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On the vulnerabilities of Voronoi-based
approaches to mobile sensor deployment

N. Bartolini, S. Ciavarella, S. Silvestri, and T. La Porta

Abstract—Mobile sensor networks are the most promising solution to cover an Area of Interest (AoI) in safety critical scenarios. Mobile
devices can coordinate with each other according to a distributed deployment algorithm, without resorting to human supervision for
device positioning and network configuration. In this paper, we focus on the vulnerabilities of the deployment algorithms based on
Voronoi diagrams to coordinate mobile sensors and guide their movements. We give a geometric characterization of possible attack
configurations, proving that a simple attack consisting of a barrier of few compromised sensors can severely reduce network coverage.
On the basis of the above characterization, we propose two new secure deployment algorithms, named SecureVor and SSD (Secure
Swap Deployment). These algorithms allow a sensor to detect compromised nodes by analyzing their movements, under different and
complementary operative settings. We show that the proposed algorithms are effective in defeating a barrier attack, and both have
guaranteed termination. We perform extensive simulations to study the performance of the two algorithms and compare them with the
original approach. Results show that SecureVor and SSD have better robustness and flexibility, excellent coverage capabilities and
deployment time, even in the presence of an attack.

Index Terms—Mobile sensors, self-deployment, Voronoi approach.
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1 INTRODUCTION

MOBILE wireless sensors are the most suitable tech-
nology for monitoring inaccessible or hostile envi-

ronments, where manual positioning of static sensors is
not feasible [23]. These devices can autonomously deploy
over an Area of Interest (AoI). Coordination among the
sensors is obtained by means of a deployment algorithm
that determines the device movement and positioning rules.

Besides the security problems typical of ad hoc networks,
such as communication issues [9], [11], [25], false position
claims [18], [8], Sybil [22] and node replication [29] attacks,
mobile sensor networks suffer from other vulnerabilities.
Mobile sensors usually lack tamper-proof hardware, thus
an adversary may capture several nodes, extract their cryp-
tographic material and reprogram them according to its
malicious goal. The reprogrammed sensors, hereafter called
malicious sensors, may perform several attacks to damage
the network, exploiting the specific vulnerabilities of the
deployment algorithm in use.

Previous solutions for deploying mobile sensors fall in
to one of three major families: approaches based on virtual
force models [15], [19], [30], [14], [17], on the formation of
patterns [3], [27], or on computational geometry techniques
[26], [20], [4]. Only recently, the vulnerabilities of the virtual
force approach for sensor deployment have been considered
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[2]. This work introduced a simple attack tailored for mo-
bile sensor deployment algorithms, called the Opportunistic
Movement (OM) attack. Using a small set of malicious sen-
sors, the attacker can influence the deployment of legitimate
sensors by exploiting the coordination mechanism of the
self-deployment approach. Malicious nodes may coordinate
with each other to reduce the area in which the legitimate
sensors are deployed, thus creating a non monitored zone.

While the work in [2] shows the detrimental effects of
the OM attack against the virtual force approach, in [5] we
provide experimental evidence of similar vulnerabilities in
computational geometry approaches, and in particular in
the Voronoi approach to mobile sensor deployment [26], [4].

In the present paper we significantly extend our previous
results on the vulnerabilities of Voronoi based approaches
and we provide, for the first time in the literature, an
analytical study of the vulnerabilities of such an approach.
In particular, we give a novel geometric characterization
and a formal proof of the efficacy of the OM attack [2]
against this deployment approach, showing that the attack
can seriously compromise coverage.

We show that during the deployment of the network the
OM attack is more effective against Voronoi based solutions
than against the virtual force approach. In particular, with
Voronoi based solutions, the efficacy of the attack depends
only on the perimeter of the area that the attacker wants
to keep uncovered, and there is no gain in increasing the
number of legitimate sensors deployed.

By contrast, we show that after the network is deployed,
Voronoi solutions are more robust than those based on
virtual forces. In fact, when the network is deployed accord-
ing to the Voronoi algorithm, once the area is completely
covered, the OM attack no longer has any impact.

On the basis of the geometric characterization described
above, we propose two new algorithms, called SecureVor
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and Secure Swap Deployment (SSD), which are designed
to counteract the OM attack. SecureVor works under the
assumption that the transmission radius is at least four times
larger than the sensing radius. Under this operative setting,
which is common to most outdoor application scenarios,

a sensor can determine the legitimacy of its neighbors
movements and communications. SSD is designed to work
in the same operative setting as the original VOR algorithm,
i.e., Rtx > 2Rs, so that it is complementary to SecureVor.
SSD exploits sensor positions swaps to verify the neighbors
behavior.

We show that both our algorithms can defeat the OM
attack in their respective operative settings, and we formally
prove that both terminate in a finite time.

We perform extensive simulations to study the per-
formance of SecureVor and SSD, in comparison with the
original solution. The results show that both algorithms are
able to successfully neutralize the OM attack and achieve
coverage of the AoI at the expense of a small overhead
in terms of energy consumption and deployment time.
SecureVor is more effective when the transmission radius
is sufficiently large with respect to the sensing radius, while
SSD is preferable when such an assumption does not hold.

The original contributions of this paper are:

• For the first time, we point out and formally prove
the vulnerabilities of Voronoi-based deployment al-
gorithms, giving a geometric characterization of pos-
sible attack configurations.

• We propose two new secure deployment algorithms
called SecureVor and SSD, which successfully coun-
teract the OM attack, in different and complementary
operative settings.

• We show that both algorithms have a guaranteed
termination, show through simulation that both de-
feat the OM attack, and prove that in SecureVor all
malicious nodes encountered are detected.

• Through simulations, we highlight the efficacy of our
algorithms in providing full coverage, even in the
presence of an OM attack, under a wide range of
operative conditions, at the expense of a moderate in-
crease in energy consumption and deployment time.

2 BACKGROUND ON THE VORONOI APPROACH

The Voronoi approach (VOR) to mobile sensor deployment
has been introduced in [26]. It makes use of Voronoi di-
agrams to guide sensor movements within the AoI. Ac-
cording to [26], sensors communicate within a distance Rtx

(communication radius), they sense over a circular area of
radius Rs (sensing radius), with Rtx > 2Rs. Nodes can move
in any direction inside the AoI, are endowed with low cost
GPS, and are loosely synchronized.

VOR is executed in a distributed manner at each node
and is round based. At each round t any sensor s broadcasts
its position coordinates, and determines its set of neighbors
N(t)

tx (s), i.e. the sensors located within its communication
radius. It then calculates its Voronoi polygon V (t)(s). Sen-
sor s determines its next destination according to one of two
movement criteria: the Farthest Vertex (FV) and the MiniMax
(MM) [26].

According to FV a sensor s moves along the segment
connecting its position and the farthest vertex of its polygon.
Its destination is a point on this segment at distance Rs from
the farthest vertex.

According to MM, the destination of s is the point
that minimizes the maximum distance from the vertices of
V (t)(s), which is the center of the minimum circle enclosing
its polygon.

Regardless of the adopted movement criterion, a sensor
s moves to its destination only if its movement provides a
better coverage of V (t)(s), otherwise it remains still.

Furthermore, according to [26], s can traverse a maxi-
mum distance per round dmax = Rtx/2 − Rs, to take into
account possible inaccuracies in the distributed construction
of Voronoi polygons, which may be due to the limited
transmission radius.

3 THE OPPORTUNISTIC MOVEMENT ATTACK

The original work [26] does not address the security vulner-
abilities of the VOR approach. Since sensors lack tamper-
proof hardware, an adversary may capture some nodes, and
extract their cryptographic related information and repro-
gram them. Such malicious sensors may not be recognized
by legitimate sensors as they are able to send valid messages
containing a valid ID, and make use of legitimate cryp-
tographic information. The attacker can thus exploit these
corrupted nodes to perform malicious attacks to prevent a
successful network deployment. For instance, the attacker
can be interested in creating a non monitored area around a
zone of interest, or isolating a part of the network. To pursue
its goal, the attacker utilizes a set of malicious nodes that are
able to collude with each other by performing coordinated
movements and communications in order to influence the
movements of the legitimate sensors.

The OM attack introduced in [2] aims at reducing the
network coverage. To this purpose, malicious sensors ini-
tially form an attack configuration over the AoI. From such a
configuration, malicious nodes start the attack by moving
according to the adversary strategy, but communicating
according to the communication protocol provided by the
deployment algorithm.

The OM attack is a general attack which can be per-
formed in different manners, depending on the movement
strategy of malicious sensors. A particularly effective strat-
egy is the Barrier Opportunistic Movement (BOM), in which
malicious sensors form a linear barrier over the AoI [2], [5].

As provided by the OM attack, malicious sensors period-
ically communicate their positions at the beginning of each
round in a legitimate way. By contrast, they move according
to the attacker strategy. In particular, the malicious sensors
forming the barrier may move towards legitimate sensors
or remain still, in order to prevent legitimate sensors from
spreading over uncovered areas.

