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Purpose: Cardiac magnetic resonance (CMR) is a useful non-invasive tool for characterizing tissues and
detecting myocardial fibrosis and edema. Estimation of extracellular volume fraction (ECV) using T1
sequences is emerging as an accurate biomarker in cardiac diseases associated with diffuse fibrosis. In
this study, automatic software for T1 and ECV map generation consisting of an executable file was devel-
oped and validated using phantom and human data.
Methods: T1 mapping was performed in phantoms and 30 subjects (22 patients and 8 healthy subjects)
on a 1.5T MR scanner using the modified Look-Locker inversion-recovery (MOLLI) sequence prototype
before and 15 min after contrast agent administration. T1 maps were generated using a Fast Nonlinear
Least Squares algorithm. Myocardial ECV maps were generated using both pre- and post-contrast T1
image registration and automatic extraction of blood relaxation rates.
Results: Using our software, pre- and post-contrast T1 maps were obtained in phantoms and healthy sub-
jects resulting in a robust and reliable quantification as compared to reference software. Coregistration of
pre- and post-contrast images improved the quality of ECV maps. Mean ECV value in healthy subjects was
24.5% ± 2.5%.
Conclusions: This study demonstrated that it is possible to obtain accurate T1 maps and informative ECV
maps using our software. Pixel-wise ECV maps obtained with this automatic software made it possible to
visualize and evaluate the extent and severity of ECV alterations.

� 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Cardiac magnetic resonance (CMR) imaging has grown rapidly
over the past decades and has been established as a reliable and
robust technique for assessing cardiac morphology, function, per-
fusion and tissues [1]. In particular, late gadolinium enhancement
(LGE) imaging has been affirmed as the reference standard for non-
invasive in-vivo assessment of myocardial necrosis, fibrosis and
scarring [2,3], which appear hyperintense on MR images due to
gadolinium accumulation compared to the null signal from adja-
cent healthy myocardium.

The LGE technique is highly reliable and robust in the detection
of ‘‘focal” myocardial damage, but it is extremely weak in the
assessment of diffuse involvement [4]. Diffuse myocardial fibrosis
due to increased collagen deposition and fibroblast proliferation
leads to wall stiffness, abnormal contractility and arrhythmia and
constitutes a common endpoint for a wide variety of cardiomy-
opathies. Early detection could be of great benefit to patient risk
stratification [5].

A quantitative and reproducible method for assessing diffuse
fibrosis is offered by the new T1 mapping technique, which quan-
tifies pre- and post-contrast myocardial longitudinal relaxation
time. However, the absolute measure of post-contrast T1 is influ-
enced by several factors, such as variations in the time elapsed
between contrast injection and image acquisition, contrast dose,
body weight, gadolinium clearance (which depends on the renal
function) and hematocrit [6].

Estimation of extracellular volume fraction (ECV) defined as the
proportion of myocardium occupied by extracellular space has
emerged as an accurate and reproducible method for depicting
myocardial fibrosis subsequently confirmed by histological out-
come [6,7].

ECV can be calculated easily starting from the partition coeffi-
cient of the myocardium and blood cavity measured before and
after contrast agent injection at an equilibrium phase corrected
for hematocrit. Manual ECV quantification is carried out by
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manually drawing regions of interest (ROIs) within the myocar-
dium and blood cavity in the pre- and post-contrast T1 maps. It
is easily performed, but it does not provide any quantitative data
or information on fibrosis distribution. The automatic generation
of ECV maps using pixel-wise computation of ECV values on each
voxel has been proposed in experimental studies. This method pro-
vides a direct graphic representation of the extension and severity
of myocardial fibrosis as well as an anatomical assessment of the
involved segments and analysis of transmural pattern distribution
[6,8]. However, ECV mapping is laborious and time consuming and
requires correction of coregistration errors due to heart displace-
ment between the images, which may be caused by patient move-
ment, irregularity of the heart rate and/or inadequate breath-hold
[6].

