
EXISTENCE AND NON EXISTENCE RESULTS FOR THE
SINGULAR NIRENBERG PROBLEM.

FRANCESCA DE MARCHIS AND RAFAEL LÓPEZ-SORIANO

ABSTRACT. In this paper we study the problem, posed by Troyanov in
[48], of prescribing the Gaussian curvature under a conformal change of
the metric on surfaces with conical singularities. Such geometrical prob-
lem can be reduced to the solvability of a nonlinear PDE with exponential
type non-linearity admitting a variational structure. In particular, we are
concerned with the case where the prescribed function K changes sign.
When the surface is the standard sphere, namely for the singular Niren-
berg problem, we give sufficient conditions on K, concerning mainly the
regularity of its nodal line and the topology of its positive nodal region,
to be the Gaussian curvature of a conformal metric with assigned conical
singularities.

Besides, we find a class of functions on S2 which do not verify our
conditions and which can not be realized as the Gaussian curvature of
any conformal metric with one conical singularity. This shows that our
result is somehow sharp.

1. PROBLEM

On a compact surface (Σ, g) we consider the equation

(1.1) −∆gv = λ

(
Kev∫

ΣKe
vdVg

− 1

|Σ|

)
− 4π

m∑
j=1

αj

(
δpj −

1

|Σ|

)
in Σ.

Here ∆g denotes the Laplace-Beltrami operator, dVg the volume element
relative to the metric g and |Σ| the area of Σ, while λ is a positive parameter,
K : Σ → R is a Lipschitz function, αj > 0, and δpj is the Dirac measure
centered at point pj ∈ Σ.

The analysis of (1.1) is motivated by the study of vortex type configu-
rations in the Electroweak theory of Glashow-Salam-Weinberg [34] and in
Self-Dual Chern-Simons theories [28]. In the monographs [46, 51], and in
[47] the reader can find further details and a wide set of references concern-
ing these applications.

However, in this paper we focus on the geometric meaning of (1.1), which
appears in the prescribed Gauss curvature problem. Indeed if g̃ is a confor-
mal metric to g on Σ, namely g̃ = eug, and Hg̃, Hg are the Gaussian curva-
tures relative to these metrics, then the logarithm of the conformal factor
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satisfies the equation

(1.2) −∆gu+ 2Hg = 2Hg̃e
u in Σ.

For an assigned Lipschitz function H defined on Σ, a classical problem
is to find a conformal metric g̃ having H as the Gaussian curvature: this
amounts to solve (1.2) with Hg̃ = H . The solvability of this problem de-
pends on the Euler characteristic of Σ, χ(Σ). Actually, if χ(Σ) = 0, the
problem is completely solved in [32]; whereas for the case χ(Σ) < 0 there
are necessary, [32], and sufficient conditions, [6, 1, 7, 24], but the problem is
not completely settled.

The problem of prescribing Gaussian curvature on S2 endowed with the
standard metric g0, proposed initially by Nirenberg, is the most delicate
case and the known results are partial, [1, 10, 11, 13, 14, 16, 32]. For the
Nirenberg problem, equation (1.2) can be reformulated as

(1.3) −∆g0u = 8π

(
Heu∫

S2 HeudVg0

− 1

|S2|

)
in S2,

which corresponds to (1.1) with λ = 8π and αj = 0 for any j.
Throughout the paper we will refer to (1.3) as the regular Nirenberg prob-

lem. More generally, problem (1.1) appears when one allows the conformal
class to contain metrics that introduce conical-type singularities on Σ.
Following the pioneer works of Troyanov [48, 49], we say that (Σ, g̃) defines
a punctured Riemann surface Σ \ {p1, . . . , pm} that admits a conical singu-
larity of order αj > −1 at the point pj with j = 1, . . . ,m, if in a coordinate
system z = z(p) around pj centered at the origin, i.e. z(pj) = 0, we have

g̃(z) = |z|2αjew|dz|2,

with w a smooth function. In other words, as a differentiable manifold,
Σ admits a tangent cone with vertex at pj and total angle 2π(αj + 1), for
j = 1, . . . ,m.

For a given Lipschitz function K, we seek a metric g̃, conformal to g
in Σ \ {p1, . . . , pm}, namely g̃ = evg in the punctured surface, admitting
conical singularities of orders αj ’s at the points pj ’s and having K as the
associated Gaussian curvature. Analogously to the regular problem, we
can reduce such geometrical question to the solvability of the differential
equation

(1.4) −∆gv + 2Kg = 2Kev − 4π

m∑
j=1

αjδpj in Σ,

where Kg is the Gaussian curvature associated to the metric g.
Integrating (1.4) and applying the Gauss-Bonnet Theorem, one immedi-

ately obtains

(1.5) 2

∫
Σ
KevdVg = 2

∫
Σ
KgdVg + 4π

m∑
j=1

αj = 4π

χ(Σ) +

m∑
j=1

αj

 .

As for the regular case, the solvability of (1.4) depends crucially on the
value of the generalized Euler characteristic for singular surfaces, defined
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as follows

(1.6) χ(Σ, αm) = χ(Σ) +
m∑
j=1

αj .

In [48] the case χ(Σ, αm) ≤ 0 has been treated obtaining existence results
analogous to the ones for the regular case, [6, 32].

It is worth to notice that for χ(Σ, αm) > 0, (1.5) implies that, if (1.4) ad-
mits a solution, K has to be positive somewhere. In [48] it is proved that, if
0 < 4πχ(Σ, αm) < 8π(1 + minj{min {0, αj}}), then this necessary condition
is also sufficient to obtain existence. In general, if χ(Σ, αm) > 0, using (1.5),
it can be seen that (1.4) can be transformed into (1.1) with λ = 4πχ(Σ, αm)

and the extra term 4πχ(Σ)
|Σ| −2Kg in the right hand side. Having 4πχ(Σ)

|Σ| −2Kg

zero mean value, this difference does not play any role and we will not
comment on this issue any further.

Now we transform the equation (1.1) into another one which admits
variational structure. Let q ∈ Σ and G(x, q) be the Green function of the
Laplace-Beltrami operator on Σ associated to g, i.e.

(1.7) −∆gG(x, q) = δq −
1

|Σ|
in Σ,

∫
Σ
G(x, q)dVg(x) = 0.

Moreover, given p1, . . . , pm ∈ Σ and α1, . . . , αm ∈ (−1,+∞) we define

(1.8) hm(x) = 4π

m∑
j=1

αjG(x, pj) = −2

m∑
j=1

αj log dist(x, pj) + h(x),

where h is the regular part of hm.
The change of variable

u = v + hm

transforms (1.1) into the equation

(1.9) −∆gu = λ

(
K̃eu∫

Σ K̃e
udVg

− 1

|Σ|

)
in Σ,

where

(1.10) K̃ = Ke−hm .

Notice that sinceG has the asymptotic behaviorG(x, pj) ' − 1
2π log(dist(x, pj)),

then
K̃(x) ' dist(pj , x)2αje−h(x)K(x) close to pj .

A possible strategy, meaningful also from the physical point of view, is
to study (1.9) for λ positive independent on Σ and αm and to deduce a
posteriori the answer to the geometric question taking λ = 4πχ(Σ, αm) > 0.

Under the hypotheses K > 0 and αj > 0, Bartolucci and Tarantello, [5],
proved a concentration-compactness result which implies that blow-up can
occur only if λ belongs to the following discrete set of values

(1.11) Γ(αm) =

8πr +
m∑
j=1

8π(1 + αj)nj | r ∈ N ∪ {0}, nj ∈ {0, 1}

 .
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Besides, they also proved an existence result for (1.9) on surfaces with posi-
tive genus and λ ∈ (8π, 16π)\Γ(αm), generalized by Bartolucci, De Marchis
and Malchiodi in [2], obtaining solvability for any λ ∈ (8π,+∞) \ Γ(αm).
The case K > 0 and αj < 0 has been analyzed in [8] and [9].

Again, the problem in the sphere is more delicate. In the case m = 2
and positive constant curvature, Troyanov, [49], showed that (1.9) admits
solutions only if α1 = α2 (see also [3]) and this implies (taking α2 = 0)
that (1.9) does not admit solutions for m = 1 (see also [4]). In other words,
the tear drop conical singularity on S2 does not admit constant curvature.
Besides, for m = 2, Chen and Li, [17], gave necessary conditions on K for
the solvability. Eremenko in [29] studied the case of prescribing constant
positive curvature with three conical singularities. Without restrictions on
the number of singularities, Malchiodi and Ruiz, [39], derived an existence
result under some extra assumptions for λ ∈ (8π, 16π) \ Γ(αm). We also re-
fer the reader to [41], where the authors gave a criterion for the existence of
a metric of constant curvature on S2. In a recent deep paper, [20], Chen and
Lin computed the Leray-Schauder degree of (1.1) for λ /∈ Γ(αm) recovering
some of the previous existence results and deriving new ones in the case
χ(Σ) > 0. Finally D’Aprile and Esposito in [21] obtained, via perturbative
methods, the existence of a solution even in some cases when the degree
vanishes. Anyway on the sphere there are still different situations in which
the degree is zero and the solvability is not known.

In this paper we consider the problem on the unit 2-sphere S2 endowed
with the standard metric g0, focusing on the case ofK sign-changing, which,
as far as we know, has not been studied yet for general singular surfaces
with an arbitrary number of conical singularities. This situation is admis-
sible from the geometrical point of view, indeed, as already remarked, if
χ(S2, αm) > 0 Gauss-Bonnet only rules out the possibility that K is non
positive.

Thus from now on we will assume

(H1) K sign-changing, namely K(x)K(y) < 0 for some x, y ∈ S2.

Since problem (1.9) has a variational structure, its solutions can be found
as critical points of the energy functional

(1.12) Iλ(u) =
1

2

∫
S2

|∇u|2dVg0 +
λ

|S2|

∫
S2

u dVg0 − λ log

∫
S2

K̃eudVg0 ,

defined in the domain

(1.13) X =

{
u ∈ H1(S2) |

∫
S2

K̃eu dVg0 > 0

}
.

Notice that hypothesis (H1) implies that X is not empty.
Moreover the functional Iλ is invariant under addition of constants, as well
as problem (1.9).

Let k ∈ N \ {0}, we study the case

λ ∈ (8πk, 8π(k + 1)),
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for which the functional Iλ is not bounded below and we will use a min-
max scheme to find solutions of (1.9). In this direction, we define the sets

S± = {x ∈ S2 |K(x) ≷ 0}, S0 = {x ∈ S2 |K(x) = 0},
and introduce the extra assumptions

(H2) K ∈ C2,α(V ), for some neighborhood V of ∂S+,
∇K(x) 6= 0 for any x ∈ ∂S+,

(H3) pj /∈ ∂S+ for all j ∈ {1, . . . ,m}.
Hypothesis (H2) implies that the nodal line ∂S+ ⊂ S0 is regular, that

(1.14) N+ = #{connected components of S+} < +∞
and that (S0 ∩ ∂S+) \ ∂S− = ∅, but it does not exclude that S0 \ ∂S+ is non
empty.
On the other hand by virtue of (H3), we can suppose, up to reordering, that
there exists ` ∈ {0, . . . ,m} such that
(1.15)
pj ∈ S+ for j ∈ {1 . . . , `}, pj ∈ S− ∪ (S0 \ ∂S+) for j ∈ {`+ 1, . . . ,m}.

As we will see the conical singularities located in S− ∪ (S0 \ ∂S+) do not
play any role.

We state the fourth assumption on K
(H4) N+ > k or S+ has a connected component which is non-simply

connected.
Notice that for some functions K both hypotheses in (H4) are fulfilled.

We are ready to enunciate our first existence result.

Theorem 1.1. Let p1, . . . , pm ∈ S2, α1, . . . , αm > 0, 4πχ(S2, αm) /∈ Γ(α`),
where ` is defined in (1.15). Then any function K defined on S2 and satisfying
(H1), (H2), (H3) and (H4) is the Gaussian curvature of at least one metric confor-
mal to g0 and having at pj a conical singularity with order αj .

