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Fundamental Limits of Failure Identifiability by

Boolean Network Tomography
N. Bartolini, T. He, and H. Khamfroush,

Abstract—Boolean network tomography is a powerful tool to
infer the state (working/failed) of individual nodes from path-level
measurements obtained by egde-nodes. We consider the problem
of optimizing the capability of identifying network failures
through the design of monitoring schemes. Finding an optimal
solution is NP-hard and a large body of work has been devoted
to heuristic approaches providing lower bounds. Unlike previous
works, we provide upper bounds on the maximum number of
identifiable nodes, given the number of monitoring paths and
different constraints on the network topology, the routing scheme,
and the maximum path length. The proposed upper bounds
represent a fundamental limit on the identifiability of failures
via Boolean network tomography. This analysis provides insights
on how to design topologies and related monitoring schemes
to achieve the maximum identifiability under various network
settings. Through analysis and experiments we demonstrate the
tightness of the bounds and efficacy of the design insights for
engineered as well as real networks.

I. INTRODUCTION AND MOTIVATION

The capability to assess the states of network nodes in the

presence of failures is fundamental for many functions in

network management, including performance analysis, route

selection, and network recovery. In modern networks, the

traditional approach of relying on built-in mechanism to detect

node failures is no longer sufficient, as bugs and configuration

errors in various customer software and network functions

often induce “silent failures” that are only detectable from end-

to-end connection states [1]. Boolean network tomography [2]

is a powerful tool to infer the states of individual nodes of a

network from binary measurements taken along selected paths.

We consider the problem of Boolean network tomography in

the framework of group testing [3], [4]. The classic group

testing studies the following problem: given a set S of n
items, at most d of which are defective, the goal is to identify

the defective items through binary measurements taken on

subsets Si ⊆ S of items (i = 1, . . . ,m). The problem of

Boolean network tomography is analogous in that it is also

about determining defective items (failed nodes) of a large

set S (all the nodes) by performing binary measurements over

subsets of items (monitoring paths), where a measurement fails

if and only if at least one of the measured nodes has failed.

A significant difference from conventional group testing is

that in Boolean network tomography, the subsets used for
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tests cannot be designed arbitrarily, but must conform to the

structure of the network. In this regard, Cheraghchi et al.

have studied graph-constrained group testing in [5], where

testing items correspond to either edges or vertices of a graph

G = (V,E). The tests are represented through a so-called

testing matrix T , which is an m × n binary matrix, where

each row represents a path, each column a vertex/edge, and

the (i, j)-th entry an indicator that the j-th vertex/edge belongs

to the i-th path. Given the maximum number of defective

items, the goal of [5] is to design a testing matrix with the

minimum number of rows that guarantees the identification

of all the defective items, under the assumption that each

monitoring path can span any connected subgraph of G. In

practice, however, the monitoring paths are constrained not

only by the network topology, but also by the routing scheme

in the network and the endpoints of the probes.

In our work, we tackle the problem of maximizing the

number of nodes whose states can be uniquely determined

from binary measurements on a given number of monitoring

paths. We consider the problem under increasing constraints

about the network, from the routing scheme to the endpoints of

monitoring paths. Due to the inherent hardness in computing

the exact maximum value, we focus on deriving easily com-

putable upper bounds based on the structure of the testing

matrix. The bounds allow us to: (i) evaluate the room of

improvement for a given monitoring scheme in a specific

network setting, and (ii) extract rules for network design to

maximize the number of identifiable nodes in a general setting.

Although our bounds are derived for the case of a single

failure, we show that the bounds are also valid (but looser)

for the general case of at most k ≥ 1 simultaneous failures.

The main contributions of this work are the following:

• We upper-bound the maximum number of identifiable

nodes with a given number of monitoring paths, in the

following scenarios: (1) paths between arbitrary nodes

under arbitrary routing (Theorem IV.1); (2) paths between

arbitrary nodes under consistent routing (Theorem IV.2);

(3) paths from a single server to multiple clients under

consistent routing (Theorem V.1); (4) paths from multiple

servers to multiple clients with fixed/flexible assignment

under consistent routing (Theorems V.2 and V.3); (5)

paths between arbitrary nodes under partially consistent

routing (Theorem VI.1).

• We give insights on the design of topologies and monitor-

ing schemes to approximate the bounds, grounded upon

the bound analysis.

• We demonstrate the tightness of the upper bounds by

comparisons with the results of known heuristics [6] on

engineered as well as real network topologies.
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• We compare the bounds in different scenarios to evaluate

the impact of the routing scheme, the number of monitor-

ing paths, and the maximum path length on the number

of identifiable nodes.

II. RELATED WORK

Pioneered by Duffield [2], Boolean network tomography

has direct applications in network failure localization. The

early works focused on best-effort inference. For example,

Duffield et al. [2], [7] and Kompella et al. [1] aimed at

finding the minimum set of failures that can explain the

observed measurements, and Nguyen et al. [8] aimed at finding

the most likely failure set that explains the observations.

Later, the identifiability problem attracted attention. Ma et al.

characterized in [9] the maximum number of simultaneous

failures that can be uniquely localized, and then extended the

results in [10] to characterize the maximum number of failures

under which the states of specified nodes can be uniquely

identified as well as the number of nodes whose states can be

identified under a given number of failures.

The related optimization problems have also been studied.

The problem of optimally placing monitors to detect failed

nodes via round-trip probing was introduced and proven to be

NP-hard by Bejerano et al. in [11]. The work by Cheraghchi

et al. [5] aimed at determining the minimum number of

monitoring paths to uniquely localize a given number of

failures, under the assumption that any path can be monitored.

