SCHUBERT QUIVER GRASSMANNIANS

GIOVANNI CERULLI IRELLI, EVGENY FEIGIN, MARKUS REINEKE

Abstract

Quiver Grassmannians are projective varieties parametrizing subrepresentations of given dimension in a quiver representation. We define a class of quiver Grassmannians generalizing those which realize degenerate flag varieties. We show that each irreducible component of the quiver Grassmannians in question is isomorphic to a Schubert variety. We give an explicit description of the set of irreducible components, identify all the Schubert varieties arising, and compute the Poincaré polynomials of these quiver Grassmannians.

Introduction

Let $R_{\bullet}=R_{1} \subseteq R_{2} \subseteq \cdots \subseteq R_{n} \subseteq V$ and $Q_{\bullet}=Q_{1} \subseteq Q_{2} \subseteq \cdots \subseteq$ $Q_{n} \subseteq V$ be two flags in a complex vector space $V \simeq \mathbf{C}^{N}$, such that $Q_{i} \subseteq R_{i}$ for all $i=1,2, \cdots, n$ and such that they are both fixed by a Borel subgroup B of $G L_{N}$. In this paper we study varieties consisting of flags E_{\bullet} in a partial flag manifold $\mathrm{Fl}_{\left(f_{1}, f_{2}, \cdots, f_{n}\right)}(V)$ of V such that $Q_{i} \subseteq E_{i} \subseteq R_{i}$ for all $i=1,2, \cdots, n$. By assumption, these subvarieties of $\mathrm{Fl}_{\left(f_{1}, f_{2}, \cdots, f_{n}\right)}(V)$ are B-stable, hence they are unions of finitely many Schubert varieties. We show that such varieties arise as suitable quiver Grassmannians of equioriented type A_{n}-quivers and we call them Schubert quiver Grassmannians (SQG for short). This observation allows, on one side, to study the geometry of SQGs via representation theory of quivers, and on the other side to study the geometry of such quiver Grassmannians using the theory of Schubert varieties.

Recall that, if Γ is a finite quiver with set of vertices Γ_{0}, and M is a finite-dimensional complex Γ-representation, then for a dimension vector $\mathbf{e} \in \mathbb{Z}_{\geq 0}^{\Gamma_{0}}$, the quiver Grassmannian $\operatorname{Gr}_{\mathbf{e}}(M)$ is the (complex) variety of \mathbf{e}-dimensional sub-representations of M. In [3], the case when Γ is Dynkin (i.e. an orientation of a simply-laced Dynkin diagram) and $M=P \oplus I$ - the sum of a projective and an injective representation of Γ - was studied. More precisely, it was shown that the varieties $\operatorname{Gr}_{\operatorname{dim} P}(P \oplus I)$ enjoy many nice properties. In particular, they are irreducible varieties endowed with the action of a large abelian unipotent group, acting with an open dense orbit. An example of such varieties is provided by the type A degenerate flag varieties [5], [6]. In this case, Γ is the equioriented type A quiver, P is the direct sum of all indecomposable projective representations and I is the direct sum of all indecomposable injective representations. It was shown
in [1], [2] that the above mentioned abelian unipotent group can be identified with a certain subgroup of a Borel subgroup of the group $S L_{N}$ (note that N here is much larger than the number of vertices of the initial quiver). Moreover, the quiver Grassmannian itself can be identified with a Schubert variety for $S L_{N}$. The main reason why the Borel subgroup appears is that the indecomposable direct summands of $M=P \oplus I$ form a chain (that is, a totally ordered subset) with respect to the partial ordering induced by the Auslander-Reiten quiver of Γ.

This observation motivates the following more general definition: Let Γ be a Dynkin quiver and let M_{1}, \ldots, M_{r} be a set of indecomposable representations forming a chain with respect to the partial ordering induced by the Auslander-Reiten quiver. We call a direct sum $M=$ $\bigoplus_{i=1}^{r} M_{i}^{\oplus a_{i}}$ catenoid.

From now on let Γ be a quiver of equioriented type A_{n}. In this case, there is a natural way to embed every quiver Grassmannian $\operatorname{Gr}_{\mathbf{e}}(M)$ into a flag manifold: consider a minimal projective resolution

$$
0 \longrightarrow Q \xrightarrow{\iota} R \longrightarrow M \longrightarrow 0
$$

of a representation M. Then $\operatorname{Gr}_{\mathrm{e}}(M)$ is isomorphic (as a scheme) to the variety $\operatorname{Gr}_{\mathbf{f}}(Q \rightarrow \iota R)$ consisting of sub-representations of R of dimension vector $\mathbf{f}:=\mathbf{e}+\operatorname{dim} Q$ containing $\iota(Q)$ (see Proposition 2.1). Since all the maps defining Q and R are injective, they induce flags inside the vector space R_{n}, and hence the quiver Grassmannian $\operatorname{Gr}_{\mathbf{e}}(M)$ embeds into a flag manifold of R_{n}. We refer to this construction as the natural embedding of a quiver Grassmannian inside a flag manifold. Notice that $R_{n} \simeq \mathbf{C}^{N}$ where $N=a_{1}+\cdots+a_{r}$ is the number of indecomposable direct summands of M. Our first result is the following.

Theorem 0.1. The natural embedding of $\operatorname{Gr}_{\mathbf{e}}(M)$ inside a flag manifold is stable under the action of a Borel subgroup $B_{N} \subset G L_{N}$ if and only if M is catenoid. In this case, $\operatorname{Gr}_{\mathbf{e}}(M)$ is a $S Q G$ and every $S Q G$ arises in this way. The irreducible components of SQGs are Schubert varieties and can be explicitly described. The Schubert cells - the $B_{N^{-}}$ orbits - provide a cellular decomposition of $\operatorname{Gr}_{\mathbf{e}}(M)$ and they are stable under the action of $\operatorname{Aut}(M)$; in particular the points of a given cell are all isomorphic as representations of Γ.

It is a natural question to ask when a SQG is a Schubert variety, or, in other words, when it is irreducible. In general, a SQG can be factored into a product of several SQGs associated with representations of smaller quivers of equioriented type A. If this is not the case we say that the SQG is simple (see Definition 3.3). It is hence enough to answer this question for a simple SQG.
Theorem 0.2. Let M be catenoid. A simple $S Q G \operatorname{Gr}_{\mathrm{e}}(M)$ is a $S c h u-$ bert variety if and only if there exists a projective representation P and
an injective representation I such that M fits into an exact sequence $0 \rightarrow P \rightarrow M \rightarrow I \rightarrow 0$ and $\mathbf{e}=\operatorname{dim} P$. In this case, every point of the open B_{N}-orbit corresponds to a subrepresentation of M isomorphic to P.

Given a catenoid representation M and a dimension vector e, we give a combinatorial description of the set of irreducible components of $\operatorname{Gr}_{\mathrm{e}}(M)$. For each irreducible component, we identify the partial flag variety containing the corresponding Schubert variety, and the corresponding Weyl group element. We show that the natural action of $\operatorname{Aut}(M)$ on $\operatorname{Gr}_{\mathrm{e}}(M)$ becomes, after the natural embedding into a flag manifold, the action of the parabolic subgroup of $G L_{N}$ consisting of all automorphisms of R which fix $\iota(Q) \subseteq R$. We also compute the Poincaré polynomials of SQGs.

The paper is organized as follows. In Section 1 we fix the notation and introduce the objects of study. In Section 2 we provide a link to the theory of Schubert varieties. In Section 3 we describe the irreducible components of SQGs. In Section 4 we compute their Poincaré polynomials.

