devices (iPhones/iPads, smartphones, tablets). Here, inferring artful processes
in which a person is involved allows the system to be proactive and thus drive
the user through its own tasks (on the basis of the past) [102, 16];

• information warfare, especially in supporting anti-crime intelligence agencies:
let us suppose that a government bureau is able to access the email account
of a suspected person. People planning a crime or an act out of law are used
to speak a language of their own to express duties and next moves, where
meanings may not match with the common sense. Although, a system might
build the processes that lay behind their communications anyway, exposing
the activities and the role of the actors. At that point, translating the sense of
misused words becomes an easier task for investigators, and allows to infer the
criminal activities of the person(s) under suspicion;

• enterprise engineering: in design and engineering, it is important to preserve
more than just the actual documents making up the product data. Preserving
the “soft knowledge” of the overall process (the so-called product life-cycle) is
of critical importance for knowledge-heavy industries. Hence, the idea here
is to take to the future not only the designs, but also the knowledge about
processes, decision making, and people involved [51, 49, 85].

The objective of the approach, proposed here, is to automatically build a set
of workflow models that represent the artful processes laying behind the knowl-
edge workers activities, on top of a collection of email messages. There are many
advantages out of this work. First of all, the unspecified agile processes that are
autonomously used become formalized: since such models are not defined a priori
by experts but rather inferred from real-life scenarios that actually took place, they
are guaranteed to respect the true executions (often Business Process Management
tools are used to show the discrepancy between the supposed and the concrete
workflows). Moreover, such models can be shared, compared, preserved, so that the
best practices might be put in evidence from the community of knowledge workers,
to the whole business benefit. Finally, an analysis over such processes can be done,
so that bottlenecks and delays in actual executions can be found out.

The approach we want to pursue essentially involves two research fields, con-
cerning different phases of the overall processing. Through information extraction
procedures, the tasks, which the email messages are about, are found. Process
mining techniques are used to abstract process models representing the workflows,
which the sets of subsumed tasks were considered traces of.

4 1. Introduction and rationale

Our approach is named MailOfMine.
The following chapters outline how we realized it.
Chapter 2 analyzes the current state of the art in the areas of Information

Retrieval, Process Modeling and Process Mining. Chapter 3 depicts the modular
architecture of MailOfMine, seen as a system. The actual realization and imple-
mentation of the components sketched is outlined there as well. Chapter 4 details
the new Process Mining algorithms we introduced for the discovery of declarative
workflows Chapter 5 shows the results of testings over synthetic data and the user
evaluations of a real case study, based on real mailboxes of people involved in this
research work. Finally, Chapter 6 concludes the discussion and traces some future
developments that might arise from the basis of this work.

5

Chapter 2

Background and State of the
Art

MailOfMine is an approach mainly concerning different topics in the wide area
of Machine Learning. Machine Learning [64] deals with the challenge of how to
construct computer programs that automatically improve with experience. Our
objective is to extract information out of semi-structured data, provided by email
conversations, so to infer the process model laying behind the execution of the
activities, which the email messages were the proof of. Then, more in detail, this
work relates with Information Retrieval, since we aim at finding which email messages
traced the fulfillment of activities, and Process Mining, due to the final discovery
of workflows on the basis of the gathered information. In the following, we outline
the related work in, resp., Sections 2.1 and 2.3. Since our work mainly focused on
Process Mining, the latter is delved more in depth. We also dedicate Section 2.2 to
the comparative analysis of the main process modeling foundations in literature.

2.1 Information Retrieval and Text Mining

Information Retrieval (IR) is finding material of unstructured nature (usually text)
satisfying an information need, from within large collections of documents ([58]). Text
Mining, or Knowledge Discovery from Text ([1]), deals with the machine supported
analysis of text. It refers generally to the process of extracting interesting information
and knowledge from unstructured text. It is a field in the intersection of related areas
such as information retrieval, machine learning, statistics, computational linguistics
and especially data mining.

Natural language text contains much information that is not directly suitable for
automatic analysis by a computer. However, computers can be used to sift through
large amounts of text and extract useful information from single words, phrases or
passages. Therefore, text mining can be interpreted in the sense of an information
extraction activity, i.e. as a restricted form of full natural language understanding,
where we know in advance what kind of semantic information we are looking for.
The main task in this case is to extract parts of text and assign specific attributes
to it.

A particular field, related to our work, is Text Categorization (TC, also known
as Text Classification or Topic Spotting), i.e., assigning categories (symbolic labels),

6 2. Background and State of the Art

from a given set, to natural language texts, on the basis of endogenous knowledge
only. I.e., knowledge is extracted from the documents only and not from other
possible external sources [84]. The categories in the given set can be two (Binary TC,
i.e., a document can belong to a category or its complement) or more. TC is applied
in many contexts, such as document filtering, automated metadata generation, spam
filtering. Apache Solr, MG4J[12] and Terrier [70] are famous Information Retrieval
platforms.

2.1.1 Analysis of email messages

[81] proposes a method employing text mining techniques to analyze email messages
collected at a customer center. The method uses two kinds of domain-dependent
knowledge: (i) a key concept dictionary manually provided by human experts,
and (ii) a concept relation dictionary automatically acquired by a fuzzy inductive
learning algorithm. Based on [80], the mentioned method takes as input the subject
and the body of an email, decides a text class for the email, extracts key concepts
from email messages and finally presents their statistical information. This work
shows how to cope with the information extraction in the context of email messages,
for the construction of a key concept dictionary. Our aim is not restricted to the
extraction of the key concept dictionary, but rather deals with the mining of activities
performed on top of them; on the other side, in MailOfMine, we assume to rely
on a user-provided dictionary of keywords.

[42] shows a technique aimed at classifying email messages into activities. Ac-
tivities, in turn, can represent structured sequences of elementary units of work,
as explained in their work [53] . Their tool is capable of associating the given
email to one of them, on the basis of the text within the message and the people
involved, represented by their email addresses appearing as senders or recipients.
Our approach, conversely, attempts to learn which the structure of processes laying
behind email messages is, when the activities and the workflows are unknown.

[11] focuses on the problem of finding matching addresses, i.e., clustering them
so to identify contacts having more than one email address. Their methodology
adopts a similarity measure based on a mixture of Levenshtein distances of surnames,
names, email address base (i.e., the part which precedes the ’@’ character). Once
the “actors” involved are identified, a social network connecting the shared work of
people is built.

As the aforementioned work of Bird et al [11] investigated collaborations looking
at people involved in the discussion, Cohen et al [20] looked at the problem from
the viewpoint of the “Speech Act”. Speech Act ([83]) are verbal utterances, which
belong to the class of “illocutionary”, i.e., whose significance reside in the assertion
to have done something or in the request, promise or suggestion of doing something,
with a “performative” value [6] – roughly speaking, saying to have done something,
e.g., is the proof that something is done or going to be done. Thus, they had
the intuition that searching for the evidence of performed activities within email
messages corresponds to the analysis of the verbal contents of the conversation.
In particular, they look for correspondences of some words in particular, divided
into verbs and nouns, which belong to a taxonomy of terms that, mixed together,
make Speech Acts. In order to properly categorize the messages, according to such
“mail acts”, as they call them, they compare different categorization and learning

2.2 Process Modeling 7

techniques to texts that are cleaned up from quoted phrases and signatures, as
in [25]. In this work, we will take inspiration from the intuition of [20] and actually
make use of the implementation of [25] to filter redundant information out of email
texts.

Two related famous industrial tools for e-mail content processing

Here are recalled just two famous examples of email content processing tools, which
are related to our research proposal.

The first is the Priority Inbox1 for GMail, i.e., an add-on that automatically infers
which email messages are to be considered “important” and which are the so called
“bologna” (i.e., less important mail) or “Bacn” (e.g., news alerts, social network
messages and that kind of messages that the user is subscribed to or interested in but
can stay in the inbox for a long time, unread). On the basis of such a partitioning
within the set of email messages, the user interface shows the two groups separately.
Thereby, the user can see the important messages at a glimpse, on top of a vertical
tab that graphically distinguishes them from the rest of email.

The second is the Xobni2 plug-in for Microsoft Outlook. One of the feature it
provides, which is very interesting to the scope of this document, is the tracing of
the contents in email messages. It is provided with the ability to create connections
among people that the user conversed with and analyze their behavior in terms of
time of response, frequency of communications and so on.

2.2 Process Modeling
2.2.1 Automaton-based models
A process is intended as a stateful artifact characterized by its conversational behavior,
that is, its potential evolutions resulting from the interaction with some external
system, such as a client service. Such conversational behavior can be represented
as Finite State Automata (FSAs), i.e., a transition system whose transitions are
labeled by process’ activities, under the assumption that each legal run of the system
corresponds to a conversation supported by the process.

A deterministic process behavior is represented by a finite deterministic
transition system S = 〈A, S, s0, δ, S

f 〉, where:

• A is the finite alphabet of activities;

• S is the finite set of states;

• s0 ∈ S is the initial state;

• δ : S ×O → S is the transition function;

• Sf ⊆ S is the set of final states.

1for further readings, the reader may visit the related Gmail Help page http://
mail.google.com/mail/help/priority-inbox.html or the Google software engineer Doug
Aberdeen’s post on the official Google blog, at http://gmailblog.blogspot.com/2010/08/
email-overload-try-priority-inbox.html

2http://www.xobni.com/

http://mail.google.com/mail/help/priority-inbox.html
http://mail.google.com/mail/help/priority-inbox.html
http://gmailblog.blogspot.com/2010/08/email-overload-try-priority-inbox.html
http://gmailblog.blogspot.com/2010/08/email-overload-try-priority-inbox.html

8 2. Background and State of the Art

s0

s1

s2

b

c

d

c

Figure 2.1. A process behavior as a deterministic automaton

The initial and final states respectively correspond to a legal initialization and
termination of the process lifecycle. Thus, in Figure 2.1, the process would admit
the process to either (i) perform as many b activities as she want, and finally d, then
terminate, or (ii) perform c once and terminate. The transition system depicted
can be formalized as follows:

S = 〈 {a, b, c, d}, {s0, s1, s2}, s0,

{〈〈s0, b〉, s1〉, 〈〈s1, d〉, s1〉, 〈〈s1, c〉, s2〉, 〈〈s0, c〉, s2〉},
{s2} 〉

Transition systems may also be non-deterministic, i.e., allow a partially unpre-
dictable behavior when a certain activity is performed. The definition changes as
follows.

A non-deterministic process behavior is represented by a finite non-deterministic
transition system S = 〈A, S, s0,∆, Sf 〉, where:

• A is the finite alphabet of activities;

• S is the finite set of states;

• s0 ∈ S is the initial state;

• ∆ ⊆ S ×O → S is the transition relation;

• Sf ⊆ S is the set of final states.

Non-determinism lies in the δ function turned into a relation ∆, thus allowing
the behavior to reach one among multiple possible states, given the execution of an
activity.

An example is provided in Figure 2.2. The transition system depicted can be
formalized as follows:

S = 〈 {b, c, d}, {s0, s1, s2}, s0,

{〈s0, b, s1〉, 〈s1, d, s1〉, 〈s1, c, s2〉, 〈s0, b, s2〉},
{s2} 〉

It differs from the behavior allowed in Figure 2.1 in that it is unpredictable whether,
once b is performed, other b’s, d and c can be executed, or the process terminates.

2.2 Process Modeling 9

s0

s1

s2

b

b

d

c

Figure 2.2. A process behavior as a non-deterministic automaton

offcooling warming

filled

doTurnOffHeater

doRaiseBathTempdoLowerBathTemp

doFillTub

doLowerBathTemp

doTurnOffBathHeater

doRaiseBathTemp

doTurnOffBathHeater

doFillTub

doEmptyTub

Figure 2.3. An automaton-based representation of a process in a case study [26]

Figure 2.3 draws the automaton of a case study, taken from the SM4All
European Research Project and presented by the author of this thesis in [26].

We can consider finite state automata to be for process modeling what Assembly
is for computer programming. We will make use of them to manage the representation
of constraints in the declarative workflows, indeed (Sections 3.3, 3.4 and 5.2), even
though not explicitly shown as a process model. Transition systems are simple and
valuable in terms of expressive power, but have problems expressing concurrency
succinctly. Suppose that there are n parallel activities, i.e., all n activities need to be
executed but any order is allowed. There are n! possible execution sequences. The
transition system requires 2n states and n× 2n− 1 transitions. This is an example
of the well-known “state explosion” problem.

2.2.2 Petri-Net-based models

Petri Nets (PN’s – see Figure 2.4) originated from the Ph.D. thesis of Carl Adam
Petri [76] (see [67] for a history of Petri nets and an extensive bibliography). A Petri
Net is a directed bipartite graph. Its vertices can be divided into two disjoint finite
sets consisting of places and transitions. Every arc of a Petri net connects a place to
a transition or viceversa, but no two places neither two transitions can be directly
connected. Formally, a Petri Net is a tuple P = 〈P, T, F 〉, where:

• P is a finite set of places;

10 2. Background and State of the Art

p

q

r

s

t

a

c

b

d

Figure 2.4. A Petri Net with its initial marking

• T is a finite set of transitions;

• F ⊆ (P × T) ∪ (T × P) is the flow relation.

From a graphical point of view, places are represented by circles and transitions
by rectangles. Places in a PN may contain a discrete number of marks called tokens.
Any distribution of tokens over the places represents a configuration of the net called
marking. Markings assign tokens (graphically represented as black dots) to places;
they represent a state of the system.

Thus, modeling a workflow process definition in terms of a Petri Net is rather
straightforward:

1. tasks are modeled by transitions;

2. conditions are modeled by places;

3. cases are modeled by tokens.

Formally, a marking of a Petri net is a multiset of its places, i.e., a mapping
M : P → N. We say the marking assigns to each place a number of tokens. A
transition of a Petri Net may fire whenever there are sufficient tokens at the start of
all input arcs; when it fires, it consumes these tokens, and puts tokens at the end of
all output arcs. Firings are atomic, i.e., single non-interruptible steps.

PN’s are designed for modeling concurrency as well, as the reader can see in
Figure 2.4. There, the Petri Net is

P = 〈 {p, q, r, s, t}, {a, b, c, d},
{ 〈a, q〉, 〈q, b〉, 〈a, r〉, 〈r, b〉, 〈r, d〉, 〈r, b〉, 〈b, p〉, 〈p, a〉,
〈c, r〉, 〈c, s〉, 〈s, d〉, 〈d, t〉, 〈t, c〉 } 〉

2.2 Process Modeling 11

and its initial marking

M0(ϕ) =
{

1 if ϕ ∈ {p, t}
0 otherwise

The PN in Figure 2.4 represents the parallel evolution of two separate branches
of the execution, one involving a loop of c’s and d’s, the other involving loops of a’
and b’s. A possible evolution of the status of such Petri Net is depicted in Figure 2.5.

As an example, here we specify the marking for the PN in Figure 2.5b:

M(ϕ) =

2 if ϕ ∈ {r}
1 if ϕ ∈ {q, s}
0 if ϕ ∈ {p, t}

Workflow Nets

Typically, workflow models are drawn by means of a subset of PN’s [89], i.e., the
Workflow Nets (WFN’s – see [88]), explicitly designed to represent the control-flow
dimension of a workflow. WFN’s impose structural restrictions on classical PN’s,
since: (i) they always have two special places, usually named i and o; respectively,
they represent a source place and a sink place, which correspond to the beginning
and termination of the processing of a case; (ii) for each transition t (place p) there
should be a directed path from place i to o via t (p).

Figure 2.6 shows an example of marked Workflow Net. There, the reader can
note the presence of a parallel split (also known as AND-split) of the workflow, in
correspondence with the a transition. Firing a implies the change in the number
of tokens, from one to two, put in p1 and q1. From then onwards, there will be
two branches running in parallel for the workflow. One will traverse p1, p2 and
p3, due to the firing of b1 and b2 (a sequence). The other instead encounters the
so-called exclusive choice (or XOR-split) in correspondence with the q1 place. After
q1, the following transition to fire can be either c1

1 or c2
1, but only one between

them. The XOR-split is balanced from the following XOR-join (simple merge) in
q3, as the AND-split is balanced from the following AND-join (synchronization) in
correspondence of the d transition. Such Workflow Net is therefore called balanced.
For further information on the workflow patterns (as sequence, XOR-split, XOR-join,
AND-split and AND-join are), the reader is referred to [95].

BPMN (Business Process Modeling Notation [29]) and YAWL (Yet Another
Workflow Language [94]) are two examples of widely used WFN-derived languages.
For an extensive analysis of how they are used in business process modeling, the
reader can refer to [106, 43] and [86].

2.2.3 Declarative models
The need for flexibility in the definition of some types of process, such as artful
business processes, ha recently lead to an alternative to the classical “imperative”
approach: the “declarative” one.

The classical approach is called “imperative” because it explicitly represents
every step allowed by the process model at hand, by means of transitions (the

12 2. Background and State of the Art

p

q

r

s

t

a

c

b

d

(a) PN of Figure 2.4 after
firing a

p

q

r

s

t

a

c

b

d

(b) PN of Figure 2.5a after
firing c

p

q

r

s

t

a

c

b

d

(c) PN of Figure 2.5b after
firing b

p

q

r

s

t

a

c

b

d

(d) PN of Figure 2.5c after
firing a

p

q

r

s

t

a

c

b

d

(e) PN of Figure 2.5d after
firing d

p

q

r

s

t

a

c

b

d

(f) PN of Figure 2.5e after
firing b

Figure 2.5. A possible evolution of the status of the Petri Net in Figure 2.4

2.2 Process Modeling 13

i

p1 p2 p3

o

q1

q1
2

q2
2

q3

a

b1 b2

d

c1
1 c1

2

c2
1 c2

2

Figure 2.6. A Workflow Net, with its initial marking

Figure 2.7. Spaghetti process describing the diagnosis and treatment of 2765 patients in a
Dutch hospital. The process model was constructed based on an event log containing
114,592 events. There are 619 different activities (taking event types into account)
executed by 266 different individuals (doctors, nurses, etc.). The image is taken from
[90]

possible actions to do) among places/states (the legal situations where the process
can wait or term). This leads to the likely increase of graphical objects as the process
allows more alternative executions (see Figure 2.7). The size of the model, though,
has undesirable effects on understandability and likelihood of errors (see [63] for an
insight of the Seven Process Modeling Guidelines): larger models tend to be more
difficult to understand [62], not to mention the higher error probability which they
suffer from, with respect to small models [61].

Rather than using a procedural language for expressing the allowed sequences of
activities, it is based on the description of workflows through the usage of constraints:
the idea is that every task can be performed, except what does not respect them
[74]. [93] shows how the declarative approach can help in obtaining a fair trade-off
between flexibility in managing collaborative processes and support in controlling
and assisting the enactment of workflows. DecSerFlow [92] and ConDec [75], now
unified under the name of Declare [73], are languages which define an extendible set
of templates for constraints. Their semantics are expressed as formulations of Linear
Temporal Logic ([19]) as of [86], but a graphic representation for each constraint

14 2. Background and State of the Art

receive
order

accept
order

decline
order

send
product

send bill receive
payment

1

0..1

0..1

0..1

0..1 0..1

precedence

precedence

response

precedence

precedence

not_coexist
responded_existence

Figure 2.8. Example of a Declare constraint model [75]

template is provided as well, so to make it easily understandable by users who are
not familiar with LTL.

The interested reader can find an extensive description in [71].

Declare

A constraint-based declarative Declare model is defined by the specification of a set
of tasks and constraints. Tasks represent atomic units of work in the context of
a process and are considered as single events occurring during the execution of a
process instance; constraints define relationships between tasks and represent “rules”
to be followed during execution, specifying the possible ways of executing tasks.
Constraints are defined as Linear Temporal Logic (LTL) formulae (see Section 2.2.4
for the details on LTL syntax and semantics) and can be classified as (i) 1. mandatory
constraints, i.e., constraints that a correct process execution must not violate in
order to complete, and 2. optional constraints, i.e., constraints that can be violated.
Definition 1 (Constraint model). A constraint model (or Declare) CM is a triple
〈T , Cm, Co〉, where:

• T is the set of tasks in the model

• Cm is the set of mandatory constraints, where every element c ∈ Cm is a
well-formed LTL formula over T

• Co is the set of optional constraints, where every element c ∈ Co is a well-formed
LTL formula over T

The definition of a Declare model basically requires to:
1. identify and define the set of relevant tasks to be executed to achieve one or

more intended goals;

2. identify and define the sets of mandatory and optional constraints (as LTL
formulae) that reflect business constraints and restrict the set of supported
execution traces.

When not explicitly specified, in this report the term constraints refers to mandatory
constraints defined in a constraint model.

2.2 Process Modeling 15

2.2.4 Constraint Templates in Declare

To avoid requiring users to directly define constraints using LTL and manipulate
temporal logical formulae, the definition of constraints is supported via so called
constraint templates. Constraint templates define various types of dependencies
between activities at an abstract level, via a graphical syntax that allows modeling
typical constraints in processes and workflows. The ConDec language can thus be
considered as a collection of constraint templates. From this perspective, the idea
of constraint templates is similar to the concept of workflow patterns identified for
procedural languages [79]. A constraint template is defined by:

1. a unique name;

2. a graphical representation;

3. a formal specification of its semantics as an LTL formula

The set of Declare constraint templates can be classified in three main groups [92]:
existence constraints, relation constraints and negation constraints. Figure 2.9
shows the main constraint templates provided by the Declare language. Tasks are
graphically represented as boxes, whereas the graphical representations of possible
relationships have been defined according to the following principles [66]:

• the number of lines used to interconnect two activities indicates how much
tight is the dependency between them;

• the position of the • element determines which activity (called source of the
constraint) has the ability of triggering the dependency;

• the presence of an arrow and its relative position with respect to the • element
denote the qualitative temporal constraint associated to the relation.

In Figure 2.8 an example of a graphical constraint model defined for a product
purchase process is provided. The Declare language is extensible, as new constraint
templates can be added by defining their name and graphical representation, and
providing the corresponding LTL-based formalization.

Existence constraints. Existence constraints are unary cardinality constraints
defining how many times an activity can or must be executed. They can be used
to represent either the minimal, the exact or the maximum number of executions
(cardinality) of tasks. Among them, the init constraint is used to identify the first,
starting activity of the model.

Relation constraints. Relation constraints define relations and dependencies
between two activities. They are binary constraints which impose the presence of
a certain activity when some other activity is performed, possibly imposing also
qualitative temporal constraints between them.

16 2. Background and State of the Art

LT
L:

If
A

is
 e

xe
cu

te
d,

 th
en

 B
 m

us
t b

e
ex

ec
ut

ed
 b

ef
or

e
or

af

te
r A

LT
L:

N
ei

th
er

 A
 n

or
 B

 is
 e

xe
cu

te
d,

 o
r t

he
y

ar
e

bo
th

 e
xe

cu
te

d

LT
L:

If
A

is
 e

xe
cu

te
d,

 th
en

 B
 m

us
t b

e
ev

en
tu

al
ly

 e
xe

cu
te

d
af

te
r A

LT
L:

B
ca

n
be

 e
xe

cu
te

d
on

ly
 if

 A
 h

as
 b

ee
n

pr
ev

io
us

ly

ex
ec

ut
ed

LT
L:

A
an

d
B

m
us

t b
e

ex
ec

ut
ed

 in
 s

uc
ce

ss
io

n,
 i.

e.
, B

 m
us

t
fo

llo
w

 A
 a

nd
 A

 m
us

t p
re

ce
de

 B

LT
L:

B
is

re

sp
on

se

of

A
an

d
be

tw
ee

n
ev

er
y

tw
o

ex
ec

ut
io

ns
 o

f A
, B

 m
us

t b
e

ex
ec

ut
ed

 a
t l

ea
st

 o
nc

e

LT
L:

A
is

pr

ec
ed

en
ce

of

B

an
d

be
tw

ee
n

ev
er

y
tw

o
ex

ec
ut

io
ns

 o
f B

, A
 m

us
t b

e
ex

ec
ut

ed
 a

t l
ea

st
 o

nc
e

LT
L:

B
is

 a
lte

rn
at

e
re

sp
on

se
 o

f
A,

 a
nd

 A
 i

s
al

te
rn

at
e

pr
ec

ed
en

ce
 o

f B

LT
L:

If
A

is
 e

xe
cu

te
d,

 t
he

n
B

m
us

t
be

 e
xe

cu
te

d
ne

xt

(im
m

ed
ia

te
ly

 a
fte

r A
)

LT
L:

If
B

is
 e

xe
cu

te
d,

 t
he

n
A

m
us

t
ha

ve
 b

ee
n

ex
ec

ut
ed

im

m
ed

ia
te

ly
 b

ef
or

e
B

LT
L:

A
an

d
B

m
us

t b
e

ex
ec

ut
ed

 in
 s

eq
ue

nc
e

(n
ex

t t
o

ea
ch

ot

he
r)

A
B

r
e
s
p
o
n
d
e
d
_
e
x
i
s
t
e
n
c
e
(
A
,
B
)

A
B

c
o
e
x
i
s
t
e
n
c
e
(
A
,
B
)

A
B

r
e
s
p
o
n
s
e
(
A
,
B
)

A
B

p
r
e
c
e
d
e
n
c
e
(
A
,
B
)

A
B

s
u
c
c
e
s
s
i
o
n
(
A
,
B
)

A
B

a
l
t
e
r
n
a
t
e
_
r
e
s
p
o
n
s
e
(
A
,
B
)

B
a
l
t
e
r
n
a
t
e
_
p
r
e
c
e
d
e
n
c
e
(
A
,
B
)

B
a
l
t
e
r
n
a
t
e
_
s
u
c
c
e
s
s
i
o
n
(
A
,
B
)

A A
B

c
h
a
i
n
_
r
e
s
p
o
n
s
e
(
A
,
B
)

A
B

c
h
a
i
n
_
p
r
e
c
e
d
e
n
c
e
(
A
,
B
)

A
B

c
h
a
i
n
_
s
u
c
c
e
s
s
i
o
n
(
A
,
B
)

A

ex
is

te
n
ce

(A
)
⇒

ex
is

te
n
ce

(B
)

ex
is

te
n
ce

(A
)
⇔

ex
is

te
n
ce

(B
)

�� A
⇒

ex
is

te
n
ce

(B
)�

ex
is

te
n
ce

(B
)
⇒

� (¬
B

)
U

A
�

re
sp

on
se

(A
,B

)
∧

p
re

ce
d
en

ce
(A

,B
)

re
sp

on
se

(A
,B

)
∧

�� A
⇒

�(
p
re

ce
d
en

ce
(B

,A
)�

p
re

ce
d
en

ce
(A

,B
)
∧

�� B
⇒

�(
p
re

ce
d
en

ce
(A

,B
)�

a
lt

er
n
a
te

p
re

ce
d
en

ce
(A

,B
)
∧

a
lt

er
n
a
te

re
sp

on
se

(A
,B

)

�(
A

⇒
�B

)

p
re

ce
d
en

ce
(A

,B
)
∧

�(
�B

⇒
A

)

ch
a
in

re
sp

on
se

(A
,B

)
∧

ch
a
in

p
re

ce
d
en

ce
(A

,B
)

LT
L:

If
A

is
 e

xe
cu

te
d,

 th
en

 B
 c

an
 n

ev
er

 b
e

ex
ec

ut
ed

LT
L:

A
an

d
B

ex
cl

ud
e

ea
ch

 o
th

er
: i

f A
 is

 e
xe

cu
te

d,
 th

en
 B

ca

n
ne

ve
r b

e
ex

ec
ut

ed
 a

nd
 v

ic
e

ve
rs

a

LT
L:

B
ca

nn
ot

 b
e

ex
ec

ut
ed

 a
fte

r A

LT
L:

A
ca

nn
ot

 b
e

ex
ec

ut
ed

 b
ef

or
e

B

LT
L:

A
an

d
B

ca
nn

ot
 b

e
ex

ec
ut

ed
 in

 s
uc

ce
ss

io
n

LT
L:

B
ca

nn
ot

 b
e

ex
ec

ut
ed

 b
et

w
ee

n
an

y
tw

o
oc

cu
rre

nc
es

of

 A

LT
L:

A
ca

nn
ot

 b
e

ex
ec

ut
ed

 b
et

w
ee

n
an

y
tw

o
oc

cu
rre

nc
es

of

 B

LT
L:

B
ca

nn
ot

 b
e

ex
ec

ut
ed

 b
et

w
ee

n
an

y
tw

o
oc

cu
rre

nc
es

of

 A
 a

nd
 v

ic
e

ve
rs

a

LT
L:

If
A

is
 e

xe
cu

te
d,

 t
he

n
B

ca
nn

ot
 b

e
ex

ec
ut

ed
 n

ex
t

(im
m

ed
ia

te
ly

 a
fte

r A
)

LT
L:

A
ca

nn
ot

 b
e

ex
ec

ut
ed

 im
m

ed
ia

te
ly

 b
ef

or
e

B

LT
L:

A
an

d
B

ca
nn

ot
 b

e
ex

ec
ut

ed
 i

n
se

qu
en

ce
 (

ne
xt

 t
o

ea
ch

 o
th

er
)

A
B

r
e
s
p
o
n
d
e
d
_
a
b
s
e
n
c
e
(
A
,
B
)

A
B

n
o
t
_
c
o
e
x
i
s
t
e
n
c
e
(
A
,
B
)

A
B

n
e
g
a
t
i
o
n
_
r
e
s
p
o
n
s
e
(
A
,
B
)

A
B

n
e
g
a
t
i
o
n
_
p
r
e
c
e
d
e
n
c
e
(
A
,
B
)

A
B

n
e
g
a
t
i
o
n
_
s
u
c
c
e
s
s
i
o
n
(
A
,
B
)

A
B

n
e
g
_
a
l
t
_
r
e
s
p
o
n
s
e
(
A
,
B
)

B
n
e
g
_
a
l
t
_
p
r
e
c
e
d
e
n
c
e
(
A
,
B
)

B
n
e
g
_
a
l
t
_
s
u
c
c
e
s
s
i
o
n
(
A
,
B
)

A A
B

n
e
g
_
c
h
a
i
n
_
r
e
s
p
o
n
s
e
(
A
,
B
)

A
B

n
e
g
_
c
h
a
i
n
_
p
r
e
c
e
d
e
n
c
e
(
A
,
B
)

A
B

n
e
g
_
c
h
a
i
n
_
s
u
c
c
e
s
s
i
o
n
(
A
,
B
)

A

ex
is

te
n
ce

(A
)
⇒

a
bs

en
ce

(B
)

re
sp

on
d
ed

a
bs

en
ce

(A
,B

)
∧

re
sp

on
d
ed

a
bs

en
ce

(B
,A

)

�� A
⇒

a
bs

en
ce

(b
)�

�� ex
is

te
n
ce

(B
)
⇒

¬A
�

n
eg

re
sp

on
se

(A
,B

)
∧

n
eg

p
re

ce
d
en

ce
(A

,B
)

�� A
⇒

�� �A
⇒

(¬
B

UA
)��

�� B
⇒

�� �B
⇒

(¬
A

UB
)��

n
eg

a
lt

p
re

ce
d
en

ce
(A

,B
)
∧

n
eg

a
lt

re
sp

on
se

(A
,B

)

�(
A

⇒
�¬

B
)

�(
�B

⇒
¬A

)

n
eg

ch
a
in

re
sp

(A
,B

)
∧

n
eg

ch
a
in

p
re

c(
A

,B
)

Ain
it

i
n
i
t
(
A
)

A1.
..*

e
x
i
s
t
e
n
c
e
(
A
)

A2.
..*

e
x
i
s
t
e
n
c
e
2
(
A
)

AN
...

*

e
x
i
s
t
e
n
c
e
N
(
A
)

A0

a
b
s
e
n
c
e
(
A
)

A0.
..1

a
b
s
e
n
c
e
2
(
A
)

A0.
..2

a
b
s
e
n
c
e
3
(
A
)

AN
...

*

a
b
s
e
n
c
e
N
+
1
(
A
)

A1

e
x
a
c
t
l
y
(
A
)

A2

e
x
a
c
t
l
y
2
(
A
)

AN

e
x
a
c
t
l
y
N
(
A
)

LT
L:

Ac
tiv

ity
 A

 m
us

t b
e

th
e

fir
st

 e
xe

cu
te

d
ac

tiv
ity

LT
L:

Ac
tiv

ity
 A

 m
us

t b
e

ex
ec

ut
ed

 a
t l

ea
st

 o
nc

e

LT
L:

Ac
tiv

ity
 A

 m
us

t b
e

ex
ec

ut
ed

 a
t l

ea
st

 2
 ti

m
es

LT
L:

Ac
tiv

ity
 A

 m
us

t b
e

ex
ec

ut
ed

 a
t l

ea
st

 N
 ti

m
es

LT
L:

Ac
tiv

ity
 A

 c
an

no
t b

e
ex

ec
ut

ed

LT
L:

Ac
tiv

ity
 A

 c
an

 b
e

ex
ec

ut
ed

 a
t

m
os

t
on

ce
,

i.e
.,

th
e

ex
ec

ut
io

n
tra

ce
 c

an
no

t
co

nt
ai

n
2

oc
cu

rre
nc

es
 o

f A

LT
L:

Ac
tiv

ity
 A

 c
an

 b
e

ex
ec

ut
ed

 a
t m

os
t 2

 ti
m

es
,

i.e
.,

th
e

ex
ec

ut
io

n
tra

ce
 c

an
no

t
co

nt
ai

n
3

oc
cu

rre
nc

es
 o

f A

LT
L:

Ac
tiv

ity
 A

 c
an

 b
e

ex
ec

ut
ed

 a
t m

os
t N

 ti
m

es
,

i.e
.,

th
e

ex
ec

ut
io

n
tra

ce
 c

an
no

t c
on

ta
in

 N
+1

oc

cu
rre

nc
es

 o
f A

LT
L:

Ac
tiv

ity
 A

 m
us

t b
e

ex
ec

ut
ed

 e
xa

ct
ly

 o
nc

e

LT
L:

Ac
tiv

ity
 A

 m
us

t
be

 e
xe

cu
te

d
ex

ac
tly

 t
w

o
tim

es

LT
L:

Ac
tiv

ity
 A

 m
us

t b
e

ex
ec

ut
ed

 e
xa

ct
ly

 N
 ti

m
es

A �A �(
A
∧

�e
x
is

te
n
ce

(A
))

�(
A
∧

�e
xi

st
en

ce
N

-1
(A

))

�(
¬A

)

¬e
x
is

te
n
ce

2(
A

)

¬e
xi

st
en

ce
N

+
1
(A

)

ex
is

te
n
ce

(A
)
∧

a
bs

en
ce

2(
A

)

ex
is

te
n
ce

2(
A

)
∧

a
bs

en
ce

3(
A

)

ex
is

te
n
ce

N
(A

)
∧

a
bs

en
ce

N
+

1
(A

)

¬e
x
is

te
n
ce

3(
A

)

Figure 2.9. Existence, relation and negation constraint templates

2.2 Process Modeling 17

Negation constraints. Negation constraints can be considered as the negated
versions of the relation constraints: when a negation constraint is triggered by its
source activity, then it forbids the execution of the target activity within certain time
bounds, determined by the the specific constraint. Basically, negation constraints
allow modeling undesired behaviors.

Branching of templates and choice constraints. The behavior of a constraint
model defined by multiple constraints is given by the conjunction of all constraints.
The disjunction of constraints can be specified by assigning more than two tasks
to one parameter in a template [71] (in such a case, the parameter branches). In
case of branching, the parameter is replaced (i) by multiple arcs to all branched
tasks in the graphical representation and (ii) by a disjunction of branched tasks
in the LTL formula. The semantics of branching depends on the LTL formula of
the template. Choice templates are branching templates that can be used to specify
a choice between tasks. They are n-ary constraints specifying that some activities
inside a set of possible choices must be performed. They can be considered as an
extension of the existenceN and exactlyN constraints, replacing a single activity
with a set of activities, i.e., at least n distinct activities out of m must be performed
or exactly n distinct activities out of m must be performed.

Execution traces When considering a process model, traces represent sequences
of tasks executed during possible enactments of the process. Each trace represents a
possible execution alternative as a sequence of events corresponding to the execution
of tasks.

Definition 2 (Execution trace). Given the set T of tasks defined in a constraint
model CM, an execution trace σ ∈ T ∗ is a finite sequence of tasks 〈t0, t1, ... , tn−1〉,
where T ∗ is the set of all possible traces composed of zero or more elements (tasks) of
T . |σ| = n is the length of the trace, σi is used to denote the i-th element of the trace,
and σi is used to denote the suffix of σ starting at i, i.e., σi = 〈ti, ti+1, ... , tn−1〉.

In a process instance, the execution of tasks generates a history trace for that
instance, as a chronologically ordered list of events that occurred in the instance [74].

The Role of Linear Temporal Logic in Constraint Models

Languages such as Declareuse LTL formulae to define constraints that implicitly
identify possible executions of a model as sequences of events corresponding to
performed tasks. As described later in this report, the LTL representation of
Declare models can be exploited for the verification of model properties and for the
enactment and monitoring of model instances. However, LTL deals with infinite
traces, whereas the executions of process instances eventually terminate and thus
correspond to finite execution traces (see Definition 2). As a consequence, the infinite
semantics of LTL can not be directly applied to Declare models.

This section provides an introduction to LTL syntax and semantics, and then
focuses on how its infinite semantics can be adapted to deal with finite traces
corresponding to the execution of Declare models.

18 2. Background and State of the Art

LTL Syntax and Semantics Temporal logics are a special class of modal logics
where modalities are interpreted as temporal operators, used to describe and reason
about how the truth values of assertions vary over time [66]. In this class, LTL can
be considered as being: (i) 1. propositional, as formulae are defined from atomic
propositions, whose truth values change over time; 2. linear, as temporal operators
predicate on the truth of propositions along a single timeline and each moment
has a single next future moment; 3. qualitative, as temporal operators are used to
express qualitative time relations between propositions; 4. point-based, as temporal
operators and propositions are evaluated over points in time; 5. discrete, as the
present moment corresponds to the current state of the system and the next moment
to the immediate successor state induced by the occurrence of an event (i.e., time
is discrete); 6. future-tense, as temporal operators predicate on the occurrence of
events in the future.

Basically, LTL formulae are defined using atomic propositions (with true and
false constants), propositional connectives (¬, ∧, ∨, ⇒), and temporal operators (#
next time, � globally, ♦ eventually, U until).

Definition 3 (LTL syntax). Given a finite set P of atomic propositions, the set of
LTL-formulae over P is inductively defined as follows:

• every p ∈ P is a formula

• true and false are formulae

• if ϕ is a formula, then ¬ϕ is a formula

• if ϕ and ψ are formulae, then ϕ ∧ ψ, ϕ ∨ ψ and ϕ⇒ ψ are formulae

• if ϕ is a formula, then #ϕ, �ϕ and ♦ϕ are formulae

• if ϕ and ψ are formulae, then ϕUψ is a formula

LTL models and traces. The semantics of LTL is defined with respect to an
LTL model in a specific state and temporal formulae are interpreted in a discrete,
linear model of time. Given the set P of atomic propositional formulae, an LTL
model is represented byM = 〈N, I〉, where I : N 7→ 2P maps each moment in time
(represented by a natural number) to a set of propositions that represents all the
propositions p ∈ P that hold in that moment in time. From an other perspective, an
LTL model or interpretation of an LTL formula can be considered as an infinite trace
π = π0, π1, ... having N as time structure and P as the set of atomic propositions;
each element πi ∈ 2P of the trace is defined by I and thus refers to the set of
propositions that hold at the i-th moment in time (i.e., πi = I(i)). At some time
point i ∈ N a proposition p is true iff p ∈ πi. 〈π, i〉 |= ϕ means that a formula ϕ is
true at time i in π (i.e., trace π satisfies ϕ), and |= denotes the logical entailment
(or satisfaction relation).

Definition 4 (LTL semantics). Given an infinite execution trace π and an LTL
formula ϕ, π |= ϕ is inductively defined on the structure of the formulae as follows:

• π |= ϕ iff 〈π, 0〉 |= ϕ

2.2 Process Modeling 19

• 〈π, i〉 |= p iff p ∈ πi

• 〈π, i〉 |= true and 〈π, i〉 6|= false

• 〈π, i〉 |= ¬ϕ iff 〈π, i〉 6|= p

• 〈π, i〉 |= (ϕ ∧ ψ) iff 〈π, i〉 |= ϕ and 〈π, i〉 |= ψ

• 〈π, i〉 |= (ϕ ∨ ψ) iff 〈π, i〉 |= ϕ or 〈π, i〉 |= ψ

• 〈π, i〉 |= (ϕ⇒ ψ) iff 〈π, i〉 6|= ϕ or 〈π, i〉 |= ψ

• 〈π, i〉 |= #ϕ iff 〈π, i+ 1〉 |= ϕ

• 〈π, i〉 |= �ϕ iff ∀j ≥ i 〈π, j〉 |= ϕ

• 〈π, i〉 |= ♦ϕ iff ∃j ≥ i s.t. 〈π, j〉 |= ϕ

• 〈π, i〉 |= (ϕUψ) iff ∃k ≥ i s.t. 〈π, k〉 |= ψ and ∀i ≤ j < k 〈π, j〉 |= ϕ

The operators ¬, ∧, # and U are the basic operators, and the other operators can be
expressed in terms of the basic ones; the following equivalences hold:

• ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ)

• true ≡ ϕ ∨ ¬ϕ

• false ≡ ¬true

• ϕ⇒ ψ ≡ ¬ϕ ∨ ψ

• ϕ⇔ ψ ≡ (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ)

• ♦ϕ ≡ trueUϕ

• �ϕ ≡ ¬♦¬ϕ

From LTL to LTL for Finite Traces As discussed in the previous Section, an
interpretation of an LTL formula is an infinite trace π = π1, π2, ... , where each
element πi of the trace identifies the set of all propositions p ∈ P that are true at
time i. When considering Definition 2 it is possible to identify two main differences
between a trace representing an LTL interpretation and a trace representing an
execution trace of a constraint model [72]:

1. LTL considers infinite traces, whereas the execution of a process model gen-
erates a finite execution trace as a sequence of executed tasks: the temporal
dimension in process executions is bounded, and therefore their execution traces
are always finite;

20 2. Background and State of the Art

2. each element of an LTL trace can refer to a set of propositions, whereas each
element in a finite execution trace of a Declare model refers to exactly one
event corresponding to the execution of a task ti, i.e., only one proposition
holds at one moment.

The notion of finite trace can be considered in LTL setting as follows.

Definition 5 (Finite LTL trace). An LTL execution trace π is finite if and only if
there exists a state n such that in all the states belonging to πn+1 (i.e., all states
belonging to the infinite suffix of π starting at n+1) the set of propositions that hold
is empty, i.e.:

∃ n ∈ N s.t. πn 6= ∅ ∧ ∀ i > n, πi = ∅

Note that, according to this definition, a finite LTL trace still has an infinite
suffix composed by empty elements. However, standard algorithms and techniques
typically used in the LTL settings with infinite traces are not directly applicable with
finite execution traces. The LTL semantics is given for infinite traces and assumes
N as the underlying infinite time structure. To bridge the gap between finite traces
and the LTL semantics for infinite traces, two different solutions have been proposed
for Declare models:

1. introduce an additional task and a corresponding constraint as an LTL for-
mula that allows specifying that each execution of the model will eventually
terminate;

2. redefine LTL models as finite traces and update the LTL semantics accordingly.

Termination property. The first solution does not require to modify the LTL
semantics, but requires to introduce in each Declare model an ending task e and
a termination constraint that specifies that (i) the end task will be eventually
executed and (ii) after the execution of this task, the task is executed infinitely in
each following state (and no other task is executed); the corresponding LTL formula
is:

♦e ∧ (�(e⇒ #e))
As a result, each execution trace will have an infinite suffix containing only the ending
task e. From another perspective, the termination constraint that formalizes the
finiteness requirement for a Declare execution trace can be expresses as a termination
property.

Definition 6 (Termination property). Given a constraint model CM, the LTL
termination property of CM, denoted by term(CM), states that there must eventually
be a state starting from which no event will occur (i.e., no task in the model will be
executed):

term(CM) ≡ ♦�

 ∧
∀t∈T

¬t

2.2 Process Modeling 21

Finite LTL. The second solution requires to directly consider finite LTL traces as
the only possible models for the logic, and revise the semantics of temporal operators
accordingly. Different finite trace semantics for LTL have been proposed and a
complete overview of them can be found in [8]. In the context of Declarethe authors
rely on the finite trace semantics proposed in [45] and [48]. The proposed semantics
deals with finite execution traces, which can be considered either as the observed
portion of a model’s execution (i.e., a partial execution trace) or as a complete finite
run.

Basically, the semantics of LTL temporal operators (♦, � and U) is modified in
order to limit the scope to the finite set of states of an execution trace. Moreover,
when interpreting LTL formulae over finite traces, it is necessary to define the
semantics of the next # operator on a trace with a single element (or similarly on
the last element of a finite trace) for which no next position exists to evaluate a
formula. According to [8], the classical way to deal with this situation is to consider
as a strong next operator, which evaluates to false if no further position exists in
the trace. The strong # operator is thus used to express with #ϕ that (i) 1. a next
state must exist, and 2. this next state has to satisfy property ϕ.

Definition 7 (LTL for finite traces). Given a finite set of atomic propositions P,
every p ∈ P is a well-formed LTL formula. If ϕ and ψ are well-formed LTL formulae,
then true, false, ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ⇒ ψ, #ϕ, �ϕ, ♦ϕ and ϕUψ are well-formed
LTL formulae.
Let σ = 〈σ0, σ1, ... , σn−1〉 be a finite trace of length n, with σ 6= ε, where ε is the
empty trace. σi denotes the suffix 〈σi, σi+1, ... , σn−1〉 for 0 ≤ i < n and the empty
string ε for i ≥ n. The semantics of LTL is defined as follows3:

• σ |= p iff p ∈ σ0, for p ∈ P

• σ |= ¬ϕ iff σ 6|= ϕ

• σ |= (ϕ ∧ ψ) iff σ |= ϕ and σ |= ψ

• σ |= (ϕ ∨ ψ) iff σ |= ϕ or σ |= ψ

• σ |= (ϕ⇒ ψ) iff σ 6|= ϕ or σ |= ψ

• σ |= #ϕ iff σ1 6= ε and σ1 |= ϕ

• σ |= �ϕ iff ∀i, 0 ≤ i < n, σi |= ϕ

• σ |= ♦ϕ iff ∃i, 0 ≤ i < n, s.t. σi |= ϕ

• σ |= (ϕUψ) iff ∃k, 0 ≤ k < n, s.t. σk |= ψ and ∀i, 0 ≤ i < k, σi |= ϕ

The LTL semantics for finite traces provided in the previous definition is used
for the mandatory and optional constraints (expressed as LTL formulae) defined in
Declare models.

3Note that the semantics in not defined for the empty trace ε

22 2. Background and State of the Art

Mandatory Formula and Supported Traces

According to Section 2.2.4, a Declare model CM can be built by defining the set of
relevant tasks and the optional and mandatory constraints among them, exploiting
constraint templates. Each constraint template can be specified by an LTL formula,
whose semantics is given according to Definition 7. When considering the set Cm of
mandatory constraints in a Declare model (cf. Definition 1), it is possible to define
a single LTL formula for the whole model, as the conjunction of the LTL formulae
defining the mandatory constraints.

Definition 8 (Mandatory formula). Given a constraint model CM = 〈T , Cm, Co〉,
the mandatory formula for CM is defined as:

fCM =
{
true if Cm = ∅∧
c∈Cm c otherwise

Basically, the semantics of LTL entailment |= can be used to define the notion of
compliance of an execution trace σ ∈ T ∗ with a constraint formula c.

Definition 9 (Constraint satisfying trace). Given a constraint model CM =
〈T , Cm, Co〉 and an execution trace σ ∈ T ∗, σ is compliant with a constraint formula
c (i.e., σ satisfies c) if and only if σ |= c.

Starting from Definition 9, it is possible to define the set of all executions traces
compliant with a constraint c as the set of all traces satisfying the constraint.

Definition 10 (Constraint satisfying traces). Given a constraint model CM =
〈T , Cm, Co〉, let c be a constraint for CM. The set T ∗|=c ⊆ T ∗ of constraint satisfying
traces is defined as

T ∗|=c = {σ ∈ T ∗ | σ |= c}

These definitions can be easily extended to the mandatory formula for a constraint
model.

Definition 11 (Constraint model satisfying trace). Given a constraint model CM =
〈T , Cm, Co〉, let fCM be the mandatory formula for CM. An execution trace σ ∈ T ∗
is compliant with CM if and only if σ |= fCM, i.e., ∀c ∈ Cm, σ |= c.

Note that if assuming an LTL setting on infinite traces with the additional
termination property given in Definition 6, an execution trace σ is compliant with
CM if and only if

σ |= fCM ∧ term(CM)

Starting from Definition 11, it is then possible to define the set of all executions
traces compliant with a constraint model CM as the set of all traces satisfying the
mandatory formula for the model.

Definition 12 (Constraint model satisfying traces). Given a constraint model
CM = 〈T , Cm, Co〉, let fCM be the mandatory formula for CM. The set T ∗|=CM ⊆ T ∗
of constraint model satisfying traces (or supported traces) is defined as

T ∗|=CM = {σ ∈ T ∗ | σ |= fCM}

2.3 Process Mining 23

pickup bill

delivery

1..*

1..*
precedence

Figure 2.10. A simple constraint model [86]

From the definitions it follows that if in a constraint model the set of mandatory
constraints in empty (Cm = ∅), all possible execution traces over T satisfy the
mandatory formula for the model, i.e., T ∗|=CM = T ∗.

Figure 2.10 shows a simple constraint model. Assuming that all represented
constraint are mandatory, the constraint model CM = 〈T , Cm, Co〉 has:

• T = {pickup, bill, delivery}

• Cm = {existence(delivery), existence(bill), precedence(pickup,bill)}

• Cm = ∅

The mandatory formula for the model is defined as:

fCM = existence(delivery) ∧ existence(bill) ∧ precedence(pickup,bill)
= (♦delivery) ∧ (♦bill) ∧

(
♦bill⇒ (¬billU pickup)

)
Considering the constraint c =

(
♦bill⇒ (¬billU pickup)

)
, the following traces

are some of the constraint satisfying traces:

• σ1 = 〈pickup, bill, delivery〉

• σ2 = 〈pickup, pickup, pickup, delivery, delivery, bill, bill〉

• σ2 = 〈pickup, pickup, delivery, delivery〉

2.3 Process Mining
Process Mining [90], a.k.a. Workflow Mining [89], is the set of techniques that
allow the extraction of structured process descriptions, stemming from a set of
recorded real executions. Such executions are intended to be stored in so called event
logs, i.e., textual representations of a temporarily ordered linear sequence of tasks.
There, each recorded event reports the execution of a task (i.e., a well-defined step
in the workflow) in a case (i.e., a workflow instance). Events are always recorded
sequentially, even though tasks could be executed in parallel: it is up to the algorithm
to infer the actual structure of the workflow that they are traces of, identifying the
causal dependencies between tasks (conditions). ProM [96] is one of the most used
plug-in based software environment for implementing workflow mining techniques.

24 2. Background and State of the Art

The idea to apply process mining in the context of workflow management systems
was introduced in [2]. There, processes were modelled as directed graphs where
vertices represented individual activities and edges stood for dependencies between
them. Cook and Wolf, at the same time, investigated similar issues in the context
of software engineering processes. In [21] they described three methods for process
discovery: (i) neural network-based, (ii) purely algorithmic, (iii) adopting a
Markovian approach. The authors considered the latter two as the most promising.
The purely algorithmic approach built a finite state machine where states were fused
if their futures (in terms of possible behaviors for the next k steps) were identical.
The Markovian approach used a mixture of algorithmic and statistical methods and
is able to deal with noise. Although, the results presented in [21] were limited to
sequential behavior only.

From [2] onwards, many techniques have been proposed, in order to address
specific issues: pure algorithmic (e.g., α algorithm, drawn in [97] and its evolution α++

[104]), heuristic (e.g., [103]), genetic (e.g., [28]), etc. Indeed, heuristic and genetic
algorithms have been introduced to cope with noise, which the pure algorithmic
techniques were not able to manage. Whereas algorithmic processes rely on footprints
of traces (i.e., tables reporting whether events appeared before or afterwards, if
decidable) to determine the workflow net that could have generated them, heuristic
approaches build a representation similar to causal nets, taking frequencies of events
and sequences into account when constructing the process model, in order to ignore
infrequent paths. Genetic process mining adopts an evolutionary approach to
the discovery and differs from the other two in that its computation evolves in a
non-deterministic way: the final output, indeed, is the result of a simulation of a
process of natural selection and evolutionary reproduction of the procedures used
to determine the final outcome. [13] discusses in depth the user-tunable metrics
adopted for the genetic algorithm, in order to make it return qualitatively better
workflows: replay fitness, precision, generalization and simplicity. The accurate
results are valuable, though such an algorithm suffers from unpredictability in terms
of the process returned, which can change from run to run, due to the nature of
evolutionary algorithms itself, and the time it might take, which is generally high.

A very smart extension to the previous research work has been recently achieved
by the two-steps algorithm proposed in [87].