For monitoring paths that start/end at monitors, Ma et al. [12]

proposed polynomial time heuristics to deploy a minimum

number of monitors to uniquely localize a given number of

failures under various routing constraints. When monitoring is

performed at the service layer, He et al. [6] proposed service

placement algorithms to maximize the number of identifiable

nodes by monitoring the paths connecting clients and servers.

Our work also addresses the problem of maximizing the

number of identifiable nodes under failures. Unlike previous

work, we aim at establishing upper bounds based on general

information such as the number/length of monitoring paths,

the type of routing scheme, and constraints on the path end-

points. Besides the theoretical value, our results also provide

guidelines for network design to facilitate network monitoring.

III. PROBLEM FORMULATION

We use lower-case letters to denote scalars and vectors

and upper-case letters to denote matrices. For a vector p, p|i
denotes the i-th element in the vector. For a matrix M , M |i,j
denotes the element in the i-th row and j-th column; moreover,

M |i,∗ denotes the i-th row and M |∗,j the j-th column of M .

A. Network Model

We model the network as an undirected graph G = (V, E),
where V is a set of n nodes, and E is the set of links.

Each node may be in normal or failed state. Without loss

of generality, we assume that links do not fail, as link failures

can be modeled by the failures of logical nodes that represent

the links. The set of all failed nodes, denoted by F ⊆ V ,

defines the state of a network, and is called failure set.

B. Observation Model

We assume that node states cannot be measured di-

rectly, but only indirectly via monitoring paths. Let P =
{p1, p2, . . . , pm} be a given set of m monitoring paths. Ac-

cording to the needs of the discussion, each path pi ∈ P
is represented as either a set of nodes pi, or as an ordered

sequence of nodes p̂i, from one endpoint to the other. The

state of a path is normal if and only if all traversed nodes

(including endpoints) are in normal state. We call the incident

set of vi the set of paths affected by the failure of node vi and

denote it with Pvi
. We also denote the incident set of paths

of a failure set F with PF , ∪vi∈FPvi
.

The testing matrix T is an m× n matrix, where T |i,j = 1
if vj ∈ pi, and zero otherwise. The j-th column of T , denoted

with b(vj) , T |∗,j , is the characteristic vector1 of Pvj
. The

transpose of b(vj) is hereby called the binary encoding of vj .

Note that multiple nodes may have the same binary encoding.

C. Identifiability

The concept of identifiability refers to the capability of

inferring the states of individual nodes from the states of

the monitoring paths. Informally, we say that a node v is

1-identifiable, given a set of paths P , if its failure and the

failure of any other node w cause the failure of different sets

of monitoring paths in P , i.e. v and w have different incident

sets. This concept can be extended to the case of concurrent

failures of at most k nodes, where a node is k-identifiable in

P if any two sets of failures F1 and F2 of size at most k,

which differ at least in v (i.e., one contains v and the other

does not), cause the failures of different monitoring paths in

P , i.e. F1 and F2 have different incident sets.

He et al. in [6] formalized the concept of k-identifiability

that we reformulate as follows:

Definition III.1. Given a set of monitoring paths P and a

node vj ∈ V , vj is k-identifiable with respect to (wrt) P if for

any failure sets F1 and F2 such that F1 ∩ {vj} 6= F2 ∩ {vj},

and |Fi| ≤ k (i ∈ {1, 2}),
∨

vi∈F1
b(vi) 6=

∨

vz∈F2
b(vz)

where with ”
∨

” we refer to the element-wise logical OR.

In the special case of k = 1, Definition III.1 implies the

following Lemma.

Lemma III.1. A node vi is 1-identifiable wrt P if and only

if b(vi) 6= 0, and ∀vj 6= vi, b(vj) 6= b(vi), i.e., its binary

encoding is not null and not identical with that of any other

node.

D. Bounding Identifiability

The set of monitoring paths P is usually the result of design

choices related to topology, monitoring endpoints, routing

scheme, etc. Given a collection of candidate path sets2 P under

1A characteristic vector of a subset S of an ordered set of n elements
V = {v1, v2, . . . , vn} is a binary vector with ‘1’ only in the positions of
the elements of V that are included in S.

2For example, P may be the class of path sets of given cardinality, or paths
of a given length.
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all possible designs, the question is: how well can we monitor

the network using path measurements and which design is the

best? Using the notion of k-identifiability, we can measure

the monitoring performance by the number of nodes that are

k-identifiable wrt P , denoted by φk(P ), and formulate this

question as an optimization: ψk(P) , maxP∈P φk(P ).
Although extensively studied [11], [5], [12], [6], the optimal

solution is hard to obtain due to the (exponentially) large size

of P , and heuristics are used to provide lower bounds. There

is, however, a lack of general upper bounds. In this work we

establish upper bounds on ψk(P) in representative scenarios.

Knowledge of these upper bounds is key to understanding the

fundamental limits of Boolean network tomography, and gives

insights on network design to facilitate network monitoring.

We observe that if a node vi is k-identifiable wrt P for any

k ≥ 1, then vi is also 1-identifiable wrt P , which implies that

an upper bound on the maximum number of nodes that are 1-

identifiable is also an upper bound on the maximum number

of nodes that are k-identifiable, as stated below.

Lemma III.2. For any k ≥ 1 and any candidate sets of

monitoring paths P , ψ1(P) ≥ ψk(P).

Proof. Given the optimal choice P ∗ ∈ P achieving ψk(P), we

have ψ1(P) ≥ φ1(P
∗) ≥ φk(P

∗) = ψk(P), where the first

inequality is by definition of ψ1(P) and the second inequality

is by Definition III.1.