1. The setup

1.1. General definitions. Let $\Gamma=\Gamma_{n}:=1 \longrightarrow 2 \longrightarrow \cdots \longrightarrow n$ be an equioriented quiver of type A_{n}, for some fixed integer $n \geq 1$. The indecomposable representations for this quiver are parametrized by (integer) subintervals $[i, j]$ of the interval $[1, n](1 \leq i \leq j \leq n)$. We denote the corresponding indecomposable representation by $M[i, j]$, and we say that the support of $M[i, j]$ is the interval $[i, j]$. Any representation M can be written in an essentially unique way as $M=$ $\bigoplus_{1 \leq i \leq j \leq n} M[i, j]^{\oplus m_{i j}}$ for some non-negative integers $m_{i j}$. We denote the dimension vector $\mathbf{d}=\left(d_{1}, \cdots, d_{n}\right)$ of M by $\operatorname{dim} M$. We note that, for every vertex i, the projective cover of the simple representation $S_{i}=M[i, i]$ is $P_{i}:=M[i, n]$, and its injective envelope is $I_{i}:=M[1, i]$. The Euler form $\langle\cdot, \cdot\rangle: \mathbb{Z}^{n} \times \mathbb{Z}^{n} \rightarrow \mathbb{Z}$ of Γ is defined by

$$
\langle\mathbf{e}, \mathbf{d}\rangle:=\sum_{i=1}^{n} e_{i} d_{i}-\sum_{i=1}^{n-1} e_{i} d_{i+1}
$$

for any $\mathbf{e}, \mathbf{d} \in \mathbb{Z}^{n}$.
The Auslander-Reiten quiver of Γ is described as follows: its vertices are parametrized by pairs (i, j) for $1 \leq i \leq j \leq n$, and the arrows are $(i, j) \rightarrow(i-1, j)$ and $(i, j) \rightarrow(i, j-1)$ (whenever the targets are well defined).

We are interested in the special class of Γ-representations defined as follows.

Definition 1.1. We say that a Γ-representation M is catenoid if all the distinct indecomposable direct summands of M belong to an oriented connected path of the Auslander-Reiten quiver of Γ.

Recall that a subset $\mathbf{p} \subset\{(i, j): 1 \leq i \leq j \leq n\}$ is a Dyck path on $[1, n]$ if we can order the elements of \mathbf{p} as $\left(p_{1}, \ldots, p_{r}\right)$ in such a way that $p_{1}=(1,1), p_{r}=(n, n)$, and if $p_{m}=\left(i_{m}, j_{m}\right)$, then $p_{m+1}=\left(i_{m}, j_{m}+1\right)$ or $p_{m+1}=\left(i_{m}+1, j_{m}\right)$. We say that a representation M is supported on \mathbf{p} if $(i, j) \in \mathbf{p}$ for each indecomposable direct summand $M[i, j]$ of M. The oriented connected paths of the Auslander-Reiten quiver of Γ are precisely the Dyck paths (on $[1, n]$). It follows that M is catenoid if and only if it is supported on a single Dyck path.

Another way to view this definition is the following. Consider the set $\mathcal{P}([1, n])$ of all connected sub-intervals of the interval $[1, n]$ (those are precisely the vertices of the Auslander-Reiten quiver of Γ). We endow $\mathcal{P}([1, n])$ with the following partial ordering:

$$
\begin{equation*}
[i, j] \leq[k, \ell] \stackrel{\text { def }}{\Longleftrightarrow} i \leq k \text { and } j \leq \ell \tag{1.1}
\end{equation*}
$$

For example, for $n=4$, we have:

We have an induced partial order on the set of (isoclasses of) indecomposable Γ-representations:

$$
\begin{equation*}
M[i, j] \leq M[k, \ell] \stackrel{\text { def }}{\Longleftrightarrow}[i, j] \leq[k, \ell] . \tag{1.2}
\end{equation*}
$$

Lemma 1.2. $M[i, j] \leq M[k, \ell]$ if and only if there exists an oriented (connected) path from $M[k, \ell]$ to $M[i, j]$ in the Auslander-Reiten quiver of Γ. In particular, a representation M is catenoid if and only if the set of its distinct direct summands form a totally ordered set with respect to the partial order (1.2).

Proof. Recall that the arrows of the Auslander-Reiten quiver are either of the form $(x, y) \rightarrow(x-1, y)$ (pointing NE) or $(x, y) \rightarrow(x, y-1)$ (pointing SE). Let (k, ℓ) and (i, j) be two vertices. It is hence clear that there is an oriented connected path from (k, ℓ) to (i, j) if and only if $i=k-s$ and $j=\ell-t$ for some $0 \leq s \leq k$ and $0 \leq t \leq \ell$. In other words, there is such a path from (k, ℓ) to (i, j) if and only if $[i, j] \leq[k, \ell]$ as desired. The rest follows.

Example 1.3. Examples of catenoid representations are $P \oplus I$, where P is projective and I is injective. In [3, 4], the quiver Grassmannians $\operatorname{Gr}_{\operatorname{dim} P}(P \oplus I)$ were studied (see Example 3.9). Another class of examples is provided by those representations which are direct sums of one and two-dimensional indecomposables. The composition of the
linear maps forming such representations is zero and hence they are complexes (see Example 3.11).

2. Quiver Grassmannians associated with catenoid REPRESENTATIONS

We retain notation of the previous section. So, Γ is an equioriented quiver of type A_{n}. Given a Γ-representation M and a dimension vector $\mathbf{e} \in \mathbb{Z}_{\geq 0}^{n}$ we denote by $\operatorname{Gr}_{\mathbf{e}}(M)$ the projective varieties consisting of all subrepresentations of M of dimension vector e (see [3, Section 2] for details).

There is a natural way to realize $\operatorname{Gr}_{\mathbf{e}}(M)$ as a closed subvariety of a partial flag manifold, generalizing the idea of [1]. Let us describe this realization. A minimal projective resolution of M is given by

$$
\begin{equation*}
0 \rightarrow Q \stackrel{\iota}{\gtrdot} R \stackrel{\pi}{\rightarrow} M \rightarrow 0 \tag{2.1}
\end{equation*}
$$

where $R=\bigoplus_{1 \leq i \leq n} P_{i}^{\left[M, S_{i}\right]}$ and $Q=\bigoplus_{1 \leq i \leq n} P_{i}^{\left[M, S_{i}\right]^{1}}$, and we use the standard notation

$$
[M, N]:=\operatorname{dim} \operatorname{Hom}_{\Gamma}(M, N) \quad \text { and } \quad[M, N]^{1}:=\operatorname{dim} \operatorname{Ext}_{\Gamma}^{1}(M, N)
$$

We note that the arrows of Γ act as injective linear maps on every projective $\mathbf{C} \Gamma$-module (recall that the category of Γ-representations is equivalent to the category of modules over the path algebra of Γ, which is the \mathbf{C}-vector space generated by paths of Γ with obvious multiplicative structure), and hence R is a partial flag $R=R_{\mathbf{\bullet}}:=R_{1} \subseteq R_{2} \subseteq$ $\cdots \subseteq R_{n-1} \subseteq R_{n}$. Here the R_{i} 's are finite dimensional vector spaces of dimension $\operatorname{dim} R_{i}=: r_{i}=\sum_{k \leq i}\left[M, S_{k}\right]$ (for all $i=1, \cdots, n$). In particular the dimension N of the vector space R_{n} is precisely the number of indecomposable direct summands of M. Similarly, the representation Q is a partial flag $Q=Q_{\bullet}:=Q_{1} \subseteq Q_{2} \subseteq \cdots \subseteq Q_{n-1} \subseteq Q_{n}$, where Q_{i} is a vector subspace of R_{i} of dimension $\operatorname{dim} Q_{i}=: q_{i}=\sum_{k \leq i}\left[M, S_{k}\right]^{1}$ (for all $i=1, \cdots, n$). Note that the vector space Q_{1} is zero: indeed, $\left[M, S_{1}\right]^{1}=0$ since S_{1} is injective.
For a vector space V of dimension m, and an increasing sequence $\mathbf{f}=\left(f_{1}, f_{2}, \cdots, f_{n}\right)$ of non-negative integers $0 \leq f_{1} \leq f_{2} \leq \cdots \leq f_{n}$ we denote by $\mathrm{Fl}_{\mathbf{f}}(V)$ the variety of partial flags $\mathcal{U}_{\bullet}:=\left(\mathcal{U}_{1} \subseteq \mathcal{U}_{2} \subseteq \cdots \subseteq\right.$ $\left.\mathcal{U}_{n} \subseteq V\right)$ in V with $\operatorname{dim} \mathcal{U}_{i}=f_{i}$.