Differently from previous works, which typically provide a single process mining
step, it splits the computation in two phases: (i) the tunable mining of a Transition
System (TS) representing the process behavior and (ii) the automated construction
of a Petri Net bisimilar to the TS [23, 30].

The first phase was made “tunable”, so that it could be either more strictly
adhering or more permissive to the analyzed log traces behavior, i.e., the expert
could determine a balance between “overfitting” and “underfitting”.

Indeed, past execution traces are not the whole universe of possible ones that
may run: hence, the extracted process model should be valid for future unpredictable
cases, on one hand, nevertheless checking whether the latter actually adhere to the
common behavior, on the other hand. We also remars that a little percentage of
the whole log might represent erroneous deviations from the natural flow of tasks.
The second phase had no parameter to set, since its only aim was to synthesize
the TS into an equivalent Workflow Net. Thus, it was fixed, while the former step
could be realized exploiting one among many of the previously proposed “one-step”

2.3 Process Mining 25

algorithms (for instance, [103] was claimed to integrate well).
The need for flexibility in the definition of some types of process, such as artful

business processes, lead to an alternative to the classical “imperative” approach: the
“declarative”. Rather than using a procedural language for expressing the allowed
sequences of activities, it is based on the description of workflows through the usage
of constraints: the idea is that every task can be performed, except what does
not respect them. [93] showed how the declarative approach (such as the one of
Declare [73]) can help in obtaining a fair trade-off between flexibility in managing
collaborative processes and support in controlling and assisting the enactment of
workflows.

[57] outlines an algorithm for mining Declare processes, implemented in ProM.
The approach works as follows. The user is asked to specify a set of Declare constraint
templates. Then, the system generates all of the possible constraints stemming
from them, i.e., obtained by the application of those templates to all of the possible
subsets of activities in the process. The user is also required to set a parameter
named PoE (Percentage of Events), ranging from 0 to 100, so to avoid the generation
of constraints involving those activities that appear, in percentage, less than PoE
times in the log (i.e., rare activities, according to the user preferences). Then,
every candidate constraint is translated into the related accepting finite automata,
according to the rules defined in [72]. For the optimization of this task, the tool is
integrated with the technique described in [105]. Traces are thus replayed on the
resulting automata. Each constraint among the candidates becomes part of the
discovered process if and only if the percentage of traces accepted by the related
automaton exceeds a user-defined threshold, named PoI (Percentage of Instances).

[56] proposes an evolution of [57]: there, a two-phase approach is adopted. The
first phase is based on the Apriori algorithm, developed by Agrawal and Srikant for
mining association rules [3]. During this preliminary step, the correlated activity
sets are identified. The candidate constraints are computed on the basis of the
correlated activity sets only. During the second phase, the candidate constraints are
checked as in [57]. Therefore, the search space for the second phase is reduced.

In output, constraints constituting the discovered process are weighted according
to their Support, i.e., the probability of such constraint to hold in the mined workflow.
There, it is calculated as the proportion of traces where the constraint is satisfied.
To filter out irrelevant constraints, more metrics are introduced, based on the
appearances of the activities involved within the log: they are Confidence, Interest
Factor and CPIR (Conditional-Probability Increment Ratio). Since we also adopted
such metrics, with slight modifications though, they will be described further in this
thesis.

[54, 17] describes the usage of inductive logic programming techniques to mine
models expressed as a SCIFF [4] first-order logic theory, consisting in a set of
implication rules named Social Integrity Constraints (IC’s for short). [18] shows
how ConDec/DecSerFlow can be translated into SCIFF and a subset of SCIFF can
be translated into Condec/Decserflow. Finally, the learned theory is automatedly
translated into the ConDec [75] notation.

[17] proposes the implementation of the framework, named DPML (Declarative
Process Model Learner [55]) as a ProM plug-in. [10, 9] extends this technique by
weighting in a second phase the constraints with a probabilistic estimation. The
learned IC’s are indeed translated from SCIFF, discovered by DPML, into Markov

26 2. Background and State of the Art

Logic [77] formulae, so that their probabilistic-based weighting is computed by the
Alchemy tool. They both rely on the availability of compliant and non-compliant
traces of execution, w.r.t. the process to mine. For instance, [54] takes a real log
from cervical cancer screening careflows. All the traces have been analyzed by
a domain expert and labeled as compliant or non compliant with respect to the
protocol, adopted in the screening center. [10] takes as a case study the records
of the careers which belonged to their affiliated university’s students. In that case,
positive traces were represented by graduated students, whilst negative traces were
related with students who did not finish their studies. For a comprehensive insight
on the logic-based approach to declarative workflow mining, the reader can refer
to [66].

As the aforementioned logic-based approaches, we preferred to elaborate a
technique which avoided the replay of the traces on automata, as in [57], so to
diminish the time for computing the result. At the same time, we had to deal with
traces which were not labeled as positive or negative.

2.3.1 Analysis of email messages
EMailAnalyzer [91] is an integrated ProM plug-in for mining processes from email
logs, that are XML files compatible with the ProM framework, built through the
analysis of (i) senders and receivers, in order to guess the actors involved, and
(ii) tags on email messages and subjects, for extracting the task. email messages
are extracted from an Outlook archive. Our approach shares similar ideas for the
disambiguation of actors and sociograms, and aims at extending it by (i) building a
plug-in based platform capable to retrieve email messages from multiple archives
(not only Outlook), and (ii) extracting cases and relations among tasks from a more
comprehensive analysis of email fields (headers, body, subjects, etc.).

27

Chapter 3

Architecture and design

3.1 Architecture of MailOfMine as a software system

Figure 3.1. The MailOfMine approach

The MailOfMine approach, and the tool, adopts a modular architecture,
the components of which allow to incrementally refine the mining process, as in
Figure 3.1.

The main input are email archives; an archive is a stored collection of email
messages. First of all, we need to extract email messages out of the given archive(s).
Since archives are compliant to different standards, according to the email client
in use, the component for accessing (“fecthing”) the messages (Email Fetcher in
Figure 3.1) is intended to be plug-in based: At this stage of the implementation, the
system is able to process archives which can be either IMAP folders (through the
IMAP Fetcher), or compressed files with .eml documents in (EML Fetcher). In the
future, it will handle Thunderbird storage files, POP mailboxes, etc. Before getting
stored, email messages text parts are cleaned up from signatures and quotations

28 3. Architecture and design

citing some text already written in another message within the thread, by the usage
of a combination of techniques aiming at this [25, 69]. For what the methodology
of [25] is concerned, we made use of its Java implementation, named Jangada1. The
outcome is the population of a database, on the basis of which all the subsequent
steps are carried out. In our implementation, the database is managed by the well
known MySQL Server, Community Edition, version 5.12.

In order to extract the activities whose execution was proven by the flow of
messages, we adopt an approach based on the concept of Speech Acts ([83]) applied
to email messages. The detection of Speech Acts needs to be assisted by knowledge
workers/users, who are required to provide a dictionary of words of their domain
field, as in [20]. The provided words have to be divided into verbs and objects –
say, “write” and “submit” for verbs, “draft” and “deliverable” for objects. Each
object, indeed, is concatenated with each verb and the resulting strings are kept in a
collection of expressions (“write draft”, “submit draft”, “write deliverable”, “submit
deliverable” in the example). For each expression, an Information Retrieval (IR)
tool is used in order to search them within the email messages, considering their
cleaned subjects and bodies. Only those expressions that are found in at least one
email are considered activities for the process to discover: meaningless or irrelevant
expressions, possibly created by the automated juxtaposition of verbs and objects,
are thereby likely filtered out. If, for instance, “submit draft” is never found in any
email, the collection of activities is composed by “write draft”, “write deliverable”,
“submit deliverable” in the example. The so called process alphabet, namely, the
collection of activities, is thus compiled. We developed the Activity Xtractor software
component to this aim. All of the email messages where an expression is found are
called indicia.

Each indicium is a possible evidence of the execution of the activity that the
expression relates to. We also consider the reliability of an indicium, which corre-
sponds to the score that the IR assigned to the email, when searching for the related
activity’s expression.

The Activity Xtractor component makes use of the industry-strong search platform
Apache Solr, version 3.6.23. Apache Solr was particularly suitable to our case, because
of three main reasons: (i) its ability to index textual information stored not only
in text files but also in database; (ii) its rich and well-documented API making it
possible for us to automatedly submit run-time queries, and store their results; (iii)
the availability of tuning parameters for queries, such as the Levenshtein distance
for metrics and the customizable language-dependent synonyms. Its relevance
assessment core for indexing makes use of an altered version of the TF-IDF metrics
([68, 58]), as explained in [44].

Once indicia are found, a log (i.e., a collection of traces) is created from the
Tracer module:

1. each archive is taken as a trace, i.e., a list of events reporting the execution of
an activity;

2. each indicium (i.e., each email) whose reliability is higher than a user-
customizable threshold is taken as an event;

1http://www.cs.cmu.edu/~vitor/codeAndData.html
2http://dev.mysql.com/
3http://lucene.apache.org/solr/

http://www.cs.cmu.edu/~vitor/codeAndData.html
http://dev.mysql.com/
http://lucene.apache.org/solr/

3.1 Architecture of MailOfMine as a software system 29

3. the events are ordered with respect to the date and time when the related
emails were sent.

As a simplistic assumption, when more than one indicium is found to match a single
email, we associate the email to the highest scored indicium. Thus, we have one
indicium only per email and no couple of events occurs at the same timestamp
in a trace. We have already planned to remove this assumption and deal with
contemporaneity of events in logs for future work (see 6.1). The construction of
the log is obtained through the processing of the evaluation of a proper SQL query
(see Appendix A.1) over the shared database, whose results are formatted in XML
and further turned into a XES (eXtensible Event Stream [47]) log, by means of a
XSLT (eXtensible Stylesheet Language Transformation [101]) transformation – the
XSLT document is available in Appendix A.3. XES is an XML-based standard for
machine-readable event logs [100].

Being email messages associated to the email addresses of people in the conver-
sation, the system infers who are the most likely contacts involved in the activities,
simply observing what are the email addresses appearing as senders and recipients.

The XES log is passed further to the Process Mining tool (Miner, which we
implemented as a realization of MINERful (see Chapter 4 for further details) in the
MINERful++ component. The output is a process model, discovered from the given
log. Such a process model is a declarative workflow (Section 2.2.3), i.e., expressed
in terms of temporal constraints on the activities. Further details on the proposed
declarative process model are provided in Section 3.3.

This model serves as a reference for the execution of the next processes, by means
of the User Interface module, UI, namely the visualization tool of MailOfMine
(see Figure 3.3).The users are requested to provide an initial setup, specifying the
terms in the vocabulary of the domain of interest, and finally a process model is
returned as a result. They could even ignore the output in terms of constraints over
activities, and just take advantage of suggestions that the UI suggests her at run-time
(Figure 3.2 depicts an example of run-time interaction, with suggestions about the
subject to insert, the activity to link, etc.). Such suggestions are elaborated on the
basis of the mined workflow, though it can be kept transparent to the user. The
rationale behind the realization is to make it as less intrusive as possible. In case
she wanted to take control or have a feedback on the structure of the process which
the UI follows, a panel for the analysis of activities is provided as well, as depicted
in Figure 3.3. The rationale and design of the process visualization is discussed in
Section 3.4. Some screenshots of the Web Viz component, realizing the UI module,
are in Figures 3.2 and 3.3.

We decided to design the MailOfMine tool as a modular architecture so to keep
functionalities tied with specific components. This way, the separate steps in the
computation can be demanded to specific artifacts which can in turn be substituted
or refined with no or few impacts on the rest of the system. For further development,
we might change the IR core, from Apache Solr to Terrier (see Section 2.1), because
of its higher flexibility (multiple scoring functions are available), but this would not
affect, say, neither the UI nor the Miner. All of the software modules were encoded
in Java and deployed on an installation of JBoss Application Server, Community
Edition, v. 6.1, besides the Web Viz component, written in PHP and running on an
Apache HTTP Server, version 2.2.

30 3. Architecture and design

Figure 3.2. Screenshots of MailOfMine: the “compose” window

Figure 3.3. Screenshots of MailOfMine: the activity analyzer window

3.2 Database 31

3.2 Database
MailOfMine stores its own data in a database, managed by a MySQL Server
v1.5 installation. In Figure 3.4 we outline it at a conceptual level, as an ER-like
simplified diagram. The data-types of the attributes, along with some relationships,
are omitted for sake of readability. Here we want to make the reader aware of the
core data which MailOfMine manages.

In the following, we discuss its structure so to provide a more detailed description
of the data of interest for the analyses performed by MailOfMine. We store, for
every Message, its unique Mail-ID (as retrieved from its raw POP headers) (id,
primary key) together with the dateTime it was sent at (again, as inferred by reading
the POP headers). Each Message is linked to textual parts, which are its Body and
Subject. The body we save is either its simple text version, if available, or otherwise
its HTML-formatted version, cleaned from tags. We also recall here that both are
further re-processed, so to remove the quoted texts and signatures (in bodies), and
text such as “Re:”, “FWD:” (in subjects), since we assume that they rarely add any
bit of information about the real contents of the email. From the POP headers of
the email messages we also extract Senders and Recipients, to which we associate the
email addresses and the identifying name (if provided). For Recipients, we specify a
type, specifying whether they were among the main recipients (“To:”), they received
the Copy-Carbon of the email (“CC:”), or they were not among the publicly visible
recipients (“BCC:”). Through the application of the techniques described in [11], we
cluster them into single Contacts, so to reduce the space of possible actors involved
in the process.

The email messages are collected from Archives, which can be, in turn, IMAP
folders, or compressed files containing several eml files, etc. The user is also asked to
provide, together with the source for email archives, a Vocabulary, containing Words
divided into Verbs and Objects. Concatenated together in couples, they represent
the possible Expressions to search for, within the email messages.

Every Expression which is actually found in an email at least, is considered a
possible Activity for the Process to mine. Each email Message where the Expression
is discovered is named Indicium. The score that the Information Retrieval tool in use
assigns to the Indicium is stored as well.

Once the Indicia are gathered, the log is built as follows. For every Indicium,
an event is considered. The timestamp for the event is the dateTime value of the
Message linked to the Indicium. The events are thus temporally ordered. The events
are clustered into traces, according to the Archive that the related Messages belong
to – i.e., every Archive constitutes the source for a trace. The user is thought to
select a collection of Archives to mine the Process from. The set of traces constitute
the log that will be analyzed further for the discovery of the workflow.

Being the Process meant to represented as a declarative model, the Constraints
constituting such model are mined. They can be either ExistenceConstraints or
RelationConstraints. ExistenceConstraints affect single activities only, whereas Re-
lationConstraints are connected to couples of activities at a time. We will discuss
more in detail about the declarative model of Processes in terms of Constraints in
Section 3.3. The portion of the diagram related to the Constraint constitutes a hook
to Figure 3.6, in fact. Figure 3.5 summarizes which parts the components described
in Section 3.1 work on.

32
3.

A
rchitecture

and
designFigure 3.4. The database schema of MailOfMine

3.2
D
atabase

33
Miner

Email Fetcher

IR + Tracer

IR

Figure 3.5. The database schema of MailOfMine, along with the components managing its stored values

34 3. Architecture and design

3.3 Specification of declarative workflows as constraints

Here we abstract activities as symbols (e.g., ρ, σ) of an alphabet Σ, appearing in
finite strings, which, in turn, represent process traces. We will interchangeably use
the terms “activity”, “character” and “symbol”, as well as “trace” and “string”, then.
We adopt the subset of Declare taxonomy of constraints for modeling processes, as
in [57].

Constraints are temporal rules constraining the execution of activities. E.g.,
Response(ρ, σ) is a constraint on the activities ρ and σ, forcing σ to be executed if
the ρ activity was completed before. Such rules are meant to adhere to specific con-
straint templates. RespondedExistence is the template of RespondedExistence(ρ, σ).
We further categorize constraint templates into constraint types. For instance,
RespondedExistence belongs to the RelationConstraint type, as far as MutualRelation
and NegativeRelation.

In the following, we briefly summarize the constraint templates that Declare is
based upon (see Table 3.1). The reader can find further information in [57, 73] and
Section 2.2.3. Figure 3.6 depicts the subsumption hierarchy of Declare constraints.
The hierarchy of subsumptions will be exploited in the algorithm explained further
in this thesis (Section 4.1.4), in order to prune out redundant constraints.

Declare constraints are always referred to an activity at least, which we call
“implying”: if it is executed, the constraint is triggered – vice-versa, if it does
not appear in the trace, the constraint has no effect on the trace itself. The
Existence(M,ρ) constraint imposes ρ to appear at least M times in the trace. We
rename Existence(1, ρ) as Participation(ρ). The Absence(N, ρ) constraint holds if ρ
occurs at most N − 1 times in the trace. We call Absence(2, ρ) as Uniqueness(ρ).
Init(ρ) makes each trace start with ρ.

The aforementioned constraints fall under the type of ExistenceConstraints,
as they relate to an “implying” activity only. The following are named
RelationConstraints, since the execution of the implying imposes some conditions
on another activity, namely the “implied”.

RespondedExistence(ρ, σ) holds if, whenever ρ is read, σ was either al-
ready read or going to occur (i.e., no matter if before or afterwards). In-
stead, Response(ρ, σ) enforces it by requiring a σ to appear after ρ, if ρ was
read. Precedence(ρ, σ) forces σ to occur after ρ as well, but the condition
to be verified is that σ was read - namely, you can not have any σ if you
did not read a ρ before. AlternateResponse(ρ, σ) and AlternatePrecedence(ρ, σ)
strengthen respectively Response(ρ, σ) and Precedence(ρ, σ) by stating that each
ρ (σ) must be followed (preceded) by at least one occurrence of σ (ρ). The
“alternation” is in that you can not have two ρs (σs) in a row before σ
(after ρ). ChainResponse(ρ, σ) and ChainPrecedence(ρ, σ), in turn, specialize
AlternateResponse(ρ, σ) and AlternatePrecedence(ρ, σ), both declaring that no other
symbol can occur between ρ and σ. The difference between the two is in that the
former is verified for each occurrence of ρ, the latter for each occurrence of σ. The
reader should note that the hierarchy under the Precedence constraint template does
not inherit the base and implied symbols from the RespondedExistence parent; it
overrides them both by inverting the two, instead. This is due to the semantics of
the constraints themselves.

The MutualRelation constraints follow: they are verified iff two

3.3 Specification of declarative workflows as constraints 35

Constraint Regular expression Example
Existence constraints

Existence(n, a) Activity a occurs at least n
times in the process instance

Participation(a) ≡ Existence(1, a) a occurs at least once bcaac
Absence(m+ 1, a) a occurs at most n+ 1 times

Uniqueness(a) ≡ Absence(2, a) a occurs at most once for
each trace

bcac

Init(a) a is the first to occur in each
process instance

accbbbaba

End(a) a is the last to occur in each
process instance

bcaaccbbbaba

Relation constraints
RespondedExistence(a, b) If a occurs in the process in-

stance, then b occurs as well
bcaaccbbbaba

Response(a, b) If a occurs, then b occurs af-
ter a

bcaaccbbbab

AlternateResponse(a, b) Each time a occurs, then b
occurs afterwards, before a
recurs

bcaccbbbab

ChainResponse(a, b) Each time a occurs, then
b occurs immediately after-
wards

bcabbbab

Precedence(a, b) b occurs in the process in-
stance only if preceded by a

caaccbbbaba

AlternatePrecedence(a, b) Each time b occurs, it is pre-
ceded by a and no other b
can recur in between

caaccbaba

ChainPrecedence(a, b) Each time b occurs, then b
occurs immediately before-
hand

cababa

CoExistence(a, b) If b occurs in the process in-
stance, then a occurs, and
viceversa

bcaccbbbaba

Succession(a, b) a occurs if and only if it is
followed by b

caaccbbbab

AlternateSuccession(a, b) a and b if and only if the
latter follows the former, and
they alternate each other in
the trace

caccbab

ChainSuccession(a, b) a and b occur in the process
instance if and only if the lat-
ter immediately follows the
former

cabab

Negative relation constraints
NotChainSuccession(a, b) a and b occur in the process

instance if and only if the lat-
ter does not immediately fol-
lows the former

bcaaccbbbba

NotSuccession(a, b) a can never occur before b bcaacca
NotCoExistence(a, b) a and b never occur together caacca

Table 3.1. Semantics of Declare constraints

36 3. Architecture and design

RespondedExistence (or descendant) constraints (resp., (forward and
backward, in Figure 3.6) are satisfied. CoExistence(ρ, σ) holds if both
RespondedExistence(ρ, σ) and RespondedExistence(σ, ρ) hold. Succession(ρ, σ)
is valid if Response(ρ, σ) and Precedence(ρ, σ) are verified. The same holds with
AlternateSuccession(ρ, σ), equivalent to the conjunction of AlternateResponse(ρ, σ)
and AlternatePrecedence(ρ, σ), and ChainSuccession(ρ, σ), with respect to
ChainResponse(ρ, σ) and ChainPrecedence(ρ, σ).

Finally, we consider NegativeRelation constraints: they are satisfied iff the
related MutualRelations (negated, in Figure 3.6) are not. NotChainSuccession(ρ, σ)
expresses the impossibility for σ to occur immediately after ρ (the opposite of
ChainSuccession(ρ, σ)). NotSuccession(ρ, σ) generalizes the previous by imposing
that, if ρ is read, no other σ can be read until the end of the trace (Succession(ρ, σ) is
the negated constraint). NotCoExistence(ρ, σ) is even more restrictive: if ρ appears,
not any σ can be in the same trace (the contrary of CoExistence(ρ, σ)).

In Table 3.2, the semantics of Declare constraints are reported for sake of clarifi-
cation. Semantics are expressed by means of regular expressions. This translation
has been useful to the automated generation of synthetic traces, complying to a given
model, which the proposed algorithm could be tested on top of (see Section 5.1). For
sake of brevity, there we used the POSIX standard shortcuts. Therefore, in addition
to the known Kleene star (*), alternation (|) and concatenation () operators,
we make use here of (i) the . and [^x] shortcuts for respectively matching any
character in the alphabet, or any character but x, (ii) the + and ? operators for
respectively matching from one to any, or none to one, occurrences of the preceding
expression, and (iii) the {n,m} notation, where n (resp. m) denotes the minimum
(maximum) number of repetitions of the preceding pattern. Examples are provided
so to give a hint on the sense of such constraints. The underlined characters are
the “implying” symbols. Strongly emphasized characters are those checked in order
to verify the constraint on the string. The translation of constraints into regular
expressions of Table 3.2 could be optimized further, although some redundancies
are kept in order to provide a better readability and give confidence to the reader
in finding similarities between constraints. E.g., you can easily see how Response,
AlternateResponse and ChainResponse strengthen along the hierarchy, similarly
to Precedence, AlternatePrecedence and ChainPrecedence.

3.3.1 An example

Here we outline a brief example (cf. [41]). We want to model the process of defining
an agenda for a research project meeting. The schedule is discussed by email among
the participants. We suppose that a final agenda will be committed (“confirm”
– n) after that requests for a new proposal (“request” – r), proposals themselves
(“propose” – p) and comments (“comment” – c) have been circulated.

The aforementioned tasks and activities are bound to the following constraints
(cf. Process Description 1).

If a request is sent, then a proposal is expected to be prepared afterwards (cf.
Response(r, p)). The presence of comments, in case, is due to a delay in the presen-
tation of an expected proposal, or as a review of the previous. Thus, the presence of
c in the trace is constrained to the presence of p (cf. RespondedExistence(c, p)). A
confirmation is supposed to be mandatorily given after the proposal, and vice-versa

3.3 Specification of declarative workflows as constraints 37

Process Description 1 The example process
Response(r, p)
RespondedExistence(c, p)
Succession(p, n)
Participation(n), Uniqueness(n), End(n)

any proposal is expected to precede a confirmation (cf. Succession(p, n)). We
suppose the confirmation to be the final activity (cf. End(n)). This mandatory
task (cf. Participation(n)) is not expected to be executed more than once (cf.
Uniqueness(n)).

As an example, the following traces would be compliant to the given model: pn,
pcn, rpcn, rpcpn, rrpcrpcrcpcn, rpprpcccrpcn.

38
3.

A
rchitecture

and
design

Constraint Regular expression Example
Existence constraints

Existence(n, a) [^a]*(a[^a]*){n,}+[^a]*
Participation(a) ≡ Existence(1, a) [^a]*(a[^a]*)+[^a]* bcaac

Absence(m+ 1, a) [^a]*(a[^a]*){0,m}+[^a]*
Uniqueness(a) ≡ Absence(2, a) [^a]*(a)?[^a]* bcac

Init(a) a.* accbbbaba
End(a) .*a bcaaccbbbaba

Relation constraints
RespondedExistence(a, b) [^a]*((a.*b.*)|(b.*a.*))*[^a]* bcaaccbbbaba

Response(a, b) [^a]*(a.*b)*[^a]* bcaaccbbbab
AlternateResponse(a, b) [^a]*(a[^a]*b[^a]*)*[^a]* bcaccbbbab

ChainResponse(a, b) [^a]*(ab[^a]*)*[^a]* bcabbbab
Precedence(a, b) [^b]*(a.*b)*[^b]* caaccbbbaba

AlternatePrecedence(a, b) [^b]*(a[^b]*b[^b]*)*[^b]* caaccbaba
ChainPrecedence(a, b) [^b]*(ab[^b]*)*[^b]* cababa

CoExistence(a, b) [^ab]*((a.*b.*)|(b.*a.*))*[^ab]* bcaccbbbaba
Succession(a, b) [^ab]*(a.*b)*[^ab]* caaccbbbab

AlternateSuccession(a, b) [^ab]*(a[^ab]*b[^ab]*)*[^ab]* caccbab
ChainSuccession(a, b) [^ab]*(ab[^ab]*)*[^ab]* cabab

Negative relation constraints
NotChainSuccession(a, b) [^a]*(aa*[^ab][^a]*)*([^a]*|a) bcaaccbbbba

NotSuccession(a, b) [^a]*(a[^b]*)*[^ab]* bcaacca
NotCoExistence(a, b) [^ab]*((a[^b]*)|(b[^a]*))? caacca

Table 3.2. Semantics of Declare constraints as regular expressions

3.3
Specification

of
declarative

w
orkflow

s
as

constraints
39

Figure 3.6. The declarative process model’s hierarchy of constraints. Taking into account the UML Class Diagram graphical notations, the
Generalization (“is-a”) relationships represent the subsumption between constraint templates. The subsumed is on the tail, the subsuming on
the head. The Realization relationships indicate that the constraint template (and the subsumed in the hierarchy) belong to a specific type.
Constraint templates are drawn as solid boxes, whereas the constraint types’ boxes are dashed.

40 3. Architecture and design

3.4 Process visualization

The literature dealing with the representation of processes typically aims at visualiz-
ing the process all at once, by means of diagrams that show the complete grid of
interconnections among activities. Here we propose a change in the viewpoint. We
want to model artful processes as a collection of constraints, through the declarative
approach. Being highly flexible, this kind of representation does not necessarily
impose a pre-defined strict order on activities, neither explicit nor implicit. For
instance, one can state that an activity a implies the execution of another activity b
afterwards (see Section 3.3.1), with no specification provided if a is not performed,
meaning that b can be done or not during the process instance run. In other words,
the process schema itself can change according to the things that may have happened
before. This is why we do not consider as the best suitable solution adopting a static
graph-based global representation alone, on one hand: a local view should work
better in conjunction with it. On the other hand, no knowledge worker is expected to
be able to read and understand the process by reading the list of regular-expression
based constraints: a graphical representation, easy to understand at a first glimpse,
must be used.

The process schema and the running processes are respectively modeled through
(i) a set of diagrams, representing constraints on workflows (static view: Section 3.4.1)
and (ii) an interactive evolutionary graphical representation for the visualization
of running instances (dynamic view: Section 3.4.2). Furthermore, we propose two
complementary views on constraints: (i) a local view focusing on one activity at a
time and (ii) a global view providing a bird-eye sketch of the whole process schema.

For sake of simplicity and readability of figures, we adopt one-character identifiers
for activities, as the graphical representation of artful processes presented here is
intended to be the core of the user interface for the visualization of the mined
processes in MailOfMine.

3.4.1 Process schema

The local view

It is very hard to show a process schema all at once and keep it easily readable,
due to the high flexibility of the declarative representation. Thus, given that the
declarative approach is based on constraints, we collect all of those related to every
single activity, i.e., where the activity (e.g., e) is either (i) directly implied (e.g., if d
is done, then e must be done), or (ii) directly implying (e.g., if e is done, no matter
when, f was done before or must be done in the future). The directly adverb is used
due to the need not to make things too much complicated and to follow the idea of
having a local view only. For instance, the process is such that if d is done, then e
must be performed; moreover, the enactment of c implies that d can not be done
further. If we look at the constraints directly affecting e, the latter rule is not taken
into account. In fact, if c is not performed, nothing is imposed on d. This is an
example providing a hint on the rationale: for sake of readability, we want to avoid
the confusion coming from too many cross-implications to consider at a time.

The representation of relation constraints is based on three main degrees of
freedom, namely (i) time, (ii) implication, (iii) repeatability. The time is considered
here as a discrete ordered set of steps the activities can take place in. We ideally

3.4 Process visualization 41

Figure 3.7. The rationale of the local view design

consider each activity as spending a single unit in this conception of time. The
notion of implication is a based on two values (implying, implied). The repeatability
is given by the specification of one among four values, standing for the number of
times a activity can be consequently fulfilled: (i) zero, one or more times; (ii) zero,
or one time; (iii) exactly once; (iv) zero times.

Our graphical notation represents time and implication as the coordinates of a
bidimensional drawing, where time is on the ordinates (see Figure 3.7 for a sketch of
the rationale). This ideal y axis divides the plane space into two separate regions:
one for each value of the implication dimension (implying, implied), on the abscissae.
The x axis divides the plane space into two regions: upwards, what can (or can
not) happen before the activity is executed, and, downwards, what can (or can not)
happen after. On the origin of this chart, inspired to the cartesian coordinate system,
we put the activity under examination. The y axis is oriented towards the bottom,
in order to follow the reading directionality. For the same reason, the implication
relation order flows from the left to the right. Of course, the orientation of the axes
can change according to the localization of the software running: e.g., users from
Arabic countries might prefer a mirrored version, where the implied activities are on
the left, the implying on the right.

The repeatability is expressed by the thickness of the boundaries around the
boxes representing activities: dashed for activities that can be done zero, one or
more times, solid for zero or one times, double-line for exactly one time. The activity
box turns into a cross shape when repeatability is zero. The repeatability is referred
to the quadrant the box appears in. For instance, u must appear once either before
or after e took place. We recall here that the scope of repeatability, as all of the
other degrees of freedom, is not extended to the whole process instance existence,
but only for what concerns the time surrounding the single activity under analysis.

For sake of readability, we do not explicitly mention every possible activity the
process can be composed of, on the graph. Instead, we render only such activities

42 3. Architecture and design

(a) {ChainSuccession(r, t)} (b) {ChainSuccession(r, t), AlternateResponse(s, t),
RespondedExistence(t, u), NotSuccession(t, q)}

(c) {AlternateResponse(s, t)} (d) {RespondedExistence(t, u),
NotCoExistence(u, v)}

Figure 3.8. The MailOfMine local static constraint diagrams

that are interested in focused constraints, so to address the potential problem of too
many nodes and arcs connecting one another in a scarcely readable spaghetti-like
diagram. Though, visualizing the activities involved in constraints only, might look
like a way to force the actor to execute nothing else than the ones that are shown.
On the contrary, declarative models allow to do more: roughly speaking, what is not
mentioned, is possible. Thus, we make use of a wildcard (∗) not intended as “every
activity” in the usual all-comprehensive form, but in the typical human conception:
“any activity”, where it is understood that the other rules remain valid (e.g., if it is
stated that q can not be executed after t, a ∗ after t means “any activity, except
q”). Examples of the diagrams are in Figure 3.8. The constraints depicted here are
described in Section 3.3.

The graphical notation is enforced by arrows, easing the user to go across the
flow of activities, from the implying before to the implied afterwards. Colors are
used for sake of readability and comprehensibility, as additional arrows making a
loop on zero-one-more-repeatable activities, though the idea is that such diagrams
must be kept easy to be sketched by a pen, as well.

Figure 3.8a shows the only constraint pertaining r in an imaginary process,
namely ChainSuccession(r, t). It states that immediately after (i.e., below, on the
diagram) the implying r (on the center) you must (double line) execute t, as an
implication (on the right). Nothing is directly told about r as an implied activity in
a constraint: thus, a ∗ wildcard is put on the left of r. Then, Figure 3.8c focuses

3.4 Process visualization 43

Figure 3.9. The 〈u, t〉 activities subtrace constraints diagram

on s, which is the implying activity for the AlternateResponse(s, t) constraint: i.e.,
if s is executed, you can either perform t (see the direct arc in the fork on the
right of s) or optionally (dashed line) perform any other activity (∗) but s (put
inside the cross at the right bottom corner of the dashed box) until you do t. t
must be executed in any case: this is why the line bounding the box is double.
Figure 3.8b details the constraints that concern t. On the right side of the box
with t, the RespondedExistence(t, u) and NotSuccession(t, q) are drawn. The former
causes the arcs to fork both upwards and downwards, due to the fact that the
RespondedExistence constraints do not specify whether the implied activity must
be done before or after the implying. The question mark put on the right bottom
corner is used to enforce this concept of optionality, together with the double line
recalling that the execution of t is bound to the execution of u – i.e., no matter if
beforehand or afterwards, u must be enacted. The NotSuccession(t, q) is represented
by the cross that the q identifier is inscribed in, meaning that q can not be executed
after (below) t. On the left of t the reader can see the aforementioned constraints
having it as the implied (see Figures 3.8a and 3.8c). Finally, Figure 3.8d suggests
that, if u is performed, neither before (above) nor afterwards (below) you are allowed
to do v. Anything else is admitted (∗). This is the sense of NotCoExistence(u, v), as
drawn on the right of u. On the left, the constraint which u was involved in as an
implied activity, that is RespondedExistence(t, u), is depicted (see Figure 3.8b).

The local view can focus on a possible sub-trace of executed activities, as in
Figure 3.9. The meaning of symbols is the same as before, although here the focus
is moved on what could have happened (or is allowed to happen) if t is performed
after u, whereas diagrams in Figure 3.8 consider the enactment of an only activity
at a time.

The global view

The aim of the global view (Figure 3.10) is to show the relations between activities,
namely (i) whether the presence of one implies a further constraint (on the graph,
a dot on the tail of an arrow, starting from the implying activity and ending on
the implied), (ii) which activity must be performed after, between the implying
and the implied, if known (on the graph, an arrow, put on the head or the tail),
(iii) whether the presence of one implies the absence of another (a cross in the
middle of the arrow), or not (no cross put upon). All of the previous information
bits are independent of each other, hence all the possible combinations are allowed.

44 3. Architecture and design

This is the restricted basic graphical syntax used in Figure 3.10a. Indeed, it is not
explicitly expressed how strong the constraint is (e.g., whether other activities can
be performed between the implying and the implied), in order to tidy the diagram
up and provide a fast view of the overall process, without entering in details that are
likely better explained through the local views: they can rely, in fact, on dimensions
spread on axes the cartesian way, not as in graphs.

(a) Basic (b) Extended

Figure 3.10. The MailOfMine global static constraints diagram

Nonetheless, skilled users might want to have a complete vision of the constraints
involved, even though it might result in a reduced readability, due to the unavoidable
increase of graphical symbols to draw in the diagram. Thus, a richer graphical syntax
is needed. Its design rationale is to extend the basic, though keeping coherence with
(i) the visual language terms used and (ii) the graph structure. This allows the user
to be required of a minimal cognitive effort in order to learn its semantics, on one
hand, and lets her toggle between the basic and the extended view. Indeed, only
arcs are loaded with new symbols, as depicted on Figure 3.10b: no additional shape
nor any change in the graph topology are required.

Both diagrams in Figure 3.10 draw the same set of constraints that were locally
represented by example in Figure 3.8.

The global view is inspired to the graphical syntax of [93], though its design
focuses on the basic relations (before/after, implying/implied, existence/absence)
between activities in a binary constraint.

Coupling this diagram with the local view is useful for avoiding the misunderstand-
ing that could arise by the usage of oriented graphs. Indeed, Finite State Automata,
Petri Nets, State Transition Networks, UML Activity Diagrams, Flowcharts, and
so forth, all share a common interpretation: roughly speaking, nodes are places to
traverse one by one, following a path that respects the direction given by arrows
along the arcs. Here, it is not the case: e.g., considering Figure 3.10a, one could
intuitively suppose that, done s, the next activity is t. It is not true: after s, r or u
could be performed, even many times, and after some further passages finally t.

A GUI sketch

Figure 3.11 draws a prototype of the window showing a local view, on the activity
t. The additional information regarding the cardinality of the activity, as far as
the actors involved and so forth, is located on the bottom of the window. The
global view, put on the right, is used as a navigation tool on the process schema.
Conversely, at any point in time it will be possible to activate the local view of a
activity selected on the global view screen, in order to freely switch from one to
another.

3.4 Process visualization 45

Figure 3.11. The activity’s details panel

3.4.2 Running instances

A dynamic view is associated to the static process scheme, for the management of
running instances. Such a view is designed to be interactive, i.e., to let the user
play with the model, so to control the evolution of the running process. Moreover,
she can better learn the constraints mechanism by looking at the process evolving.
Indeed, it is based on the same visual notation provided for the visualization of
constraints (see Figure 3.9), based in turn on local view diagrams. This choice is
made in order to remark the user that global views do not explicitly express the
evolution of the system over time, whereas local views do. Figure 3.12 depicts a
sample evolution of a process instance.

From a starting step onwards, the user is asked to specify which the next activity
to perform is. At each step, the following activities that can be enacted are shown,
by means of the same visual language used for static views. After one of them is
fired, all the possible and mandatory following activities are shown. And so forth.
We recall here that the recognition of the possible initial activities, as far as the
evolution which follows, is a view on the current state of the FSA obtained as
the intersection of all the FSA’s expressing the constraints in the process scheme.
Figure 3.13 is a prototype sketch.

It remarks two main features. The first is that users can adapt the timing in
two different ways: either (i) as if every activity lasts a time unit only, ignoring
pauses between the preceding and the following, or (ii) showing the actual time
consumption for both activities completion and pauses in between. The former is
useful for a compact representation, the latter for a realistic snapshot of the time
the running process is taking, with the evidence of delays. The second remarked

46 3. Architecture and design

(a) (b) (c) (d)

Figure 3.12. The MailOfMine dynamic process view

Figure 3.13. The process execution management window

3.4 Process visualization 47

feature is that users may even violate constraints: artful processes are subject to
frequent changes, thus imposing a strict respect of constraints could be frustrating
for the user who would like to do something unpredicted. This, on the other hand,
can be a useful information for the process miner, since it can in turn refine the
evolution of the process scheme itself, if a sufficient quantity of deviations from the
expected paths are detected. For the next activities to take over, the user will be
asked to choose whether she wants to (i) delete the violated constraint from the
overall process scheme, or (ii) proceed as if it was a point deviation only, namely
keeping the constraints untouched.

On the Realization of the Process Visualization Approach

The implementation of the tool applying the described visualization approach is still
ongoing. Here, though, we outline the rationale behind its realization. Basically,
the whole approach is based on FSA. We have already shown how to translate
every constraint template in a regular expression, in fact – see Table 3.2. Regular
expressions are a succinct way to describe regular grammars, which, in turn, recognize
the same languages FSA’s accept. Hence, in order to have the complete automaton
underlying the declarative model, the conjunction of the set of its constraints is
made. Of course, this automaton is likely to become rather unreadable for a human
when ten or more activities are considered. Nonetheless, it is the basis to compute
the dynamic process view. It actually is a view on the transitions allowed, given the
current state, obtained by replaying the history of performed actions on the process
FSA.

Also the possible change in the process, caused by choices which do not respect
the given constraints, is manageable thanks to the fact that each constraint is
equivalent to an FSA: this allows to immediately identify the violated constraint, on
one hand, and recalculate the updated process scheme, on the other hand. During
the execution of the process instance, in fact, not only the validity of the path on
the global intersection FSA is considered: every step is monitored by the evolution
of the individual constraint FSA components as well. So, when one or more of them
are violated, they can be deleted from the set, on top of which the intersection FSA
is computed. Once removed, the FSA is recalculated. Finally, the same history,
up to the deviation, is enacted back on the new FSA. The next possible activities
to perform are shown accordingly. A thorough analysis of the reconfiguration of
declarative process models based on the omission of constraints is provided in the
work of Schunselaar et al [82].

Local views are also based on FSA’s. Their related FSA’s are obtained by
intersecting only those constraints which refer to the focused activity, as either the
implying or the implied. Then, the resulting automaton is further intersected with
another, accepting a limited number of optional transitions, before and after the
focused activity. E.g., if the focused activity is a and we want to show two possible
activities to do before and after, such regular expression is “[^a]0,2a[^a]0,2”,
according to the POSIX notation (see Section 3.3). The look-and-feel given by
Figure 3.8 can be obtained by grouping activities and using the ∗ wildcard when
many transitions lead to the same state in the FSA.

An example of this implementation, still bare-bone (i.e., drawing FSA’s only), is
given in Figure 5.19 and Appendix B.1.

49

Chapter 4

The Workflow Discovery
Algorithm

Here we describe MINERful, namely our algorithm for the discovery of declarative
workflows.

Throughout the following Section, we will show its two-steps nature. The
first aims at building a knowledge base, named MINERfulKB, where statistical
information taken from the log are collected. The second executes several queries to
infer which constraints hold in the log. Due to its two-steps nature, two different
versions exist of MINERful, sharing the same MINERfulKB – thus, only the querying
step changes. The simplest version specifies which, among the possible constraints,
hold for every trace in the log. The more complex associates a reliability metric to
such assessment, thus confirming not only the constraints which were always verified
by the log, but also assessing a so called “Support” for each constraint. Support is a
real number ranging from 0 to 1, which gets higher as bigger is the portion of cases
in which it is confirmed. An analysis of the way in which such measure is affected
by controlled errors is drawn in Section 5.1.1. Moreover, it associates two metrics
on more, useful to guess how inferred constraints were of any interest, based on the
number of times the activities affected by the constraint actually appeared as events
in the log: Confidence Level and Interest Factor. The way they have an impact on a
real case study is discussed further in Section 5.2. Here we will also prove that both
version are polyonomial in the size of the input, w.r.t. their time complexity. The
tests providing an experimental proof of this argument are described in Section 5.1.

4.1 MINERful

MINERful is our proposed algorithm for mining declarative constraints out of
finite traces of activities (namely, logs). MINERful is based on the concept of
MINERfulKB: it holds all of the useful information extracted from the given traces
and tailored to the further discovery of constraints that might lay behind. The first
step of MINERful consists in the construction of that knowledge base (Section 4.1.3),
in order to easily infer the declarative model on top of it during the second step
(Section 4.1.4). The final output is thus a set of constraints, verified on the the
knowledge base. In the following, formal definitions are provided.

50 4. The Workflow Discovery Algorithm

4.1.1 MINERfulKB
Let us consider a finite alphabet Σ. The symbols in the alphabet are meant to
correspond to the activities in a process. Therefore, we will interchangeably use
the terms “activity”, “character” and “symbol”. A log is a collection of traces, i.e.,
a finite sequences of activities. We will consider T ⊂ Σ∗ as the log, and thereby
interchangeably use the terms “trace” and “string” for denoting every t ∈ T .
Next, we will describe six functions mapping a log T ⊂ Σ∗ and either one character
ρ ∈ Σ or two characters ρ, σ ∈ Σ, to integers. Such numbers will be interpreted in
MINERful as the result of specific quantitative analyses performed on collections of
strings (logs).
We will call ρ and σ, resp., as pivot and searched characters, due to their sense in
the definition of the following functions.

In the examples, we will assign Σ = {a, b, c} to the alphabet Σ. The pivot ρ will
be assigned as a and the searched σ as b. The assigned log T ⊂ {a, b, c}∗ for T will
change, case by case.

Definition 13 (MINERful interplay). A tuple I = 〈Σ, δ, β→, β←〉, where Σ is the
process alphabet (i.e., set of activities’ identifiers) and:

δ(T, ρ, σ, d) δ : Σ∗ × Σ × Σ × Z → N+ is the distances function, mapping a
distance1 d ∈ N+ between the pivot ρ ∈ Σ and the searched σ ∈ Σ to the
number of cases they appeared at distance d in the traces of the log T (e.g.,
δ(T, a, b, 2) = 4 means that we have the evidence of a searched b appearing 2
characters after the pivot a in 4 cases, given T = {cacbcc, acbcacba, acbaaa});
we recall that N+ is the set of natural integers excluding zero2;

β→(T, ρ, σ) β→ : Σ∗ × Σ × Σ → N is the in-between onwards appearances
function, counting the number of cases in T where, between the occurrence of
the pivot ρ and the occurrence of the searched σ, at least one more ρ was read
(e.g., if β→(T, a, b) = 2, it means that the pivot a appeared 2 times between the
preceding occurrence of a and the following first occurrence of the searched b,
as in T = {accaacb});

β←(T, ρ, σ) β← : Σ∗ × Σ × Σ → N is the in-between backwards appearances
function, counting the number of cases where between the occurrence of the
pivot ρ and the occurrence of the searched σ, at least one more ρ was read,
scanning each string contrariwise in T (e.g., if β←(T, a, b) = 3, it means that
the pivot a appeared 3 times between the following occurrence of a and the
preceding last occurrence of the searched b, as in T = {bcacacabcaa});

Definition 14 (MINERful ownplay). A tuple O = 〈Σ, γ, α, ω〉, where Σ is the
process alphabet (i.e., set of activities’ identifiers) and:

γ(T, ρ, n) γ : Σ∗ × Σ × N → N is the global appearances function, mapping
the pivot ρ and a natural number n ∈ N to the number of traces of T in

1The distance represents the number of characters between ρ and σ. It is a positive value if σ
follows ρ, negative if σ precedes ρ.

2Thus, we do not consider the contemporaneity of events in logs, i.e., no couple of characters is
read in the same position.

4.1 MINERful 51

Function Extended Abbreviated
Distances δ(T, ρ, σ, d) δρ,σ(d)
In-between onwards appearances β→(T, ρ, σ) β→ρ,σ
In-between backwards appearances β←(T, ρ, σ) β←ρ,σ
Global appearances γ(T, ρ, n) γρ(n)
Initial appearances α(T, ρ) αρ
Final appearances ω(T, ρ) ωρ

Table 4.1. Abbreviations for the functions of MINERfulKB

which ρ was read n times (e.g., γ(T, a, 4) = 2 means that it happened to the
pivot a to be read exactly four times in two strings only in the log, as in
T = {aabbabccaaabab, babacaa});

α(T, ρ) α : Σ∗ × Σ → N is the initial appearances function, which represents
the number of strings where the pivot ρ appeared as the initial symbol (e.g., if
α(T, a) = 5, five traces started with a, as in T = {abc, abbc, aca, aa, a});

ω(T, ρ) ω : Σ∗ × Σ → N is the final appearances function, which represents
the number of strings where the pivot ρ appeared as the last symbol (e.g., if
ω(T, a) = 0, no trace ended with a, as in T = {abc, abbc});

Definition 15 (MINERfulKB). A tuple KB = 〈I,O〉 where I = 〈Σ, δ, β→, β←〉 is
the MINERful interplay, and O = 〈Σ, γ, α, ω〉 is the MINERful ownplay.

In the definition above, I and O are intended to agree on the same process
alphabet, Σ.

Notational conventions

For sake of readability, we put input characters as indexes in the subscript of the
function symbols. We will remove the explicit reference to the log T , as well. Hence,
we will have the abbreviations listed in Table 4.1.

With a slight abuse of notation, we consider δρ,σ(+∞), i.e., δ(T, ρ, σ,+∞), and
δρ,σ(−∞), δ(T, ρ, σ,−∞), to denote the number of cases in which the searched σ,
respectively, did not appear in a string after the pivot ρ, and did not appear in a
string before ρ.
δρ,σ(±∞), alias δ(T, ρ, σ,±∞), represents the number of cases in which the searched
σ did not appear at all in the strings where ρ occurred, i.e., neither before nor after.

For sake of brevity, here we also define the following function:

Γρ =
∑
n> 0

γρ(n) · n

It is meant to count the number of appearances of the pivot ρ in the log T .

52
4.

T
he

W
orkflow

D
iscovery

A
lgorithm

−∞ · · · −5 −4 −3 −2 −1 ±∞ +1 +2 +3 +4 +5 · · · +∞
δa,b 2 0 0 0 0 1 1 0 1 2 1 0 0 0 1 β→a,b = 1; β←a,b = 0
δa,c 3 0 0 0 0 0 0 0 1 0 0 1 1 0 0 β→a,c = 2; β←a,c = 0

δb,a 0 0 0 0 1 2 1 0 1 1 0 0 0 0 0 β→b,a = 1; β←b,a = 1
δb,c 2 0 0 0 0 0 0 0 0 1 1 0 0 0 0 β→b,c = 1; β←b,c = 0

δc,a 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 β→c,a = 0; β←c,a = 0
δc,b 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 β→c,b = 0; β←c,b = 0

Table 4.2. An example of MINERful interplay, interpreted over aabbac

4.1 MINERful 53

As an example, let us suppose to interpret the MINERfulKB over a singleton
T = {aabbac}. Then, for what a, b and c are concerned, I is shown in Table 4.2,
and O is as it follows:〈

γa(n) =
{

1 n = 3
0 n ∈ N \ {3}

}
, αa = 1, ωa = 0

〉
〈
γb(n) =

{
1 n = 2
0 n ∈ N \ {2}

}
, αb = 0, ωb = 0

〉
〈
γc(n) =

{
1 n = 1
0 n ∈ N \ {1}

}
, αc = 0, ωc = 1

〉

4.1.2 The algorithm: a bird’s eye view
Algorithm 1 presents a bird-eye view of the technique. The different steps will be
detailed in the following sections.

Algorithm 1 The MINERful pseudo-code algorithm, in its simplest form (bird’s
eye view)
KB ← computeKBOnwards(T,Σ, ∅)
KB ← computeKBBackwards(T,Σ,KB)
B← discoverConstraints(KB,Σ, |T |)

In the following, we will describe how the MINERfulKB is computed (Sec-
tion 4.1.3). Then, we will show two versions of the discoverConstraints proce-
dure: the simplest, explained in Section 4.1.4, returns B, namely a bag of constraints
which will compose the process; the more complex discoverConstraints+ (see
Algorithm 2), explained in Section 4.1.5, returns an extended version of B, namely
B+, where constraints are associated to Support as a reliability measure, along with
metrics estimating their degree of significance: Confidence Level (or Confidence for
short) and Interest Factor.

The MINERfulKB is designed in order to be tailored to the further reasoning for
constraints discovery. Thus, the latter step becomes easier and faster, rather than
analyzing it directly from the raw data (the collection of strings). At the same time,
it must be fast: moving the whole complexity to that step would take no advantage
to the overall technique. This first phase of the algorithm is built to be completely
on-line, i.e., it refines the MINERfulKB as new strings occur and as new characters
in the string are read, with no need to go back on already processed data in the end.

Algorithm 2 The MINERful pseudo-code algorithm, with the computation of
reliability and interest metrics (bird-eye watching)
KB ← computeKBOnwards(T,Σ, ∅)
KB ← computeKBBackwards(T,Σ,KB)
B+ ← discoverConstraints+(KB,Σ, |T |)

4.1.3 Construction of the MINERfulKB
The input of this algorithm is an alphabet of activities and a log, which are possible
assignments for (resp.) Σ and T , referring back to the definitions of Section 4.1.1.

54 4. The Workflow Discovery Algorithm

Here we call the input log L and the input process alphabet A. For each activity
a ∈ A, a unique identifier is considered. For each trace l ∈ L, a string of unique
activities’ identifiers is taken into account.

We recall that Σ pertains the interpretation of the MINERful interplay I and the
MINERful ownplay O, whereas T is the collection of strings passed as a parameter to
all of the functions in I and O. Therefore, the algorithm computes an interpretation
function

(
L,A·

)
for the MINERfulKB KB over L and A, considering the identifiers of

the activities in A as the characters of Σ and the sequences of identifiers representing
the traces of L as the strings of T . At the end of the run, we have the interpretations
for both the MINERful interplay and the MINERful ownplay on the basis of L and
A, i.e.,

L,AKB =
〈
L,AI, L,AO

〉
where

L,AI = 〈L,AΣ, L,Aδ, L,Aβ→, L,Aβ←〉

and
L,AO = 〈L,AΣ, L,Aγ, L,Aα, L,Aω〉

(see Section 4.1.1).
For the remainder, although, we will omit the L,A· notation, thus implicitly

referring to the interpreted MINERfulKB, when mentioning KB and all the related
functions, in order to ease the reading of text and formulae.