The previous result is a direct consequence of the following theorem.

Theorem 1.2. Let p1, . . . , pm ∈ S2, α1, . . . , αm > 0 and let K be a function on
S2 satisfying (H1), (H2), (H3) and (H4). Suppose that λ0 ∈ (8π,+∞) \ Γ(α`),
where ` is defined in (1.15), then (1.9) admits a solution for λ = λ0 with (Σ, g) =
(S2, g0).

In case that k = 1, i.e. λ ∈ (8π, 16π), and α1, . . . , α` ∈ (0, 1] we can de-
scribe the topology of the sublevels of Iλ in a more accurate way depending
on the order of the singularities located in S+. In particular, we set

(1.16) Jλ = {pj ∈ S+ |λ < 8π(1 + αj)}
and we introduce the fifth hypothesis

(H5) Jλ0 6= ∅.
Theorem 1.3. Let p1, . . . , pm ∈ S2, α1, . . . , α` ∈ (0, 1], α`+1, . . . , αm > 0
and let λ0 = 4πχ(S2, αm) ∈ (8π, 16π) \ Γ(α`), where ` is defined in (1.15).
Then any function K defined on S2 and satisfying (H1), (H2), (H3) and (H5) is
the Gaussian curvature of at least one metric conformal to g0 and having at pj a
conical singularity with order αj .
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Theorem 1.3 can be deduced from the following result.

Theorem 1.4. Let p1, . . . , pm ∈ S2, α1, . . . , α` ∈ (0, 1], α`+1, . . . , αm > 0 and
let K be a function on S2 satisfying (H1), (H2), (H3) and (H5). Suppose that
λ0 ∈ (8π, 16π) \ Γ(α`), where ` is defined in (1.15), then (1.9) admits a solution
for λ = λ0 with (Σ, g) = (S2, g0).

Proofs of Theorem 1.2 and Theorem 1.4 are based on a minmax argu-
ment, relying in turn on the study of the low sublevels of the functional Iλ,
in the spirit of [2, 26, 27, 39].

Once λ0 ∈ (8πk, 8π(k + 1)), for some k ∈ N, is fixed, the strategy is to
find a compact non contractible topological space C and two maps i : C →
{Iλ ≤ −L}, β : {Iλ ≤ −L} → C for L > 0 sufficiently large, such that β ◦ i
is homotopically equivalent to the identity map on C.
This immediately implies that i(C) is non contractible.

Then we consider the class Gλ of continuous maps g from the topological
cone C̃ over C into H1(S2), which coincide with i on the boundary of the
cone, i.e. g|C = i|C , and we define a min-max level cλ = inf

g∈Gλ
sup
z∈C̃

Iλ(g(z)).

The noncontractibility of C allows to prove that cλ > −∞ and to find a
Palais-Smale sequence for Iλ. In turn by the Struwe monotonicity trick we
derive the existence of a solution uλ of (1.9) for almost every λ close to λ0.

At this point to find a solution of (1.9) with λ = λ0 we need a compact-
ness result and this yields an extra difficulty because the one by Bartolucci
and Tarantello can not be applied, requiring K positive. For this reason
we prove an alternative compactness theorem (see Theorem 3.1) to exclude
that blow-up can occur if λ /∈ Γ(α`). To derive this result we follow the ap-
proach employed in [16] to treat the regular Nirenberg problem, combined
with an energy comparison argument. To do so, in particular to get a priori
bounds for solutions in S2 \ S+, we assume hypotheses (H2) and (H3).

For Theorem 1.2 we take as C the set of formal barycenters of order k
of a proper compact subset Y of S+ \ {p1, . . . , pm}, namely the family of
unit measures which are supported in at most k points of S+. Notice that
C will turn out to be non contractible in view of assumption (H4). The
main underlying idea is that, if λ ∈ (8πk, 8π(k + 1)) and if Iλ attains large
negative values, the measure euχS+∫

S+ eu dVg
has to concentrate near at most k

points of S+. Next, we construct a global projection of S+ onto Y and in
turn this map induces a projection from the barycenters of S+ onto those of
Y . Exactly in this way we define the map β, while for what concerns i we
use suitable test functions to embed C into {Iλ ≤ −L}.

In the case of Theorem 1.4, we take as C a compact subset of S+ \ Jλ
and to construct the map β we study the concentration properties of the

measures K̃euχS+∫
S+ K̃eu dVg

for u ∈ {Iλ ≤ −L}, adapting the arguments in [39].

Remark 1.5. Theorem 1.2 and Theorem 1.4 can be seen as the counterparts for
K sign-changing of the existence results obtained in [2] and [39] for K positive,
where S+ plays the role of Σ. We point out that, whereas the minmax scheme we
developped to treat the sign-changing case works with some modifications on any
surface endowed with any metric (see Remark 4.3 and Remark 4.10), in the proof
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of the compactness result we strongly use the fact that (Σ, g) = (S2, g0) in order
to apply the stereographic projection.

Finally, we prove that it is not always possible to prescribe on a singular
standard sphere a sign-changing Gaussian curvature satisfying (H1), (H2)
and (H3) when neither (H4) nor (H5) are fulfilled. Therefore we can say
that these assumptions are somehow sharp.

Theorem 1.6. Let p ∈ S2 and α > 0 then there exists a class of axially symmet-
ric functions on S2 satisfying (H1), (H2) and (H3), which are not the Gaussian
curvature of any metric conformal to g0 having at p a conical singularity of order
α.

Theorem 1.6 follows from next result, which is inspired by [14]. Before
stating it, for p ∈ S2, we introduce the set Fp ⊂ C0(S2) defined as

(1.17) Fp =

F ∈ C0(S2) :

F is sign-changing, rotationally symmetric
with respect to p, monotone in the region
where it is positive and F (−p) = max

S2
F

 .

Theorem 1.7. Let λ ∈ (8π,+∞), p ∈ S2 and α > 0. Then for any function
F ∈ Fp there exists a function KF , having the same nodal regions of F , such that
(H1), (H2) and (H3) are fulfilled but equation (1.9) (with m = 1, p1 = p, α1 = α

and K̃ ≡ K̃F = e−h1KF ) does not admit a solution.

As it will be clear from the definition ofKF , see (5.1), due to our assump-
tions on F , for any function KF in the statement of the previous theorem
p ∈ S− (then Jλ = ∅) and S+ is contractible. In particular N+ = 1.

The rest of the paper is organized as follows. In Section 2 we fix the
notation and give some preliminary results. In section 3 we find a priori
bounds for solutions of (1.9) and we prove a compactness result. In Sec-
tion 4 we study the low sublevels of Iλ and finally Section 5 is devoted to
prove Theorem 1.2, Theorem 1.4 and Theorem 1.7.

2. NOTATIONS AND PRELIMINARIES

In this section we fix the notation used in this paper and collect some
preliminary known results.

From now on (S2, g0) will be the unit 2-sphere equipped with the stan-
dard metric, dist(x, y) will denote the distance between two points x, y ∈ S2

induced by the ambient metric and dist(Ω1,Ω2) = min {dist(x, y)|x ∈ Ω1, y ∈ Ω2}
will denote the distance between two subsets of S2.
Given 0 < r < R, p ∈ S2 and Ω ⊂ S2, the symbol Bp(r) stands for the open
ball of radius r and center p, Ap(r,R) denotes the corresponding open an-
nulus and (Ω)r = {x ∈ S2, | dist(x,Ω) < r}.
Let f ∈ L1(S2), we set −

∫
S2 f = 1

|S2|
∫
S2 f , where |S2| is the area of S2. We

will use the same notation for a subset T of R2, namely (T )r = {x ∈
R2 | dist(x, T ) < r}.
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For a real number a, we introduce the following notation for the sublevels
of the energy functional

Iaλ = {u ∈ X : Iλ(u) ≤ a},
where Iλ and X are defined in (1.12) and (1.13) respectively.
For any A ⊂ S2, A will denote its closure, int(A) its interior and χA(x) the
characteristic function of A. Moreover, for A,B ⊂ S2, A M B stands for
their symmetric difference.

Given a metric space M and k ∈ N, we denote by Mk the set of formal
barycenters of order k on M , namely the following family of unit measures
supported in at most k points

(2.1) Mk =

{
k∑
i=1

tiδxi ,

k∑
i=1

ti = 1, xi ∈M

}
.

Positive constants are denoted by C, and the value of C is allowed to
vary from formula to formula.

2.1. Moser-Trudinger inequalities.
Moser-Trudinger type inequalities are a powerful tool in our study be-

cause they allow to deduce properties of the functional Iλ defined in (1.12).
We start recalling a weaker version of the classical Moser-Trudinger in-
equality, see [42].

Proposition 2.1. Let Σ be a compact surface, then there exists C > 0 such that

(2.2) log

∫
Σ
eudVg ≤

1

16π

∫
Σ
|∇u|2 dVg +

1

|Σ|

∫
Σ
udVg+C, ∀u ∈ H1(Σ).

As an easy application of the previous proposition, we have

Iλ(u) ≥ 8π − λ
16π

∫
S2

|∇u|2 dVg − C,

for all u ∈ X . In particular, Iλ is coercive for λ ∈ (0, 8π), and a solution for
(1.9) can be found as a minimizer.

For larger values of the parameter λ the previous inequality does not
give any information. In particular, for λ > 8π it can be easily seen that the
functional is not bounded from below. See Lemma 4.11 and Lemma 4.13.

Subsequently, we recall a result which roughly speaking states that if,
into ` + 1 regions of a surface Σ, eu has integral controlled from below (in
terms of

∫
Σ e

u dVg), the constant 1
16π can be basically divided by ` + 1. The

following proposition has been proved for the first time in [17], with H̃ = 1

and ` = 1, and generalized in [26] for ` > 1. Assuming H̃ only bounded
does not require any changes in the arguments of the proof.

Proposition 2.2. Let Σ be a compact surface, H̃ : Σ→ R, with 0 ≤ H̃(x) ≤ C0.
Let ` a positive integer and Ω1, . . . ,Ω`+1 be subsets of Σ with dist(Ωi,Ωj) ≥ δ,
for i 6= j, where δ is a positive real number, and fix γ ∈ (0, 1

`+1).
Then for any ε > 0 there exists a constant C = C(C0, ε, δ, γ) such that

(2.3) log

∫
Σ
H̃eudVg ≤

1

16(`+ 1)π − ε

∫
Σ
|∇u|2dVg +

1

|Σ|

∫
Σ
u dVg + C
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for all functions u ∈ H1(Σ) satisfying

(2.4)

∫
Ωi
H̃eu dVg∫

Σ H̃e
u dVg

≥ γ, for i = 1, . . . , `+ 1.

Next we recall a criterion which gives sufficient conditions for (2.4) to
hold. We refer to [27] for the proof.

Lemma 2.3. Let ` be a positive integer and suppose that ε and r are positive
numbers and that for a non-negative function f ∈ L1(Σ) with ‖f‖L1(Σ) = 1 there
holds ∫

∪`i=1Bpi (r)
fdVg < 1− ε, for any `-tuple p1, . . . , pl ∈ Σ.

Then there exist ε̄ > 0 and r̄ > 0 depending only on ε, r and Σ (but not on f ),
and `+ 1 points p̄1, . . . , p̄`+1 ∈ Σ (which depend on f ) satisfying∫
Bp̄i (r̄)

fdVg ≥ ε̄, Bp̄i(2r̄)∩Bp̄j (2r̄) = ∅ for i, j = 1, . . . , `+ 1 and i 6= j.

Next we introduce a localized version of the Moser-Trudinger inequality
obtained in [39, 27].

Proposition 2.4. Assume that Σ is a compact surface (with or without boundary),
and H̃ : Σ→ R measurable, 0 ≤ H̃(x) ≤ C0 a.e. x ∈ Σ. Let Ω ⊂ Σ, δ > 0 such
that dist(Ω, ∂Σ) > δ.

Then, for any ε > 0 there exists a constant C = C(C0, ε, δ) such that for all
u ∈ H1(Σ),

(2.5) log

∫
Ω
H̃(x)eu dVg ≤

1

16π − ε

∫
Σ
|∇gu|2 dVg +−

∫
Σ
u dVg + C.