We consider the dimension vector $\mathbf{f}:=\mathbf{e}+\operatorname{dim} Q$, and the variety $\operatorname{Gr}_{\mathbf{f}}(Q \rightarrow \iota R) \subset \mathrm{Fl}_{\mathbf{f}}\left(R_{n}\right)$ of partial flags \mathcal{U}_{\bullet} in R_{n} such that

$$
\begin{equation*}
\iota_{j}\left(Q_{j}\right) \subseteq \mathcal{U}_{j} \subseteq R_{j} \quad(j=1, \cdots, n) \tag{2.2}
\end{equation*}
$$

The variety $\operatorname{Gr}_{\mathbf{f}}(Q \rightarrow \imath R)$ is a closed subvariety of $\mathrm{Fl}_{\mathbf{f}}\left(R_{n}\right)$, and the following result provides the required closed embedding $\operatorname{Gr}_{\mathbf{e}}(M) \subset$ $\mathrm{Fl}_{\mathbf{f}}\left(R_{n}\right)$.

Proposition 2.1. The map $\varphi: \operatorname{Gr}_{\mathbf{e}}(M) \rightarrow \mathrm{Fl}_{\mathbf{e}+\operatorname{dim} Q}\left(R_{n}\right)$ defined by

$$
\varphi(N)=\left(\pi^{-1}(N)\right)_{1} \subseteq\left(\pi^{-1}(N)\right)_{2} \subseteq \cdots \subseteq\left(\pi^{-1}(N)\right)_{n}
$$

is a closed embedding. The image is the variety $\operatorname{Gr}_{\mathbf{f}}(Q-\iota R)$.
Proof. Since π is surjective, the map $N \mapsto \pi^{-1}(N)$ is an isomorphism of $\operatorname{Gr}_{\mathrm{e}}(M)$ with the variety of all sub-representations of R which contain Ker $\pi=\iota(Q)$, and whose dimension vector is $\mathbf{f}=\mathbf{e}+\operatorname{dim} \operatorname{Ker} \pi$. It is straightforward to verify that it is a closed embedding (see e.g. [8, Section 3.2]).

In the special case when the subvariety $\operatorname{Gr}_{\mathbf{f}}(Q-\mapsto R)$ of $\mathrm{Fl}_{\mathbf{f}}\left(R_{n}\right)$ is closed under the action of a Borel subgroup of $G L\left(R_{n}\right)$, we call it a Schubert quiver Grassmannian (SQG for short). The following result provides a characterization of SQGs.

Theorem 2.2. The subvariety $\operatorname{Gr}_{\mathbf{f}}(Q-\iota R) \subseteq \mathrm{Fl}_{\mathbf{f}}\left(R_{n}\right)$ is closed under the action of a Borel subgroup of $G L\left(R_{n}\right)$ if and only if M is catenoid.

Proof. We show that M is catenoid if and only if there exists a complete flag F_{\bullet} which is a refinement of both R_{\bullet} and Q_{\bullet}. In other words, M is catenoid if and only if there exists an ordered basis $\left\{v_{1}, \cdots, v_{N}\right\}$ of the vector space R_{n} such that $R_{i}=\operatorname{span}\left\{v_{1}, \cdots, v_{r_{i}}\right\}$ and $Q_{i}=$ $\operatorname{span}\left\{v_{1}, \cdots, v_{q_{i}}\right\}$ for every $i=1, \cdots, n$. This is equivalent to the fact that both R_{\bullet} and $Q_{\text {e }}$ are fixed by the Borel subgroup of upper triangular matrices, and hence the claim holds true.

If there exists such a basis, then the $\mathbf{C} \Gamma$-module structure on R is given naturally as follows: the underlying vector space is $\oplus_{i=1}^{n} R_{i}$ generated by the induced basis

$$
\mathcal{B}=\left\{v_{1}^{(1)}, \cdots, v_{r_{1}}^{(1)}\right\} \cup\left\{v_{1}^{(2)}, \cdots, v_{r_{2}}^{(2)}\right\} \cup \cdots \cup\left\{v_{1}^{(n)}, \cdots, v_{N}^{(n)}\right\}
$$

and the action of the path $(i \rightarrow i+1 \rightarrow \cdots \rightarrow j) \in \mathbf{C} \Gamma$ is given by the canonical embedding sending $v_{k}^{(i)} \mapsto v_{k}^{(j)}$. For every $k=1, \cdots, N$, let $R(k)$ be the submodule generated by all the basis vectors $v_{k}^{(i)}$ for $i=i(k), \cdots, n$, where $i(k)$ is the minimal vertex of Γ such that $k \leq r_{i(k)}$ so that $v_{k}^{(i(k))}$ is defined. Clearly, $R(k)$ is a projective direct summand of R isomorphic to $P_{i(k)}$. Similarly, the module Q admits, by hypothesis, a sub-basis $\mathcal{B}^{\prime} \subset \mathcal{B}$, and we define the submodule $Q(k)$ similarly to $R(k)$. Then $Q(k)$ is isomorphic to the projective $P_{j(k)}$, where $j(k)$ is the minimal vertex such that $k \leq q_{j(k)}$ so that $v_{k}^{(j(k))}$ belongs to Q. By construction, $Q(k)$ embeds into $R(k)$, and the quotient is $M[i(k), j(k)-$ 1]. Hence all the indecomposable direct summands of M are of the form $M[i(k), j(k)-1]$, for $k=1, \cdots, N$. By construction, we have

$$
i(k) \leq i(s) \Longleftrightarrow k \leq s \Longleftrightarrow j(k) \leq j(s) .
$$

It follows that, given two distinct direct summands $M[i(k), j(k)-1]$ and $M[i(s), j(s)-1]$ of M such that $i(k)<i(s)$, we have $k<s$, and
hence $j(k)<j(s)$. This proves that all the direct summands of M are comparable with respect to the ordering (1.2), and hence M is catenoid by definition.

Now suppose that, conversely, $M=\bigoplus_{l=1}^{r} M(l)^{\oplus a_{l}}$ is catenoid with indecomposable direct summands $M(1), M(2), \cdots, M(r)$ ordered so that $M(l)<M(l+1)$ in the partial order (1.2). Their tops are the simples $S\left(i_{1}\right), S\left(i_{2}\right), \cdots, S\left(i_{r}\right)$ for some indices $1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{r} \leq n$, respectively, and their socles are $S\left(j_{1}\right), S\left(j_{2}\right), \cdots, S\left(j_{r}\right)$ for some vertices $1 \leq j_{1} \leq j_{2} \leq \cdots \leq j_{r} \leq n$, respectively. A minimal projective resolution of M is obtained as the direct sum of the minimal projective resolutions of the $M(l)$'s, namely

$$
0 \longrightarrow Q(l) \xrightarrow{\iota_{l}} R(l) \xrightarrow{\pi_{l}} M(l) \longrightarrow 0
$$

where $R(l)=P_{i(l)}, Q_{l}=P_{j(l)+1}$ and ι_{l} and π_{l} are the canonical homomorphisms. For every vertex i, the vector space R_{i} is the direct sum of the one-dimensional vector spaces $R(1)_{i}, R(2)_{i}, \cdots, R\left(r_{i}\right)_{i}$, and hence it admits a basis \mathcal{B}_{i} given by $v_{1}^{(i)}, v_{2}^{(i)}, \cdots, v_{r_{i}}^{(i)}$, where $v_{l}^{(i)}$ is the generator of $R(l)_{i}$. By construction, the vector subspace of R_{i} generated by $v_{1}^{(i)}, v_{2}^{(i)}, \cdots, v_{q_{i}}^{(i)}$ is Q_{i}.
2.1. Group action on SQGs. Let M be a Γ-representation with minimal projective resolution (2.1). Let e be a dimension vector for Γ and consider the quiver Grassmannian $\operatorname{Gr}_{\mathrm{e}}(M)$. The group Aut (M) (consisting of Γ-automorphisms of M) naturally acts on $\operatorname{Gr}_{\mathrm{e}}(M)$. On the other hand, the closed subvariety $\operatorname{Gr}_{\mathbf{f}}(Q \rightarrow \neg)$ of $\mathrm{Fl}_{\mathbf{f}}\left(R_{n}\right)$ (where $\mathbf{f}:=\mathbf{e}+\operatorname{dim} Q)$ is acted upon by the following group:

$$
\mathcal{P}_{M}:=\{f \in \operatorname{Aut}(R) \mid f \circ \iota=\iota\}
$$

which consists of those automorphisms of R which fix $\iota(Q) \subseteq R$. Since $\operatorname{Gr}_{\mathbf{e}}(M)$ and $\operatorname{Gr}_{\mathbf{f}}(Q \rightarrow>R)$ are isomorphic under the morphism φ of Proposition 2.1, it is natural to ask how those two actions are related. The next result says that they coincide.