In Figure 1, we show an example of a BOM attack.
The red circular areas represent the sensing disks of the
malicious nodes performing the BOM attack. The grey
circles are the sensing ranges of the legitimate sensors
that are spreading over the AoI according to VOR. The
two figures 1(a) and (b) represent the initial and the final
deployment, respectively. A barrier of malicious sensors is
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(a) (b)

Fig. 1. BOM Attack. Initial deployment (a) and final deployment under
VOR (b)

initially deployed over the AoI as in Figure 1(a), limiting
the movements of legitimate sensors that will be able to
spread only in the area limited by the barrier, as in Figure
1(b). The malicious nodes remain still, forming a barrier that
prevents further movements of the legitimate sensors. In
fact, the legitimate sensors that come in proximity with the
barrier nodes stop moving. They do not move towards and
across the barrier because, from the information received by
malicious nodes, they derive that there is no way and no
necessity to improve their local coverage.

In this paper, we give a geometric characterization of
the vulnerabilities of the Voronoi approach to mobile sensor
deployment. Moreover, we exploit the information derived
from the geometric characterization to design two novel
algorithms, SecureVor and SSD, which are able to neutralize
the attack. In particular, SecureVor is designed for an oper-
ative setting in which the communication radius is at least
four times greater than the sensing radius, i.e. Rtx > 4Rs.
SSD, instead, is designed to work in the same operative
settings as the VOR approach, i.e. Rtx > 2Rs.

Similarly to [2], [5], in order to highlight the strength
of the BOM attack, in this paper we do not consider other
attacks which may be performed in conjunction with BOM.
Our goal is to show how the BOM attack, alone, can produce
detrimental effects in terms of coverage to VOR based
solutions.

3.1 Efficacy of the BOM attack against VOR

In this section we formally analyze the vulnerabilities of
VOR against the BOM attack. We refer the reader to [10] for
a brief survey of the properties of Voronoi tessellations.

We consider the diagram of Figure 2, where a Cartesian
reference models the AoI. Malicious sensors are evenly
deployed along the axis x = 0, with step size d, occupying
the positions (0, d/2+k ·d), with k ∈ N. We hereby call such
a configuration a d-spaced barrier of malicious sensors.

We define ∆(Rs, d) ,
√
R2
s − d2/4, also referred to as ∆.

Let w be the width of the overlapping region between two
adjacent malicious sensors. In Figure 2, w = d(C,Q) = 2∆,
where d(·, ·) is the Euclidean distance between two points.
Notice that such a width is larger than Rs if d ≤

√
3 ·Rs.

We use the following notation. We denote with L(ℓ) and
R(ℓ) the half-planes at the left and right side of the line
ℓ, respectively, where ℓ is a generic line of equation x =
xℓ. For brevity, we will use the same notation for a point

Fig. 2. A legitimate sensor in P approaches a d-spaced barrier (sensors
deployed in (0, d/2 + k · d), with k ∈ N). As P is on the left of line r1, it
does not cross the barrier, as long as d ≤

√
3Rs.

P = (xp, yp), denoting with L(P ) andR(P ), the half-planes
L(x = xp) and R(x = xp), respectively.

Let us consider the lines r0, r1 and r2, with equations
x = −∆, x = −Rs + ∆, and x = ∆, respectively. Notice
that if d ≤

√
3 · Rs, the line r1 falls between the lines r0

and r2. We will prove that the line r1 acts as a frontline of
the barrier, precluding legitimate sensors from traversing
it, independently of the moving criterion adopted by the
Voronoi algorithm VOR.

Given a sensor s positioned in P , we denote with V (s)
its Voronoi polygon, and with C(s) its sensing circle. The
following Lemma 1 recalls a general property of Voronoi
polygons that is necessary for the following discussion. It
is a specific case of a more general theorem given in [4]
(Theorem 3.1) and states that if a point of V (s) is covered
by any sensor, then it is also covered by s.

Lemma 1 (Theorem 3.1 of [4]). Let us consider N sensors si,
i = 1, . . . , N , with positions Pi = (xi, yi), sensing circles C(si)
and sensing radius Rs. Let V (si) be the Voronoi polygon of si.
For all k and j = 1, 2, . . . , N , V (sk) ∩ C(sj) ⊆ C(sk).

Let us denote with Acritical the locus of points deter-
mined by this equation:

Acritical = ∪
k∈N
{(x, y)|(x−∆)2 + (y − k · d)2 = R2

s, x ≤ 0}. (1)

The shape of this locus is a periodic sequence of circular
segments, along the y-axis, as depicted in Figure 2.

Extending the previous notation, we denote with
L(Acritical) and with R(Acritical) the regions on the left
and right side of Acritical, respectively.

Lemma 2 (Frontline). Let us consider a legitimate sensor s,
positioned in P = (xp, yp), with P ∈ L(Acritical), with a d-
spaced barrier of malicious sensors, with d ≤

√
3 · Rs. It holds

that V (s) ∩R(r0) ⊆ C(s).

In other words, the portion of the Voronoi polygon of s
located on the right side of the line r0 is completely covered,
and is covered by s itself.
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Proof. Consider the diagram of Figure 2. By contradiction,
let us consider a point Z ∈ V (s) ∩ R(r0) and assume that
Z is not in C(s). As a consequence of Lemma 1, Z is not
covered by any sensor. Since the region between the lines r0
and r2 is covered by [at least] the barrier sensors, Z must be
in R(r2). Therefore, as Voronoi polygons are convex, V (s)
must have an uncovered vertex Vz in R(r2).

Let us now remove from the diagram every sensor but
s itself and the two closest barrier sensors m1 and m2,
positioned in the points M1 = (0, d/2) and M2 = (0,−d/2).
We obtain a new Voronoi polygon V ′(s) for s, such that
V (s) ⊆ V ′(s). As s does not cover the vertex Vz , it also
does not cover the unique vertex of the bigger enclosing
polygon V ′(s). Let us denote with V such a vertex, which is
the unique intersection of the perpendicular bisectors of the
segments PM1, PM2 and M1M2, as shown in Figure 2.

V = (xv, yv) =

(
x2
p + y2p − d2/4

2 · xp
, 0

)
.

As V is not covered, it must also be located in R(r2),
therefore xv > ∆, from which, recalling that xp < 0, we
derive: (xp −∆)2 + y2p ≤ d2/4 + ∆2 = R2

s.
Therefore the vertex V , generated when the sensor s is in

L(Acritical), would actually be uncovered only if the sensor
s were also located inR(Acritical), which is a contradiction.
This implies that Z /∈ R(r2), concluding the proof that if
Z ∈ V (s) ∩R(r0) then Z must also belong to C(s).

The above Lemma 2 admits the following special case
that follows by considering that r1 is tangential to Acritical.

Lemma 3. Let us consider a legitimate sensor s, positioned
in P = (xp, yp), with P ∈ L(r1), and a d-spaced bar-
rier of malicious sensors, with d ≤

√
3 · Rs. It holds that

V (s) ∩R(r1) ⊆ C(s).

Lemma 3 is necessary to demonstrate that no sensor
located in L(r1) crosses the barrier with a Voronoi based
movement. Therefore a minimum distance threshold

dT (Rs, d) , Rs −
√
R2
s − d2/4

can be defined, so that no sensor located at a distance
higher than dT from the barrier can cross it by means of
a pure Voronoi based movement. We study the two criteria
separately.

Theorem 3.1. Let us consider a network of mobile sensors, with
sensing radius Rs, being deployed according to the FV criterion.
Let us consider a d-spaced barrier of malicious sensors with step
d ≤

√
3 · Rs. No legitimate sensor located at a distance longer

than dT (Rs, d) from the barrier, is able to traverse it.

Proof. Let us consider a Cartesian reference so that the
barrier is deployed along the axis x = 0, in the positions
(0, d/2 + k · d), with k ∈ N. Due to symmetry we consider
the left side only.

Consider a legitimate sensor s, located at a distance
higher than dT (Rs, d) from the barrier, on the left side of it.
It follows that Ps ∈ L(r1), where r1 is the line of equation
x = −dT (Rs, d). Thanks to Lemma 3, we can assert that
the Voronoi polygon V (s) of the sensor s does not have any

uncovered vertex on the right side of the line r1. Therefore,
given the rules of the FV criterion described in Section 2,
either the sensor s does not move, or its destination D is
also in the left side of the line r1, that is D ∈ L(r1). Since
any movement of s, even if performed in multiple steps, will
carry s from its current position Ps in L(r1) to a destination
D which is also in L(r1), and since the region L(r1) is
convex, all the paths traversed by s are internal to L(r1)
and s never crosses the line x = 0 at which the barrier is
deployed.

We proceed with the analysis of the MiniMax criterion.
We recall that the MiniMax point of a polygon is the center
of its smallest enclosing circle.

Lemma 4. Let P be a convex polygon with N vertices, and let EP
be the minimum enclosing circle of P . Every arc of 180◦ degrees
in EP must traverse at least one vertex of the polygon P .

Proof. The minimum enclosing circle EP of a polygon P has
at least two vertices of P on its boundary. As discussed in
[10] we have two cases. Case (1): only two vertices of P are
on the boundary of EP , and they are antipodal. In such a
case the two vertices divide EP into two half-circles. Case
(2): more than two vertices of P are on the boundary of EP ,
and three of these vertices form a non-obtuse triangle (or EP
would not be minimal). In this case, the center of EP would
coincide with the circumcenter of such a triangle and the
angular distance between any two vertices would be less
than or equal to 180◦ degree. It follows that in both cases
every arc of the circumference whose length is 180◦ degree
must contain at least one vertex of the polygon P .

We now give a characterization of the possible positions
of the MiniMax point of V (s) on the basis of the position of
the sensor s with respect to the barrier.