2.2. A priori estimates on the entire solutions.
This subsection is devoted to present some a priori L∞ bounds for solu-

tions of the problem

(2.6) −∆u = R(x)eu in R2,

where R is a sign-changing function.
The following results are originally due to Chen and Li (see [16, 13]) who
proved them in order to derive a priori bounds for solutions of the regular
Nirenberg problem. We will focus on the estimates in the region whereR ≤
ε, for some small ε. They performed a stereographic projection to transform
the equation on S2 into (2.6). In particular, in their case, it was natural to
assume the following asymptotic growth of the solutions at infinity

(2.7) u ∼ −4 log |x|

and that R has a limit as |x| → +∞, for example,

(2.8) lim
|x|→+∞

R(x) ∈ (0,+∞).
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Actually, we will show that their approach, with proper modifications
(see Lemma 2.8 below), allows to deal also with solutions of (2.6) behaving
at infinity as

(2.9) u ∼ −η log |x|,
for some η > 4, if the function R satisfies

(2.10) lim
|x|→+∞

R(x)|x|4−η ∈ (0,+∞).

Chen and Li in [16] assumed R ∈ C2,α(R2) and ∇R(x) 6= 0 in {x ∈
R2 |R(x) = 0}, but in fact their proof required only

(2.11) R0 = R+ ∩R−,

(2.12) R ∈ C0(R2) ∩ C2,α(U) and ∇R(x) 6= 0 for x ∈ R+ ∩R−,
where

R0 = {x ∈ R2 |R(x) = 0}, R± = {x ∈ R2 |R(x) ≷ 0},
and U is a neighborhood of R+ ∩R−.
In general, if we assume (2.12) and not (2.11), R0 can be decomposed in the
following disjoint union

R0 = (R+ ∩R−)qQ+ qQ−

where Q± are such that ∂Q± ⊂ R± \ R∓, i.e. Q± are the (possibly empty)
components of R0 surrounded by positive/negative nodal regions of R.
Let us set

Q = Q+ ∪Q−.
At last we define

(2.13) r =
1

3
min{dist(Q+, R−), dist(Q−, R+)} > 0

and state a generalized version of Proposition 2.1 and Proposition 3.1 in
[16], replacing assumptions (2.7) and (2.8) with (2.9) and (2.10) respectively
and removing hypothesis (2.11).

Theorem 2.5. Assume thatR verifies (2.10) and (2.12) and that there exist β, δ >
0 such that |∇R(x)| ≥ β for any x ∈ {x ∈ R2 | |R(x)| ≤ δ} \ (Q)r. Then there
are positive constants ε and C, depending only on β, δ, ‖R‖C2,α(U) and minR2 R,
such that for any solution u of (2.6) satisfying (2.9), u ≤ C in {x ∈ R2|R(x) ≤
ε} \ (Q+)r.

Remark 2.6. Let us consider the following family of positive functions

Fη(x) = 2πη

(
4

(1 + |x|2)2

)1− η
4

,

depending on a parameter η varying in a bounded subset I ⊂ (4,+∞).
If we assume that R verifies (2.12), that there exist β, δ > 0 such that |∇R(x)| ≥
β for any x ∈ {x ∈ R2 | |R(x)| ≤ δ}\(Q)r and that lim|x|→+∞R(x)Fη(x)|x|4−η ∈
(0,+∞), then it can be seen that, for any solution u of−∆u = RFηe

u in R2 satis-
fying (2.9), u ≤ C in {x ∈ R2|R(x) ≤ ε}\(Q+)r, whereC and ε are positive con-
stants depending on β, δ,L = supη∈I ‖Fη‖C2,α(U) andM = infη∈I minx∈R2 R(x)Fη(x)
(with L < +∞ and M > −∞) but not on η.
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Theorem 2.5 follows from Proposition 2.7 and Lemma 2.9.

Proposition 2.7. Assume that R verifies (2.10) and (2.12) and that there exist
β, δ > 0 such that |∇R(x)| ≥ β for any x ∈ {x ∈ R2 | |R(x)| ≤ δ} \ (Q)r.
Then there are positive constants ε and C, depending only on β, δ, ‖R‖C2,α(U)

and minR2 R, such that for any solution u of (2.6) satisfying (2.9), u ≤ C in
{x ∈ R2|R(x) ≤ ε} \ (Q)r.

The proof of the previous proposition can be recovered mimicking the
ideas of Proposition 3.1 in [16], once Lemma 2.1 in [16] is substituted by
Lemma 2.8 below. Indeed, one can prove that

∫
Reudx is bounded in any

ball where R is strictly negative and combining this fact with Lemma 2.8,
one gets that a solution u of (2.6) verifying (2.9) is bounded from above in
the region {x ∈ R2|R(x) ≤ −ε}\(Q)r. Next, by virtue of assumption (2.12),
one can extend the estimate in the whole region {x ∈ R2|R(x) < ε} \ (Q)r

via a local moving plane method using the regularity of R in U and an
estimate of

∫
Reudx in a ball where R is strictly positive.

Lemma 2.8. Let x0 be such that R(x0) < 0. Let 3ε0 = dist
(
x0, R

0
)

and let

R(x) ≤ −δ ∀x ∈ Bx0(2ε0),

for a fixed δ > 0. Moreover, assume thatR satisfies (2.10). Then, for every solution
u of (2.6), verifying (2.9),

(2.14) u(x0) ≤ u(x) + η log

(
|x− x0|
ε0

+ 1

)
+ C, ∀x ∈ R2,

where C is a constant depending only on minR2 R and δ.

Proof. Let x̂ ∈ Bx0(ε0), we claim that

(2.15) u(x) ≤ u
(
x̂+ ε2

0

x− x̂
|x− x̂|2

)
− η log

|x− x̂|
ε0

+ C, ∀x ∈ Bx̂(ε0).

The point x̂ + ε2
0
x−x̂
|x−x̂|2 corresponds to the reflection of x about ∂Bx̂(ε0).

Let v(x) = u
(
x̂+ ε2

0
x−x̂
|x−x̂|2

)
− η log |x−x̂|ε0

, which satisfies:

−∆v(x) = R

(
x̂+ ε2

0

x− x̂
|x− x̂|2

)(
|x− x̂|
ε0

)η−4

ev(x).

Next, we take the auxiliary function w(x) = v(x) − u(x) + γ, where γ is
a positive parameter to be determined. Then for x ∈ Bx̂(ε0)

∆w +R(x)eφ(x)w(x)

=

[
R(x)eγ −R

(
x̂+ ε2

0

(x− x̂)

|x− x̂|2

)(
|x− x̂|
ε0

)η−4
]
ev(x) ≤ (−δeγ −m) ev(x)

wherem = minR2 R and φ is a function which is between γ+v(x) and u(x).
Next, we choose γ large enough such that −δeγ −m ≤ 0. Since w(x) = γ in
∂Bx̂(ε0), by the maximum principle we obtain that

w(x) ≥ 0 in Bx̂(ε0),

which implies (2.15).
To end the proof, observe that for every x ∈ R2 there exists x̂ inBx0(ε0) such
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that the reflection of x0 about ∂Bx̂(ε0) is the point x, i.e. for all x ∈ R2 there
exists x̂ ∈ Bx0(ε0) such that x = x̂+ ε2

0
x0−x̂
|x0−x̂|2 . Clearly, |x0 − x̂||x− x̂| = ε2

0,
so (2.15) implies directly (2.14). �

Next lemma allows to extend the a priori bound to the region (Q−)r.

Lemma 2.9. Under the assumptions of Proposition 2.7, then u(x) ≤ C for any
x ∈ (Q−)r.

Proof. Let us consider an open regular subset Ω ofR− such that Ω ⊂ R− and
Ω ⊃ (Q−)2r. Proposition 2.7 asserts that u(x) ≤ C for any x ∈ ∂Ω. Then, by
our assumptions we have that −∆u ≤ 0 in Ω and u ≤ C in ∂Ω. Applying
the weak maximum principle, we reach the desired conclusion. �

2.3. Non existence result for the regular Nirenberg problem.
We recall a non existence result for the problem (2.6), obtained in [14] to

prove that the regular Nirenberg problem (1.3) does not admit solution for
K axially symmetric, sign-changing and monotone in the region where K
is positive.

Let r0 > 0 and R ∈ C0
rad(R2) such that

(2.16) R is positive and non-increasing for r < r0, negative for r > r0.

The following result has been derived under the hypothesis (2.7), how-
ever, as shown below, it holds under the less restrictive assumption (2.9).

Theorem 2.10. Assume that R ∈ C0
rad(R2) is a bounded function verifying

(2.16). Then there is no solution for the problem (2.6) such that (2.9) holds.

The key point to derive this generalized result is to modify properly
Lemma 2.1 in [14], taking into account the new asymptotic behavior.

Lemma 2.11. Let R ∈ C0
rad(R2) be a bounded function such that

(2.17) R(r) > 0, R′(r) ≤ 0 for r < 1; R(r) ≤ 0 for r ≥ 1.

Let u be a solution of (2.6) such that (2.9) holds, then

(2.18) u(µx) > u

(
µx

|x|2

)
− η log |x| ∀x ∈ B0(1), 0 < µ ≤ 1.

Proof. Step 1: We claim that (2.18) is true for µ = 1.
Let v(x) = u

(
x
|x|2

)
− η log |x|, then v verifies

−∆v = |x|η−4R

(
1

|x|

)
ev.

By (2.17), ∆u < 0 and ∆v ≥ 0 in B0(1), then −∆(u− v) > 0 in B0(1). Since
u = v in ∂B0(1), then

u > v in B0(1)

by using the maximum principle.
Step 2: At this point, we move ∂B0(µ) towards µ = 0. Let uµ(x) =

u(µx) + 2 logµ and vµ(x) = uµ

(
x
|x|2

)
− η log |x|, then

−∆uµ = R(µ|x|)euµ , −∆vµ = |x|η−4R

(
µ

|x|

)
evµ .
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Taking the auxiliary function wµ = uµ − vµ, we obtain that
(2.19)

∆wµ + |x|η−4R

(
µ

|x|

)
eφµ(x)wµ(x) =

[
R

(
µ

|x|

)
|x|η−4 −R(µ|x|)

]
euµ(x)

for x ∈ B0(1) where φµ is a function between uµ(x) and vµ(x). Observe that
by (2.17), we have that

R

(
µ

|x|

)
|x|η−4 −R(µ|x|) ≤ 0, for |x| ≤ 1 and µ ≤ 1.

Therefore

(2.20) ∆wµ + Cµ(x)wµ ≤ 0,

where Cµ(x) is a bounded function if µ is bounded away from 0, moreover
for any µ strict inequality for (2.20) holds somewhere. Thus, applying the
strong maximum principle, to get (2.18) it is enough to show that

(2.21) wµ(x) ≥ 0 in B0(1).

From Step 1 (2.21) is true for µ = 1. Next, we decrease µ. By contradiction,
suppose that there exists µ0 > 0 such that (2.21) is true for µ ≥ µ0 and fails
for µ < µ0. For µ = µ0 we can use the strong maximum principle and then
the Hopf lemma in (2.19) to obtain that

wµ0 > 0 in B0(1) and
∂wµ0

∂r
< 0 on ∂B0(1).

In addition, by the minimality of µ0 for any sequence µn ↗ µ0 there
exists xn ∈ B0(1) verifying wµn(xn) < 0. This, combined with the fact
that wµn = 0 on ∂B0(1), implies that there exists some yn on the segment
connecting xn and xn

|xn| so that ∂wµn
∂r (yn) > 0. Up to a subsequence xn →

x0 ∈ B0(1) withwµ0(x0) ≤ 0, so x0 ∈ ∂B0(1) and yn → x0. Thus ∂wµ0
∂r (x0) ≥

0 and we get the desired contradiction. Therefore (2.21) holds for any µ ∈
(0, 1]. �

Proof of Theorem 2.10. By virtue of (2.16) we have that (2.17) holds, so ap-
plying Lemma 2.11 we get (2.18). Letting µ → 0 in (2.18) we obtain that
log |x| > 0 for |x| < 1 which is a contradiction. �

3. AN ESTIMATE IN THE REGION WHERE K IS SMALL AND A
COMPACTNESS RESULT

The main result of this section is the following compactness theorem for
solutions of (1.9) with (Σ, g) = (S2, g0).