The purpose of this study was to develop and validate a practi-
cal tool with an intuitive and simple graphic interface for auto-
matic ECV map creation using a fluent data processing flow.
2. Materials and methods

2.1. Phantom study

Before the in-vivo application of our software, the T1 mapping
algorithm was tested using a known reference standard. Eight
phantoms were built with different T1 values ranging from 250
to 1000 ms and with a T2 value similar to that of the myocardium
(about 50 ms). The phantoms consisted of tubes filled with 2%
agarose gel (Sigma-Aldrich�) with different concentrations of
CuSO4 (Sigma-Aldrich�) (from 0.25 to 2 mM). An additional phan-
tom was built to simulate pre-contrast blood pool T1 and T2
(1500 ms and 200 ms, respectively) [9].

2.2. Human study

A total of 30 subjects, 22 consecutive patients referred to CMR
for known or suspected heart disease and 8 healthy volunteers
were prospectively enrolled and studied on a 1.5T MR scanner
(Magnetom Avanto, Siemens Healthcare, Erlangen Germany). The
patients were referred for the following reasons: suspected
myocarditis (10 patients), hypertrophic CMP (2 patients), dilated
CMP (2 patients), non-compacted CMO (2 patients), pulmonary
hypertension (2 patients), other cardiac conditions (4 patients).

All procedures followed were in accordance with the ethical
standards of the responsible committee on human experimenta-
tion (institutional and national) and with the Helsinki Declaration
of 1975, as revised in 2000. Written informed consent was
obtained from all patients and volunteers included in the study.

2.3. Image acquisition

Phantoms were scanned using a modified Look-Locker
inversion-recovery (MOLLI) prototype sequence (provided by Sie-
mens). MOLLI sequence parameters were the following: matrix
218 � 256, voxel size 1.41 � 1.41 � 8 mm3, TR/TE 2.6/1.12 ms, FA
35�. For pre-contrast acquisitions the protocol was 5(3)3 consisting
of 2 inversions with 5 images after the first inversion, a 3-heartbeat
pause and then the last 3 images. For post-contrast acquisitions,
the protocol was 4(1)3(1)2 consisting of 4 images acquired after
the first inversion pulse and a one-heartbeat pause for the com-
plete recovery of magnetization. Then 3 and 2 images, respectively,
were acquired after the second and third inversion, separated by a
one-heartbeat pause. Two different sequence schemes were used
for pre- and post-contrast acquisitions [10].

For a reliable ECV mapping, slice position, field of view and
matrix have to be identical in pre- and post-contrast acquisitions.
In phantoms, MOLLI acquisitions were performed using a simu-
lated heart rate (HRs) of 60 beats per minute. The in-vivo study
used MOLLI sequences with the same parameters as those used
for the phantom study. In each subject 3 slices were acquired on
short axis views in basal, mid-ventricular and apical positions
before and 15 min after intravenous bolus injection of 0.1 mmol/
kg of gadobenate dimeglumine (Gd-BOPTA; Multihance�, Bracco,
Milan, IT).

All MOLLI images were automatically processed for motion cor-
rection using a dedicated algorithm [11] incorporated in the
scanner.

2.4. Image analysis

Images were analyzed using the developed tool (see next para-
graph for details). The proposed T1 fitting methods were compared
to a well-established free software, MRmap [12]. This software
uses a different algorithm for T1 fitting as explained below. T1
maps obtained with our fitting algorithm from phantom and
healthy subject data were compared with those obtained using
MRmap considering T1 values extracted from the same ROI. Vali-
dation on phantoms is crucial in order to avoid confounding factors
due to movements, field inhomogeneity and low SNR and to
exploit a wide range of T1.

2.5. Software description

The entire computational system for T1 mapping and ECV map-
ping consists of an executable file developed in MATLAB (Math-
works Inc.). Initially, salt-and-pepper noise was removed from
MOLLI images using a median filter and a threshold mask with a
variable cut-off to avoid pixels with random noise. The Fast Nonlin-
ear Least Squares (FNLS) algorithm was implemented in order to
obtain a rapid and robust fitting of MOLLI images. Pixel-wise para-
metric mapping was performed applying a curve fit to the multiple
inversion time measurements obtained with MOLLI sequences.