Lemma 5. Let us consider a d-spaced barrier of malicious sensors,
with d ≤

√
3Rs, along the y-axis of a Cartesian reference

and consider a legitimate sensor s positioned in P ∈ R(r0) ∩
L(Acritical). If the Voronoi polygon V (s) is not completely
covered then its MiniMax point M ∈ L(P ).

Proof. Let us refer to Figure 2. As the lines r0 and r2 cross the
intersection points between pairs of sensing circles of barrier
sensors, the region R(r0) ∩ L(r2) is completely covered by
the barrier sensors. The width of such a region is w = 2∆.
Since d ≤

√
3Rs then w ≥ Rs. For vertical periodicity

and horizontal symmetry in the construction, let us only
consider the case with 0 ≤ yp ≤ d

2 .
We initially neglect the presence of other sensors but

s and the barrier sensors located in M0 = (0, 3d
2 ), M1 =

(0, d
2 ), and M2 = (0, −d

2 ). As sensor s approaches the
barrier, C(s) can have a non null intersection with the barrier
sensors, generating two vertices of the Voronoi polygon
V (s) (drawn in blue in Figure 2). As the closest barrier
sensors are M1 and M2, the vertex V generated with these
sensors is the closest to the barrier. Due to Lemma 2, as
s ∈ R(r0) ∩ L(Acritical), the portion of its Voronoi polygon
V (s) located in R(r0) is completely covered and is covered
by s. Therefore the uncovered points of V (s) lie in the region
L(r0).
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Let us denote with I1 and I2 the intersection points
of V (s) with the boundary of the sensing circle C(s). The
uncovered points of V (s) must be located beyond the arc
⌢
I1I2, in the left region of the segment I1I2. P is more distant
than Rs from the uncovered points whereas its distance
from all the vertices in R(P ) is lower than Rs.

We will now prove that no point of V ′′(s) , V (s)∩R(P )
can be the MiniMax of V (s). We proceed by contradiction.
Assume that X ∈ V ′′(s) is the MiniMax of V (s), and V (s)
has uncovered points. The requirement given by Lemma 4,
establishes that X be the center of a circle which crosses at
least one vertex of V (s) every 180◦ degrees.

As the angle formed by I1 and I2, with any point of
V ′′(s) at the right hand side of the segment I1I2 is wider
than 180◦ degrees, Lemma 4 states that an enclosing circle
centered in X must cross one of the two vertices V and
J , formed with M1 and M2 in addition to one or more
uncovered vertices at the left side of the arc

⌢
I1I2, for a total

of two or three vertices. Furthermore, the enclosing circle
must cross the circumference C(s) in two points (in order
to include an external region), which requires X to be in
L(P )1.

In order to finish the proof we recall that in all this rea-
soning we neglected the presence of other sensors besides
s, and the three barrier sensors located in M0, M1 and M2.
The argument remains valid even when considering other
sensors, as they would cover additional portions of the AoI
and of V (s), and the potentially uncovered portion of the

arc
⌢
I1I2 could only be smaller, leaving even wider angles

at its right than we considered in the first part of the proof.
Therefore, although having additional sensors may reduce
the size of V (s), when coverage of V (s) is incomplete and s
is in P ∈ R(r0)∩L(Acritical), the MiniMax point would be
in L(P ).

Theorem 3.2. Let us consider a network of mobile sensors, with
sensing radius Rs, being deployed according to the MiniMax
criterion. Let us consider a d-spaced barrier of malicious sensors,
with step d ≤

√
3 ·Rs. No legitimate sensor located at a distance

longer than dT (Rs, d) from the barrier, is able to traverse it.

Proof. Thanks to symmetry, we can consider the only left
side of our reference plane.

Consider a legitimate sensor s, located at a distance
higher than dT (Rs, d) from the barrier, on the left side of
it. Then Ps ∈ L(r1). If Ps is located in L(r0), it may have
uncovered portions of its polygon V (s) in the half plane
R(P ). Therefore its MiniMax point can also be in R(P ).
Nevertheless, by analyzing the coordinates of the point V ,
we derive that V ∈ L(r1). Therefore, the whole polygon
V (s) and so its MiniMax point M , are also in L(r1).

By contrast, if Ps ∈ R(r0)∩L(r1), Lemma 5 allows us to
conclude that the MiniMax point M resides in L(r1) or the
polygon is completely covered and no movement occurs.

1. This is because: 1) an enclosing circle bigger than C(s) and centered
in R(P ) would not touch any vertex in an angle wider than 180◦
degrees, contradicting Lemma 4. Therefore if X had a radius RX > Rs,
it would be in L(P ); 2) an enclosing circle of the same size as C(s) or
even smaller is also possible, but in order for it to include points that

are external to C(s) on the left side of the arc
⌢

I1I2, in addition to both
vertices in R(P ) it must be centered in X ∈ L(P ).

Therefore, the destination D is also in the left side of the line
r1. Since any movement of s, even if performed in multiple
steps, will carry s from its current position Ps in L(r1) to a
destination D which is also in L(r1), and since the region
L(r1) is convex, all the path traversed by s must be internal
to L(r1). Therefore s never crosses the line x = 0 at which
the barrier is deployed.

The above theorems show that the number of malicious
sensors necessary to impede complete coverage of an area
only depends on the perimeter of the area, regardless of the
number of legitimate sensors deployed.

Notice also that the OM attack has no impact on an
already deployed network which provides full coverage of
the AoI.

Theorem 3.3. Under VOR, once legitimate sensors have achieved
full coverage of the AoI, the OM attack cannot cause the movement
of any sensors.

Proof. Let us consider a legitimate sensor s with neighbors
N(s). Since the AoI is completely covered, V (s) is also
completely covered, hence s does not move. When the OM
attack starts, s has a set of neighbors N̂(s), which may
include some additional malicious sensors, and a polygon
V̂ (s). Since N(s) ⊆ N̂(s) then V̂ (s) ⊆ V (s), thus V̂ (s)
is also completely covered, hence s does not move, in
agreement with the rules described in Section 2.

4 THE SECUREVOR ALGORITHM

In this Section we introduce SecureVor, a secure Voronoi-
based deployment algorithm.

SecureVor is designed on the basis of the adversary
model introduced in Section 3. It assumes a signature pro-
tocol to verify the exchanged messages, and an algorithm to
verify position claims of nodes within the communication
range Rtx [12], [28]2. SecureVor assumes that Rtx > 4Rs

and sets dmax = Rtx/4−Rs. We relax this assumption with
the algorithm SSD, discussed in Section 5. Notice that, we
do not require the communication range of a sensor to be a
perfect disk. Indeed, there can be anisotropies provided that
a sensor is able to communicate with all sensors located at
a distance up to 4Rs from itself. Finally, similar to previous
works [26], [4] on mobile sensor deployment, we assume
that nodes are endowed with consumer grade GPS3 and
that they are loosely synchronized.

SecureVor provides a method to recognize malicious
sensors and detect malicious movements when the deploy-
ment is based on VOR. It can be applied to both moving

2. Location verification can be achieved by using dedicated hardware
and/or previously deployed anchor nodes. Sensors can autonomously
verify position claims if they are equipped with a radar system [12],
[28]. These radars conform to our requirements as they are inexpen-
sive, low power and provide object detection up to 20m distance.
Alternatively, Ultra Wide Band systems [13] and anchor nodes can
be used for location verification through Verifiable Multilateration
(VM) [7]. In this case, anchor nodes are responsible for the location
verification and advertise false location claims when detected. Using
VM, a sensor incurs in a constant communication overhead for each
anchor it communicates with.

3. Low-cost, consumer grade GPS currently available provide accu-
racy in the orders of few decimeters [6] and have a cost around 200$
per unit [21].
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strategies FV and MiniMax. The idea of SecureVor is to
detect malicious nodes by verifying the compliance of their
movements to the rules of the deployment algorithm in use.
This verification activity allows each sensor to formulate its
own list of trusted and untrusted sensors. Each sensor will
ignore untrusted neighbors and use only the information ex-
changed with trusted ones to determine future movements.

In order to let sensors reciprocally verify each other’s
movement, at the beginning of each round every sensor s is
required to declare the set of its trusted neighbors, namely
the set of sensors that it will use to determine its polygon.
Notice that, a sensor determines this set only on the basis
of its local observation, since SecureVor does not require
transitive trust among sensors. The neighbor sensors of s
locally calculate the polygon of s, based on its stated set,
and verify whether its movement is in compliance with
the deployment algorithm or not. If a malicious movement
is detected, s is marked as untrusted and ignored by its
neighbors thereafter. SecureVor, and similarly SSD, could be
extended with reputation-based techniques [24], [16].

Let N be the set of sensors to be deployed. We recall
from Section 2 that we denote by N(t)

tx (s) the neighbors
of s, that is the set of sensors that are, at round t, at a
distance less then the communication radius Rtx from s.
The sets N(t)

trusted(s) and N(t)
untrusted(s) keep track, for a

sensor s, of the set of sensors that s considers as trusted
and untrusted, respectively, until round t. These sets are
updated at each round. According to SecureVor, a sensor
s only considers neighbors at a distance less than Rtx/2 as
potential neighbors to calculate its own polygon. We refer to
such neighbors at a round t as Q(t)(s). This choice enables
s to be in communication with the sensors considered by
its neighbors in Q(t)(s) to determine their polygon. Among
the nodes in Q(t)(s), s takes into account only the sensors
that it considers as trusted in order to determine its polygon.
We define the set of sensors that s actually considers at
round t as N(t)

SV (s) = Q(t)(s)
∩
N(t)

trusted(s). N
(t)
SV (s) may

be empty if s has no trusted neighbor in its proximity at
round t. In such a case, V (t)(s) is the whole AoI. Finally,
the position of sensor s at the current round is denoted with
pos(t)(s). Table 1 summarizes the adopted notation.