Theorem 3.1. Let p1, . . . , pm ∈ S2, α1, . . . , αm > 0 and let K be a Lipschitz
function on S2 satisfying (H1), (H2) and (H3). Let k ∈ N,

λ0 ∈ (8πk, 8π(k + 1)) \ Γ(α`),

λn → λ0 and un a sequence in X of solutions of (1.9) with (Σ, g) = (S2, g0) and
λ = λn. Assume that Iλn(un) is bounded from above. Then, up to a subsequence,
un − log

∫
S2 K̃e

undVg0 → u0 strongly in C2(S2), where u0 is a solution of (1.9)
with (Σ, g) = (S2, g0) and λ = λ0.
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It is worth to point out that the concentration compactness theorem due
to Bartolucci-Tarantello [5], applied for instance in [2, 3, 39], is useless here
because it requires K to be non negative. Indeed, we have also to rule out
the possibility that some blow up occurs in S0 ∪ S−, where we keep the
notations introduced in Section 1:

S± = {x ∈ S2 |K(x) ≷ 0}, S0 = {x ∈ S2 |K(x) = 0}.

To do so, we take profit of Theorem 2.5 in order to obtain a priori bounds
in a neighborhood of S0 ∪ S−. In particular, via a stereographic projection,
we can prove the following.

Theorem 3.2. Assume that K is a Lipschitz function on S2 satisfying (H1),
(H2) and (H3). Let k ∈ N, then there exist ε, C > 0 (depending only on β,
δ, ‖K‖C2,α(V )), such that, for any u solution of the equation (1.9) with (Σ, g) =

(S2, g0) and λ ∈ (8πk, 8π(k + 1)), satisfying
∫
S2 K̃e

udVg0 = 1, then u ≤ C in
the region where K ≤ ε.
Notice that C and ε do not depend on λ nor on u.

Remark 3.3. Since the equation (1.9) is invariant under addition of constants, it
is immediate to see that if

∫
S2 K̃e

udVg0 is not fixed, the conclusion of the above
theorem fails.

Proof of Theorem 3.2. Without loss of generality, suppose that q1 = (0, 0, 1) ∈
S+ \ {p1, . . . , p`}. Let P be the stereographic projection from S2 \ {q1} to R2

defined by

(3.1) P (x1, x2, x3) = (y1, y2), yi =
xi

1− x3
, i = 1, 2.

The inverse map P−1 : R2 7→ S2 \ {q1} is

(3.2) P−1(y1, y2) =
1

1 + |y|2
(2y1, 2y2, |y|2 − 1).

For any function ψ on S2∫
S2

ψ(x)dVg =

∫
R2

ψ(P−1(y))
4

(1 + |y|2)2
dy.

Let u be a solution of (1.9), we introduce the following variable change

(3.3) v(y) = u(P−1(y)) +
λ

8π
log

(
4

(1 + |y|2)2

)
,

then v verifies

(3.4) −∆v = K̃(P−1(y))fλ(y)ev in R2,

with asymptotic growth at infinity

(3.5) v ∼ − λ

2π
log |y|,

where

(3.6) fλ(y) = λ

(
4

(1 + |y|2)2

)1− λ
8π

.
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Let us set R(y) = K̃(P−1(y)), moreover in the notations of Remark 2.6
Fη = fλ for η = λ

2π ∈ (4k, 4(k + 1)).
Let us first notice that the assumptions (H1), (H2), (H3) on K and (1.10)
guarantee that R satisfies (2.12). Besides, by our choice of q1:

lim
|y|→+∞

R(y)Fη(y)|y|4−η ∈ (0,+∞).

Furthermore, by (H2) and (H3),∇R 6= 0 inP (∂S+), then there existU ′ ⊂ R2

and β > 0 such that P (∂S+) ⊂ U ′ ⊂ U and |∇R| ≥ β in U ′.
Next, for r defined in (2.13) there exist δ > 0 such that if |R(y)| ≤ δ then
either y ∈ U ′ or y ∈ (Q)r, hence clearly

|∇R(y)| ≥ β for any y ∈ {y ∈ R2 | |R(y)| ≤ δ} \ (Q)r.

Then by Remark 2.6 we have that there exist C̃ and ε̃ independent on λ and
v such that

v ≤ C̃ in {y ∈ R2 | R(y) ≤ ε̃} \ (Q+)r.

This in turn implies, by definition of K̃ and being Q+ = P ({p1, . . . , p`}),
that there exist ε > 0 independent on λ and v such that

(3.7) v ≤ C̃ in {y ∈ R2 | K(P (y)) ≤ ε}.

At last in order to deduce the thesis we fix a point q2 6= q1 such that q2 ∈
S+ \ {p1, . . . , p`}. It is immediate to see that (3.7) combined with (3.3) gives
that there exists C > 0 such that

u ≤ C in {x ∈ S2 | K(x) ≤ ε} \Bq1(1
3 dist(q1, q2)).

To obtain the estimate in Bq1(1
3 dist(q1, q2)), eventually with a larger C and

a smaller ε, it is enough to repeat the arguments replacing q2 to q1.
�

Proof of Theorem 3.1. Let us assume without loss of generality that
∫
S2 K̃e

undVg0 =
1. If un is bounded, up to a subsequence, un ⇀ u0. Standard elliptic ar-
guments show that the convergence is strong and that u0 is the required
solution.
Assume now that ‖un‖H1(S2) → +∞, as n → +∞. By Theorem 3.2, there
exist ε, C > 0 such that un ≤ C in

Sε = {x ∈ S2 | K(x) ≤ ε}.

Eventually taking a smaller ε, we can assume that {p1, . . . , p`} ∩ Sε = ∅.
Let us set

H̃(x) =

{
K̃(x) in S+ \ Sε,
ε in Sε.

Observe that H̃ ≥ 0 and H̃(y) = 0 if only if y ∈ {p1, . . . , p`}. Moreover,
for our choice of ε, there existsM ≥ 0 such that hm(x) ≥ −M for any x ∈ Sε
and so K̃ ≤ eM H̃ .

Now, inspired by Proposition 2.5 of [37], we define the comparison func-
tional

Eλ(u) =
1

2

∫
S2

|∇u|2dVg0+
λ

|S2|

∫
S2

u dVg0−λ log

∫
S2

H̃(x)eudVg0 in H1(S2).
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It is immediate to verify that

(3.8) Iλn(un) ≥ Eλn(un)− λnM.

We introduce the unit measures

µn =
H̃eun∫

S2 H̃eundVg0

,

then, up to a subsequence, µn ⇀ µ in the sense of weak convergence of
measures.

Step 1: µ =
∑k

i=1 tiδqi , for k points qi ∈ S2, ti ∈ [0, 1] and
∑k

i=1 ti = 1.

Roughly speaking, the idea is that either µn concentrates near at most
k points or ‖un‖H1(S2) ≤ C, which would contradict our assumption. To
prove the claim we just need to show that there exist k points qi in S2 such
that for any γ > 0, r > 0 and for n sufficiently large

(3.9)

∫
S2\∪ki=1Bqi (r)

H̃eundVg0∫
S2 H̃eundVg0

< γ up to a subsequence.

We suppose by contradiction that there exist γ > 0, r > 0 such that for
any k−tuple q1, . . . , qk ∈ S2∫

S2\∪ki=1Bqi (r)
H̃eundVg0∫

S2 H̃eundVg0

> γ.

Then by Lemma 2.3 there exist γ̄ > 0 and r̄ > 0, depending only on γ, r
and S2 (but not on n) and k + 1 points q̄i,n, depending on n, satisfying∫
Bq̄i,n (r̄) H̃e

undVg0∫
S2 H̃eundVg0

≥ γ̄, Bq̄i,n(2r̄)∩Bq̄j,n(2r̄) = ∅, for i, j = 1, . . . , k + 1 and j 6= i.

We are now in position to apply Proposition 2.2 obtaining the existence of
a constant C = C(‖H̃‖∞, γ̃, r̄, γ̄), such that

log

∫
S2

H̃eundVg0 ≤
1

16(k + 1)π − γ̃

∫
S2

|∇un|2dVg0 +
1

|S2|

∫
S2

un dVg0 + C,

where γ̃ is chosen such that an = 1
2 −

λn
16(k+1)π−γ̃ → a > 0. Thus finally

Eλn(un) ≥ an
∫
S2

|∇un|2dVg0 − λnC,

and so, since ‖un‖H1(S2) → +∞, we have that Eλn(un)→ +∞, but this is a
contradiction against (3.8) and the fact that Iλn(un) is bounded from above.

Step 2: µ =
∑k

i=1 tiδqi , for k points qi ∈ S+ \ Sε.

By our choice of ε, eun ≤ eC in Sε, therefore the claim is proved.

Step 3: K̃eun ⇀
∑k

i=1 tiδqi .
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We first notice that applying Theorem 3.2∫
S2

H̃eundVg0 =

∫
S2

K̃eundVg0 +

∫
S2

(H̃ − K̃)eundVg0

= 1 +

∫
Sε

(H̃ − K̃)eundVg0 ≤ 1 + |S2|(ε+ ‖K̃‖L∞(S2))e
C .(3.10)

This fact, combined with Step 2, implies that

H̃eun → 0 uniformly in Sε, as n→ +∞,

and in turn

(3.11) eun → 0 and K̃eun → 0 uniformly in Sε, as n→ +∞.

Since,

K̃eun =

{ (∫
S2 H̃e

undVg0

)
µn in S+ \ Sε,

K̃eun in Sε,

by Step 2, (3.11) and (3.10) we have that, up to a subsequence,

K̃eun ⇀

(
lim

n→+∞

∫
S2

H̃eundVg0

) k∑
i=1

tiδqi ,

with qi ∈ S+ \ Sε for i = 1, . . . , k.
Thus finally, being

∫
S2 K̃e

undVg0 = 1 and H̃ ≥ K̃, we get lim
n→+∞

∫
S2 H̃e

undVg0 =

1 completing the proof of Step 3.

Step 4: λn → λ0 ∈ Γ(α`) =
{

8πr +
∑`

j=1 8π(1 + αj)nj | r ∈ N ∪ {0}, nj ∈ {0, 1}
}

.

By the previous steps we have:

λnK̃(x)eun ⇀ λ0

k∑
i=1

tiδqi in S2.

As in [5], in order to characterize the possible values of λ0 we use Green’s
representation formula on the solution vn = un − hm of (1.1), where hm is
defined in (1.8). Observe that K̃eun = Kevn , so

(3.12) λnKe
vn ⇀ λ0

k∑
i=1

tiδqi , in S2.

Consequently, we derive that

vn −
1

|S2|

∫
S2

vndVg0 →
k∑
i=1

tiG(x, qi)− hm

uniformly on a compact set of S2 \{q1, . . . , qk}, where G(x, y) is the Green’s
function defined in (1.7).

Furthermore, the sequence vn− 1
|S2|
∫
S2 vndVg0 admits uniformly bounded

mean oscillation on any compact subset of S2 \ ({q1, . . . , qk} ∪ {p1, . . . , p`}).
As a consequence, for every open subset Ω compactly contained in
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S2 \ ({q1, . . . , qk} ∪ {p1, . . . , p`}) there exists a uniform constant C > 0 such
that,

(3.13) max
Ω

vn −min
Ω
vn ≤ C.

Finally, if qi /∈ {p1, . . . , p`}, we can apply the local result of Y.Y.Li [35] to
conclude that

(3.14) λn

∫
Bqi (r)

K(x)evndVg0 → 8π,

for every r > 0 small enough.
Whereas in case that qi = pj for some i ∈ {1, . . . , k} and j ∈ {1, . . . , `},

since (3.13) remains true, by Theorem 6 of [5] and (3.12), we get

(3.15) λn

∫
Bqi (r)

K(x)evndVg0 → 8π(1 + αj),

for every r > 0 small enough.
Thus, (3.14), (3.15) and (3.12) imply that

λ0 = lim
n→+∞

λn = lim
n→+∞

λn

∫
S2

K(x)evndVg0 ∈ Γ(α`).