Explanation of Algorithm 3

Before starting the description of the code in Algorithm 3, we resume here the
notation adopted. Sets differ from lists in that they can not have multiple copies of
the same value. Therefore, if, e.g., X = {x, y} =⇒ X ∪ {x} = {x, y}, i.e., unions
are implicitly meant to be distinct: the reader has to keep this in mind when looking
at instructions like R := R ∪ {σ} (see line 13 in Algorithm 3). Lists, though, have
an explicit positional indexing over the values inserted. Hence, −→pρ[j] (see line 27 in
Algorithm 3), is pointing at the j-th element in the −→pρ list. Strings are considered
as lists of characters: thus, t[i] refers to the i-th character in the string t (see line 12
in Algorithm 3), where i ranges from 1 to |t|. Lists and strings are provided with a
concatenation function, ◦: for instance, the effect of −→pσ ← −→pσ ◦ {i} is to add i as the
last element in −→pσ (see line 14 in Algorithm 3). For pointing at a specific element in
a map (indexed multi-set), we specify the “coordinates” between couples of brackets,
as for a bi-dimensional array: e.g., N[r][s] is the element in N corresponding to r and
s (see line 7 in Algorithm 3). When pointing at the whole sub-map corresponding
to a single character, we insert the target symbol only, as selecting a row in a
bi-dimensional array: e.g., N[r] is the sub-map in N corresponding to r (see line 41 in
Algorithm 3).

In order to ease the reader to distinguish between assignments of temporary
variables (like the ones from line 6 to line 10 in Algorithm 3) and the update of the
interpretation for the MINERfulKB (see e.g., line 5 in Algorithm 3), we denote the
former with :=, the latter with ←.

4.1 MINERful 55

Algorithm 3 The computeKBOnwards procedure’s pseudo-code
1: procedure computeKBOnwards(T,Σ,KB)
2: ∀d ∈ Z ∀ρ ∈ Σ ∀σ ∈ Σ . δρ,σ(d)← 0
3: ∀n ∈ N+ ∀ρ ∈ Σ . γρ(x)← 0
4: for all t ⊆ T do
5: αt[1] ← αt[1] + 1
6: R := ∅ # R: set of characters already appeared in t
7: ∀r, s ∈ Σ . N[r][s] := 0 # N: bi-indexed map, counting the missing s’s after r
8: ∀r ∈ Σ . −→pr := {} # −→pr : list of indexes where r appears in t
9: ∀r, s ∈ Σ . W[r][s] := 0 # W: counts the r’s repeated before the next s

10: ∀r, s ∈ Σ . Ŵ[r][s] := ⊥ # Ŵ: flags granting the update of W
11: for i = 1→ |t| do
12: σ := t[i]
13: R := R ∪ {σ}
14: −→pσ := −→pσ ◦ {i}
15: for all ρ ∈ R do
16: if ρ = σ then
17: for all s ∈ Σ \ {ρ} do
18: N[ρ][s] := N[ρ][s] + 1
19: if Ŵ[ρ][s] = ⊥ then
20: Ŵ[ρ][s] := >
21: else
22: W[ρ][s] := W[ρ][s] + 1
23: end if
24: end for
25: else
26: for j = 1→ |−→pρ| do
27: δρ,σ(i−−→pρ[j])← δρ,σ(i−−→pρ[j]) + 1
28: end for
29: N[ρ][σ] := 0
30: if Ŵ[ρ][σ] = > then
31: b→ρ,σ ← b→ρ,σ + W[ρ][σ]
32: Ŵ[ρ][σ] := ⊥, W[ρ][σ] := 0
33: end if
34: end if
35: end for
36: end for
37: for all r ∈ R do
38: for all s̄ ∈ Σ \ R do
39: δr,s̄(±∞)← δr,s̄(±∞) + |−→pr |
40: end for
41: for all s̄ ∈ Σ \ {r} do
42: δr,s̄(+∞)← δr,s̄(+∞) + N[r][s̄]
43: end for
44: if |−→pr | = 1 then
45: δr,r(+∞)← δr,r(+∞) + 1
46: end if
47: end for
48: for all s ∈ Σ do
49: γs(|−→ps|)← γs(|−→ps|) + 1
50: end for
51: ωt[|t|] ← ωt[|t|] + 1
52: end for
53: return KB
54: end procedure

56 4. The Workflow Discovery Algorithm

From line 2 to line 3, the interpretations of the γ and δ functions are initialized,
supposing that they are constant and equal to 0, whatever the value the variables
assume. Then, for each string t in T (line 4), the first character appearing (t[0]) is
recorded into the related αt[0] as the first (line 5). After the initialization of auxiliary
data structures, whose role is briefly explained in-line on the code itself and further
in this Section, the analysis of the single characters in the string begins (line 11).
First of all, the encountered character σ is added to the set of appeared characters
in t, namely R (if it is not already in – see the discussion on the set union at the
beginning of Section 4.1.3). Next, the current index is concatenated (◦ operation) to
the list of positions where σ was read in t (−→pσ), at line 14. On line 15 the algorithm
starts the computation of interleaving statistics between characters.

For each of the characters already found in the string, ρ, the algorithm proceeds
differently, depending on whether an already appeared character is read again (ρ = σ)
or not (line 16).

In the first case, the temporary counter for cases in which s (where s is any other
character in Σ but ρ) did not appear anymore after an occurrence of ρ (N[r][s]) is
incremented by 1 (line 18). This is due to the fact that such counter will be reset if
s appears afterwards (see line 29), and its value is going to be “flushed” to δr,s̄(+∞)
at the end of the string t (see line 42). From line 19 to line 23, the algorithm updates
the counters for repeated occurrences of ρ before the next occurrence of s: Ŵ[ρ][s] is
the flag for incrementing the W[ρ][s] counter; hence, if it is set to false, it gets true,
whereas if it is already true, W[ρ][s] is incremented by one. This is due to the fact
that when the next occurrence of s is found in the string, the value of W[ρ][s] will
be flushed as an increment to β→ρ,s (see line 31), before Ŵ[ρ][s] and W[ρ][s] are reset,
respectively, to ⊥ and 0, (line 32).

If the encountered σ differs from ρ in the loop over R, then the value assumed by
δρ,σ at the current distance between ρ and σ has to be incremented by 1. Though, we
may have not only one position where ρ occurred, but many. Think to aaccccacab . . .,
for instance: there, the pivot a was read at position 1, 2, 7 and 9, and the searched
b at position 10. Thus, b must be recorded to appear at distance 1, 3, 8 and 9 from
a. Reminding that −→pρ collects all of the indexes where ρ is read (see line 14), this is
what happens at line 27, actually – repeated for each position of ρ in −→pρ, i.e., inside
the loop starting at line 26. This is probably one of the most difficult steps of the
algorithm, though it prevents the analysis to be repeated like a transitive closure on
each string for each appeared character. As we said at the beginning of Section 4.1.3,
the trace analysis for the intepretation of the MINERful interplay had to be local to
each occurrence of ρ, but the construction of the MINERfulKB was required not to
be too complex: this is the most noticeable example of how we managed both the
prerequisites.

The final part of the outermost cycle updates counters on the basis of the
previously gathered information. The instruction of line 39 records the number of
times in which the read character r occurred in t, but s̄ did not: since s̄ ∈ Σ \ R, it
was not read, hence for all of the r’s in the trace (|−→pr |), a s̄ missed. The statement
at line 45 is due to the need of recording that if r appeared once and then no more
in the string, then δr,r(+∞) must be incremented by one in the interpretation. This
is the only case where this operation makes sense. If we had used for δr,r(+∞) the
technique adopted at line 39, it would have been meaningless, since a last r always
occurs, and no more r are read afterwards (this is the reason why the cycle for

4.1 MINERful 57

〈N, δ·,·(+∞)〉\σ∈t a a b b a c

〈N[a][b], δa,b(+∞)〉 〈1,−〉 〈2,−〉 〈0,−〉 〈0,−〉 〈1,−〉 〈1,−〉 〈0,+1〉
〈N[a][c], δa,c(+∞)〉 〈1,−〉 〈2,−〉 〈2,−〉 〈2,−〉 〈3,−〉 〈0,−〉 〈0,+0〉

〈N[b][a], δb,a(+∞)〉 〈0,−〉 〈0,−〉 〈1,−〉 〈2,−〉 〈0,−〉 〈0,−〉 〈0,+0〉
〈N[b][c], δb,c(+∞)〉 〈0,−〉 〈0,−〉 〈1,−〉 〈2,−〉 〈0,−〉 〈0,−〉 〈0,+0〉

〈N[c][a], δc,a(+∞)〉 〈0,−〉 〈0,−〉 〈0,−〉 〈0,−〉 〈0,−〉 〈1,−〉 〈0,+1〉
〈N[c][b], δc,b(+∞)〉 〈0,−〉 〈0,−〉 〈0,−〉 〈0,−〉 〈0,−〉 〈1,−〉 〈0,+1〉

Table 4.3. The evolution of N and δ·,·(+∞), over the reading of a string t = aabbac

computing the value of N[r][s] is executed for each s 6= r – see line 17). On line
49, the function distributing the number of appearances of each character s in the
alphabet Σ over T is updated: the number of occurrences of s in t, namely |−→ps|, is
the argument, and the referred value is incremented by 1. |−→ps| can be 0 as well, if it
was never read in t. In the end (line 51), the counter for the appearances as last for
the ending character of t (ωt[|t|]) is incremented by 1.

A running example for the computation of the δ and β functions

Since the work of the algorithm on δ and β (thus respectively on N, and on W and Ŵ)
can lead to some difficulties in the understanding, we explain it through an example.
Suppose to have a t string like this:
aabbac.
Taking into account the analysis of a only as the pivot ρ, for sake of simplicity, the
evolution of N throughout the algorithm is reported on the following Table 4.3, as W
and Ŵ evolve as on Table 4.4.

58
4.

T
he

W
orkflow

D
iscovery

A
lgorithm

〈〈̂W, W〉, β→·,· 〉
\σ∈t a a b b a c

〈〈Ŵ[a][b], W[a][b]〉, β→a,b〉 〈〈>, 0〉,−〉 〈〈>, 1〉,−〉 〈〈⊥, 0〉,+1〉 〈〈⊥, 0〉,−〉 〈〈>, 0〉,−〉 〈〈>, 0〉,−〉
〈〈Ŵ[a][c], W[a][c]〉, β→a,c〉 〈〈>, 0〉,−〉 〈〈>, 1〉,−〉 〈〈>, 1〉,−〉 〈〈>, 1〉,−〉 〈〈>, 2〉,−〉 〈〈⊥, 0〉,+2〉

〈〈Ŵ[b][a], W[b][a]〉, β→b,a〉 〈〈⊥, 0〉,−〉 〈〈⊥, 0〉,−〉 〈〈>, 0〉,−〉 〈〈>, 1〉,−〉 〈〈⊥, 0〉,+1〉 〈〈⊥, 0〉,−〉
〈〈Ŵ[b][c], W[b][c]〉, β→b,c〉 〈〈⊥, 0〉,−〉 〈〈⊥, 0〉,−〉 〈〈>, 0〉,−〉 〈〈>, 1〉,−〉 〈〈>, 1〉,−〉 〈〈⊥, 0〉,+1〉

〈〈Ŵ[c][a], W[c][a]〉, β→c,a〉 〈〈⊥, 0〉,−〉 〈〈⊥, 0〉,−〉 〈〈⊥, 0〉,−〉 〈〈⊥, 0〉,−〉 〈〈⊥, 0〉,−〉 〈〈>, 0〉,−〉
〈〈Ŵ[c][b], W[c][b]〉, β→c,b〉 〈〈⊥, 0〉,−〉 〈〈⊥, 0〉,−〉 〈〈⊥, 0〉,−〉 〈〈⊥, 0〉,−〉 〈〈⊥, 0〉,−〉 〈〈>, 0〉,−〉

Table 4.4. The evolution of Ŵ, W, and β→·,· over the reading of a string t = aabbac

4.1 MINERful 59

On the computeKBBackwards procedure.

This algorithm is called twice: (i) first, for reading strings onwards
(computeKBOnwards), i.e. from left to the right (according to the Western
Latin standard); (ii) then, backwards (computeKBBackwards).

Here we reported the pseudo-algorithm of computeKBOnwards only, since
the latter differs to the former in few details. The only differences are in that
computeKBBackwards:

• does not update either the γ, nor the α nor the ω functions (namely, it does
not contribute to give an interpretation to the MINERful ownplay, being this
task already fulfilled by computeKBOnwards);

• does not update the δ function for 0 values (since computeKBBackwards
already detected characters never appeared in the string, if any);

• reverses the sign of i, the counter of the current index in the string (namely, it
is initialized with −1 and proceeds being decremented by 1 at each step);

• updates the δ function for −∞ values, instead of +∞, whenever the same
conditions of lines 41 and 44 in Algorithm 3 are verified.

Discussion on the complexity.

In the following, we discuss the complexity of Algorithm 3.

Lemma 1. The procedure for building the knowledge base of the MINERful is
(i) linear time w.r.t. the number of strings in the testbed, (ii) quardratic time w.r.t.
the size of strings in the testbed, (iii) quadratic time w.r.t. the size of the alphabet;
therefore, the complexity is O(|T | · |tmax|2 · |Σ|2).

Proof. The outermost cycle (line 4) is repeated exactly |T | times, the following
inner cycle (line 11) is executed |t| times for each t ∈ T . In the worst case, i.e.,
assuming that each string is as long as the longest, it loops |tmax| times, where
|tmax| = maxt∈T |t|. Actually, such couple of loops let the instructions be repeated
exactly

∑
t∈T |t| times, where T is likely to be the most significant part the input, in

terms of its size. At line 15, we have a cycle whose number of repetitions grows as
new characters are found in the analyzed string. The number of loops depends on
the size of the string |t| and on the size of the alphabet Σ at the same time. In fact,
we might assume that each character read was not found before in the string. So,
as soon as a new character is read, you have one loop more. You might say that,
hence, the instructions in the block are executed 1 + 2 + 3 + · · ·+ |t| times as the
cursor in the string moves on. If it was so, loops starting at line 11 and line 15) had
run at most

|t| × (|t|+ 1)
2

times, as in the formula for counting the sum of the first |t| natural numbers.
Although, the maximum amount of “new” characters is bounded by the characters
you can actually have. Therefore, assuming the worst case, i.e., all of the characters
of Σ in every string, it runs at most 1 + 2 + 3 + · · · + |Σ| times. Then, we have

60 4. The Workflow Discovery Algorithm

to subtract the number of loops that are not executed due to the limitation of the
alphabet size (if the alphabet size is smaller than the size of the strings, which is
likely). Let:

∆|t|,|Σ| = |t| − |Σ|

Thus, the number of loops is equal to:

|t| × (|t|+ 1)
2 −

∆|t|,|Σ| × (∆|t|,|Σ| + 1)
2 ·Θ(∆|t|,|Σ| − 1)

where Θ(x) is the Heaviside step function (equal to 0, and thus deleting the second
term in the subtraction if ∆|t|,|Σ|, i.e., if |t| < |Σ|, otherwise equal to 1). If we
suppose that |t| > |Σ|+ 1, then we can simplify terms of the multiplications and
subtractions, up to

2|Σ||t| − |Σ|2 + |Σ|
2 =

2∆|t|,|Σ||Σ|+ |Σ|
2 6 |Σ||t|

Depending on the condition at line 16, the algorithm enters one of the two
innermost loops, one starting at line 17, the other at line 26.

The first is executed exactly |Σ| − 1 times, no matter the outer cycles. The
second, instead, is such that the more repetitions of the same character in the string
we had, the more it loops. If we had strings composed by concatenations of the same
character (the worst case for such cycle) after a prefix comprising the whole alphabet
(the worst case for the outer cycle), this would lead to |t| loops, asymptotically.

The instructions in the bodies of the loops are readings and writings in memory3

so they do not add any relevant degree of complexity to the algorithm.
Summing up this computation analysis, we have that the worst-case complexity

of the algorithm is

O

 |T |︸︷︷︸
loop at 4

|tmax||Σ|︸ ︷︷ ︸
loops at 11 and 15

 |Σ|︸︷︷︸
loop at 17

+ |tmax|︸ ︷︷ ︸
loop at 26

4.1.4 Discovery of constraints
Artful processes are represented by means of a set of constraints, imposing the rules
that each process instance must follow, whatever the execution trace is. The set of
mined constraints are those described in Table 3.2. Here, we express such constraints
like predicates over the MINERfulKB, which are easily transposed into instructions
for a verification algorithm. A refined version of the discovery is discussed in the
following Section 4.1.5, where constraints are associated to a Support, i.e., a value
ranging from 0 to 1 assessing the probability of a constraint to hold in the discovered
process, and the relevance-assessing metrics of Confidence Level and Interest Factor.

3The reader might ask the opportunity to analyze the complexity of searching the datum to
overwrite in the temporary data structures, such as N . Although, considering that (i) we can exploit
the alphanumeric ordering function for ordering the couples of characters, and (ii) the alphabet of
characters is known a priori, we can easily make use of a hashing function, so that reaching the
datum and overwriting it is O(1).

4.1 MINERful 61

Constraints as predicates

Here we provide a list of predicates assessing whether a constraint holds or
not in the MINERfulKB. Actually, a hierarchy between constraints exists (see
Figure 3.6): the conjunctions inside, e.g., ChainPrecedence(ρ, σ), involving
AlternatePrecedence(ρ, σ), is explicity mentioned on purpose. This way, the reader
can have an immediate evidence of the fact that, e.g., once ChainPrecedence(ρ, σ)
is known to hold, AlternatePrecedence(ρ, σ), and recursively Precedence(ρ, σ) as
well, hold too.

Existence constraints

Participation(r) ≡ Existence(1, r)

≡
(

min
〈o,p〉∈γr|p>0

o > 0
)

(4.1)

Each string has at least 1 occurrences of r in.

Uniqueness(r) ≡ Absence(2, r)

≡
(

max
〈o,p〉∈γr|p>0

o 6 2
)

(4.2)

There is no string with more than 1 occurrence of r in.

Init(r) ≡ (|T | 6 αr) (4.3)

Every string starts with r.

End(r) ≡ (|T | 6 ωr) (4.4)

Every string ends with r.

Rather than giving the exact number of times a task can be done (in a range
from the lower to the upper), so to specify that all of the Existence(n, ρ) constraints
hold, for n ranging from 0 to minγρ(n)>0 n (and dually consider Absence(m+ 1, ρ)
valid for each m from maxγρ(m)>0m onwards), we preferred to introduce a looser
couple of constraints, stating whether a task ρ must be executed (Participation(ρ))
or not, and whether it must not be done more than once (Uniqueness(ρ)). We
believe that providing the minimum and the maximum for ranges would have been
for artful processes too overfitting, when mined, or too restrictive, when enacted.

Relation constraints

RespondedExistence(ρ, σ) ≡ ¬(δρ,σ(±∞) > 0)) (4.5)

There is no string such that σ was not read if ρ was.

Response(ρ, σ) ≡RespondedExistence(ρ, σ)
∧ ¬(δρ,σ(+∞) > 0)) (4.6)

62 4. The Workflow Discovery Algorithm

There is no string such that σ does not succeed ρ.

AlternateResponse(ρ, σ) ≡Response(ρ, σ)
∧ β→ρ,σ = 0 (4.7)

There is no string such that ρ appears again before the subsequent σ.

ChainResponse(ρ, σ) ≡AlternateResponse(ρ, σ)
∧ δρ,σ(1) > Γρ (4.8)

Each time you have an occurrence of ρ, the total amount of which is given by
Γρ, there is always a new σ immediately following (i.e., at a distance equal to 1).

Dually, we have the following Precedence-based constraints.

Precedence(ρ, σ) ≡Response(ρ, σ)
∧ ¬(δρ,σ(−∞) > 0)) (4.9)

There was no string such that σ did not precede ρ.

AlternatePrecedence(ρ, σ) ≡Precedence(ρ, σ)
∧ β←ρ,σ = 0 (4.10)

There was no string such that ρ appeared again before the preceding σ.

ChainPrecedence(ρ, σ) ≡AlternatePrecedence(ρ, σ)
∧ δρ,σ(−1) > Γσ (4.11)

Each time you have an occurrence of σ, the total amount of which is computed
as Γσ, there is always a new σ immediately preceding (i.e., at a distance equal to
−1).

The next formulae follow by the definition of MutualRelation constraints (see
Section 3.3).

CoExistence(ρ, σ) ≡RespondedExistence(ρ, σ)
∧RespondedExistence(b, a) (4.12)

Succession(ρ, σ) ≡Response(ρ, σ)
∧ Precedence(ρ, σ) (4.13)

AlternateSuccession(ρ, s) ≡ AlternateResponse(ρ, σ)
∧AlternatePrecedence(ρ, σ) (4.14)

ChainSuccession(ρ, σ) ≡ChainResponse(ρ, σ)
∧ ChainPrecedence(ρ, σ) (4.15)

4.1 MINERful 63

Negative relation constraints

NotChainSuccession(ρ, σ) ≡¬(δρ,σ(1) > 0)) (4.16)

It never happens that, after ρ, σ follows unless you have at least another character
in the middle (i.e., σ never appears at distance 1 from ρ).

NotSuccession(ρ, σ) ≡NotChainSuccession(ρ, σ)
∧ Γρ 6 δρ,σ(+∞) (4.17)

It never happens that, after ρ, σ follows.

NotCoExistence(ρ, σ) ≡NotSuccession(ρ, σ)
∧ Γρ 6 δρ,σ(±∞) (4.18)

It never happens that, if ρ is in a string, σ appears in the same one, neither
before nor aftwerwards.

The algorithm

In the pseudo-code of the algorithm for guessing the relation constraints (Algo-
rithms 6, 8, 7), we assume to rely on procedures which share the same name of the
aforementioned predicates, explicited from Formula 4.1 to Formula 4.18. Their input
is MINERfulKB, KB, interpreted over the given log and alphabet (as in Section 4.1.3,
see Algorithm 3), the searched ρ, and optionally the pivot σ (if the procedure is
verifying a Relation Constraint). Each procedure returns the boolean true value
if and only if the conditions given in the homonim Formula holds, false otherwise.
Hence, for instance, we have that the RespondedExistence and Response pro-
cedure behaves like what drawn by the Algorithm 4 and Algorithm 5’s pseudocodes,
respectively.

Algorithm 4 The pseudo-code of the RespondedExistence procedure
1: procedure RespondedExistence(KB, ρ, σ)
2: if ¬(δρ,σ(±∞) > 0)) then # See Formula 4.5
3: return true
4: else
5: return false
6: end if
7: end procedure

Algorithm 5 The pseudo-code of the Response procedure
1: procedure Response(KB, ρ, σ)
2: if RespondedExistence(KB, ρ, σ) ∧ ¬(δρ,σ(+∞) > 0)) then # See Formula 4.6
3: return true
4: else
5: return false
6: end if
7: end procedure

With a slight conceptual modification w.r.t. computeKBOnwards, then, we
suppose the algorithm to fill a bag of predifined constants (each symbol corresponding

64 4. The Workflow Discovery Algorithm

Constraint Symbol
Existence constraints

Participation(ρ)
Uniqueness(ρ) >1−

ρ

Init(ρ) >iρ
End(ρ) >eρ

Relation constraints
RespondedExistence(ρ, σ) >ρ,σ

Response(ρ, σ) >→ρ,σ
AlternateResponse(ρ, σ) >⇒ρ,σ

ChainResponse(ρ, σ) >Vρ,σ
Precedence(ρ, σ) >←ρ,σ

AlternatePrecedence(ρ, σ) >⇐ρ,σ
ChainPrecedence(ρ, σ) >Wρ,σ

CoExistence(ρ, σ) >ρσ
Succession(ρ, σ) >↔ρ,σ

AlternateSuccession(ρ, σ) >⇔ρ,σ
ChainSuccession(ρ, σ) >WVρ,σ

Negative relation constraints
NotCoExistence(ρ, σ) ⊥ρσ

NotSuccession(ρ, σ) >=
ρ,σ

NotChainSuccession(ρ, σ) >WV/ρ,σ

Table 4.5. Symbols expressing the validity of constraints

4.1 MINERful 65

to the validity of a constraint for the given set of traces T), rather than giving an
interpretation to each predicate (see Table 4.5 for a reference). As the reader can see
in Algorithms 6, 8, 7 and the further discussion, such constants will be added to the
bag avoiding redundancies. The user who wants to understand the discovered artful
process is not interested in reading trivial deductions. For instance, it is enough
to say that ChainPrecedence(ρ, σ) holds, rather than explicitly returning as verified
constraints ChainPrecedence(ρ, σ), AlternatePrecedence(ρ, σ), Precedence(ρ, σ) and
RespondedExistence(ρ, σ) (where the last three are directly implied by the first). In
this example, e.g., reporting the successful verification of all the subsumed constraints
would add no bit of information and rather make the result far less readable – which
is definitely to avoid, in our case, being knowledge workers the target of our approach,
i.e., people with a little amount of time to dedicate to the process analysis. For the
same reason, characters never appeared in the testbed are not involved neither in
existence constraints nor in relation constraints related to them as implying (see
line 4 in Algorithm 6).

This is the rationale underlying the nested if structure of the Algorithms.

Discussion on the complexity In the following we discuss the complexity of
the concurrent execution of Algorithms 6, 8 and 7.

Lemma 2. The procedure for discovering the constraints of processes out of the
MINERful knowledge base is (i) quadratic time w.r.t. the size of the alphabet,
(ii) linear in the number of constraint templates, which is fixed and equal to 18 (thus
constant); therefore, the complexity is O(|ΣT |2).

Proof. We have two nested cycles, both for ρ ranging over the characters of the
alphabet Σ (see lines 3 and 3 in Algorithm 6), thus both looping for |Σ|, at most,
due to the presence of the check at line 4 in Algorithm 6), so to analyze every
possible couple. The nested if statements check whether a constraint holds or not.
At most, it means that, for each couple of characters ρ and σ, you have up to 14
checks (for the innermost loop). The outermost loop calls up to 4 procedures for
checking existence constraints.

4.1.5 Discovery of constraints and their metrics
Declarative processes are modeled by a set of constraints, imposing the rules that
each process instance must follow, whatever the execution trace is. The set of mined
constraints is listed in Table 4.6. Table 4.6 shows the functions used in order to
compute the Support for the constraints, with respect to the MINERfulKB. Here
we call “Support” the value, ranging from 0 to 1, that represents the normalized
fraction of cases in which the constraint is verified, over the set of traces T . Such
functions are all based on mathematical operations performed on data coming
from the MINERfulKB only, plus the information about the size of T , i.e., how
many strings were read. In order to ease the readability, we omit the KB and |T |
parameters from the list of each function, since they can be considered as a common
shared knowledge.

Support is a metric adopted in [56] as well, but with a slight difference in the
computation. There, it corresponds to the number of traces where the constraint is
non-vacuously satisfied, w.r.t. the number of traces in the log. Here, instead, we

66 4. The Workflow Discovery Algorithm

Algorithm 6 The discoverConstraints procedure’s pseudo-code
1: procedure discoverConstraints(KB,Σ, |T |)
2: B← ∅ # Inizialization of the bag of constraints
3: for all ρ ∈ Σ do
4: if

(
max〈o,p〉∈γr|p>0 o 6 0

)
then

5: B← discoverExistenceConstraints(ρ,B,KB)
6: for all σ ∈ Σ do
7: if RespondedExistence(KB, ρ, σ) then
8: if Response(KB, ρ, σ) then
9: if AlternateResponse(KB, ρ, σ) then
10: if ChainResponse(KB, ρ, σ) then
11: if ChainPrecedence(KB, ρ, σ) then
12: B← B ∪ {>WV

ρ,σ}
13: else
14: B← B ∪ {>V

ρ,σ}
15: end if
16: else
17: if AlternatePrecedence(KB, ρ, σ) then
18: B← B ∪ {>⇔ρ,σ}
19: else
20: B← B ∪ {>⇒ρ,σ}
21: end if
22: end if
23: else
24: if Precedence(KB, ρ, σ) then
25: B← B ∪ {>↔ρ,σ}
26: else
27: B← B ∪ {>→ρ,σ}
28: end if
29: end if
30: end if
31: if Precedence(KB, ρ, σ) then
32: if AlternatePrecedence(KB, ρ, σ) then
33: if ChainPrecedence(KB, ρ, σ) ∧ ¬ChainResponse(KB, ρ, σ) then
34: B← B ∪ {>W

ρ,σ}
35: else
36: if ¬AlternateResponse(KB, ρ, σ) then
37: B← B ∪ {>⇐ρ,σ}
38: end if
39: end if
40: else
41: if ¬Response(KB, ρ, σ) then
42: B← B ∪ {>←ρ,σ}
43: end if
44: end if
45: end if
46: if ¬ (Response(KB, ρ, σ) ∨ Precedence(KB, ρ, σ)) then
47: B← B ∪ {>ρ,σ}
48: end if
49: end if
50: if >ρ,σ ∈ B ∧ >σ,ρ ∈ B then
51: B← B \ {>ρ,σ,>σ,ρ} ∪ {>ρσ}
52: end if
53: B← discoverNegativeConstraints(ρ, σ,B,KB)
54: end for
55: end if
56: end for
57: return B

58: end procedure

4.1 MINERful 67

Algorithm 7 The discoverExistenceConstraints procedure’s pseudo-code
1: procedure discoverExistenceConstraints(ρ, B, KB)
2: if Participation(KB, ρ) then
3: B← B ∪ {>1+

ρ }
4: end if
5: if Uniqueness(KB, ρ) then
6: B← B ∪ {>1−

ρ }
7: end if
8: if Init(KB, ρ) then
9: B← B ∪ {>iρ}

10: end if
11: if End(KB, ρ) then
12: B← B ∪ {>eρ}
13: end if
14: return B

15: end procedure

Algorithm 8 The discoverNegativeConstraints procedure’s pseudo-code
1: procedure discoverNegativeConstraints(ρ, σ, B, KB)
2: if NotCoExistence(KB, ρ, σ) then
3: B← B ∪ {⊥ρσ}
4: else
5: if NotSuccession(KB, ρ, σ) then
6: B← B ∪ {>=

ρ,σ}}
7: else
8: if NotChainSuccession(KB, ρ, σ) then
9: B← B ∪ {>WV/

ρ,σ}
10: end if
11: end if
12: end if
13: return B

14: end procedure

68 4. The Workflow Discovery Algorithm

changed the perspective for Relation Constraints, making Support being related to
single events rather than to the entire trace. Thus, e.g., if there are two occurrences
of an activity a in a trace, and the first respects the Response constraint with b,
whilst the other does not (e.g., in accbca), we consider the support for Response(a, b)
equal to 0.5. [56] would consider it equal to 0 instead.

4.1
M
IN

E
R
ful

69

Constraint Support function Constraint Support function

Existence(n, ρ) 1−
∑n−1

i=0 γρ(i)
|T | Participation(ρ) 1− γρ(0)

|T |

Absence(m, ρ)
∑m

i=0 γρ(i)
|T | Uniqueness(ρ) γρ(0)+γρ(1)

|T |
Init(ρ) αρ

|T | End(ρ) ωρ
|T |

RespondedExistence(ρ, σ) 1− δρ,σ(±∞)
Γρ

Response(ρ, σ) 1− δρ,σ(+∞)
Γρ Precedence(ρ, σ) 1− δσ,ρ(−∞)

Γσ

AlternateResponse(ρ, σ) 1− β→ρ,σ+δρ,σ(+∞)
Γρ AlternatePrecedence(ρ, σ) 1− δσ,ρ(−∞)+β←ρ,σ

Γσ
ChainResponse(ρ, σ) δρ,σ(1)

Γρ ChainPrecedence(ρ, σ) δσ,ρ(−1)
Γσ

CoExistence(ρ, σ) 1− δρ,σ(±∞)+δρ,σ(±∞)
Γρ+Γσ NotCoExistence(ρ, σ) δρ,σ(±∞)+δσ,ρ(±∞)

Γρ+Γσ
Succession(ρ, σ) 1− δρ,σ(+∞)+δσ,ρ(−∞)

Γρ+Γσ NotSuccession(ρ, σ) δρ,σ(+∞)+δσ,ρ(−∞)
Γρ+Γσ

AlternateSuccession(ρ, σ) 1− β→ρ,σ+δρ,σ(+∞)+β←ρ,σ+δσ,ρ(−∞)
Γρ+Γσ

ChainSuccession(ρ, σ) δρ,σ(1)+δσ,ρ(−1)
Γρ+Γσ NotChainSuccession(ρ, σ) 1− δρ,σ(1)+δσ,ρ(−1)

Γρ+Γσ

Table 4.6. Functions computing the Support of constraints

70 4. The Workflow Discovery Algorithm

Taking inspiration from [56], we also associated to Support the Confidence Level
(or Confidence for short) and Interest Factor metrics. Our adaptation of such metrics
does not completely match the definition given in [56], though. Both estimate a level
of relevance for a constraint, based on the assumption that the more the constrained
activities appear in the log, the more their constraints should be taken into account.
Roughly speaking, if an activity a appears once in the whole log, made of hundreds
of thousands events, it is likely to be a glitch in the normal execution. Reminding
the definition of implying and implied activities, given in Section 3.3, we define

1. as the Confidence Level, the product of a constraint’s Support and the fraction
of traces where the implying activity appears once at least,

2. as the Interest Factor, the product of the Confidence Level and either

(a) the fraction of traces where the implying activity appears once at least, if
the constraint is an ExistenceConstraint, or

(b) the fraction of traces where the implied activity appears once at least, if
the constraint is a RelationConstraint besides NotCoExistence, or

(c) the fraction of traces where the implied activity does not appear, if the
constraint is a NotCoExistence.

The reasons why the definition of Interest Factor changes according to the type
of the constraint template are that:

(a) ExistenceConstraints have no implied activities,

(b) RelationConstraints tie couple of activities, but. . .

(c) . . .NotCoExistence’s Support increases as the occurrence of an activity in a
trace excludes the other in that couple.

The reader can find the procedure computing such metrics in Algorithm 10.
The overall discoverConstraints+ algorithm is presented in Algorithm 9. It

consists of three procedure calls.

Algorithm 9 The pseudo-code of the discoverConstraints+ algorithm
Require: τ = 1.0 # An optional user-defined threshold
1: procedure discoverConstraints+(KB,Σ, |T |)
2: B+ ← calcMetricsForConstraints(KB,Σ, |T |)
3: B+ ← cleanOutput(B+)
4: B+ ← filterOutputByThreshold(B+, τ)
5: return B+

6: end procedure

The first, calcMetricsForConstraints (Algorithm 10), populates the B+

bag. B+ is a collection of tuples 〈b, sb, cb, ib〉, each associating to a constraint b the
related

1. Support, sb,

2. Confidence Level, cb,

4.1 MINERful 71

Algorithm 10 The pseudo-code of the calcMetricsForConstraints procedure
1: procedure calcMetricsForConstraints(KB,Σ, |T |)
2: B+ ← ∅ # Inizialization of the extended bag of constraints
3: for all ρ ∈ Σ do
4: if Γρ > 0 then
5: for all bx v ExistenceConstraint do
6: sxb ← calcSupport(bx, ρ)
7: cxb ← sxb ·

(
1− γρ(0)

|T |

)
8: ixb ← cxb ·

(
1− γρ(0)

|T |

)
9: B+ ← B+ ∪ 〈bx, sxb , cxb , ixb 〉

10: end for
11: for all σ ∈ Σ do
12: for all by v RelationConstraint do
13: syb ← calcSupport(by, ρ, σ)
14: cyb ← syb ·

(
1− γρ(0)

|T |

)
15: if ¬(by v NotCoExistence) then
16: iyb ← cyb ·

(
1− γσ(0)

|T |

)
17: else
18: iyb ← cyb ·

(
γσ(0)
|T |

)
19: end if
20: B+ ← B+ ∪ 〈by, syb , c

y
b , i

y
b 〉

21: end for
22: end for
23: end if
24: end for
25: return B+

26: end procedure

72 4. The Workflow Discovery Algorithm

3. Interest Factor, ib.

For each constraint, let it be bx if it belongs to the type of ExistenceConstraints
(line 5), by otherwise (line 12), the Support value is computed by the calcSupport
procedure (resp., lines 6 and 13). Here we do not report its pseudo-code, since it is
meant to apply the functions listed in Table 4.6 for the calculation, according to
the constraint template that the bx (or by) constraint belongs to. The ⊆ operator
specifies whether a given constraint belongs to, or is subsumed by, a constraint
template, or a constraint type.

The computation of the Confidence Level is listed in lines 7, for ExistenceCon-
straints, and 14, for RelationConstraints. The reader can notice that the Confidence
Level is actually the product of any constraint’s Support and the Participation’s
Support of its implying activity, referring back to Table 4.6. The Interest Factor is
assigned in lines 7, for ExistenceConstraints, 16, for RelationConstraints excluding
NotCoExistence, and 18, for NotCoExistence Constraints.

Finally, we want to focus the attention on line 4. The condition stated there
avoids those characters never appeared in the log from being the implying of any
inferred constraint. Given that ex falso quod libet, a character that was never read
might be declared as supporting each constraint, though it would be senseless to the
mining purpose, as it would add no bit of information to the gathered knowledge.

In order to filter the irrelevant constraints out of the output, we make use of two
methods, the aim of which is: (i) not to show trivially deducible constraints4; (ii)
let the user decide a threshold of reliability, i.e., decide what is the least Support for
a constraint to be considered valid.

The former objective is managed by Algorithm 11, cleanOutput, which re-
quires no user intervention. The latter is obtained by Algorithm 12, filterOut-
putByThreshold, which expects a parameter to be optionally provided by the
user: τ , i.e., the threshold, which is equal to 1.0 by default.

In Algorithm 11, the block between lines 4 and 17 involves every Relation
Constraint (see the hierarchy in Figure 3.6).

There, the constraints that are subsumed by others are removed, when they have
less Support. By definition (see Table 4.6), the Support of a subsumed constraint is
less than or equal to the subsuming’s. Therefore, the block from line 6 to line 9 raises
along the hierarchy of Figure 3.6, from the current constraint to the subsuming.
Due to the monotonic increase of Support along the hierarchy, the loop from line 7
to line 9 stops when either (i) a subsuming constraint has a Support which is
greater than the constraint under analysis, or (ii) no more “ancestors” along the
hierarchy exist (i.e., the whole hierarchy share the same Support). In the first case,
the current constraint is removed from the B+ bag. In the second case, its “parent”
is deleted. Applying this selection to all of the constraints, it is ensured that only
one constraint along the hierarchy is kept in the B+ bag. Therefore, the number of
returned constraints is dramatically reduced.

The RelationConstraints that are also based on the conjunction of other two
(which we called MutualRelation), are managed within the block from line 18 to
line 25: see Figure 3.6 to see how they are connected. In that case, if aMutualRelation

4e.g., it is enough to say that ChainPrecedence(a, b) holds, rather than explicitly return as valid
constraints ChainPrecedence(a, b), AlternatePrecedence(a, b) and Precedence(a, b) – where the latter
couple is directly implied by the first: see Figure 3.6

4.1 MINERful 73

constraint is known to have a Support which is at least greater than both of the
involved RelationConstraints, the latter couple can be removed. Otherwise, no action
is taken. Finally, from line 26 to line 33, a selection between each NegativeRelation
constraint and its negated is given, on the basis of the respective Support: the one
which has the least between the two, is removed.

Algorithm 11 The pseudo-code of the cleanOutput procedure
1: procedure cleanOutput(B+)
2: B+ := clone B+

3: for all 〈b, sb, cb, ib〉 ∈ B+ do
4: if b v RelationConstraint then
5: if hasParent(B+, b) then
6: p := b
7: repeat
8: 〈p, sp, cp, ip〉 := getParent(B+, p)
9: until (sp = sb) ∧ hasParent(B+, p)

10: if sp > sb then
11: B+ ← B+ \ {〈b, sb, cb, ib〉}
12: else
13: 〈p, sp, cp, ip〉 := getParent(B+, b)
14: B+ ← B+ \ {〈p, sp, cp, ip〉}
15: end if
16: end if
17: end if
18: if b v MutualRelation then
19: 〈f, sf , cf , if 〉 := getForward(B+, b)
20: 〈r, sr, cr, ir〉 := getBackward(B+, b)
21: if sf < sb ∧ sr < sb then
22: B+ ← B+ \ {〈f, sf , cf , if 〉}
23: B+ ← B+ \ {〈r, sr, cr, ir〉}
24: end if
25: end if
26: if b v NegativeRelation then
27: 〈n, sn〉 := getNegated(B+, b)
28: if sn 6 sb then
29: B+ ← B+ \ {〈n, sn, cn, in〉}
30: else
31: B+ ← B+ \ {〈b, sb, cb, ib〉}
32: end if
33: end if
34: end for
35: return B+

36: end procedure

The hasParent, getParent, getForward, getBackward and getNegated functions
explore the subsumptions and the associations between constraints as drawn in
Figure 3.6:

• hasParent and getParent traverse the subsumption hierarchy;

• getForward and getBackward return the tuples of the B+ bag (or its clone)
referred to the constraints which are implied by MutualRelations, e.g., be-
tween CoExistence and the two related RespondedExistence (the same applies
to the hierarchies below, as for ChainSuccession wrt. ChainResponse and
ChainPrecedence);

74 4. The Workflow Discovery Algorithm

• getNegated returns the MutualRelation constraint (like CoExistence) that is
negated by the NegativeRelation constraint (like NotCoExistence).

These functions do not depend on the interpretation of the MINERful interplay and
the MINERful ownplay, but only on the semantics of constraints.

The behaviour of hasParent, getParent, getForward, getBackward and
getNegated functions is detailed in Table 4.7.

4.1
M
IN

E
R
ful

75

Constraint Name Symbol hasParent getParent getNegated getForward getBackward
RespondedExistence(ρ, σ) >ρ,σ false - - - -

Response(ρ, σ) >→ρ,σ true >ρ,σ - - -
AlternateResponse(ρ, σ) >⇒ρ,σ true >→ρ,σ - - -

ChainResponse(ρ, σ) >Vρ,σ true >⇒ρ,σ - - -
Precedence(ρ, σ) >←ρ,σ true >σ,ρ - - -

AlternatePrecedence(ρ, σ) >⇐ρ,σ true >←ρ,σ - - -
ChainPrecedence(ρ, σ) >Wρ,σ true >⇐ρ,σ - - -

CoExistence(ρ, σ) >ρσ false - - >ρ,σ >σ,ρ
Succession(ρ, σ) >↔ρ,σ true >ρσ - >→ρ,σ >←σ,ρ

AlternateSuccession(ρ, σ) >⇔ρ,σ true >↔ρ,σ - >⇒ρ,σ >⇐σ,ρ
ChainSuccession(ρ, σ) >WVρ,σ true >⇔ρ,σ - >Vρ,σ >Wσ,ρ

NotChainSuccession(ρ, σ) >WV/ρ,σ false - >WVρ,σ - -
NotSuccession(ρ, σ) >=

ρ,σ true >WV/ρ,σ >↔ρ,σ - -
NotCoExistence(ρ, σ) ⊥ρσ true >=

ρ,σ >ρσ - -

Table 4.7. The functions navigating the constraints’ hierarchy of subsumptions

76 4. The Workflow Discovery Algorithm

Algorithm 12 The pseudo-code of the filterOutputByThreshold procedure
1: procedure filterOutputByThreshold(B+, τ)
2: for all 〈b, sb, cb, ib〉 ∈ B+ do
3: if ¬ (|2 · τ − 1| 6 sb 6 1) then
4: B+ ← B+ \ {〈b, sb, cb, ib〉}
5: else
6: if τ < 1 then
7: B+ ← B+ \ {〈b, sb, cb, ib〉} ∪

{
〈b, sb−τ1.0−τ , cb, ib〉

}
8: end if
9: end if

10: end for
11: return B+

12: end procedure

The filterOutputByThreshold procedure (Algorithm 12) finally filters out
those constraints whose Support is below a given threshold. Actually, the algorithm
returns not only the constraints which strictly respect that soil. Such razor-blade
approach would not take into account the pleiotropic5 behavior of constraints. I.e.,
there might be a diapason-like effect, due to the interaction of two or more constraints
acting at the same time: it might leverage the Support of another, up to limits
that could hide the original from the attention of the user. Thus (see line 3), we
prefer to keep not only the b constraints such that the related Support sb is greater
than (or equal to) τ (the user-defined threshold). We also give the evidence of those
constraints whose Support is even below that value: see line 3. If (line 6) τ is not the
default one (i.e., 1.0) then, the Support given in output is recalculated and shown
with respect to the soil of τ , thus assuming either a negative or positive value, scaled
to the distance from τ to 1.0 (line 6).

Discussion on the complexity In the following we discuss the complexity of
the concurrent execution of Algorithm 9 by separately analyzing Algorithms 10, 11
and 12, i.e., the procedures it is based upon.

Lemma 3. The procedure for discovering the constraints of processes out of the
MINERful knowledge base, along with their Support, Confidence Level and Interest
Factor is (i) quadratic in time w.r.t. the size of the alphabet, (ii) linear in time w.r.t
the number of constraint templates, which is fixed and equal to 18 (thus, constant);
therefore, the complexity is O(|Σ|2).

Proof. Algorithm 10 essentially executes two nested cycles: the outer from line 3
to line 24, the inner, from line 11 to line 22. Inside them both, only mathematical
operations are performed, as many as the constraint templates are. Such calculi are
executed on top of a fixed number of entries in the MINERfulKB. The complexity
of calcMetricsForConstraints is O(|Σ|2), then. The number of entries in the
bag B+ is O(|Σ|2) as well.

Algorithm 11 begins with the cloning of that bag (line 2). Therefore, it is a
O(|Σ|2) procedure by itself. Afterwards, each of the elements in the clone of B+ is
subject to some checks and modifications. The cycle from line 3 to line 34 iterates
O(|Σ|2) times. Remembering what stated in the explanation of the procedure, the

5In chemical biology, pleiotropy occurs when one gene influences multiple phenotypic traits.
Consequently, a mutation in a pleiotropic gene may have an effect on some or all traits simultaneously.

4.1 MINERful 77

functions invoked (hasParent, getParent, etc.) can be considered as invocations of an
oracle, being based on the knowledge about semantics of the constraint templates and
not on the MINERfulKB. The loop from line 7 to line 9 is executed, at most, a limited
number of times. Such limit does not depend on the input, but on the hierarchy
of subsumptions in the costraint templates. By visual inspection of Figure 3.6 or
Table 4.7, it is evident that such limit is fixed and less than or equal to 4. Thus,
cleanOutput is O(|Σ|2) too.

Finally, Algorithm 12’s complexity is affected by the iteration on the elements of
B+. Hence, it is O(|Σ|2) like the other two procedures.

Therefore, discoverConstraints is a O(|Σ|2) algorithm.

4.1.6 The complexity of the MINERful algorithm
Theorem 1. The MINERful algorithm is (i) linear time w.r.t. the number of
strings in the testbed, (ii) quardratic time w.r.t. the size of strings in the the testbed,
(iii) quadratic time w.r.t. the size of the alphabet; therefore, the complexity is
O(|T | · |tmax|2 · |ΣT |2).

Proof. The Theorem directly follows from Lemma 1, for the computation of the
MINERfulKB, and either (i) Lemma 2, if we consider the discovery of constraints
without any estimation of reliability (Support) and relevance (Confidence Level
and Interest Factor), or (ii) Lemma 3, for the discovery of constraints with the
estimation of reliability (Support) and relevance (Confidence Level and Interest
Factor) metrics.

79

Chapter 5

Experiments and evaluation

In order to evaluate MailOfMine, we considered (i) its efficiency, in terms of
computation time, and (ii) its efficacy, in terms of conformance of the discovered
processes to reality.

We conducted the performance experiments on its Process Mining module
(Section 5.1). To this extent, we first produced synthetic logs, stemming from
predefined workflow models. Then, we processed such logs through the Process
Mining module. For every log, we measured the time it took to discover the
originating workflow model, and analyzed its performance with respect to the input
size. The IR module’s efficiency was not tested by itself, being it a third-party
component.

In order to inspect the quality of results and validate the approach, we verified
the whole MailOfMine system on a real case study (Section 5.2). There, data were
extracted from the mailbox of an authors’ colleague, known to be an expert in the
area of the process to discover. As usual for artful processes, the process behind the
analyzed email messages was not known a priori. Therefore, we could not apply an
automated comparison between the resulting workflow model and the originating
process, since no definition for the originating process was available at all. Thus,
the expert was requested to analyze and assess the discovered workflow model by
categorizing the mined constraints.

5.1 Experiments
Experiments on the proposed technique have been conducted on both synthetic and
real data. All of the tests were performed on a Sony VAIO VGN-FE11H (Intel Core
Duo T2300 1.66 GHz, 2 MB L2 cache, with 2 GB of DDR2 RAM at 667 Mhz),
having Ubuntu Linux 10.04 as the operating system and Java JRE v1.6. In order
to produce synthetic logs, we first considered the example workflow, outlined in
Section 3.3.1. Random strings were created integrating our tool with Xeger1, a Java
open-source library for generating random text from regular expressions, based on
[65].

We tested the algorithm by varying the input in terms of alphabet size (different
symbols appearing in the traces), number of constraints, range of the number
of characters per string (see Setup T1 in Table 5.1). The constraints ranged

1http://code.google.com/p/xeger/

http://code.google.com/p/xeger/

80 5. Experiments and evaluation

Setup Min. Max. Number Alphabet Total
length length of traces size runs

T1 [0,8] [5,20] [102, 106] [2, 5] 29 000
T2 [0,2] [10,25] [103, 16 · 103] [2, 50] 13 536

Table 5.1. Experiments’ setup

from a minimal set of four (Unique(n), Participation(n), End(n), Succession(p, n))
to the maximal set of seven (including Response(r, p), RespondedExistence(c, p),
AlternatePrecedence(r, c)). In order to consider the performances’ degradation over
increasing alphabets, we also executed a new set of experiments, according to Setup
T2 (Table 5.1).

5.1
E
xperim

ents
81

Source Tasks Traces Events processed Total comp. time Engine
Synth. log, Setup T1 (intermediate case) 5 100 000 1 676 447 (avg. 16.764) 00:00:15 MINERful

00:13:39 Declare Miner [57]
Synth. log, Setup T2 (worst case) 52 16 000 296 277 (avg. 18.517) 00:00:25 MINERful

00:21:24 Declare Miner [57]
Financial log [99] 24 13 087 262 200 (avg. 20.035) 00:00:08 MINERful

00:08:54 Declare Miner [57]
Hospital log [98] 624 1 143 150 291 (avg. 131.488) 00:04:34 MINERful

03:39:13 Declare Miner [57]
Table 5.2. Performances of MINERful over synthetic and real cases

82 5. Experiments and evaluation

Figure 5.1 shows the time taken by the algorithm to run, in comparison with the
number of traces in the logs. As theoretically proven in Theorem 1, according to
which there is a linear dependence between the two, the graph draws a section of
straight line.

The time taken for the algorithm to complete, with respect to the average length
of the strings is depicted in Figure 5.4. There, the alphabet size is fixed and equal
to 5. The dependency is quadratic as expected.

The time taken by the algorithm to discover the workflow model, with respect
to the size of the input (namely, the total number of events read) is depicted in
Figure 5.3. There, each curve correspond to a different number of activities in the
log. The reader can see four sections of a parabola, confirming that the algorithm is
quadratic w.r.t. the size of the strings.

The shape of each parabola is very flatten due to the nature of its non-linearity:
looking back to the algorithm (Section 4.1.3 and Algorithm 3), it is caused by a
loop cycling more as characters are repeated (for defining the δρ,σ function), nested
in a loop cycling more as different characters are encountered (i.e., executing the
former loop for each unread ρ) – both start to grow together in terms of cycles only
if strings tend to be far longer than the size of the alphabet.

Given that the graph in Figure 5.3 showed how parabolae were shifted onwards
as the number of activities considered raised, we studied the dependency of the
running time w.r.t. the size of the alphabet. The resulting graph is depicted in
Figure 5.4. Basing on Setup T2 (Table 5.1), we fixed the parameters specifying the
minimum and maximum length of each string to their upper extremal (i.e., resp. 2
and 25), as far as the number of traces (again, the topmost value, that is 16000),
letting the number of characters vary. Again, the shape of the fitting curve is the
section of a parabola, confirming what theoretically predicted by Theorem 1.

Figure 5.5 re-elaborates what depicted in Figure 5.4. It separates the analysis of
the time taken by the algorithm for its computation into its two main procedures:
(i) 1. the construction of the MINERfulKB (Section 4.1.3) and 2. the discovery of
constraints, obtained by queries over the MINERfulKB itself (Section 4.1.4). The
graph let the reader infer clearly how faster is the second phase, with respect to the
first. At first sight, the curve fitting the graph related to the querying phase might
look like a straight line. If it were so, it would have contradicted the theoretical
results of Lemma 2, according to which the report between the execution time and
the alphabet size was quadratic.

Figure 5.6 is a zoom on the second curve, then. It shows that the aforementioned
Lemma 2 is confirmed by experimental verification. The flattened shape derived
from the deformation given by the more convex curve in the comprehensive view of
Figure 5.5.