Mathematically, each fit is required to estimate non-linear
parameters from the following curve fitting model

Sðx; y; tiÞ ¼ Aðx; yÞ þ Bðx; yÞ � exp � ti
T1�ðx; yÞ

� �
ð1Þ

and estimate in each (x, y) voxel the non-linear parameters A(x, y) B
(x, y) and T1⁄(x, y) that best fit the data. Here data is the signal S(x, y,
ti) of the image in a specific voxel (x, y) acquired with a specific ti.
This model can be generalized as:

yi ¼ f ðb; tiÞ ð2Þ
where yi is the signal in one location at different inversion times ti,
(i = 1, . . .n), b is the vector containing the parameters to be esti-
mated. The aim was to find the b that best fitted the data in the least
squares sense, defined as the sum of squares. For any choice of b, the
residuals can be computed as follows:

�i ¼ yi � f ðb; tiÞ ð3Þ
This means to minimize the S ¼ Pm

i¼1�
2
i , sum of the residuals, set-

ting its derivative equal to zero:

@S
@bj

¼ 2
X

i
�i

@i

@bj
¼ 0 ð4Þ

Several different methods provide a solution to this non-linear
least squares problem. For example, many T1 mapping tools
including MRmap solve this problem using the Levenberg-
Marquardt method [12,13]. In this study, we considered a reduced
dimension approach for solving Eq. (4), which permits separation
of the unknown variables in S as already proposed by Barrel
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et al. [15]. Noise has a different effect on each sample point of the
recovery curve which presents a different SNR because it is
acquired using a different inversion time. For this reason, a
weighted total least squares using the geometric fitting procedure
was applied to minimize the orthogonal distance to the curve [14].
This requires minimization of a weighted sum S ¼ Pm

i¼1Wi�2i of
squares. The expression implies that the squared residuals (mea-
sured value minus estimated model value) are multiplied by
weights. To satisfy the requirements of fitting, the weights Wi

should be related to the standard error ryi of the measurements
by Wi = 1/ryi. As the uncertainties are normally distributed, the
assumption that the weights are the inverse of the variances means
that the best fitting value is equivalent to the maximum likelihood
estimation. In MR images the correct model for implementing the
T1 fitting is:

SðtiÞ ¼ ei/ � ra þ rb � e�
ti

T1�
� �

ð5Þ

where U is the phase of the constant which receives contributions
from T2 and coil sensitivity [15]. This model has four unknown real-
valued parameters for estimating U, ra, rb, and T1⁄. In magnitude fit
the polarity needs to be restored in order to use real-valued param-
eters. This means to find the time s with null signal to switch the
sign of points acquired with inversion times lower than s. Time
value s that defines the zero crossing is defined as:

ra þ rb � e� s
T1 ¼ 0 ð6Þ

This operation is carried out to determine s, but it is computational
time consuming. To overcome this, the same problem in Eq. (6) can
be represented differently using complex parameters. It can be
written as follows:

SðtiÞ ¼ Aþ B � e� ti
T1� ð7Þ

where A and B are complex parameters defined as A = rae
iU and

B = rbe
iU. This model represents an overparameterization of the first

model, because it requires estimation of five parameters: the real
and imaginary parts of both A and B (Re{A}, Re{B} and Im{A} and
Im{B}), and T1⁄. Fitting complex data to a five-parameter model
ensures accuracy of the T1 estimation, but it is usually a time con-
suming fitting procedure [15]. For this reason, a reduced dimension
complex fitting procedure as proposed by Barral et al. [15] was also
considered. Both fitting types (magnitude and complex) were
implemented to find the best solution for the T1 mapping proce-
dure. It is well-known that the fitting procedure as well as the num-
ber of estimated parameters can affect the accuracy of T1
determination [10]. The plots of the mean residuals of the fitting
and the corresponding Gaussian fitting were also obtained and are
shown in the Section 3. Finally the Look Locker correction [10]
was applied in order to avoid the effect of readout on T1
determination:

T1 ¼ B
A
� 1

� �
� T1� ð8Þ

In the healthy subjects, ROIs were manually positioned on the
myocardium, septum and lateral wall and compared to native T1
values reported in the literature [16]. Performance of the FNLS fit-
ting algorithm was measured using a 2.9 GHz Intel Core i7 proces-
sor with 8 GB of RAM.