Step 5: Conclusion

By virtue of Step 4 we reach a contradiction with our assumptions. There-
fore un is bounded and as explained above, up to a subsequence, un → u0 ∈
X which is a solution of (1.9) for λ = λ0.

�

4. LOW SUBLEVELS OF Iλ

The aim of this Section is to define a map from low sublevels of Iλ onto
a non-contractible compact topological space and a reverse map from this
space onto Iλ.
We will consider first the general case λ ∈ (8πk, 8π(k + 1)), k ≥ 1, and
then we will focus on the case k = 1 in which we will provide a more
accurate characterization of the topology of the low sublevels which in the
end will allow us to get existence of solutions also in some cases when S+

is contractible.

We recall the notation: Iaλ = {u ∈ X : Iλ(u) ≤ a}.

4.1. Construction of a continuous map from low sublevels.

4.1.1. λ ∈ (8πk, 8π(k + 1)), k ≥ 1.
In the following we will use on (S2)k, the set of formal barycenters of

order k on S2, see (2.1) for the definition, the metric given byC1(S2)∗, which
induces the same topology of the weak topology of distributions. Given
σ1, σ2 ∈ (S2)k we will denote by dist(σ1, σ2) their distance and consistently
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with this convention we define the distance of an L1 probability measure f
on S2 from a distribution σ ∈ (S2)k as

dist(f, σ) = sup

{∣∣∣∣∫
S2

fϕ dVg0 − 〈σ, ϕ〉
∣∣∣∣ : ‖ϕ‖C1(S2) ≤ 1

}
where 〈σ, ϕ〉 stands for the duality product betweenD(S2) and the space of
distributions. Recall that for r > 0 and a subset Ω of S2 we set (Ω)r = {x ∈
S2 | dist(x,Ω) < r}.

Proposition 4.1. Let λ ∈ (8πk, 8π(k + 1)), k ≥ 1 and assume (H1), (H2), (H3)
to hold. Let Aj be the j-th connected component of S+, namely S+ = qN+

j=1Aj ,
where the symbol q denotes the disjoint union.

(a) Let PN+
= {x̄1, . . . , x̄N+} ⊂ S+ \ {p1, . . . , p`} with x̄j ∈ Aj for any

j ∈ {1, . . . , N+}, then for L sufficiently large there exists a continuous
projection

Ψ : I−Lλ → (PN
+

)k

with the property that if eunχS+∫
S+ eundVg0

⇀ σ for some σ ∈ (PN
+

)k, then
Ψ(un)→ σ.

(b) If S+ has a connected component which is non-simply connected then for
L > 0 sufficiently large there exists a curve Γ ⊂ S+ \ {p1, . . . , p`} home-
omorphic to S1 and a continuous projection

Ψ : I−Lλ → Γk,

with the property that if eunχS+∫
S+ eundVg0

⇀ σ for some σ ∈ Γk, then Ψ(un)→
σ.

Remark 4.2. It is worth to point out that under assumption (H4), both (PN
+

)k
and Γk are non contractible.

Indeed, the set (PN
+

)k is the (k−1)-skeleton of a (N+−1)-symplex and then it
can be easily seen that it is not contractible if and only if k < N+ (see for example
Exercise 16 in Section 2.2 of [31]). Whereas, to show that Γk is non contractible,
we can refer to [2] in which it is proved that the homology group H1(Γ;Z) 6= 0.

Proof. Step 1: There exists L > 0 sufficiently large and a continuous map

Ψ̃ : I−Lλ → (S2)k,

satisfying the following property:

(i) if eunχS+∫
S+ eundVg0

⇀ σ for some σ ∈ (S2)k, then Ψ̃(un)→ σ.

This follows directly from the proof of Lemma 4.9 of [26], just observing
that K̃ ≤ maxS2(K̃)χS+ .

Step 2: For L > 0 sufficiently large there exists a continuous map

Ψ̃δ : I−Lλ → ((S+)δ)k

with the property that if eunχS+∫
S+ eundVg0

⇀ σ for some σ ∈ (S+)k, then Ψ̃δ(un)→
σ.

Let X be a topological space and Z a subspace of X , we recall that a
continuous map r : X → Z is a deformation retraction of X onto Z if
r(z) = z for all z ∈ Z and its composition with the inclusion is homotopic
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to the identity map on X . Clearly if such a map exists X is homotopically
equivalent to Z.

Let us fix δ > 0 sufficiently small such that (Ai)
δ∩(Aj)

δ = ∅ for any i 6= j,
where A1, . . . , AN+ are the connected components of S+, and that (S+)δ is
homotopically equivalent to S+. This choice is possible by (H2). Moreover,
making δ smaller, if necessary, we can suppose that ∂(S+ \ (∂S+)δ) admits
at each point a normal vector varying continuously and, furthermore, that
S+ \ (∂S+)δ is homotopically equivalent to S+ and there exists

r0 : (S+)δ → S+ \ (∂S+)δ

which is a deformation retraction of each (Ai)
δ onto Ai \ (∂Ai)

δ and so of
(S+)δ onto S+\(∂S+)δ. Besides by (H3) we can suppose that {p1, . . . , p`} ⊂
S+ \ (∂S+)δ.

Let us consider a cutoff function ξδ ∈ C1(S2) such that

ξδ : S2 → [0, 1], ξ
δ|S+ ≡ 0, ξδ|S2\(S+)δ ≡ 1.

Reasoning as in Step 1 of the proof of Theorem 3.1 it is possible to show
that if L is sufficiently large

(4.1) dist

(
Ψ̃(u),

euχS+∫
S+ eu dVg0

)
≤ 1

4‖ξδ‖C1(S2)
.

Next, we want to show that for L large enough and for any u ∈ I−Lλ if
Ψ̃(u) =

∑
i tiδxi then

∑
i tiξδ(xi) ≤

1
2 .

Indeed, if not, by (4.1)

1

4‖ξδ‖C1(S2)
≥ dist

(
Ψ̃(u),

euχS+∫
S+ eu dVg0

)
≥

∣∣∣∣∣〈∑
i

tiδxi ,
ξδ

‖ξδ‖C1(S2)
〉 −

∫
S2 e

uχS+ξδdVg0

‖ξδ‖C1(S2)

∫
S+ eudVg0

∣∣∣∣∣
=

∑
i

ti
ξδ(xi)

‖ξδ‖C1(S2)
≥ 1

2‖ξδ‖C1(S2)

which is a contradiction.
Then

∑
i ti(1− ξδ(xi)) >

1
2 for any u ∈ I−Lλ and if we set

Ψ̃δ(u) =

∑
i ti(1− ξδ(xi))δxi∑
i ti(1− ξδ(xi))

,

then Ψ̃δ is well defined and continuous. The second property follows im-
mediately from Step 1, the definition of ξδ and the definition of Ψ̃δ.

Step 3: Conclusion.
(a).
We define

π̃ : (S+)δ −→ PN
+

x 7−→ x̄j ∀x ∈ (Aj)
δ,

and we notice that

(4.2) π̃|PN+ = Id|PN+ .
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We can finally define the map Ψ as follows

Ψ : I−Lλ −→ (PN
+

)k
u 7−→

∑
i siδπ̃(yi)

where si and yi are defined by Ψ̃δ, namely Ψ̃δ(u) =
∑

i siδyi .
Clearly by Step 2, (4.2) and the definition of Ψ if eunχS+∫

S+ eundVg0
⇀ σ ∈ (PN

+
)k

then Ψ(un)→ σ.
This proves point (a).

(b).
Let q be a point in the interior of S2 \ (S+)δ and let P : S2 \ {q} → R2

the stereographic projection, defined in (1.17). By our choice of δ and the
assumption on S+ there exists a regular closed curve γ ⊂ R2 such that at
least one connected component Ω− of P (S2 \ (S+)δ) lies in its interior.

By the Jordan-Schönflies Theorem (see [44]) there exists an homeomor-
phism Φ : R2 → R2 such that Φ(γ) = S1 and the interior of γ is mapped
onto the interior of S1. In turn fixing a point x− ∈ Ω− we can define a
retraction R : R2 \ {Φ(x−)} → S1. Then denoting by Γ := P−1(γ), define

π : (S+)δ −→ Γ
x 7−→ P−1 ◦ Φ−1 ◦R ◦ Φ ◦ P (x)

which is well defined by the choice of q. Moreover since R|S1 = IdS1 we
have that

(4.3) π|Γ = Id|Γ .

We can finally define the map Ψ as follows

Ψ : I−Lλ −→ Γk
u 7−→

∑
i siδπ(yi)

where si and yi are defined by Ψ̃δ, namely Ψ̃δ(u) =
∑

i siδyi .
Clearly by Step 2, (4.3) and the definition of Ψ if eunχΣ+∫

Σ+ eundVg0
⇀ σ ∈ Γk then

Ψ(un)→ σ.
�

Remark 4.3. It is possible to extend Proposition 4.1 to a general surface Σ. This
is trivial in case (a), while the generalization of point (b) requires a more refined
construction, involving a different compact subset Γ ⊂ {x ∈ Σ |K(x) > 0} \
{p1, . . . , p`} homotopically equivalent to a connected, but not simply connected,
component of {x ∈ Σ |K(x) > 0}.

4.1.2. λ ∈ (8π, 16π).
The next results are helpful to treat the case when λ ∈ (8π, 16π) and S+ is

non contractible. Indeed in this situation (H4) is not satisfied and so Propo-
sition 4.1 does not provide a map from I−Lλ into a non contractible set, see
Remark 4.2. Besides, we will construct, for λ ∈ (8π, 16π) a map which will
allow to get a more accurate description of the low sublevels even for S+

non contractible. In fact this more precise construction is not necessary to
get existence of solutions for (1.9) when S+ has nontrivial homotopy type
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but we think that can be useful to obtain a better multiplicity result for solu-
tions of (1.9). We plan to treat the multiplicity issue in a forthcoming paper.
In conclusion, notice that in the following propositions is not assumed S+

to be non contractible.

Proposition 4.4. Assume (Σ, g) = (S2, g0), p1, . . . , pm ∈ S2, α1, . . . , αm > 0
and λ ∈ (8π, 16π). If (H1), (H2) hold and C1 > 2 is a constant, then there exist
τ > 0, L0 > 0 and a continuous map

(4.4) β : I−L0
λ → S+,

satisfying the following property: for any u ∈ I−L0
λ there exist σ̄ > 0 and ȳ ∈ S2

such that dist(ȳ, β(u)) < 5C1σ̄ and

(4.5)
∫
Bȳ(σ̄)∩S+

K̃eu dVg0 =

∫
S+\Bȳ(C1σ̄)

K̃eu dVg0 ≥ τ
∫
S+

K̃eu dVg0 .

Remark 4.5. It is worth to point out that, even though Proposition 3.1 of [39]
holds true also on a manifold with boundary, we can not apply directly such result
because our functional Iλ is defined on functions in H1(S2) and not in H1(S+).
However we will follow the arguments of [39] modifying them non trivially in
order to handle the extra difficulty given from the fact that K̃ changes sign and so
S− has positive measure and S+ is not necessarily connected.

Proof. Let us define

A0 = {f ∈ L1(S2) | f(x) ≥ 0 a.e.,
∫
S2

f dVg0 = 1},

σ : S2 ×A0 −→ (0,+∞),

where σ = σ(x, f) is such that∫
Bx(σ)

f dVg0 =

∫
S2\Bx(C1σ)

f dVg0 .

Notice that the value σ(x, f) is not uniquely determined, nor necessarily
continuous.

Now let us define T : S2 ×A0 −→ (0,+∞) by

T (x, f) =

∫
Bx(σ(x,f))

f dVg0 .

Notice that T (x, f) does not depend on σ and it is uniquely determined.
Step 0: T is continuous.