In order to test the efficiency of MINERful when dealing with real-life cases, we
tested it with two well known benchmarks, taken from the latest Business Process
Intelligence Challenges (BPIC): a Dutch academic hospital log [98] and a Dutch
financial institute log [99]. Table 5.2 reports some interesting results, taken from the
experiments on both synthetic and real logs. For each test, we performed the analysis
on Declare Miner [57], publicly available as a ProM plug-in2. We tuned Declare
Miner so to check the same constraints MINERful discovers3. Table 5.2 shows that

2http://www.win.tue.nl/declare/declare-miner/
3PoE equal to 100%, PoIW equal to 0%, PoI equal to 100%, all constraints selected excluding

http://www.win.tue.nl/declare/declare-miner/

5.1 Experiments 83

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

4000

8000

12000

16000

4000 8000 12000 16000
Number of traces

To
ta

l e
xe

cu
tio

n
tim

e
[m

se
c]

Figure 5.1. Experimental results of MINERful: time needed for the execution, with respect
to the number of traces (from Setup T2 – Table 5.1): only the tests where the size of
the alphabet is greater than 25 are considered)

50000

100000

150000

6 9 12 15
Average string length

To
ta

l e
xe

cu
tio

n
tim

e
[m

se
c]

Figure 5.2. Experimental results of MINERful: time needed for the execution, with respect
to the string length – from Setup T1 (Table 5.1): only the tests where the size of the
alphabet is equal to 5 are plotted

84 5. Experiments and evaluation

40

42

44

46
48

50

5000

10000

15000

0 50000 100000 150000 200000
Processed events

E
xe

cu
tio

n
tim

e
[m

se
c]

40.0

42.5

45.0

47.5

50.0

Alphabet size

Figure 5.3. Experimental results of MINERful: time needed for the execution, with respect
to the number of events; each curve corresponds to a given size of the alphabet – from
Setup T2 (Table 5.1)

1882

25111

5000

10000

15000

20000

25000

10 20 30 40 50
Alphabet size

E
xe

cu
tio

n
tim

e
[m

se
c]

Figure 5.4. Experimental results of MINERful: time needed for the execution, with respect
to the size of the alphabet – from Setup T2 (Table 5.1)

5.1 Experiments 85

44

414

1835

24723

0

5000

10000

15000

20000

25000

10 20 30 40 50
Alphabet size

E
xe

cu
tio

n
tim

e
[m

se
c]

Constraints computation time

KB computation time

Figure 5.5. Experimental results of MINERful: time taken for the construction of the
MINERfulKB and the discovery of constraints by queries over the MINERfulKB, with
respect to the size of the alphabet – from Setup T2 (Table 5.1)

44

414

0

100

200

300

400

10 20 30 40 50
Alphabet size

E
xe

cu
tio

n
tim

e
[m

se
c]

Figure 5.6. Experimental results of MINERful: time taken for the construction the
discovery of constraints, given the MINERfulKB, with respect to the size of the alphabet
– from Setup T2 (Table 5.1)

86 5. Experiments and evaluation

the execution of MINERful is faster than Declare Miner. We recall here that Declare
Miner could potentially discover any LTL-expressible constraint, whereas MINERful
is not customizable at this level from the user. Nonetheless, MINERful is completely
unsupervised, as the user has not to select in advance the constraints that have to
be checked. She is (optionally) requested to provide a threshold to filter out some
loosely-supported constraints, just in the end, for sake of her ease to access the
extracted information, with no impact on the performances of the algorithm.

5.1.1 Experiments over artificial error-injected logs
In order to test the robustness of MINERful with respect to the presence of errors
in logs, we built an additional testing module, which injected a controlled noise in
the sequences of traces.

We identified three possible types of error injection:

1. insertion of spurious events in the log;

2. deletion of events from the log;

3. random insertion/deletion of events.

The errors were spread according to a given percentage4. The tester could also
specify whether errors had to refer to a given activity, or not. In the latter case,
every insertion or deletion was applied to an event picked each time at random.

In order to define how many errors had to be injected, and where, a spreading
policy was requested too. It could be either:

1. to calculate the number of errors to inject w.r.t. the whole log, and distribute
the error injections accordingly, or

2. to calculate the number of errors to inject w.r.t. every single trace, case by
case.

In the latter case, every trace was made affected by a number of errors, computed
on the number of target events in that trace. This reproduces a systematic error,
done in every enactment of the process by the executor. In the former, some traces
could remain untouched. That pretends to be a little more realistic scenario, where
a given number of mistakes were made in the execution of the process could be done.

We remark that, in our scenario, mistakes made by the actor were not the only
possible cause of errors in logs. Since we extract logs out of conversation through an
Information Retrieval module, the error could be possibly caused by false positives
(inserted spurious events) or false negatives (deleted events) during the detection of
the indicia (see Section 3.1).

Thus, we conducted an extensive analysis on the reaction of MINERful, through
an experiment set up as summarized in Table 5.3.

We created 18 groups of 9 300 synthetic logs each. Every group was generated
so to comply to one constraint at a time, among the 18 templates involving a,
as the implying activity, and (optionally) b, as the implied (i.e., Participation(a),

those not covered in Table 3.2.
4In case the the calculated number of errors to inject resulted in a non-integer number, the actual

amount of errors was rounded up to the next integer (e.g., 0.2 was rounded to 1 error to inject).

5.1 Experiments 87

Activities (target) 8 (1) Spreading policies 3
Generating constraints 18 Error types 3

Trace length [0, 30] Runs per combination 50
Log size 1 000 Error injection percentage [0, 30]

Total runs 167 400

Table 5.3. Setup of the experiments for monitoring the reaction of MINERful to the
controlled error injection into logs

Uniqueness(a), . . . , RespondedExistence(a, b), Response(a, b), . . .). The alphabet
comprised 6 more non-constrained activities (c, d, . . . , h), totalling 8. We chose
a as the target activity for the injection of errors, being it the implying in all
of the generating constraints. This way, we could have a stronger evidence of
the effect produced on the discovery of declarative workflows, when errors occur.
Then, we injected errors in the synthetic logs, with all of the possible combinations
of the aforementioned parameters ((i) insertion, deletion or random error type,
(ii) over-string or over-collection spreading policy, (iii) error injection percentage
ranging between 0 and 30%) and ran MINERful on the resulting altered logs. We
collected the results and, for each of the 18 groups of logs, analyzed the trend of
the support for the generating constraint. I.e., we looked at how the Support for
the only constraint which had to be verified all over the log lowered, w.r.t. the
increasing percentage of errors injected. We also hightlighted those other constraints
whose topmost computed Support exceeded the value of 0.755, being them the
most likely candidates to be false positives in the discovery. We did not consider
Confidence Level nor Interest Factor since the number of appearances of events were
not determined by actual enactments, but rather by strings generated uniformly
at random. Such values, hence, tended to be equal for all events, unless they were
directly constrained by the generating constraints.

The analysis of within-trace error-injected logs revealed to be more effective in
stressing the resilience of constraints with respect to certain types of errors. In other
words, it conversely showed the structural weaknesses of constraint templates w.r.t.
some error types even for small percentages of injected errors. For instance, the
Support of End(a)’s (Figure 5.7) is not affected by the insertion of spurious a’s in the
traces (see Figure 5.7a), whereas it suffers from deletions of a’s (Figure 5.7b). The
hierarchy of NegativeRelation constraints (see Figure 3.6) reveals to be extremely
“resistant” to errors of any kind, as shown in Figure 5.10.

In Section 3.3 we described the mechanism tying MutualRelation constraints
to forward and backwards related constraints, as in the case of AlternateSuccession
w.r.t. AlternateResponse and AlternatePrecedence. Then, here we remark that since
(i) the Support for AlternateResponse(a, b) remains unchanged in case of spurious
inserted spurious a’s (Figure 5.8a), but not in case of deleted a’s (Figure 5.8b),
whilst (ii) conversely, the Support for AlternatePrecedence(a, b) remains unchanged
in case of spurious deleted a’s (Figure 5.8c), but not in case of inserted spurious a’s

5We recall that assigning a constraint the Support of 0.5 is equivalent to asserting that such
constraint will hold if, tossing a coin, a cross is shown in the end. Thus, 0.75 is the least value of
the topmost half of the “reliable” range.

88 5. Experiments and evaluation

100

100

AlternatePrecedence_a__b

AlternateResponse_b__a

NotChainSuccession_a__b

NotChainSuccession_b__a

NotSuccession_a__b
NotSuccession_b__a

Participation_a

Precedence_a__b

RespondedExistence_b__a

Response_b__a
Uniqueness_b

0

25

50

75

100

0 10 20 30
ErrorPercentage

M
ea

nS
up

po
rt

Group

AlternatePrecedence_a__b

AlternateResponse_b__a

End_a

NotChainSuccession_a__b

NotChainSuccession_b__a

NotSuccession_a__b

NotSuccession_b__a

...Other

Participation_a

Precedence_a__b

RespondedExistence_b__a

Response_b__a

Uniqueness_b

End_a trend:
'a'−targeted, insertion

over strings errors

(a) The trend of Support for End(a),
w.r.t. the percentage of spurious
events insertion errors, injected into
every string

78.652

100

AlternatePrecedence_a__b

AlternateResponse_b__a

NotChainSuccession_a__b

NotChainSuccession_b__a

NotSuccession_a__b

Participation_a

Precedence_a__b

RespondedExistence_b__a

Response_b__a

Uniqueness_b

0

25

50

75

100

0 10 20 30
ErrorPercentage

M
ea

nS
up

po
rt

Group

AlternatePrecedence_a__b

AlternateResponse_b__a

End_a

NotChainSuccession_a__b

NotChainSuccession_b__a

NotSuccession_a__b

...Other

Participation_a

Precedence_a__b

RespondedExistence_b__a

Response_b__a

Uniqueness_b

End_a trend:
'a'−targeted, deletion

over strings errors

(b) The trend of Support for End(a),
w.r.t. the percentage of events dele-
tion errors, injected into every string

Figure 5.7. The trend of the Support for End, w.r.t. the errors injected in the log, within
every trace.

(Figure 5.8d), AlternateSuccession somehow takes the sensitivity towards errors of
both, resulting in a decreasing Support for both faulty insertions and deletions of
a’s (Figure 5.9).

The analysis of over-collection error-injected logs showed smoother changes in
curves, since errors are spread on a wider area of appearances, for the targeted
activity. Thus, it reveals a more realistic trend for the assessment of discovered
constraints in presence of errors. We reasonably expect to have sparse errors in logs,
rather than a fixed percentage of faults for every trace, as a matter of fact.

Along a branch in the constraints hierarchy, we expect for a constraint that
the more it is restrictive, the more its Support decreases as deviations from the
expected behavior are collected. We can prove it by evidence in, e.g., Figure 5.11,
where the curve’s slope gets steeper as we analyze the subsumed constraints along
the MutualRelation constraints (i.e., CoExistence, Succession, AlternateSuccession,
ChainSuccession).

The interested reader can download the whole collection of graphs summing the
gathered results at the following address:
http://www.dis.uniroma1.it/âĹcdc/code/minerful/latest/
errorinjectiontestresults.zip

5.2 Evaluation on a real case study

As a case study, we took 6 mailbox IMAP folders containing email messages which
concerned the management of 5 different European Research Projects (Table 5.3a).
5 over 6 such folders belonged to a domain expert, and one to the writer of this
thesis. Our aim was to use MailOfMine in order to discover the artful process of

http://www.dis.uniroma1.it/∼cdc/code/minerful/latest/errorinjectiontestresults.zip
http://www.dis.uniroma1.it/∼cdc/code/minerful/latest/errorinjectiontestresults.zip

5.2 Evaluation on a real case study 89

80.94604

100

CoExistence_a__b

CoExistence_b__a

Precedence_a__b

RespondedExistence_a__b

RespondedExistence_b__a

Response_a__b

Succession_a__b

0

25

50

75

100

0 10 20 30
ErrorPercentage

M
ea

nS
up

po
rt

Group

AlternateResponse_a__b

CoExistence_a__b

CoExistence_b__a

...Other

Precedence_a__b

RespondedExistence_a__b

RespondedExistence_b__a

Response_a__b

Succession_a__b

AlternateResponse_a__b trend:
'a'−targeted, insertion

over strings errors

(a) The trend of Support for
AlternateResponse(a, b), w.r.t.
the percentage of spurious events
insertion errors, injected into every
string

100

100

CoExistence_a__b

CoExistence_b__a

NotChainSuccession_a__b

Precedence_a__b

RespondedExistence_a__b

RespondedExistence_b__a

Response_a__b

Succession_a__b

Uniqueness_a

0

25

50

75

100

0 10 20 30
ErrorPercentage

M
ea

nS
up

po
rt

Group

AlternateResponse_a__b

CoExistence_a__b

CoExistence_b__a

NotChainSuccession_a__b

...Other

Precedence_a__b

RespondedExistence_a__b

RespondedExistence_b__a

Response_a__b

Succession_a__b

Uniqueness_a

AlternateResponse_a__b trend:
'a'−targeted, deletion

over strings errors

(b) The trend of Support for
AlternateResponse(a, b), w.r.t.
the percentage of spurious events
insertion errors, injected into every
string

100

100

ChainPrecedence_a__b

CoExistence_a__b

CoExistence_b__a

NotChainSuccession_a__b

NotChainSuccession_b__a

Precedence_a__b

RespondedExistence_a__b

RespondedExistence_b__aUniqueness_b

0

25

50

75

100

0 10 20 30
ErrorPercentage

M
ea

nS
up

po
rt

Group

AlternatePrecedence_a__b

ChainPrecedence_a__b

CoExistence_a__b

CoExistence_b__a

NotChainSuccession_a__b

NotChainSuccession_b__a

...Other

Precedence_a__b

RespondedExistence_a__b

RespondedExistence_b__a

Uniqueness_b

AlternatePrecedence_a__b trend:
'a'−targeted, insertion

over strings errors

(c) The trend of Support for
AlternatePrecedence(a, b), w.r.t.
the percentage of events deletion
errors, injected into every string

80.77024

100

ChainPrecedence_a__b

CoExistence_a__b

CoExistence_b__a

NotChainSuccession_b__a

Precedence_a__b

RespondedExistence_a__b

RespondedExistence_b__a

Uniqueness_a

Uniqueness_b

0

25

50

75

100

0 10 20 30
ErrorPercentage

M
ea

nS
up

po
rt

Group

AlternatePrecedence_a__b

ChainPrecedence_a__b

CoExistence_a__b

CoExistence_b__a

NotChainSuccession_b__a

...Other

Precedence_a__b

RespondedExistence_a__b

RespondedExistence_b__a

Uniqueness_a

Uniqueness_b

AlternatePrecedence_a__b trend:
'a'−targeted, deletion

over strings errors

(d) The trend of Support for
AlternatePrecedence(a, b), w.r.t.
the percentage of events deletion
errors, injected into every string

Figure 5.8. The trend of Support for AlternateResponse and AlternatePrecedence, w.r.t.
the errors injected in the log. The error injection policies under exam are both the
insertion and deletion of a events, within each trace.

90 5. Experiments and evaluation

84.10916

100

AlternatePrecedence_a__b

AlternateResponse_a__b

CoExistence_a__b

CoExistence_b__a

NotChainSuccession_b__a

NotSuccession_b__a

Precedence_a__b

RespondedExistence_a__b

RespondedExistence_b__a

Response_a__b

Succession_a__b

Uniqueness_a

Uniqueness_b

0

25

50

75

100

0 10 20 30
ErrorPercentage

M
ea

nS
up

po
rt

Group

AlternatePrecedence_a__b

AlternateResponse_a__b

AlternateSuccession_a__b

CoExistence_a__b

CoExistence_b__a

NotChainSuccession_b__a

NotSuccession_b__a

...Other

Precedence_a__b

RespondedExistence_a__b

RespondedExistence_b__a

Response_a__b

Succession_a__b

Uniqueness_a

Uniqueness_b

AlternateSuccession_a__b trend:
'a'−targeted, insertion

over strings errors

(a) The trend of Support for
AlternateSuccession(a, b), w.r.t.
the percentage of spurious events
insertion errors, injected into every
string

76.6286

100

AlternatePrecedence_a__b

AlternateResponse_a__b

CoExistence_a__b

CoExistence_b__a

NotChainSuccession_b__a

NotSuccession_b__a

Precedence_a__b

RespondedExistence_a__b

RespondedExistence_b__a

Response_a__b

Succession_a__b

Uniqueness_a

Uniqueness_b

0

25

50

75

100

0 10 20 30
ErrorPercentage

M
ea

nS
up

po
rt

Group

AlternatePrecedence_a__b

AlternateResponse_a__b

AlternateSuccession_a__b

CoExistence_a__b

CoExistence_b__a

NotChainSuccession_b__a

NotSuccession_b__a

...Other

Precedence_a__b

RespondedExistence_a__b

RespondedExistence_b__a

Response_a__b

Succession_a__b

Uniqueness_a

Uniqueness_b

AlternateSuccession_a__b trend:
'a'−targeted, deletion

over strings errors

(b) The trend of Support for
AlternateSuccession(a, b), w.r.t.
the percentage of events deletion
errors, injected into every string

78.16596

100

AlternatePrecedence_a__b

AlternateResponse_a__b

CoExistence_a__b

CoExistence_b__a

NotChainSuccession_b__a

NotSuccession_b__a

Precedence_a__b

RespondedExistence_a__b

RespondedExistence_b__a

Response_a__b
Succession_a__b

Uniqueness_a

Uniqueness_b

0

25

50

75

100

0 10 20 30
ErrorPercentage

M
ea

nS
up

po
rt

Group

AlternatePrecedence_a__b

AlternateResponse_a__b

AlternateSuccession_a__b

CoExistence_a__b

CoExistence_b__a

NotChainSuccession_b__a

NotSuccession_b__a

...Other

Precedence_a__b

RespondedExistence_a__b

RespondedExistence_b__a

Response_a__b

Succession_a__b

Uniqueness_a

Uniqueness_b

AlternateSuccession_a__b trend:
'a'−targeted, insertion/deletion (random proportion)

over strings errors

(c) The trend of Support for
AlternateSuccession(a, b), w.r.t.
the percentage of both events dele-
tion and insertion errors, injected
into every string

Figure 5.9. The trend of Support for AlternateSuccession, w.r.t. the errors injected in the
log, within each trace.

5.2 Evaluation on a real case study 91

100

100

NotChainSuccession_a__b

NotChainSuccession_b__a

NotCoExistence_b__a

NotSuccession_a__b

NotSuccession_b__a

Uniqueness_a

Uniqueness_b

0

25

50

75

100

0 10 20 30
ErrorPercentage

M
ea

nS
up

po
rt

Group

NotChainSuccession_a__b

NotChainSuccession_b__a

NotCoExistence_a__b

NotCoExistence_b__a

NotSuccession_a__b

NotSuccession_b__a

...Other

Uniqueness_a

Uniqueness_b

NotCoExistence_a__b trend:
'a'−targeted, deletion

over strings errors

(a) The trend of Support for
NotCoExistence(a, b), w.r.t. the
percentage of events deletion er-
rors, injected into every string

100

100

NotChainSuccession_a__b

NotChainSuccession_b__a

NotCoExistence_b__a

NotSuccession_a__b

NotSuccession_b__a

Uniqueness_a

Uniqueness_b

0

25

50

75

100

0 10 20 30
ErrorPercentage

M
ea

nS
up

po
rt

Group

NotChainSuccession_a__b

NotChainSuccession_b__a

NotCoExistence_a__b

NotCoExistence_b__a

NotSuccession_a__b

NotSuccession_b__a

...Other

Uniqueness_a

Uniqueness_b

NotCoExistence_a__b trend:
'a'−targeted, insertion

over strings errors

(b) The trend of Support for
NotCoExistence(a, b), w.r.t. the
percentage of spurious events in-
sertion errors, injected into every
string

100

100

AlternateResponse_b__a

NotChainSuccession_a__b

NotChainSuccession_b__a

NotCoExistence_a__b

NotCoExistence_b__a

NotSuccession_b__a

RespondedExistence_b__a

Response_b__a

Uniqueness_b

0

25

50

75

100

0 10 20 30
ErrorPercentage

M
ea

nS
up

po
rt

Group

AlternateResponse_b__a

NotChainSuccession_a__b

NotChainSuccession_b__a

NotCoExistence_a__b

NotCoExistence_b__a

NotSuccession_a__b

NotSuccession_b__a

...Other

RespondedExistence_b__a

Response_b__a

Uniqueness_b

NotSuccession_a__b trend:
'a'−targeted, deletion

over strings errors

(c) The trend of Support for
NotSuccession(a, b), w.r.t. the
percentage of events deletion er-
rors, injected into every string

99.44402

100

AlternateResponse_b__a

NotChainSuccession_a__b

NotChainSuccession_b__a

NotCoExistence_a__b

NotCoExistence_b__a

NotSuccession_b__a

RespondedExistence_b__a

Response_b__a

Uniqueness_b

0

25

50

75

100

0 10 20 30
ErrorPercentage

M
ea

nS
up

po
rt

Group

AlternateResponse_b__a

NotChainSuccession_a__b

NotChainSuccession_b__a

NotCoExistence_a__b

NotCoExistence_b__a

NotSuccession_a__b

NotSuccession_b__a

...Other

RespondedExistence_b__a

Response_b__a

Uniqueness_b

NotSuccession_a__b trend:
'a'−targeted, insertion

over strings errors

(d) The trend of Support for
NotSuccession(a, b), w.r.t. the
percentage of spurious events in-
sertion errors, injected into every
string

100

100

NotChainSuccession_b__a

NotCoExistence_a__b

NotCoExistence_b__a

NotSuccession_a__b

NotSuccession_b__a

RespondedExistence_b__a

Response_b__a

Uniqueness_a

Uniqueness_b

0

25

50

75

100

0 10 20 30
ErrorPercentage

M
ea

nS
up

po
rt

Group

NotChainSuccession_a__b

NotChainSuccession_b__a

NotCoExistence_a__b

NotCoExistence_b__a

NotSuccession_a__b

NotSuccession_b__a

...Other

RespondedExistence_b__a

Response_b__a

Uniqueness_a

Uniqueness_b

NotChainSuccession_a__b trend:
'a'−targeted, deletion

over strings errors

(e) The trend of Support for
NotChainSuccession(a, b), w.r.t.
the percentage of events deletion
errors, injected into every string

98.69092

100

AlternateResponse_b__a

NotChainSuccession_b__a
NotCoExistence_a__b

NotCoExistence_b__a

NotSuccession_a__b
NotSuccession_b__a

RespondedExistence_b__a

Response_b__a

Uniqueness_a

Uniqueness_b

0

25

50

75

100

0 10 20 30
ErrorPercentage

M
ea

nS
up

po
rt

Group

AlternateResponse_b__a

NotChainSuccession_a__b

NotChainSuccession_b__a

NotCoExistence_a__b

NotCoExistence_b__a

NotSuccession_a__b

NotSuccession_b__a

...Other

RespondedExistence_b__a

Response_b__a

Uniqueness_a

Uniqueness_b

NotChainSuccession_a__b trend:
'a'−targeted, insertion

over strings errors

(f) The trend of Support for
NotChainSuccession(a, b), the
percentage of spurious events
insertion errors, injected into
every string

Figure 5.10. The trend of the support for NegativeRelation constraints, w.r.t. the errors
injected in the log, within each trace.

92 5. Experiments and evaluation

99.1705

100

CoExistence_b__a

NotChainSuccession_b__a

Participation_a
Participation_b

Precedence_a__b

RespondedExistence_a__b

RespondedExistence_b__a

Response_a__b

Succession_a__b

0

25

50

75

100

0 10 20 30
ErrorPercentage

M
ea

nS
up

po
rt

Group

CoExistence_a__b

CoExistence_b__a

NotChainSuccession_b__a

...Other

Participation_a

Participation_b

Precedence_a__b

RespondedExistence_a__b

RespondedExistence_b__a

Response_a__b

Succession_a__b

CoExistence_a__b trend:
'a'−targeted, insertion/deletion (random proportion)

over collection errors

(a) The trend of Support for
CoExistence(a, b), w.r.t. the
percentage of both events deletion
and insertion errors, spread into the
whole log

96.88432

100

AlternatePrecedence_a__b

CoExistence_a__b

CoExistence_b__a

NotChainSuccession_b__a

Precedence_a__b

RespondedExistence_a__b

RespondedExistence_b__a

Response_a__b

0

25

50

75

100

0 10 20 30
ErrorPercentage

M
ea

nS
up

po
rt

Group

AlternatePrecedence_a__b

CoExistence_a__b

CoExistence_b__a

NotChainSuccession_b__a

...Other

Precedence_a__b

RespondedExistence_a__b

RespondedExistence_b__a

Response_a__b

Succession_a__b

Succession_a__b trend:
'a'−targeted, insertion/deletion (random proportion)

over collection errors

(b) The trend of Support for
Succession(a, b), w.r.t. the per-
centage of both events deletion and
insertion errors, spread into the whole
log

84.48992

100

AlternatePrecedence_a__bAlternateResponse_a__b

CoExistence_a__b

CoExistence_b__a

NotChainSuccession_b__a
NotSuccession_b__a

Precedence_a__b

RespondedExistence_a__b

RespondedExistence_b__a
Response_a__b

Succession_a__b

Uniqueness_a

Uniqueness_b

0

25

50

75

100

0 10 20 30
ErrorPercentage

M
ea

nS
up

po
rt

Group

AlternatePrecedence_a__b

AlternateResponse_a__b

AlternateSuccession_a__b

CoExistence_a__b

CoExistence_b__a

NotChainSuccession_b__a

NotSuccession_b__a

...Other

Precedence_a__b

RespondedExistence_a__b

RespondedExistence_b__a

Response_a__b

Succession_a__b

Uniqueness_a

Uniqueness_b

AlternateSuccession_a__b trend:
'a'−targeted, insertion/deletion (random proportion)

over collection errors

(c) The trend of Support for
AlternateSuccession(a, b), w.r.t.
the percentage of injected errors

82.29786

100

AlternatePrecedence_a__bAlternateResponse_a__b

AlternateSuccession_a__b

ChainPrecedence_a__bChainResponse_a__b

CoExistence_a__b

CoExistence_b__a

Precedence_a__b

RespondedExistence_a__b

RespondedExistence_b__a
Response_a__b

Succession_a__b

0

25

50

75

100

0 10 20 30
ErrorPercentage

M
ea

nS
up

po
rt

Group

AlternatePrecedence_a__b

AlternateResponse_a__b

AlternateSuccession_a__b

ChainPrecedence_a__b

ChainResponse_a__b

ChainSuccession_a__b

CoExistence_a__b

CoExistence_b__a

...Other

Precedence_a__b

RespondedExistence_a__b

RespondedExistence_b__a

Response_a__b

Succession_a__b

ChainSuccession_a__b trend:
'a'−targeted, insertion/deletion (random proportion)

over collection errors

(d) The trend of Support for
ChainSuccession(a, b), w.r.t. the
percentage of both events deletion
and insertion errors, spread into the
whole log

Figure 5.11. The trend of Support for the MutualRelation constraints, w.r.t. the errors
injected in the log. The error injection policy under exam is the random insertion/deletion
of a events, over the whole log.

5.2 Evaluation on a real case study 93

(a) The input
Mailbox

1 2 3 4 5 6 Total
Messages 3523 39 844 4 746 1 479 60 8 770

(b) Retrieved information
Setup Verbs Objects Words Expressions Activities Indicia
E1 (extended) 4 36 40 144 55 317
E2 (reduced) 4 6 10 24 13 139

(c) Mined process
Setup Constraints found Constraints shown Comp. time [msec]
E1 (extended) 4 533 3 074 1 077
E2 (reduced) 378 218 324

Table 5.4. Evaluation of MailOfMine on a case study: preliminary setups and gathered
data

managing European Research Projects and validate the result.
Together with the expert, we also defined a vocabulary of 40 domain-specific

words, divided into 36 objects and 4 verbs (the list is in Table 5.5).
Once the Email Fetcher (Section 3.1) stored the email messages in the database,

the IR module extracted the activities, i.e., those expressions appearing in at least
an email. We recall here that we call indicia those email messages proving the
execution of an activity. In this case, 8.998% of the total amount of email messages
were considered related to the execution of an activity. The result of the Information
Retrieval task is quantitatively summarized in Table 5.3b.

The Tracer module turned the ordered indicia into a log. That log was passed to
the Miner, which discovered more than 4 500 constraints to hold non-redundantly for
the log. Seen the results gathered experimentally (see Section 5.1.1), we agreed with
the expert that a Support of 80% could be a reasonable amount to filter outliers
out of the set of discovered constraints. The reported constraints consequently
diminished to c.a 3 000. Though high, the number of constraints shown (c.a 31
constraints per activity, on average) is significantly less than the amount of relations
verified (257 580, i.e., 1 894 per activity). This is due to the simplification techniques
adopted by MINERful, based on formulae taking into account the number of traces
where the constraints were verified and the subsumptions and associations among
the Declare ([73]) taxonomy of constraints.

Nonetheless, we agreed with the user to reduce the complexity of the mined
process, in terms of the number of constraints. In order to do so, we simplified the
process by narrowing the set of words used in the domain vocabulary (see Table 5.6).

Therefore, activities diminished and it was easier for the user to examine the
discovered constraints. We recall here that declarative constraints mined by MIN-
ERful establish a connection between pairs of activities, hence the less the activities,
the less the constraints. Thus, we showed the expert only those constraints whose
Support exceeded that threshold.

We ran MailOfMine again according to the new setup, which is called E2 in

94 5. Experiments and evaluation

Verbs Objects
write deliverable deadline publication
send report task force proposal
submit demo submission document
organize agenda objective invitation

meeting note cost
draft contribution finance
presentation slide management
integration release form
requirement review comment
payment paper strategy
video commitment periodic
showcase call dow

Table 5.5. Evaluation of MailOfMine on a case study: the extended vocabulary

Verbs Objects
write deliverable
send report
submit demo
organize agenda

meeting
draft

Table 5.6. Evaluation of MailOfMine on a case study: the restricted vocabulary

5.2 Evaluation on a real case study 95

69.725 %
 [173]

6.422 %
 [14]

20.642 %
 [45]

3.211 %
 [7]

25

50

75

0/100

Result evaluation

Noticeably right

Right

Utterly wrong

Wrong

Figure 5.12. Evaluation of MailOfMine: appropriateness of the discovered results in the
case study

Table 5.4.
The list of discovered constraints is reported in Appendix B.3. In order to assess

the validity of the mined process, we checked every shown constraint with the expert.
This allowed us to have a quantitative evaluation, which an “imperative” process
model would not have eased.

For each constraint in the list, we asked him whether it was either: (i) right,
i.e., it made sense with respect to his experience; (ii) noticeably right, i.e., it not
only made sense but also suggested some unexpected mechanisms in the workflow;
(iii) wrong, i.e., not necessarily corresponding to reality; (iv) utterly wrong, i.e.,
not corresponding to reality, unreasonable.

Luckily, the last level was assigned to few constraints (7 out of 173), a half of
how many were considered noticeably right (14). The model is not known a priori,
but the expert could classify as right or wrong a guessed constraint. Then, the
analysis helped us find only true positives (TP, i.e., right or noticeably right, which
in the following we will also refer to as “confirmed”) and false positives (FP, i.e.,
wrong or utterly wrong, which in the following we will also refer to as simply “wrong”
altogether). It reproduces a real case, where the artful process was not formalized
ever. Recalling that

Precision = TP
TP + FP

the algorithm was proved to obtain a Precision degree of 0.794 over the real case
study.

96 5. Experiments and evaluation

1 1

19

21

1
2

3
4

0

5

10

15

20

AlternateResponse

ChainPrecedence

NotChainSuccession

NotSuccession

Succession

Uniqueness

Constraint template

N
um

be
r

of
 e

rr
or

s

Figure 5.13. Evaluation of MailOfMine on a case study: errors w.r.t. constraint
templates

Figure 5.12 summarizes the encouraging results of this real case study evaluation.
More than 75% of the constraints inferred were compliant to a realistic model of the
process. Having this qualitative measure, we performed some quantitative analyses
on the gathered results.

First, we looked for a correlation between the constraint template and the number
of wrong assumptions. As the reader can notice in Figure 5.13, the family of the
Negative Relations seem to be the less reliable. This makes sense, since the less an
activity is read in the log, the more likely the assumptions about its absence are
confirmed.

Thus, we searched for a correlation between the implying activity and the amount
of errors. The results are drawn on Figure 5.14.

5.2 Evaluation on a real case study 97

3

9

3 3

4 4

8

3

4

2 2

1 1 1 1 1

2

0.0

2.5

5.0

7.5

organize_agenda

organize_dem
o

organize_m
eeting

send_agenda

send_deliverable

send_dem
o

send_draft

send_m
eeting

subm
it_deliverable

subm
it_draft

w
rite_deliverable

Implying activity

N
um

be
r

of
 e

rr
or

s

Figure 5.14. Evaluation of MailOfMine on a case study: errors w.r.t. implying activities

98
5.

E
xperim

ents
and

evaluation

0

50

100

150

200

0.80 0.85 0.90 0.95 1.00
Support

C
on

st
ra

in
ts

 D
is

co
ve

re
d

Constraints Discovered

Total

False Positives

True positives

(a) The trend of the quality of the cumulative sum of constraints
discovered, w.r.t. the assigned Support

0.85

0

25

50

75

100

0.80 0.85 0.90 0.95 1.00
Support

C
on

st
ra

in
ts

 D
is

co
ve

re
d

[%
]

Constraints Discovered

Total

False positives

True positives

(b) The trend of the quality of the cumulative sum of constraints
discovered, scaled by their total amount, w.r.t. the assigned
Support

Figure 5.15. Evaluation of MailOfMine on a case study: trend of the quality of the process w.r.t. the Support of constraints

5.2
E
valuation

on
a
real

case
study

99

0

50

100

150

200

0.2 0.4 0.6 0.8 1.0
Confidence

C
on

st
ra

in
ts

 D
is

co
ve

re
d

Constraints Discovered

Total

False positives

True positives

(a) The trend of the quality of the cumulative sum of constraints
discovered, w.r.t. the assigned Confidence Level

0.75

0

25

50

75

100

0.2 0.4 0.6 0.8 1.0
Confidence

C
on

st
ra

in
ts

 D
is

co
ve

re
d

[%
]

Constraints Discovered

Total

False positives

True positives

(b) The trend of the quality of the cumulative sum of constraints
discovered, scaled by their total amount, w.r.t. the assigned
confidence level

Figure 5.16. Evaluation of MailOfMine on a case study: trend of the quality of the process w.r.t. the Confidence Level of constraints

100
5.

E
xperim

ents
and

evaluation

0

50

100

150

200

0.25 0.50 0.75 1.00
Interest Factor

C
on

st
ra

in
ts

 D
is

co
ve

re
d

Constraints Discovered

Total

False positives

True positives

(a) The trend of the quality of the cumulative sum of constraints
discovered, w.r.t. the assigned Interest Factor

0.188

0

25

50

75

100

0.25 0.50 0.75 1.00
Interest Factor

C
on

st
ra

in
ts

 D
is

co
ve

re
d

[%
]

Constraints Discovered

Total

False positives

True positives

(b) The trend of the quality of the cumulative sum of constraints
discovered, scaled by their total amount, w.r.t. the assigned
Interest Factor

Figure 5.17. Evaluation of MailOfMine on a case study: trend of the quality of the process w.r.t. the Interest Factor of constraints

5.2 Evaluation on a real case study 101

Constraint templates and activities constitute an unordered enumeration of
values, whereas Support, Confidence Level and Interest Factor are numeric values.
Hence, a quantitative analysis based on trends can be performed on the latter.
Figures 5.15, 5.16 and 5.17 show the trend of true positives, false positives and
overall (i.e., the sum of the preceding) constraints found. Respectively, such trends
are calculated with respect to the Support, the Confidence Level and the Interest
Factor. The quantities on the ordinates are cumulative, i.e., they represent the sum
of the values which are gained up to the current value on the abscissae. Each of
the aforementioned Figures contains two graphs. One considers the absolute values
on the y-axis, whilst the other scales quantities with respect to the topmost, in
percentage. The former is useful in that it shows how the distance between the curves
rise as the value on the x-axis grows. We make use of the latter to add a marker that
puts in evidence where the relative percentage of confirmed constraints overtakes
the wrong, i.e., a “breakpoint” after which the rate of hits, in terms of accepted
guesses, is higher than the rate of misses, in terms of wrong guesses. Filtering out
the constraints falling under a value for Support (resp. Confidence Level, or Interest
Factor) below the breakpoint guarantees an expectance of negligible amount of errors,
compared to the correctly discovered constraints. On the ordinates, nonetheless, you
see the number of verified guesses which you lose, in case. Thereby, Figure 5.15b
shows that such breakpoint corresponds to a Support value of 0.85 (i.e., 25% higher
than the threshold established a priori constraints to show to the user), which is
little enough to limit the number of true positives below that soil to less than 10%.
The same graph, although, depicts that more than 85% of errors are given a Support
value of 100%. It reveals to be not very useful in practice, then. As in Figure 5.16b,
the breakpoint value for Confidence corresponds to 0.75%. As drawn in Figure 5.17b,
the breakpoint corresponds to an Interest Factor of 0.188. In both cases, almost half
of the errors are given an Interest Factor below that soil. Sadly, almost half of the
true positives are included in the same range, too.

The trend of the degree of Precision is drawn on Figure 5.18, with respect to
(i) Support (Figure 5.18a), (ii) Confidence Level (Figure 5.18b) and (iii) Interest
Factor (Figure 5.18c).

Again, Support (Figure 5.18a) is proven not to be a good measure for filtering
misinterpretations away. The Precision indeed tends to decrease fast near to the
support level of 1.0. On the other hand, deleting those constraints whose Support is
equal to the maximum would be senseless. With respect to Confidence (Figure 5.18b)
and Interest Factor (Figure 5.18c), the curve of Precision tends to grow monotonically.

102
5.

E
xperim

ents
and

evaluation

0.80

0.85

0.90

0.95

1.00

0.80 0.85 0.90 0.95 1.00
Support

P
re

ci
si

on

(a) Precision, w.r.t. the assigned Support of
discovered constraints

0.6

0.7

0.8

0.9

1.0

0.2 0.4 0.6 0.8 1.0
Confidence

P
re

ci
si

on

(b) Precision, w.r.t. the assigned Confidence
Level of discovered constraints

0.7

0.8

0.9

1.0

0.25 0.50 0.75 1.00
Interest Factor

P
re

ci
si

on

(c) Precision, w.r.t. the assigned Interest
Factor of discovered constraints

Figure 5.18. Evaluation of MailOfMine on a case study: trend of Precision w.r.t. the numerical assessment of discovered constraints

5.2 Evaluation on a real case study 103

For sake of completeness, here we show the Finite State Automaton describing
the inferred process, in Figure 5.19 (see Section 2.2.1). Such FSAs have been created
according to the technique described in Section 3.4.2).

Figure 5.19a depicts the FSA representing the whole process at once, whereas
Figures 5.19b and 5.19c are sub-automata, respectively related to the execution of
“send demo” and “write deliverable”, preceded and followed by be the execution of
two (optional) other activities. The full list of automata is provided in Appendix B.1.
We recall here that sub-automata might not be correct, because they approximate
the global automaton without computing it as a whole. I.e., since such sub-automata
consider the constraints affecting the focused activity only, they could ignore the
side-effects of those constraints which relate other activities (see the discussion in
Section 3.4.2).

104 5. Experiments and evaluation

(a) The discovered process: a global view on the workflow, drawn
as a Finite State Automaton

(b) The discovered process: a local view on the constraints constraining the
“send demo” activity, drawn as a Finite State Automaton

(c) The discovered process: a local view on the constraints constraining the
“write deliverable” activity, drawn as a Finite State Automaton

Figure 5.19. Evaluation of MailOfMine on a case study: global and local views on the
discovered process, depicted as Finite State Automata

105

Chapter 6

Conclusions

Throughout this work, we described how we addressed the problem of discovering
flexible processes out of semistructured sources of information, applied to the context
of declarative models for artful processes, stemmed out of email conversations. The
approach we proposed and the tool which we implemented it through is named
MailOfMine. After an insight on the current state of the art in the fields of
Information Retrieval, Process Modeling and Process Mining, which our research
project concerns, we described how MailOfMine was designed as a modular software
system, what was the expected data format and how the output was expressed. Then,
we described in detail how our Process Mining algorithm, MINERful, worked. We
proved its efficiency through both (i) a formal proof stating it is at most quadratic
in the size of the input, (ii) experimental performance tests, over synthetic logs,
(iii) comparison experiments, w.r.t. the current state-of-the-art algorithm in the
field. Finally, we evaluated our tool on a real dataset of email messages. Together
with an expert in the domain which the email conversations were about, we have
been able to assess the quality of the discovered process.

6.1 Further development
6.1.1 Distance computing in Relation Constraints
We took a precious feedback from the expert involved in the evaluation on the
real case study 5.2. He observed that several times, if there was an activity, say a,
followed by another activity, say b, usually not immediately after, but after some
other events, the resulting process model comprised this couple:

1. Response(a, b)

2. NotChainSuccession(a, b)

(see Appendix B.3). It suggests that b always come after a though not immediately,
but how long after is it going be done? The interviewed user would have preferred
to know a little more detailed information, like how many events are expected
to be enacted between a and the next b. Luckily, this reasonable requirement is
addressable with no modification on the MINERfulKB. We can rely on the δ function
(see Section 4.1.1), which maps the number of occurrences of a searched character at
a given distance from the pivot. We are currently in the process of developing such

106 6. Conclusions

extension to the algorithm, based on the usage of the “Student’s T distribution”,
applied to the expected distance from the pivot to the searched task, given the δ
function.

6.1.2 Refinement of constraints filtering

One of the key requirements for a good process model to be acceptable is its simplicity.
The number of constraints shown to the user is often still too big. Indeed, we had
to simplify the mined workflow by reducing the number of activities extracted from
the email archive, in order to conduct the evaluation with the expert (Section 5.2).
To our experience, the user gets confused and bored on checking too many rules
altogether. Moreover, some false positives were signalled notwithstanding the fact
they were given a maximum value for Support, i.e., equal to 100%. As we saw,
Confidence and Interest Factor may help the system remove the wrong guesses, but,
no lunch for free, also true positives were kept off this way. MINERful, though,
was proven to be very effective in terms of time consumption and capable to return
the whole set of possible constraints, along with its qualifying metrics, no matter
their level. Filtering by threshold, as explained in Section 4.1.5, was an optional
further step. Moreover, we were able to calculate the trend of Support in presence
of errors. We may make the same with all of the metrics associated to the returned
constraints, and see their trends. On the basis of such numbers, we could take
advantage of Machine Learning techniques to refine the workflow returned by the
mining algorithm. I.e., we could create synthetic train-and-validation sets with
controlled errors within, so to automatedly tune the thresholding parameters, then
apply again the algorithm on the real test case, filter the result by applying the
optimal parameters learnt, and verify whether they improved the returned results.

6.1.3 Uncertain logs

IR tools associate a relevance score to the indexed document when searching for an
expression in the data set. We assumed to ignore such relevance score, unless it was
useful to discriminate among multiple activities, when many searched terms were
associated to the same document (i.e., email). Although, we believe that such score
could be useful to improve the reliability of the input traces passed to MINERful.
Being the nature of the analysis performed by MINERful intrinsically statistic, we
might stop considering logs as collections of sequences of events, by linking events
to a reliability level, indicating how likely an event read is to be the sign of an
activity performed for real, or not. Thus, metrics such as Support, Confidence
Level and Interest Factor for constraints could be scaled with the reliability level
of the events involved in the discovery. Such a modification could be obtained
by a slight modification of the knowledge base that MINERful is based upon, i.e.,
turning the co-domains of MINERful interplay and MINERful ownplay functions
(see Section 4.1.1) from Integers to Real numbers. Such Real numbers would be
calculated on the basis of the scores assigned to events by the IR tool. We still
have to investigate Moreover, this extension could lead to the treatment of another
challenge: contemporaneity of events, when more than one event is linked to the
same email.

6.1 Further development 107

6.1.4 Branching Declare
Up to now, MINERful can deal with Declare constraints, though it is not able
to discover Branching Declare constraints. I.e., it is not capable of determining
whether a constraint hold or not between disjuncted sets of activities, as in the
Branching Declare constraint templates. Nonetheless, we have already extended
the MINERful’s knowledge base so to have statistical information which, properly
queried, could be address this problem as well. Roughly speaking, we have the
intuition that it is enough to increment the variables currently used to store the
correlation measures to sets of characters, rather than single characters, to break
through this. We are currently working on this idea, since up to now we can obtain
the list of constraints verified on the log along with their assigned Support, though
it is still a time-consuming task. Moreover, we have to define a new strategy to
remove the redundant constraints. To give a hint on it, if, e.g., Response(a, {b, c})
holds with an estimated Support equal to 1.0, the reader can see that computing
the Support of Response(a, {b, c, d}) is irrelevant.

6.1.5 Biochemistry and forensics
MINERful addresses the problem of discovering declarative workflows out of logs
by translating each trace in a string of single characters, each identifying a given
activity, so to analyze the correlation between characters. Conversely, declarative
models could be used not only for ruling the execution of activities in a process, but
also for finding flexible patterns which hold in biological sequences, like in genomes
and proteomes. E.g., finding whether a rule like “G always appears in the trace
after A, if A is read” can be useful not only if G and A are the identifiers of “write
deliverable” and “submit report”, but also if G and A stand for Guanine and Adenine
in a DNA sequence. We are going to collaborate with biochemistry researchers so to
check whether this intuition is valid.

109

Appendix A

From indicia to log

A.1 The SQL query

Listing A.1. The SQL query to create a log in tabular format
1 SELECT
2 WE.‘word ‘ AS ‘verb ‘,
3 WO.‘word ‘ as ‘object ‘,
4 A.‘id ‘ as ‘activityId ‘,
5 I.score , S.‘text ‘ as ‘subject ‘,
6 DATE_FORMAT (M.‘dateTime ‘, ’%Y-%m-%dT%TZ’) AS dateTime ,
7 R.‘name ‘ AS ‘archiveName ‘
8 FROM
9 ‘Indicium ‘ I,

10 ‘Activity ‘ A,
11 ‘VocabularyExpression ‘ V,
12 ‘VocabularyObject ‘ O,
13 ‘VocabularyVerb ‘ E,
14 ‘VocabularyWord ‘ WO ,
15 ‘VocabularyWord ‘ WE ,
16 ‘Message ‘ M,
17 ‘Subject ‘ S,
18 ‘Archive ‘ R,
19 ‘MessagesInArchive ‘ MR
20 WHERE
21 I.‘activityId ‘ = A.‘id ‘
22 AND A.‘ expressionId ‘= V.‘id ‘
23 AND O.‘id ‘= V.‘ referredObjectId ‘
24 AND E.‘id ‘= V.‘ referredVerbId ‘
25 AND WO.‘id ‘= O.‘id ‘
26 AND WE.‘id ‘= E.‘id ‘
27 AND M.‘id ‘= I.‘messageId ‘
28 AND S.‘messageId ‘= M.‘id ‘
29 AND MR.‘messageId ‘= M.‘id ‘
30 AND MR.‘archiveId ‘= R.‘id ‘
31 AND A.‘processId ‘= ?
32 AND NOT EXISTS
33 (
34 SELECT I2.‘score ‘
35 FROM ‘Indicium ‘ I2
36 WHERE I2.‘activityId ‘ != I.‘activityId ‘
37 AND I2.‘messageId ‘ = I.‘messageId ‘
38 AND I2.‘score ‘ > I.‘score ‘

110 A. From indicia to log

39)
40 ORDER BY
41 MR.‘archiveId ‘, M.‘dateTime ‘
42 ;

A
.2

T
he

X
M
L
result

of
the

query
for

creating
the

log
111

A.2 The XML result of the query for creating the log

Listing A.2. The XML result of the query for creating the log
1 <?xml version ="1.0" encoding ="utf -8"?>
2 <!--
3 - XML Dump
4 - version 3.3.2 deb1ubuntu1
5 -
6 - Host: localhost
7 - Generation Time: Jan 10, 2013 at 12 :14 PM
8 - Server version: 5.1.66
9 -->

10

11 <pma_xml_export version ="1.0">
12 <!--
13 - Database: ’MailOfMineKB ’
14 -->
15 <database name=" MailOfMineKB ">
16 <!-- Table Indicium -->
17 <table name=" Indicium ">
18 <column name="verb">send </ column >
19 <column name=" object ">agenda </ column >
20 <column name=" activityId ">14</ column >
21 <column name="score">0.102464 </ column >
22 <column name=" subject ">telephone conference </ column >
23 <column name=" dateTime ">2009 -07 -09 T17:44:59Z </ column >
24 <column name=" archiveName ">dc. claudio@gmail .com/ Uniroma1 / SM4All </ column >
25 </ table >
26 <table name=" Indicium ">
27 <column name="verb">send </ column >
28 <column name=" object ">meeting </ column >
29 <column name=" activityId ">18</ column >
30 <column name="score">0.0329731 </ column >
31 <column name=" subject ">RE: [Sm4all] System requirements Task Force </ column >
32 <column name=" dateTime ">2009 -07 -14 T22:24:43Z </ column >

112
A
.
From

indicia
to

log

33 <column name=" archiveName ">dc. claudio@gmail .com/ Uniroma1 / SM4All </ column >
34 </ table >
35 <table name=" Indicium ">
36 <column name="verb">send </ column >
37 <column name=" object ">draft </ column >
38 <column name=" activityId ">22</ column >
39 <column name="score">0.0795226 </ column >
40 <column name=" subject ">[SM4All] TF Scenarios: reminder for conf call on monday </ column >
41 <column name=" dateTime ">2009 -09 -11 T17:05:50Z </ column >
42 <column name=" archiveName ">dc. claudio@gmail .com/ Uniroma1 / SM4All </ column >
43 </ table >
44 <table name=" Indicium ">
45 <column name="verb">send </ column >
46 <column name=" object ">draft </ column >
47 <column name=" activityId ">22</ column >
48 <column name="score">0.0795226 </ column >
49 <column name=" subject ">RE: [SM4All] TF Scenarios: reminder for conf call on monday </ column >
50 <column name=" dateTime ">2009 -09 -14 T10:21:42Z </ column >
51 <column name=" archiveName ">dc. claudio@gmail .com/ Uniroma1 / SM4All </ column >
52 </ table >
53 <table name=" Indicium ">
54 <column name="verb">send </ column >
55 <column name=" object ">draft </ column >
56 <column name=" activityId ">22</ column >
57 <column name="score">0.0795226 </ column >
58 <column name=" subject ">[sm4all] WP4 , Plans and timelines </ column >
59 <column name=" dateTime ">2009 -10 -12 T21:31:49Z </ column >
60 <column name=" archiveName ">dc. claudio@gmail .com/ Uniroma1 / SM4All </ column >
61 </ table >
62 <table name=" Indicium ">
63 <column name="verb">write </ column >
64 <column name=" object ">deliverable </ column >
65 <column name=" activityId ">1</ column >
66 <column name="score">0.0459903 </ column >
67 <column name=" subject ">WP6 at the upcoming meeting </ column >
68 <column name=" dateTime ">2010 -01 -12 T23:16:34Z </ column >
69 <column name=" archiveName ">dc. claudio@gmail .com/ Uniroma1 / SM4All </ column >

A
.2

T
he

X
M
L
result

of
the

query
for

creating
the

log
113

70 </ table >
71 <table name=" Indicium ">
72 <column name="verb">send </ column >
73 <column name=" object ">report </ column >
74 <column name=" activityId ">6</ column >
75 <column name="score">0.0673094 </ column >
76 <column name=" subject ">[SM4ALL]: 2nd RP: Activity report </ column >
77 <column name=" dateTime ">2010 -01 -13 T16:00:58Z </ column >
78 <column name=" archiveName ">dc. claudio@gmail .com/ Uniroma1 / SM4All </ column >
79 </ table >
80 <table name=" Indicium ">
81 <column name="verb">write </ column >
82 <column name=" object ">deliverable </ column >
83 <column name=" activityId ">1</ column >
84 <column name="score">0.0536553 </ column >
85 <column name=" subject ">RE: [sm4all] D4.1 chapter example and location component </ column >
86 <column name=" dateTime ">2010 -02 -01 T14:23:35Z </ column >
87 <column name=" archiveName ">dc. claudio@gmail .com/ Uniroma1 / SM4All </ column >
88 </ table >
89 <table name=" Indicium ">
90 <column name="verb">write </ column >
91 <column name=" object ">deliverable </ column >
92 <column name=" activityId ">1</ column >
93 <column name="score">0.0459903 </ column >
94 <column name=" subject ">RE: [sm4all] D4.1 chapter example and location component </ column >
95 <column name=" dateTime ">2010 -02 -01 T14:54:15Z </ column >
96 <column name=" archiveName ">dc. claudio@gmail .com/ Uniroma1 / SM4All </ column >
97 </ table >
98 <table name=" Indicium ">
99 <column name="verb">submit </ column >

100 <column name=" object ">deliverable </ column >
101 <column name=" activityId ">3</ column >
102 <column name="score">0.141749 </ column >
103 <column name=" subject ">D6.2 final draft </ column >
104 <column name=" dateTime ">2010 -02 -26 T01:45:06Z </ column >
105 <column name=" archiveName ">dc. claudio@gmail .com/ Uniroma1 / SM4All </ column >
106 </ table >