After the pre- and post-contrast T1 mapping procedure, ECV
mapping can be carried out by calculating pixel-by-pixel ECV from
the reciprocal pre- and post-contrast T1 values applying the fol-
lowing formula:

ECVmyoð%Þ ¼ ð1� hÞ � DRmyo

DRblood

� �
� 100 ð9Þ
where DRmyo ¼ 1
T1post

� 1
T1pre

stands for myocardium, DRblood ¼ 1
T1post

�
1

T1pre
for blood pool and h is the hematocrit, which can be considered

the proportion of the intracellular space of blood. Factor (1 � h)
converts the equation from a partition coefficient calculation to
myocardial ECV. For the ECV mapping, pre- and post-contrast
myocardial relaxation rates were derived pixel-wise from pre-
and post-contrast T1 maps, whereas the blood pool mean values
were considered both in pre- and post-contrast maps. The standard
approach for manual ECV calculation, which does not produce a
visual map, uses mean values from myocardial pre- and post-
contrast T1 maps. In order to obtain reliable and automatic ECV
maps, several steps are implemented in our software. First of all,
pre- and post-contrast T1 maps are coregistered in order to avoid
misregistration between the two maps, as this can affect the quality
of the ECV map. Misregistration may be caused by possible patient
position variations between pre- and post-acquisitions and/or small
changes in the respiratory phase. The complexity of image coregis-
tration in MOLLI acquisitions depends on the different image con-
trast within the series due to the different acquisition inversion
times [11]. To overcome this critical point, image coregistration is
implemented in our software using affine image registration
between the pre- and post-contrast images with the longest inver-
sion time when all spins are relaxed as proposed by Kellman et al.
[6]. An intensity-based image registration method can then be used
to directly estimate the mapping transformation from the observed
image intensities of the two images by solving a minimization prob-
lem defined through an iterative process. The affine image registra-
tion used allows translation, rotation, scale and shear, which are
necessary because of the intrinsic non-rigid heart movements.
Finally, transformation of post-contrast image to pre-contrast
image was applied to the post-contrast T1 map.

The second step implemented to obtain operator independent
ECV maps is an automatic mask designed to obtain blood pool
relaxation rate for pre- and post-contrast T1 maps. In order to
avoid most of the pixels outside the heart, the user can select a
rectangular region that includes all the myocardium. This is possi-
ble by clicking, in the upper left and lower right corners of the rect-
angle that includes the heart on the pre-contrast T1 map. A pixel
threshold greater than 1250 ms is subsequently applied to this
selected region on pre-contrast T1 maps. Blood presents higher
T1 values than other tissues [6]. The obtained mask is then cor-
rected for partial volume effects that may affect myocardium-
blood edge using a filter. The values for pre- and post-contrast
blood pool T1 were calculated as the median of all values of the
T1 map identified by the mask. In this study, the post-contrast
T1 map was located in the same position as the pre-contrast T1
map thanks to coregistration. Automatic calculation of blood pool
T1 values were compared with values from manually drawn ROIs
to test the robustness of this automatic approach. After these
pre-processing steps, ECV maps could be generated. Hematocrit
of the human subjects can be inserted by the operator.

In order to validate our ECV mapping software, our map values
were compared to those obtained using the standard approach to
ECV calculation, i.e. manual drawing of ROIs in the pre- and post-
contrast T1 maps and application of formula (9) for ECV calculation
as previously explained. Manual segmentation of the myocardium
was used to obtain myocardial ECV values. Manual segmentation
was automatically applied both in pre- and post-contrast T1 maps
to obtain native and post-contrast T1 values in the same myocar-
dial regions in order to eliminate differences due to different
segmentation between automatic and manual ECV calculation.
Pre- and post-contrast blood pool T1 values for the manual calcu-
lation of ECV were obtained drawing a ROI in the blood pool of the
pre- and post-contrast T1 maps.
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Myocardial ECV values obtained both using and not using pre-
and post-contrast image registration were compared to evaluate
the influence of coregistration in ECV mapping.

2.6. Statistical analysis

All continuous variables are expressed as their mean and
standard deviation. Variables estimated through fitting procedures
are expressed as the parameter value, and uncertainty is expressed
as propagation of uncertainty. Comparison between two means
was performed using two-sided paired t-tests with p < 0.05
considered statistically significant in all analyses. Correlation
between measurements was tested using Pearson’s linear correla-
tion coefficient, where r and p values are provided. Bland-Altman
analysis and graphs were used to compare results from different
software (ECVmap and MRmap) and they were computed using
Graph Pad Prism 6 (GraphPad Software, La Jolla California USA,
www.graphpad.com).
3. Results

3.1. Phantom study

In the first part of the study, the software was tested on phan-
toms. Fig. 1 shows an example of a T1 map obtained by scanning
the phantoms with MOLLI sequences and subsequent reconstruc-
tion using our software.