Let us suppose by contradiction that there exist (xn, fn) ∈ S2 × A0 such
that

(xn, fn)→ (x, f) ∈ S2 ×A0 but |T (xn, fn)− T (x, f)| 6→ 0 as n→ +∞.

Being 0 < σ(xn, fn) < 1
2 diam(S2), up to a subsequence σ(xn, fn) → σ∞, as

n→ +∞.
Now if σ∞ = σ(x, f), then

(4.6) meas(Bxn(σ(xn, fn)) M Bx(σ(x, f)))→ 0 as n→ +∞,
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and so by the convergence of fn to f in L1 we have

|T (x, f)− T (xn, fn)| ≤
∫

Bx(σ(x,f))\Bxn (σ(xn,fn))

f dVg0 +

∫
Bxn (σ(xn,fn))\Bx(σ(x,f))

fn dVg0

+

∫
Bxn (σ(xn,fn))∩Bx(σ(x,f))

|fn − f | dVg0

n→+∞−→ 0,(4.7)

which gives the desired contradiction.
On the other hand if σ∞ > σ(x, f), then for n sufficiently large

(4.8) Bx(σ(x, f)) ⊂ Bxn(σ(xn, fn))
S2 \Bx(C1σ(x, f)) ⊃ S2 \Bxn(C1σ(xn, fn)).

Then for n sufficiently large

|T (x, f)−T (xn, fn)| ≤
∫

Bxn (σ(xn,fn))

|fn−f | dVg0+

∫
Bxn (σ(xn,fn))\Bx(σ(x,f))

f dVg0

and so in turn by the convergence of fn to f we have that

(4.9) lim inf
n→+∞

∫
Bxn (σ(xn,fn))\Bx(σ(x,f))

f dVg0 > 0.

By the definition of σ, the convergence of fn to f and (4.8) we get∫
Bx(σ(x,f))

f dVg0 =

∫
S2\Bx(C1(σ(x,f)))

f dVg0 =

∫
S2\Bx(C1(σ(x,f)))

fn dVg0 + o(1)

≥
∫

S2\Bxn (C1(σ(xn,fn)))

fn dVg0 + o(1) =

∫
Bxn (σ(xn,fn))

fn dVg0 + o(1)

=

∫
Bxn (σ(xn,fn))

(fn − f) dVg0 +

∫
Bxn (σ(xn,fn))\Bx(σ(x,f))

f dVg0

+

∫
Bx(σ(x,f))

f dVg0 + o(1)

≥
∫

Bxn (σ(xn,fn))\Bx(σ(x,f))

f dVg0 +

∫
Bx(σ(x,f))

f dVg0 + o(1)

which, combined with (4.9), gives the desired contradiction.
At last, the case σ∞ < σ(x, f) can be treated exactly as the latter case, just

reversing the roles of Bxn(σ(xn, fn)) and Bx(σ(x, f)).

Step 1: There exists τ > 0 such that maxx∈S2 T (x, f) > 2τ for all f ∈ A0.
Let us introduce

A = {h ∈ L1(S2), h(x) > 0 a.e.,
∫
S2

h dVg0 = 1}.

It is easy to see that A is dense in A0. Moreover in Step 1 of Proposition 3.1
of [39] it is proved that there exists τ̃ > 0 such that maxx∈S2 T (x, f) > 2τ̃
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for all f ∈ A. So our thesis follows from these facts and Step 0. Indeed,
fix f ∈ A0 and let {hn} ⊂ A such that hn → f in L1(S2) and let xn ∈
S2 such that T (xn, hn) = maxx∈S2 T (x, hn), then T (xn, hn) > 2τ̃ . Up to a
subsequence xn → x0 ∈ S2 as n → +∞ and so, by the continuity of T ,
T (xn, hn)→ T (x0, f) ≥ 2τ̃ . The thesis follows taking τ = τ̃

2 .

Step 2: Let us define

S(f) = {x ∈ S2 | T (x, f) ≥ τ}.
By Step 0 and Step 1 S(f) is a non empty compact set for any f ∈ A0.

Let us define also
σ̄(f) = sup

x∈S(f)
σ(x, f).

Let us prove that even if σ is not continuous, up to eventually redefine
σ(·, f) in a point, there exists

ȳ ∈ S(f) such that σ(ȳ, f) = σ̄.

Indeed let {xn} ⊂ S(f) such that σ(xn, f) → σ̄(f), then since S(f) is com-
pact, up to a subsequence, xn → ȳ ∈ S(f). Thus∫

Bxn (σ(xn,f))
f dVg0 =

∫
S2\Bxn (C1σ(xn,f))

f dVg0

and so ∫
Bȳ(σ̄(f))

f dVg0 =

∫
S2\Bȳ(C1σ̄(f))

f dVg0 .

Now if σ(ȳ, f) < σ̄(f) we can redefine σ(·, f) at ȳ as σ(ȳ, f) = σ̄(f), and the
proof of our claim is completed. Clearly this modification does not affect
the previous steps.

For u ∈ X , take f ≡ fu =
K̃euχS+∫

S+ K̃eu dVg0
.

Step 3: For any ε > 0 there existsL0 > 0 large enough such that diamS(f) ≤
(C1 + 1)σ̄ < ε for all u ∈ I−L0

λ .
By definition of σ̄, S(f) and S+∫

Bȳ(σ̄)∩S+

K̃eu dVg0 ≥ τ
∫
S+

K̃eu dVg0 ≥ τ
∫
S2

K̃eu dVg0 and∫
S+\Bȳ(C1σ̄)

K̃eu dVg0 ≥ τ
∫
S+

K̃eu dVg0 ≥ τ
∫
S2

K̃eu dVg0 .

Then Proposition 2.2 implies that σ̄ → 0, as L → +∞, uniformly for u ∈
I−Lλ . Thus we can choose L0 > 0 such that σ̄ < min

{
ε

C1+1 ,
mini(diamDi)

6

}
for any u ∈ I−Lλ , where Di are the connected components of S+.

Now take x, y ∈ S(f), where f =
K̃euχS+∫

S+ K̃eu dVg0
, u ∈ I−L0

λ , we claim that

(4.10) dist(x, y) ≤ C1 max{σ(x, f), σ(y, f)}+ min{σ(x, f), σ(y, f)}.
Let us prove (4.10).
Let us suppose by contradiction that Bx(C1(σ(x, f))) ∩ By(σ(y, f) + ε) =
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∅ for some ε > 0. Clearly we can take ε < mini(diamDi)
6 and such that

By(σ(y, f) + ε) does not exhaust the whole S+. Let us now show that
Ay(σ(y, f), σ(y, f) + ε) ∩ S+ is a nonempty open set.
Let us prove first that there exists z ∈ ∂By(σ(y, f) + ε) ∩ S+.
By contradiction we suppose that ∂By(σ(y, f) + ε) ∩ S+ = ∅.
Since

∫
By(σ(y,f))∩S+ f dVg0 > 0,By(σ(y, f)+ε)∩S+ 6= ∅, soDi ⊂ By(σ(y, f)+

ε) for some i. This would imply that mini(diam(Di)) < 2(σ(y, f) + ε) ≤
2σ̄ + 2ε < 2

3 mini(diam(Di)) which is impossible.
Next, being S+ open, Bz(ε)∩Ay(σ(y, f), σ(y, f) + ε)∩S+ is a nonempty

open set. Then∫
Bx(σ(x,f))∩S+

K̃eu dVg0 =

∫
S+\Bx(C1σ(x,f))

K̃eu dVg0

≥
∫
By(σ(y,f)+ε)∩S+

K̃eu dVg0 >

∫
By(σ(y,f))∩S+

K̃eu dVg0 .

By interchanging the roles of x and y, we would also obtain the reverse
inequality. This contradiction proves (4.10).

Then by (4.10) and the definition of σ̄ we have dist(x, y) ≤ (C1 + 1)σ̄ for
any given x, y ∈ S(f).

Step 4: Definition of β and conclusion.
We consider S2 embedded in R3 and we define

η : I−L0
λ → R3, η(u) =

∫
S2 [T (x, f)− τ ]+x dVg0∫
S2 [T (x, f)− τ ]+dVg0

where f ≡ fu =
K̃euχS+∫

S+ K̃eu dVg0

.

Notice that in the above terms the integrands vanish outside S(f).

From now on, for r > 0, according to our notation we will denote by
(S+)r = {x ∈ S2 | dist(x, S+) < r}.
Clearly Bȳ(σ̄) ∩ S+ 6= ∅, namely

(4.11) ȳ ∈ (S+)σ̄,

moreover by Step 3 diam(S(f)) ≤ (C1 + 1)σ̄ and therefore being ȳ ∈ S(f)

S(f) ⊂ (S+)(C1+2)σ̄ and S(f) ⊂ B̄R3

ȳ ((C1 + 1)σ̄).

Being η(u) a barycenter of a function supported in S(f), we have

(4.12) |η(u)− ȳ| ≤ (C1 + 1)σ̄.

Let U ⊃ S2, U ⊂ R3 an open tubular neighborhood of S2, and P : U → S2

an orthogonal projection onto S2. Moreover by Step 3 there exists L0 > 0

sufficiently large such that η(u) ∈ U for any u ∈ I−L0
λ . Thus we can define

β̃ : I−L0
λ → S2 β̃(u) = P ◦ η(u).

Next, we claim that, eventually for a larger L0,

(4.13) dist(ȳ, β̃(u)) ≤ 2C1σ̄.
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Let Tȳ(S2) be the tangent space to S2 at ȳ. For any x ∈ S(f) ⊂ BR3

ȳ ((C1 +
1)σ̄), we have that

min
{
|ȳ + y − x| : y ∈ Tȳ(S2)

}
≤ Cσ̄2,

where C depends only on the C2 regularity of S2. Since η(u) is a barycenter
of a function supported in S(f), it is clear that

min
{
|ȳ + y − η(u)| : y ∈ Tȳ(S2)

}
≤ Cσ̄2.

By taking a larger L0, if necessary, by Step 3 σ̄ is small enough such that

(4.14) |β̃(u)− η(u)| = min
x∈S2
|η(u)− x| ≤ 2Cσ̄2 ≤ σ̄.

Since C1 > 2, let ν = 2C1
C1+2 > 1, again, by Step 3 we can take L0 large

enough such that σ̄ satisfies that for x, y ∈ S2, if |x − y| ≤ (C1 + 2)σ̄, then
dist(x, y) ≤ ν|x− y|. This together with (4.12) and (4.14) proves (4.13).

Combining (4.11) and (4.13) we obtain that

(4.15) dist(β̃(u), S+) < (2C1 + 1)σ̄.

Besides by the regularity of ∂S+ there exists γ > 0 and a continuous pro-
jection π : (S+)γ → S+ such that

(4.16) π|S+ = Id|S+ and dist(x, π(x)) = dist(x, S+).

Again for L0 > 0 large enough 2(C1 + 1)σ̄ < γ and so, by (4.15), β̃(I−L0
λ ) ⊂

(S+)γ . Then we can define β : I−L0
λ → S+ as

β(u) = π ◦ β̃(u).

At last by (4.13), (4.16), (4.15) and C1 > 2 we have

dist(ȳ, β(u)) ≤ dist(ȳ, β̃(u)) + dist(β̃(u), π ◦ β̃(u))

≤ 2C1σ̄ + dist(β̃(u), S+)

≤ (4C1 + 1)σ̄ < 5C1σ̄.

�

Remark 4.6. With the above construction, if fn =
K̃eunχS+∫
S+ K̃eundVg0

⇀ δx for some

x ∈ S+ then one also has β(un) → x. This can be seen exactly as in Remark 3.2
of [39].

Next we show that the functional Iλ is bounded from below on the func-
tions in β−1(Jλ), where β is the map constructed in Proposition 4.4 and Jλ
is defined in (1.16).