Therefore, in the sequel, we focus on bounding ψ1(P),
simply denoted by ψ(P), where we will replace P by specific

parameters in each network setting. We hereafter shortly call

the 1-identifiable nodes “identifiable” .

IV. GENERAL NETWORK MONITORING

We initially consider a generic network with a given number

of monitoring paths between any nodes. We analyze two cases:

(i) arbitrary routing, and (ii) consistent routing.

A. Arbitrary routing

1) Identifiability Bound: Under no constraints on the rout-

ing scheme, it holds the following bound.

Theorem IV.1 (Identifiability under arbitrary routing). Given

a network with n nodes and m monitoring paths, the maximum

number of identifiable nodes under arbitrary routing satisfies

ψAR(m,n) ≤ min{n; 2m − 1}.

Proof. By Lemma III.1, every identifiable node v has a dif-

ferent encoding b(v) 6= 0. The maximum number of different

encodings with m digits, excluding 0, is 2m−1. Therefore, the

smaller number between 2m−1 and the total number of nodes

n bounds the maximum number of identifiable nodes.

2) Tightness of the bound and design insights: The bound

in Theorem IV.1 is tight, as we can construct a topology with

m monitoring paths that meets this bound. Given n nodes, we

label min{n; 2m− 1} of them with m-digit binary encodings,

excluding 0, such that all the encodings are distinct. Then we

generate m paths such that path p̂i (i = 1, . . . ,m) is one of the

possible sequences of all the nodes v for which b(v)|i = 1.

Finally, we connect every two nodes v and w with a link

whenever there is a path containing the sub-sequence v, w.

An example of this construction is shown in Figure 1, for

m = 3 and n = 7.

Fig. 1. Network meeting the bound of Theorem IV.1 (arbitrary routing).

B. Consistent routing

1) Identifiability Bound: In the sequel, we assume that

paths satisfy the following property of routing consistency.

Definition IV.1. A set of paths P is consistent if ∀p, p′ ∈ P
and any two nodes u and v traversed by both paths (if any),

p and p′ follow the same sub-path between u and v.

We remark that routing consistency is satisfied by many

practical routing protocols, including but not limited to shortest

path routing (where ties are broken arbitrarily but deterministi-

cally). Note that this property implies that paths are cycle-free.

We define the path matrix of p̂i as a binary matrix M(p̂i), in

which each row is the binary encoding of a node on the path,

and rows are sorted according to the sequence p̂i. Notice that

by definition M(p̂i)|∗,i has only ones, i.e., M(p̂i)|r,i = 1, ∀r.

Lemma IV.1. Under the assumption of consistent routing, if

any two different rows of the matrix M(p̂i) are equal, then

the corresponding nodes are not 1-identifiable.

Proof. Under consistent routing, the path p̂i cannot contain

any cycle, so every row of M(p̂i) corresponds to a different

node. If two different nodes have the same binary encoding,

then by Lemma III.1, the two nodes are not identifiable.

Definition IV.2. A column M(p)|∗,k (k = 1, . . . ,m) of a path

matrix M(p) has consecutive ones if all the “1”s appear in

consecutive rows, i.e., for any two rows i and j (i < j), if

M(p)|i,k =M |j,k = 1, then M |h,k = 1 for all i ≤ h ≤ j.

Lemma IV.2. Under the assumption of consistent routing, all

the columns in all the path matrices have consecutive ones.

Proof. The assertion is true for M(p̂i)|∗,i since it contains

only ones. Let us consider column M(p̂i)|∗,j , with j 6= i.
Assume by contradiction that there are two rows k1 < k2
s.t. M(p̂i)|k1,j = M(p̂i)|k2,j = 1 but there is a row h with

k1 < h < k2 for which M(p̂i)|h,i = 0. Let v1, v2, and

vh be the nodes with encodings M(p̂i)|k1,∗, M(p̂i)|k2,∗, and

M(p̂i)|h,∗, respectively. Then the paths p̂i and p̂j traverse both

nodes v1 and v2 following different paths, of which only p̂i
traverses node vh, in contradiction with consistent routing.

Lemma IV.3. Given m = |P | > 1 consistent routing paths,

whose length is at most d∗ (in number of nodes), the maximum
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number of different encodings in the rows of M(p̂i) is equal

to min{2 · (m− 1), d∗}, ∀pi ∈ P .

Proof. While the number of rows of M(p̂i) is bounded by the

maximum length d∗, the number of different encodings can be

lower. Notice that first, column M(p̂i)|∗,i contains only ones,

second, for any column M(p̂i)|∗,j with j 6= i, it holds, by

Lemma IV.2, that it has a consecutive ones.

We say that column k has a flip in row r if M(p̂i)|r−1,k 6=
M(p̂i)|r,k. Due to Lemma IV.2 any column of M(p̂i) can have

up to two flips or it would create a fragmented sequence of

ones. In order to have a change in the encoding contained in

any two successive rows r−1 and r of the matrix M(p̂i), i.e.,

M(p̂i)|r−1,∗ 6= M(p̂i)|r,∗, there must be at least a column

that flips in r. The number of columns that can flip is m− 1
and each of them can flip at most two times. The number

of different rows that can be observed in M(p̂i) is therefore

upper-bounded by the smallest between the maximum path

length d∗ and 2 · (m− 1).

Fig. 2. Consistent paths identifying all nodes of the network.