T1 maps obtained in phantoms were compared to those
obtained using MRmap. Bland-Altman plots for phantom data are
shown in Fig. 3a. A bias of 0.0014 and a confidence interval (CI)
between �0.006 and 0.009 ms were found.

Mean residuals representing the distance between the experi-
mental and corresponding points on the fitting are considered for
both pre- and post-contrast MOLLI acquisition schemes. Gaussian
curve fittings yielded full width at half maximum (FWHM) values
comparable to both pre- and post-contrast T1 values (2.01 and
2.38, respectively, see Fig. 4a and b).

No differences related to the phantom data were reported using
the complex or magnitude fitting procedure in the entire T1 range.
Fig. 1. An example of T1 map for phantom acquired using MOLLI sequence and
processed with using FNLS algorithm.
3.2. Human study: T1 mapping

The software was then tested on in vivo data from healthy sub-
jects. Using the complex method to fit the pre-contrast data, a
mean myocardial T1 value of 1012 ± 48 ms was found in close
agreement with the MRmap value (1015 ± 54 ms) as reported also
using the Bland-Altman analysis (bias = 2.9 ms and CI between
�6.8 and 12.7 ms, see Fig. 3b). Using complex fitting on post-
contrast images, the healthy subjects presented higher post-
contrast blood pool T1 values with respect to complex fitting
(T1 = 304 ± 33 ms with magnitude fitting and T1 = 365 ± 10 ms
with complex fitting, p < 0.001). The blood pool T1 values are
important for an accurate ECV calculation (see formula (10)). To
establish the correct post-contrast blood pool T1 values, these T1
values were compared to those obtained using MRmap
(T1 = 301 ± 39 ms). Analysis showed that magnitude fitting used
for the post-contrast dataset resulted in blood pool T1 values com-
parable to the reference standard (p = 0.89), whereas complex fit-
ting yielded results statistically different from the reference
standard (p < 0.001). Finally, Bland–Altman analysis of post-
contrast myocardial values resulted in bias = 0.16 ms with CI
between �4.4 and 4.1 ms in post-contrast images (see Fig. 3c).

An example of pre- and post-contrast T1 maps obtained using
complex and magnitude fitting, respectively, is shown in Fig. 2.

As to the in vivo data, Gaussian fitting of the mean residuals
showed a FWHM comparable to both pre- and post-contrast T1
values (11.47 and 11.75, respectively). In Fig. 4, mean residuals
of phantom and human data both in pre- and post-contrast MOLLI
acquisitions are shown.

Table 1 shows the mean pre- and post-contrast T1 values in the
entire myocardium, septum and lateral wall in healthy subjects. No
significant differences were found in pre- and post-contrast T1
values the in septum and lateral wall compared to the entire
myocardium (p = 0.22 and p = 0.17, respectively).

The two fitting procedures differ in terms of computational
velocity. Table 2 shows times (in s) required for magnitude and
complex fitting using different masks.

Validation using MRmap was also performed on the patient
data. A strong correlation with MRmap was found in both pre-
and post-contrast datasets. A bias of 0.6 ms and CI between
�7.2 ms and 8.4 ms was found in native T1 images, and a bias of
0.95 ms and CI between�4.5 ms and 6.4 ms was found in post con-
trast dataset.
3.3. Human study: ECV mapping

The new software designed for ECV mapping was tested in both
healthy subjects and patients. An example of ECV map obtained in
a healthy subject is shown in Fig. 5. The mean ECV value found in
the healthy subjects was 24.5% ± 2.5%.