Proposition 2.3. There is an exact sequence of groups

$$
1 \longrightarrow K \longrightarrow \mathcal{P}_{M} \xrightarrow{\Psi} \operatorname{Aut}(M) \longrightarrow 1
$$

where $K=1_{R}+\operatorname{Hom}_{\Gamma}(R, Q)$ and it acts trivially on $\operatorname{Gr}_{\mathbf{e}+\operatorname{dim} Q}(Q \rightarrow>R)$. In particular the action of \mathcal{P}_{M} on $\operatorname{Gr}_{\mathbf{e}+\operatorname{dim} Q}(Q \rightarrow \iota R)$ coincides with the action of $\operatorname{Aut}(M)$ on $\operatorname{Gr}_{\mathbf{e}}(M)$ under the isomorphism φ.
Proof. We define the map Ψ as follows: let $f \in \mathcal{P}_{M}$. For $m \in M$ we define $\Psi(f)(m):=\pi \circ f\left(\pi^{-1}(m)\right)$. First of all, we notice that Ψ is well-defined: indeed if $r, r^{\prime} \in \pi^{-1}(m)$ we have $r-r^{\prime} \in \iota(Q)$ and hence $\pi\left(f\left(r-r^{\prime}\right)\right)=\pi \circ f \circ \iota\left(r-r^{\prime}\right)=\pi \circ \iota\left(r-r^{\prime}\right)=0$. Moreover Ψ is easily seen to be a homomorphism of groups. Let us show that Ψ is onto: let $g \in \operatorname{Aut}(M)$, then, since $\pi: R \rightarrow M$ is a minimal projective resolution
of M, there exists $f \in \operatorname{Aut}(R)$ such that $g \circ \pi=\pi \circ f$ and thus $g=\Psi(f)$. Now, suppose that $\Psi(f)=1_{M}$; this means that $\pi \circ f-\pi=0$ or in other words: $\pi\left(f-1_{R}\right)=0$ which means that $f-1_{R} \in \operatorname{Hom}_{\Gamma}(R, Q)$.

Let $T \in \operatorname{Gr}_{\mathbf{e}+\operatorname{dim} Q}(Q \rightarrow \iota R)$ (so that $\pi(T) \in \operatorname{Gr}_{\mathbf{e}}(M)$), and let $f \in \mathcal{P}$. We need to check that

$$
\pi \circ f(T)=\Psi(f)(\pi(T))
$$

This follows immediately from the definition of Ψ and concludes the proof.

We now turn back our attention to catenoids. Let $M=\bigoplus_{l=1}^{r} M(l)^{\oplus a_{l}}$ be catenoid. Assume that each $M(l)$ is indecomposable and $M(l)<$ $M(l+1)$ in the partial order (1.2). Let us denote by $N=a_{1}+\cdots+a_{r}$ the number of indecomposable direct summands of M and we number them as $M_{1} \leq M_{2} \leq \cdots \leq M_{N}$ (each M_{i} is isomorphic to some $M(l))$. We fix an element $\phi_{i, j} \in \operatorname{Hom}_{\Gamma}\left(M_{j}, M_{i}\right), 1 \leq i, j \leq N$ in each homomorphism space (which is at most one-dimensional); we assume that $\phi_{i, j} \neq 0$ if $\operatorname{Hom}_{\Gamma}\left(M_{j}, M_{i}\right)$ is non zero. It is worth noting that $\phi_{i j}$ can be zero even if $i<j$. The elements $\phi_{i, j}$, considered as elements of $\operatorname{Hom}_{\Gamma}(M, M)$, span the vector space $\operatorname{Hom}_{\Gamma}(M, M)$. In particular, every element $\sum_{i, j} a_{i j} \phi_{i j}$ of $\operatorname{Aut}(M)$ comes from an $N \times N$ matrix $\sum_{i, j} a_{i j} E_{i j}$ (where $E_{i j}$ is the elementary matrix with 1 in place (i, j) and zero elsewhere); so the whole automorphism group of M can be seen as the image of the standard parabolic subgroup $P \subset G L_{N}$ with blocks of sizes a_{1}, \ldots, a_{r}. We thus obtain the homomorphism $P \rightarrow \operatorname{Aut}(M)$. In Proposition 2.5 we identify P with \mathcal{P}_{M} of Proposition 2.3 . We will need the following lemma.

Lemma 2.4. The group $\operatorname{Aut}(M)$ is generated by its Levi part $L(M)=$ $\prod_{l=1}^{r} \operatorname{Aut}\left(M(l)^{a_{l}}\right)$ and its unipotent part $U(M)$, generated by the oneparameter subgroups $\exp \left(z \phi_{i, j}, z \in \mathbb{C}\right)$ such that M_{i} and M_{j} are not isomorphic.

Proof. An automorphism of M is completely determined by restrictions to the indecomposable summands. This implies the lemma.

We now provide another characterization of catenoids. Let $M=$ $\bigoplus_{l=1}^{r} M(l)^{\oplus a_{l}}$ be a Γ-representation (not necessarily catenoid) with minimal projective resolution (2.1) and indecomposable direct summands $M_{1}, M_{2}, \cdots, M_{N}$. The automorphism group of R can be naturally embedded into $G L_{N}$ as follows: We denote the projective cover of each M_{i} by P^{i} so that $R=P^{1} \oplus P^{2} \oplus \cdots \oplus P^{N}$. Without loss of generality, we can assume that $P^{1} \leq P^{2} \leq \cdots \leq P^{N}$ in the partial order (1.2). We denote by $\rho_{i j}$ a generator of the vector space $\operatorname{Hom}_{\Gamma}\left(P^{j}, P^{i}\right)$ and by $\Omega=\left\{(i, j) \mid \rho_{i j} \neq 0\right\}$. Then an element $f \in$ $\operatorname{Aut}(R)$ has the form $\sum_{(i, j) \in \Omega} b_{i j} \rho_{i j}$ and we send this element to the ma$\operatorname{trix} \sum_{i, j} b_{i j} E_{i j} \in G L_{N}$. Notice that $\operatorname{Hom}_{\Gamma}\left(P^{j}, P^{i}\right)$ is one-dimensional
for every $1 \leq i \leq j \leq N$, and hence the set of all matrices $\sum_{(i, j) \in \Omega} b_{i j} E_{i j}$ form a parabolic subgroup of $G L_{N}$ that we denote by \mathcal{R} (\mathcal{R} contains the Borel subgroup of upper triangular matrices). Under the isomorphism $\operatorname{Aut}(R) \rightarrow \mathcal{R}$, we denote by P the image of the subgroup \mathcal{P}_{M} defined above.

Proposition 2.5. Let M be a Γ-representation. Then M is catenoid if and only if P is a parabolic subgroup of $G L_{N}$. In this case P is the standard parabolic subgroup of $G L_{N}$ associated with the partition $N=a_{1}+\cdots+a_{r}$ with Levi decomposition $P=L U$. The restriction of Ψ to L is an isomorphism to $L(M)$ and $\Psi(U)=U(M)$.

Proof. We know from the proof of Theorem 2.2 that M is catenoid if and only if the two flags R_{\bullet} and Q_{\bullet} are both stable under the action of a same Borel subgroup $B_{N} \subseteq G L_{N}$. In particular, $B_{N} \subseteq \mathcal{R}$ stabilizes Q. and hence $B_{N} \subseteq P$.