Example: Figure 2 shows a case of consistent routing. The

four path matrices have columns with consecutive ones and

each column flips at most twice, so the number of different

rows is less than 2 · (m− 1) = 6. For instance, M(p̂3) is:

M(p̂3) =













flips b1 b2 b3 b4

0 0 0 1 0
1 0 1 1 0
2 1 1 1 0
3 1 0 1 1
4 0 0 1 1













We now give an upper bound on the number of identifiable

nodes under consistent routing.

Theorem IV.2 (Identifiability with consistent routing). Given

n nodes, and m > 1 consistent routing paths of length at most

d∗ (in number of nodes), the maximum number of identifiable

nodes satisfies:

ψCR(m,n, d∗)≤min

{

imax
∑

i=1

(

m

i

)

+

⌊

Nmax −
∑imax

i=1 i ·
(

m
i

)

imax + 1

⌋

;n

}

,

where imax = max{k |
∑k

i=1 i ·
(

m
i

)

≤ Nmax },

and Nmax = m ·min{2 · (m− 1); d∗}.

Proof. By Lemma III.1, each identifiable node must have a

unique encoding. By Lemma IV.3, we can define an upper

bound on the number of different node encodings in the path

matrices M(p̂i), i = 1, . . . ,m as follows: Nmax = m ·min{2 ·
(m−1); d∗}. Nevertheless, in the above value of Nmax we are

counting multiple times the nodes that appear in multiple path

matrices. In fact, if an encoding b has k digits equal to 1, then

b appears among the rows of k different path matrices.

Fig. 3. An example of semi-grid graph

The number of distinct encodings is maximized when we

minimize the number of duplicate encodings and therefore

their number of ones. This is achieved when we have
(

m
1

)

different encodings with only one digit equal to 1, 2
(

m
2

)

with

only two digits equal to 1 (appearing in two path matrices),

and so forth, until the total number of encodings (counting the

duplicates) is Nmax.

More formally, let imax = max{k |
∑k

i=1 i ·
(

m
i

)

≤ Nmax}.

For each i ≤ imax, we have
(

m
i

)

encodings containing i
digits equal to 1s and appearing in i path matrices. Con-

sidering that the remaining Nmax −
∑imax

i=1 i ·
(

m
i

)

encodings

will have at least imax + 1 digits equal to 1 and thus ap-

pear at least imax + 1 times, the number of distinct en-

codings out of the Nmax encodings is upper bounded by:

ψCR(m,n, d∗) ≤
∑imax

i=1

(

m
i

)

+

⌊

Nmax−
∑imax

i=1 i·(mi )
imax+1

⌋

.

Considering also the bound of n we have the final bound.

2) Tightness of the bound and design insights: For certain

values of m, n and d∗, it is possible to design a network

topology that achieves the bound of Theorem IV.2. The

construction is suggested by the proof of the theorem, and

consists of creating a topology and routing scheme with

the maximum number of different binary encodings and the

minimum number of 1s. In the following we show such a

construction when n = 36, m = 8, and d∗ = 8. In this case,

ψCR =
(

8
1

)

+
(

8
2

)

+
⌊

0
3

⌋

= 36. We can obtain this maximum

identifiability by intersecting the paths so as to generate the

maximum number of dangling nodes traversed by a single

path, and all possible intersections of two paths. A topology

that meets the above bound is the half-grid in Figure 3. All

the nodes are identifiable with just 8 monitoring paths with

the following pairs of endpoints: (c1, h1), (c2, h1), (c3, h2),
(c4, h3), (c5, h4), (c6, h5), (c7, h6), and (c8, h7) and routing

as in Figure 3. The above construction can be generalized to

the case of any m provided that d∗ = m and n = m(m+1)/2.

We show in Figure 10 that in a more general setting, this

topology and routing scheme do not always meet the bound

of Theorem IV.2, but approximate it closely.

V. SERVICE NETWORK MONITORING

We consider a service network where we monitor paths

between clients and servers, under consistent routing in the

case of (i) single-server and (ii) multi-server monitoring.

A. Single-Server Monitoring

1) Identifiability Bound: Consider the scenario where a

single server communicates with multiple clients and we can

only monitor the paths in between. The number of paths m
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coincides with the number of clients, and all the monitoring

paths must share a common endpoint (the server).

We start by showing the special structure of the topology

spanned by the monitoring paths.

Lemma V.1. Under consistent routing, any monitoring paths

with a common endpoint r must form a tree rooted at r.

Proof. We consider any two paths pi and pj . Starting from r,

the next hops on these paths lead to either a common node or

two different nodes. In the latter case, the two paths cannot

intersect at any subsequent node v, as otherwise the two path

segments from r to v following paths pi and pj would violate

routing consistency. As this is true for all the paths, the paths

must form a tree rooted at r.

Given the number of paths m with maximum path length

d∗, we define the optimal monitoring tree as a tree with m
leaves and maximum depth3 d∗ − 1 that has the maximum

number of identifiable nodes when its root-to-leaf paths are

monitored.

Lemma V.2. If the maximum path length d∗ satisfies d∗ ≥
⌈log2m⌉ + 1, the optimal monitoring tree is a full binary

tree with m leaves4. If d∗ < ⌈log2m⌉ + 1, then the optimal

monitoring tree is a tree composed of
⌊

m
2(d∗−2)

⌋

perfect binary

trees5 with depth d∗ − 2, and up to one full binary tree with

depth at most d∗ − 2 and m mod 2(d
∗

−2) leaves, connected

to a common root.

Proof. Let us first consider the case of unbounded path

length. By contradiction, assume the existence of an optimal

monitoring tree that is not a full binary tree. Such a tree must

have at least a node u whose number of children is either (a)

strictly greater than two or it is (b) exactly one.