As explained in Section 2, the binary mask using a pixel thresh-
old greater than 1250 ms in pre-contrast T1 maps is applied on a
selected region of the image that includes the entire myocardium.
Considering all slices obtained in all the subjects (8 healthy sub-
jects and 22 patients), comparing automatic blood pool T1 values
using the mask with those obtained with manual segmentation,
a significant correlation in both pre- (automatic T1 val-
ues = 1404 ± 83 ms, manual T1 values = 1440 ± 104 ms, r = 0.92
p < 0.001) and post- (automatic T1 values = 332 ± 43 ms, manual
T1 values = 329 ± 44 ms, r = 0.91 p < 0.001) contrast datasets was
found. Subsequently, the myocardium ECV values obtained in
healthy subjects and patients were tested. In myocardium ECV
values calculated using the two approaches, a significant
correlation (automatic ECV values = 31.72% ± 7% manual ECV
values = 34.82% ± 8.6%, r = 0.81 p < 0.001) was found.

http://www.graphpad.com


Fig. 2. On the left the pre-contrast T1 map for a healthy subject using complex fit is shown. On the right the corresponding post-contrast T1 map using magnitude fit.

500 1000 1500 2000

-0.010

-0.005

0.000

0.005

0.010

AverageD
iff
er
en
ce

Phantoms

Fig. 3. Bland-Altman plots show the agreement between our T1 fitting results and MRmap for phantoms, pre- and post-contrast healthy subject images respectively. The 95%
confidence interval limits of agreement are displayed. All values are presented as differences (ms).
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Coregistration between pre- and post-contrast images yields
significantly different ECV values compared to not coregistered
data (p < 0.01). Fig. 6 shows a box plot of ECV values obtained in
8 healthy subjects with and without coregistration between pre-
and post-contrast maps and an example of coregistered and not
coregistered maps. The quality of the ECV map is improved using
our affine coregistration.

Finally, the patient group was retrospectively evaluated and 11
out of 22 patients presented LGE areas. In these patients, the LGE+
areas and LGE� areas in the interventricular septum were seg-
mented. Native T1, post-contrast-T1 and ECV values in LGE+ vs
LGE� areas within the septum presented significant differences.
The results are summarized in Table 3.
4. Discussion

In this study a new tool for T1 mapping and ECV mapping is
presented. In T1 mapping, the FNLS fitting algorithm was imple-
mented using both complex and magnitude procedures that were
tested on phantoms and human data. Phantom data were used as
reference standard to test the accuracy of the method. Two differ-
ent MOLLI sequence schemes were used in pre- and post-contrast
scans: the first increases the accuracy of T1 measurements in high
T1 value tissues, such as native myocardial T1, whereas the second
scheme is more accurate in low T1 value tissues, e.g. post-contrast
acquisitions [10]. In deed, in pre-contrast images fewer points
were acquired because T1 values were higher and consequently
the recovery curve was less steep. For this reason, the eight points
sampled during recovery of magnetization were distributed along
the entire inversion time interval (i.e. from 100 to 3000 ms). How-
ever, after contrast agent injection, T1 of blood pool and tissues
decreased and recovery of magnetization was fast. This required
sampling of more points in a short inversion time, and therefore
also before the zero crossing. In order to test the robustness of
the fitting algorithm, T1 maps obtained were compared to those
generated using a reference software, MRmap [12].

Furthermore, no differences are reported using complex fitting
and magnitude fitting on the phantom datasets. In the phantom
data all points were well fitted, as suggested by Fig. 3 where mean
fitting residuals are shown.

In the second part, the FNLS T1 map fitting algorithm was vali-
dated on healthy subjects. The in vivo data present some critical
points compared to the phantoms, such as movements caused by
heart beat and breath and different magnetic susceptibility leading
to reduced magnetic field homogeneity and physiological varia-
tions in vivo [19]. In the data analysis, apical slices were not consid-
ered because these slices are strongly affected by partial volume
error caused by imperfect orthogonal slice positioning with respect
to the heart axis.

As shown in the Section 3, fast, robust and reliable T1 maps
were obtained using complex fitting of pre-contrast maps and



Fig. 4. The mean residual plots and their Gaussian fits both for phantom (panels a) for pre-contrast acquisition scheme and b) for post-contrast acquisition scheme) and
healthy subjects (panels c) for pre-contrast images and d) for post-contrast images) are shown in figure.

Table 1
Mean pre-and post-contrast T1 values (±SD) for ROI placed in whole myocardium,
septum and lateral wall for healthy subjects are reported in table. No significant
differences in mean T1 values are found between myocardial regions compared to
whole myocardium (p = 0.22 for septum and p = 0.17 for lateral wall).