In the following, we use the notation $\beta_{k}:=a_{1}+\cdots+a_{k}$. Let P^{\prime} be the standard parabolic subgroup of $G L_{N}$ associated with the partition $N=a_{1}+\cdots+a_{r}$. We define the map $\xi: P^{\prime} \rightarrow \operatorname{Aut}(R)$ which sends an element $g=\sum_{i, j=1}^{N} g_{i, j} E_{i, j} \in P^{\prime}$ to the element $\xi(g):=\sum_{i, j=1}^{N} g_{i, j} \rho_{i, j} \in$ $\operatorname{Aut}(R)$. First of all, ξ is well-defined: indeed every pair (i, j) of the form $\beta_{k} \leq j<i<\beta_{k+1}$ (for some $k=1,2, \cdots, r-1$) belongs to Ω since $P^{i}=P^{j}$ is the projective cover of $M(k)$ and hence $\rho_{i j} \neq 0$. Clearly, ξ is an injective homomorphism of groups. We claim that its image is \mathcal{P}_{M}. Indeed, we notice that the Borel subgroup $B_{N} \subset \mathcal{R} \simeq \operatorname{Aut}(R)$ is contained in such image. It remains to show the following:

$$
1+\rho_{i j} \notin \mathcal{P}_{M} \text { whenever }(i, j) \in \Omega \text { and } j \leq \beta_{k}<i \text { for some } k,
$$

and
$1+\rho_{i j} \in \mathcal{P}_{M}$ whenever $(i, j) \in \Omega$ and $\beta_{k} \leq j<i<\beta_{k+1}$ for some k.
To show the first statement, we take a pair $(i, j) \in \Omega$ such that $\beta_{l-1}<$ $j \leq \beta_{l} \leq \beta_{k-1}<i \leq \beta_{k}$ for some l and k. Then P^{j} is the projective cover of $M(l)$ and P^{i} is the projective cover of $M(k)$ and $P^{i}=P^{j}$. So we have $M(l)<M(k)$ and they have the same top. This means that $M(l)=M[r, s]$ and $M(k)=M[r, t]$ for some $r \leq s<t$. But then $Q(l)=M[s+1, n]$ and $Q(k)=M[t+1, n]$ and hence the morphism $\rho_{i j}$ does not stabilize $\iota(Q)$ since $[Q(k), Q(l)]=0$.

To show the second statement we take a pair $(i, j) \in \Omega$ such that $\beta_{k} \leq j<i<\beta_{k+1}$. In this case $P^{i}=P^{j}$ and $Q^{i}=Q^{j}$ and hence $\rho_{i j}$ stabilizes $\iota(Q)$.

To conclude the proof we notice that the map Ψ of Proposition 2.3 sends $1+\rho_{i j} \in \mathcal{P}_{M}$ to $1+\phi_{i j} \in \operatorname{Aut}(M)$.

Remark 2.6. From now on we will freely use Propositions 2.3 and 2.5 and we will not distinguish between the action of B_{N} on $\operatorname{Gr}_{\mathbf{f}}(Q \rightarrow \iota>R)$
and the action of $\operatorname{Aut}(M)$ on a $\operatorname{SQG} \operatorname{Gr}_{\mathbf{e}}(M)$. We will freely say that B_{N} acts on $\operatorname{Gr}_{\mathbf{e}}(M)$ and that $\operatorname{Aut}(M)$ acts on $\operatorname{Gr}_{\mathbf{f}}(Q \rightarrow \rightarrow R)$.

3. Irreducible components of SQGs

By definition, a SQG is, in paticular, a closed B-stable subvariety of a partial flag variety, and hence its irreducible components are Schubert varieties. In this section we describe these Schubert varieties.

Let V be an N-dimensional vector space with a basis v_{1}, \ldots, v_{N}. We consider the algebraic group $S L_{N}$ acting on V, the Borel subgroup B_{N} consisting of upper-triangular matrices, and the maximal torus T_{N} of diagonal matrices. To the vector space V we attach the representation \mathbf{V} of A_{n} such that $\mathbf{V}_{i}=V$, and such that all the maps are identity maps (in other words, $\mathbf{V} \simeq P_{1}^{\oplus N}$).

Recall the projective resolution (2.1) of M. We note that the projective representation R is a sub-representation of \mathbf{V}. Let $\operatorname{dim} R=$ $\left(r_{1}, \ldots, r_{n}\right)$ and $\operatorname{dim} Q=\left(q_{1}, \ldots, q_{n}\right)$. Let $W=\mathcal{S}_{N}$ be the Weyl group of $S L_{N}$. Given a dimension vector \mathbf{e}, we set $\mathbf{f}=\mathbf{e}+\operatorname{dim} Q$, so that $f_{a}=e_{a}+q_{a}$ for all $a=1,2, \cdots, n$.

Definition 3.1. An element $w \in \mathcal{S}_{N}$ is called (M, \mathbf{e})-compatible if

$$
\left\{1, \ldots, q_{a}\right\} \subset w\left(\left\{1, \ldots, f_{a}\right\}\right) \subset\left\{1, \ldots, r_{a}\right\} \text { for all } 1 \leq a \leq n
$$

We denote by $W(M, \mathbf{e}) \subset \mathcal{S}_{N}$ the set of all (M, \mathbf{e})-compatible elements.
Recall that, to an element $w \in \mathcal{S}_{N}$, one attaches the T_{N}-fixed point $p(w) \in \mathrm{Fl}_{\mathrm{e}+\operatorname{dim} Q}(V)$ which is the flag whose i-th vector space is $\operatorname{span}\left\{v_{w(1)}, \cdots, v_{w(i)}\right\}$. Two elements w_{1} and w_{2} induce the same $T_{N^{-}}$ fixed point (that is, $\left.p\left(w_{1}\right)=p\left(w_{2}\right)\right)$ if and only if

$$
w_{1}\left(\left\{1, \ldots, f_{a}\right\}\right)=w_{2}\left(\left\{1, \ldots, f_{a}\right\}\right), \text { for all } a=1, \ldots, n
$$

In this case we say that w_{1} is equivalent to w_{2}. Let us pick one element of minimal length in each equivalence class and denote this set by $W^{0}(M, \mathbf{e})$.

We define a partial order on $W^{0}(M, \mathbf{e})$. For $1 \leq a \leq n$, let

$$
w\left(\left\{1, \ldots, f_{a}\right\}\right)=\left\{k_{1}^{a}(w), \ldots, k_{f_{a}}^{a}(w)\right\} \text { and } k_{1}^{a}(w)<\cdots<k_{f_{a}}^{a}(w) .
$$

Then we say that $w_{1} \leq w_{2}$ if $k_{i}^{a}\left(w_{1}\right) \leq k_{i}^{a}\left(w_{2}\right)$ for all $1 \leq a \leq n$, $1 \leq i \leq f_{a}$. Note that this order depends on the equivalence classes of w_{1} and w_{2}, but not on the elements themselves.

Lemma 3.2. We have $w_{1} \leq w_{2}$ if and only if $p\left(w_{1}\right) \in \overline{B_{N} p\left(w_{2}\right)}$.
Proof. The partial order put on $W^{0}(M, \mathbf{e})$ is nothing but the Bruhat order and the the claim is hence a well-known fact in the theory of Schubert varieties (see e.g. [7, Section 10.5]).

Let $S(M, \mathbf{e}) \subset W^{0}(M, \mathbf{e})$ be the set of maximal elements in this poset. Lemma 3.2 implies that the $\operatorname{SQG} \operatorname{Gr}_{\mathbf{e}}(M)$ is irreducible if and only if the set $S(M, \mathbf{e})$ consists of a single element. This case can be described explicitly in the following way. First of all, we perform some reductions: If $e_{a}>\operatorname{dim} M_{a}$ for some vertex $1 \leq a \leq n$, then our quiver Grassmannian $\mathrm{Gr}_{\mathrm{e}}(M)$ is empty. If $e_{a}=\operatorname{dim} M_{a}$ or $r_{a} \leq q_{a+1}$ (this is equivalent to the fact that the map $M_{a} \rightarrow M_{a+1}$ is zero), the SQG factors into the product of two quiver Grassmannians (again SQGs) for smaller equioriented type A quivers. Similarly, this is the case when $e_{a}=0$ for some vertex a.