Proposition 4.7. Assume (Σ, g) = (S2, g0), p1, . . . , pm ∈ S2, α1, . . . , α` ∈
(0, 1], α`+1, . . . , αm > 0 and λ ∈ (8π, 16π). If (H1), (H2) and (H3) hold, then
there exist C1 > 0 sufficiently large, L0 > 0, τ > 0 such that Proposition 4.4
applies and there exists L > L0 such that Iλ(u) > −L for any u ∈ I−L0

λ satisfying
that β(u) = pi ∈ Jλ.
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Proof. We will follow very closely the proof of Proposition 4.1 in [39], adapt-
ing it to our different definition of β.

Let ε > 0 to be fixed later depending only on λ and a universal constant
C0. In turn let C1 > 4 large enough so that ε−1 + 1 < log4C1 and let L0 > 0
and τ > 0 such that Proposition 4.4 applies.

Let us suppose by contradiction that there exists a sequence un ∈ X such
that Iλ(un) → −∞ and β(un) = pi ∈ Jλ as n → +∞. Clearly we can as-
sume without loss of generality that

∫
S2 undVg0 = 0.

Let ȳn ∈ S, σ̄n > 0 be as in Proposition 4.4, such that dist(ȳn, pi) < 5C1σ̄n.
It is easy to see, applying Proposition 2.2 as in Step 1 of the proof of Theo-
rem 3.1, that σ̄n → 0. Consequently, by virtue of (H3), for n large enough
ȳn ∈ S2. Then we fix δ > 0, smaller than the injectivity radius and such that
Bȳn(δ) ⊂ S+ for any n sufficiently large, and we choose

(4.17) N ∈ N such that ε−1 < N < log4C1.

Since σ̄n → 0 we have that for n sufficiently large C1σ̄n < δ and so

∪Nm=1Aȳn(4m−1σ̄n, 4
mσ̄n) ⊂ Aȳn(σ̄n, C1σ̄n) ⊂ Bȳn(δ).

Then there exists sn ∈ [2σ̄n,
C1
2 σ̄n] such that

(4.18)
∫
Aȳn ( sn

2
,2sn)
|∇un|2 dVg0 ≤

1

N

∫
Bȳn (δ)

|∇un|2 dVg0 .

From now on, in order to simplify the notation, we drop the dependence
on n.

Let us define

D1 =

∫
Bȳ(s)

|∇u|2dVg0 , D2 =

∫
S2\Bȳ(s)

|∇u|2dVg0 , D = D1 +D2.

The proof proceeds in three steps.

Step 1: We apply Proposition 2.4 to a convenient dilation of u given by

v(x) = u(sx+ ȳ).

We have∫
Bȳ(s)

|∇u|2dVg0 =

∫
B0(1)

|∇v|2dVg0 , −
∫
Bȳ(s)

udVg0 = −
∫
B0(1)

vdVg0 ,

∫
Bȳ( s

2
)∩S+

K̃eudVg0 ≤ C

∫
Bȳ( s

2
)∩S+

|x− pi|2αieu dVg0

≤ Cs2αi

∫
Bȳ( s

2
)∩S+

eudVg0 ≤ Cs2αi+2

∫
B0( 1

2
)
evdVg0 .

In the above computations we have used that |ȳ− pi| ≤ Cs. Then, recalling
that by definition of τ (see Proposition 4.4)∫

Bȳ( s
2

)∩S+

K̃eudVg0 ≥ τ
∫
S+

K̃eudVg0 ≥ τ
∫
S2

K̃eudVg0
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and applying Proposition 2.4 to v (with H̃ = 1) we get

log

∫
S2

K̃eu dVg0 ≤ C + 2(1 + αi) log s+ log

∫
B0( 1

2
)
ev dVg0

≤ C + 2(1 + αi) log s+
1

16π − ε

∫
B0(1)

|∇v|2 dVg0 +−
∫
B0(1)

v dVg0(4.19)

= C + 2(1 + αi) log s+
1

16π − ε
D1 +−

∫
Bȳ(s)

u dVg0 .

Step 2: Exactly as in Proposition 4.1 of [39], we estimate −
∫
∂Bȳ(s) u dVg0 .

By the trace embedding ũ = u − −
∫
Bȳ(s) u dVg0 ∈ L1(∂Bȳ(s)) and thanks to

the Poincaré-Wirtinger inequality we get∣∣∣∣∣−
∫
∂Bȳ(s)

ũ dx

∣∣∣∣∣ ≤ C‖ũ‖H1 ≤ C

(∫
Bȳ(s)

|∇u|2 dVg0

) 1
2

.

Therefore,

(4.20)

∣∣∣∣∣−
∫
∂Bȳ(s)

u dx−−
∫
Bȳ(s)

u dVg0

∣∣∣∣∣ ≤ C
(∫

Bȳ(s)
|∇u|2 dVg0

) 1
2

≤ εD1 + C ′.

Now notice that, since the above inequality is invariant under dilation, the
constant C is independent of s and hence C ′ depends only on ε.

Step 3: By virtue of the fact that K̃(x) ∼ d(x, pi)
2αi near pi, and |x−pi| ≤

C|x− ȳ| in S+ \Bȳ(s), we get the following estimate∫
S+\Bȳ(s)

K̃eu dVg0 =

∫
S+\Bȳ(s)

K̃(x)

|x− ȳ|2αi
|x− ȳ|2αieu dVg0 ≤(4.21)

C

s2αi

∫
S+\Bȳ(s)

ev̂ dVg0 ≤
C

s2αi

∫
S2

ev̂ dVg0 ,

where v̂(x) = û(x) + 4αiw(x),

w(x) =

 log s x ∈ Bȳ(s),
log |x− ȳ| x ∈ Aȳ(s, δ),
log δ S2 \Bȳ(δ),

{
−∆g0 û = 0 x ∈ Bȳ(s),
û(x) = u(x) x /∈ Bȳ(s).

In order to apply the Moser-Trudinger inequality to v̂ we observe that

(4.22) −
∫
S2

v̂ dVg0 ≤ C +−
∫
S2

û.

Since −
∫
S2 u dVg0 = 0 and û− u is compactly supported in Bȳ(s),

(4.23)∣∣∣∣−∫
S2

û dVg0

∣∣∣∣ =

∣∣∣∣−∫
S2

(û− u)

∣∣∣∣ ≤ C
(∫

Bȳ(s)
|∇û−∇u|2 dVg0

) 1
2

≤ εD + Cε.

We now estimate using (4.18) and (4.17) the Dirichlet energy
(4.24)∫

Bȳ(s)
|∇v̂|2 dVg0 =

∫
Bȳ(s)

|∇û|2 dVg0 ≤ C0

∫
Aȳ( s

2
,2s)
|∇u|2 dVg0 ≤ C0εD,
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where C0 is independent on the radius s, since everything is dilation in-
variant.

On the other hand integrating by parts we obtain∫
S2\Bȳ(s)

|∇v̂|2 dVg0 =

∫
S2\Bȳ(s)

|∇û|2 dVg0 + 16α2
i

∫
S2\Bȳ(s)

1

|x− ȳ|2
dVg0

+8αi

∫
S2\Bȳ(s)

∇u · ∇(log |x− ȳ|) dVg0(4.25)

≤ D2 − 32πα2
i log s− 16παi−

∫
∂Bȳ(s)

u dVg0 + C.

Finally applying to v̂ the Moser-Trudinger inequality, Proposition 2.1,
and in turn (4.24), (4.25), (4.22), (4.23) we get

log

∫
S2

ev̂ dVg0 ≤ 1

16π

∫
Bȳ(s)

|∇v̂|2 dVg0 +
1

16π

∫
S2\Bȳ(s)

|∇v̂|2 dVg0 +−
∫
S2

v̂ dVg0 + C

≤ C0εD
16π

+
D2

16π
− 2α2

i log s− αi−
∫
∂Bȳ(s)

u dVg0 + εD + C.(4.26)

Now, recalling that Bȳ(s) ⊂ Bȳ(C1σ̄), the definition of ȳ (see Proposition
4.4), (4.21) and (4.26) we have that

log

∫
S2

K̃eu dVg0 ≤ log

∫
S+

K̃eu dVg0 ≤ log

(
1

τ

∫
S+\Bȳ(s)

K̃eu dVg0

)

≤ −2αi(1 + αi) log s+ C0εD +
D2

16π
− αi−

∫
∂Bȳ(s)

u dVg0 + C.(4.27)

At last, adding (4.19) (multiplied by αi) to (4.27) and using (4.20) and the
assumption αi ≤ 1 we have

(αi + 1) log

∫
S2

K̃eu dVg0 ≤
(

1

16π − ε
+ C0ε

)
D + C,

so plugging this estimate in the functional we derive that

Iλ(u) ≥
(

1

2
− λ

(
1

(16π − ε)(αi + 1)
+

C0

αi + 1
ε

))∫
S2

|∇un| dVg0 − C.

In order to conclude it suffices to take ε small enough, depending only on λ
andC0 (C0 is a universal constant), such that

(
1
2 − λ

(
1

(16π−ε)(αi+1) + C0
αi+1ε

))
>

0. Indeed, recalling that we were working with a sequence un, we get
Iλ(un) ≥ −C which leads to the desired contradiction. �

Let Jλ be as in (1.16) and let us fix a small positive number θ such that
S+ \ (∂S+)θ is a strong deformation retract of S+ and such that, for any
pi ∈ Jλ, Bpi(θ) ⊂ S+ \ (∂S+)θ. Such a θ does exist if we assume (H2) and
(H3) to hold. Then we set

(4.28) Θλ = S+ \

(∂S+)θ ∪
⋃
pi∈Jλ

Bpi(θ)


and we finally conclude, defining a continuous map from I−Lλ to Θλ.
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Proposition 4.8. Assume (Σ, g) = (S2, g0), p1, . . . , pm ∈ S2, α1, . . . , αm > 0
and λ ∈ (8π, 16π). If (H1), (H2) and (H3) hold, then for L > 0 sufficiently large
there exists a continuous projection

Ψ : I−Lλ → Θλ

with the property that if K̃eunχS+∫
S+ K̃eun dVg0

⇀ δx for some x ∈ Θλ then Ψ(un)→ x.

Remark 4.9. Let us observe that Θλ0 is non contractible if and only if either S+

is non contractible or N+ > 1, namely (H4) holds, or if Jλ0 6= ∅, namely (H5)
holds. Moreover notice that Θλ = Θλ0 for any λ sufficiently close to λ0.

Proof. The proof mimics, with minor changes that of Proposition 4.4 of [39],
we just sketch it for reader’s convenience.
Let us consider the map β constructed in Proposition 4.4, then by Proposi-
tion 4.7 if β(u) ∈ Jλ, Iλ is uniformly bounded from below, therefore if L is
sufficiently large and if u ∈ I−Lλ , then β(u) ∈ S+ \ Jλ.

If β(u) ∈ Θλ we set Ψ(u) = β(u), whereas if β(u) 6∈ Θλ, either it belongs
to a subset of the form Bpi(θ) \ {pi} or it belongs to S+ ∩ (S+)θ. In the first
case we move β(u) along the geodesic segment emanating from pi in the
direction of β(u) until we hit the boundary of Θλ and we set Ψ(u) to be this
point. In the second case instead we move β(u) following the deformation
retraction of S+ onto S+ \ (∂S+)θ. This procedure is well defined if θ is
chosen sufficiently small and in particular such that Bpi(θ) ⊂ S+ \ (∂S+)θ

for any pi ∈ Jλ.
The last statement follows from Remark 4.6. �

Remark 4.10. The arguments of the proof of Proposition 4.4, Proposition 4.7 and
Proposition 4.8 work perfectly well for any compact surface Σ. The only modifica-
tion needed is to consider, in Step 4 of Proposition 4.7, an isometrical embedding
of Σ in Rk rather than in R3.

4.2. Construction of continuous map into low sublevels.
We will distinguish the case λ ∈ (8πk, 8π(k + 1)), k ≥ 2, from λ ∈

(8π, 16π).