Notation Description
V (t)(s) Polygon of s
N(t)

tx (s) Neighbors of s (distance ≤ Rtx)
Q(t)
tx (s) Neighbors of s (distance ≤ Rtx/2)

N(t)
trusted(s) Sensor s trusted neighbors until round t

N(t)
untrusted(s) Sensor s untrusted neighbors until round t

pos(t)(s) Position of s
p̂ost(s) Expected position of s
N(t)

SV (s) Sensors considered by s to build V (t)(s)

TABLE 1
Summary of adopted notation. All notations refer to round t.

4.1 SecureVor in detail
SecureVor is round based similar to VOR. In particular,
it comprises four phases, namely: Position communication,
Movement verification, Trusted neighbors communication and
Coverage evaluation and movement. Notice that we do not
consider localization errors of the GPS positioning system
or of the location verification algorithm. SecureVor can be
extended to take these aspects into account with the same
approach described in Section 8.4 of [2].

The pseudo-code is shown as Algorithm SecureVor.

Algorithm SecureVor, node s at round t.
// Position communication:

1 Broadcast pos(t)(s);
2 Receive and verify neighbor positions;
3 Determine the sets N(t)

tx (s) and Q(t)(s);
// Movement verification:

4 if t = 0 then
5 N(t)

untrusted(s) = ∅;
6 N(t)

trusted(s) = N ;

7 else
8 N(t)

untrusted(s) = N(t-1)
untrusted(s) ∪ (Q(t-1)(s) \N(t)

tx (s));
9 for q ∈ Q(t)(s) s.t. q /∈ N(t)

untrusted(s) do
10 if (s /∈ N(t-1)

trusted(q) ∨ N(t-1)
trusted(q) * N(t-1)

tx (s)) then
11 N(t)

untrusted(s)← q;

12 Calculate V (t-1)(q);
13 Calculate p̂ost(q);
14 if p̂ost(q) ̸= post(q) then N(t)

untrusted(s)← q;

15 N(t)
trusted(s) = N \N(t)

untrusted(s);
16 N(t)

SV (s) = Q(t)(s)
∩

N(t)
trusted(s);

// Trusted neighbors communication:
17 Broadcast the list of nodes in N(t)

SV (s);
18 Receive N(t)

SV (z) from any z ∈ Q(t)(s);
// Coverage evaluation and movement:

19 Calculate V (t)(s) on the basis of N(t)
SV (s);

20 if V (t)(s) is completely covered then do not move;
21 else Determine destination point and move accordingly.

Position communication (lines 1-3)
At the beginning of a round each sensor communicates its
position to the neighbors through a signed message and
determines the sets N(t)

tx (s) and Q(t)(s), which are the
set of communication neighbors of s and the set of nodes
located at less than Rtx/2 from s, respectively.
Movement verification (lines 4-16)
In this phase, a sensor s verifies the movements of its
neighbors to determine N(t)

trusted(s), N
(t)
untrusted(s) and ul-

timately N(t)
SV (s). At the first round, N(t)

trusted(s) = N and
N(t)

untrusted(s) = ∅ (lines 4-6).
The set of untrusted neighbors at round t > 1,

N(t)
untrusted(s), contains all the sensors that were determined

as untrusted in any of the previous rounds N(t-1)
untrusted(s)

plus the sensors that were in Q(t-1)(s) and that are no
longer in communication with s at the current round (line
8)4. Other sensors that are detected as malicious in the
current round are added to N(t)

untrusted(s) (lines 9-16) as
explained in the following.

A sensor s verifies, for each sensor q in Q(t-1)(s), not
yet in N(t)

untrusted(s), the correctness of its movement in the
previous round5. The first check that s performs for a sensor
q, in order to verify the correctness of its movement, is
on the truthfulness of the set N(t-1)

SV (q) (lines 12-13). Two
inconsistencies can be detected by s.
First inconsistency: the sensor q may have maliciously omit-
ted s itself in the set of its trusted neighbors. Since s

4. SecureVor imposes that a sensor travels a maximum distance
dmax = Rtx/4 − Rs. Hence even if two sensors, at a distance at most
Rtx/2, move in opposite directions, they will stop at a distance from
each other less than Rtx/2 + 2(Rtx/4 − Rs) which is less than Rtx.
This means that Q(t-1)(s) ⊆ N(t)

tx (s), so if a sensor in Q(t-1)(s) is not
in N(t)

tx (s), s can mark it as untrusted.
5. Notice that, the trustworthiness of the sensors belonging to

Q(t)(s) \Q(t-1)(s) will be evaluated at the next round.
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knows that it has behaved correctly according to the moving
strategy, q must include s in its trusted set.
Second inconsistency: the sensor q may have fabricated the
presence of some sensors in N(t-1)

SV (q) which are not physi-
cally located in its proximity to justify its movement. Sensor
s can detect such malicious behavior because, according to
SecureVor, a sensor q must select the sensors in N(t-1)

SV (q)
among those in Q(t-1)(q). In order to be in N(t-1)

SV (q), a
sensor must be at a distance at most Rtx/2 from q which
implies that it is at a distance at most Rtx from s, being q
at a distance at most Rtx/2 from s (q ∈ Q(t-1)(s)). More
formally N(t-1)

SV (q) ⊆ Q(t-1)(q) ⊆ N(t-1)(s).
If an inconsistency is detected, q is marked as untrusted

and will be ignored by s hereafter. If no inconsistency is
detected, the sensor s verifies whether q has moved accord-
ing to the nodes belonging to N(t-1)

SV (q) (lines 14-16). To
this aim, s calculates the polygon of q at the previous round
V (t-1)(q) on the basis of N(t-1)

SV (q) and pos(t-1)(q). Sensor
s then compares the current position pos(t)(q), which q
has just broadcast in the previous phase, with the expected
position of q at the current round, p̂os(t)(q), calculated con-
sidering the polygon V (t-1)(q) and pos(t-1)(q). If pos(t)(q)
is different from p̂os(t)(q), sensor s marks q as untrusted.
Trusted neighbors communication (lines 19-20)
In this phase each sensor s broadcasts a signed message
containing the IDs of the nodes belonging to the set N(t)

SV (s)
calculated in the previous phase. This information enables
the neighbors of s to verify its movement at the next round.
Coverage evaluation and movement (lines 21-23)
This phase is the same as the original VOR approach de-
scribed in Section 3, except that each sensor s calculates
its Voronoi polygon V (t)(s) on the basis of the sensors
in N(t)

SV (s). Furthermore s looks for a destination point p
within a distance dmax = Rtx/4 − Rs instead of dmax =
Rtx/2−Rs.

5 THE SSD ALGORITHM

In this section we describe the SSD algorithm, designed to
work in scenarios for which the hardware available at the
sensor nodes does not satisfy the requirement on the trans-
mission radius of SecureVor. In particular, unlike SecureVor
which requires Rtx > 4Rs, SSD works under the same
assumption of the original VOR algorithm, i.e. Rtx > 2Rs.
Except for the transmission radius, SSD adopts the same
assumptions of SecureVor discussed in Section 2.

The algorithm SSD explicitly aims at solving the blocked
movement situation geometrically characterized in Section
3.1, in which a legitimate sensor does not move towards
uncovered regions because it is in front of a barrier of
malicious sensors.

Because this algorithm works under the relaxed assump-
tion Rtx > 2Rs, sensors are not able to verify the movement
of their neighbors only on the basis of message exchanges.
This is because the communication range is too small to let
a sensor verify whether its neighbors are behaving consis-
tently with what should be their Voronoi polygon. Hence
a sensor is not able, on the basis of messages alone, to
distinguish a blocked movement situation (under attack)
from a normal condition in which it cannot contribute a
better coverage. In both cases the polygon of the sensor is

completely covered and the sensor is not required to move
to increase coverage of its polygon.

For these reasons, SSD provides temporary position
swaps among pairs of neighbors to be performed when sen-
sors are stationary and potentially in a blocked movement
situation. We show a high level pseudocode in Algorithm
SSD. As in the case of SecureVor, SSD requires each sensor s
to maintain a list of trusted neighbors at time t: N(t)

trusted(s).
In the next section we describe SSD in detail, making use of
a similar nomenclature to the one introduced for SecureVor
in Section 4.

5.1 SSD in detail

As in the case of SecureVor, according to SSD, each sen-
sor s updates the list of trusted neighbors N(t)

trusted(s) at
each round t. Such a set initially includes all the network
nodes N (line 2). At round t, s calculates its Voronoi
polygon V (t)(s) by taking account only of the sensors
in the set N(t)

SSD (s), which is defined as the set of sen-
sors in its radio proximity that s considers as trusted, i.e.
N(t)

SSD (s) = N(t)
trusted(s)

∩
N(t)

tx (s) (lines 6-7).
If V (t)(s) is completely covered, s should remain still.