If (a), u has at least three children v1, v2 and v3. Let p1, p2
and p3 be the paths from these nodes to u, as in Figure 4. We

can build a new graph with an additional identifiable node x
as in Figure 5, by removing the links between u and v1, v2
and adding x as a parent of v1 and v2 and children of u. Node

x is identifiable as its encoding is different from the encodings

of the leaves v1, v2 and v3 and of the root u. If (b), u has

Fig. 4. Three children tree Fig. 5. Full binary tree

only one child v, as shown in Figure 6. If v is not traversed

by any path, or all the paths traversing u also traverse v, then

node v is not identifiable, and the removal of v from the tree

would not decrease the identifiability. If instead there is a path

p1 traversing both u and v, and a path p2 traversing u which

ends before reaching node v, then path p2 can be prolonged to

traverse a new node x added as a child of node u to increase

the identifiability of the topology, as shown in Figure 7.
3The depth of a tree is the maximum distance from the root to any leaf, in

number of links.
4We recall that a full binary tree is a binary tree where each node is either

a leaf or it has exactly two children.
5We also recall that a perfect binary tree is a full binary tree where all

leaves are at the same distance from the root.

Fig. 6. One child tree Fig. 7. Full binary tree

Notice that as long as the maximum path length is d∗ ≥
⌈log2m⌉+ 1 we can apply the previous discussion and build

an optimal full binary tree with up to m leaves and depth

⌈log2m⌉+ 1 (maximum distance from the root to the leaves,

in number of nodes). If instead d∗ < ⌈log2m⌉+1, the largest

number of leaves that can be obtained in a full binary tree

topology with depth d∗ − 1 is 2d
∗

−1 which is lower than the

number of paths m. Therefore, in such a case, the maximum

identifiability is obtained by creating the maximum number

⌊ m
2(d∗−2) ⌋ of perfect binary trees of depth d∗ − 2 and up to

one full binary tree (not perfect) with depth at most d∗ − 2,

connecting them to a same root, thus ensuring that the number

of nodes with either no children or two only children is

maximized.

Example: Figure 8(a) shows an optimal monitoring tree for

m = 7 and d∗ = 4, i.e. a full binary tree. Figure 8(b) considers

m = 7 but d∗ = 3, so the optimal monitoring tree is made of

3 perfect binary trees of depth d∗ − 2 = 1 and a full binary

tree of depth at most 1, connected to the same root.

(a) (b)
Fig. 8. Optimal monitoring tree:m = 7 and d∗ = 4 (a) or d∗ = 3 (b).

We derive the following bound for single-server monitoring.

Theorem V.1 (Identifiability for single-server monitoring).

Consider monitoring paths between a server and m clients

in a network of n nodes and maximum path length d∗. Then

the maximum number of identifiable nodes ψSS(m,n, d∗) is

upper-bounded by:














min {zfb(m), n} if d∗ ≥ ⌈log2m⌉+ 1,

min
{

n; 1 +
⌊

m
2(d∗−2)

⌋

· zfb(2
(d∗

−2))

+zfb(m mod 2(d
∗

−2))
}

otherwise,

(1)

where zfb(m) , max{0, 2m − 1} is the number of nodes in

a full binary tree with m leaves.

Proof (sketch). First, we show that in the optimal monitoring

tree described in Lemma V.2, all nodes are identifiable. Then

we show by induction that given a full binary tree with m
leaves, the number of nodes zfb(m) is max{0, 2m − 1}.

Finally, we use this result to count the number of nodes in

the optimal monitoring tree.

2) Tightness of the bound and design insights: Under the

constraint that monitoring paths have a common endpoint, for

any given number of monitoring paths m, maximum path

length d∗, and sufficiently large n, it is possible to design
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a network topology according to the structure of an optimal

monitoring tree, as described by Lemma V.2, with a number

of identifiable nodes equal to the bound in Theorem V.1.

In particular, if d∗ ≥ ⌈log2m⌉ + 1 the topology would be

a full binary tree as in the example of Figure 8(a), while if

d∗ < ⌈log2m⌉+ 1 the topology would be the composition of

⌊ m
2(d∗−2) ⌋ perfect binary trees of depth d∗−2, and a full binary

tree of depth at most d∗ − 2, connected to a common root, as

in the example of Figure 8(b).

B. Multi-Server Monitoring

1) Identifiability Bound: We now consider a multiple server

scenario where each server s (s = 1, . . . , S) has ms clients.

We analyze two subcases: (i) fixed client assignment, where

the number of clients ms for each server is predetermined,

and (ii) flexible client assignment, where the total number of

clients
∑S

s=1ms is fixed but the distribution across servers

can be designed. Following a similar approach as in the proof

of Theorem IV.2, we can bound the number of identifiable

nodes in each subcase as follows.

Theorem V.2 (Identifiability for multi-server monitoring with

fixed client assignment). Consider the paths between S servers

and ms clients for server s (s = 1, . . . , S) in a network of

n nodes, with maximum path length d∗. Let m ,
∑S

s=1ms

and m , (m1,m2, . . . ,mS). Then the maximum number

of identifiable nodes ψMS(m, n, d∗) is upper-bounded as in

Theorem IV.2, except that Nmax is specified by Nmax =

min
{

md∗;
∑S

s=1

[

(m2
s + 3ms − 2)/2 + 2ms(m−ms)

]

}

.

Proof (sketch). The proof follows the same arguments of

the proof of Theorem IV.2, but considers that some of the

monitoring paths share endpoints.