Pre contrast T1
values (ms)

Post contrast t1
values (ms)

Whole Myocardium 1012 ± 48 461 ± 33
Septum 997 ± 45 470 ± 36
Lateral wall 994 ± 36 474 ± 33

Table 2
Computational velocity (s) for magnitude and complex fitting considering different
threshold are shown in table. Time values are obtained using a 2.9 GHz Intel Core i7
processor with 8 GB of RAM.

Threshold value Number of
fitted voxels

Complex
fitting (s)

Magnitude
fitting (s)

0.05 31,080 33 66
0.005 46,143 48 93
0.0005 51,402 54 107
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magnitude fitting of post-contrast T1 maps. Complex fitting of high
T1 values provides fast and reliable native T1 maps compared to
the reference software MRmap, but also compared to the MOLLI
sequence values reported in the literature [16,17]. However, the
use of this fitting procedure on post-contrast data led to an overes-
timation of the blood pool post-contrast T1, which considerably
affected the ECV calculation.

In order to validate the proposed T1 fitting, results obtained
using our new fitting algorithm were compared to the maps
obtained using an already validated software for T1 mapping such
as MRmap. In comparison with MRmap software, which uses the
Levenberg-Marquardt method to solve the non-linear least square
problems, our fitting method is reliable and robust both on phan-
toms and in vivo data. The CIs of the two methods both in pre-
and post-contrast datasets are significantly reduced compared to
the errors in T1 measurements using MOLLI sequence. As example,
considering the highest bias (2.9 ms) and CI (about 20 ms) found
for pre-contrast dataset, they are lower compared to the error of
T1 mapping technique itself (see i.e. Ref. [18]). Indeed, MOLLI
sequence underestimates T1 of about 8–10% at high T1 values
(around 1000 ms), while differences between algorithms are less
than 2% for these T1 values. The strong agreement between



Fig. 5. ECV map generated using our software for a healthy subject.

Fig. 6. On the left the box and whiskers plot shows median, 25 and 75 percentiles, and range for coregistrate versus not coregistrate ECV values for healthy subjects. Images
show an example of the improvement in ECV map using image coregistration. In the central panel the non coregistered ECV map is shows while on the right the same map
using image coregistration of pre- and post-contrast T1 maps is provided.

Table 3
Mean native T1, post-Gd T1 and ECV in LGE+ segments and LGE� segments. For all the
maps the differences between fibrotic and non fibrotic segments is highly significant
(p < 0.001).

LGE+ LGE� p-value

Native T1 (ms) 1135 ± 84 984 ± 78 <0.001
Post-Gd T1 (ms) 400 ± 31 469 ± 51 <0.001
ECV (%) 38 ± 6.7 28.5 ± 2.9 <0.001
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methods is also confirmed by patient data both for pre and post
contrast datasets.

A comparison between Levenberg-Marquardt algorithms and
complex fitting on the T1 mapping was carried out by Barral
et al. [15]. The authors found that complex fitting and the
Levenberg-Marquardt algorithms were very similar in terms of
accuracy. In addition to this, the complex algorithms were much
faster than the Levenberg-Marquardt algorithms. In the present
study, the different computational velocities of Levenberg-
Marquardt and FNLS algorithms were not investigated, but we con-
firm the agreement between the fitting method presented and the
classical Levenberg-Marquardt algorithm. Furthermore, Barral
et al. [15] did not report differences in terms of accuracy between
complex and magnitude fittings but they considered only the
native T1 values in non-cardiac application. In our study, different
T1 values were found in post-contrast blood pool values using both
complex and magnitude fittings. These values were compared to
MRmap output showing that magnitude fitting guaranteed accu-
racy at low T1 values. This different behavior of magnitude and
complex fittings may be explained by the differences in the recov-
ery curve in high and low T1 values. Because of the rapid increase
in the recovery curve in short T1 tissues, post-contrast images are
favored by a magnitude fitting that guarantees a more precise zero
crossing, although with a slower computational velocity. Further-
more, magnitude fitting is slower than complex fitting as shown
in Table 2, because the former has to compute an additional min-
imization process to find the zero crossing. These differences in
accuracy, which apply only to in vivo data, are caused by move-
ments, irregular heart rates and inhomogeneity in the magnetic
field affecting the pre- and post-contrast in vivo T1 values in differ-
ent ways. All these factors lead to differences between acquired
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and fitted points, as it can be seen from the FWHM of the residuals
obtained from in vivo data (Fig. 4).