114
A
.
From

indicia
to

log

107 <table name=" Indicium ">
108 <column name="verb">send </ column >
109 <column name=" object ">deliverable </ column >
110 <column name=" activityId ">2</ column >
111 <column name="score">0.0955151 </ column >
112 <column name=" subject ">PDFs of deliverables </ column >
113 <column name=" dateTime ">2010 -03 -12 T05:27:28Z </ column >
114 <column name=" archiveName ">dc. claudio@gmail .com/ Uniroma1 / SM4All </ column >
115 </ table >
116 <table name=" Indicium ">
117 <column name="verb">write </ column >
118 <column name=" object ">deliverable </ column >
119 <column name=" activityId ">1</ column >
120 <column name="score">0.0766504 </ column >
121 <column name=" subject ">[sm4all] Start D4.2</ column >
122 <column name=" dateTime ">2010 -04 -21 T05:29:47Z </ column >
123 <column name=" archiveName ">dc. claudio@gmail .com/ Uniroma1 / SM4All </ column >
124 </ table >
125 <table name=" Indicium ">
126 <column name="verb">submit </ column >
127 <column name=" object ">deliverable </ column >
128 <column name=" activityId ">3</ column >
129 <column name="score">0.0944994 </ column >
130 <column name=" subject ">[SM4ALL] deliverable 5.2 tentative document outline </ column >
131 <column name=" dateTime ">2010 -04 -26 T14:38:50Z </ column >
132 <column name=" archiveName ">dc. claudio@gmail .com/ Uniroma1 / SM4All </ column >
133 </ table >
134 <table name=" Indicium ">
135 <column name="verb">submit </ column >
136 <column name=" object ">deliverable </ column >
137 <column name=" activityId ">3</ column >
138 <column name="score">0.0708746 </ column >
139 <column name=" subject ">[Sm4all] [SM4ALL] deliverable 5.2 tentative document outline </ column >
140 <column name=" dateTime ">2010 -04 -26 T20:51:43Z </ column >
141 <column name=" archiveName ">dc. claudio@gmail .com/ Uniroma1 / SM4All </ column >
142 </ table >
143 <table name=" Indicium ">

A
.2

T
he

X
M
L
result

of
the

query
for

creating
the

log
115

144 <column name="verb">submit </ column >
145 <column name=" object ">deliverable </ column >
146 <column name=" activityId ">3</ column >
147 <column name="score">0.0590621 </ column >
148 <column name=" subject ">[Sm4all] [SM4ALL] deliverable 5.2 tentative document outline </ column >
149 <column name=" dateTime ">2010 -04 -27 T12:17:16Z </ column >
150 <column name=" archiveName ">dc. claudio@gmail .com/ Uniroma1 / SM4All </ column >
151 </ table >
152 <table name=" Indicium ">
153 <column name="verb">submit </ column >
154 <column name=" object ">deliverable </ column >
155 <column name=" activityId ">3</ column >
156 <column name="score">0.0472497 </ column >
157 <column name=" subject ">RE: R: [Sm4all] [SM4ALL] deliverable 5.2 tentative document outline </ column >
158 <column name=" dateTime ">2010 -04 -27 T14:29:14Z </ column >
159 <column name=" archiveName ">dc. claudio@gmail .com/ Uniroma1 / SM4All </ column >
160 </ table >
161 <table name=" Indicium ">
162 <column name="verb">submit </ column >
163 <column name=" object ">deliverable </ column >
164 <column name=" activityId ">3</ column >
165 <column name="score">0.119533 </ column >
166 <column name=" subject ">contributions to deliverable 5.2 </ column >
167 <column name=" dateTime ">2010 -05 -11 T10:11:43Z </ column >
168 <column name=" archiveName ">dc. claudio@gmail .com/ Uniroma1 / SM4All </ column >
169 </ table >
170 <table name=" Indicium ">
171 <column name="verb">submit </ column >
172 <column name=" object ">deliverable </ column >
173 <column name=" activityId ">3</ column >
174 <column name="score">0.0522959 </ column >
175 <column name=" subject ">contributions to deliverable 5.2 </ column >
176 <column name=" dateTime ">2010 -05 -11 T11:35:52Z </ column >
177 <column name=" archiveName ">dc. claudio@gmail .com/ Uniroma1 / SM4All </ column >
178 </ table >
179 <table name=" Indicium ">
180 <column name="verb">organize </ column >

116
A
.
From

indicia
to

log

181 <column name=" object ">meeting </ column >
182 <column name=" activityId ">20</ column >
183 <column name="score">0.131719 </ column >
184 <column name=" subject ">[SM4ALL]: Participants to the Innsbruck meeting </ column >
185 <column name=" dateTime ">2011 -01 -11 T19:20:19Z </ column >
186 <column name=" archiveName ">dc. claudio@gmail .com/ Uniroma1 / SM4All </ column >
187 </ table >
188 <table name=" Indicium ">
189 <column name="verb">organize </ column >
190 <column name=" object ">meeting </ column >
191 <column name=" activityId ">20</ column >
192 <column name="score">0.0878127 </ column >
193 <column name=" subject ">RE: [SM4ALL]: Participants to the Innsbruck meeting </ column >
194 <column name=" dateTime ">2011 -01 -17 T09:51:45Z </ column >
195 <column name=" archiveName ">dc. claudio@gmail .com/ Uniroma1 / SM4All </ column >
196 </ table >
197 <table name=" Indicium ">
198 <column name="verb">send </ column >
199 <column name=" object ">report </ column >
200 <column name=" activityId ">6</ column >
201 <column name="score">0.0673094 </ column >
202 <column name=" subject ">[SM4ALL]: 3rd RP: Activity report </ column >
203 <column name=" dateTime ">2011 -02 -09 T18:36:58Z </ column >
204 <column name=" archiveName ">dc. claudio@gmail .com/ Uniroma1 / SM4All </ column >
205 </ table >
206 <table name=" Indicium ">
207 <column name="verb">send </ column >
208 <column name=" object ">meeting </ column >
209 <column name=" activityId ">18</ column >
210 <column name="score">0.0549552 </ column >
211 <column name=" subject ">RV: SM4ALL: performance tests for proxies </ column >
212 <column name=" dateTime ">2011 -02 -11 T08:20:25Z </ column >
213 <column name=" archiveName ">dc. claudio@gmail .com/ Uniroma1 / SM4All </ column >
214 </ table >
215 <table name=" Indicium ">
216 <column name="verb">send </ column >
217 <column name=" object ">meeting </ column >

A
.2

T
he

X
M
L
result

of
the

query
for

creating
the

log
117

218 <column name=" activityId ">18</ column >
219 <column name="score">0.0688148 </ column >
220 <column name=" subject ">SM4ALL: Cost claim of the 4th period </ column >
221 <column name=" dateTime ">2012 -02 -22 T15:46:56Z </ column >
222 <column name=" archiveName ">dc. claudio@gmail .com/ Uniroma1 / SM4All </ column >
223 </ table >
224 <table name=" Indicium ">
225 <column name="verb">send </ column >
226 <column name=" object ">draft </ column >
227 <column name=" activityId ">22</ column >
228 <column name="score">0.0596419 </ column >
229 <column name=" subject ">RE: [Workpad -Tech] [Workpad] D5.3 - Addressing reviewers comments </ column >
230 <column name=" dateTime ">2009 -11 -30 T12:39:16Z </ column >
231 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP6/ WORKPAD </ column >
232 </ table >
233 <table name=" Indicium ">
234 <column name="verb">send </ column >
235 <column name=" object ">draft </ column >
236 <column name=" activityId ">22</ column >
237 <column name="score">0.0497016 </ column >
238 <column name=" subject ">RE: [Workpad -Tech] RE: [Workpad] D5.3 - Addressing reviewers comments </ column >
239 <column name=" dateTime ">2009 -11 -30 T13:14:26Z </ column >
240 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP6/ WORKPAD </ column >
241 </ table >
242 <table name=" Indicium ">
243 <column name="verb">send </ column >
244 <column name=" object ">draft </ column >
245 <column name=" activityId ">22</ column >
246 <column name="score">0.0397613 </ column >
247 <column name=" subject ">RE: [Workpad -Tech] [Workpad] Reminder D5.3 - Addressing reviewers comments </ column >
248 <column name=" dateTime ">2009 -12 -03 T14:29:55Z </ column >
249 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP6/ WORKPAD </ column >
250 </ table >
251 <table name=" Indicium ">
252 <column name="verb">send </ column >
253 <column name=" object ">deliverable </ column >
254 <column name=" activityId ">2</ column >

118
A
.
From

indicia
to

log

255 <column name="score">0.059697 </ column >
256 <column name=" subject ">[Workpad -Tech] [WORKPAD] - Reminder for missing deliverables and sentences for the letter to reviewers </ column >
257 <column name=" dateTime ">2009 -12 -09 T11:02:15Z </ column >
258 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP6/ WORKPAD </ column >
259 </ table >
260 <table name=" Indicium ">
261 <column name="verb">send </ column >
262 <column name=" object ">deliverable </ column >
263 <column name=" activityId ">2</ column >
264 <column name="score">0.0417879 </ column >
265 <column name=" subject ">[Workpad -Tech] [WORKPAD] - Reminder for missing deliverables and sentences for the letter to reviewers </ column >
266 <column name=" dateTime ">2009 -12 -09 T12:32:03Z </ column >
267 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP6/ WORKPAD </ column >
268 </ table >
269 <table name=" Indicium ">
270 <column name="verb">send </ column >
271 <column name=" object ">deliverable </ column >
272 <column name=" activityId ">2</ column >
273 <column name="score">0.0417879 </ column >
274 <column name=" subject ">[Workpad -Tech] [WORKPAD] - Reminder for missing deliverables and sentences for the letter to reviewers </ column >
275 <column name=" dateTime ">2009 -12 -11 T21:46:41Z </ column >
276 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP6/ WORKPAD </ column >
277 </ table >
278 <table name=" Indicium ">
279 <column name="verb">submit </ column >
280 <column name=" object ">report </ column >
281 <column name=" activityId ">7</ column >
282 <column name="score">0.0368513 </ column >
283 <column name=" subject ">RE: [WORKPAD] -- Resubmission of deliverables plus clarifications </ column >
284 <column name=" dateTime ">2010 -01 -12 T19:06:09Z </ column >
285 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP6/ WORKPAD </ column >
286 </ table >
287 <table name=" Indicium ">
288 <column name="verb">submit </ column >
289 <column name=" object ">report </ column >
290 <column name=" activityId ">7</ column >
291 <column name="score">0.0322449 </ column >

A
.2

T
he

X
M
L
result

of
the

query
for

creating
the

log
119

292 <column name=" subject ">RE: [WORKPAD] -- Resubmission of deliverables plus clarifications </ column >
293 <column name=" dateTime ">2010 -01 -13 T16:35:08Z </ column >
294 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP6/ WORKPAD </ column >
295 </ table >
296 <table name=" Indicium ">
297 <column name="verb">submit </ column >
298 <column name=" object ">report </ column >
299 <column name=" activityId ">7</ column >
300 <column name="score">0.0460642 </ column >
301 <column name=" subject ">[WORKPAD] -- Resubmission of deliverables plus clarifications </ column >
302 <column name=" dateTime ">2010 -01 -14 T15:01:09Z </ column >
303 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP6/ WORKPAD </ column >
304 </ table >
305 <table name=" Indicium ">
306 <column name="verb">submit </ column >
307 <column name=" object ">report </ column >
308 <column name=" activityId ">7</ column >
309 <column name="score">0.0460642 </ column >
310 <column name=" subject ">RE: [WORKPAD] Status of the documents </ column >
311 <column name=" dateTime ">2010 -02 -04 T10:40:04Z </ column >
312 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP6/ WORKPAD </ column >
313 </ table >
314 <table name=" Indicium ">
315 <column name="verb">submit </ column >
316 <column name=" object ">report </ column >
317 <column name=" activityId ">7</ column >
318 <column name="score">0.130289 </ column >
319 <column name=" subject ">[Fwd: Final report on the distribution of the Union financial

contribution]</ column >
320 <column name=" dateTime ">2010 -09 -22 T11:01:06Z </ column >
321 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP6/ WORKPAD </ column >
322 </ table >
323 <table name=" Indicium ">
324 <column name="verb">submit </ column >
325 <column name=" object ">report </ column >
326 <column name=" activityId ">7</ column >
327 <column name="score">0.104231 </ column >

120
A
.
From

indicia
to

log

328 <column name=" subject ">[Fwd: Final report on the distribution of the Union financial
contribution]</ column >

329 <column name=" dateTime ">2010 -09 -22 T11:07:55Z </ column >
330 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP6/ WORKPAD </ column >
331 </ table >
332 <table name=" Indicium ">
333 <column name="verb">submit </ column >
334 <column name=" object ">report </ column >
335 <column name=" activityId ">7</ column >
336 <column name="score">0.104231 </ column >
337 <column name=" subject ">[Fwd: Final report on the distribution of the Union financial

contribution]</ column >
338 <column name=" dateTime ">2010 -09 -22 T12:37:01Z </ column >
339 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP6/ WORKPAD </ column >
340 </ table >
341 <table name=" Indicium ">
342 <column name="verb">submit </ column >
343 <column name=" object ">report </ column >
344 <column name=" activityId ">7</ column >
345 <column name="score">0.104231 </ column >
346 <column name=" subject ">Final report on the distribution of the Union financial contribution </ column >
347 <column name=" dateTime ">2010 -10 -04 T13:09:53Z </ column >
348 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP6/ WORKPAD </ column >
349 </ table >
350 <table name=" Indicium ">
351 <column name="verb">send </ column >
352 <column name=" object ">report </ column >
353 <column name=" activityId ">6</ column >
354 <column name="score">0.0673094 </ column >
355 <column name=" subject ">WORKPAD www site </ column >
356 <column name=" dateTime ">2010 -10 -20 T21:35:54Z </ column >
357 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP6/ WORKPAD </ column >
358 </ table >
359 <table name=" Indicium ">
360 <column name="verb">send </ column >
361 <column name=" object ">report </ column >
362 <column name=" activityId ">6</ column >

A
.2

T
he

X
M
L
result

of
the

query
for

creating
the

log
121

363 <column name="score">0.0471166 </ column >
364 <column name=" subject ">RE: WORKPAD www site </ column >
365 <column name=" dateTime ">2010 -10 -22 T10:37:45Z </ column >
366 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP6/ WORKPAD </ column >
367 </ table >
368 <table name=" Indicium ">
369 <column name="verb">send </ column >
370 <column name=" object ">report </ column >
371 <column name=" activityId ">6</ column >
372 <column name="score">0.0842847 </ column >
373 <column name=" subject ">Workpad - annual report for third year </ column >
374 <column name=" dateTime ">2012 -02 -20 T10:55:31Z </ column >
375 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP6/ WORKPAD </ column >
376 </ table >
377 <table name=" Indicium ">
378 <column name="verb">submit </ column >
379 <column name=" object ">report </ column >
380 <column name=" activityId ">7</ column >
381 <column name="score">0.041201 </ column >
382 <column name=" subject ">RE: [SM4ALL]: Declaration on actual costs </ column >
383 <column name=" dateTime ">2009 -10 -09 T12:14:34Z </ column >
384 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
385 </ table >
386 <table name=" Indicium ">
387 <column name="verb">submit </ column >
388 <column name=" object ">report </ column >
389 <column name=" activityId ">7</ column >
390 <column name="score">0.041201 </ column >
391 <column name=" subject ">SM4ALL : payment Period nÂř1 - Confirmation ... </ column >
392 <column name=" dateTime ">2009 -10 -09 T17:38:30Z </ column >
393 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
394 </ table >
395 <table name=" Indicium ">
396 <column name="verb">send </ column >
397 <column name=" object ">draft </ column >
398 <column name=" activityId ">22</ column >
399 <column name="score">0.0795226 </ column >

122
A
.
From

indicia
to

log

400 <column name=" subject ">[sm4all] WP4 , Plans and timelines </ column >
401 <column name=" dateTime ">2009 -10 -12 T21:31:49Z </ column >
402 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
403 </ table >
404 <table name=" Indicium ">
405 <column name="verb">send </ column >
406 <column name=" object ">report </ column >
407 <column name=" activityId ">6</ column >
408 <column name="score">0.0403856 </ column >
409 <column name=" subject ">RE: [SM4All] - Agenda of the Wien meeting </ column >
410 <column name=" dateTime ">2009 -10 -14 T10:12:59Z </ column >
411 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
412 </ table >
413 <table name=" Indicium ">
414 <column name="verb">send </ column >
415 <column name=" object ">draft </ column >
416 <column name=" activityId ">22</ column >
417 <column name="score">0.0754417 </ column >
418 <column name=" subject ">Precondition and effect language specification </ column >
419 <column name=" dateTime ">2009 -10 -14 T10:34:14Z </ column >
420 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
421 </ table >
422 <table name=" Indicium ">
423 <column name="verb">submit </ column >
424 <column name=" object ">report </ column >
425 <column name=" activityId ">7</ column >
426 <column name="score">0.055277 </ column >
427 <column name=" subject ">RE: "Green light" from TID (on behalf of Massimo)</ column >
428 <column name=" dateTime ">2009 -10 -15 T11:54:49Z </ column >
429 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
430 </ table >
431 <table name=" Indicium ">
432 <column name="verb">submit </ column >
433 <column name=" object ">report </ column >
434 <column name=" activityId ">7</ column >
435 <column name="score">0.0460642 </ column >
436 <column name=" subject ">RE: "Green light" from TID (on behalf of Massimo)</ column >

A
.2

T
he

X
M
L
result

of
the

query
for

creating
the

log
123

437 <column name=" dateTime ">2009 -10 -15 T12:16:07Z </ column >
438 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
439 </ table >
440 <table name=" Indicium ">
441 <column name="verb">submit </ column >
442 <column name=" object ">draft </ column >
443 <column name=" activityId ">23</ column >
444 <column name="score">0.175298 </ column >
445 <column name=" subject ">caise ’10</ column >
446 <column name =" dateTime " >2009 -11 -25 T18:57:32Z </ column >
447 <column name =" archiveName "> mecella@dis . uniroma1 .it/FP7/SM4All </ column >
448 </table >
449 <table name =" Indicium ">
450 <column name =" verb">write </ column >
451 <column name =" object "> deliverable </ column >
452 <column name =" activityId ">1</ column >
453 <column name =" score " >0.0459903 </ column >
454 <column name =" subject ">WP6 at the upcoming meeting </ column >
455 <column name =" dateTime " >2010 -01 -12 T23:16:34Z </ column >
456 <column name =" archiveName "> mecella@dis . uniroma1 .it/FP7/SM4All </ column >
457 </table >
458 <table name =" Indicium ">
459 <column name =" verb">send </ column >
460 <column name =" object ">report </ column >
461 <column name =" activityId ">6</ column >
462 <column name =" score " >0.0673094 </ column >
463 <column name =" subject ">[SM4ALL]: 2nd RP: Activity report </ column >
464 <column name =" dateTime " >2010 -01 -13 T16:00:58Z </ column >
465 <column name =" archiveName "> mecella@dis . uniroma1 .it/FP7/SM4All </ column >
466 </table >
467 <table name =" Indicium ">
468 <column name =" verb">write </ column >
469 <column name =" object "> deliverable </ column >
470 <column name =" activityId ">1</ column >
471 <column name =" score " >0.0342791 </ column >
472 <column name =" subject "> Personal comments </ column >
473 <column name =" dateTime " >2010 -01 -28 T20:15:41Z </ column >

124
A
.
From

indicia
to

log

474 <column name =" archiveName "> mecella@dis . uniroma1 .it/FP7/SM4All </ column >
475 </table >
476 <table name =" Indicium ">
477 <column name =" verb">write </ column >
478 <column name =" object "> deliverable </ column >
479 <column name =" activityId ">1</ column >
480 <column name =" score " >0.0536553 </ column >
481 <column name =" subject ">RE: [sm4all] D4.1 chapter example and location component </ column >
482 <column name =" dateTime " >2010 -02 -01 T14:23:35Z </ column >
483 <column name =" archiveName "> mecella@dis . uniroma1 .it/FP7/SM4All </ column >
484 </table >
485 <table name =" Indicium ">
486 <column name =" verb">write </ column >
487 <column name =" object "> deliverable </ column >
488 <column name =" activityId ">1</ column >
489 <column name =" score " >0.0459903 </ column >
490 <column name =" subject ">RE: [sm4all] D4.1 chapter example and location component </ column >
491 <column name =" dateTime " >2010 -02 -01 T14:54:15Z </ column >
492 <column name =" archiveName "> mecella@dis . uniroma1 .it/FP7/SM4All </ column >
493 </table >
494 <table name =" Indicium ">
495 <column name =" verb">send </ column >
496 <column name =" object ">report </ column >
497 <column name =" activityId ">6</ column >
498 <column name =" score " >0.0673094 </ column >
499 <column name =" subject ">[Fwd: letter]</ column >
500 <column name =" dateTime " >2010 -02 -04 T10:46:18Z </ column >
501 <column name =" archiveName "> mecella@dis . uniroma1 .it/FP7/SM4All </ column >
502 </table >
503 <table name =" Indicium ">
504 <column name =" verb">submit </ column >
505 <column name =" object ">report </ column >
506 <column name =" activityId ">7</ column >
507 <column name =" score " >0.106381 </ column >
508 <column name =" subject "> SM4ALL - 2nd Financial report </ column >
509 <column name =" dateTime " >2010 -02 -17 T17:24:36Z </ column >
510 <column name =" archiveName "> mecella@dis . uniroma1 .it/FP7/SM4All </ column >

A
.2

T
he

X
M
L
result

of
the

query
for

creating
the

log
125

511 </table >
512 <table name =" Indicium ">
513 <column name =" verb">submit </ column >
514 <column name =" object ">report </ column >
515 <column name =" activityId ">7</ column >
516 <column name =" score " >0.130289 </ column >
517 <column name =" subject ">TID financial report </ column >
518 <column name =" dateTime " >2010 -02 -25 T12:46:25Z </ column >
519 <column name =" archiveName "> mecella@dis . uniroma1 .it/FP7/SM4All </ column >
520 </table >
521 <table name =" Indicium ">
522 <column name =" verb">submit </ column >
523 <column name =" object ">report </ column >
524 <column name =" activityId ">7</ column >
525 <column name =" score " >0.182405 </ column >
526 <column name =" subject "> SM4ALL - Re: TID financial report </ column >
527 <column name =" dateTime " >2010 -02 -25 T15:56:24Z </ column >
528 <column name =" archiveName "> mecella@dis . uniroma1 .it/FP7/SM4All </ column >
529 </table >
530 <table name =" Indicium ">
531 <column name =" verb">send </ column >
532 <column name =" object ">draft </ column >
533 <column name =" activityId ">22</ column >
534 <column name =" score " >0.119284 </ column >
535 <column name =" subject "> SM4ALL - Re: TID financial report </ column >
536 <column name =" dateTime " >2010 -02 -25 T16:47:23Z </ column >
537 <column name =" archiveName "> mecella@dis . uniroma1 .it/FP7/SM4All </ column >
538 </table >
539 <table name =" Indicium ">
540 <column name =" verb">submit </ column >
541 <column name =" object ">report </ column >
542 <column name =" activityId ">7</ column >
543 <column name =" score " >0.156347 </ column >
544 <column name =" subject "> SM4ALL - TID financial report </ column >
545 <column name =" dateTime " >2010 -03 -02 T16:20:31Z </ column >
546 <column name =" archiveName "> mecella@dis . uniroma1 .it/FP7/SM4All </ column >
547 </table >

126
A
.
From

indicia
to

log

548 <table name =" Indicium ">
549 <column name =" verb">submit </ column >
550 <column name =" object ">draft </ column >
551 <column name =" activityId ">23</ column >
552 <column name =" score " >0.107348 </ column >
553 <column name =" subject ">SM4ALL: </ column >
554 <column name =" dateTime " >2010 -03 -08 T16:48:58Z </ column >
555 <column name =" archiveName "> mecella@dis . uniroma1 .it/FP7/SM4All </ column >
556 </table >
557 <table name =" Indicium ">
558 <column name =" verb">submit </ column >
559 <column name =" object ">report </ column >
560 <column name =" activityId ">7</ column >
561 <column name =" score " >0.127657 </ column >
562 <column name =" subject "> SM4ALL - TID financial report </ column >
563 <column name =" dateTime " >2010 -03 -10 T15:42:22Z </ column >
564 <column name =" archiveName "> mecella@dis . uniroma1 .it/FP7/SM4All </ column >
565 </table >
566 <table name =" Indicium ">
567 <column name =" verb">submit </ column >
568 <column name =" object ">report </ column >
569 <column name =" activityId ">7</ column >
570 <column name =" score " >0.0841013 </ column >
571 <column name =" subject ">RE: SM4ALL - TID financial report </ column >
572 <column name =" dateTime " >2010 -03 -10 T15:55:47Z </ column >
573 <column name =" archiveName "> mecella@dis . uniroma1 .it/FP7/SM4All </ column >
574 </table >
575 <table name =" Indicium ">
576 <column name =" verb">submit </ column >
577 <column name =" object ">report </ column >
578 <column name =" activityId ">7</ column >
579 <column name =" score " >0.067281 </ column >
580 <column name =" subject ">RE: SM4ALL - TID financial report </ column >
581 <column name =" dateTime " >2010 -03 -11 T12:43:18Z </ column >
582 <column name =" archiveName "> mecella@dis . uniroma1 .it/FP7/SM4All </ column >
583 </table >
584 <table name =" Indicium ">

A
.2

T
he

X
M
L
result

of
the

query
for

creating
the

log
127

585 <column name =" verb">submit </ column >
586 <column name =" object ">report </ column >
587 <column name =" activityId ">7</ column >
588 <column name =" score " >0.067281 </ column >
589 <column name =" subject ">[Fwd: RE: SM4ALL - TID financial report]</ column >
590 <column name =" dateTime " >2010 -03 -11 T19:06:56Z </ column >
591 <column name =" archiveName "> mecella@dis . uniroma1 .it/FP7/SM4All </ column >
592 </table >
593 <table name =" Indicium ">
594 <column name =" verb">send </ column >
595 <column name =" object "> deliverable </ column >
596 <column name =" activityId ">2</ column >
597 <column name =" score " >0.0955151 </ column >
598 <column name =" subject ">PDFs of deliverables </ column >
599 <column name =" dateTime " >2010 -03 -12 T05:27:28Z </ column >
600 <column name =" archiveName "> mecella@dis . uniroma1 .it/FP7/SM4All </ column >
601 </table >
602 <table name =" Indicium ">
603 <column name =" verb">submit </ column >
604 <column name =" object ">report </ column >
605 <column name =" activityId ">7</ column >
606 <column name =" score " >0.067281 </ column >
607 <column name =" subject ">RE: [Fwd: RE: SM4ALL - TID financial report]</ column >
608 <column name =" dateTime " >2010 -03 -12 T10:02:47Z </ column >
609 <column name =" archiveName "> mecella@dis . uniroma1 .it/FP7/SM4All </ column >
610 </table >
611 <table name =" Indicium ">
612 <column name =" verb">send </ column >
613 <column name =" object "> deliverable </ column >
614 <column name =" activityId ">2</ column >
615 <column name =" score " >0.0716364 </ column >
616 <column name =" subject ">PDFs of deliverables </ column >
617 <column name =" dateTime " >2010 -03 -12 T11:41:55Z </ column >
618 <column name =" archiveName "> mecella@dis . uniroma1 .it/FP7/SM4All </ column >
619 </table >
620 <table name =" Indicium ">
621 <column name =" verb">send </ column >

128
A
.
From

indicia
to

log

622 <column name =" object ">agenda </ column >
623 <column name =" activityId ">14</ column >
624 <column name =" score " >0.119542 </ column >
625 <column name =" subject "> Stockholm meeting </ column >
626 <column name =" dateTime " >2010 -04 -06 T17:41:57Z </ column >
627 <column name =" archiveName "> mecella@dis . uniroma1 .it/FP7/SM4All </ column >
628 </table >
629 <table name =" Indicium ">
630 <column name =" verb">send </ column >
631 <column name =" object ">agenda </ column >
632 <column name =" activityId ">14</ column >
633 <column name =" score " >0.085387 </ column >
634 <column name =" subject "> Stockholm meeting </ column >
635 <column name =" dateTime " >2010 -04 -09 T14:12:39Z </ column >
636 <column name =" archiveName "> mecella@dis . uniroma1 .it/FP7/SM4All </ column >
637 </table >
638 <table name =" Indicium ">
639 <column name =" verb">write </ column >
640 <column name =" object "> deliverable </ column >
641 <column name =" activityId ">1</ column >
642 <column name =" score " >0.0766504 </ column >
643 <column name =" subject ">[sm4all] Start D4.2</ column >
644 <column name =" dateTime " >2010 -04 -21 T05:29:47Z </ column >
645 <column name =" archiveName "> mecella@dis . uniroma1 .it/FP7/SM4All </ column >
646 </table >
647 <table name =" Indicium ">
648 <column name =" verb">send </ column >
649 <column name =" object ">demo </ column >
650 <column name =" activityId ">10</ column >
651 <column name =" score " >0.0728515 </ column >
652 <column name =" subject "> Invitation to participate in a special Poster & Demo Session at IEEE SECON ’10, 21 -25 June , Boston , MA , USA </ column >
653 <column name=" dateTime ">2010 -04 -23 T18:05:03Z </ column >
654 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
655 </ table >
656 <table name=" Indicium ">
657 <column name="verb">submit </ column >
658 <column name=" object ">deliverable </ column >

A
.2

T
he

X
M
L
result

of
the

query
for

creating
the

log
129

659 <column name=" activityId ">3</ column >
660 <column name="score">0.0944994 </ column >
661 <column name=" subject ">[SM4ALL] deliverable 5.2 tentative document outline </ column >
662 <column name=" dateTime ">2010 -04 -26 T14:38:50Z </ column >
663 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
664 </ table >
665 <table name=" Indicium ">
666 <column name="verb">submit </ column >
667 <column name=" object ">deliverable </ column >
668 <column name=" activityId ">3</ column >
669 <column name="score">0.0708746 </ column >
670 <column name=" subject ">[Sm4all] [SM4ALL] deliverable 5.2 tentative document outline </ column >
671 <column name=" dateTime ">2010 -04 -26 T20:51:43Z </ column >
672 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
673 </ table >
674 <table name=" Indicium ">
675 <column name="verb">submit </ column >
676 <column name=" object ">deliverable </ column >
677 <column name=" activityId ">3</ column >
678 <column name="score">0.0590621 </ column >
679 <column name=" subject ">[Sm4all] [SM4ALL] deliverable 5.2 tentative document outline </ column >
680 <column name=" dateTime ">2010 -04 -27 T12:17:16Z </ column >
681 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
682 </ table >
683 <table name=" Indicium ">
684 <column name="verb">submit </ column >
685 <column name=" object ">deliverable </ column >
686 <column name=" activityId ">3</ column >
687 <column name="score">0.0472497 </ column >
688 <column name=" subject ">RE: R: [Sm4all] [SM4ALL] deliverable 5.2 tentative document outline </ column >
689 <column name=" dateTime ">2010 -04 -27 T14:29:14Z </ column >
690 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
691 </ table >
692 <table name=" Indicium ">
693 <column name="verb">submit </ column >
694 <column name=" object ">deliverable </ column >
695 <column name=" activityId ">3</ column >

130
A
.
From

indicia
to

log

696 <column name="score">0.119533 </ column >
697 <column name=" subject ">contributions to deliverable 5.2 </ column >
698 <column name=" dateTime ">2010 -05 -11 T10:11:43Z </ column >
699 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
700 </ table >
701 <table name=" Indicium ">
702 <column name="verb">submit </ column >
703 <column name=" object ">deliverable </ column >
704 <column name=" activityId ">3</ column >
705 <column name="score">0.0522959 </ column >
706 <column name=" subject ">contributions to deliverable 5.2 </ column >
707 <column name=" dateTime ">2010 -05 -11 T11:35:52Z </ column >
708 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
709 </ table >
710 <table name=" Indicium ">
711 <column name="verb">submit </ column >
712 <column name=" object ">report </ column >
713 <column name=" activityId ">7</ column >
714 <column name="score">0.182405 </ column >
715 <column name=" subject ">SM4ALL: question about costs </ column >
716 <column name=" dateTime ">2010 -06 -30 T11:53:34Z </ column >
717 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
718 </ table >
719 <table name=" Indicium ">
720 <column name="verb">submit </ column >
721 <column name=" object ">report </ column >
722 <column name=" activityId ">7</ column >
723 <column name="score">0.104231 </ column >
724 <column name=" subject ">RE: SM4ALL: question about costs </ column >
725 <column name=" dateTime ">2010 -07 -20 T15:45:19Z </ column >
726 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
727 </ table >
728 <table name=" Indicium ">
729 <column name="verb">submit </ column >
730 <column name=" object ">report </ column >
731 <column name=" activityId ">7</ column >
732 <column name="score">0.0781735 </ column >

A
.2

T
he

X
M
L
result

of
the

query
for

creating
the

log
131

733 <column name=" subject ">[Fwd: RE: SM4ALL: question about costs]</ column >
734 <column name=" dateTime ">2010 -07 -20 T18:55:49Z </ column >
735 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
736 </ table >
737 <table name=" Indicium ">
738 <column name="verb">send </ column >
739 <column name=" object ">deliverable </ column >
740 <column name=" activityId ">2</ column >
741 <column name="score">0.167151 </ column >
742 <column name=" subject ">Software Location in deliverables </ column >
743 <column name=" dateTime ">2010 -09 -09 T15:00:28Z </ column >
744 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
745 </ table >
746 <table name=" Indicium ">
747 <column name="verb">organize </ column >
748 <column name=" object ">agenda </ column >
749 <column name=" activityId ">16</ column >
750 <column name="score">0.14481 </ column >
751 <column name=" subject ">URGENT INVITATION: Meeting of the Monitoring and Control Cluster on SMART BUILDINGS /SMART SPACES , 11 -12 Nov , Lisbon , PT</ column >
752 <column name=" dateTime ">2010 -10 -29 T10:14:49Z </ column >
753 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
754 </ table >
755 <table name=" Indicium ">
756 <column name="verb">organize </ column >
757 <column name=" object ">meeting </ column >
758 <column name=" activityId ">20</ column >
759 <column name="score">0.131719 </ column >
760 <column name=" subject ">[SM4ALL]: Participants to the Innsbruck meeting </ column >
761 <column name=" dateTime ">2011 -01 -11 T19:20:19Z </ column >
762 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
763 </ table >
764 <table name=" Indicium ">
765 <column name="verb">organize </ column >
766 <column name=" object ">meeting </ column >
767 <column name=" activityId ">20</ column >
768 <column name="score">0.0878127 </ column >
769 <column name=" subject ">RE: [SM4ALL]: Participants to the Innsbruck meeting </ column >

132
A
.
From

indicia
to

log

770 <column name=" dateTime ">2011 -01 -17 T09:51:45Z </ column >
771 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
772 </ table >
773 <table name=" Indicium ">
774 <column name="verb">send </ column >
775 <column name=" object ">draft </ column >
776 <column name=" activityId ">22</ column >
777 <column name="score">0.0973948 </ column >
778 <column name=" subject ">3rd and 4th SM4ALL reviews confirmed !</ column >
779 <column name=" dateTime ">2011 -01 -17 T10:48:06Z </ column >
780 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
781 </ table >
782 <table name=" Indicium ">
783 <column name="verb">send </ column >
784 <column name=" object ">agenda </ column >
785 <column name=" activityId ">14</ column >
786 <column name="score">0.102464 </ column >
787 <column name=" subject ">3rd and 4th SM4ALL reviews confirmed !</ column >
788 <column name=" dateTime ">2011 -01 -17 T11:13:07Z </ column >
789 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
790 </ table >
791 <table name=" Indicium ">
792 <column name="verb">send </ column >
793 <column name=" object ">agenda </ column >
794 <column name=" activityId ">14</ column >
795 <column name="score">0.085387 </ column >
796 <column name=" subject ">RE: 3rd and 4th SM4ALL reviews confirmed !</ column >
797 <column name=" dateTime ">2011 -01 -17 T11:13:53Z </ column >
798 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
799 </ table >
800 <table name=" Indicium ">
801 <column name="verb">organize </ column >
802 <column name=" object ">demo </ column >
803 <column name=" activityId ">12</ column >
804 <column name="score">0.0774897 </ column >
805 <column name=" subject ">URGENT INVITATION: Poster and Demo Session at EWSN 11, 23 -25 February , Bonn , Germany </ column >
806 <column name=" dateTime ">2011 -01 -31 T10:52:34Z </ column >

A
.2

T
he

X
M
L
result

of
the

query
for

creating
the

log
133

807 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
808 </ table >
809 <table name=" Indicium ">
810 <column name="verb">send </ column >
811 <column name=" object ">meeting </ column >
812 <column name=" activityId ">18</ column >
813 <column name="score">0.0659463 </ column >
814 <column name=" subject ">SM4ALL: performance tests for proxies </ column >
815 <column name=" dateTime ">2011 -02 -02 T15:45:21Z </ column >
816 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
817 </ table >
818 <table name=" Indicium ">
819 <column name="verb">send </ column >
820 <column name=" object ">meeting </ column >
821 <column name=" activityId ">18</ column >
822 <column name="score">0.0439642 </ column >
823 <column name=" subject ">SM4All FOI concerns </ column >
824 <column name=" dateTime ">2011 -05 -17 T14:56:30Z </ column >
825 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
826 </ table >
827 <table name=" Indicium ">
828 <column name="verb">send </ column >
829 <column name=" object ">draft </ column >
830 <column name=" activityId ">22</ column >
831 <column name="score">0.162325 </ column >
832 <column name=" subject ">Agenda for the final review of SM4ALL in Rome </ column >
833 <column name=" dateTime ">2011 -07 -29 T16:43:37Z </ column >
834 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
835 </ table >
836 <table name=" Indicium ">
837 <column name="verb">send </ column >
838 <column name=" object ">agenda </ column >
839 <column name=" activityId ">14</ column >
840 <column name="score">0.102464 </ column >
841 <column name=" subject ">Agenda of the SM4All final review and meeting for the book </ column >
842 <column name=" dateTime ">2011 -09 -21 T12:14:46Z </ column >
843 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >

134
A
.
From

indicia
to

log

844 </ table >
845 <table name=" Indicium ">
846 <column name="verb">send </ column >
847 <column name=" object ">meeting </ column >
848 <column name=" activityId ">18</ column >
849 <column name="score">0.0688148 </ column >
850 <column name=" subject ">SM4ALL: Cost claim of the 4th period </ column >
851 <column name=" dateTime ">2012 -02 -22 T15:46:56Z </ column >
852 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
853 </ table >
854 <table name=" Indicium ">
855 <column name="verb">send </ column >
856 <column name=" object ">meeting </ column >
857 <column name=" activityId ">18</ column >
858 <column name="score">0.0491534 </ column >
859 <column name=" subject ">Status update and requests </ column >
860 <column name=" dateTime ">2012 -03 -13 T12:10:18Z </ column >
861 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
862 </ table >
863 <table name=" Indicium ">
864 <column name="verb">send </ column >
865 <column name=" object ">draft </ column >
866 <column name=" activityId ">22</ column >
867 <column name="score">0.0843464 </ column >
868 <column name=" subject ">Call for paper :)</ column >
869 <column name=" dateTime ">2012 -03 -19 T13:28:59Z </ column >
870 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
871 </ table >
872 <table name=" Indicium ">
873 <column name="verb">send </ column >
874 <column name=" object ">meeting </ column >
875 <column name=" activityId ">18</ column >
876 <column name="score">0.0294921 </ column >
877 <column name=" subject ">RE: URGENT for SM4All (please react) -- Status update and requests </ column >
878 <column name=" dateTime ">2012 -03 -27 T10:54:02Z </ column >
879 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
880 </ table >

A
.2

T
he

X
M
L
result

of
the

query
for

creating
the

log
135

881 <table name=" Indicium ">
882 <column name="verb">send </ column >
883 <column name=" object ">meeting </ column >
884 <column name=" activityId ">18</ column >
885 <column name="score">0.0245767 </ column >
886 <column name=" subject ">RE: [Sm4all] URGENT for SM4All (please react) -- Status update and requests </ column >
887 <column name=" dateTime ">2012 -03 -28 T16:22:43Z </ column >
888 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
889 </ table >
890 <table name=" Indicium ">
891 <column name="verb">send </ column >
892 <column name=" object ">meeting </ column >
893 <column name=" activityId ">18</ column >
894 <column name="score">0.0196614 </ column >
895 <column name=" subject ">RE: [Sm4all] URGENT for SM4All (please react) -- Status update and requests </ column >
896 <column name=" dateTime ">2012 -03 -28 T16:48:32Z </ column >
897 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
898 </ table >
899 <table name=" Indicium ">
900 <column name="verb">send </ column >
901 <column name=" object ">report </ column >
902 <column name=" activityId ">6</ column >
903 <column name="score">0.0235583 </ column >
904 <column name=" subject ">VB: Fwd: SM4All (224332) : Periodic Report and Cost Claim submission in NEF </ column >
905 <column name=" dateTime ">2012 -07 -02 T13:35:28Z </ column >
906 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
907 </ table >
908 <table name=" Indicium ">
909 <column name="verb">send </ column >
910 <column name=" object ">deliverable </ column >
911 <column name=" activityId ">2</ column >
912 <column name="score">0.168848 </ column >
913 <column name=" subject ">[Sm4all] RED CARD: the missing deliverable D8 .1.d</ column >
914 <column name=" dateTime ">2012 -07 -05 T10:46:45Z </ column >
915 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
916 </ table >
917 <table name=" Indicium ">

136
A
.
From

indicia
to

log

918 <column name="verb">send </ column >
919 <column name=" object ">deliverable </ column >
920 <column name=" activityId ">2</ column >
921 <column name="score">0.0506546 </ column >
922 <column name=" subject ">RE: [Sm4all] RED CARD: the missing deliverable D8 .1.d</ column >
923 <column name=" dateTime ">2012 -07 -06 T12:15:31Z </ column >
924 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
925 </ table >
926 <table name=" Indicium ">
927 <column name="verb">send </ column >
928 <column name=" object ">deliverable </ column >
929 <column name=" activityId ">2</ column >
930 <column name="score">0.0506546 </ column >
931 <column name=" subject ">RE: [Sm4all] RED CARD: the missing deliverable D8 .1.d</ column >
932 <column name=" dateTime ">2012 -07 -10 T12:22:14Z </ column >
933 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ SM4All </ column >
934 </ table >
935 <table name=" Indicium ">
936 <column name="verb">organize </ column >
937 <column name=" object ">agenda </ column >
938 <column name=" activityId ">16</ column >
939 <column name="score">0.261674 </ column >
940 <column name=" subject ">Confirmation of next GB meeting </ column >
941 <column name=" dateTime ">2010 -10 -24 T23:53:41Z </ column >
942 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
943 </ table >
944 <table name=" Indicium ">
945 <column name="verb">send </ column >
946 <column name=" object ">draft </ column >
947 <column name=" activityId ">22</ column >
948 <column name="score">0.0994032 </ column >
949 <column name=" subject ">[GreenerBuildings][D1 .3] First internal deadline towards D1.3</ column >
950 <column name=" dateTime ">2010 -10 -29 T14:45:28Z </ column >
951 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
952 </ table >
953 <table name=" Indicium ">
954 <column name="verb">send </ column >

A
.2

T
he

X
M
L
result

of
the

query
for

creating
the

log
137

955 <column name=" object ">meeting </ column >
956 <column name=" activityId ">18</ column >
957 <column name="score">0.117968 </ column >
958 <column name=" subject ">GreenerBuildings: draft meeting agenda </ column >
959 <column name=" dateTime ">2010 -12 -01 T21:26:57Z </ column >
960 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
961 </ table >
962 <table name=" Indicium ">
963 <column name="verb">write </ column >
964 <column name=" object ">deliverable </ column >
965 <column name=" activityId ">1</ column >
966 <column name="score">0.0685582 </ column >
967 <column name=" subject ">[GreenerBuildings Tech] [D1 .1] SOA review - initiative distribution </ column >
968 <column name=" dateTime ">2011 -01 -25 T00:05:52Z </ column >
969 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
970 </ table >
971 <table name=" Indicium ">
972 <column name="verb">send </ column >
973 <column name=" object ">deliverable </ column >
974 <column name=" activityId ">2</ column >
975 <column name="score">0.119394 </ column >
976 <column name=" subject ">[GreenerBuildings Tech] [D1 .1] Author list </ column >
977 <column name=" dateTime ">2011 -03 -04 T09:25:34Z </ column >
978 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
979 </ table >
980 <table name=" Indicium ">
981 <column name="verb">organize </ column >
982 <column name=" object ">agenda </ column >
983 <column name=" activityId ">16</ column >
984 <column name="score">0.114482 </ column >
985 <column name=" subject ">RE: [GreenerBuildings Tech] Data for teleconference ... </ column >
986 <column name=" dateTime ">2011 -05 -17 T11:08:35Z </ column >
987 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
988 </ table >
989 <table name=" Indicium ">
990 <column name="verb">send </ column >
991 <column name=" object ">agenda </ column >

138
A
.
From

indicia
to

log

992 <column name=" activityId ">14</ column >
993 <column name="score">0.0925967 </ column >
994 <column name=" subject ">[GreenerBuildings Admin] Rome meeting agenda planning </ column >
995 <column name=" dateTime ">2011 -05 -22 T19:16:49Z </ column >
996 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
997 </ table >
998 <table name=" Indicium ">
999 <column name="verb">send </ column >

1000 <column name=" object ">meeting </ column >
1001 <column name=" activityId ">18</ column >
1002 <column name="score">0.0589841 </ column >
1003 <column name=" subject ">[GreenerBuildings Admin] Rome meeting agenda and accommodation .</ column >
1004 <column name=" dateTime ">2011 -05 -30 T17:49:30Z </ column >
1005 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
1006 </ table >
1007 <table name=" Indicium ">
1008 <column name="verb">organize </ column >
1009 <column name=" object ">meeting </ column >
1010 <column name=" activityId ">20</ column >
1011 <column name="score">0.107548 </ column >
1012 <column name=" subject ">[GreenerBuildings Admin] GreenerBuildings: Rome Meeting Accomodation </ column >
1013 <column name=" dateTime ">2011 -06 -02 T17:58:21Z </ column >
1014 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
1015 </ table >
1016 <table name=" Indicium ">
1017 <column name="verb">organize </ column >
1018 <column name=" object ">meeting </ column >
1019 <column name=" activityId ">20</ column >
1020 <column name="score">0.188209 </ column >
1021 <column name=" subject ">[GreenerBuildings Admin] agenda planning for GB meeting September 28 -30 Eindhoven Philips Research </ column >
1022 <column name=" dateTime ">2011 -08 -29 T19:57:18Z </ column >
1023 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
1024 </ table >
1025 <table name=" Indicium ">
1026 <column name="verb">organize </ column >
1027 <column name=" object ">meeting </ column >
1028 <column name=" activityId ">20</ column >

A
.2

T
he

X
M
L
result

of
the

query
for

creating
the

log
139

1029 <column name="score">0.188209 </ column >
1030 <column name=" subject ">[GreenerBuildings Tech] agenda planning for GB meeting September 28 -30 Eindhoven Philips Research </ column >
1031 <column name=" dateTime ">2011 -08 -30 T08:59:47Z </ column >
1032 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
1033 </ table >
1034 <table name=" Indicium ">
1035 <column name="verb">organize </ column >
1036 <column name=" object ">meeting </ column >
1037 <column name=" activityId ">20</ column >
1038 <column name="score">0.134435 </ column >
1039 <column name=" subject ">[GreenerBuildings Tech] agenda planning for GB meeting September 28 -30 Eindhoven Philips Research </ column >
1040 <column name=" dateTime ">2011 -09 -07 T16:07:50Z </ column >
1041 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
1042 </ table >
1043 <table name=" Indicium ">
1044 <column name="verb">send </ column >
1045 <column name=" object ">agenda </ column >
1046 <column name=" activityId ">14</ column >
1047 <column name="score">0.0793686 </ column >
1048 <column name=" subject ">[GreenerBuildings Tech] [GreenerBuildings Admin] December meeting in Madrid </ column >
1049 <column name=" dateTime ">2011 -10 -19 T12:22:31Z </ column >
1050 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
1051 </ table >
1052 <table name=" Indicium ">
1053 <column name="verb">submit </ column >
1054 <column name=" object ">report </ column >
1055 <column name=" activityId ">7</ column >
1056 <column name="score">0.0851045 </ column >
1057 <column name=" subject ">[GreenerBuildings Tech] GreenerBuildings - periodic report P1 - technical part </ column >
1058 <column name=" dateTime ">2011 -12 -01 T13:12:16Z </ column >
1059 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
1060 </ table >
1061 <table name=" Indicium ">
1062 <column name="verb">submit </ column >
1063 <column name=" object ">report </ column >
1064 <column name=" activityId ">7</ column >
1065 <column name="score">0.0744664 </ column >

140
A
.
From

indicia
to

log

1066 <column name=" subject ">[GreenerBuildings Admin] GreenerBuildings - periodic report P1 - financial part </ column >
1067 <column name=" dateTime ">2011 -12 -08 T10:12:10Z </ column >
1068 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
1069 </ table >
1070 <table name=" Indicium ">
1071 <column name="verb">submit </ column >
1072 <column name=" object ">report </ column >
1073 <column name=" activityId ">7</ column >
1074 <column name="score">0.0744664 </ column >
1075 <column name=" subject ">[GreenerBuildings Tech] GreenerBuildings - periodic report P1 - technical part </ column >
1076 <column name=" dateTime ">2012 -01 -06 T11:39:10Z </ column >
1077 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
1078 </ table >
1079 <table name=" Indicium ">
1080 <column name="verb">submit </ column >
1081 <column name=" object ">report </ column >
1082 <column name=" activityId ">7</ column >
1083 <column name="score">0.0531903 </ column >
1084 <column name=" subject ">RE: [GreenerBuildings Tech] GreenerBuildings - periodic report P1 - technical part </ column >
1085 <column name=" dateTime ">2012 -01 -12 T16:39:41Z </ column >
1086 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
1087 </ table >
1088 <table name=" Indicium ">
1089 <column name="verb">submit </ column >
1090 <column name=" object ">report </ column >
1091 <column name=" activityId ">7</ column >
1092 <column name="score">0.0638284 </ column >
1093 <column name=" subject ">RE: [GreenerBuildings Admin] GreenerBuildings - periodic report P1 - financial part </ column >
1094 <column name=" dateTime ">2012 -01 -12 T16:42:36Z </ column >
1095 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
1096 </ table >
1097 <table name=" Indicium ">
1098 <column name="verb">submit </ column >
1099 <column name=" object ">report </ column >
1100 <column name=" activityId ">7</ column >
1101 <column name="score">0.0638284 </ column >
1102 <column name=" subject ">[GreenerBuildings Admin] FW: GreenerBuildings - periodic report P1 - financial part </ column >

A
.2

T
he

X
M
L
result

of
the

query
for

creating
the

log
141

1103 <column name=" dateTime ">2012 -01 -13 T08:49:53Z </ column >
1104 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
1105 </ table >
1106 <table name=" Indicium ">
1107 <column name="verb">write </ column >
1108 <column name=" object ">deliverable </ column >
1109 <column name=" activityId ">1</ column >
1110 <column name="score">0.0867201 </ column >
1111 <column name=" subject ">[GreenerBuildings Tech] D6.2 status </ column >
1112 <column name=" dateTime ">2012 -01 -13 T09:24:46Z </ column >
1113 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
1114 </ table >
1115 <table name=" Indicium ">
1116 <column name="verb">send </ column >
1117 <column name=" object ">draft </ column >
1118 <column name=" activityId ">22</ column >
1119 <column name="score">0.0562309 </ column >
1120 <column name=" subject ">mail per contributi D2.2</ column >
1121 <column name=" dateTime ">2012 -01 -14 T15:48:50Z </ column >
1122 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
1123 </ table >
1124 <table name=" Indicium ">
1125 <column name="verb">send </ column >
1126 <column name=" object ">draft </ column >
1127 <column name=" activityId ">22</ column >
1128 <column name="score">0.0562309 </ column >
1129 <column name=" subject ">[GreenerBuildings] - D2.2 Table of Content and Request for Contributions </ column >
1130 <column name=" dateTime ">2012 -01 -14 T17:50:22Z </ column >
1131 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
1132 </ table >
1133 <table name=" Indicium ">
1134 <column name="verb">submit </ column >
1135 <column name=" object ">report </ column >
1136 <column name=" activityId ">7</ column >
1137 <column name="score">0.0531903 </ column >
1138 <column name=" subject ">[GreenerBuildings Tech] [GreenerBuildings Office] GreenerBuildings - periodic report P1 - technical part </ column >
1139 <column name=" dateTime ">2012 -01 -23 T15:24:44Z </ column >