Nevertheless this situation may occur in the presence of an
attack. Therefore SSD provides the following mechanism to
perform legitimacy checks of the behavior of its Voronoi
neighbors. In order to determine the presence of malicious
sensors, the sensor s selects one of its Voronoi neighbors and
temporarily swaps its position with it. In order to prevent
conflicting requests, these are generated at random times
in a given time interval and served according to a FIFO
discipline.

We now describe the process and conditions that result
from a legitimate sensor being bound by a malicious barrier.
When sensors are spread from a safe location, a legitimate
sensor encounters a barrier that was initially far from it.
When a sensor is blocked by some malicious sensors of the
barrier, its Voronoi polygon is determined by new neighbors
which were not previously observed, or by neighbors with
which s forms a vertex that was uncovered in any previous
round. If the sensor s moves towards a steady barrier, it
converges to a position in which its polygon has vertices
at the boundary of the sensing regions of a barrier sensor
and therefore of the sensor s itself; this occurs because
initially the sensor s forms uncovered vertices with barrier
sensors, and it performs additional movements of smaller
and smaller size, until it stops due to complete coverage.
Figure 3 shows a legitimate sensor at the left of a malicious
barrier, which is in a blocked movement situation, forming
two vertices V and W which are both newly covered and
located at the boundary of the sensing region.

We call any of the Voronoi neighbors of s resulting from
this scenario the vertex neighbor of s6.

Sensor s invites one of its new vertex neighbors, let it be
j, to perform a swap of positions (lines 8-10). The purpose
of this swap is to let s perform a legitimacy check of j in
order to calculate and verify its expected future movement.

6. Notice that in order to provide convergence in a finite number
of steps both VOR and SSD provide a movement threshold which
prevents infinitesimal movements. Such a threshold is also kept into
account in the definition of a vertex neighbor.
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Fig. 3. Boundary vertices V and W, between a legitimate sensor and two
barrier sensors.

As j itself calculates its Voronoi polygon on the basis of
its set of neighbors N(t)

SSD (j), the position swap requires also
j to send this set to s in order to let s be able to properly
calculate the expected future movement of sensor j (line
11). After this information exchange, s moves to the position
currently held by j (line 12), while j is required to move to-
wards the position previously held by s. This last movement
of j is required to ensure that the position of s is continu-
ously covered and that the movements of other neighbors
of s can be correctly verified. Sensor s exploits its location
verification capabilities to verify if j honored the position
swap protocol, otherwise it removes j from its local list
of trusted sensors, therefore N(t)

trusted(s) ← N(t)
trusted(s)\{j}

(lines 14-15).

Algorithm SSD, executed by node s at round t.
1 if t=0 then
2 N(t)

trusted(s)← N ;

3 Exchange position msgs, determine N(t)
tx (s);

// Movement verification:
4 if (swapped with j at time (t− 1)) ∧ (pos(t)(j) ̸= p̂os(t-1)(j) )

then
5 N(t)

trusted(s)← N(t)
trusted(s)\{j} ;

6 Let N(t)
SSD (s)← N(t)

trusted(s)
∩

N(t)
tx (s);

7 Update V (t)(s) based on N(t)
SSD (s);

// Coverage evaluation and Swap Agreements:
8 if V (t)(s) is covered ∧ # of new vertex neighbors ≥ 2 then
9 Select a Vertex Neighbor j;

10 Send swap request to j;
11 Receive N(t)

SSD (j) from j and send N(t)
SSD (s) ;

12 Move to pos(t)(j) and send neighbor discovery msg;
13 Receive position msgs and determine N̂(t)

tx (j);
14 if (j did not reach pos(t)(s)) then
15 N(t)

trusted(s)← N(t)
trusted(s)\{j} ;

16 else
17 if (N(t)

SSD (j) ⊆ N̂(t)
tx (j)) then

18 Calculate V (t)(j) on the basis of N(t)
SSD (j);

19 Calculate p̂os(t)(j) ;
20 move to pos(t)(s);

// Voronoi’s Movement Phase
21 else
22 Move according to VOR criterion;

Once in the position previously held by sensor j, the
sensor s sends a neighbor discovery message. The discov-
ered list of communication neighbors of j is hereby denoted
with N̂(t)

tx (j). Sensor s and j send the list of communi-
cation trusted neighbors to each other. After this message
exchange, thanks to its location verification capabilities, s
verifies the consistency of the list of neighbors received by
j, namely N(t)

SSD (j) (line 17), with the list of neighbors it

observed while in the place of j, namely N̂(t)
tx (j) (line 13).

If such consistency check fails, or if the trusted set of j does
not include s, s does not return to its original position and
continues the algorithm execution from the former position
of sensor j. If otherwise the consistency check succeeds,
sensor s is now able to calculate the Voronoi polygon of
sensor j and the expected movement that j should perform
(lines 18-19). Sensors s and j can now return to their original
positions (line 20).

After this temporary swap activity, the algorithm SSD
proceeds with the execution of the regular activities pro-
vided by the Voronoi approach (lines 21-22). During the
next movement phase, s verifies the movement of j using
the location verification capabilities. If, during the next
movement phase, sensor j fails to perform the expected
movement calculated by s, it is removed from the trusted
list of sensor s to be used at the next round (lines 4-5). From
now on, the sensor s will consider j as untrusted and will
ignore it and adapt its Voronoi polygon and coverage as if j
did not exist.

SSD provides some additional mechanisms to prevent
more complex behaviors of malicious sensors. For exam-
ple, malicious sensors could refuse to fulfill swap requests
pretending to be involved in other position swap activities
(with other malicious sensors). In order to prevent this
behavior, first, SSD requires that a sensor which refuses a
swap request provide a proof of the previous swap agree-
ment (signed messages of both involved parties). Second,
according to SSD, a random permutation P (t) of the sensor
IDs is generated at each round, using the round counter
t as a seed. This permutation is common to all sensors,
and it establishes a priority in the position swap activities.
In particular, sensors with higher priority at the current
round have precedence in swapping, thus preventing two
malicious sensors to continuously swap only between them-
selves. In addition, SSD allows the same pair of sensors to
swap positions only once. Although a higher number of
swaps per pair would increase the accuracy of detection of
malicious sensors, this would be at the expense of energy for
movements. Furthermore, by limiting the number of swaps,
we prevent malicious sensors from extinguishing the batter-
ies of legitimate neighbor sensors demanding unnecessary
swaps. Note that, for the sake of simplicity the pseudo
code in Algorithm SSD does not address the additional
mechanisms described above, nor does it cover possible
synchronization issues, and the case of s receiving swap
requests from other sensors, which is treated according to
the permutation priority described above.

6 ALGORITHM PROPERTIES

In this section we provide a theoretical analysis of SecureVor
and SSD. We hereafter denote with L and M the set of legit-
imate and malicious sensors, respectively. Hence, the total
number of sensors deployed over the AoI is |N | = |L|+|M |.

6.1 Properties of SecureVor

We first study the capability of SecureVor to counteract the
OM attack. Notice that, if a malicious node m moves in
compliance to VOR it cannot be detected, since it is actually
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behaving as a legitimate sensor. Nevertheless, such move-
ments are unlikely to meet the attacker goals. We define
a malicious movement of a malicious sensor as a movement
which is not in compliance with the deployment rules.
Furthermore, given a malicious sensor m ∈M performing a
malicious movement at round t, we define the set Lt

m as the
set of legitimate sensors whose movement can be influenced
by the malicious movement of m.

Lemma 6. Given a malicious sensor m ∈ M performing a
malicious movement at round t, if Lt

m ̸= ∅ then m is marked
as untrusted by at least one sensor in Lt

m at round t+ 1.

Proof. Since m can influence the movement of the sensors
in Lt

m, such sensors consider m as trusted at the current
round. Furthermore, since we assume that a node considers
only sensors at a distance Rtx/2 to determine its polygon,
∀s ∈ Lt

m d(s,m) < Rtx/2 thus s is able to verify if N(t)
SV (m)

is inconsistent. As a result, according to the assumptions
made in Section 3, the only degree of freedom that m has in
order to try to justify its malicious movement without being
detected lies in the selection of the nodes to be advertised
in N(t)

SV (m). Notice that all nodes in Lt
m are legitimate and

are at a distance less than Rtx/2 from m, thus such sensors
should be included in the trusted set of m. If m does not
include one or more of them in N(t)

SV (m), such sensors mark
m as untrusted at round t+ 1 and the assertion is valid.

If, on the contrary, m includes all sensors in Lt
m in

N(t)
SV (m), such sensors are in communication range with

m at round t + 1 since Rtx

2 + 2dmax < Rtx. As a result,
sensors in Lt

m are able to verify the correctness of the current
movement of m at the next round. Since m is performing the
OM attack, its malicious movement is detected and thus all
sensors in Lt

m mark m as untrusted at round t+ 1.

We now prove that SecureVor terminates in a finite time.
To this purpose, we show that at each round, either at least
a malicious sensor is detected, or the overall coverage pro-
vided by legitimate sensors increases. We define a network
state as follows.

Definition 6.1. A network state under SecureVor is a vector
SSV =< c1, . . . , c|M |, s1, . . . , s|L|,m1, . . . ,m|M | > where cj
is the number of legitimate sensors which consider the malicious
sensor mj ∈ M as untrusted, si ∈ L for i = 1, . . . , |L| and
mj ∈M for j = 1, . . . , |M |.