Definition 3.3. A SQG $\operatorname{Gr}_{\mathbf{e}}(M)$ is called simple if $0<e_{a}<\operatorname{dim} M_{a}$ and $r_{a}>q_{a+1}$ for all vertices a.

It is clear from the remark above that every irreducible SQG is a product of simple irreducible SQGs (associated with quivers with a smaller number of vertices).

Theorem 3.4. A simple $S Q G \mathrm{Gr}_{\mathrm{e}}(M)$ is irreducible if and only if $r_{a}-e_{a} \geq r_{a+1}-e_{a+1}$ for all vertices a.

Proof. $\operatorname{Gr}_{\mathbf{e}}(M)$ is irreducible if and only if $S(M, \mathbf{e})$ consists of a single element. We note that this happens if and only if there exists an element $w \in W(M, \mathbf{e})$ such that

$$
w\left(\left\{1, \ldots, f_{a}\right\}\right)=\left\{1, \ldots, q_{a}\right\} \cup\left\{r_{a}, r_{a}-1, \ldots, r_{a}-e_{a}+1\right\}
$$

for every vertex a. This is equivalent to $r_{a}-e_{a} \geq r_{a+1}-e_{a+1}$ for all a. Indeed, since $r_{a+1}>f_{a+1}$, the inclusion $w\left(\left\{1, \ldots, f_{a}\right\}\right) \supset\left\{r_{a}, r_{a}-\right.$ $\left.1, \ldots, r_{a}-e_{a}+1\right\}$ implies $r_{a}-e_{a}+1 \leq r_{a+1}-e_{a+1}+1$.

Corollary 3.5. If a simple $S Q G \operatorname{Gr}_{\mathbf{e}}(M)$ is irreducible, the dimension of $\operatorname{Gr}_{\mathbf{e}}(M)$ is equal to the Euler form $\langle\mathbf{e}, \operatorname{dim} M-\mathbf{e}\rangle$, and there exists a short exact sequence

$$
0 \longrightarrow P \longrightarrow M \longrightarrow I \longrightarrow 0
$$

where P is projective, I is injective, and $\mathbf{e}=\operatorname{dim} P$.
Proof. Assume that $r_{a}-e_{a} \geq r_{a+1}-e_{a+1}$ for all $a=1,2, \cdots, n-1$, so that $S(M, \mathbf{e})$ consists of a single element w. We show that the point $p(w)$ of $\mathrm{Fl}_{\mathbf{f}}\left(R_{n}\right)$ corresponds to a projective sub-representation P of M (under the map Ψ of Proposition 2.1), such that the quotient M / P is injective. By hypothesis, $e_{a} \leq e_{a+1}$ for all a, and hence there exists a projective representation P of dimension vector e. We have $r_{a}-e_{a} \geq r_{a+1}-e_{a+1}>f_{a+1}-e_{a+1}=q_{a+1}$, and hence $e_{a}+q_{a+1}<r_{a}$; this implies that P embeds into M. To show that the quotient is injective, we note that $r_{a}-e_{a}-q_{a} \geq r_{a+1}-e_{a+1}-q_{a+1}$.

Finally, the dimension of $\operatorname{Gr}_{\mathbf{e}}(M)$ is equal to the dimension of the corresponding Schubert variety. This dimension is equal to

$$
\sum_{a=1}^{n}\left(e_{a}-e_{a-1}\right)\left(r_{a}-f_{a}\right)=\sum_{a=1}^{n}\left(e_{a}-e_{a-1}\right)\left(d_{a}-e_{a}\right)=\langle\mathbf{e}, \operatorname{dim} M-\mathbf{e}\rangle,
$$

with the convention that $e_{0}:=0$.
Corollary 3.6. If a simple $S Q G \operatorname{Gr}_{\mathbf{e}}(M)$ is irreducible, then $e_{a} \leq e_{a+1}$ and $d_{a}-e_{a} \geq d_{a+1}-e_{a+1}$.

The following result provides a representation-theoretic interpretation of Theorem 3.4 and shows that the necessary condition for irreducibility of a quiver Grassmannian given in [9, Theorem 5.1] is also sufficient for simple SQGs.

Corollary 3.7. A simple $S Q G \operatorname{Gr}_{\mathrm{e}}(M)$ is irreducible if and only if $[M, U] \leq\langle\mathbf{e}, \operatorname{dim} U\rangle$ for every non-injective indecomposable representation U.

Proof. In view of Theorem 3.4, $\operatorname{Gr}_{\mathbf{e}}(M)$ is irreducible if and only if

$$
\begin{equation*}
r_{a}-e_{a} \geq r_{a+1}-e_{a+1} \text { for all } a=1,2, \cdots, n-1, \tag{3.1}
\end{equation*}
$$

where $\left(r_{1}, \cdots, r_{n}\right)$ is the dimension vector of the projective cover R of M. Since $\pi: R \rightarrow M$ is surjective, we have $[M, U] \leq[R, U]$ for all U and it is hence enough to prove that the conditions (3.1) are satisfied if and only if the conditions

$$
\begin{equation*}
[R, U] \leq\langle\mathbf{e}, \operatorname{dim} U\rangle \text { for all indecomposable non-injective } U \tag{3.2}
\end{equation*}
$$

are satisfied. Let $U=M[i, j]$ for some $2 \leq i \leq j \leq n$. We have $[R, U]=r_{j}-r_{i-1}$ and $\langle\mathbf{e}, \operatorname{dim} U\rangle=e_{j}-e_{i-1}$. If (3.1) holds, then $r_{i-1}-e_{i-1} \geq r_{i}-e_{i} \geq \cdots \geq r_{j}-e_{j}$, and hence (3.2) holds. Conversely, if (3.2) holds, then, by choosing $U=S_{a+1}(a=1,2, \cdots, n-1)$, we get $r_{a+1}-r_{a} \leq e_{a+1}-e_{a}$, and hence (3.1) holds.

Assume that $\mathrm{Gr}_{\mathrm{e}}(M)$ is irreducible and hence isomorphic to a Schubert variety. We determine explicitly the (unique) Weyl group element in $S(M, \mathbf{e})$. Denote by $s_{i}=(i, i+1)$ for $i=1, \ldots, N-1$ the simple reflections in the symmetric group \mathcal{S}_{N}. For $1 \leq a \leq n-1$ let $m_{a}:=\left(d_{a}-e_{a}\right)-\left(d_{a+1}-e_{a+1}\right)$. We define a permutation π_{a} as

$$
\left(s_{q_{a}+m_{a}} \ldots s_{q_{a}+1}\right) \ldots\left(s_{q_{a}+e_{a}+m_{a}-2} \ldots s_{q_{a}+e_{a}-1}\right)\left(s_{q_{a}+e_{a}+m_{a}-1} \ldots s_{q_{a}+e_{a}}\right)
$$

For example, for $a=n$ we have

$$
\pi_{n}=\left(s_{r_{n}-e_{n}} \ldots s_{q_{n}+1}\right) \ldots\left(s_{r_{n}-2} \ldots s_{q_{n}+e_{n}-1}\right)\left(s_{r_{n}-1} \ldots s_{q_{n}+e_{n}}\right)
$$

We note that the number of factors of π_{a} is equal to $e_{a} m_{a}$ (and equal to $e_{n}\left(d_{n}-e_{n}\right)$ for $\left.\pi_{n}\right)$.
Proposition 3.8. Whenever a simple $S Q G \operatorname{Gr}_{\mathbf{e}}(M)$ is irreducible, the unique element of $S(\mathbf{e}, M)$ is equal to $w=\pi_{n} \pi_{n-1} \cdots \pi_{2} \pi_{1}$.