1) We observe that, according to Lemma V.1, the monitoring

paths form S trees intersecting each other.

2) By induction on the value of ms, we prove a bound on the

sum of the maximum number of different binary encodings

in the path matrices of a single server s. Considering the

only columns of the paths of the same server, let ℓk be the

maximum number of different binary encodings on the path

from a client node vk to service s, with k = 1, . . . ,ms.

Let Ls ,
∑ms

k=1 ℓk. It holds that Ls ≤ (m2
s +3ms − 2)/2.

3) We prove that the total number of different

binary encodings in all the m paths (including

repetitions across different paths) is Nmax ,
∑S

i=1

[

(m2
i + 3mi − 2)/2 + 2mi · (m−mi)

]

. To prove

this, we consider the i-th tree individually (i = 1, . . . , S).

When only considering the mi columns corresponding to

the client-server paths of the i-th service, the path matrices

of the i-th tree have a maximum number of different

binary encodings NMaxi
= (m2

i + 3mi − 2)/2. Moreover,

in each of these path matrices, there are m − mi other

columns corresponding to client-server paths of the other

services. The sequence of bits of each of these columns

may flip twice, due to Lemma IV.2, which accounts for

2(m − mi) more column flips in each of the mi path

matrices of the i-th tree. Hence we have

Nmax ,

S
∑

i=1

[

(m2
i + 3mi − 2)

2
+ 2mi · (m−mi)

]

. (2)

4) We proceed as in the proof of Theorem IV.2, replacing

NMax with the righthand side of Equation (2).

The following theorem addresses a different case, in which

every client can be assigned to any server.

Theorem V.3 (Identifiability for multi-server monitoring

with flexible client assignment). Consider monitoring the

paths between S servers and m clients with arbitrary

client-server assignment in a network of n nodes, with

maximum path length d∗. Then the maximum number of

identifiable nodes ψMS(m,S, n, d∗) is upper-bounded as in

Theorem IV.2, except that Nmax is specified by Nmax =
min

{

m · d∗;m2(2− 3
2S ) + 3m/2− S

}

.

Proof. Let A be the set of possible assignments of m clients

to S servers: A = {m ∈ N|ms ≥ 0, and
∑S

s=1ms = m}.
The bound on the number of identifiable nodes in

the case of S servers and undistinguished clients can be

formulated as in Theorems IV.2 and V.2, where Nmax =

min
{

md∗; maxm∈A

∑S

s=1

[

m2
s+3ms−2

2 + 2ms · (m−ms)
]}

.

In order to calculate NMax we address the optimization,

in the integer variables ms, of the objective function

f(m) =
∑S

s=1

[

(m2
s + 3ms − 2)/2 + 2ms · (m−ms)

]

=

2m2 + 3m/2 − S − 3/2
∑S

s=1m
2
s (obtained by replacing

∑S

s=1ms with m where possible), under the constraint that

m ∈ A. A relaxation of this problem leads to the following

solution: ms = m/S, ∀s = 1, . . . , S, and an objective value

of m2(2− 3
2S )+3m/2−S, which is an upper bound to f(m),

from which we derive the assertion of the theorem.

2) Design insights: In a setting in which the m monitoring

paths connect a given number of servers to their clients, the

maximum identifiability is obtained by letting the branches of

several server-rooted optimal monitoring trees intersect with

each other, while satisfying the consistent routing assumption

and the constraint on the maximum path length d∗.

While in the case of fixed client assignment to servers, the

number of leaves of each tree is predetermined, in the case of

flexible client assignment, the proof of Theorem V.3 suggests

that the highest identifiability is obtained through a uniform

assignment of clients to servers. In terms of topology design

this implies that the maximally identifiable topology would

require uniformly sized monitoring trees.

VI. DATA-CENTER NETWORK MONITORING

The last scenario is a data-center network where we monitor

paths between end-hosts. Data-center networks have unique

topology and routing properties that require dedicated analysis.

A. Half-consistent Routing

Typical data-center topologies are based on two or three

layers of homogeneous k-port switches arranged into tree-like

topologies. A common topology built of commodity Ethernet

switches is the fat-tree topology [13]. Recent works on data-

center design and optimization propose the use of fat-tree

topologies to deliver high bandwidth to hosts at the leaves

of the fat-tree, which requires spreading the pod’s outgoing

traffic uniformly to the core switches. A special instance

of a k-ary fat-tree together with a related addressing and
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Fig. 9. Routing inconsistency in a fat-tree

routing scheme is described in the work of Al-Fares et al.

in [14]. An example with 3 layers and k = 4 is shown in

Figure 9. The authors of [14] propose the use of a joint routing

and addressing scheme which violates the consistent routing

assumption in two aspects: (1) routes between different source-

destination pairs may not be consistent, (2) routes in different

directions between the same source-destination pair may not

be consistent either.

An example of two paths violating routing consistency is

given in Figure 9. The example highlights routing inconsis-

tency, as the path between the aggregation switches 10.1.3.1
and 10.3.3.1 can be different depending on the source and the

destination hosts.

In this scenario, while Theorem IV.1 is still valid, Theorem

IV.2 cannot be applied due to the lack of routing consistency

and symmetry. To address the lack of routing symmetry, in the

following we consider one-way monitoring paths, while we

address the lack of consistency by introducing the following

concept of half-consistency.

Definition VI.1. If a routing scheme guarantees that any path

pi ∈ P can be divided into two segments s1(pi) and s2(pi),
such that the property of routing consistency (Definition IV.1)

holds for the set P ′ = ∪pi∈P {s1(pi), s2(pi)}, then the routing

scheme is called half-consistent.