We define a function fSV : N|M | × L|L| × M |M | →
N × R+ such that given a network state SSV, fSV(SSV) =

(
∑|M |

j=0 cj , Atotal), where Atotal is the size of the area covered
by legitimate sensors in SSV. Given two network states
S1
SV, S

2
SV we say that fSV(S1

SV) ≺ fSV(S
2
SV) according to the

lexicographic order. Notice that, the function fSV is upper-
bounded by the pair (|L||M |, AoI). In the following, in
order to prove the convergence of SecureVor, we show that
at each round the value of such function increases.

Theorem 6.1. The algorithm SecureVor converges.

Proof. Let us consider a generic state change from round t to
round t+1. We want to show that fSV(S(t)

SV ) ≺ fSV(S
(t+1)
SV ).

We recall that, for a malicious sensor m ∈ M performing a
malicious movement at round t, Lt

m is the set of legitimate

nodes whose movement can be influenced by the malicious
movement of m. We consider two cases:

Case 1: ∃mj ∈M s.t. Lt
mj
̸= ∅.

Thanks to Lemma 6 we know that there exist at least one le-
gitimate sensor at round t+1 that marks mj as untrusted. As
a result, cj [S(t)

SV ] < cj [S
(t+1)
SV ], hence f(S(t)

SV ) ≺ f(S(t+1)
SV ).

Case 2: ∀mj ∈M , Lt
mj

= ∅.
In this case no malicious movement influences the move-
ment of legitimate sensors. As a result no malicious sen-
sor is detected at round t + 1, hence ∀ j = 1, . . . , |M |,
cj [S

(t+1)
SV ] = cj [S

(t)
SV ]. Notice that, if no malicious sensor

is detected SecureVor lets sensors deploy according to the
rules of VOR. Under VOR, if in a specific round at least one
sensor moves, the provided coverage increases (as shown in
the proof of Theorem 4.1 of [4]), so also in this case it holds
that fSV(S(t)

SV ) ≺ fSV(S
(t+1)
SV ). As the function fSV() is upper-

bounded and it increases at each round of the algorithm
execution, we can conclude that SecureVor converges.

The above theorem proves that SecureVor converges,
nevertheless the increase in coverage may be infinitesimal
and the algorithm may require an infinite number of rounds
to terminate.

Corollary 1. The algorithm SecureVor terminates if movements
are allowed only if they provide a coverage increase which exceeds
a positive minimum threshold ϵ.

The introduction of ϵ ensures fast termination and power
saving, at the expense of a small loss in the coverage
extension.

6.2 Properties of SSD
Similarly to SecureVor, to prove the termination of SSD we
first show that it converges. We consider a static barrier of
malicious sensors performing the BOM attack.

Definition 6.2. A network state under SSD is a vector
SSSD =< a1, . . . , a|L|, s1, . . . , s|L|,m1, . . . ,m|M | > where aj
is the number of swaps performed by the legitimate sensors sj ,
si ∈ L for i = 1, . . . , |L| and mj ∈M for j = 1, . . . , |M |.

We define a function fSSD : N|L| × L|L| × M |M | →
N × R+ such that given a network state SSSD, fSSD(SSSD) =
(
∑|L|

j=0 aj , Atotal), where Atotal is the size of the area cov-
ered by legitimate sensors in S. Given two network states
S1
SSD, S

2
SSD we say that fSSD(S1

SSD) ≺ fSSD(S
2
SSD) according to

the lexicographic order.
Notice that, the function fSSD() is upper-bounded by the

pair (|L| × (|L| − 1 + |M |), AoI), since legitimate sensors
are allowed to swap at most once with another sensor, and
the maximum area that can be covered is the whole AoI.
Similarly to the case of SecureVor, we show that during the
unfolding of SSD the value of such function increases.

Theorem 6.2. The algorithm SSD converges.

Proof. Let us consider a generic network state S(t)
SSD at round

t. We want to show that either the algorithm has terminated
at round t, or there exists k ∈ N s.t. fSSD(S(t)

SSD) ≺ f(S(t+k)
SSD ).

We consider two cases:
Case 1: ∃si ∈ L that performs a movement at round t.
Legitimate sensors deploy according to the rules of the VOR
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approach. Since under VOR if a sensor moves then the
overall coverage increases [4], this holds also under SSD.
As a result, if at least one sensor moves then fSSD(S

(t)
SSD) ≺

fSSD(S
(t+1)
SSD ).

Case 2: @si ∈ L that performs a movement at round t.
This case occurs if no sensor can move and increase the
coverage of its polygon, hence sensors will also not move
at subsequent rounds. As a result, either the algorithm has
terminated, or the network state may change as a conse-
quence of a swap. Let us consider a sensor si which wants to
exchange with sj . si may not be able to exchange with sj at
round t, due to their priority in P (t). However, the random
generation of permutations ensures that there eventually
exists k ∈ N s.t. in P (t+k), si has higher priority than sj ,
and the swap can be performed. In this case, the number of
swaps increases from state S(t)

SSD to S(t+k)
SSD , and in particular

a(t+k)i = a(t)i + 1. As a result, fSSD(S(t)
SSD) ≺ fSSD(S

(t+k)
SSD ).

As fSSD() is upper-bounded and it increases at each
round, SSD converges.

Similarly to SecureVor, to prove the termination of SSD
we include a positive threshold ϵ > 0, which prevents
infinitesimal increase in coverage, as stated by the following
corollary.

Corollary 2. The algorithm SSD terminates provided that move-
ments are allowed only if they enable a coverage increase greater
than a threshold ϵ > 0.

Unlike SecureVor, we cannot formally prove that every
time a malicious node is encountered in SSD it is detected,
due to the limited information available at each sensor as
a consequence of the smaller transmission radius than with
SecureVor. In particular, we cannot exclude that a malicious
sensor m is not detected during a swap, because its polygon
is actually fully covered by some legitimate sensors that
crossed the barrier in a previous round. Nevertheless, the
experiments show that overall, SSD thwarts the OM attack.
Hence, in Section 7 the effectiveness of SSD in defeating
the OM attack is shown through extensive experiments,
which also demonstrate the capability of SSD to achieve full
coverage of the AoI.

7 EXPERIMENTAL RESULTS

In this section we provide an analysis of the performance of
SecureVor and SSD. To this purpose, we developed a sim-
ulator on the basis of the Wireless module of the Riverbed
Opnet simulation environment [31]. In the simulations we
considered a squared AoI of size 80m×80m. Sensors can
move at a maximum speed of 1m/s. We set the threshold ϵ
for minimum coverage increase to 0.001, for both SecureVor
and SSD. We investigated several scenarios which consider
different settings of Rtx and Rs.

In the first scenario (Scenario A), we consider a setting
favorable to SecureVor, i.e. such that Rtx > 4Rs. In the
second scenario (Scenario B), we consider instead a setting
for which SSD is designed, i.e. 4Rs > Rtx > 2Rs. The third
scenario (Scenario C) is devoted to a sensitivity analysis of
both algorithms to the setting of the transmission radius.
While all these scenarios consider a static BOM attack, the
last experimental scenario (Scenario D) considers a BOM
attack with a mobile barrier.

(a) (b) (c)

Fig. 4. Scenario A: Initial deployment of 150 legitimate sensors and 13
malicious sensors (a), final deployment of VOR (b), and SecureVor (c).

7.1 Scenario A
In this scenario we set Rtx = 30m and Rs = 5m, and inves-
tigate the performance of SecureVor. Under this setting, the
maximum moving distance dmax is 2.5m. Malicious sensors
perform the BOM attack by periodically advertising their
position during the Position communication phase while
remaining still. In order to avoid being easily detected by the
surrounding legitimate sensors, each malicious sensor m,
advertises a trusted set N(t)

trusted(m) = Q(t)(m). Legitimate
sensors are randomly deployed on the left side of the AoI.

We compare the performance of SecureVor with respect
to the results obtained by the original VOR algorithm in the
same setting. In order to evaluate the overhead introduced
by SecureVor, we also show the behavior of VOR when all
sensors are legitimate and expand freely (VOR-Free in the
figures) without a barrier.

Before showing the results, we provide an example of
the detrimental effect of the BOM attack in this scenario
with 150 legitimate sensors and 13 malicious sensors. Figure
4(a) shows the initial deployment, while Figures 4 (b) and
(c), show the final deployments achieved by VOR and
SecureVor, respectively. Under VOR legitimate sensors are
not able to cross the barrier, resulting in a significant loss
of coverage. On the contrary, under SecureVor legitimate
sensors detect malicious sensors, and are able to cross the
barrier and achieve full coverage of the AoI.

In the experiments we set the number of malicious
sensors to 13 and we increase the number of legitimate
sensors from 60 to 240. Figure 5(a) shows the coverage of
the AoI achieved by the considered algorithms. Legitimate
sensors under VOR are not able to cross the barrier of
malicious sensors, no matter how many legitimate sensors
are deployed. Therefore the coverage is at most 60%.

On the contrary SecureVor, thanks to its security policy,
detects and ignores malicious sensors and successfully cov-
ers the AoI. Note that, SecureVor achieves the same coverage
of VOR-Free, that is the original Voronoi algorithm with no
attack. This shows that SecureVor completely defeats the
attack and maximizes the coverage.

Since under VOR sensors are not able to spread over
the AoI when the attack is in place, this algorithm achieves
lower values of all the considered performance metrics, such
as traversed distance and consumed energy, with respect to
the other algorithms. This does not imply superior perfor-
mance of this algorithm, but just the inability to cover the
AoI. For this reason, in the following we do not discuss its
results although we show them in the figures.