4.2.1. λ ∈ (8πk, 8π(k + 1)), k ≥ 2.
Let λ ∈ (8πk, 8π(k + 1)), with k ≥ 2, and let Y be a compact subset of

S+ \ {p1, . . . , p`}.
At first, we construct functions with arbitrary low energy. For b > 0

to be fixed, small enough, we consider the smooth non-decreasing cut-off
function χb : R+ → R+ such that

(4.29) χb(t) =

{
t for t ∈ [0, b] ,

2b for t ≥ 2b.

For µ > 0 and σ =
∑k

i=1 tiδxi ∈ Yk, where Yk is the set of formal barycen-
ters of order k defined on Y , see (2.1), we define
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(4.30) ϕµ,σ : S2 → R, ϕµ,σ(x) = log
k∑
i=1

ti

(
µ

1 + (µχb(dist(x, xi)))2

)2

.

It can be easily seen that for b sufficiently small and for µ large enough
{ϕµ,σ | σ ∈ Yk} ⊂ X , where X is introduced in (1.13), and, noticing that
K̃ is strictly positive on Y , we can argue as in [26] to obtain the following
result.

Lemma 4.11. Given L > 0 there exist a small b and a large µ(L) such that for
µ ≥ µ(L), ϕµ,σ ∈ X and Iλ(ϕµ,σ) < −L for any σ ∈ Yk.

Remark that as a direct consequence of Lemma 4.11, Iλ is not bounded
from below. Moreover, by direct computations one can derive the following
result.

Lemma 4.12. Let ϕµ,σ be defined in (4.30). Then for any σ ∈ Yk,
eϕµ,σχS+∫

S+ eϕµ,σ dVg0

⇀ σ, as µ→ +∞.

4.2.2. λ ∈ (8π, 16π).
Let us consider the set Θλ introduced in (4.28), which is non contractible

by Remark 4.9, both under the assumptions of Theorem 1.2 or Theorem 1.4,
namely if (H4) or (H5) holds.

Let us now map Θλ into arbitrary low sublevels of Iλ.
Let α̃ = max

{i≤` | pi /∈Jλ}
αi or α̃ = 0 if Jλ = {p1, . . . , p`} or ` = 0. For any

α ∈
(
α̃, λ8π − 1

)
, µ > 0 and p ∈ Θλ, we define

(4.31) ϕµ,p,α : S2 → R, ϕµ,p,α(x) = 2 log

(
µ1+α

1 + (µχb(dist(x, p)))2(1+α)

)
.

Lemma 4.13. Given any L > 0, there exist a small b and a large µ(L) such that
for any µ ≥ µ(L), ϕµ,p,α ∈ X , and Iλ(ϕµ,p,α) < −L for any p ∈ Θλ.

Proof. The proof follows combining results of [26, 27, 39]. We just point
out that for b < θ

4 , where θ appears in the definition (4.28) of Θλ, Bp(b) is
compactly contained in S+, thus we can use the detailed computations in
[39] in order to estimate the logarithmic term of the functional. �

In particular, the previous result shows that Iλ is unbounded from below.
Moreover, as stated in the following result, the unit measures induced by
K̃eϕµ,p,αχS+ concentrate around p as µ→ +∞.

Lemma 4.14. Let ϕµ,p,α be defined in (4.31). Then for any p ∈ Θλ,

K̃eϕµ,p,αχS+∫
S+ K̃eϕµ,p,α dVg0

⇀ δp, as µ→ +∞.

Proof. See Lemma 5.2 of [39]. Just minor modifications are needed. �
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5. PROOFS OF THEOREMS 1.2, 1.4 AND 1.7

In this section, we employ the previous results to prove Theorems 1.2
and 1.4. The proof is based on a min-max argument relying on the non triv-
ial topology of the low sublevels of Iλ, which inherit the non contractibility
of the sets Γk, (PN

+
)k or Θλ (defined in Proposition 4.1 and in (4.28) respec-

tively) depending on the cases.
At this point, we are ready to prove Theorems 1.2 and 1.4. Let us intro-

duce some notations related to the min-max scheme in order to unify the
proofs of Theorem 1.2 and Theorem 1.4

C =

{
Yk if λ0 ∈ (8πk, 8π(k + 1)), k ≥ 2,

Θλ0 if λ0 ∈ (8π, 16π),

where Θλ0 is defined in (4.28) and

Y =

{
PN

+
if N+ > k,

Γ if S+ has a connected component which is non-simply connected ,

with PN
+

and Γ introduced in Proposition 4.1.
Moreover, we set

ω =

{
σ ∈ Yk if λ0 ∈ (8πk, 8π(k + 1)), k ≥ 2,
p ∈ Θλ0 if λ0 ∈ (8π, 16π),

ϕ̃µ,ω =

{
ϕµ,σ if λ0 ∈ (8πk, 8π(k + 1)), k ≥ 2,
ϕµ,p,α if λ0 ∈ (8π, 16π).

Next, we define the topological cone Ĉ over C as

Ĉ = (C × [0, 1]) / (C × {1}) ,
where the equivalence relation identifies all the points in C × {1}. We will
denote by [ω, t] an element of Ĉ, where ω ∈ C and t ∈ [0, 1], and sometimes,
with an abuse of notation, we will identify [ω, 0] with ω.

Then let us choose ε > 0 such that (λ0 − ε, λ0 + ε) ⊂ (8πk, 8π(k + 1)),
Jλ = Jλ0 and so Θλ = Θλ0 for any λ ∈ (λ0 − ε, λ0 + ε).
Next, let us introduce the following class

Gµ,λ = {g : Ĉ → X | g is continuous and g([ω, 0]) = ϕ̃µ,ω for every ω ∈ C}.

Notice that Gµ,λ 6= ∅, indeed if we fix v ∈ X the map gv : Ĉ → X , defined as
gv([ω, t]) = log(tev + (1− t)eϕ̃µ,ω), belongs to Gµ,λ.

Let us now fix L > 0 so large such that both Proposition 4.1 and Propo-
sition 4.8 apply and in turn µ > 0 so large that Iλ(ϕ̃µ,ω) < −L for any ω ∈ C
and any λ ∈ (λ0 − ε, λ0 + ε).

The latter choice is possible in view of Lemma 4.11 and Lemma 4.13.
Next proposition will be crucial in our min-max argument.

Proposition 5.1. If α1, . . . , αm > 0 and under assumptions (H1), (H2), (H3)
and (H4) or (H5), for any λ ∈ (λ0 − ε, λ0 + ε) and any g ∈ Gµ,λ, then the
composition Ψ ◦ g|C is homotopically equivalent to the identity map, where Ψ is
defined in Proposition 4.1 for k ≥ 2 and Proposition 4.8 for k = 1. Moreover, g(C)
is not contractible in I−Lλ .
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Proof. Let us introduce the homotopy

H : [µ,+∞)× C −→ C
(t, ω) 7−→ H(t, ω) = Ψ ◦ ϕ̃t,ω.

Combining Lemma 4.12 with Proposition 4.1 or Lemma 4.14 with Proposi-
tion 4.8 we obtain that

H(t, ω) −→ ω as t→ +∞,

so H realizes the desired homotopy equivalence.
In turn, by virtue of assumption (H4) or (H5) and our choice of ε, C is not
contractible, see Remark 4.2 and Remark 4.9. The above assertion implies
easily that g(C) is also not contractible. �

We now define the min-max value

Gµ,λ = inf
g∈Gµ,λ

sup
z∈Ĉ

Iλ(g(z)).

Lemma 5.2. If α1, . . . , αm > 0 and under assumptions (H1), (H2), (H3) and
(H4) or (H5), Gµ,λ ≥ −L for any λ ∈ (λ0 − ε, λ0 + ε).

Proof. For any g ∈ Gµ,λ, clearly g(C) is contractible in g(Ĉ), being C con-
tractible in Ĉ. On the other hand, by Proposition 5.1, g(C) is not contractible
in I−Lλ , so that, g(Ĉ) * I−Lλ , namely there exists z ∈ Ĉ such that Iλ(g(z)) >
−L. �

Consequently Lemma 5.2 together with our choice of L and µ imply that
Gµ,λ > max{Iλ(gµ(z)) : z ∈ C} and this provides a min-max structure. Un-
fortunately, the Palais–Smale condition is not known to hold for Iλ and to
overcome this difficulty we will use the well-known monotonicity method
of Struwe, introduced firstly in [45]. Since this argument has been applied
many times even for this functional, as for instance in [26, 27, 39], we will
be sketchy. A starting point to apply this trick is the following easy mono-
tonicity result.

Lemma 5.3. The function λ 7→ Gµ,λ
λ is monotonically decreasing.

Proof. Just observe that, for λ < λ′,

Iλ(u)

λ
− Iλ′(u)

λ′
=

1

2

(
1

λ
− 1

λ′

)∫
S2

|∇u|2 dVg0 ≥ 0.

Since Gµ,λ is a min-max value for Iλ, the previous estimate implies the

monotonicity of Gµ,λλ . �

Proofs of Theorem 1.2 and Theorem 1.4. Let λ0 ∈ (8πk, 8π(k + 1)) \ Γ(α`), for
some k ≥ 1 and consider λ ∈ (λ0 − ε, λ0 + ε) as above. By Lemma 5.3 we
obtain that the set

Ek =
{
λ ∈ (λ0 − ε, λ0 + ε) : the map λ 7→ Gµ,λ is differentiable at λ

}
.

is dense in (λ0−ε, λ0 +ε). Moreover, for any λ ∈ Ek, there exists a sequence
un ⊂ X which is bounded in H1(S2), Iλ(un) → Gµ,λ and I ′λ(un) → 0, and
in turn this implies that for any λ ∈ Ek there exists uλ critical point of Iλ.
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Indeed since un is bounded, up to a subsequence, un ⇀ uλ and standard
arguments show that un → uλ strongly where uλ is a critical point for Iλ.

Finally, since we are assuming (Σ, g) = (S2, g0) we can apply Theorem 3.1
and find a solution uλ0 to (1.9) with λ = λ0.
This concludes the proofs of Theorem 1.2 and Theorem 1.4.

�

At last we prove the non existence result, namely Theorem 1.7.
Given a point p ∈ S2 and a function F ∈ Fp, defined in (1.17), the strategy

to prove the Theorem 1.7 is to construct a function KF defined in S2 such
that the stereographic projection of K̃ = Ke−h1 in R2 is a radial function
which verifies the monotonicity condition (2.16) and then apply Theorem
2.10.

Proof of Theorem 1.7. Let us fix a function F = F (ϕ) in Fp expressed in
spherical coordinates, where without loss of generality we can suppose
p = (0, 0, 1). Let h be the regular part of the function h1 introduced in
(1.8) and define

(5.1) KF (ϕ) = F (ϕ)eh(ϕ)gλ(P (ϕ)) with ϕ ∈ (0, π] , KF (0) = 0,

where P : (0, π] → R2 is the stereographic projection of S2 into R2 and

gλ(y) =

(
4

(1 + |y|2)2

) λ
8π
−1

for y ∈ R2. By (5.1) we have that

K̃F (ϕ) = KF (ϕ)e−h1(ϕ) = F (ϕ)ϕ2αgλ(P (ϕ)) with ϕ ∈ (0, π] ,

where log(ϕ)2α corresponds to the singular part of −h1 in spherical coordi-
nates.

Now, as done in Section 3, by means of the stereographic projection we
transform (1.9) into

−∆v = K̂F,λ e
v in R2,

where v satisfies (3.5) and

K̂F,λ(y) = K̃F (P−1(y))λg−1
λ (y) = λF (P−1(y))(P−1(y))2α

is bounded and verifies condition (2.16), being F ∈ Fp.
At last to conclude it suffices to apply Theorem 2.10 with R = K̂F,λ. �
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[44] A. Schönflies, Beiträge Zur Theorie der Punktmengen, Math. Ann. 62 (1906), 286–328.
[45] M. Struwe, On the evolution of harmonic mappings of Riemmanian surfaces, Comment.

Math. Helv. 60 (1985), no.4, 558–581.
[46] G. Tarantello, Self-Dual Gauge Field Vortices: An Analytical Approach, PNLDE 72,
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Sapienza, P.LE ALDO MORO 5, 00185 ROMA, ITALY.

E-mail address: demarchis@mat.uniroma1.it
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