Observation VI.1. Any shortest-path routing scheme on a fat-

tree is half-consistent.
Proof. Let us call us(p) and ut(p) the source and the destina-

tion endpoints of p, and let us call the upper node um(p) the

node of p that is the farthest from the endpoints. Due to the

structure of the fat-tree, there is only a unique path s1(p) from

us(p) to um(p), and a unique other path s2(p) from um(p)
to ut(p). Therefore, for any two intermediate nodes on si(p)
(i = 1, 2), there cannot be any alternative path between them,

and the routing of these path segments is consistent.

B. Identifiability Bound

In the case of half-consistent routing (including routing in

fat-trees), the following bound holds.

Theorem VI.1 (Identifiability under half-consistent routing).

Given m (m > 1) monitoring paths of maximum length d∗ in

an n-node network, the maximum number of identifiable nodes

under the assumption of half-consistent routing ψHR(m,n, d∗)
is upper-bounded as in Theorem IV.2, except that Nmax is

specified by Nmax = m ·min{2m−1, 4 · (m− 1); d∗}.
Proof (sketch). The proof derives from the same arguments

of the proof of Theorem IV.2, but replaces the concept of

consistency with half-consistency as follows.

1) We prove that each column of any path matrix M(p̂i) has

up to two sequences of consecutive ones. This is due to the

half-consistency property which implies that each column

has two parts, each meeting the consecutive ones property.

2) We prove that the maximum number of different encodings

in a path matrix M(p̂i) is min{2m−1, d∗, 4(m−1)}. In fact,

the number of different encodings of M(p̂i) is bounded by

the maximum number of nodes d∗, and by the maximum

number of encodings of m − 1 digits (recall that the i-th
digit is always equal to 1). Additionally, by considering

each column of M(p̂i) separately we notice that besides

the i-th column which contains only 1s, any other column

can flip its value up to 4 times, two for each sequence of

consecutive ones. In order to have a change in the encoding

in any two successive rows r−1 and r there must be at least

a column that flips in r. Notice that the number of columns

that can flip is m − 1. As a consequence, the number of

different rows of M(p̂i) is upper-bounded by 4(m− 1).
3) We observe that the maximum number of different encod-

ings in m path matrices, is bounded by

Nmax = m ·min{2m−1, 4 · (m− 1); d∗}. (3)

4) We proceed as in the proof of Theorem IV.2, replacing the

value of NMax with the value of Equation (3).

C. Design insights

The identifiability of a fat-tree depends on the topology

parameters k, ℓ and the number of paths m. In Section VII-D

we show that for a small number of layers ℓ, half-consistency

does not imply a notable increase in the upper bound on identi-

fiability compared with consistency. In contrast, in determining

a lower bound, we notice that an empirical choice of paths

that achieves good identifiability makes ample use of the half-

consistency property to enable the identifiability of the routers

at the upper layers of the fat-tree. Results are shown in Figure

17. General guidelines on how to optimize identifiability via

path selection in such topologies are left to future work.

VII. PERFORMANCE EVALUATION

To evaluate the tightness of the proposed upper bounds,

we compare them with lower bounds obtained by known

heuristics on synthetic and real network topologies. Since the

bound in Theorem IV.1 is achievable under arbitrary routing

(see Section IV-A2) and loose otherwise, we show it once in

Figure 10 and we omit it in the rest of the evaluation.

A. Consistent Routing

We analyze the tightness of the upper bound in Theo-

rem IV.2 under consistent routing. Figure 10 considers a

network having a half-grid topology as in Figure 3, with 78

nodes arranged into 12 lines and 12 columns. It shows the

upper bound (UB) of Theorems IV.1 and IV.2 as well as a

lower bound (LB) obtained by placing monitoring endpoints

as in Section IV-B2. We vary the number of paths while fixing

the maximum length at d∗ = 12. We show the bound in Theo-

rem IV.1 to highlight the potential in improving identifiability

by relaxing routing consistency. For instance, regardless of

the topology and the monitoring endpoints, we see that if
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the number of paths is 6, the routing is consistent, and the

maximum path length is 12, then the number of identifiable

node is no greater than 30, much smaller than the bound of

min{26 − 1, 78} = 63 obtained by Theorem IV.1 without the

constraints on routing and path length.

In Figure 11 we show, for the same network, how the bound

of Theorem IV.2 varies with the number of monitoring paths

m and the maximum path length d∗. For small values of d∗ the

bound has an almost linear growth with m. For larger values of

d∗ the bound shows two regions: an initial super-linear growth

for small values of m, and a linear growth for large values of

m. The figure also shows that while the number of paths m
has a major impact on the number of identifiable nodes, the

length of the monitoring paths has a significant impact only

when d∗ is small, and diminishing impact otherwise.

B. Single-Server Monitoring

Figure 12 shows two scenarios with different topologies.

The first scenario is a network of 95 nodes, connected as a

full binary tree with 48 leaves, with d∗ = 7 (in number of

nodes). The figure shows the increase of the optimal number of

identifiable nodes by varying the number of monitoring paths

having a common endpoint. By using 48 paths of maximum

length d∗ = 7 from the leaves to the root, it is possible to

identify all the network nodes. Notice that the optimal number

of identifiable nodes that can be obtained by varying server

location and placement of clients coincide with the value of

the bound of Theorem V.1. Lemma V.2 shows in fact that

for such a topology, the optimal identifiability is achieved by

placing the endpoints of the m different monitoring paths one

in the root of the tree and the others in a way that the paths

form a full binary tree topology.