142
A
.
From

indicia
to

log

1140 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
1141 </ table >
1142 <table name=" Indicium ">
1143 <column name="verb">send </ column >
1144 <column name=" object ">draft </ column >
1145 <column name=" activityId ">22</ column >
1146 <column name="score">0.139164 </ column >
1147 <column name=" subject ">Definite OK for Rome meeting on 8 & 9 Feb.</ column >
1148 <column name=" dateTime ">2012 -01 -23 T16:22:49Z </ column >
1149 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
1150 </ table >
1151 <table name=" Indicium ">
1152 <column name="verb">send </ column >
1153 <column name=" object ">deliverable </ column >
1154 <column name=" activityId ">2</ column >
1155 <column name="score">0.0844242 </ column >
1156 <column name=" subject ">[GreenerBuildings Admin] Deliverables submission for the review meeting .</ column >
1157 <column name=" dateTime ">2012 -01 -25 T21:36:21Z </ column >
1158 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
1159 </ table >
1160 <table name=" Indicium ">
1161 <column name="verb">submit </ column >
1162 <column name=" object ">report </ column >
1163 <column name=" activityId ">7</ column >
1164 <column name="score">0.0531903 </ column >
1165 <column name=" subject ">RE: [GreenerBuildings Tech] GreenerBuildings - periodic report P1 - technical part </ column >
1166 <column name=" dateTime ">2012 -01 -31 T20:10:27Z </ column >
1167 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
1168 </ table >
1169 <table name=" Indicium ">
1170 <column name="verb">submit </ column >
1171 <column name=" object ">report </ column >
1172 <column name=" activityId ">7</ column >
1173 <column name="score">0.0531903 </ column >
1174 <column name=" subject ">RE: [GreenerBuildings Tech] GreenerBuildings - periodic report P1 - technical part </ column >
1175 <column name=" dateTime ">2012 -01 -31 T20:15:43Z </ column >
1176 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >

A
.2

T
he

X
M
L
result

of
the

query
for

creating
the

log
143

1177 </ table >
1178 <table name=" Indicium ">
1179 <column name="verb">submit </ column >
1180 <column name=" object ">report </ column >
1181 <column name=" activityId ">7</ column >
1182 <column name="score">0.0851045 </ column >
1183 <column name=" subject ">[GreenerBuildings Board] Contributions of ITRI to GB</ column >
1184 <column name=" dateTime ">2012 -02 -09 T11:31:08Z </ column >
1185 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
1186 </ table >
1187 <table name=" Indicium ">
1188 <column name="verb">submit </ column >
1189 <column name=" object ">deliverable </ column >
1190 <column name=" activityId ">3</ column >
1191 <column name="score">0.188999 </ column >
1192 <column name=" subject ">D2.2a progress </ column >
1193 <column name=" dateTime ">2012 -02 -21 T14:16:07Z </ column >
1194 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
1195 </ table >
1196 <table name=" Indicium ">
1197 <column name="verb">submit </ column >
1198 <column name=" object ">report </ column >
1199 <column name=" activityId ">7</ column >
1200 <column name="score">0.0851045 </ column >
1201 <column name=" subject ">[GreenerBuildings Tech] GreenerBuildings - periodic report P2 - technical part </ column >
1202 <column name=" dateTime ">2012 -10 -02 T14:05:45Z </ column >
1203 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
1204 </ table >
1205 <table name=" Indicium ">
1206 <column name="verb">submit </ column >
1207 <column name=" object ">report </ column >
1208 <column name=" activityId ">7</ column >
1209 <column name="score">0.0638284 </ column >
1210 <column name=" subject ">RE: [GreenerBuildings Tech] GreenerBuildings - periodic report P2 - technical part </ column >
1211 <column name=" dateTime ">2012 -10 -03 T10:54:46Z </ column >
1212 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
1213 </ table >

144
A
.
From

indicia
to

log

1214 <table name=" Indicium ">
1215 <column name="verb">submit </ column >
1216 <column name=" object ">report </ column >
1217 <column name=" activityId ">7</ column >
1218 <column name="score">0.0744664 </ column >
1219 <column name=" subject ">[GreenerBuildings Tech] GreenerBuildings - periodic report P2 - technical part </ column >
1220 <column name=" dateTime ">2012 -10 -11 T09:24:31Z </ column >
1221 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
1222 </ table >
1223 <table name=" Indicium ">
1224 <column name="verb">submit </ column >
1225 <column name=" object ">report </ column >
1226 <column name=" activityId ">7</ column >
1227 <column name="score">0.0744664 </ column >
1228 <column name=" subject ">[GreenerBuildings Tech] GreenerBuildings - periodic report P2 - technical part </ column >
1229 <column name=" dateTime ">2012 -10 -19 T15:50:57Z </ column >
1230 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
1231 </ table >
1232 <table name=" Indicium ">
1233 <column name="verb">submit </ column >
1234 <column name=" object ">report </ column >
1235 <column name=" activityId ">7</ column >
1236 <column name="score">0.0638284 </ column >
1237 <column name=" subject ">[GreenerBuildings Tech] GreenerBuildings - periodic report P2 - technical part </ column >
1238 <column name=" dateTime ">2012 -10 -27 T14:23:12Z </ column >
1239 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
1240 </ table >
1241 <table name=" Indicium ">
1242 <column name="verb">submit </ column >
1243 <column name=" object ">deliverable </ column >
1244 <column name=" activityId ">3</ column >
1245 <column name="score">0.141749 </ column >
1246 <column name=" subject ">[GreenerBuildings Tech] D6.2B Second Draft Version </ column >
1247 <column name=" dateTime ">2012 -10 -30 T14:42:33Z </ column >
1248 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
1249 </ table >
1250 <table name=" Indicium ">

A
.2

T
he

X
M
L
result

of
the

query
for

creating
the

log
145

1251 <column name="verb">send </ column >
1252 <column name=" object ">agenda </ column >
1253 <column name=" activityId ">14</ column >
1254 <column name="score">0.105825 </ column >
1255 <column name=" subject ">[GreenerBuildings Admin] Review meeting agenda </ column >
1256 <column name=" dateTime ">2012 -10 -31 T21:22:59Z </ column >
1257 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
1258 </ table >
1259 <table name=" Indicium ">
1260 <column name="verb">send </ column >
1261 <column name=" object ">agenda </ column >
1262 <column name=" activityId ">14</ column >
1263 <column name="score">0.0661405 </ column >
1264 <column name=" subject ">[GreenerBuildings Admin] Review meeting agenda </ column >
1265 <column name=" dateTime ">2012 -11 -01 T11:51:37Z </ column >
1266 <column name=" archiveName ">mecella@dis . uniroma1 .it/FP7/ GreenerBuildings </ column >
1267 </ table >
1268 </ database >
1269 </ pma_xml_export >

146
A
.
From

indicia
to

log

A.3 The XSLT stylesheet to transform the XML log into the XES format

Listing A.3. The XSLT stylesheet to transform the XML log into the XES format
1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <xsl:stylesheet
3 version ="1.0"
4 xmlns:xsl =" http: // www.w3.org /1999/ XSL/ Transform "
5 xmlns =" http: // www. xes-standard .org/"
6 >
7 <xsl:output
8 indent ="yes"
9 encoding ="utf-8"

10 method ="xml"
11 omit-xml-declaration ="no"
12 />
13 <xsl:template match="/">
14 <log xes. version ="1.0" xes. features =" nested-attributes " openxes . version ="1.0 RC7">
15 <extension name=" Lifecycle " prefix =" lifecycle " uri="http: // www. xes-standard .org/ lifecycle . xesext "/>
16 <extension name="Time" prefix ="time" uri="http: // www. xes-standard .org/time. xesext "/>
17 <extension name=" Concept " prefix =" concept " uri="http: // www. xes-standard .org/ concept . xesext "/>
18 <classifier name="Event Name" keys=" concept:name "/>
19 <string key=" concept:name " value="Email Log"/>
20 <string key=" lifecycle:model " value=" standard "/>
21

22 <xsl:apply-templates select ="// table"/>
23 </log >
24 </ xsl:template >
25

26 <xsl:template match="table">
27 <xsl:variable name=" archiveName " select ="./ column [@name=’ archiveName ’]/ text ()" ></ xsl:variable >
28 <xsl:if test="
29 not(preceding::table)
30 or
31 (preceding::table [1]/ column [@name=’ archiveName ’] != $ archiveName)">
32 <trace >

A
.3

T
he

X
SLT

stylesheet
to

transform
the

X
M
L
log

into
the

X
E
S
form

at
147

33 <xsl:element name=" string ">
34 <xsl:attribute name="key">
35 <xsl:text >concept:name </ xsl:text >
36 </ xsl:attribute >
37 <xsl:attribute name="value">
38 <xsl:value-of select ="./ column [@name=’ archiveName ’]/ text ()" />
39 </ xsl:attribute >
40 </ xsl:element >
41 <xsl:apply-templates select =" self::node ()" mode=" IN_TRACE " />
42 <xsl:apply-templates select =" following::table [column /@name=’ archiveName ’ and column /text () = $ archiveName]" mode=" IN_TRACE " />
43 </trace >
44 </ xsl:if >
45 </ xsl:template >
46

47 <xsl:template match="table" mode=" IN_TRACE ">
48 <event >
49 <string key=" lifecycle:transition " value=" complete "/>
50 <xsl:element name=" string ">
51 <xsl:attribute name="key">
52 <xsl:text >concept:name </ xsl:text >
53 </ xsl:attribute >
54 <xsl:attribute name="value">
55 <xsl:value-of select ="./ column [@name=’verb ’]/ text ()" />
56 <xsl:text > </ xsl:text >
57 <xsl:value-of select ="./ column [@name=’object ’]/ text ()" />
58 </ xsl:attribute >
59 </ xsl:element >
60 <xsl:element name="date">
61 <xsl:attribute name="key">
62 <xsl:text >time:timestamp </ xsl:text >
63 </ xsl:attribute >
64 <xsl:attribute name="value">
65 <xsl:value-of select ="./ column [@name=’dateTime ’]/ text ()" />
66 </ xsl:attribute >
67 </ xsl:element >
68 </ event >
69 </ xsl:template >

148
A
.
From

indicia
to

log

70 </ xsl:stylesheet >

A
.4

T
he

X
E
S
log

149
A.4 The XES log

Listing A.4. The XES log
1 <?xml version ="1.0" encoding ="utf -8"?>
2 <log xmlns =" http: // www.xes - standard .org/" xes. version ="1.0" xes. features ="nested - attributes " openxes . version ="1.0 RC7">
3 <extension name=" Lifecycle " prefix =" lifecycle " uri="http: // www.xes - standard .org/ lifecycle . xesext "/>
4 <extension name="Time" prefix ="time" uri="http: // www.xes - standard .org/time. xesext "/>
5 <extension name=" Concept " prefix =" concept " uri="http: // www.xes - standard .org/ concept . xesext "/>
6 <classifier name=" Event Name" keys=" concept:name "/>
7 <string key=" concept:name " value="Email Log"/>
8 <string key=" lifecycle:model " value=" standard "/>
9 <trace >

10 <string key=" concept:name " value="dc. claudio@gmail .com/ Uniroma1 / SM4All "/>
11 <event >
12 <string key=" lifecycle:transition " value=" complete "/>
13 <string key=" concept:name " value="send agenda "/>
14 <date key=" time:timestamp " value="2009 -07 -09 T17:44:59Z "/>
15 </ event >
16 <event >
17 <string key=" lifecycle:transition " value=" complete "/>
18 <string key=" concept:name " value="send meeting "/>
19 <date key=" time:timestamp " value="2009 -07 -14 T22:24:43Z "/>
20 </ event >
21 <event >
22 <string key=" lifecycle:transition " value=" complete "/>
23 <string key=" concept:name " value="send draft"/>
24 <date key=" time:timestamp " value="2009 -09 -11 T17:05:50Z "/>
25 </ event >
26 <event >
27 <string key=" lifecycle:transition " value=" complete "/>
28 <string key=" concept:name " value="send draft"/>
29 <date key=" time:timestamp " value="2009 -09 -14 T10:21:42Z "/>
30 </ event >
31 <event >
32 <string key=" lifecycle:transition " value=" complete "/>

150
A
.
From

indicia
to

log

33 <string key=" concept:name " value="send draft"/>
34 <date key=" time:timestamp " value="2009 -10 -12 T21:31:49Z "/>
35 </ event >
36 <event >
37 <string key=" lifecycle:transition " value=" complete "/>
38 <string key=" concept:name " value="write deliverable "/>
39 <date key=" time:timestamp " value="2010 -01 -12 T23:16:34Z "/>
40 </ event >
41 <event >
42 <string key=" lifecycle:transition " value=" complete "/>
43 <string key=" concept:name " value="send report "/>
44 <date key=" time:timestamp " value="2010 -01 -13 T16:00:58Z "/>
45 </ event >
46 <event >
47 <string key=" lifecycle:transition " value=" complete "/>
48 <string key=" concept:name " value="write deliverable "/>
49 <date key=" time:timestamp " value="2010 -02 -01 T14:23:35Z "/>
50 </ event >
51 <event >
52 <string key=" lifecycle:transition " value=" complete "/>
53 <string key=" concept:name " value="write deliverable "/>
54 <date key=" time:timestamp " value="2010 -02 -01 T14:54:15Z "/>
55 </ event >
56 <event >
57 <string key=" lifecycle:transition " value=" complete "/>
58 <string key=" concept:name " value=" submit deliverable "/>
59 <date key=" time:timestamp " value="2010 -02 -26 T01:45:06Z "/>
60 </ event >
61 <event >
62 <string key=" lifecycle:transition " value=" complete "/>
63 <string key=" concept:name " value="send deliverable "/>
64 <date key=" time:timestamp " value="2010 -03 -12 T05:27:28Z "/>
65 </ event >
66 <event >
67 <string key=" lifecycle:transition " value=" complete "/>
68 <string key=" concept:name " value="write deliverable "/>
69 <date key=" time:timestamp " value="2010 -04 -21 T05:29:47Z "/>

A
.4

T
he

X
E
S
log

151
70 </ event >
71 <event >
72 <string key=" lifecycle:transition " value=" complete "/>
73 <string key=" concept:name " value=" submit deliverable "/>
74 <date key=" time:timestamp " value="2010 -04 -26 T14:38:50Z "/>
75 </ event >
76 <event >
77 <string key=" lifecycle:transition " value=" complete "/>
78 <string key=" concept:name " value=" submit deliverable "/>
79 <date key=" time:timestamp " value="2010 -04 -26 T20:51:43Z "/>
80 </ event >
81 <event >
82 <string key=" lifecycle:transition " value=" complete "/>
83 <string key=" concept:name " value=" submit deliverable "/>
84 <date key=" time:timestamp " value="2010 -04 -27 T12:17:16Z "/>
85 </ event >
86 <event >
87 <string key=" lifecycle:transition " value=" complete "/>
88 <string key=" concept:name " value=" submit deliverable "/>
89 <date key=" time:timestamp " value="2010 -04 -27 T14:29:14Z "/>
90 </ event >
91 <event >
92 <string key=" lifecycle:transition " value=" complete "/>
93 <string key=" concept:name " value=" submit deliverable "/>
94 <date key=" time:timestamp " value="2010 -05 -11 T10:11:43Z "/>
95 </ event >
96 <event >
97 <string key=" lifecycle:transition " value=" complete "/>
98 <string key=" concept:name " value=" submit deliverable "/>
99 <date key=" time:timestamp " value="2010 -05 -11 T11:35:52Z "/>

100 </ event >
101 <event >
102 <string key=" lifecycle:transition " value=" complete "/>
103 <string key=" concept:name " value=" organize meeting "/>
104 <date key=" time:timestamp " value="2011 -01 -11 T19:20:19Z "/>
105 </ event >
106 <event >

152
A
.
From

indicia
to

log

107 <string key=" lifecycle:transition " value=" complete "/>
108 <string key=" concept:name " value=" organize meeting "/>
109 <date key=" time:timestamp " value="2011 -01 -17 T09:51:45Z "/>
110 </ event >
111 <event >
112 <string key=" lifecycle:transition " value=" complete "/>
113 <string key=" concept:name " value="send report "/>
114 <date key=" time:timestamp " value="2011 -02 -09 T18:36:58Z "/>
115 </ event >
116 <event >
117 <string key=" lifecycle:transition " value=" complete "/>
118 <string key=" concept:name " value="send meeting "/>
119 <date key=" time:timestamp " value="2011 -02 -11 T08:20:25Z "/>
120 </ event >
121 <event >
122 <string key=" lifecycle:transition " value=" complete "/>
123 <string key=" concept:name " value="send meeting "/>
124 <date key=" time:timestamp " value="2012 -02 -22 T15:46:56Z "/>
125 </ event >
126 </ trace >
127 <trace >
128 <string key=" concept:name " value=" mecella@dis . uniroma1 .it/FP6/ WORKPAD "/>
129 <event >
130 <string key=" lifecycle:transition " value=" complete "/>
131 <string key=" concept:name " value="send draft"/>
132 <date key=" time:timestamp " value="2009 -11 -30 T12:39:16Z "/>
133 </ event >
134 <event >
135 <string key=" lifecycle:transition " value=" complete "/>
136 <string key=" concept:name " value="send draft"/>
137 <date key=" time:timestamp " value="2009 -11 -30 T13:14:26Z "/>
138 </ event >
139 <event >
140 <string key=" lifecycle:transition " value=" complete "/>
141 <string key=" concept:name " value="send draft"/>
142 <date key=" time:timestamp " value="2009 -12 -03 T14:29:55Z "/>
143 </ event >

A
.4

T
he

X
E
S
log

153
144 <event >
145 <string key=" lifecycle:transition " value=" complete "/>
146 <string key=" concept:name " value="send deliverable "/>
147 <date key=" time:timestamp " value="2009 -12 -09 T11:02:15Z "/>
148 </ event >
149 <event >
150 <string key=" lifecycle:transition " value=" complete "/>
151 <string key=" concept:name " value="send deliverable "/>
152 <date key=" time:timestamp " value="2009 -12 -09 T12:32:03Z "/>
153 </ event >
154 <event >
155 <string key=" lifecycle:transition " value=" complete "/>
156 <string key=" concept:name " value="send deliverable "/>
157 <date key=" time:timestamp " value="2009 -12 -11 T21:46:41Z "/>
158 </ event >
159 <event >
160 <string key=" lifecycle:transition " value=" complete "/>
161 <string key=" concept:name " value=" submit report "/>
162 <date key=" time:timestamp " value="2010 -01 -12 T19:06:09Z "/>
163 </ event >
164 <event >
165 <string key=" lifecycle:transition " value=" complete "/>
166 <string key=" concept:name " value=" submit report "/>
167 <date key=" time:timestamp " value="2010 -01 -13 T16:35:08Z "/>
168 </ event >
169 <event >
170 <string key=" lifecycle:transition " value=" complete "/>
171 <string key=" concept:name " value=" submit report "/>
172 <date key=" time:timestamp " value="2010 -01 -14 T15:01:09Z "/>
173 </ event >
174 <event >
175 <string key=" lifecycle:transition " value=" complete "/>
176 <string key=" concept:name " value=" submit report "/>
177 <date key=" time:timestamp " value="2010 -02 -04 T10:40:04Z "/>
178 </ event >
179 <event >
180 <string key=" lifecycle:transition " value=" complete "/>

154
A
.
From

indicia
to

log

181 <string key=" concept:name " value=" submit report "/>
182 <date key=" time:timestamp " value="2010 -09 -22 T11:01:06Z "/>
183 </ event >
184 <event >
185 <string key=" lifecycle:transition " value=" complete "/>
186 <string key=" concept:name " value=" submit report "/>
187 <date key=" time:timestamp " value="2010 -09 -22 T11:07:55Z "/>
188 </ event >
189 <event >
190 <string key=" lifecycle:transition " value=" complete "/>
191 <string key=" concept:name " value=" submit report "/>
192 <date key=" time:timestamp " value="2010 -09 -22 T12:37:01Z "/>
193 </ event >
194 <event >
195 <string key=" lifecycle:transition " value=" complete "/>
196 <string key=" concept:name " value=" submit report "/>
197 <date key=" time:timestamp " value="2010 -10 -04 T13:09:53Z "/>
198 </ event >
199 <event >
200 <string key=" lifecycle:transition " value=" complete "/>
201 <string key=" concept:name " value="send report "/>
202 <date key=" time:timestamp " value="2010 -10 -20 T21:35:54Z "/>
203 </ event >
204 <event >
205 <string key=" lifecycle:transition " value=" complete "/>
206 <string key=" concept:name " value="send report "/>
207 <date key=" time:timestamp " value="2010 -10 -22 T10:37:45Z "/>
208 </ event >
209 <event >
210 <string key=" lifecycle:transition " value=" complete "/>
211 <string key=" concept:name " value="send report "/>
212 <date key=" time:timestamp " value="2012 -02 -20 T10:55:31Z "/>
213 </ event >
214 </ trace >
215 <trace >
216 <string key=" concept:name " value=" mecella@dis . uniroma1 .it/FP7/ SM4All "/>
217 <event >

A
.4

T
he

X
E
S
log

155
218 <string key=" lifecycle:transition " value=" complete "/>
219 <string key=" concept:name " value=" submit report "/>
220 <date key=" time:timestamp " value="2009 -10 -09 T12:14:34Z "/>
221 </ event >
222 <event >
223 <string key=" lifecycle:transition " value=" complete "/>
224 <string key=" concept:name " value=" submit report "/>
225 <date key=" time:timestamp " value="2009 -10 -09 T17:38:30Z "/>
226 </ event >
227 <event >
228 <string key=" lifecycle:transition " value=" complete "/>
229 <string key=" concept:name " value="send draft"/>
230 <date key=" time:timestamp " value="2009 -10 -12 T21:31:49Z "/>
231 </ event >
232 <event >
233 <string key=" lifecycle:transition " value=" complete "/>
234 <string key=" concept:name " value="send report "/>
235 <date key=" time:timestamp " value="2009 -10 -14 T10:12:59Z "/>
236 </ event >
237 <event >
238 <string key=" lifecycle:transition " value=" complete "/>
239 <string key=" concept:name " value="send draft"/>
240 <date key=" time:timestamp " value="2009 -10 -14 T10:34:14Z "/>
241 </ event >
242 <event >
243 <string key=" lifecycle:transition " value=" complete "/>
244 <string key=" concept:name " value=" submit report "/>
245 <date key=" time:timestamp " value="2009 -10 -15 T11:54:49Z "/>
246 </ event >
247 <event >
248 <string key=" lifecycle:transition " value=" complete "/>
249 <string key=" concept:name " value=" submit report "/>
250 <date key=" time:timestamp " value="2009 -10 -15 T12:16:07Z "/>
251 </ event >
252 <event >
253 <string key=" lifecycle:transition " value=" complete "/>
254 <string key=" concept:name " value=" submit draft"/>

156
A
.
From

indicia
to

log

255 <date key=" time:timestamp " value="2009 -11 -25 T18:57:32Z "/>
256 </ event >
257 <event >
258 <string key=" lifecycle:transition " value=" complete "/>
259 <string key=" concept:name " value="write deliverable "/>
260 <date key=" time:timestamp " value="2010 -01 -12 T23:16:34Z "/>
261 </ event >
262 <event >
263 <string key=" lifecycle:transition " value=" complete "/>
264 <string key=" concept:name " value="send report "/>
265 <date key=" time:timestamp " value="2010 -01 -13 T16:00:58Z "/>
266 </ event >
267 <event >
268 <string key=" lifecycle:transition " value=" complete "/>
269 <string key=" concept:name " value="write deliverable "/>
270 <date key=" time:timestamp " value="2010 -01 -28 T20:15:41Z "/>
271 </ event >
272 <event >
273 <string key=" lifecycle:transition " value=" complete "/>
274 <string key=" concept:name " value="write deliverable "/>
275 <date key=" time:timestamp " value="2010 -02 -01 T14:23:35Z "/>
276 </ event >
277 <event >
278 <string key=" lifecycle:transition " value=" complete "/>
279 <string key=" concept:name " value="write deliverable "/>
280 <date key=" time:timestamp " value="2010 -02 -01 T14:54:15Z "/>
281 </ event >
282 <event >
283 <string key=" lifecycle:transition " value=" complete "/>
284 <string key=" concept:name " value="send report "/>
285 <date key=" time:timestamp " value="2010 -02 -04 T10:46:18Z "/>
286 </ event >
287 <event >
288 <string key=" lifecycle:transition " value=" complete "/>
289 <string key=" concept:name " value=" submit report "/>
290 <date key=" time:timestamp " value="2010 -02 -17 T17:24:36Z "/>
291 </ event >

A
.4

T
he

X
E
S
log

157
292 <event >
293 <string key=" lifecycle:transition " value=" complete "/>
294 <string key=" concept:name " value=" submit report "/>
295 <date key=" time:timestamp " value="2010 -02 -25 T12:46:25Z "/>
296 </ event >
297 <event >
298 <string key=" lifecycle:transition " value=" complete "/>
299 <string key=" concept:name " value=" submit report "/>
300 <date key=" time:timestamp " value="2010 -02 -25 T15:56:24Z "/>
301 </ event >
302 <event >
303 <string key=" lifecycle:transition " value=" complete "/>
304 <string key=" concept:name " value="send draft"/>
305 <date key=" time:timestamp " value="2010 -02 -25 T16:47:23Z "/>
306 </ event >
307 <event >
308 <string key=" lifecycle:transition " value=" complete "/>
309 <string key=" concept:name " value=" submit report "/>
310 <date key=" time:timestamp " value="2010 -03 -02 T16:20:31Z "/>
311 </ event >
312 <event >
313 <string key=" lifecycle:transition " value=" complete "/>
314 <string key=" concept:name " value=" submit draft"/>
315 <date key=" time:timestamp " value="2010 -03 -08 T16:48:58Z "/>
316 </ event >
317 <event >
318 <string key=" lifecycle:transition " value=" complete "/>
319 <string key=" concept:name " value=" submit report "/>
320 <date key=" time:timestamp " value="2010 -03 -10 T15:42:22Z "/>
321 </ event >
322 <event >
323 <string key=" lifecycle:transition " value=" complete "/>
324 <string key=" concept:name " value=" submit report "/>
325 <date key=" time:timestamp " value="2010 -03 -10 T15:55:47Z "/>
326 </ event >
327 <event >
328 <string key=" lifecycle:transition " value=" complete "/>

158
A
.
From

indicia
to

log

329 <string key=" concept:name " value=" submit report "/>
330 <date key=" time:timestamp " value="2010 -03 -11 T12:43:18Z "/>
331 </ event >
332 <event >
333 <string key=" lifecycle:transition " value=" complete "/>
334 <string key=" concept:name " value=" submit report "/>
335 <date key=" time:timestamp " value="2010 -03 -11 T19:06:56Z "/>
336 </ event >
337 <event >
338 <string key=" lifecycle:transition " value=" complete "/>
339 <string key=" concept:name " value="send deliverable "/>
340 <date key=" time:timestamp " value="2010 -03 -12 T05:27:28Z "/>
341 </ event >
342 <event >
343 <string key=" lifecycle:transition " value=" complete "/>
344 <string key=" concept:name " value=" submit report "/>
345 <date key=" time:timestamp " value="2010 -03 -12 T10:02:47Z "/>
346 </ event >
347 <event >
348 <string key=" lifecycle:transition " value=" complete "/>
349 <string key=" concept:name " value="send deliverable "/>
350 <date key=" time:timestamp " value="2010 -03 -12 T11:41:55Z "/>
351 </ event >
352 <event >
353 <string key=" lifecycle:transition " value=" complete "/>
354 <string key=" concept:name " value="send agenda "/>
355 <date key=" time:timestamp " value="2010 -04 -06 T17:41:57Z "/>
356 </ event >
357 <event >
358 <string key=" lifecycle:transition " value=" complete "/>
359 <string key=" concept:name " value="send agenda "/>
360 <date key=" time:timestamp " value="2010 -04 -09 T14:12:39Z "/>
361 </ event >
362 <event >
363 <string key=" lifecycle:transition " value=" complete "/>
364 <string key=" concept:name " value="write deliverable "/>
365 <date key=" time:timestamp " value="2010 -04 -21 T05:29:47Z "/>

A
.4

T
he

X
E
S
log

159
366 </ event >
367 <event >
368 <string key=" lifecycle:transition " value=" complete "/>
369 <string key=" concept:name " value="send demo"/>
370 <date key=" time:timestamp " value="2010 -04 -23 T18:05:03Z "/>
371 </ event >
372 <event >
373 <string key=" lifecycle:transition " value=" complete "/>
374 <string key=" concept:name " value=" submit deliverable "/>
375 <date key=" time:timestamp " value="2010 -04 -26 T14:38:50Z "/>
376 </ event >
377 <event >
378 <string key=" lifecycle:transition " value=" complete "/>
379 <string key=" concept:name " value=" submit deliverable "/>
380 <date key=" time:timestamp " value="2010 -04 -26 T20:51:43Z "/>
381 </ event >
382 <event >
383 <string key=" lifecycle:transition " value=" complete "/>
384 <string key=" concept:name " value=" submit deliverable "/>
385 <date key=" time:timestamp " value="2010 -04 -27 T12:17:16Z "/>
386 </ event >
387 <event >
388 <string key=" lifecycle:transition " value=" complete "/>
389 <string key=" concept:name " value=" submit deliverable "/>
390 <date key=" time:timestamp " value="2010 -04 -27 T14:29:14Z "/>
391 </ event >
392 <event >
393 <string key=" lifecycle:transition " value=" complete "/>
394 <string key=" concept:name " value=" submit deliverable "/>
395 <date key=" time:timestamp " value="2010 -05 -11 T10:11:43Z "/>
396 </ event >
397 <event >
398 <string key=" lifecycle:transition " value=" complete "/>
399 <string key=" concept:name " value=" submit deliverable "/>
400 <date key=" time:timestamp " value="2010 -05 -11 T11:35:52Z "/>
401 </ event >
402 <event >

160
A
.
From

indicia
to

log

403 <string key=" lifecycle:transition " value=" complete "/>
404 <string key=" concept:name " value=" submit report "/>
405 <date key=" time:timestamp " value="2010 -06 -30 T11:53:34Z "/>
406 </ event >
407 <event >
408 <string key=" lifecycle:transition " value=" complete "/>
409 <string key=" concept:name " value=" submit report "/>
410 <date key=" time:timestamp " value="2010 -07 -20 T15:45:19Z "/>
411 </ event >
412 <event >
413 <string key=" lifecycle:transition " value=" complete "/>
414 <string key=" concept:name " value=" submit report "/>
415 <date key=" time:timestamp " value="2010 -07 -20 T18:55:49Z "/>
416 </ event >
417 <event >
418 <string key=" lifecycle:transition " value=" complete "/>
419 <string key=" concept:name " value="send deliverable "/>
420 <date key=" time:timestamp " value="2010 -09 -09 T15:00:28Z "/>
421 </ event >
422 <event >
423 <string key=" lifecycle:transition " value=" complete "/>
424 <string key=" concept:name " value=" organize agenda "/>
425 <date key=" time:timestamp " value="2010 -10 -29 T10:14:49Z "/>
426 </ event >
427 <event >
428 <string key=" lifecycle:transition " value=" complete "/>
429 <string key=" concept:name " value=" organize meeting "/>
430 <date key=" time:timestamp " value="2011 -01 -11 T19:20:19Z "/>
431 </ event >
432 <event >
433 <string key=" lifecycle:transition " value=" complete "/>
434 <string key=" concept:name " value=" organize meeting "/>
435 <date key=" time:timestamp " value="2011 -01 -17 T09:51:45Z "/>
436 </ event >
437 <event >
438 <string key=" lifecycle:transition " value=" complete "/>
439 <string key=" concept:name " value="send draft"/>

A
.4

T
he

X
E
S
log

161
440 <date key=" time:timestamp " value="2011 -01 -17 T10:48:06Z "/>
441 </ event >
442 <event >
443 <string key=" lifecycle:transition " value=" complete "/>
444 <string key=" concept:name " value="send agenda "/>
445 <date key=" time:timestamp " value="2011 -01 -17 T11:13:07Z "/>
446 </ event >
447 <event >
448 <string key=" lifecycle:transition " value=" complete "/>
449 <string key=" concept:name " value="send agenda "/>
450 <date key=" time:timestamp " value="2011 -01 -17 T11:13:53Z "/>
451 </ event >
452 <event >
453 <string key=" lifecycle:transition " value=" complete "/>
454 <string key=" concept:name " value=" organize demo"/>
455 <date key=" time:timestamp " value="2011 -01 -31 T10:52:34Z "/>
456 </ event >
457 <event >
458 <string key=" lifecycle:transition " value=" complete "/>
459 <string key=" concept:name " value="send meeting "/>
460 <date key=" time:timestamp " value="2011 -02 -02 T15:45:21Z "/>
461 </ event >
462 <event >
463 <string key=" lifecycle:transition " value=" complete "/>
464 <string key=" concept:name " value="send meeting "/>
465 <date key=" time:timestamp " value="2011 -05 -17 T14:56:30Z "/>
466 </ event >
467 <event >
468 <string key=" lifecycle:transition " value=" complete "/>
469 <string key=" concept:name " value="send draft"/>
470 <date key=" time:timestamp " value="2011 -07 -29 T16:43:37Z "/>
471 </ event >
472 <event >
473 <string key=" lifecycle:transition " value=" complete "/>
474 <string key=" concept:name " value="send agenda "/>
475 <date key=" time:timestamp " value="2011 -09 -21 T12:14:46Z "/>
476 </ event >

162
A
.
From

indicia
to

log

477 <event >
478 <string key=" lifecycle:transition " value=" complete "/>
479 <string key=" concept:name " value="send meeting "/>
480 <date key=" time:timestamp " value="2012 -02 -22 T15:46:56Z "/>
481 </ event >
482 <event >
483 <string key=" lifecycle:transition " value=" complete "/>
484 <string key=" concept:name " value="send meeting "/>
485 <date key=" time:timestamp " value="2012 -03 -13 T12:10:18Z "/>
486 </ event >
487 <event >
488 <string key=" lifecycle:transition " value=" complete "/>
489 <string key=" concept:name " value="send draft"/>
490 <date key=" time:timestamp " value="2012 -03 -19 T13:28:59Z "/>
491 </ event >
492 <event >
493 <string key=" lifecycle:transition " value=" complete "/>
494 <string key=" concept:name " value="send meeting "/>
495 <date key=" time:timestamp " value="2012 -03 -27 T10:54:02Z "/>
496 </ event >
497 <event >
498 <string key=" lifecycle:transition " value=" complete "/>
499 <string key=" concept:name " value="send meeting "/>
500 <date key=" time:timestamp " value="2012 -03 -28 T16:22:43Z "/>
501 </ event >
502 <event >
503 <string key=" lifecycle:transition " value=" complete "/>
504 <string key=" concept:name " value="send meeting "/>
505 <date key=" time:timestamp " value="2012 -03 -28 T16:48:32Z "/>
506 </ event >
507 <event >
508 <string key=" lifecycle:transition " value=" complete "/>
509 <string key=" concept:name " value="send report "/>
510 <date key=" time:timestamp " value="2012 -07 -02 T13:35:28Z "/>
511 </ event >
512 <event >
513 <string key=" lifecycle:transition " value=" complete "/>

A
.4

T
he

X
E
S
log

163
514 <string key=" concept:name " value="send deliverable "/>
515 <date key=" time:timestamp " value="2012 -07 -05 T10:46:45Z "/>
516 </ event >
517 <event >
518 <string key=" lifecycle:transition " value=" complete "/>
519 <string key=" concept:name " value="send deliverable "/>
520 <date key=" time:timestamp " value="2012 -07 -06 T12:15:31Z "/>
521 </ event >
522 <event >
523 <string key=" lifecycle:transition " value=" complete "/>
524 <string key=" concept:name " value="send deliverable "/>
525 <date key=" time:timestamp " value="2012 -07 -10 T12:22:14Z "/>
526 </ event >
527 </ trace >
528 <trace >
529 <string key=" concept:name " value=" mecella@dis . uniroma1 .it/FP7/ GreenerBuildings "/>
530 <event >
531 <string key=" lifecycle:transition " value=" complete "/>
532 <string key=" concept:name " value=" organize agenda "/>
533 <date key=" time:timestamp " value="2010 -10 -24 T23:53:41Z "/>
534 </ event >
535 <event >
536 <string key=" lifecycle:transition " value=" complete "/>
537 <string key=" concept:name " value="send draft"/>
538 <date key=" time:timestamp " value="2010 -10 -29 T14:45:28Z "/>
539 </ event >
540 <event >
541 <string key=" lifecycle:transition " value=" complete "/>
542 <string key=" concept:name " value="send meeting "/>
543 <date key=" time:timestamp " value="2010 -12 -01 T21:26:57Z "/>
544 </ event >
545 <event >
546 <string key=" lifecycle:transition " value=" complete "/>
547 <string key=" concept:name " value="write deliverable "/>
548 <date key=" time:timestamp " value="2011 -01 -25 T00:05:52Z "/>
549 </ event >
550 <event >

164
A
.
From

indicia
to

log

551 <string key=" lifecycle:transition " value=" complete "/>
552 <string key=" concept:name " value="send deliverable "/>
553 <date key=" time:timestamp " value="2011 -03 -04 T09:25:34Z "/>
554 </ event >
555 <event >
556 <string key=" lifecycle:transition " value=" complete "/>
557 <string key=" concept:name " value=" organize agenda "/>
558 <date key=" time:timestamp " value="2011 -05 -17 T11:08:35Z "/>
559 </ event >
560 <event >
561 <string key=" lifecycle:transition " value=" complete "/>
562 <string key=" concept:name " value="send agenda "/>
563 <date key=" time:timestamp " value="2011 -05 -22 T19:16:49Z "/>
564 </ event >
565 <event >
566 <string key=" lifecycle:transition " value=" complete "/>
567 <string key=" concept:name " value="send meeting "/>
568 <date key=" time:timestamp " value="2011 -05 -30 T17:49:30Z "/>
569 </ event >
570 <event >
571 <string key=" lifecycle:transition " value=" complete "/>
572 <string key=" concept:name " value=" organize meeting "/>
573 <date key=" time:timestamp " value="2011 -06 -02 T17:58:21Z "/>
574 </ event >
575 <event >
576 <string key=" lifecycle:transition " value=" complete "/>
577 <string key=" concept:name " value=" organize meeting "/>
578 <date key=" time:timestamp " value="2011 -08 -29 T19:57:18Z "/>
579 </ event >
580 <event >
581 <string key=" lifecycle:transition " value=" complete "/>
582 <string key=" concept:name " value=" organize meeting "/>
583 <date key=" time:timestamp " value="2011 -08 -30 T08:59:47Z "/>
584 </ event >
585 <event >
586 <string key=" lifecycle:transition " value=" complete "/>
587 <string key=" concept:name " value=" organize meeting "/>

A
.4

T
he

X
E
S
log

165
588 <date key=" time:timestamp " value="2011 -09 -07 T16:07:50Z "/>
589 </ event >
590 <event >
591 <string key=" lifecycle:transition " value=" complete "/>
592 <string key=" concept:name " value="send agenda "/>
593 <date key=" time:timestamp " value="2011 -10 -19 T12:22:31Z "/>
594 </ event >
595 <event >
596 <string key=" lifecycle:transition " value=" complete "/>
597 <string key=" concept:name " value=" submit report "/>
598 <date key=" time:timestamp " value="2011 -12 -01 T13:12:16Z "/>
599 </ event >
600 <event >
601 <string key=" lifecycle:transition " value=" complete "/>
602 <string key=" concept:name " value=" submit report "/>
603 <date key=" time:timestamp " value="2011 -12 -08 T10:12:10Z "/>
604 </ event >
605 <event >
606 <string key=" lifecycle:transition " value=" complete "/>
607 <string key=" concept:name " value=" submit report "/>
608 <date key=" time:timestamp " value="2012 -01 -06 T11:39:10Z "/>
609 </ event >
610 <event >
611 <string key=" lifecycle:transition " value=" complete "/>
612 <string key=" concept:name " value=" submit report "/>
613 <date key=" time:timestamp " value="2012 -01 -12 T16:39:41Z "/>
614 </ event >
615 <event >
616 <string key=" lifecycle:transition " value=" complete "/>
617 <string key=" concept:name " value=" submit report "/>
618 <date key=" time:timestamp " value="2012 -01 -12 T16:42:36Z "/>
619 </ event >
620 <event >
621 <string key=" lifecycle:transition " value=" complete "/>
622 <string key=" concept:name " value=" submit report "/>
623 <date key=" time:timestamp " value="2012 -01 -13 T08:49:53Z "/>
624 </ event >

166
A
.
From

indicia
to

log

625 <event >
626 <string key=" lifecycle:transition " value=" complete "/>
627 <string key=" concept:name " value="write deliverable "/>
628 <date key=" time:timestamp " value="2012 -01 -13 T09:24:46Z "/>
629 </ event >
630 <event >
631 <string key=" lifecycle:transition " value=" complete "/>
632 <string key=" concept:name " value="send draft"/>
633 <date key=" time:timestamp " value="2012 -01 -14 T15:48:50Z "/>
634 </ event >
635 <event >
636 <string key=" lifecycle:transition " value=" complete "/>
637 <string key=" concept:name " value="send draft"/>
638 <date key=" time:timestamp " value="2012 -01 -14 T17:50:22Z "/>
639 </ event >
640 <event >
641 <string key=" lifecycle:transition " value=" complete "/>
642 <string key=" concept:name " value=" submit report "/>
643 <date key=" time:timestamp " value="2012 -01 -23 T15:24:44Z "/>
644 </ event >
645 <event >
646 <string key=" lifecycle:transition " value=" complete "/>
647 <string key=" concept:name " value="send draft"/>
648 <date key=" time:timestamp " value="2012 -01 -23 T16:22:49Z "/>
649 </ event >
650 <event >
651 <string key=" lifecycle:transition " value=" complete "/>
652 <string key=" concept:name " value="send deliverable "/>
653 <date key=" time:timestamp " value="2012 -01 -25 T21:36:21Z "/>
654 </ event >
655 <event >
656 <string key=" lifecycle:transition " value=" complete "/>
657 <string key=" concept:name " value=" submit report "/>
658 <date key=" time:timestamp " value="2012 -01 -31 T20:10:27Z "/>
659 </ event >
660 <event >
661 <string key=" lifecycle:transition " value=" complete "/>

A
.4

T
he

X
E
S
log

167
662 <string key=" concept:name " value=" submit report "/>
663 <date key=" time:timestamp " value="2012 -01 -31 T20:15:43Z "/>
664 </ event >
665 <event >
666 <string key=" lifecycle:transition " value=" complete "/>
667 <string key=" concept:name " value=" submit report "/>
668 <date key=" time:timestamp " value="2012 -02 -09 T11:31:08Z "/>
669 </ event >
670 <event >
671 <string key=" lifecycle:transition " value=" complete "/>
672 <string key=" concept:name " value=" submit deliverable "/>
673 <date key=" time:timestamp " value="2012 -02 -21 T14:16:07Z "/>
674 </ event >
675 <event >
676 <string key=" lifecycle:transition " value=" complete "/>
677 <string key=" concept:name " value=" submit report "/>
678 <date key=" time:timestamp " value="2012 -10 -02 T14:05:45Z "/>
679 </ event >
680 <event >
681 <string key=" lifecycle:transition " value=" complete "/>
682 <string key=" concept:name " value=" submit report "/>
683 <date key=" time:timestamp " value="2012 -10 -03 T10:54:46Z "/>
684 </ event >
685 <event >
686 <string key=" lifecycle:transition " value=" complete "/>
687 <string key=" concept:name " value=" submit report "/>
688 <date key=" time:timestamp " value="2012 -10 -11 T09:24:31Z "/>
689 </ event >
690 <event >
691 <string key=" lifecycle:transition " value=" complete "/>
692 <string key=" concept:name " value=" submit report "/>
693 <date key=" time:timestamp " value="2012 -10 -19 T15:50:57Z "/>
694 </ event >
695 <event >
696 <string key=" lifecycle:transition " value=" complete "/>
697 <string key=" concept:name " value=" submit report "/>
698 <date key=" time:timestamp " value="2012 -10 -27 T14:23:12Z "/>

168
A
.
From

indicia
to

log

699 </ event >
700 <event >
701 <string key=" lifecycle:transition " value=" complete "/>
702 <string key=" concept:name " value=" submit deliverable "/>
703 <date key=" time:timestamp " value="2012 -10 -30 T14:42:33Z "/>
704 </ event >
705 <event >
706 <string key=" lifecycle:transition " value=" complete "/>
707 <string key=" concept:name " value="send agenda "/>
708 <date key=" time:timestamp " value="2012 -10 -31 T21:22:59Z "/>
709 </ event >
710 <event >
711 <string key=" lifecycle:transition " value=" complete "/>
712 <string key=" concept:name " value="send agenda "/>
713 <date key=" time:timestamp " value="2012 -11 -01 T11:51:37Z "/>
714 </ event >
715 </ trace >
716 </log >

169

Appendix B

The discovered process

B.1 The local Finite State Automata, generated on the
basis of the discovered process’ constraints

170 B. The discovered process

send draft
write deliverable

send report
submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize demo
organize agenda

organize agenda
organize demo

send draft
write deliverable

send report
submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

send demo

send draft
write deliverable

send report
submit deliverable
send deliverable
organize meeting

submit report

organize demo

send meeting
send demo

organize demo

send agenda
send meeting

send draft
write deliverable

send report
submit deliverable
send deliverable
organize meeting

submit report

send agenda

send meeting
send meeting

send agenda

organize agenda

send agenda

send demo

send meeting
send draft

write deliverable
send report

submit deliverable
send deliverable
organize meeting

submit report

organize demo

send draft
write deliverable

send report
submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize demo

organize agenda

Figure B.1. The local automaton for the “organize agenda” activity

send agenda
send meeting

send draft
write deliverable

send report
submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agendasend meeting

send agenda
send meeting

send draft
write deliverable

send report
submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send agenda
send meeting

send draft
write deliverable

send report
submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda

organize demo

organize demo

send agenda
send meeting

send draft
write deliverable

send report
submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda

organize demo

send agenda
send meeting

send draft
write deliverable

send report
submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda

Figure B.2. The local automaton for the “organize demo” activity

B.1 The local Finite State Automata, generated on the basis of the discovered
process’ constraints 171

send deliverable

send draft

send draft

send deliverable

send meeting
send draft

write deliverable
send report

submit deliverable

send demo
organize agenda
organize demo

submit report

send deliverable

send draft

organize meeting
send agenda
send meeting

submit report
submit draft
send demo

organize agenda
organize demo

write deliverable
send report

submit deliverable

organize meeting

organize meeting

send demo
organize agenda
organize demo

submit report

send meeting

write deliverable
send report

submit deliverable

send draft

organize meeting

write deliverable
send report

submit deliverable
send deliverable

submit report
submit draft
send demo

organize agenda
organize demo

send agenda
send meeting

send draft

organize meeting

organize meeting

send demo
organize agenda
organize demo

submit report

send meeting

write deliverable
send report

submit deliverable

send draft

organize meeting

send draft

send meeting
send draft

write deliverable
send report

submit deliverable

send demo
organize agenda
organize demo

submit report

send agenda

send agenda

send agenda
send meeting

send draft
write deliverable

send report
submit deliverable

send demo
organize agenda
organize demo

submit report

send agenda

send draft

write deliverable
send report

submit deliverable
send deliverable

submit report
submit draft
send demo

organize agenda
organize demo

send meeting

organize meeting

send agenda

submit report
submit draft
send demo

organize agenda
organize demo

send meeting
send draft

write deliverable
send report

submit deliverable
send deliverable

organize meeting

send agenda

organize meeting

write deliverable
send report

submit deliverable
send deliverable

submit report
submit draft
send demo

organize agenda
organize demo

send meeting

send draft

send draft

send demo
organize agenda
organize demo

submit report

send meeting

write deliverable
send report

submit deliverable

send agenda

send draft

send meeting
send draft

write deliverable
send report

submit deliverable

send demo
organize agenda
organize demo

submit report

send meeting
send draft

write deliverable
send report

submit deliverable

send demo
organize agenda
organize demo

submit report

send deliverable

send demo
organize agenda
organize demo

submit report

send meeting

write deliverable
send report

submit deliverable

send draft

send meeting
send draft

write deliverable
send report

submit deliverable

send demo
organize agenda
organize demo

submit report

organize meeting

send deliverable

send agenda

send draft

submit report
submit draft
send demo

organize agenda
organize demo

send meeting

write deliverable
send report

submit deliverable

submit report
submit draft
send demo

organize agenda
organize demo

write deliverable
send report

submit deliverable

send agenda
send meeting

organize meeting

send deliverable

send draft

send deliverable

send meeting
send draft

write deliverable
send report

submit deliverable

submit report
submit draft
send demo

organize agenda
organize demo

send agenda

organize meeting

send agenda

organize meeting

send deliverable

submit report
submit draft
send demo

organize agenda
organize demo

send meeting

write deliverable
send report

submit deliverable

send draft

send agenda

submit report
submit draft
send demo

organize agenda
organize demo

send meeting

write deliverable
send report

submit deliverable

organize meeting

send deliverable

send draft

organize meeting

organize meeting

send agenda

send meeting
send draft

write deliverable
send report

submit deliverable

submit report
submit draft
send demo

organize agenda
organize demo

organize meeting

send deliverable

send agenda
send meeting

send draft
write deliverable

send report
submit deliverable

submit report
submit draft
send demo

organize agenda
organize demo

send deliverable

organize meeting

send meeting
send draft

write deliverable
send report

submit deliverable

send demo
organize agenda
organize demo

submit report

organize meeting

send agenda

send deliverable

send meeting
send draft

write deliverable
send report

submit deliverable

send demo
organize agenda
organize demo

submit report

send demo
organize agenda
organize demo

submit report

send meeting
send draft

write deliverable
send report

submit deliverable
send deliverable

send meeting
send draft

write deliverable
send report

submit deliverable

send demo
organize agenda
organize demo

submit report

Figure B.3. The local automaton for the “organize meeting” activity

172 B. The discovered process

send meeting
send draft

write deliverable
send report

submit deliverable
send deliverable
organize meeting

submit report

send demo
organize agenda

write deliverable
send report

submit deliverable
send deliverable
organize meeting

submit report

send meeting

send demo
organize agenda

submit report

send meeting

send meeting

submit report

send agenda

submit report

send meeting

send agenda

submit report

send draft
write deliverable

send report
submit deliverable
send deliverable
organize meeting

submit draft
send demo

organize agenda

write deliverable
send report

submit deliverable
send deliverable
organize meeting

send demo
organize agenda
organize demo

submit report

send meeting

send agenda

send agenda

send agenda

write deliverable
send report

submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda

send draft

write deliverable
send report

submit deliverable
send deliverable
organize meeting

submit report

send demo
organize agenda
organize demo

send meeting

send draft

send agenda

write deliverable
send report

submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda

send draft
write deliverable

send report
submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda

send agenda

send draft

send meeting

send draft

write deliverable
send report

submit deliverable
send deliverable
organize meeting

submit report

send meeting

send demo
organize agenda

write deliverable
send report

submit deliverable
send deliverable
organize meeting

submit report

send meeting

send demo
organize agenda

send meeting

write deliverable
send report

submit deliverable
send deliverable
organize meeting

submit report

send demo
organize agenda

send agenda

submit report

write deliverable
send report

submit deliverable
send deliverable
organize meeting

submit draft
send demo

organize agenda

send draft

send agenda

send draft

submit report

write deliverable
send report

submit deliverable
send deliverable
organize meeting

submit draft
send demo

organize agenda

send draft
write deliverable

send report
submit deliverable
send deliverable
organize meeting

submit draft
send demo

organize agenda

send agenda

submit report

send draft

submit report

send draft

submit report

write deliverable
send report

submit deliverable
send deliverable
organize meeting

send meeting

send demo
organize agenda

write deliverable
send report

submit deliverable
send deliverable
organize meeting

submit draft
send demo

organize agenda

send agenda

send draft

submit report

send meeting

write deliverable
send report

submit deliverable
send deliverable
organize meeting

submit report

send demo
organize agenda
organize demo

send agenda

Figure B.4. The local automaton for the “send agenda” activity

send agenda

submit deliverable
submit deliverable

send agenda

organize meeting
submit report
submit draft
send demo

organize agenda
organize demo

send meeting
send draft

write deliverable
send report

send deliverable

submit deliverable

send deliverable

organize meeting
submit report
submit draft
send demo

organize agenda
organize demo

send meeting
send draft

write deliverable
send report

submit deliverable

organize meeting
submit report
submit draft
send demo

organize agenda
organize demo

send meeting
send draft

write deliverable
send report

send deliverable

send meeting
send draft

write deliverable
send report

submit deliverable

organize meeting
submit report
submit draft
send demo

organize agenda
organize demo

send meeting
send draft

write deliverable
send report

organize meeting
submit report
submit draft
send demo

organize agenda
organize demo

organize meeting
submit report
submit draft
send demo

organize agenda
organize demo

send meeting
send draft

write deliverable
send report

send agenda

send deliverable

submit deliverable

organize meeting
submit report
submit draft
send demo

organize agenda
organize demo

send meeting
send draft

write deliverable
send report

send deliverable

send meeting
send draft

write deliverable
send report

submit deliverable

organize meeting
submit report
submit draft
send demo

organize agenda
organize demo

organize meeting
submit report
submit draft
send demo

organize agenda
organize demo

send agenda
send meeting

send draft
write deliverable

send report
send deliverable

send deliverable

Figure B.5. The local automaton for the “send deliverable” activity

B.1 The local Finite State Automata, generated on the basis of the discovered
process’ constraints 173