Figure 5(b) shows the average distance traversed by sen-
sors. SecureVor introduces a very small overhead in terms of
traversed distance with respect to VOR-Free. The peak in the
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Fig. 5. Scenario A: coverage of the AoI (a), traversed distance (b), number of movements (c), consumed energy (d), termination time (e). Coverage
achieved with 140 legitimate sensors (f).

traversed distance of all approaches is a common behavior
of mobile sensors deployment algorithms since, when few
sensors are available, all sensors move in order to contribute
to the achievement of the final coverage. Instead, when
more sensors are available, the average traversed distance
decreases, since only sensors detecting a coverage hole are
allowed to move.

Figure 5(c) shows the average number of moving ac-
tions. This is an important metric to evaluate mobile sensor
deployment algorithms, since a sensor consumes a high
amount of energy to start and stop a movement. Similar
considerations with respect to the traversed distance and
the peaks in the Figures discussed above can be made.
SecureVor introduces a small overhead in terms of number
of movements due to the reduced traversed distance per
round which results in an higher number of movements to
traverse the same distance.

We now show results related to sensor energy consump-
tion. We adopt the energy cost model commonly used in
the literature for mobile sensors [3], [26], [1]. In particular,
receiving a message costs 1 energy units (eu), sending a
message 1.125eu, traversing one meter costs 300eu and
starting/stopping a movement costs as one meter of move-
ment. We consider a cumulative energy consumption metric
which takes into account all the above contributions.

Figure 5(d) shows the obtained results. All algorithms
incur in a higher communication cost as the sensor density
increases. Such an overhead is higher under SecureVor be-
cause of the additional messages required to communicate
the trusted neighbor set. The energy consumption under
VOR-Free is 43% less energy with respect to SecureVor.

The termination time is shown in 5(e). SecureVor shows
a shorter termination time with respect to VOR-Free. This is
due to the shorter maximum traversed distance of SecureVor
which allows shorter movements that are forbidden by
VOR. As a result, under VOR sensors move only when

(a) (b)
Fig. 6. Scenario B: Initial deployment (a), and final deployment under
SSD (b).

a long movement is possible, thus resulting in cascade
movements which lengthens the termination time. On the
contrary, shorter movements enable sensors to move more
in parallel, resulting in a lower termination time for Se-
cureVor.

In order to further study the performance of the consid-
ered algorithms, we performed some experiments by setting
the number of legitimate sensors to 140 and by increasing
the number of malicious sensors from 0 to 30. Figure 5(f)
shows the achieved coverage. The vertical line represents
the minimum number of malicious sensors for which the
distance d between them is less than

√
3Rs. As proven

in Theorems 3.1 and 3.2, legitimate sensors are not able
to cross the barrier if d is less than or equal to such a
value. These experiments show that legitimate sensors do
not cross the barrier even when a small number of malicious
sensors is present. SecureVor is not affected by the number
of malicious sensors deployed, since legitimate sensors are
able to detect malicious sensors and cover the AoI.
7.2 Scenario B
In this section we consider a setting for which SSD is
designed, that is where 4Rs > Rtx > 2Rs. In particular,
we set Rtx = 12m, and Rs = 5m. Therefore, the maximum
moving distance dmax is 1m.
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Similar to the previous scenario, we study the perfor-
mance of SSD in presence of the BOM attack performed
by 20 malicious sensors and by increasing the number of
legitimate sensors deployed. We compare the performance
of SSD to the original VOR algorithm and with the same
algorithm in absence of the attack (VOR-Free).

Figure 6(a) show an instance of this scenario with 150
legitimate sensors. Figure 6(b) shows the final deployment
achieved by SSD. Even with limited transmission radius,
legitimate sensors are able to detect malicious nodes thanks
to position swaps, and ultimately achieve full coverage.

Figure 7(a) shows the coverage of the AoI achieved by
the considered approaches. VOR achieves similar results as
in the previous scenario, with legitimate sensors unable to
cross the barrier. On the contrary, SSD successfully defeats
the attack and enables legitimate sensors to cover the AoI,
achieving the same coverage of VOR-Free. Similarly to the
previous scenario, we do not discuss the performance of
VOR in the following.

Figure 7(b) shows the average distance traversed by
sensors. The figure evidences the additional traversed dis-
tance of SSD with respect to VOR-Free, due to the position
swaps necessary to detect malicious sensors. As mentioned
for Scenario A, the peak in the traversed distance occurs
in correspondence to the minimum number of legitimate
sensor necessary to achieve full coverage.

Figure 7(c) shows the average number of start and stop
actions. SSD shows a lower number of starts and stops with
respect to VOR-Free. This apparently surprising result is
due to the swap activity. In particular, when a legitimate
sensor swaps with a malicious sensor, the malicious sensor
is detected and the legitimate sensor does not move back
to its original position. As a result, such sensor performed
a longer movement, whose length is not limited by the
parameter dmax, nor it is affected by small local position
adjustments.

Figure 7(d) shows the overall consumed energy. Such a
measure includes both the communication and the move-
ment costs. SSD performs better than VOR-Free in this case,
thanks to the fewer number of start and stop actions, that
dominate the energy consumption.

The termination time is shown in Figure 7(e). The results
detailed in this figure reveal a longer termination time
of SSD compared to VOR-Free. This is due to the longer
round length required to include swap activities during
every iteration of the algorithm. Nevertheless, this increased
termination time allows SSD to defeat the attack, even in the
restricted case of the communication radius.

We finally show in Figure 7(f) the average number of
swaps per sensor under SSD. The number is relatively low,
with a peak of eight swaps when the number of sensors
deployed is close to the minimum to achieve full coverage.
As the number of sensor increases, the number of swaps
rapidly decreases.

We performed additional experiments varying the num-
ber of malicious sensors. We do not show them in the paper
as they look very similar to those obtained for SecureVor
and detailed in Figure 5 (d). These results confirm that the
performance of SSD also, is not significantly affected by the
number of malicious sensors.
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Fig. 8. Scenario C: coverage of the AoI (a).

7.3 Scenario C

In this section we perform a sensitivity analysis to com-
pare SecureVor and SSD under various settings of the
transmission radius. We recall that SecureVor assumes that
Rtx > 4Rs, while SSD is designed for the more restricted
scenario in which 4Rs > Rtx > 2Rs. In these experiments
we increase Rtx from the setting of SSD to the setting of
SecureVor, and compare the performance of the algorithms.

To enable SecureVor to work even when Rtx < 4Rs, we
define a virtual sensing radius Rvs, for which Rtx > 4Rvs.
Using this modification, legitimate sensors deploy as if the
sensing radius were the virtual radius Rvs. This allows
legitimate sensor to detect malicious sensors. However the
drawback of this setting is a denser deployment, so more
sensors are needed to achieve full coverage.

In this experimental scenario, we consider 200 sen-
sors with sensing radius Rs = 5m, while we let the
transmission radius Rtx vary from 11 meters up to 22
meters. As the maximum allowed distance for SecureVor
depends on the virtual radius according to the equation
dmax = Rtx

4 − Rvs, we fix the maximum moving distance
dmax for SecureVor to 0.5m, and let the value of Rvs grow
according to the equation dmax = Rtx

4 − Rvs. Therefore
Rvs =min

{
Rs, (

Rtx

4 − dmax)
}

. Under such a setting, when
Rtx spans from 11 meters to 22 meters, Rvs correspondently
grows from 2.25 meters to 5 meters. A further increase in
Rtx would not cause any increase in the virtual radius,
which would be the same as the real sensing radius. This
last setting is what SecureVor requires to work at its best,
deploying sensors at the density required by VOR.

Figure 8, shows the coverage achieved by the two al-
gorithms when the transmission radius Rtx increases. As
we can see, SSD always reaches full coverage of the AoI,
independently of the setting of Rtx. By contrast, SecureVor
is unable to complete the coverage when working with
transmission radius lower than 17m, because the corre-
sponding virtual sensing radius is too short to cover the area
with only 200 sensors. These results highlight the benefit of
using SSD when the assumptions required of SecureVor are
not met by the available hardware. Although SecureVor can
be used with minor modifications, its performance can be
significantly penalized. Due to space limitations, we omit
the results of the other performance metrics, which however
show similar trends to those shown in Figure 5.

7.4 Scenario D

The last set of experiments introduces a more complex
attack, in which malicious sensors initially form a barrier,
and then start moving towards legitimate sensors. Malicious
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Fig. 7. Scenario B: coverage of the AoI (a), traversed distance (b), number of movements (c), consumed energy (d), termination time (e), average
number of swaps (f).

movements are perpendicular to the barrier and are of
length dmax, according to the algorithm rules. A malicious
sensor never breaks the barrier when moving, therefore it
only moves if it can maintain a distance lower than

√
3Rs

with neighbor malicious sensors. A malicious sensor stops
moving as soon as it reaches a distance lower than 2Rs

from at least one legitimate sensor. In this setting we use a
setting of transmission and sensing radius suitable for both
SecureVor and SSD.

Figure 9(a) shows the initial deployment, with 150 legit-
imate sensors and a moving barrier of 20 malicious sensors.
This attack can severely compromise the coverage provided
by legitimate sensors under VOR, which in fact terminates
the execution as shown in Figure 9(b). Malicious sensors
successfully confine legitimate sensors in a small portion of
the AoI. Legitimate sensors do not cross the barrier because
the mutual distance between malicious sensors is always
lower than

√
3Rs, which also confirms the theoretical results

described in Section 3.1.