For the second scenario we consider a stricter limit on the

path length d∗ = 3. We consider a tree topology where a

common root is connected to 24 binary trees of depth 1, for a

total of 48 leaves, and 73 nodes (this topology is constructed

extending the case of Figure 8(b) to connect 24 subtrees). In

this topology, by using 48 paths of maximum length d∗ = 3,

from the leaves to the root, it is possible to identify all the

nodes. Also in this case, the bound of Theorem V.1 is tight,

and coincides with the optimal, which is a tree of paths where

⌈m/2⌉ binary trees of depth 1 descend from a common root.

The Figure also shows that the values of the bound obtained

with Theorem IV.2, are considerably looser than those of

Theorem V.1. This is because the former considers any m
paths generated with any consistent routing scheme, while the

latter considers the additional requirement that the monitoring

paths share a unique common endpoint.
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Figure 13 illustrates an experiment on an existing AT&T

topology mapped with Rocketfuel [15], with 108 nodes and

141 links. We consider a single server and a random placement

of m clients. We obtained a lower bound, called ”Random”,

by running 100 trials for each value of m and using the

largest number of nodes identified by client-server paths under

consistent shortest path routing. We then compare this value to

the upper bound given by Theorem V.1. As the figure shows,

the lower bound is not as close to the upper bound as in the

case of the engineered topologies in Figure 12.

C. Multi-Server Monitoring

In these experiments we also consider the AT&T topology

with 108 nodes and 141 links. We analyze the case of multiple

servers, each serving 3 clients. We increase the number of

servers and vary the number of clients accordingly. Figure

14 shows the upper bound of Theorem V.2 compared to a

lower bound obtained with the heuristic greedy distinguisha-

bility maximization (GD)6 proposed in [6]. Notice that this

heuristic finds a good approximation to the optimal number

of identifiable nodes in this problem setting. Although the

heuristic only optimizes server placement, while Theorem V.2

considers the optimal placement of servers as well as clients,

the experiment shows a good approximation of the upper and

the lower bounds when m is sufficiently small.

Figure 15 shows a comparison of the three bounds of The-

orems IV.2 (arbitrary sources/destinations), V.2 (fixed client

assignment) and V.3 (flexible client assignment) for the same

topology, where we vary the numbers of services and clients,

with a maximum path length d∗ = 20. In the figure, the

bound of Theorem IV.2 represents the special case of one client

6Note that GD requires client locations to be predetermined. Here we place
clients on some of the 78 dangling nodes, and then use GD to place servers.
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per server. We calculate the bound of Theorem V.2 assuming

first a uniform assignment of clients to servers, as shown in

Figure 15(a), and then an uneven assignment, which is shown

in Figure 15(b). For uneven assignment: in the case of two

servers, one server is assigned to 4/5 of the clients, while the

other to the rest 1/5; in the case of three servers, one server

is assigned to 3/4 of the clients, the second server to 3/16,

and the third server to 1/16. It can be seen that in the case

of even assignment of clients to servers, the two bounds of

Theorems V.2 (fixed client assignment) and V.3 (flexible client

assignment) give the same values. By contrast, in the case of

uneven distribution of clients to servers, Theorem V.2 gives a

considerably smaller bound than Theorem V.3, which assumes

an even distribution of clients to servers.

D. Data-Center Network Monitoring

Before considering the case of a specific fat-tree topology

we highlight that, given the small diameter (and consequently

small path length) that typically characterizes these topolo-

gies, we do not expect to see a considerable difference by

introducing half-consistent routing. We see that only with a

high number of layers, routing half-consistency plays a role in

optimizing identifiability. To this purpose Figure 16 evidences

the difference in the upper bounds of the case of a more

flexible half-consistent routing scheme considered in Theorem

VI.1, with respect to the case of consistent routing considered

in Theorem IV.2. It considers a general network with 100

nodes. The difference of identifiability between consistent

and half-consistent routing grows by increasing the maximum

length of monitoring paths as d∗ = 5, 15, 25, which in a fat-

tree would correspond to values of ℓ = 2, 7, 12.

In conclusion, we can affirm that for topologies with very

short diameter, such as in the case of fat-trees, having a higher

degree of freedom in routing (half-consistent routing) has a

significant impact on the identifiability of the network only

for a high number of layers.

We now consider the case in which monitoring is performed

along paths between hosts of a data-center network with a

fat-tree topology and the routing scheme proposed in [14]. In

Figure 17 we consider a 4-ary fat-tree with three layers and

study the tightness of the bound of Theorem VI.1. Due to the

high complexity in selecting the optimal monitoring paths, we

resort to an empirical selection of paths that give us a lower

bound on the number of identifiable nodes . It is interesting to

see that with only 16 monitoring paths we are able to monitor

all the 36 nodes of this fat-tree.

VIII. CONCLUSION

We consider the problem of maximizing the number of

nodes whose states can be identified via Boolean network to-

mography. We formulate the problem in terms of graph-based

group testing and exploit the combinatorial structure of the

testing matrix to derive upper bounds on the number of iden-

tifiable nodes under different assumptions, including: arbitrary

routing, consistent routing, monitoring through client-server

paths with one or multiple servers (and even or uneven distri-

bution of clients), and half-consistent routing. These bounds

show the fundamental limits of Boolean network tomography

in both real and engineered networks. Besides the theoretical

value of this analysis, we use the bounds to derive insights

for the design of topologies and monitoring schemes with high

identifiability in different network scenarios. Through analysis

and experiments we evaluate the tightness of the bounds and

demonstrate the efficacy of the design insights for engineered

as well as real networks.
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