send agenda
send meeting

send draft
write deliverable

send report
submit deliverable
send deliverable
organize meeting

submit report
submit draft

organize agenda

organize demo

send agenda
send meeting

send draft
write deliverable

send report
submit deliverable
send deliverable
organize meeting

submit report
submit draft

organize agenda

organize demo

send demo

send agenda
send meeting

send draft
write deliverable

send report
submit deliverable
send deliverable
organize meeting

submit report
submit draft

organize agenda

submit deliverable

send demo

send agenda
send meeting

send draft
write deliverable

send report
submit deliverable
send deliverable
organize meeting

submit report
submit draft

organize agenda

send demo

send agenda
send meeting

send draft
write deliverable

send report
submit deliverable
send deliverable
organize meeting

submit report
submit draft

organize agenda

send demo

Figure B.6. The local automaton for the “send demo” activity

send draft

send report

send agenda

send report

send report

send agenda

write deliverable

submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send report

write deliverable
send report

submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send agenda
send draft

send draft

write deliverable

submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send meeting

send draft

write deliverable

submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send meeting

send draft

write deliverable

submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send meeting

send agenda

write deliverable
send report

submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

write deliverable

submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send draft

send meeting

send meeting

send agenda

send meeting

send draft

write deliverable

submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send meeting

Figure B.7. The local automaton for the “send draft” activity

174 B. The discovered process

send draft
write deliverable

send report
submit deliverable
send deliverable
organize meeting

submit report

send demo
organize agenda
organize demo

send agenda

send draft
write deliverable

send report
submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send meeting

send meeting

send meeting send report
submit deliverable
send deliverable
organize meeting

submit report

send demo
organize agenda
organize demo

send draft

send report

send agenda

send draft
write deliverable

submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send meeting

send meeting

send meeting

submit deliverable
send deliverable
organize meeting

submit report

send demo
organize agenda
organize demo

send draft

send report

write deliverable

send report
submit deliverable
send deliverable
organize meeting

submit report

send demo
organize agenda
organize demo

send draft

write deliverable

send meeting

send report

submit deliverable
send deliverable
organize meeting

submit report

send demo
organize agenda
organize demo

send draft

send report

submit deliverable
send deliverable
organize meeting

submit report

send demo
organize agenda
organize demo

send draft

write deliverable

send agenda

submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send draft

send meeting

send report

send meeting

send report

send meeting

send report
submit deliverable
send deliverable
organize meeting

submit report

send demo
organize agenda
organize demo

send draft

send report
submit deliverable
send deliverable
organize meeting

submit report

send demo
organize agenda
organize demo

send draft

send agenda

send report

write deliverable

send report

submit deliverable
send deliverable
organize meeting

submit report

send demo
organize agenda
organize demo

send draft

send report

send report

send agenda

send draft
write deliverable

submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send meeting

send report

send agenda

send report
submit deliverable
send deliverable
organize meeting

submit report

send demo
organize agenda
organize demo

send draft

send agenda

send meeting

write deliverable

send agenda

submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send draft

send report

write deliverable

send agenda

submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send draft

send meeting
send report

write deliverable

send meeting
send agenda

send report
submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send draft
send report

submit deliverable
send deliverable
organize meeting

submit report

send demo
organize agenda
organize demo

send draft

send agenda

write deliverable

send report
submit deliverable
send deliverable
organize meeting

submit report

send demo
organize agenda
organize demo

send draft

send report
submit deliverable
send deliverable
organize meeting

submit report

send demo
organize agenda
organize demo

send draft

send report
submit deliverable
send deliverable
organize meeting

submit report

send agenda

send demo
organize agenda
organize demo

send draft

send report

send draft
write deliverable

submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send meeting

send agenda

send meeting

write deliverable

submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send draft

send meeting

send agenda

send report

write deliverable

send report
submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send draft
send meeting

send agenda

send meeting

send agenda

write deliverable

submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send draft

send report

write deliverable

send agenda

send meeting

send report
submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send draft

Figure B.8. The local automaton for the “send meeting” activity

B.1 The local Finite State Automata, generated on the basis of the discovered
process’ constraints 175

submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send agenda
send meeting

send draft
write deliverable

send report

send report

submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send agenda
send meeting

send draft
write deliverable

submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send meeting

send report

write deliverable

submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send agenda
send meeting

send draft

send draft

submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send agenda
send meeting

send draft
write deliverable

write deliverable

submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send agenda
send meeting

send draft

write deliverable

submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send agenda
send meeting

send report

send draft

send report

write deliverable

submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send agenda
send meeting

submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send meeting

send draft

submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send agenda
send meeting

send draft
write deliverable

write deliverable

submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send agenda
send meeting

send draft

send report

write deliverable

submit deliverable
send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send agenda
send meeting

send report

Figure B.9. The local automaton for the “send report” activity

send agenda
send meeting

send draft
write deliverable

send report

send demo
organize agenda
organize demo

organize meeting
submit report

organize meeting
submit report
submit draft
send demo

organize agenda
organize demo

send meeting
send draft

write deliverable
send report

send agenda

send deliverable

submit deliverable

submit deliverable

send deliverable

send agenda

organize meeting
submit report
submit draft
send demo

organize agenda
organize demo
send meeting

send draft
write deliverable

send report

send deliverable

organize meeting
submit report
submit draft
send demo

organize agenda
organize demo

send agenda
send meeting

send draft
write deliverable

send report

submit deliverable

send agenda

send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send meeting
send draft

write deliverable
send report

submit deliverable

send meeting
send draft

write deliverable

send demo
organize agenda
organize demo

organize meeting
submit report

send deliverable

submit deliverable

send meeting
send draft

write deliverable

send demo
organize agenda
organize demo

organize meeting
submit report

submit deliverable

send meeting
send draft

write deliverable

send demo
organize agenda
organize demo

organize meeting
submit report

submit deliverable

send deliverable

send meeting
send draft

write deliverable

send demo
organize agenda
organize demo

organize meeting
submit report

send agenda

send meeting
send draft

write deliverable
send report

send demo
organize agenda
organize demo

organize meeting
submit report

send agenda
send meeting

send draft
write deliverable

send report

send demo
organize agenda
organize demo

send deliverable
organize meeting

submit report

send deliverable

send meeting
send draft

write deliverable
send report

send demo
organize agenda
organize demo

send deliverable
organize meeting

submit report

send meeting
send draft

write deliverable
send report

send demo
organize agenda
organize demo

send deliverable
organize meeting

submit report
send meeting

send draft
write deliverable

send report

send demo
organize agenda
organize demo

organize meeting
submit report

send deliverable

submit deliverable

send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send agenda
send meeting

send draft
write deliverable

send report

submit deliverable

send deliverable

send agenda

send meeting
send draft

write deliverable
send report

send demo
organize agenda
organize demo

send deliverable
organize meeting

submit report

send agenda

send agenda

send meeting
send draft

write deliverable
send report

send demo
organize agenda
organize demo

organize meeting
submit report

send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send meeting
send draft

write deliverable
send report

submit deliverable

send agenda

send meeting
send draft

write deliverable
send report

send demo
organize agenda
organize demo

organize meeting
submit report

organize meeting
submit report
submit draft
send demo

organize agenda
organize demo

send agenda
send meeting

send draft
write deliverable

send report

submit deliverable

send deliverable

organize meeting
submit report
submit draft
send demo

organize agenda
organize demo

send meeting
send draft

write deliverable
send report

submit deliverable

send deliverable

send agenda

Figure B.10. The local automaton for the “submit deliverable” activity

176 B. The discovered process

send demo

submit draft

organize agenda
organize demo

send agenda
send meeting

send draft
write deliverable

send report
submit deliverable
send deliverable
organize meeting

submit report

write deliverable
send report

submit deliverable
send deliverable
organize meeting

submit report

organize agenda
organize demo

send agenda
send meeting

send demo

submit draft

organize agenda
organize demo

send agenda
send meeting

send draft
write deliverable

send report
submit deliverable
send deliverable
organize meeting

submit report

submit draft

organize agenda
organize demo

send agenda
send meeting

send draft
write deliverable

send report
submit deliverable
send deliverable
organize meeting

submit report

send demo

send agenda
send meeting

send draft
write deliverable

send report
submit deliverable
send deliverable
organize meeting

submit report

send demo
organize agenda
organize demo

submit draft

organize agenda
organize demo

send agenda
send meeting

send draft
write deliverable

send report
submit deliverable
send deliverable
organize meeting

submit report

send demo
organize agenda
organize demo
send agenda
send meeting

send draft
write deliverable

send report
submit deliverable
send deliverable
organize meeting

submit report

Figure B.11. The local automaton for the “submit draft” activity

send agenda

send demo
organize agenda
organize demo

send meeting
send draft

write deliverable
send report

submit deliverable
send deliverable
organize meeting

send demo
organize agenda
organize demo

send agenda
send meeting

send draft
write deliverable

send report
submit deliverable
send deliverable
organize meeting

send agenda

send demo
organize agenda
organize demo

send meeting
send draft

write deliverable
send report

submit deliverable
send deliverable
organize meeting send demo

organize agenda
organize demo

send meeting
send draft

write deliverable
send report

submit deliverable
send deliverable
organize meeting

send agenda
send meeting

write deliverable
send report

submit deliverable
send deliverable
organize meeting

send demo
organize agenda
organize demo

submit report

send draft

submit report

write deliverable
send report

submit deliverable
send deliverable
organize meeting

send demo
organize agenda
organize demo

send agenda
send meeting

send draft

send draft

write deliverable
send report

submit deliverable
send deliverable

send meeting

submit draft
send demo

organize agenda
organize demo

send demo
organize agenda
organize demo

send agenda
send meeting

send draft
write deliverable

send report
submit deliverable
send deliverable
organize meeting

submit report

submit report

submit report

send agenda

send demo
organize agenda
organize demo

send meeting
send draft

write deliverable
send report

submit deliverable
send deliverable
organize meeting

submit report

send agenda

submit report

send demo
organize agenda
organize demo

send meeting
send draft

write deliverable
send report

submit deliverable
send deliverable
organize meeting

submit draft
send demo

organize agenda
organize demo

send meeting
send draft

write deliverable
send report

submit deliverable
send deliverable

submit draft
send demo

organize agenda
organize demo

send meeting
send draft

write deliverable
send report

submit deliverable
send deliverable

send draft

write deliverable
send report

submit deliverable
send deliverable

send meeting

submit draft
send demo

organize agenda
organize demo

send draft

send agenda

send draft

write deliverable
send report

submit deliverable
send deliverable
organize meeting

send demo
organize agenda
organize demo

send meeting

send draft

send agenda

send draft

submit report

write deliverable
send report

submit deliverable
send deliverable
organize meeting

send demo
organize agenda
organize demo

send meeting

send agenda

submit report

send draft

write deliverable
send report

submit deliverable
send deliverable
organize meeting

send demo
organize agenda
organize demo

send meeting

submit report

submit report

send agenda

send draft

submit report

write deliverable
send report

submit deliverable
send deliverable
organize meeting

send demo
organize agenda
organize demo

send meeting

Figure B.12. The local automaton for the “submit report” activity

B.1 The local Finite State Automata, generated on the basis of the discovered
process’ constraints 177

send agenda

send deliverable

send draft

organize agenda
organize demo

organize meeting
submit report
submit draft

send meeting

send report

write deliverable

send deliverable

send draft

organize agenda
organize demo

organize meeting
submit report
submit draft

send report

send agenda
send meeting

send draft

write deliverable

send agenda

send deliverable
organize meeting

submit report
submit draft

organize agenda
organize demo

send meeting

send report

organize agenda
organize demo

organize meeting
submit report
submit draft

send meeting
send draft

send report

write deliverable

send deliverable

send agenda

send draft

send agenda

send deliverable

write deliverable

send deliverable

submit deliverable

send agenda

write deliverable

send deliverable
organize meeting

submit report
submit draft

organize agenda
organize demo

send meeting
send draft

send report

write deliverable

send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send meeting

send report

submit deliverable

write deliverable

send agenda

send draft

send draft

send agenda

send deliverable
organize meeting

submit report
submit draft

organize agenda
organize demo

send meeting

send report

submit deliverable

submit deliverable

organize agenda
organize demo

send report
submit deliverable
send deliverable
organize meeting

submit report
submit draft

send meeting

organize agenda
organize demo

send report
submit deliverable
send deliverable
organize meeting

submit report
submit draft

send meeting

send draft

organize agenda
organize demo

send meeting
send draft

send report
submit deliverable
send deliverable
organize meeting

submit report
submit draft

send deliverable
organize meeting

submit report
submit draft

organize agenda
organize demo

send meeting

send report

send draft

write deliverable

send agenda

submit deliverable

send draft

send deliverable
organize meeting

submit report
submit draft

organize agenda
organize demo

send report

send agenda
send meeting

write deliverable

send deliverable

submit deliverable

send deliverable

submit deliverable

send agenda

organize agenda
organize demo

send report
submit deliverable
send deliverable
organize meeting

submit report
submit draft
send meeting

send agenda

submit deliverable

send draft

send deliverable

organize meeting
submit report
submit draft
send demo

organize agenda
organize demo

send meeting

send report

submit deliverable

send deliverable

organize agenda
organize demo

organize meeting
submit report
submit draft

send report
submit deliverable

send meeting

send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send meeting

send report

submit deliverable

send deliverable

send agenda

send deliverable

submit deliverable

write deliverable

write deliverable

write deliverable

send deliverable

send draft

organize agenda
organize demo

organize meeting
submit report
submit draft

send meeting

send report

send deliverable

send agenda

send draft

organize agenda
organize demo

organize meeting
submit report
submit draft

send report

send agenda
send meeting

send deliverable

write deliverable

send draft

organize agenda
organize demo

organize meeting
submit report
submit draft

send meeting
send draft

send report

write deliverable

send deliverable

send agenda

organize agenda
organize demo

send report
submit deliverable
send deliverable
organize meeting

submit report
submit draft

send meeting

write deliverable

send deliverable

write deliverable

organize agenda
organize demo

organize meeting
submit report
submit draft

send agenda
send meeting

send draft

send report

organize agenda
organize demo

send report
submit deliverable
send deliverable
organize meeting

submit report
submit draft

send agenda
send meeting

submit deliverable

send deliverable
organize meeting

submit report
submit draft
send demo

organize agenda
organize demo

send meeting

send report

Figure B.13. The local automaton for the “write deliverable” activity

178
B
.
T
he

discovered
process

send meeting

send draft
send draft send deliverable

send agenda

send meeting

submit report

send deliverable submit report

send draft

send deliverable submit report
send deliverable

submit report

organize agenda

send draft send deliverable

send draft send deliverable send report write deliverable submit deliverable
send report

organize meeting send agenda

Figure B.14. The global automaton for the discovered process

B.2 The discovered process’ Finite State Automaton

B
.3

T
he

discovered
process,

as
in

the
output

of
the

run
of

M
ailO

fM
ine

179
B.3 The discovered process, as in the output of the run of MailOfMine

Listing B.1. The discovered process
1 [send agenda] => {
2 100.000% RespondedExistence (send agenda , send meeting) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
3 91.667% Precedence (send agenda , send meeting) 58.333% ||||| conf .: 0.688; int ’f: 0.172;
4 100.000% CoExistence (send agenda , send meeting) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
5 81.818% Succession (send agenda , send meeting) 9.091% conf .: 0.614; int ’f: 0.153;
6 100.000% NotChainSuccession (send agenda , send draft) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
7 100.000% RespondedExistence (send agenda , send draft) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
8 80.000% Response (send agenda , send draft) 0.000% conf .: 0.600; int ’f: 0.150;
9 88.462% CoExistence (send agenda , send draft) 42.308% |||| conf .: 0.663; int ’f: 0.166;

10 90.476% NotChainSuccession (send agenda , write deliverable) 52.381% ||||| conf .: 0.679; int ’f: 0.170;
11 100.000% RespondedExistence (send agenda , write deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
12 100.000% CoExistence (send agenda , write deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
13 100.000% NotChainSuccession (send agenda , send report) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
14 100.000% NotChainSuccession (send agenda , submit deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
15 100.000% RespondedExistence (send agenda , submit deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
16 100.000% Precedence (send agenda , submit deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
17 100.000% CoExistence (send agenda , submit deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
18 80.000% Succession (send agenda , submit deliverable) 0.000% conf .: 0.600; int ’f: 0.150;
19 100.000% NotChainSuccession (send agenda , send deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
20 100.000% RespondedExistence (send agenda , send deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
21 80.000% Response (send agenda , send deliverable) 0.000% conf .: 0.600; int ’f: 0.150;
22 86.364% CoExistence (send agenda , send deliverable) 31.818% ||| conf .: 0.648; int ’f: 0.162;
23 100.000% NotChainSuccession (send agenda , organize meeting) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
24 100.000% RespondedExistence (send agenda , organize meeting) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
25 100.000% Precedence (send agenda , organize meeting) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
26 100.000% CoExistence (send agenda , organize meeting) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
27 95.918% NotChainSuccession (send agenda , submit report) 79.592% ||||||| conf .: 0.719; int ’f: 0.180;
28 90.000% RespondedExistence (send agenda , submit report) 50.000% |||| conf .: 0.675; int ’f: 0.169;
29 81.633% CoExistence (send agenda , submit report) 8.163% conf .: 0.612; int ’f: 0.153;
30 100.000% NotChainSuccession (send agenda , submit draft) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
31 100.000% NotSuccession (send agenda , submit draft) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
32 100.000% NotChainSuccession (send agenda , send demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
33 100.000% Precedence (send agenda , send demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
34 100.000% AlternatePrecedence (send agenda , send demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
35 100.000% NotChainSuccession (send agenda , organize agenda) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
36 90.000% RespondedExistence (send agenda , organize agenda) 50.000% |||| conf .: 0.675; int ’f: 0.169;
37 92.308% CoExistence (send agenda , organize agenda) 61.538% |||||| conf .: 0.692; int ’f: 0.173;
38 81.818% NotChainSuccession (send agenda , organize demo) 9.091% conf .: 0.614; int ’f: 0.153;
39 100.000% Precedence (send agenda , organize demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
40 100.000% AlternatePrecedence (send agenda , organize demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
41 100.000% ChainPrecedence (send agenda , organize demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
42
43 }
44
45 [send meeting] => {
46 100.000% NotChainSuccession (send meeting , send agenda) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
47 100.000% RespondedExistence (send meeting , send agenda) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
48 100.000% CoExistence (send meeting , send agenda) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
49 100.000% RespondedExistence (send meeting , send draft) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
50 89.286% CoExistence (send meeting , send draft) 46.429% |||| conf .: 0.670; int ’f: 0.167;
51 91.304% NotChainSuccession (send meeting , write deliverable) 56.522% ||||| conf .: 0.685; int ’f: 0.171;

180
B
.
T
he

discovered
process

52 100.000% RespondedExistence (send meeting , write deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
53 100.000% CoExistence (send meeting , write deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
54 90.476% NotChainSuccession (send meeting , send report) 52.381% ||||| conf .: 0.679; int ’f: 0.170;
55 83.333% RespondedExistence (send meeting , send report) 16.667% | conf .: 0.625; int ’f: 0.156;
56 100.000% NotChainSuccession (send meeting , submit deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
57 100.000% RespondedExistence (send meeting , submit deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
58 100.000% CoExistence (send meeting , submit deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
59 100.000% NotChainSuccession (send meeting , send deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
60 100.000% RespondedExistence (send meeting , send deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
61 83.333% Response (send meeting , send deliverable) 16.667% | conf .: 0.625; int ’f: 0.156;
62 87.500% CoExistence (send meeting , send deliverable) 37.500% ||| conf .: 0.656; int ’f: 0.164;
63 90.000% NotChainSuccession (send meeting , organize meeting) 50.000% |||| conf .: 0.675; int ’f: 0.169;
64 100.000% RespondedExistence (send meeting , organize meeting) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
65 100.000% CoExistence (send meeting , organize meeting) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
66 100.000% NotChainSuccession (send meeting , submit report) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
67 100.000% NotChainSuccession (send meeting , submit draft) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
68 100.000% NotSuccession (send meeting , submit draft) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
69 100.000% NotChainSuccession (send meeting , send demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
70 100.000% NotSuccession (send meeting , send demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
71 100.000% NotChainSuccession (send meeting , organize agenda) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
72 86.667% NotSuccession (send meeting , organize agenda) 33.333% ||| conf .: 0.650; int ’f: 0.163;
73 80.000% CoExistence (send meeting , organize agenda) 0.000% conf .: 0.600; int ’f: 0.150;
74 100.000% NotChainSuccession (send meeting , organize demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
75 100.000% NotSuccession (send meeting , organize demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
76
77 }
78
79 [send draft] => {
80 100.000% Participation (send draft) 100.000% ||||||||| conf .: 1.000; int ’f: 1.000;
81 84.615% NotChainSuccession (send draft , send agenda) 23.077% || conf .: 0.846; int ’f: 0.212;
82 81.250% RespondedExistence (send draft , send agenda) 6.250% conf .: 0.813; int ’f: 0.203;
83 90.000% Precedence (send draft , send agenda) 50.000% |||| conf .: 0.900; int ’f: 0.225;
84 88.462% CoExistence (send draft , send agenda) 42.308% |||| conf .: 0.885; int ’f: 0.221;
85 85.714% NotChainSuccession (send draft , send meeting) 28.571% || conf .: 0.857; int ’f: 0.214;
86 81.250% RespondedExistence (send draft , send meeting) 6.250% conf .: 0.813; int ’f: 0.203;
87 91.667% Precedence (send draft , send meeting) 58.333% ||||| conf .: 0.917; int ’f: 0.229;
88 89.286% CoExistence (send draft , send meeting) 46.429% |||| conf .: 0.893; int ’f: 0.223;
89 92.593% NotChainSuccession (send draft , write deliverable) 62.963% |||||| conf .: 0.926; int ’f: 0.231;
90 81.250% RespondedExistence (send draft , write deliverable) 6.250% conf .: 0.813; int ’f: 0.203;
91 100.000% Precedence (send draft , write deliverable) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
92 88.889% CoExistence (send draft , write deliverable) 44.444% |||| conf .: 0.889; int ’f: 0.222;
93 92.000% NotChainSuccession (send draft , send report) 60.000% |||||| conf .: 0.920; int ’f: 0.230;
94 100.000% Precedence (send draft , send report) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
95 84.000% CoExistence (send draft , send report) 20.000% | conf .: 0.840; int ’f: 0.210;
96 84.000% Succession (send draft , send report) 20.000% | conf .: 0.840; int ’f: 0.210;
97 100.000% NotChainSuccession (send draft , submit deliverable) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
98 81.250% RespondedExistence (send draft , submit deliverable) 6.250% conf .: 0.813; int ’f: 0.203;
99 100.000% Precedence (send draft , submit deliverable) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;

100 90.323% CoExistence (send draft , submit deliverable) 51.613% ||||| conf .: 0.903; int ’f: 0.226;
101 80.645% Succession (send draft , submit deliverable) 3.226% conf .: 0.806; int ’f: 0.202;
102 85.714% NotChainSuccession (send draft , send deliverable) 28.571% || conf .: 0.857; int ’f: 0.214;
103 100.000% RespondedExistence (send draft , send deliverable) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
104 100.000% Response (send draft , send deliverable) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
105 100.000% Precedence (send draft , send deliverable) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
106 100.000% CoExistence (send draft , send deliverable) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
107 100.000% Succession (send draft , send deliverable) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
108 100.000% NotChainSuccession (send draft , organize meeting) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;

B
.3

T
he

discovered
process,

as
in

the
output

of
the

run
of

M
ailO

fM
ine

181
109 81.250% RespondedExistence (send draft , organize meeting) 6.250% conf .: 0.813; int ’f: 0.203;
110 100.000% Precedence (send draft , organize meeting) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
111 87.500% CoExistence (send draft , organize meeting) 37.500% ||| conf .: 0.875; int ’f: 0.219;
112 89.091% NotChainSuccession (send draft , submit report) 45.455% |||| conf .: 0.891; int ’f: 0.223;
113 81.250% RespondedExistence (send draft , submit report) 6.250% conf .: 0.813; int ’f: 0.203;
114 94.872% Precedence (send draft , submit report) 74.359% ||||||| conf .: 0.949; int ’f: 0.237;
115 94.545% CoExistence (send draft , submit report) 72.727% ||||||| conf .: 0.945; int ’f: 0.236;
116 85.455% Succession (send draft , submit report) 27.273% || conf .: 0.855; int ’f: 0.214;
117 100.000% NotChainSuccession (send draft , submit draft) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
118 100.000% Precedence (send draft , submit draft) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
119 100.000% AlternatePrecedence (send draft , submit draft) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
120 100.000% NotChainSuccession (send draft , send demo) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
121 100.000% Precedence (send draft , send demo) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
122 100.000% AlternatePrecedence (send draft , send demo) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
123 100.000% NotChainSuccession (send draft , organize agenda) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
124 100.000% NotChainSuccession (send draft , organize demo) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
125 100.000% Precedence (send draft , organize demo) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
126 100.000% AlternatePrecedence (send draft , organize demo) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
127
128 }
129
130 [write deliverable] => {
131 100.000% NotChainSuccession (write deliverable , send agenda) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
132 100.000% RespondedExistence (write deliverable , send agenda) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
133 90.000% Precedence (write deliverable , send agenda) 50.000% |||| conf .: 0.675; int ’f: 0.169;
134 100.000% CoExistence (write deliverable , send agenda) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
135 100.000% NotChainSuccession (write deliverable , send meeting) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
136 100.000% RespondedExistence (write deliverable , send meeting) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
137 90.909% Response (write deliverable , send meeting) 54.545% ||||| conf .: 0.682; int ’f: 0.170;
138 83.333% Precedence (write deliverable , send meeting) 16.667% | conf .: 0.625; int ’f: 0.156;
139 100.000% CoExistence (write deliverable , send meeting) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
140 86.957% Succession (write deliverable , send meeting) 34.783% ||| conf .: 0.652; int ’f: 0.163;
141 92.593% NotChainSuccession (write deliverable , send draft) 62.963% |||||| conf .: 0.694; int ’f: 0.174;
142 100.000% RespondedExistence (write deliverable , send draft) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
143 88.889% CoExistence (write deliverable , send draft) 44.444% |||| conf .: 0.667; int ’f: 0.167;
144 81.818% RespondedExistence (write deliverable , send report) 9.091% conf .: 0.614; int ’f: 0.153;
145 81.818% Response (write deliverable , send report) 9.091% conf .: 0.614; int ’f: 0.153;
146 84.615% NotChainSuccession (write deliverable , submit deliverable) 23.077% || conf .: 0.635; int ’f: 0.159;
147 100.000% RespondedExistence (write deliverable , submit deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
148 100.000% Response (write deliverable , submit deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
149 100.000% Precedence (write deliverable , submit deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
150 100.000% CoExistence (write deliverable , submit deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
151 100.000% Succession (write deliverable , submit deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
152 91.304% NotChainSuccession (write deliverable , send deliverable) 56.522% ||||| conf .: 0.685; int ’f: 0.171;
153 100.000% RespondedExistence (write deliverable , send deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
154 90.909% Response (write deliverable , send deliverable) 54.545% ||||| conf .: 0.682; int ’f: 0.170;
155 86.957% CoExistence (write deliverable , send deliverable) 34.783% ||| conf .: 0.652; int ’f: 0.163;
156 82.609% Succession (write deliverable , send deliverable) 13.043% | conf .: 0.620; int ’f: 0.155;
157 100.000% NotChainSuccession (write deliverable , organize meeting) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
158 100.000% RespondedExistence (write deliverable , organize meeting) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
159 90.909% Response (write deliverable , organize meeting) 54.545% ||||| conf .: 0.682; int ’f: 0.170;
160 100.000% Precedence (write deliverable , organize meeting) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
161 100.000% CoExistence (write deliverable , organize meeting) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
162 94.737% Succession (write deliverable , organize meeting) 73.684% ||||||| conf .: 0.711; int ’f: 0.178;
163 100.000% NotChainSuccession (write deliverable , submit report) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
164 100.000% NotChainSuccession (write deliverable , submit draft) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
165 83.333% NotChainSuccession (write deliverable , send demo) 16.667% | conf .: 0.625; int ’f: 0.156;

182
B
.
T
he

discovered
process

166 100.000% Precedence (write deliverable , send demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
167 100.000% AlternatePrecedence (write deliverable , send demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
168 100.000% ChainPrecedence (write deliverable , send demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
169 100.000% NotChainSuccession (write deliverable , organize agenda) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
170 100.000% NotChainSuccession (write deliverable , organize demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
171 100.000% Precedence (write deliverable , organize demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
172 100.000% AlternatePrecedence (write deliverable , organize demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
173
174 }
175
176 [send report] => {
177 100.000% NotChainSuccession (send report , send agenda) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
178 90.476% NotChainSuccession (send report , send meeting) 52.381% ||||| conf .: 0.679; int ’f: 0.170;
179 92.000% NotChainSuccession (send report , send draft) 60.000% |||||| conf .: 0.690; int ’f: 0.173;
180 100.000% RespondedExistence (send report , send draft) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
181 84.000% CoExistence (send report , send draft) 20.000% | conf .: 0.630; int ’f: 0.158;
182 80.000% NotChainSuccession (send report , write deliverable) 0.000% conf .: 0.600; int ’f: 0.150;
183 100.000% NotChainSuccession (send report , submit deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
184 86.667% Precedence (send report , submit deliverable) 33.333% ||| conf .: 0.650; int ’f: 0.163;
185 90.476% NotChainSuccession (send report , send deliverable) 52.381% ||||| conf .: 0.679; int ’f: 0.170;
186 100.000% RespondedExistence (send report , send deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
187 90.476% CoExistence (send report , send deliverable) 52.381% ||||| conf .: 0.679; int ’f: 0.170;
188 100.000% NotChainSuccession (send report , organize meeting) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
189 95.833% NotChainSuccession (send report , submit report) 79.167% ||||||| conf .: 0.719; int ’f: 0.180;
190 100.000% NotChainSuccession (send report , submit draft) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
191 100.000% Precedence (send report , submit draft) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
192 100.000% AlternatePrecedence (send report , submit draft) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
193 100.000% NotChainSuccession (send report , send demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
194 100.000% Precedence (send report , send demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
195 100.000% AlternatePrecedence (send report , send demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
196 100.000% NotChainSuccession (send report , organize agenda) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
197 100.000% NotChainSuccession (send report , organize demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
198 100.000% Precedence (send report , organize demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
199 100.000% AlternatePrecedence (send report , organize demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
200
201 }
202
203 [submit deliverable] => {
204 92.000% NotChainSuccession (submit deliverable , send agenda) 60.000% |||||| conf .: 0.690; int ’f: 0.173;
205 100.000% RespondedExistence (submit deliverable , send agenda) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
206 100.000% CoExistence (submit deliverable , send agenda) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
207 100.000% NotChainSuccession (submit deliverable , send meeting) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
208 100.000% RespondedExistence (submit deliverable , send meeting) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
209 86.667% Response (submit deliverable , send meeting) 33.333% ||| conf .: 0.650; int ’f: 0.163;
210 100.000% CoExistence (submit deliverable , send meeting) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
211 81.481% Succession (submit deliverable , send meeting) 7.407% conf .: 0.611; int ’f: 0.153;
212 100.000% NotChainSuccession (submit deliverable , send draft) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
213 100.000% RespondedExistence (submit deliverable , send draft) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
214 90.323% CoExistence (submit deliverable , send draft) 51.613% ||||| conf .: 0.677; int ’f: 0.169;
215 100.000% NotChainSuccession (submit deliverable , write deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
216 92.308% NotSuccession (submit deliverable , write deliverable) 61.538% |||||| conf .: 0.692; int ’f: 0.173;
217 100.000% RespondedExistence (submit deliverable , write deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
218 100.000% CoExistence (submit deliverable , write deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
219 100.000% NotChainSuccession (submit deliverable , send report) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
220 86.667% RespondedExistence (submit deliverable , send report) 33.333% ||| conf .: 0.650; int ’f: 0.163;
221 86.667% Response (submit deliverable , send report) 33.333% ||| conf .: 0.650; int ’f: 0.163;
222 92.593% NotChainSuccession (submit deliverable , send deliverable) 62.963% |||||| conf .: 0.694; int ’f: 0.174;

B
.3

T
he

discovered
process,

as
in

the
output

of
the

run
of

M
ailO

fM
ine

183
223 100.000% RespondedExistence (submit deliverable , send deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
224 88.889% CoExistence (submit deliverable , send deliverable) 44.444% |||| conf .: 0.667; int ’f: 0.167;
225 91.304% NotChainSuccession (submit deliverable , organize meeting) 56.522% ||||| conf .: 0.685; int ’f: 0.171;
226 100.000% RespondedExistence (submit deliverable , organize meeting) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
227 86.667% Response (submit deliverable , organize meeting) 33.333% ||| conf .: 0.650; int ’f: 0.163;
228 100.000% CoExistence (submit deliverable , organize meeting) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
229 92.593% NotChainSuccession (submit deliverable , submit report) 62.963% |||||| conf .: 0.694; int ’f: 0.174;
230 100.000% NotChainSuccession (submit deliverable , submit draft) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
231 100.000% NotSuccession (submit deliverable , submit draft) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
232 100.000% NotChainSuccession (submit deliverable , send demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
233 100.000% NotSuccession (submit deliverable , send demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
234 100.000% NotChainSuccession (submit deliverable , organize agenda) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
235 100.000% NotChainSuccession (submit deliverable , organize demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
236 100.000% Precedence (submit deliverable , organize demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
237 100.000% AlternatePrecedence (submit deliverable , organize demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
238
239 }
240
241 [send deliverable] => {
242 100.000% Participation (send deliverable) 100.000% ||||||||| conf .: 1.000; int ’f: 1.000;
243 90.909% NotChainSuccession (send deliverable , send agenda) 54.545% ||||| conf .: 0.909; int ’f: 0.227;
244 90.000% Precedence (send deliverable , send agenda) 50.000% |||| conf .: 0.900; int ’f: 0.225;
245 86.364% CoExistence (send deliverable , send agenda) 31.818% ||| conf .: 0.864; int ’f: 0.216;
246 100.000% NotChainSuccession (send deliverable , send meeting) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
247 83.333% Precedence (send deliverable , send meeting) 16.667% | conf .: 0.833; int ’f: 0.208;
248 87.500% CoExistence (send deliverable , send meeting) 37.500% ||| conf .: 0.875; int ’f: 0.219;
249 100.000% NotChainSuccession (send deliverable , send draft) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
250 100.000% RespondedExistence (send deliverable , send draft) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
251 100.000% CoExistence (send deliverable , send draft) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
252 91.304% NotChainSuccession (send deliverable , write deliverable) 56.522% ||||| conf .: 0.913; int ’f: 0.228;
253 86.957% CoExistence (send deliverable , write deliverable) 34.783% ||| conf .: 0.870; int ’f: 0.217;
254 100.000% NotChainSuccession (send deliverable , send report) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
255 83.333% RespondedExistence (send deliverable , send report) 16.667% | conf .: 0.833; int ’f: 0.208;
256 90.476% CoExistence (send deliverable , send report) 52.381% ||||| conf .: 0.905; int ’f: 0.226;
257 100.000% NotChainSuccession (send deliverable , submit deliverable) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
258 93.333% Precedence (send deliverable , submit deliverable) 66.667% |||||| conf .: 0.933; int ’f: 0.233;
259 88.889% CoExistence (send deliverable , submit deliverable) 44.444% |||| conf .: 0.889; int ’f: 0.222;
260 100.000% NotChainSuccession (send deliverable , organize meeting) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
261 100.000% Precedence (send deliverable , organize meeting) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
262 85.000% CoExistence (send deliverable , organize meeting) 25.000% || conf .: 0.850; int ’f: 0.213;
263 88.235% NotChainSuccession (send deliverable , submit report) 41.176% |||| conf .: 0.882; int ’f: 0.221;
264 91.667% RespondedExistence (send deliverable , submit report) 58.333% ||||| conf .: 0.917; int ’f: 0.229;
265 98.039% CoExistence (send deliverable , submit report) 90.196% ||||||||| conf .: 0.980; int ’f: 0.245;
266 100.000% NotChainSuccession (send deliverable , submit draft) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
267 100.000% NotSuccession (send deliverable , submit draft) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
268 100.000% NotChainSuccession (send deliverable , send demo) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
269 100.000% Precedence (send deliverable , send demo) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
270 100.000% AlternatePrecedence (send deliverable , send demo) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
271 100.000% NotChainSuccession (send deliverable , organize demo) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
272 100.000% Precedence (send deliverable , organize demo) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
273 100.000% AlternatePrecedence (send deliverable , organize demo) 100.000% ||||||||| conf .: 1.000; int ’f: 0.250;
274
275 }
276
277 [organize meeting] => {
278 88.889% NotChainSuccession (organize meeting , send agenda) 44.444% |||| conf .: 0.667; int ’f: 0.167;
279 100.000% RespondedExistence (organize meeting , send agenda) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;

184
B
.
T
he

discovered
process

280 100.000% CoExistence (organize meeting , send agenda) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
281 100.000% NotChainSuccession (organize meeting , send meeting) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
282 100.000% RespondedExistence (organize meeting , send meeting) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
283 100.000% CoExistence (organize meeting , send meeting) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
284 91.667% NotChainSuccession (organize meeting , send draft) 58.333% ||||| conf .: 0.688; int ’f: 0.172;
285 100.000% RespondedExistence (organize meeting , send draft) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
286 87.500% CoExistence (organize meeting , send draft) 37.500% ||| conf .: 0.656; int ’f: 0.164;
287 100.000% NotChainSuccession (organize meeting , write deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
288 100.000% RespondedExistence (organize meeting , write deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
289 100.000% CoExistence (organize meeting , write deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
290 88.235% NotChainSuccession (organize meeting , send report) 41.176% |||| conf .: 0.662; int ’f: 0.165;
291 100.000% NotChainSuccession (organize meeting , submit deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
292 100.000% RespondedExistence (organize meeting , submit deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
293 100.000% CoExistence (organize meeting , submit deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
294 100.000% NotChainSuccession (organize meeting , send deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
295 100.000% RespondedExistence (organize meeting , send deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
296 85.000% CoExistence (organize meeting , send deliverable) 25.000% || conf .: 0.638; int ’f: 0.159;
297 100.000% NotChainSuccession (organize meeting , submit report) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
298 100.000% NotChainSuccession (organize meeting , submit draft) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
299 100.000% NotSuccession (organize meeting , submit draft) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
300 100.000% NotChainSuccession (organize meeting , send demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
301 100.000% NotSuccession (organize meeting , send demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
302 100.000% NotChainSuccession (organize meeting , organize agenda) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
303 100.000% NotSuccession (organize meeting , organize agenda) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
304 81.818% CoExistence (organize meeting , organize agenda) 9.091% conf .: 0.614; int ’f: 0.153;
305 100.000% NotChainSuccession (organize meeting , organize demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
306 100.000% Precedence (organize meeting , organize demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
307 100.000% AlternatePrecedence (organize meeting , organize demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
308
309 }
310
311 [submit report] => {
312 100.000% NotChainSuccession (submit report , send agenda) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
313 81.633% CoExistence (submit report , send agenda) 8.163% conf .: 0.612; int ’f: 0.153;
314 100.000% NotChainSuccession (submit report , send meeting) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
315 89.091% NotChainSuccession (submit report , send draft) 45.455% |||| conf .: 0.668; int ’f: 0.167;
316 100.000% RespondedExistence (submit report , send draft) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
317 94.545% CoExistence (submit report , send draft) 72.727% ||||||| conf .: 0.709; int ’f: 0.177;
318 96.000% NotChainSuccession (submit report , write deliverable) 80.000% ||||||| conf .: 0.720; int ’f: 0.180;
319 95.833% NotChainSuccession (submit report , send report) 79.167% ||||||| conf .: 0.719; int ’f: 0.180;
320 92.593% NotChainSuccession (submit report , submit deliverable) 62.963% |||||| conf .: 0.694; int ’f: 0.174;
321 88.235% NotChainSuccession (submit report , send deliverable) 41.176% |||| conf .: 0.662; int ’f: 0.165;
322 100.000% RespondedExistence (submit report , send deliverable) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
323 98.039% CoExistence (submit report , send deliverable) 90.196% ||||||||| conf .: 0.735; int ’f: 0.184;
324 100.000% NotChainSuccession (submit report , organize meeting) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
325 90.244% NotChainSuccession (submit report , submit draft) 51.220% ||||| conf .: 0.677; int ’f: 0.169;
326 100.000% Precedence (submit report , submit draft) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
327 100.000% AlternatePrecedence (submit report , submit draft) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
328 100.000% ChainPrecedence (submit report , submit draft) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
329 100.000% NotChainSuccession (submit report , send demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
330 100.000% Precedence (submit report , send demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
331 100.000% AlternatePrecedence (submit report , send demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
332 100.000% NotChainSuccession (submit report , organize agenda) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
333 80.952% CoExistence (submit report , organize agenda) 4.762% conf .: 0.607; int ’f: 0.152;
334 100.000% NotChainSuccession (submit report , organize demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
335 100.000% Precedence (submit report , organize demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;
336 100.000% AlternatePrecedence (submit report , organize demo) 100.000% ||||||||| conf .: 0.750; int ’f: 0.188;

B
.3

T
he

discovered
process,

as
in

the
output

of
the

run
of

M
ailO

fM
ine

185
337
338 }
339
340 [submit draft] => {
341 100.000% NotChainSuccession (submit draft , send agenda) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
342 100.000% RespondedExistence (submit draft , send agenda) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
343 100.000% Response (submit draft , send agenda) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
344 100.000% NotChainSuccession (submit draft , send meeting) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
345 100.000% RespondedExistence (submit draft , send meeting) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
346 100.000% Response (submit draft , send meeting) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
347 100.000% NotChainSuccession (submit draft , send draft) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
348 100.000% RespondedExistence (submit draft , send draft) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
349 100.000% Response (submit draft , send draft) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
350 100.000% AlternateResponse (submit draft , send draft) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
351 84.615% NotChainSuccession (submit draft , write deliverable) 23.077% || conf .: 0.212; int ’f: 0.053;
352 100.000% RespondedExistence (submit draft , write deliverable) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
353 100.000% Response (submit draft , write deliverable) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
354 100.000% AlternateResponse (submit draft , write deliverable) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
355 100.000% NotChainSuccession (submit draft , send report) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
356 100.000% RespondedExistence (submit draft , send report) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
357 100.000% Response (submit draft , send report) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
358 100.000% AlternateResponse (submit draft , send report) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
359 100.000% NotChainSuccession (submit draft , submit deliverable) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
360 100.000% RespondedExistence (submit draft , submit deliverable) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
361 100.000% Response (submit draft , submit deliverable) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
362 100.000% NotChainSuccession (submit draft , send deliverable) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
363 100.000% RespondedExistence (submit draft , send deliverable) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
364 100.000% Response (submit draft , send deliverable) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
365 100.000% NotChainSuccession (submit draft , organize meeting) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
366 100.000% RespondedExistence (submit draft , organize meeting) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
367 100.000% Response (submit draft , organize meeting) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
368 95.122% NotChainSuccession (submit draft , submit report) 75.610% ||||||| conf .: 0.238; int ’f: 0.059;
369 100.000% RespondedExistence (submit draft , submit report) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
370 100.000% Response (submit draft , submit report) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
371 100.000% AlternateResponse (submit draft , submit report) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
372 100.000% NotChainSuccession (submit draft , send demo) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
373 100.000% RespondedExistence (submit draft , send demo) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
374 100.000% Response (submit draft , send demo) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
375 100.000% Precedence (submit draft , send demo) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
376 100.000% AlternatePrecedence (submit draft , send demo) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
377 100.000% CoExistence (submit draft , send demo) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
378 100.000% Succession (submit draft , send demo) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
379 100.000% NotChainSuccession (submit draft , organize agenda) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
380 100.000% RespondedExistence (submit draft , organize agenda) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
381 100.000% Response (submit draft , organize agenda) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
382 100.000% NotChainSuccession (submit draft , organize demo) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
383 100.000% RespondedExistence (submit draft , organize demo) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
384 100.000% Response (submit draft , organize demo) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
385 100.000% Precedence (submit draft , organize demo) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
386 100.000% AlternatePrecedence (submit draft , organize demo) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
387 100.000% CoExistence (submit draft , organize demo) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
388 100.000% Succession (submit draft , organize demo) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
389
390 }
391
392 [send demo] => {
393 100.000% Uniqueness (send demo) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;

186
B
.
T
he

discovered
process

394 100.000% NotChainSuccession (send demo , send agenda) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
395 100.000% RespondedExistence (send demo , send agenda) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
396 100.000% Response (send demo , send agenda) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
397 100.000% AlternateResponse (send demo , send agenda) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
398 100.000% NotChainSuccession (send demo , send meeting) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
399 100.000% RespondedExistence (send demo , send meeting) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
400 100.000% Response (send demo , send meeting) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
401 100.000% AlternateResponse (send demo , send meeting) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
402 100.000% NotChainSuccession (send demo , send draft) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
403 100.000% RespondedExistence (send demo , send draft) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
404 100.000% Response (send demo , send draft) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
405 100.000% AlternateResponse (send demo , send draft) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
406 100.000% NotChainSuccession (send demo , write deliverable) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
407 100.000% NotSuccession (send demo , write deliverable) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
408 100.000% RespondedExistence (send demo , write deliverable) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
409 100.000% NotChainSuccession (send demo , send report) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
410 80.000% NotSuccession (send demo , send report) 0.000% conf .: 0.200; int ’f: 0.050;
411 100.000% RespondedExistence (send demo , send report) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
412 100.000% Response (send demo , send report) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
413 100.000% AlternateResponse (send demo , send report) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
414 87.500% NotChainSuccession (send demo , submit deliverable) 37.500% ||| conf .: 0.219; int ’f: 0.055;
415 100.000% RespondedExistence (send demo , submit deliverable) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
416 100.000% Response (send demo , submit deliverable) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
417 100.000% AlternateResponse (send demo , submit deliverable) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
418 100.000% ChainResponse (send demo , submit deliverable) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
419 100.000% NotChainSuccession (send demo , send deliverable) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
420 100.000% RespondedExistence (send demo , send deliverable) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
421 100.000% Response (send demo , send deliverable) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
422 100.000% AlternateResponse (send demo , send deliverable) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
423 100.000% NotChainSuccession (send demo , organize meeting) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
424 100.000% RespondedExistence (send demo , organize meeting) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
425 100.000% Response (send demo , organize meeting) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
426 100.000% AlternateResponse (send demo , organize meeting) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
427 100.000% NotChainSuccession (send demo , submit report) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
428 90.000% NotSuccession (send demo , submit report) 50.000% |||| conf .: 0.225; int ’f: 0.056;
429 100.000% RespondedExistence (send demo , submit report) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
430 100.000% Response (send demo , submit report) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
431 100.000% AlternateResponse (send demo , submit report) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
432 100.000% NotChainSuccession (send demo , submit draft) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
433 100.000% NotSuccession (send demo , submit draft) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
434 100.000% RespondedExistence (send demo , submit draft) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
435 100.000% CoExistence (send demo , submit draft) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
436 100.000% NotChainSuccession (send demo , organize agenda) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
437 100.000% RespondedExistence (send demo , organize agenda) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
438 100.000% Response (send demo , organize agenda) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
439 100.000% AlternateResponse (send demo , organize agenda) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
440 100.000% NotChainSuccession (send demo , organize demo) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
441 100.000% RespondedExistence (send demo , organize demo) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
442 100.000% Response (send demo , organize demo) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
443 100.000% AlternateResponse (send demo , organize demo) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
444 100.000% Precedence (send demo , organize demo) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
445 100.000% AlternatePrecedence (send demo , organize demo) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
446 100.000% CoExistence (send demo , organize demo) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
447 100.000% Succession (send demo , organize demo) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
448 100.000% AlternateSuccession (send demo , organize demo) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
449
450 }

B
.3

T
he

discovered
process,

as
in

the
output

of
the

run
of

M
ailO

fM
ine

187
451
452 [organize agenda] => {
453 84.615% NotChainSuccession (organize agenda , send agenda) 23.077% || conf .: 0.423; int ’f: 0.106;
454 100.000% RespondedExistence (organize agenda , send agenda) 100.000% ||||||||| conf .: 0.500; int ’f: 0.125;
455 100.000% Response (organize agenda , send agenda) 100.000% ||||||||| conf .: 0.500; int ’f: 0.125;
456 92.308% CoExistence (organize agenda , send agenda) 61.538% |||||| conf .: 0.462; int ’f: 0.115;
457 100.000% NotChainSuccession (organize agenda , send meeting) 100.000% ||||||||| conf .: 0.500; int ’f: 0.125;
458 100.000% RespondedExistence (organize agenda , send meeting) 100.000% ||||||||| conf .: 0.500; int ’f: 0.125;
459 100.000% Response (organize agenda , send meeting) 100.000% ||||||||| conf .: 0.500; int ’f: 0.125;
460 100.000% AlternateResponse (organize agenda , send meeting) 100.000% ||||||||| conf .: 0.500; int ’f: 0.125;
461 80.000% CoExistence (organize agenda , send meeting) 0.000% conf .: 0.400; int ’f: 0.100;
462 80.000% Succession (organize agenda , send meeting) 0.000% conf .: 0.400; int ’f: 0.100;
463 89.474% NotChainSuccession (organize agenda , send draft) 47.368% |||| conf .: 0.447; int ’f: 0.112;
464 100.000% RespondedExistence (organize agenda , send draft) 100.000% ||||||||| conf .: 0.500; int ’f: 0.125;
465 100.000% Response (organize agenda , send draft) 100.000% ||||||||| conf .: 0.500; int ’f: 0.125;
466 100.000% AlternateResponse (organize agenda , send draft) 100.000% ||||||||| conf .: 0.500; int ’f: 0.125;
467 100.000% NotChainSuccession (organize agenda , write deliverable) 100.000% ||||||||| conf .: 0.500; int ’f: 0.125;
468 100.000% RespondedExistence (organize agenda , write deliverable) 100.000% ||||||||| conf .: 0.500; int ’f: 0.125;
469 100.000% NotChainSuccession (organize agenda , send report) 100.000% ||||||||| conf .: 0.500; int ’f: 0.125;
470 83.333% NotSuccession (organize agenda , send report) 16.667% | conf .: 0.417; int ’f: 0.104;
471 100.000% NotChainSuccession (organize agenda , submit deliverable) 100.000% ||||||||| conf .: 0.500; int ’f: 0.125;
472 100.000% RespondedExistence (organize agenda , submit deliverable) 100.000% ||||||||| conf .: 0.500; int ’f: 0.125;
473 100.000% NotChainSuccession (organize agenda , send deliverable) 100.000% ||||||||| conf .: 0.500; int ’f: 0.125;
474 100.000% RespondedExistence (organize agenda , send deliverable) 100.000% ||||||||| conf .: 0.500; int ’f: 0.125;
475 100.000% Response (organize agenda , send deliverable) 100.000% ||||||||| conf .: 0.500; int ’f: 0.125;
476 100.000% AlternateResponse (organize agenda , send deliverable) 100.000% ||||||||| conf .: 0.500; int ’f: 0.125;
477 81.818% NotChainSuccession (organize agenda , organize meeting) 9.091% conf .: 0.409; int ’f: 0.102;
478 100.000% RespondedExistence (organize agenda , organize meeting) 100.000% ||||||||| conf .: 0.500; int ’f: 0.125;
479 100.000% Response (organize agenda , organize meeting) 100.000% ||||||||| conf .: 0.500; int ’f: 0.125;
480 81.818% CoExistence (organize agenda , organize meeting) 9.091% conf .: 0.409; int ’f: 0.102;
481 81.818% Succession (organize agenda , organize meeting) 9.091% conf .: 0.409; int ’f: 0.102;
482 100.000% NotChainSuccession (organize agenda , submit report) 100.000% ||||||||| conf .: 0.500; int ’f: 0.125;
483 100.000% RespondedExistence (organize agenda , submit report) 100.000% ||||||||| conf .: 0.500; int ’f: 0.125;
484 80.952% CoExistence (organize agenda , submit report) 4.762% conf .: 0.405; int ’f: 0.101;
485 100.000% NotChainSuccession (organize agenda , submit draft) 100.000% ||||||||| conf .: 0.500; int ’f: 0.125;
486 100.000% NotSuccession (organize agenda , submit draft) 100.000% ||||||||| conf .: 0.500; int ’f: 0.125;
487 100.000% NotChainSuccession (organize agenda , send demo) 100.000% ||||||||| conf .: 0.500; int ’f: 0.125;
488 100.000% NotSuccession (organize agenda , send demo) 100.000% ||||||||| conf .: 0.500; int ’f: 0.125;
489 100.000% NotChainSuccession (organize agenda , organize demo) 100.000% ||||||||| conf .: 0.500; int ’f: 0.125;
490 100.000% Precedence (organize agenda , organize demo) 100.000% ||||||||| conf .: 0.500; int ’f: 0.125;
491 100.000% AlternatePrecedence (organize agenda , organize demo) 100.000% ||||||||| conf .: 0.500; int ’f: 0.125;
492
493 }
494
495 [organize demo] => {
496 100.000% Uniqueness (organize demo) 100.000% ||||||||| conf .: 0.250; int ’f: 0.063;
497 100.000% NotChainSuccession (organize demo , send agenda) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
498 81.818% NotSuccession (organize demo , send agenda) 9.091% conf .: 0.205; int ’f: 0.102;
499 100.000% RespondedExistence (organize demo , send agenda) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
500 100.000% Response (organize demo , send agenda) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
501 100.000% AlternateResponse (organize demo , send agenda) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
502 84.615% NotChainSuccession (organize demo , send meeting) 23.077% || conf .: 0.212; int ’f: 0.106;
503 100.000% RespondedExistence (organize demo , send meeting) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
504 100.000% Response (organize demo , send meeting) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
505 100.000% AlternateResponse (organize demo , send meeting) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
506 100.000% ChainResponse (organize demo , send meeting) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
507 100.000% NotChainSuccession (organize demo , send draft) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;

188
B
.
T
he

discovered
process

508 82.353% NotSuccession (organize demo , send draft) 11.765% | conf .: 0.206; int ’f: 0.103;
509 100.000% RespondedExistence (organize demo , send draft) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
510 100.000% Response (organize demo , send draft) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
511 100.000% AlternateResponse (organize demo , send draft) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
512 100.000% NotChainSuccession (organize demo , write deliverable) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
513 100.000% NotSuccession (organize demo , write deliverable) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
514 100.000% RespondedExistence (organize demo , write deliverable) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
515 100.000% NotChainSuccession (organize demo , send report) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
516 80.000% NotSuccession (organize demo , send report) 0.000% conf .: 0.200; int ’f: 0.100;
517 100.000% RespondedExistence (organize demo , send report) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
518 100.000% Response (organize demo , send report) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
519 100.000% AlternateResponse (organize demo , send report) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
520 100.000% NotChainSuccession (organize demo , submit deliverable) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
521 100.000% NotSuccession (organize demo , submit deliverable) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
522 100.000% RespondedExistence (organize demo , submit deliverable) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
523 100.000% NotChainSuccession (organize demo , send deliverable) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
524 100.000% RespondedExistence (organize demo , send deliverable) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
525 100.000% Response (organize demo , send deliverable) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
526 100.000% AlternateResponse (organize demo , send deliverable) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
527 100.000% NotChainSuccession (organize demo , organize meeting) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
528 100.000% NotSuccession (organize demo , organize meeting) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
529 100.000% RespondedExistence (organize demo , organize meeting) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
530 100.000% NotChainSuccession (organize demo , submit report) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
531 100.000% NotSuccession (organize demo , submit report) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
532 100.000% RespondedExistence (organize demo , submit report) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
533 100.000% NotChainSuccession (organize demo , submit draft) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
534 100.000% NotSuccession (organize demo , submit draft) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
535 100.000% RespondedExistence (organize demo , submit draft) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
536 100.000% CoExistence (organize demo , submit draft) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
537 100.000% NotChainSuccession (organize demo , send demo) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
538 100.000% NotSuccession (organize demo , send demo) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
539 100.000% RespondedExistence (organize demo , send demo) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
540 100.000% CoExistence (organize demo , send demo) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
541 100.000% NotChainSuccession (organize demo , organize agenda) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
542 100.000% NotSuccession (organize demo , organize agenda) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
543 100.000% RespondedExistence (organize demo , organize agenda) 100.000% ||||||||| conf .: 0.250; int ’f: 0.125;
544
545 }

189

Bibliography

[1] Aggarwal, C. C. and Zhai, C. (eds.). Mining Text Data. Springer (2012).
ISBN 978-1-4419-8462-3.