Proof. We need to verify that

$$
w\left(\left\{1, \ldots, q_{a}+e_{a}\right\}\right)=\left\{1, \ldots, q_{a}\right\} \cup\left\{r_{a}-e_{a}+1, \ldots, r_{a}\right\},
$$

and that w is the element of minimal length with this property. The first statement is proved by a direct computation (starting from $a=n$ and descending to $a=1$), and the second statement follows from the equality

$$
\sum_{a=1}^{n} e_{a} m_{a}=\langle\mathbf{e}, \mathbf{d}-\mathbf{e}\rangle
$$

Example 3.9 (Degenerate flag varieties). Let us consider the catenoid M which is the direct sum of all the indecomposable projective and the indecomposable injective Γ_{n}-representations:

$$
M:=P_{1} \oplus P_{2} \oplus \cdots \oplus P_{n} \oplus I_{1} \oplus I_{2} \oplus \cdots \oplus I_{n}
$$

Given the dimension vector $\mathbf{e}=(1,2, \cdots, n)$, the quiver Grassmannian $\operatorname{Gr}_{\mathbf{e}}(M)$ is isomorphic to the $\mathfrak{s l}_{n+1}$-degenerate flag variety [6, 3] and it is isomorphic to a Schubert variety $X_{\sigma_{n}}$ [1] for a permutation $\sigma_{n} \in \mathcal{S}_{2 n}$. Let us show that σ_{n} coincides with the word $w=w_{n}$ of Proposition 3.8 and hence the main result of [1] becomes a particular case of Theorem 3.4 and Proposition 3.8. First of all, M is clearly catenoid, $R=P_{1}^{n+1} \oplus P_{2} \oplus \cdots \oplus P_{n}$ and $Q=P_{2} \oplus \cdots \oplus P_{n}$ so that $r_{a}=n+a, q_{a}=a-1$ and $m_{a}=1$ for all $a=1,2, \cdots, n$. In particular, $r_{a}-e_{a}=n$ for all a, and hence $\operatorname{Gr}_{\mathbf{e}}(M)$ is an irreducible SQS (in view of Theorem 3.4). We have $\pi_{a}=s_{a} s_{a+1} \cdots s_{2 a-1} \in \mathcal{S}_{2 n}$ which is the permutation given by

$$
\pi_{a}(k)= \begin{cases}k & \text { if } k \notin\{a, \cdots, 2 a\} \\ a & \text { if } k=2 a \\ k+1 & \text { if } k \in\{a, \cdots, 2 a-1 .\}\end{cases}
$$

By definition,

$$
w=w_{n}=\left(s_{n} s_{n+1} \cdots s_{2 n-1}\right)\left(s_{n-1} s_{n} \cdots s_{2 n-1}\right) \cdots\left(s_{3} s_{4} s_{5}\right)\left(s_{2} s_{3}\right) s_{1}
$$

We claim that

$$
w_{n}(r)= \begin{cases}k & \text { if } r=2 k \tag{3.3}\\ n+1+k & \text { if } r=2 k+1\end{cases}
$$

To prove (3.3) one can proceed by induction on $n \geq 1$, by noting that $w_{n}=\pi_{n} w_{n-1}$ (after identifying $\mathcal{S}_{2 n-2}$ with the subgroup of $\mathcal{S}_{2 n}$ generated by $s_{1}, s_{2}, \cdots, s_{2 n-3}$). Formula (3.3) shows that w_{n} is the permutation σ_{n} found in [1].

Now we consider the general case of reducible SQGs.

Theorem 3.10. The T_{N}-fixed points of a $S Q G \operatorname{Gr}_{\mathrm{e}}(M)$ are labelled by the elements of $W^{0}(M, \mathbf{e})$; the quiver Grassmannian $\operatorname{Gr}_{\mathbf{e}}(M)$ admits a cellular decomposition, the cells being the B_{N}-orbits of the T_{N}-fixed points. The irreducible components of $\mathrm{Gr}_{\mathbf{e}}(M)$ are parametrized by the elements of $S(M, \mathbf{e})$.

Proof. Since $\operatorname{Gr}_{\mathbf{e}}(M)$ is B_{N}-stable, it is equal to a union of several Schubert varieties. Therefore, a cellular decomposition is provided by the B_{N}-orbits of the T_{N}-fixed points. Now it suffices to use Lemma 3.2.

Example 3.11. Let $M=M[1,1] \oplus \bigoplus_{i=1}^{n-1} M[i, i+1] \oplus M[n, n]$. In particular, $\operatorname{dim} M=(2, \ldots, 2)$. Let $\mathbf{e}=(1, \ldots, 1)$. Then $N=n+1$, $q_{a}=a-1, r_{a}=a+1$, and the number of irreducible components of $\operatorname{Gr}_{\mathbf{e}}(M)$ (that is, the number of elements in $S(\mathbf{e}, M)$) is the n-th Fibonacci number. Indeed, assume that $w \in S(\mathbf{e}, M)$. Then, for all a, there are two possibilities: either $w(\{1, \ldots, a\})=\{1, \ldots, a\}$ with no additional restrictions on $w(\{1, \ldots, a+1\})$, or
$w(\{1, \ldots, a\})=\{1, \ldots, a-1\} \cup\{a+1\}, w(1, \ldots, a+1)=\{1, \ldots, a+1\}$.
To any such w we attach a length n sequence of units and zeroes, where 0 appears if $w(\{1, \ldots, a\})=\{1, \ldots, a\}$, and 0 appears otherwise. Now the $w \in S(\mathbf{e}, M)$ are labelled by the length n sequences such that the pair $(1,1)$ is forbidden. The number of such sequences is exactly the Fibonacci number. We note that the irreducible component attached to such a sequence is isomorphic to the product of several copies of \mathbb{P}^{1}, and the number of copies is the number of 1's in the sequence.

4. Poincaré polynomials of SQGs

Let \mathbf{p} be a Dyck path on $[1, n]$, and let $M=\bigoplus_{l=1}^{r} M\left(p_{l}\right)^{m\left(p_{l}\right)}$ be a representation supported on \mathbf{p}. The aim of this section is to compute the Poincaré polynomial in singular homology of the quiver Grassmannian $\operatorname{Gr}_{\mathrm{e}}(M)$.
Lemma 4.1. Assume that all the indecomposable direct summands of M are isomorphic, that is, there exists a unique $p=(a, b) \in \mathbf{p}$ such that $m(p)>0$. Then $\operatorname{Gr}_{\mathbf{e}}(M)$ is empty unless $e_{i}=0$ for $i<a, i>b$ and $e_{a} \leq \cdots \leq e_{b}$. If $\operatorname{Gr}_{\mathrm{e}}(M)$ is non-empty, then the Poincaré polynomial of $\operatorname{Gr}_{\mathbf{e}}(M)$ is given by the q-multinomial coefficient

$$
P_{\operatorname{Gr}_{\mathbf{e}}(M)}(q)=\binom{m(p)}{e_{a}, \ldots, e_{b}}_{q}
$$

Proof. If $e_{i}=0$ for $i<a, i>b$ and $e_{a} \leq \cdots \leq e_{b}$, then the quiver Grassmannian is isomorphic to the partial flag variety $\mathrm{Fl}_{e_{a}, \ldots, e_{b}}\left(\mathbb{C}^{m(p)}\right)$. The cells for the standard cellular decomposition are labeled by collections of subsets $K_{\bullet}=\left(K_{a} \subset \cdots \subset K_{b}\right)$ of a set of cardinality $m(p)$ such
that $\# K_{i}=e_{i}$; each cell is the orbit of the Borel subgroup through the T-fixed point defined by the sets K_{\bullet}.

Now let us consider the general case. We want to stratify $\operatorname{Gr}_{\mathrm{e}}(M)$ in such a way that each stratum is a fibration over a product of partial flag varieties, with fibers being affine spaces. Namely, we decompose \mathbf{e} as a sum $\mathbf{e}=\mathbf{e}(1)+\cdots+\mathbf{e}(r)$ in such a way that
(i) $\mathbf{e}(l)$ is supported on p_{l}, that is, if $p_{l}=\left(i_{l}, j_{l}\right)$, then $\mathbf{e}(l)_{a}=0$ unless $i_{l} \leq a \leq j_{l}$,
(ii) $\mathbf{e}(l)_{a} \leq \cdots \leq \mathbf{e}(l)_{b} \leq m\left(p_{l}\right)$ for all vertices $a \leq b$.