Under SecureVor legitimate sensors discover the ma-
licious movements resulting from the barrier movement.
Consequently, legitimate sensors are able to detect and ig-
nore malicious sensors, and achieve full coverage as shown
in Figure 9(c). SSD requires a minor modification to work
under the attack of a dynamic barrier, with particular focus
on the concept of vertex neighbor. When a legitimate sensor
approaches the barrier, the new vertex can be located in
a circular corona of the boundary, and not exactly on the
boundary, to take into account possible movements of the
barrier sensors. With such a modification, SSD successfully
lets legitimate sensors discover barrier sensors and ignore
them, achieving full coverage as shown in Figure 9(d).

We conducted additional experiments with more com-
plex configurations, such as multiple barriers or barriers of

(a) (b)

(c) (d)

Fig. 9. Scenario D. Dynamic barrier: initial deployment (a), final deploy-
ment with VOR (b), SecureVor (c) and SSD (d).

various irregular shapes. Results show that both SecureVor
and SSD are able to defeat such attacks.

8 CONCLUSIONS

We addressed the vulnerabilities of one of the most ac-
knowledged approaches to mobile sensor deployment: the
Voronoi based approach. We consider a recently proposed
attack to mobile sensor networks, the OM attack, and
characterize the geometric conditions under which such an
attack is effective when the network adopts the Voronoi
approach to deployment.

We propose two algorithms called SecureVor and Secure
Swap Deployment (SSD) to counteract the OM attack. The
algorithms work in complementary operative settings. Both
allow legitimate sensors to determine the malicious nature
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of their neighbors by observing their movements. We for-
mally prove that SecureVor is able to defeat the OM attack,
and that both SecureVor and SSD have a guaranteed termi-
nation. Additionally, we performed an extensive experimen-
tal analysis that confirmed that with these algorithms the
network achieves its monitoring goals even in the presence
of an attack, at the expense of a small overhead in terms of
movements and deployment time.

REFERENCES

[1] N. Bartolini, G. Bongiovanni, T. La Porta, and S. Silvestri. On
the security vulnerabilities of the virtual force approach to mobile
sensor deployment. IEEE INFOCOM, 2013.

[2] N. Bartolini, G. Bongiovanni, T. La Porta, and S. Silvestri. On
the vulnerabilities of the virtual force approach to mobile sensor
deployment. IEEE Trans. on Mobile Computing, 13(11):2592–2605,
2014.

[3] N. Bartolini, T. Calamoneri, E. G. Fusco, A. Massini, and S. Sil-
vestri. Push & pull: autonomous deployment of mobile sensors
for a complete coverage. Wireless Networks, 16(3):607–625, 2010.

[4] N. Bartolini, T. Calamoneri, T. La Porta, and S. Silvestri. Au-
tonomous deployment of heterogeneous mobile sensors. IEEE
Trans. on Mobile Computing, 10(6):753 –766, 2011.

[5] N. Bartolini, T. La Porta, S. Silvestri, and F. Vincenti. Voronoi-based
deployment of mobile sensors in the face of adversaries. IEEE ICC,
2014.

[6] T. Beran, R. B. Langley, S. B. Bisnath, and L. Serrano. High-
accuracy point positioning with low-cost gps receivers. Navigation,
54(1):53–63, 2007.

[7] S. Capkun and J.-P. Hubaux. Secure positioning of wireless
devices with application to sensor networks. IEEE INFOCOM
2005, 3:1917–1928, 2005.

[8] S. Capkun, K. Rasmussen, M. Cagalj, and M. Srivastava. Secure
location verification with hidden and mobile base stations. IEEE
Trans. on Mobile Computing, 7(4):470–483, 2008.

[9] H. Chan, A. Perrig, and D. Song. Random key predistribution
schemes for sensor networks. IEEE Symposium on Security and
Privacy, 2003.

[10] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars.
Computational geometry: Algorithms and applications. Springer-
Verlag Berlin Heidelberg, 2008.

[11] W. Du, J. Deng, Y. Han, S. Chen, and P. Varshney. A key man-
agement scheme for wireless sensor networks using deployment
knowledge. IEEE INFOCOM, 2004.

[12] P. K. Dutta, A. K. Arora, and S. B. Bibyk. Towards radar-enabled
sensor networks. ACM IPSN, pages 467–474, 2006.

[13] R. J. Fontana, E. Richley, and J. Barney. Commercialization of an
ultra wideband precision asset location system. IEEE UWST, pages
369–373, 2003.

[14] M. Garetto, M. Gribaudo, C.-F. Chiasserini, and E. Leonardi. A
distributed sensor relocation scheme for environmental control.
IEEE MASS, 2007.

[15] N. Heo and P. Varshney. Energy-efficient deployment of intelligent
mobile sensor networks. IEEE Trans. on Syst., Man and Cyb.,
35(1):78–92, 2005.

[16] B. Lagesse, M. Kumar, and M. Wright. Arex: An adaptive system
for secure resource access in mobile p2p systems. In IEEE P2P,
pages 43–52, 2008.

[17] M. Lam and Y. Liu. Two distributed algorithms for heterogeneous
sensor network deployment towards maximum coverage. IEEE
ICRA, pages 3296–3301, 2008.

[18] K. Liu, N. Abu-Ghazaleh, and K. Kang. Location verification and
trust management for resilient geographic routing. Elsevier JPDC,
67(2):215–228, 2007.

[19] K. Ma, Y. Zhang, and W. Trappe. Managing the mobility of a
mobile sensor network using network dynamics. IEEE Trans. on
Paral. and Distr. Syst., 19(1):106–120, 2008.

[20] M. Ma and Y. Yang. Adaptive triangular deployment algorithm
for unattended mobile sensor networks. IEEE Trans. on Computers,
56(7):946–847, 2007.

[21] Memsic. Mts420/400 datasheet.
[22] J. Newsome, E. Shi, D. Song, and A. Perrig. The sybil attack in

sensor networks: analysis & defenses. ACM IPSN, 2004.

[23] G. Sibley, M. Rahimi, and G. Sukhatme. Mobile robot platform for
large-scale sensor networks. IEEE ICRA, pages 1143–1148, 2002.

[24] K. Walsh and E. G. Sirer. Experience with an object reputation
system for peer-to-peer filesharing. In USENIX NSDI.

[25] A. Wander, N. Gura, H. Eberle, V. Gupta, and S. Shantz. Energy
analysis of public-key cryptography for wireless sensor networks.
IEEE PerCom, 2005.

[26] G. Wang, G. Cao, and T. La Porta. Movement-assisted sensor
deployment. IEEE Trans. on Mobile Computing, 5(6):640–652, 2006.

[27] Y.-C. Wang, C.-C. Hu, and Y.-C. Tseng. Efficient placement and
dispatch of sensors in a wireless sensor network. IEEE Trans. on
Mobile Computing, 7(2):262–274, 2008.

[28] G. Yan, S. Olariu, and M. C. Weigle. Providing vanet security
through active position detection. Elsevier Computer Communica-
tions, 31(12):2883–2897, 2008.

[29] Y. Zeng, J. Cao, S. Zhang, S. Guo, and L. Xie. Random-walk based
approach to detect clone attacks in wireless sensor networks. IEEE
Selected Areas in Communications, 28(5):677–691, 2010.

[30] Y. Zou and K. Chakrabarty. Sensor deployment and target local-
ization in distributed sensor networks. ACM Trans. on Emb. Comp.
Syst., 3(1):61–91, 2003.

[31] Opnet technologies inc. http://www.opnet.com.

Novella Bartolini graduated with honors in 1997
and received her PhD in computer engineering
in 2001 from the University of Rome, Italy. She
is now Associate Professor at the University
of Rome and visiting professor at Penn State
University, since 2014. She was chaired several
international conferences, and has served on the
editorial board of Elsevier Computer Networks
and ACM/Springer Wireless Networks. Her re-
search interests lie in the area of wireless net-
works and network management.

Stefano Ciavarella graduated with honors in
computer science at Sapienza University of
Rome, Italy. He is a Phd Student in Computer
Science at Sapienza University of Rome. He is
visiting scholar at the Computer Science De-
partment of Missoury University of Science and
Technology. His research interests lie in the area
of network management, wireless sensor net-
works, emergency scenarios in cyber-physical
systems, and smart grid security.

Simone Silvestri graduated with honors and re-
ceived his PhD in computer science at Sapienza
University of Rome, Italy. He is now an Assistant
Professor at the Computer Science Department
of Missouri University of Science and Technol-
ogy. He serves as program committee mem-
ber of several international conferences. His re-
search interests lie in the area of network man-
agement, hybrid wireless sensor networks, in-
terdependent cyber-physical systems, and smart
grid security.

Thomas F. La Porta is the Wlliam E Leonhard
Chair Professor in the department of computer
science and engineering at Penn State Univer-
sity. He joined Penn State in 2002. Dr. La Porta
is the Director of the Institute for Networking
and Security Research. He is an IEEE Fellow,
Bell Labs Fellow and he also won Thomas Alva
Edison Patent Awards in 2005 and 2009. His
research interests include mobility management,
wireless networks, mobile data and sensor sys-
tems, and network security.