[2] Agrawal, R., Gunopulos, D., and Leymann, F. Mining process mod-
els from workflow logs. In Advances in Database Technology – EDBT’98
(edited by H.-J. Schek, G. Alonso, F. Saltor, and I. Ramos), vol. 1377 of
Lecture Notes in Computer Science, pp. 467–483. Springer Berlin / Heidelberg
(1998). 10.1007/BFb0101003. Available from: http://dx.doi.org/10.1007/
BFb0101003.

[3] Agrawal, R. and Srikant, R. Fast algorithms for mining association rules
in large databases. In VLDB (edited by J. B. Bocca, M. Jarke, and C. Zaniolo),
pp. 487–499. Morgan Kaufmann (1994). ISBN 1-55860-153-8. Available from:
http://www.vldb.org/conf/1994/P487.PDF.

[4] Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P.,
and Torroni, P. Verifiable agent interaction in abductive logic pro-
gramming: The SCIFF framework. ACM Trans. Comput. Log., 9 (2008),
29:1. Available from: http://doi.acm.org/10.1145/1380572.1380578, doi:
10.1145/1380572.1380578.

[5] Alonso, G., Dadam, P., and Rosemann, M. (eds.). Business Process
Management, 5th International Conference, BPM 2007, Brisbane, Australia,
September 24-28, 2007, Proceedings, vol. 4714 of Lecture Notes in Computer
Science. Springer (2007). ISBN 978-3-540-75182-3.

[6] Austin, J. L. How to do things with words. Harvard University Press,
Cambridge, Mass. (1975).

[7] Baldoni, R., et al. An embedded middleware platform for pervasive and
immersive environments for-all. In 6th Annual IEEE Communications Society
Conference on Sensor, Mesh and Ad Hoc Communications and Networks,
SECON 2009, Rome, Italy, June 22-26, 2009. IEEE (2009). ISBN 978-1-4244-
2907-3. doi:10.1109/SAHCNW.2009.5172921.

[8] Bauer, A., Leucker, M., and Schallhart, C. Comparing ltl semantics
for runtime verification. J. Log. Comput., 20 (2010), 651. doi:10.1093/
logcom/exn075.

[9] Bellodi, E., Riguzzi, F., and Lamma, E. Probabilistic declarative
process mining. In KSEM (edited by Y. Bi and M.-A. Williams), vol.

http://dx.doi.org/10.1007/BFb0101003
http://dx.doi.org/10.1007/BFb0101003
http://www.vldb.org/conf/1994/P487.PDF
http://doi.acm.org/10.1145/1380572.1380578
http://dx.doi.org/10.1145/1380572.1380578
http://dx.doi.org/10.1145/1380572.1380578
http://dx.doi.org/10.1109/SAHCNW.2009.5172921
http://dx.doi.org/10.1093/logcom/exn075
http://dx.doi.org/10.1093/logcom/exn075

190 Bibliography

6291 of Lecture Notes in Computer Science, pp. 292–303. Springer (2010).
ISBN 978-3-642-15279-5. Available from: http://dx.doi.org/10.1007/
978-3-642-15280-1_28, doi:10.1007/978-3-642-15280-1_28.

[10] Bellodi, E., Riguzzi, F., and Lamma, E. Probabilistic logic-based
process mining. In CILC (edited by W. Faber and N. Leone), vol. 598
of CEUR Workshop Proceedings. CEUR-WS.org (2010). Available from:
http://ceur-ws.org/Vol-598/paper17.pdf.

[11] Bird, C., Gourley, A., Devanbu, P. T., Gertz, M., and Swami-
nathan, A. Mining email social networks. In MSR (edited by S. Diehl,
H. Gall, and A. E. Hassan), pp. 137–143. ACM (2006). ISBN 1-59593-
397-2. Available from: http://doi.acm.org/10.1145/1137983.1138016,
doi:10.1145/1137983.1138016.

[12] Boldi, P. and Vigna, S. MG4J at TREC 2005. In The Fourteenth Text
REtrieval Conference (TREC 2005) Proceedings (edited by E. M. Voorhees
and L. P. Buckland), no. SP 500-266 in Special Publications. NIST (2005).
http://mg4j.di.unimi.it/.

[13] Buijs, J. C. A. M., van Dongen, B. F., and van der Aalst, W.
M. P. On the role of fitness, precision, generalization and simplicity in process
discovery. In Meersman et al. [60]. On the Move to Meaningful Internet Systems
(OTM 2012) Confederated International Conferences: CoopIS, DOA-SVI, and
ODBASE 2012.

[14] Caruso, M., Di Ciccio, C., Iacomussi, E., Kaldeli, E., Lazovik, A.,
and Mecella, M. Service ecologies for home/building automation. In 10th
International IFAC Symposium on Robot Control, SYROCO 2012, Dubrovnik,
Croatia, September 05-07, 2012 (edited by I. Petrovic and P. Korondi), vol. 10
of Robot Control, pp. 467–472. IFAC Papers On Line (2012). doi:10.3182/
20120905-3-HR-2030.00191.

[15] Catarci, T., Di Ciccio, C., Forte, V., Iacomussi, E., Mecella, M.,
Santucci, G., and Tino, G. Service composition and advanced user in-
terfaces in the home of tomorrow: the SM4All approach. In 2nd Interna-
tional ICST Conference on Ambient Media and Systems, AMBI-SYS 2011,
Porto, Portugal, March 24-25, 2011 (edited by S. Gabrielli, D. Elias, and
K. Kahol), vol. 70 of Lecture Notes of the Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering, pp. 12–19 (2011).
ISBN 978-3-642-23901-4. doi:10.1007/978-3-642-23902-1_2.

[16] Catarci, T., Dix, A. J., Katifori, A., Lepouras, G., and Poggi, A.
Task-centred information management. In DELOS Conference, vol. 4877 of
Lecture Notes in Computer Science, pp. 197–206. Springer (2007). ISBN
978-3-540-77087-9.

[17] Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., and
Storari, S. Exploiting inductive logic programming techniques for declarative
process mining. T. Petri Nets and Other Models of Concurrency, 2 (2009),
278. Available from: http://dx.doi.org/10.1007/978-3-642-00899-3_16.

http://dx.doi.org/10.1007/978-3-642-15280-1_28
http://dx.doi.org/10.1007/978-3-642-15280-1_28
http://dx.doi.org/10.1007/978-3-642-15280-1_28
http://ceur-ws.org/Vol-598/paper17.pdf
http://doi.acm.org/10.1145/1137983.1138016
http://dx.doi.org/10.1145/1137983.1138016
http://dx.doi.org/10.3182/20120905-3-HR-2030.00191
http://dx.doi.org/10.3182/20120905-3-HR-2030.00191
http://dx.doi.org/10.1007/978-3-642-23902-1_2
http://dx.doi.org/10.1007/978-3-642-00899-3_16

Bibliography 191

[18] Chesani, F., Mello, P., Montali, M., and Storari, S. Towards a
DecSerFlow declarative semantics based on computational logic. Tech. rep.,
DEIS, Università degli Studi di Bologna (2007).

[19] Clarke, E. M., Grumberg, O., and Peled, D. Model Checking. MIT
Press (2001). ISBN 978-0-262-03270-4.

[20] Cohen, W. W., Carvalho, V. R., and Mitchell, T. M. Learning
to classify email into “speech acts”. In EMNLP, pp. 309–316. ACL (2004).
Available from: http://www.aclweb.org/anthology/W04-3240.

[21] Cook, J. E. and Wolf, A. L. Discovering models of software pro-
cesses from event-based data. ACM Trans. Softw. Eng. Methodol., 7 (1998),
215. Available from: http://doi.acm.org/10.1145/287000.287001, doi:
10.1145/287000.287001.

[22] Cook, J. E. and Wolf, A. L. Event-base detection of concurrency. In
SIGSOFT FSE, pp. 35–45 (1998). Available from: http://doi.acm.org/10.
1145/288195.288214, doi:10.1145/288195.288214.

[23] Cortadella, J., Kishinevsky, M., Lavagno, L., and Yakovlev, A. De-
riving petri nets from finite transition systems. Computers, IEEE Transactions
on, 47 (1998), 859 . doi:10.1109/12.707587.

[24] Davenport, T. H., Jarvenpaa, S. L., and Beers, M. C. Improving
knowledge work processes. Sloan Management Review, 37 (1996), 53. Avail-
able from: http://sloanreview.mit.edu/the-magazine/articles/1996/
summer/3744/improving-knowledge-work-processes.

[25] de Carvalho, V. R. and Cohen, W. W. Learning to extract signature
and reply lines from email. In CEAS (2004). Available from: http://www.
ceas.cc/papers-2004/135.pdf.

[26] De Giacomo, G., Di Ciccio, C., Felli, P., Hu, Y., and Mecella,
M. Goal-based composition of stateful services for smart homes. In 20th
International Conference on Cooperative Information Systems, CoopIS 2012,
On the Move to Meaningful Internet Systems (OTM 2012) Confederated
International Conferences, Rome, Italy, September 10-14, 2012 (edited
by R. Meersman, H. Panetto, T. S. Dillon, S. Rinderle-Ma, P. Dadam,
X. Zhou, S. Pearson, A. Ferscha, S. Bergamaschi, and I. F. Cruz), vol.
7565 of Lecture Notes in Computer Science, pp. 194–211. Springer (2012).
doi:10.1007/978-3-642-33606-5_13.

[27] De Masellis, R., Di Ciccio, C., Mecella, M., and Patrizi, F. Smart
home planning programs. In 7th International Conference on Service Systems
and Service Management, ICSSSM 2010, Tokyo, Japan, June 28-30, 2010
(edited by J. Chen), pp. 377–382. IEEE (2010). doi:10.1109/ICSSSM.2010.
5530212.

[28] de Medeiros, A. K. A., Weijters, A. J. M. M., and van der Aalst,
W. M. P. Genetic process mining: an experimental evaluation. Data Min.

http://www.aclweb.org/anthology/W04-3240
http://doi.acm.org/10.1145/287000.287001
http://dx.doi.org/10.1145/287000.287001
http://dx.doi.org/10.1145/287000.287001
http://doi.acm.org/10.1145/288195.288214
http://doi.acm.org/10.1145/288195.288214
http://dx.doi.org/10.1145/288195.288214
http://dx.doi.org/10.1109/12.707587
http://sloanreview.mit.edu/the-magazine/articles/1996/summer/3744/improving-knowledge-work-processes
http://sloanreview.mit.edu/the-magazine/articles/1996/summer/3744/improving-knowledge-work-processes
http://www.ceas.cc/papers-2004/135.pdf
http://www.ceas.cc/papers-2004/135.pdf
http://dx.doi.org/10.1007/978-3-642-33606-5_13
http://dx.doi.org/10.1109/ICSSSM.2010.5530212
http://dx.doi.org/10.1109/ICSSSM.2010.5530212

192 Bibliography

Knowl. Discov., 14 (2007), 245. Available from: http://dx.doi.org/10.
1007/s10618-006-0061-7, doi:10.1007/s10618-006-0061-7.

[29] Decker, G., Dijkman, R. M., Dumas, M., and García-Bañuelos, L.
The business process modeling notation. In ter Hofstede et al. [86], pp. 347–368.
Available from: http://www.springer.com/computer+science/database+
management+%26+information+retrieval/book/978-3-642-03120-5, doi:
10.1007/978-3-642-03121-2_13.

[30] Desel, J. and Reisig, W. The synthesis problem of petri nets. Acta
Informatica, 33 (1996), 297. 10.1007/s002360050046. Available from: http:
//dx.doi.org/10.1007/s002360050046.

[31] Di Ciccio, C., Catarci, T., and Mecella, M. Representing and visualizing
mined artful processes in MailOfMine. In Information Quality in e-Health -
7th Conference of the Workgroup Human-Computer Interaction and Usability
Engineering of the Austrian Computer Society, USAB 2011, Graz, Austria,
November 25-26, 2011 (edited by A. Holzinger and K.-M. Simonic), vol. 7058
of Lecture Notes in Computer Science, pp. 83–94. Springer (2011). ISBN
978-3-642-25363-8. doi:10.1007/978-3-642-25364-5_9.

[32] Di Ciccio, C., Marrella, A., and Russo, A. Knowledge-intensive pro-
cesses: An overview of contemporary approaches. In 1st International Workshop
on Knowledge-intensive Business Processes, KiBP 2012, Rome, Italy, June 15,
2012 (edited by A. H. ter Hofstede, M. Mecella, S. Sardina, and A. Marrella),
vol. 861, pp. 33–47. CEUR Workshop Proceedings (2012). Available from:
http://ceur-ws.org/Vol-861/KiBP2012_paper_2.pdf.

[33] Di Ciccio, C. and Mecella, M. MINERful, a mining algorithm for declara-
tive process constraints in MailOfMine. Tech. rep., Dipartimento di Ingegneria
Informatica, Automatica e Gestionale “Antonio Ruberti” – SAPIENZA, Uni-
versità di Roma (2012). Available from: http://ojs.uniroma1.it/index.
php/DIS_TechnicalReports/issue/view/416.

[34] Di Ciccio, C. and Mecella, M. Mining constraints for artful processes. In
15th International Conference on Business Information Systems, BIS 2012,
Vilnius, Lithuania, May 21-23, 2012 (edited by W. Abramowicz, D. Kriksci-
uniene, and V. Sakalauskas), vol. 117 of Lecture Notes in Business Infor-
mation Processing, pp. 11–23. Springer (2012). ISBN 978-3-642-30358-6.
doi:10.1007/978-3-642-30359-3_2.

[35] Di Ciccio, C. and Mecella, M. Studies on the discovery of declarative
control flows from error-prone data. In 3rd International Symposium on Data-
Driven Process Discovery and Analysis, SIMPDA 2013, Riva del Garda, Italy,
August 30, 2013 (edited by R. Accorsi, P. Ceravolo, and P. Cudre-Mauroux),
vol. 1027 of CEUR Workshop Proceedings, pp. 31–45 (2013). Available from:
http://ceur-ws.org/Vol-1027/paper3.pdf.

[36] Di Ciccio, C. and Mecella, M. A two-step fast algorithm for the automated
discovery of declarative workflows. In 4th IEEE Symposium on Computational

http://dx.doi.org/10.1007/s10618-006-0061-7
http://dx.doi.org/10.1007/s10618-006-0061-7
http://dx.doi.org/10.1007/s10618-006-0061-7
http://www.springer.com/computer+science/database+management+%26+information+retrieval/book/978-3-642-03120-5
http://www.springer.com/computer+science/database+management+%26+information+retrieval/book/978-3-642-03120-5
http://dx.doi.org/10.1007/978-3-642-03121-2_13
http://dx.doi.org/10.1007/978-3-642-03121-2_13
http://dx.doi.org/10.1007/s002360050046
http://dx.doi.org/10.1007/s002360050046
http://dx.doi.org/10.1007/978-3-642-25364-5_9
http://ceur-ws.org/Vol-861/KiBP2012_paper_2.pdf
http://ojs.uniroma1.it/index.php/DIS_TechnicalReports/issue/view/416
http://ojs.uniroma1.it/index.php/DIS_TechnicalReports/issue/view/416
http://dx.doi.org/10.1007/978-3-642-30359-3_2
http://ceur-ws.org/Vol-1027/paper3.pdf

Bibliography 193

Intelligence and Data Mining, CIDM 2013, Singapore, April 16-19, 2013, pp.
135–142. IEEE (2013). doi:10.1109/CIDM.2013.6597228.

[37] Di Ciccio, C., Mecella, M., Caruso, M., Forte, V., Iacomussi, E.,
Rasch, K., Querzoni, L., Santucci, G., and Tino, G. The homes of to-
morrow: Service composition and advanced user interfaces. ICST Transactions
on Ambient Systems, 11 (2011), e2. doi:10.4108/trans.amsys.2011.e2.

[38] Di Ciccio, C., Mecella, M., Scannapieco, M., and Zardetto, D.
Groupware mail messages analysis for mining collaborative processes. In 19th
Italian Symposium on Advanced Database Systems, SEBD 2011, Maratea, Italy,
June 26-29, 2011 (edited by G. Mecca and S. Greco), pp. 397–404 (2011).

[39] Di Ciccio, C., Mecella, M., Scannapieco, M., Zardetto, D., and
Catarci, T. Groupware mail messages analysis for mining collabora-
tive processes. Tech. rep., Dipartimento di Informatica e Sistemistica AN-
TONIO RUBERTI – SAPIENZA – Università di Roma (2011). Avail-
able from: http://ojs.uniroma1.it/index.php/DIS_TechnicalReports/
article/view/8966.

[40] Di Ciccio, C., Mecella, M., Scannapieco, M., Zardetto, D., and
Catarci, T. MailOfMine – analyzing mail messages for mining artful collab-
orative processes. In 1st International Symposium on Data-Driven Process
Discovery and Analysis, SIMPDA 2011, Campione d’Italia, Italy, June 29 -
July 1st, 2011 (edited by K. Aberer, E. Damiani, and T. Dillon), pp. 45–59
(2011). ISBN 978-88-903120-2-1.

[41] Di Ciccio, C., Mecella, M., Scannapieco, M., Zardetto, D., and
Catarci, T. MailOfMine – analyzing mail messages for mining artful collabo-
rative processes. In Data-Driven Process Discovery and Analysis (edited by
K. Aberer, E. Damiani, and T. Dillon), vol. 116 of Lecture Notes in Business
Information Processing, pp. 55–81. Springer (2012). ISBN 978-3-642-34043-7.
doi:10.1007/978-3-642-34044-4_4.

[42] Dredze, M., Lau, T. A., and Kushmerick, N. Automatically classifying
emails into activities. In IUI (edited by C. Paris and C. L. Sidner), pp. 70–77.
ACM (2006). ISBN 1-59593-287-9. Available from: http://doi.acm.org/10.
1145/1111449.1111471, doi:10.1145/1111449.1111471.

[43] Dumas, M., La Rosa, M., Mendling, J., and Reijers, H. A. Funda-
mentals of Business Process Management. Springer (2013). ISBN 978-3-642-
33143-5.

[44] Foundation, T. A. S. Apache lucene – scoring. On-line. Available from:
http://lucene.apache.org/core/3_6_2/scoring.html.

[45] Giannakopoulou, D. and Havelund, K. Automata-based verification
of temporal properties on running programs. In ASE, pp. 412–416. IEEE
Computer Society (2001). ISBN 0-7695-1426-X. Available from: http://doi.
ieeecomputersociety.org/10.1109/ASE.2001.989841.

http://dx.doi.org/10.1109/CIDM.2013.6597228
http://dx.doi.org/10.4108/trans.amsys.2011.e2
http://ojs.uniroma1.it/index.php/DIS_TechnicalReports/article/view/8966
http://ojs.uniroma1.it/index.php/DIS_TechnicalReports/article/view/8966
http://dx.doi.org/10.1007/978-3-642-34044-4_4
http://doi.acm.org/10.1145/1111449.1111471
http://doi.acm.org/10.1145/1111449.1111471
http://dx.doi.org/10.1145/1111449.1111471
http://lucene.apache.org/core/3_6_2/scoring.html
http://doi.ieeecomputersociety.org/10.1109/ASE.2001.989841
http://doi.ieeecomputersociety.org/10.1109/ASE.2001.989841

194 Bibliography

[46] Gronau, N. and Weber, E. Management of knowledge intensive business
processes. In Business Process Management (edited by J. Desel, B. Pernici,
and M. Weske), vol. 3080 of Lecture Notes in Computer Science, pp. 163–178.
Springer (2004). ISBN 3-540-22235-9. doi:10.1007/978-3-540-25970-1_11.

[47] Günther, C. W. and Verbeek, E. Xes standard definition
(2012). Available from: http://www.xes-standard.org/_media/xes/
xesstandarddefinition-1.4.pdf.

[48] Havelund, K. and Rosu, G. Testing linear temporal logic formulae on
finite execution traces. Tech. rep., Research Institute for Advanced Computer
Science (RIACS) (2001).

[49] Heutelbeck, D. Preservation of enterprise engineering processes by social
collaboration software (2011). Personal communication.

[50] Hill, C., Yates, R., Jones, C., and Kogan, S. L. Beyond predictable
workflows: Enhancing productivity in artful business processes. IBM Systems
Journal, 45 (2006), 663. Available from: http://dx.doi.org/10.1147/sj.
454.0663.

[51] Innocenti, P., Ross, S., Maceciuvite, E., Wilson, T., Ludwig, J., and
Pempe, W. Assessing digital preservation frameworks: the approach of the
SHAMAN project. In MEDES (edited by R. Chbeir, Y. Badr, E. Kapetanios,
and A. J. M. Traina), pp. 412–416. ACM (2009). ISBN 978-1-60558-829-2.
Available from: http://doi.acm.org/10.1145/1643823.1643899.

[52] Kemsley, S. The changing nature of work: From structured to un-
structured, from controlled to social. In Rinderle-Ma et al. [78], p. 2.
Available from: http://dx.doi.org/10.1007/978-3-642-23059-2_2, doi:
10.1007/978-3-642-23059-2_2.

[53] Kushmerick, N., Lau, T. A., Dredze, M., and Khoussainov, R.
Activity-centric email: A machine learning approach. In AAAI, pp. 1634–
1637. AAAI Press (2006). Available from: http://www.aaai.org/Library/
AAAI/2006/aaai06-268.php.

[54] Lamma, E., Mello, P., Montali, M., Riguzzi, F., and Storari, S.
Inducing declarative logic-based models from labeled traces. In Alonso
et al. [5], pp. 344–359. Available from: http://dx.doi.org/10.1007/
978-3-540-75183-0_25, doi:10.1007/978-3-540-75183-0_25.

[55] Lamma, E., Mello, P., Riguzzi, F., and Storari, S. Applying induc-
tive logic programming to process mining. In ILP (edited by H. Blockeel,
J. Ramon, J. W. Shavlik, and P. Tadepalli), vol. 4894 of Lecture Notes in
Computer Science, pp. 132–146. Springer (2007). ISBN 978-3-540-78468-
5. Available from: http://dx.doi.org/10.1007/978-3-540-78469-2_16,
doi:10.1007/978-3-540-78469-2_16.

[56] Maggi, F. M., Bose, R. P. J. C., and van der Aalst, W. M. P. Ef-
ficient discovery of understandable declarative process models from event

http://dx.doi.org/10.1007/978-3-540-25970-1_11
http://www.xes-standard.org/_media/xes/xesstandarddefinition-1.4.pdf
http://www.xes-standard.org/_media/xes/xesstandarddefinition-1.4.pdf
http://dx.doi.org/10.1147/sj.454.0663
http://dx.doi.org/10.1147/sj.454.0663
http://doi.acm.org/10.1145/1643823.1643899
http://dx.doi.org/10.1007/978-3-642-23059-2_2
http://dx.doi.org/10.1007/978-3-642-23059-2_2
http://dx.doi.org/10.1007/978-3-642-23059-2_2
http://www.aaai.org/Library/AAAI/2006/aaai06-268.php
http://www.aaai.org/Library/AAAI/2006/aaai06-268.php
http://dx.doi.org/10.1007/978-3-540-75183-0_25
http://dx.doi.org/10.1007/978-3-540-75183-0_25
http://dx.doi.org/10.1007/978-3-540-75183-0_25
http://dx.doi.org/10.1007/978-3-540-78469-2_16
http://dx.doi.org/10.1007/978-3-540-78469-2_16

Bibliography 195

logs. In CAiSE (edited by J. Ralyté, X. Franch, S. Brinkkemper, and
S. Wrycza), vol. 7328 of Lecture Notes in Computer Science, pp. 270–
285. Springer (2012). ISBN 978-3-642-31094-2. Available from: http:
//dx.doi.org/10.1007/978-3-642-31095-9_18.

[57] Maggi, F. M., Mooij, A. J., and van der Aalst, W. M. P. User-guided
discovery of declarative process models. In CIDM, pp. 192–199. IEEE (2011).
ISBN 978-1-4244-9925-0. Available from: http://dx.doi.org/10.1109/CIDM.
2011.5949297.

[58] Manning, C. D., Raghavan, P., and Schütze, H. Introduction to infor-
mation retrieval. Cambridge University Press (2008). ISBN 978-0-521-86571-5.

[59] Meersman, R. and Tari, Z. (eds.). On the Move to Meaningful Internet
Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS, OTM Confederated
International Conferences CoopIS, DOA, ODBASE, GADA, and IS 2007,
Vilamoura, Portugal, November 25-30, 2007, Proceedings, Part I, vol. 4803 of
Lecture Notes in Computer Science. Springer (2007). ISBN 978-3-540-76846-3.

[60] Meersman, R., et al. (eds.). 20th International Conference on Cooperative
Information Systems, CoopIS 2012, Rome, Italy, September 10-14, 2012,
vol. 7565 of Lecture Notes in Computer Science. Springer (2012). On the
Move to Meaningful Internet Systems (OTM 2012) Confederated International
Conferences: CoopIS, DOA-SVI, and ODBASE 2012.

[61] Mendling, J., Neumann, G., and van der Aalst, W. M. P. Understand-
ing the occurrence of errors in process models based on metrics. In Meersman
and Tari [59], pp. 113–130. Available from: http://dx.doi.org/10.1007/
978-3-540-76848-7_9, doi:10.1007/978-3-540-76848-7_9.

[62] Mendling, J., Reijers, H. A., and Cardoso, J. What makes pro-
cess models understandable? In Alonso et al. [5], pp. 48–63. Available
from: http://dx.doi.org/10.1007/978-3-540-75183-0_4, doi:10.1007/
978-3-540-75183-0_4.

[63] Mendling, J., Reijers, H. A., and van der Aalst, W. M. P. Seven
process modeling guidelines (7PMG). Information & Software Technology, 52
(2010), 127. Available from: http://dx.doi.org/10.1016/j.infsof.2009.
08.004, doi:10.1016/j.infsof.2009.08.004.

[64] Mitchell, T. M. Machine Learning. McGraw Hill series in computer science.
McGraw-Hill, Inc., New York, NY, USA, 1 edn. (1997). ISBN 0070428077,
9780070428072.

[65] Møller, A. dk.bricks.automaton (2011). Available from: http://www.brics.
dk/automaton/index.html.

[66] Montali, M. Specification and Verification of Declarative Open Interaction
Models: a Logic-Based Approach, vol. 56 of Lecture Notes in Business
Information Processing. Springer (2010). ISBN 978-3-642-14537-7. Available
from: http://www.springer.com/computer/database+management+%26+

http://dx.doi.org/10.1007/978-3-642-31095-9_18
http://dx.doi.org/10.1007/978-3-642-31095-9_18
http://dx.doi.org/10.1109/CIDM.2011.5949297
http://dx.doi.org/10.1109/CIDM.2011.5949297
http://dx.doi.org/10.1007/978-3-540-76848-7_9
http://dx.doi.org/10.1007/978-3-540-76848-7_9
http://dx.doi.org/10.1007/978-3-540-76848-7_9
http://dx.doi.org/10.1007/978-3-540-75183-0_4
http://dx.doi.org/10.1007/978-3-540-75183-0_4
http://dx.doi.org/10.1007/978-3-540-75183-0_4
http://dx.doi.org/10.1016/j.infsof.2009.08.004
http://dx.doi.org/10.1016/j.infsof.2009.08.004
http://dx.doi.org/10.1016/j.infsof.2009.08.004
http://www.brics.dk/automaton/index.html
http://www.brics.dk/automaton/index.html
http://www.springer.com/computer/database+management+%26+information+retrieval/book/978-3-642-14537-7?cm_mmc=sgw-_-ps-_-book-_-978-3-642-14537-7
http://www.springer.com/computer/database+management+%26+information+retrieval/book/978-3-642-14537-7?cm_mmc=sgw-_-ps-_-book-_-978-3-642-14537-7

196 Bibliography

information+retrieval/book/978-3-642-14537-7?cm_mmc=sgw-_-ps-_
-book-_-978-3-642-14537-7, doi:10.1007/978-3-642-14538-4.

[67] Murata, T. Petri nets: Properties, analysis and applications. Proceedings of
the IEEE, 77 (1989), 541 . doi:10.1109/5.24143.

[68] Mutschke, P., Mayr, P., Schaer, P., and Sure, Y. Science mod-
els as value-added services for scholarly information systems. Sciento-
metrics, 89 (2011), 349. Available from: http://dx.doi.org/10.1007/
s11192-011-0430-x, doi:10.1007/s11192-011-0430-x.

[69] Myers, E. W. An O(ND) difference algorithm and its variations. Algorithmica,
1 (1986), 251. Available from: http://dx.doi.org/10.1007/BF01840446.

[70] Ounis, I., Amati, G., Plachouras, V., He, B., Macdonald, C., and
Lioma, C. Terrier: A high performance and scalable information retrieval plat-
form. In Proceedings of ACM SIGIR’06 Workshop on Open Source Information
Retrieval (OSIR 2006) (2006).

[71] Pesic, M. Constraint-based Workflow Management Systems: Shifting Control
to Users. Ph.D. thesis, Technische Universiteit Eindhoven (2008). Available
from: http://repository.tue.nl/638413.

[72] Pesic, M., Bosnacki, D., and van der Aalst, W. M. P. Enacting
declarative languages using ltl: Avoiding errors and improving performance.
In SPIN (edited by J. van de Pol and M. Weber), vol. 6349 of Lecture Notes
in Computer Science, pp. 146–161. Springer (2010). ISBN 978-3-642-16163-
6. Available from: http://dx.doi.org/10.1007/978-3-642-16164-3_11,
doi:10.1007/978-3-642-16164-3_11.

[73] Pesic, M., Schonenberg, H., and van der Aalst, W. M. P. Declare: Full
support for loosely-structured processes. In EDOC, pp. 287–300. IEEE Com-
puter Society (2007). Available from: http://doi.ieeecomputersociety.
org/10.1109/EDOC.2007.25.

[74] Pesic, M., Schonenberg, M. H., Sidorova, N., and van der Aalst, W.
M. P. Constraint-based workflow models: Change made easy. In Meersman
and Tari [59], pp. 77–94. Available from: http://dx.doi.org/10.1007/
978-3-540-76848-7_7.

[75] Pesic, M. and van der Aalst, W. M. P. A declarative approach for flexible
business processes management. In Business Process Management Workshops
(edited by J. Eder and S. Dustdar), vol. 4103 of Lecture Notes in Computer
Science, pp. 169–180. Springer (2006). ISBN 3-540-38444-8. Available from:
http://dx.doi.org/10.1007/11837862_18.

[76] Petri, C. A. Kommunikation mit Automaten. Ph.D. thesis, Institut für
instrumentelle Mathematik, Bonn (1962).

[77] Richardson, M. and Domingos, P. Markov logic networks. Machine
Learning, 62 (2006), 107. Available from: http://dx.doi.org/10.1007/
s10994-006-5833-1, doi:10.1007/s10994-006-5833-1.

http://www.springer.com/computer/database+management+%26+information+retrieval/book/978-3-642-14537-7?cm_mmc=sgw-_-ps-_-book-_-978-3-642-14537-7
http://www.springer.com/computer/database+management+%26+information+retrieval/book/978-3-642-14537-7?cm_mmc=sgw-_-ps-_-book-_-978-3-642-14537-7
http://www.springer.com/computer/database+management+%26+information+retrieval/book/978-3-642-14537-7?cm_mmc=sgw-_-ps-_-book-_-978-3-642-14537-7
http://dx.doi.org/10.1007/978-3-642-14538-4
http://dx.doi.org/10.1109/5.24143
http://dx.doi.org/10.1007/s11192-011-0430-x
http://dx.doi.org/10.1007/s11192-011-0430-x
http://dx.doi.org/10.1007/s11192-011-0430-x
http://dx.doi.org/10.1007/BF01840446
http://repository.tue.nl/638413
http://dx.doi.org/10.1007/978-3-642-16164-3_11
http://dx.doi.org/10.1007/978-3-642-16164-3_11
http://doi.ieeecomputersociety.org/10.1109/EDOC.2007.25
http://doi.ieeecomputersociety.org/10.1109/EDOC.2007.25
http://dx.doi.org/10.1007/978-3-540-76848-7_7
http://dx.doi.org/10.1007/978-3-540-76848-7_7
http://dx.doi.org/10.1007/11837862_18
http://dx.doi.org/10.1007/s10994-006-5833-1
http://dx.doi.org/10.1007/s10994-006-5833-1
http://dx.doi.org/10.1007/s10994-006-5833-1

Bibliography 197

[78] Rinderle-Ma, S., Toumani, F., and Wolf, K. (eds.). Business Process
Management - 9th International Conference, BPM 2011, Clermont-Ferrand,
France, August 30 - September 2, 2011. Proceedings, vol. 6896 of Lecture Notes
in Computer Science. Springer (2011). ISBN 978-3-642-23058-5. Available
from: http://dx.doi.org/10.1007/978-3-642-23059-2.

[79] Russell, N., ter Hofstede, A. H. M., van der Aalst, W. M. P., and
Mulyar, N. Workflow control-flow patterns: a revised view. Tech. Rep.
BPM-06-22, BPMcenter.org (2006).

[80] Sakurai, S., Ichimura, Y., Suyama, A., and Orihara, R. Acquisition of
a knowledge dictionary for a text mining system using an inductive learning
method. In Proceedings of IJCAI 2001 Workshop on Text Learning: Beyond
Supervision, pp. 45–52 (2001).

[81] Sakurai, S. and Suyama, A. An e-mail analysis method based on text
mining techniques. Appl. Soft Comput., 6 (2005), 62. Available from: http:
//dx.doi.org/10.1016/j.asoc.2004.10.007.

[82] Schunselaar, D. M. M., Maggi, F. M., Sidorova, N., and van der
Aalst, W. M. P. Configurable Declare: Designing customisable flexible
process models. In Meersman et al. [60], pp. 20–37. On the Move to Mean-
ingful Internet Systems (OTM 2012) Confederated International Conferences:
CoopIS, DOA-SVI, and ODBASE 2012. Available from: http://dx.doi.org/
10.1007/978-3-642-33606-5_3, doi:10.1007/978-3-642-33606-5_3.

[83] Searle, J. A Taxonomy of Illocutionary Acts, pp. 334–369. University of
Minnesota Press, Minneapolis (1975).

[84] Sebastiani, F. Machine learning in automated text categorization. ACM
Comput. Surv., 34 (2002), 1. Available from: http://doi.acm.org/10.1145/
505282.505283.

[85] Smart Vortex Consortium. Smart Vortex – management and analysis of
massive data streams to support large-scale collaborative engineering projects.
FP7 IP Project (2010). Available from: http://www.smartvortex.eu/.

[86] ter Hofstede, A. H. M., van der Aalst, W. M. P., Adamns, M.,
and Russell, N. (eds.). Modern Business Process Automation: YAWL
and its Support Environment. Springer (2010). ISBN 978-3-642-03120-5.
Available from: http://www.springer.com/computer+science/database+
management+%26+information+retrieval/book/978-3-642-03120-5.

[87] van der Aalst, W. M. P., , Rubin, V., Verbeek, E., van Dongen,
B. F., Kindler, E., and Günther, C. W. Process mining: a two-step
approach to balance between underfitting and overfitting. Software and Systems
Modeling, 9 (2010), 87. 10.1007/s10270-008-0106-z. Available from: http:
//dx.doi.org/10.1007/s10270-008-0106-z.

[88] van der Aalst, W. M. P. Verification of workflow nets. In ICATPN
(edited by P. Azéma and G. Balbo), vol. 1248 of Lecture Notes in Computer

http://dx.doi.org/10.1007/978-3-642-23059-2
http://dx.doi.org/10.1016/j.asoc.2004.10.007
http://dx.doi.org/10.1016/j.asoc.2004.10.007
http://dx.doi.org/10.1007/978-3-642-33606-5_3
http://dx.doi.org/10.1007/978-3-642-33606-5_3
http://dx.doi.org/10.1007/978-3-642-33606-5_3
http://doi.acm.org/10.1145/505282.505283
http://doi.acm.org/10.1145/505282.505283
http://www.smartvortex.eu/
http://www.springer.com/computer+science/database+management+%26+information+retrieval/book/978-3-642-03120-5
http://www.springer.com/computer+science/database+management+%26+information+retrieval/book/978-3-642-03120-5
http://dx.doi.org/10.1007/s10270-008-0106-z
http://dx.doi.org/10.1007/s10270-008-0106-z

198 Bibliography

Science, pp. 407–426. Springer (1997). ISBN 3-540-63139-9. Available from:
http://dx.doi.org/10.1007/3-540-63139-9_48.

[89] van der Aalst, W. M. P. The application of petri nets to workflow
management. Journal of Circuits, Systems, and Computers, 8 (1998), 21.
Available from: http://dx.doi.org/10.1142/S0218126698000043, doi:10.
1142/S0218126698000043.

[90] van der Aalst, W. M. P. Process Mining: Discovery, Conformance and
Enhancement of Business Processes. Springer (2011). ISBN 978-3-642-19344-6.
doi:10.1007/978-3-642-19345-3.

[91] van der Aalst, W. M. P. and Nikolov, A. Mining e-mail messages:
Uncovering interaction patterns and processes using e-mail logs. IJIIT,
4 (2008), 27. Available from: http://www.igi-global.com/Bookstore/
Article.aspx?TitleId=2437.

[92] van der Aalst, W. M. P. and Pesic, M. DecSerFlow: Towards a truly
declarative service flow language. In WS-FM (edited by M. Bravetti, M. Núñez,
and G. Zavattaro), vol. 4184 of Lecture Notes in Computer Science, pp. 1–23.
Springer (2006). ISBN 3-540-38862-1. Available from: http://dx.doi.org/
10.1007/11841197_1, doi:10.1007/11841197_1.

[93] van der Aalst, W. M. P., Pesic, M., and Schonenberg, H. Declar-
ative workflows: Balancing between flexibility and support. Computer Sci-
ence - R&D, 23 (2009), 99. Available from: http://dx.doi.org/10.1007/
s00450-009-0057-9, doi:10.1007/s00450-009-0057-9.

[94] van der Aalst, W. M. P. and ter Hofstede, A. H. M. YAWL: yet an-
other workflow language. Inf. Syst., 30 (2005), 245. Available from: http://dx.
doi.org/10.1016/j.is.2004.02.002, doi:10.1016/j.is.2004.02.002.

[95] van der Aalst, W. M. P., ter Hofstede, A. H. M., Kiepuszewski, B.,
and Barros, A. P. Workflow patterns. Distributed and Parallel Databases, 14
(2003), 5. Available from: http://dx.doi.org/10.1023/A:1022883727209.

[96] van der Aalst, W. M. P., van Dongen, B. F., Günther, C. W.,
Rozinat, A., Verbeek, E., and Weijters, T. ProM: The process mining
toolkit. In BPM (Demos) (edited by A. K. A. de Medeiros and B. Weber), vol.
489 of CEUR Workshop Proceedings. CEUR-WS.org (2009). Available from:
http://ceur-ws.org/Vol-489/paper3.pdf.

[97] van der Aalst, W. M. P., Weijters, T., and Maruster, L. Workflow
mining: Discovering process models from event logs. IEEE Trans. Knowl.
Data Eng., 16 (2004), 1128. Available from: http://csdl.computer.org/
comp/trans/tk/2004/09/k1143abs.htm.

[98] van Dongen, B. F. Real-life event logs – a hospital log. First
International Business Process Intelligence Challenge (BPIC’11)
(2011). Available from: http://dx.doi.org/10.4121/uuid:
d9769f3d-0ab0-4fb8-803b-0d1120ffcf54, doi:10.4121/uuid:
d9769f3d-0ab0-4fb8-803b-0d1120ffcf54.

http://dx.doi.org/10.1007/3-540-63139-9_48
http://dx.doi.org/10.1142/S0218126698000043
http://dx.doi.org/10.1142/S0218126698000043
http://dx.doi.org/10.1142/S0218126698000043
http://dx.doi.org/10.1007/978-3-642-19345-3
http://www.igi-global.com/Bookstore/Article.aspx?TitleId=2437
http://www.igi-global.com/Bookstore/Article.aspx?TitleId=2437
http://dx.doi.org/10.1007/11841197_1
http://dx.doi.org/10.1007/11841197_1
http://dx.doi.org/10.1007/11841197_1
http://dx.doi.org/10.1007/s00450-009-0057-9
http://dx.doi.org/10.1007/s00450-009-0057-9
http://dx.doi.org/10.1007/s00450-009-0057-9
http://dx.doi.org/10.1016/j.is.2004.02.002
http://dx.doi.org/10.1016/j.is.2004.02.002
http://dx.doi.org/10.1016/j.is.2004.02.002
http://dx.doi.org/10.1023/A:1022883727209
http://ceur-ws.org/Vol-489/paper3.pdf
http://csdl.computer.org/comp/trans/tk/2004/09/k1143abs.htm
http://csdl.computer.org/comp/trans/tk/2004/09/k1143abs.htm
http://dx.doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
http://dx.doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
http://dx.doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
http://dx.doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54

Bibliography 199

[99] van Dongen, B. F. Real-life event logs – a loan application
process. Second International Business Process Intelligence Chal-
lenge (BPIC’12) (2012). Available from: http://dx.doi.org/10.
4121/uuid:3926db30-f712-4394-aebc-75976070e91f, doi:10.4121/uuid:
3926db30-f712-4394-aebc-75976070e91f.

[100] Verbeek, H. M. W., Buijs, J. C. A. M., van Dongen, B. F., and
van der Aalst, W. M. P. XES, XESame, and ProM 6. In CAiSE Forum
(edited by P. Soffer and E. Proper), vol. 72 of Lecture Notes in Business
Information Processing, pp. 60–75. Springer (2010). ISBN 978-3-642-17721-7.
Available from: http://dx.doi.org/10.1007/978-3-642-17722-4_5, doi:
10.1007/978-3-642-17722-4_5.

[101] W3C, http://www.w3.org/TR/xslt.html. XSL Transformations (XSLT)
Version 1.0 W3C Recommendation (1999).

[102] Warren, P., et al. Improving knowledge worker productivity - the Active
integrated approach. BT Technology Journal, 26 (2009), 165.

[103] Weijters, A. J. M. M. and van der Aalst, W. M. P. Rediscov-
ering workflow models from event-based data using little thumb. Inte-
grated Computer-Aided Engineering, 10 (2003), 151. Available from: http:
//iospress.metapress.com/content/8puq22eumrva7vyp/.

[104] Wen, L., van der Aalst, W. M. P., Wang, J., and Sun, J. Mining process
models with non-free-choice constructs. Data Min. Knowl. Discov., 15 (2007),
145. Available from: http://dx.doi.org/10.1007/s10618-007-0065-y.

[105] Westergaard, M. Better algorithms for analyzing and enacting declarative
workflow languages using ltl. In Rinderle-Ma et al. [78], pp. 83–98. Available
from: http://dx.doi.org/10.1007/978-3-642-23059-2_10.

[106] Wohed, P., van der Aalst, W. M. P., Dumas, M., ter Hofstede, A.
H. M., and Russell, N. On the suitability of BPMN for business process
modelling. In BPM (edited by S. Dustdar, J. L. Fiadeiro, and A. P. Sheth), vol.
4102 of Lecture Notes in Computer Science, pp. 161–176. Springer (2006). ISBN
3-540-38901-6. Available from: http://dx.doi.org/10.1007/11841760_12,
doi:10.1007/11841760_12.

http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://dx.doi.org/10.1007/978-3-642-17722-4_5
http://dx.doi.org/10.1007/978-3-642-17722-4_5
http://dx.doi.org/10.1007/978-3-642-17722-4_5
http://www.w3.org/TR/xslt.html
http://iospress.metapress.com/content/8puq22eumrva7vyp/
http://iospress.metapress.com/content/8puq22eumrva7vyp/
http://dx.doi.org/10.1007/s10618-007-0065-y
http://dx.doi.org/10.1007/978-3-642-23059-2_10
http://dx.doi.org/10.1007/11841760_12
http://dx.doi.org/10.1007/11841760_12

201

List of Figures

2.1 A process behavior as a deterministic automaton 8
2.2 A process behavior as a non-deterministic automaton 9
2.3 An automaton-based representation of a process in a case study . . . 9
2.4 A Petri Net . 10
2.5 A possible evolution of the status of a Petri Net 12
2.6 A Workflow Net . 13
2.7 A spaghetti process . 13
2.8 Example of a Declare constraint model [75] 14
2.9 Existence, relation and negation constraint templates 16
2.10 A simple constraint model [86] . 23

3.1 The MailOfMine approach . 27
3.2 Screenshots of MailOfMine: the “compose” window 30
3.3 Screenshots of MailOfMine: the activity analyzer window 30
3.4 The database schema of MailOfMine 32
3.5 The database schema of MailOfMine, along with the components

managing its stored values . 33
3.6 The declarative process model’s hierarchy of constraints 39
3.7 The rationale of the local view design 41
3.8 The MailOfMine local static constraint diagrams 42
3.9 A activities subtrace constraints diagram 43
3.10 The MailOfMine global static constraints diagram 44
3.11 Prototype of the activity’s details panel 45
3.12 The MailOfMine dynamic process view 46
3.13 Prototype of the execution management window 46

5.1 Experimental results of MINERful: time w.r.t. number of traces . . 83
5.2 Experimental results of MINERful: time w.r.t. trace’s length 83
5.3 Experimental results of MINERful: time w.r.t. number of events read 84
5.4 Experimental results of MINERful: time w.r.t. size of the alphabet . 84
5.5 Experimental results of MINERful: time taken by the algorithm for

the construction of the MINERfulKB and the discovery of constraints
by queries over the MINERfulKB, w.r.t. size of the alphabet 85

5.6 Experimental results of MINERful: time taken by the algorithm for
the construction of the MINERfulKB, given the MINERfulKB, w.r.t.
size of the alphabet . 85

5.7 The trend of the support for End, w.r.t. the errors injected in the log 88

202 List of Figures

5.8 The trend of Support for AlternateResponse and AlternatePrecedence,
w.r.t. the errors injected in the log 89

5.9 The trend of Support for AlternateSuccession, w.r.t. the errors in-
jected in the log . 90

5.10 The trend of the support for NegatedRelation constraints, w.r.t. the
errors injected in the log . 91

5.11 The trend of Support for the MutualRelation constraints, w.r.t. the
errors injected in the log . 92

5.12 Evaluation of MailOfMine on a case study: appropriateness of the
discovered constraints in the case study 95

5.13 Evaluation of MailOfMine on a case study: errors w.r.t. constraint
templates . 96

5.14 Evaluation of MailOfMine on a case study: errors w.r.t. implying
activities . 97

5.15 Evaluation of MailOfMine on a case study: trend of the quality of
the process w.r.t. the Support of constraints 98

5.16 Evaluation of MailOfMine on a case study: trend of the quality of
the process w.r.t. the Confidence Level of constraints 99

5.17 Evaluation of MailOfMine on a case study: trend of the quality of
the process w.r.t. the Interest Factor of constraints 100

5.18 Evaluation of MailOfMine on a case study: trend of Precision . . 102
5.19 Evaluation of MailOfMine on a case study: global and local views

on the discovered process, depicted as Finite State Automata 104

B.1 The local automaton for the “organize agenda” activity 170
B.2 The local automaton for the “organize demo” activity 170
B.3 The local automaton for the “organize meeting” activity 171
B.4 The local automaton for the “send agenda” activity 172
B.5 The local automaton for the “send deliverable” activity 172
B.6 The local automaton for the “send demo” activity 173
B.7 The local automaton for the “send draft” activity 173
B.8 The local automaton for the “send meeting” activity 174
B.9 The local automaton for the “send report” activity 175
B.10 The local automaton for the “submit deliverable” activity 175
B.11 The local automaton for the “submit draft” activity 176
B.12 The local automaton for the “submit report” activity 176
B.13 The local automaton for the “write deliverable” activity 177
B.14 The global automaton for the discovered process 178

203

List of Tables

3.1 Semantics of Declare constraints . 35
3.2 Semantics of Declare constraints as regular expressions 38

4.1 Abbreviations for the functions of MINERfulKB 51
4.2 An example of MINERful interplay, interpreted over aabbac 52
4.3 The evolution of N and δ·,·(+∞), over the reading of a string t = aabbac 57
4.4 The evolution of Ŵ, W, and β→·,· over the reading of a string t = aabbac 58
4.5 Symbols expressing the validity of constraints 64
4.6 Functions computing the Support of constraints 69
4.7 The functions navigating the constraints’ hierarchy of subsumptions 75

5.1 Experiments’ setup . 80
5.2 Performances of MINERful over synthetic and real cases 81
5.3 Setup of the experiments for monitoring the reaction of MINERful to

the controlled error injection into logs 87
5.4 Evaluation of MailOfMine on a case study: preliminary setups and

gathered data . 93
5.5 Evaluation of MailOfMine on a case study: the extended vocabulary 94
5.6 Evaluation of MailOfMine on a case study: the restricted vocabulary 94

	Extended abstract
	Introduction and rationale
	Background and State of the Art
	Information Retrieval and Text Mining
	Analysis of email messages

	Process Modeling
	Automaton-based models
	Petri-Net-based models
	Declarative models
	Constraint Templates in Declare

	Process Mining
	Analysis of email messages

	Architecture and design
	Architecture of MailOfMine as a software system
	Database
	Specification of declarative workflows as constraints
	An example

	Process visualization
	Process schema
	Running instances

	The Workflow Discovery Algorithm
	MINERful
	MINERfulKB
	The algorithm: a bird's eye view
	Construction of the MINERfulKB
	Discovery of constraints
	Discovery of constraints and their metrics
	The complexity of the MINERful algorithm

	Experiments and evaluation
	Experiments
	Experiments over artificial error-injected logs

	Evaluation on a real case study

	Conclusions
	Further development
	Distance computing in Relation Constraints
	Refinement of constraints filtering
	Uncertain logs
	Branching Declare
	Biochemistry and forensics

	From indicia to log
	The SQL query
	The XML result of the query for creating the log
	The XSLT stylesheet to transform the XML log into the XES format
	The XES log

	The discovered process
	The local Finite State Automata, generated on the basis of the discovered process' constraints
	The discovered process' Finite State Automaton
	The discovered process, as in the output of the run of MailOfMine