Then we obtain an embedding

$$
\begin{equation*}
\prod_{l=1}^{r} \operatorname{Gr}_{\mathbf{e}(l)}\left(M\left(p_{l}\right)^{\oplus m\left(p_{l}\right)}\right) \subset \operatorname{Gr}_{\mathbf{e}}(M) \tag{4.1}
\end{equation*}
$$

We denote the image of this embedding by $\Pi(\mathbf{e}(1), \ldots, \mathbf{e}(r))$.
Now we consider the subgroups $U(M), L(M) \subset \operatorname{Aut}(M)$ (see Lemma 2.4). We recall that the groups $U(M)$ and $L(M)$ generate $\operatorname{Aut}(M)$, and that $\Pi(\mathbf{e}(1), \ldots, \mathbf{e}(r))$ is $L(M)$-invariant.
Theorem 4.2. We have

$$
\operatorname{Gr}_{\mathbf{e}}(M)=\bigsqcup U(M) \Pi(\mathbf{e}(1), \ldots, \mathbf{e}(r))
$$

where the disjoint union is taken over all possible sequences $\mathbf{e}(1), \ldots, \mathbf{e}(r)$ satisfying (i) and (ii). Moreover, the map

$$
U(M) \Pi(\mathbf{e}(1), \ldots, \mathbf{e}(r)) \rightarrow \Pi(\mathbf{e}(1), \ldots, \mathbf{e}(r)), g x \mapsto x
$$

is an affine space fibration.
Proof. We need to prove that the union $\bigsqcup U(M) \Pi(\mathbf{e}(1), \ldots, \mathbf{e}(r))$ covers the whole quiver Grassmannian, and that the map above is indeed a fibration.

To prove the first claim, consider the embedding $\varphi: \operatorname{Gr}_{\mathbf{e}}(M) \rightarrow$ $\mathrm{Fl}_{\mathrm{e}+\operatorname{dim} Q}\left(R_{n}\right)$ of Proposition 2.1, its image being the B_{N}-stable subvariety $\mathrm{Gr}_{\mathrm{e}+\operatorname{dim} Q}(Q \longrightarrow \leftrightarrow)$. Any point of this image lies in the B_{N}-orbit of some T_{N}-fixed point γ of $\mathrm{Fl}_{\mathrm{e}+\operatorname{dim} Q}\left(R_{n}\right)$. We note that γ belongs to some $\Pi(\mathbf{e}(1), \ldots, \mathbf{e}(r))$. Since $\Pi(\mathbf{e}(1), \ldots, \mathbf{e}(r))$ is $L(M)$-invariant, and B_{N} is generated by $L(M)$ and $U(M)$, the first claim follows.

Now we consider the map

$$
U(M) \Pi(\mathbf{e}(1), \ldots, \mathbf{e}(r)) \rightarrow \Pi(\mathbf{e}(1), \ldots, \mathbf{e}(r)), \quad g x \mapsto x
$$

We fix a T_{N}-fixed point $\gamma \in \Pi(\mathbf{e}(1), \ldots, \mathbf{e}(r))$ and write $\gamma=\prod_{l=1}^{r} \gamma(l)$ according to the factors of (4.1). There exists an open cell $C(l)$ in each $\mathrm{Gr}_{\mathbf{e}(l)}\left(M\left(p_{l}\right)^{\oplus m\left(p_{l}\right)}\right)$, containing $\gamma(l)$. Now it is easy to see that the orbit $U(M) C(l)$ is canonically isomorphic to the product

$$
\left.C(l) \times \operatorname{Hom}_{\Gamma}\left(\gamma(l), \bigoplus_{s<l} M\left(p_{s}\right)^{\oplus m\left(p_{s}\right)}\right)\right),
$$

where $\gamma(l)$ is considered as a representation of Γ.
For $1 \leq l \leq r$ we define $\beta(l)_{i}=\sum_{s<l} m\left(p_{s}\right) \operatorname{dim} M\left(p_{s}\right)_{i}$.
Lemma 4.3. The dimension $D(\mathbf{e}(1), \ldots, \mathbf{e}(r))$ of the fiber of the map $U(M) \Pi(\mathbf{e}(1), \ldots, \mathbf{e}(r)) \rightarrow \Pi(\mathbf{e}(1), \ldots, \mathbf{e}(r))$ is equal to

$$
\sum_{l=1}^{r} \sum_{i=1}^{n}\left(e(l)_{i}-e(l)_{i-1}\right) \beta(l)_{i} .
$$

Proof. We fix a vector u in the vector space $\left(M\left(p_{l}\right)^{\oplus m\left(p_{l}\right)}\right)_{i}$. We note that $\beta(l)_{i}$ is the dimension of the orbit $U(M) u$. This implies the claim of the lemma.

Corollary 4.4. We have the following formula for the Poincaré polynomial of the $S Q G \operatorname{Gr}_{\mathbf{e}}(M)$:

$$
P_{\mathrm{Gr}_{\mathbf{e}}(M)}(q)=\sum_{\mathbf{e}(1), \ldots, \mathbf{e}(r)} D(\mathbf{e}(1), \ldots, \mathbf{e}(r)) \prod_{l=1}^{r}\binom{m\left(p_{l}\right)}{\mathbf{e}(1), \ldots, \mathbf{e}(l)}_{q}
$$

Acknowledgments

E.F. was partially supported by the Dynasty Foundation and by the Simons foundation The article was supported within the framework of a subsidy granted to the HSE by the Government of the Russian Federation for the implementation of the Global Competitiveness Program and within the framework of the Academic Fund Program at the National Research University Higher School of Economics (HSE) in 2015-2016 (grant N 15-01-0024).

The work of G.C.I. was financed by the FIRB project "Perspectives in Lie Theory" RBFR12RA9W.

We are grateful to an anonymous referee for her/his meticulous reading of the manuscript.

References

1. G. Cerulli Irelli, M. Lanini, Degenerate flag varieties of type A and C are Schubert varieties, IMRN (2015), no. 15, 63536374. arXiv:1403.2889.
2. G. Cerulli Irelli, M. Lanini, P. Littelmann, Degenerate flag varieties and Schubert varieties: a characteristic free approach, To appear in Pacific Journal of Mathematics (2016). arXiv: 1502.04590.
3. G. Cerulli Irelli, E. Feigin, M. Reineke, Quiver Grassmannians and degenerate flag varieties, Algebra \& Number Theory 6 (2012), no. 1, 165-194. arXiv: 1106.2399.
4. G. Cerulli Irelli, E. Feigin, M. Reineke, Degenerate flag varieties: moment graphs and Schröder numbers, J. Algebraic Combin. 38 (2013), no. 1. arXiv:1206.4178.
5. E. Feigin, \mathbb{G}_{a}^{M} degeneration of flag varieties, Selecta Mathematica, New Series, vol. 18 (2012), no. 3, pp. 513-537.
6. E. Feigin, Degenerate flag varieties and the median Genocchi numbers, Mathematical Research Letters, no. 18 (6) (2011), pp. 1-16.
7. W. Fulton, Young tableaux, London Mathematical Society Student Texts, 35. Cambridge University Press, (1997).
8. N. Haupt, Euler characteristic and geometric properties of quiver Grassmannians. Ph.D Thesis, University of Bonn. May 2011.
9. K. Möllenhoff, M. Reineke, Embeddings of representations, Algebr. Represent. Theory 18 (2015), 977-987.

Giovanni Cerulli Irelli:
Sapienza Università di Roma. Piazzale Aldo Moro 5, 00185, Rome (ITALY)

E-mail address: cerulli.math@googlemail.com
Evgeny Feigin:
Department of Mathematics,
National Research University Higher School of Economics, Russia, 117312, Moscow, Vavilova str. 7
and
Tamm Department of Theoretical Physics, Lebedev Physics Institute E-mail address: evgfeig@gmail.com

Markus Reineke:
Fachbereich C - Mathematik, Bergische Universität Wuppertal, D 42097 Wuppertal

E-mail address: mreineke@uni-wuppertal.de