No statistically significant differences were found between the
different myocardial regions (entire myocardium, septum and lat-
eral wall) as reported by Messroghli et al. [16] where no differ-
ences in native T1 values were detected between the cardiac
segments in any of the slices (basal, medial and apical). A compar-
ison with post-contrast values reported in the literature is of no
use, because post-contrast T1 values change depending on the time
elapsed from contrast injection due to individual renal and meta-
bolic activity in the subjects. Mean ECV values in healthy subjects
are in agreement with the literature [6,17,18], in particular with
the values found by Kellman et al. [6] who studied a bigger sample
of 62 subjects. The obtained range (mean ± 2SD) for normal
myocardial ECV of 19.1%–29.9% is in close agreement with the
results reported by Kellman et al., i.e. 20.4%–30.4%. In all 30 sub-
jects, healthy volunteers and patients with a wide range of
pathologies, manually extracted values correlated with automatic
values. In this way, a significant correlation was found between
automatic segmentation of blood pool both in pre- and post-
contrast T1. This means that our binary mask efficiently distin-
guished blood pool related pixels thus minimizing partial volume
effects and other confounding factors. Manual versus automatic
myocardial ECV approach was also tested in all the subjects. The
highly significant correlation between the values confirms the reli-
ability of our maps in a wide range of ECVs (in healthy and patho-
logical subjects).

Affine coregistration of pre- and post-contrast T1 maps is neces-
sary to obtain reliable T1 maps. As can be seen from the example in
Fig. 6, coregistration can improve the quality of the individual ECV
map. Moreover, considering ECV values obtained in healthy sub-
jects with and without coregistration, a significant difference
between values and an increased CI in not co-registered maps
was found. The use of coregistration algorithm in conjunction with
motion corrected images leads to more reliable and robust ECV
maps, as reported by Kellman et al. [6]. The advantage of ECV map-
ping over native T1 mapping is that it minimizes systematic errors,
permits a better comparison of scans at different time points and
results in less variability at different magnetic field strengths and
across different vendor platforms [20]. Clinically, there is a wide
spread of ECV values with overlap of values between normal and
diseased myocardium. This makes it problematic for diagnostic
purposes and more suited to measurement of interval changes
among individuals. The capability of our T1 and ECV maps to dis-
criminate between pathologic versus normal myocardium was
proved considering the LGE positive segments. Significant differ-
ences between the maps were found comparing native and post-
contrast T1values and ECV in LGE+ versus LGE� areas.
5. Conclusions

FNLS algorithm for T1 fitting is fast and robust, and reliable pre-
and post-contrast T1 maps of myocardium can be obtained. The
myocardial T1 values obtained in healthy subjects using our soft-
ware correlate with those obtained using MOLLI sequences
reported in the literature. Before starting ECV mapping, image
coregistration between pre- and post-contrast T1 maps was imple-
mented. This pre-processing step improved the quality of individ-
ual ECV maps and provided reliable ECV values with a smaller CI.
The second pre-processing step is the automatic mask for blood
pool extraction that provides automatic and operator independent
ECV maps.

ECV mapping was implemented so that it was possible to obtain
a myocardial ECV in healthy subjects in line with the literature.
Furthermore, pixel-wise ECV maps obtained with this automatic
method permitted a direct visualization of the extent and severity
of myocardial alterations as compared to the manual approach.
Furthermore, T1 mapping acquisition is increasingly available on
MR scanners and this proposed tool complements myocardial tis-
sue characterization workflow required for ECV map generation.
This software is automatic and operator independent and can be
a robust and powerful tool for clinicians. The possibility to intu-
itively visualize T1 and ECV maps in addition to the user-friendly
interface can promote diffusion of this promising technique. The
ECVmap tool is freely available at the following address: https://
github.com/iacopo-carbone/ECVmap under the GNU General Pub-
lic License (GPL) only for research purpose.
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