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ABSTRACT
The cell division cycle 25 phosphatases (CDC25A, B, and C; E.C. 3.1.3.48) are key regulator of the cell cycle
in human cells. Their aberrant expression has been associated with the insurgence and development of
various types of cancer, and with a poor clinical prognosis. Therefore, CDC25 phosphatases are a valuable
target for the development of small molecule inhibitors of therapeutic relevance. Here, we used an inte-
grated strategy mixing organic chemistry with biological investigation and molecular modeling to study
novel quinonoid derivatives as CDC25 inhibitors. The most promising molecules proved to inhibit CDC25
isoforms at single digit micromolar concentration, becoming valuable tools in chemical biology investiga-
tions and profitable leads for further optimization.
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Introduction

Protein tyrosine phosphatases (E.C. 3.1.3.48) are a large family of
enzymes that catalyze the removal of the phosphate group from
tyrosine residues, and are widely expressed in mammals and other
organisms1,2. Among them, cell division cycle 25 phosphatases
(CDC25A, B and C isoforms) are central regulators of the cell cycle
in human cells, driving and tuning each phase of cell cycle progres-
sion2–5. Expression and activity of these enzymes are tightly regu-
lated in physiological conditions, whereas abnormal expression of
CDC25 has been detected in many high-grade tumors, such as
breast, prostate, ovarian, endometrial, colorectal, esophageal, thy-
roid, gastric and hepatocellular cancers, glioma, neuroblastoma,
non-Hodgkin lymphoma and acute myeloid leukemia5–7.
Overexpression of CDC25 induces a bypass of cell cycle phases con-
trols, allowing malignant cells to get through the phases and to
divide, and has been correlated with tumor aggressiveness, high
grade tumors and low vital prognosis for patients8–10. Taken
together, these evidences suggest that CDC25 phosphatases are
promising targets for the development of anti-cancer therapies. To
date, a number of CDC25 inhibitors have been described in the

literature11–13, and some of them proved to be rather efficient14.
These compounds belong to various chemical classes, such as qui-
nonoids, electrophilic inhibitors, thiophenic derivatives, phosphate
surrogates and coumarins15,16) and were obtained by multiple sour-
ces, including organic synthesis, or marine organisms extraction17.
In this context, it is worth mentioning that Georgantea et al. have
recently identified two CDC25 inhibitors among 21 sesquiterpenes
isolated from the Caribbean soft coral Pseudopterogogia rigida18.

Some molecules have been evaluated on mice-xenografted
human tumors, showing a decrease of tumor size through tumor
growth arrest. However, none of these compounds has been
selected for further development, due to cytotoxicity at bioactive
concentrations19–21. Accordingly, there is still a critical need for
novel and efficient CDC25 lead inhibitors from various chemical
classes, to be further developed as anticancer agents.

From a medicinal chemistry standpoint, quinones and quinone-
like compounds seem to be very promising candidates for CDC25
inhibition, also considering that minor changes in the chemical
composition of the side chain of quinone structures can lead to a
significant variation in cytotoxicity22–24. Therefore, the design of
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various quinonoid derivatives with strong inhibitory activity and
low cytotoxicity is definitely conceivable. Here, we synthesized the
quinonoid derivatives 1–7 (Figure 1), which were evaluated as
inhibitors of CDC25 phosphatases and could be potentially of
therapeutic benefit. The binding mode of the most potent com-
pounds to CDC25 isoforms was investigated by molecular docking
simulations, thus suggesting a rational explanation for the
observed biological activity.

Materials and methods

Production and purification of recombinant human CDC25

Human glutathione-S-transferase (GST)-Cdc25 recombinant
enzymes were used to evaluate the inhibitory potential of
compounds.

Recombinant human GST-CDC25 proteins were produced as
previously described by Brault et al.25 Briefly, the GST-tagged
Cdc25s were expressed in the bacterial expression system
Escherichia coli BL21-DE3 pLys S, transformed by a plasmidic vector
(pGEX 2T) containing the sequences encoding full length CDC25.
Production of recombinant proteins was induced via an IPTG
induction system. Then, cells were lysed and centrifuged to
recover the supernatant which was purified with a GSH-agarose
column system, and recombinant GST-CDC25 proteins were eluted
and collected in fractions. Activity, purity and protein concentra-
tion of the fractions were evaluated.

CDC25 enzymatic activity was measured by a dephosphorylation
assay with 3-O methyl fluorescein phosphate as described26. Briefly,
the assay was performed in 96-well plates in buffer [50mM
Tris–HCl, 50mM NaCl, 1mM EDTA and 0.1% SAB, pH 8.1], 3-O-meth-
ylfluorescein phosphate was used as substrate. After 2 h at 30 �C, 3-
O-methylfluorescein fluorescent emission was measured with a
CytoFluor system (Perspective Applied Biosystems, Villebon-sur-
Yvette, France; excitation filter: 475 nm; emission filter: 510 nm).

Statistics and analytical models

Assays were performed in triplicate, and the experiment was inde-
pendently performed three times. The results are expressed as
percentage of inhibition of CDC25 phosphatase activity in pres-
ence of the tested compounds (and compared to DMSO control).
All compounds were tested at a 100 mM concentration.
Naphtoquinone (20mM) was used as positive reference inhibitor.

IC50 values for CDC25 inhibition were evaluated by in vitro fluo-
rimetric assays and were determined with sigmoid curves plotted

by using a non-linear approximation model based on the least
square method (GraphPad Prism software, La Jolla, CA).

Molecular modeling

Ligand conformational analysis was carried out with Omega2, ver-
sion 2.5.1.4 (OpenEye, Santa Fe, NM)27,28, allowing the storage of
the 600 most favorable conformations. Molecular docking was then
performed with the FRED docking program, version 3.2.1 (OpenEye,
Santa Fe, NM)29–31, while rescoring of docking poses was performed
with the XSCORE program32 and with the molecular mechanics
generalized-Born surface area (MM-GBSA) method33, using a pro-
cedure described elsewhere34. To perform molecular docking, the
crystallographic structures coded by PDB IDs 1C2535, 1CWS36, and
3OP3 were selected as representative for CDC25A, CDC25B and
CDC25C, respectively. For homology modeling purposes, sequences
of human CDC25A, CDC25B and CDC25C were retrieved from the
UniProt Knowledgebase (UniProtKB – http://www.uniprot.org/)
under the accession codes P30304, P30305 and P30307, respect-
ively37, and were aligned by Clustal38. The full structure of catalytic
domain of the CDC25C was generated by Modeller 9v539. The best
protein model was chosen based on the DOPE score.

Results and discussion

Chemistry

Compound 1 was prepared from vanillin according to Noland pro-
cedure40 with slight modifications (Scheme 1). The Noland proced-
ure used MOM (methoxymethyl-) as protecting group for the
hydroquinone 1a. While MOM chloride used for this protection is
quite expensive and highly toxic, we preferred to protect the
hydroxyquinone as the ethoxyethyl ether 1b. Furthermore, CAN
oxidation of the MOM-protected hydroquinone 2a lead in our
hands to lower isolated yields (50%) of the sulfinylquinone 1 com-
pared to EE-protected hydroquinone 2b (70%). Details on the syn-
thetic procedure to compound 1, chemical and spectroscopic
characterizations are described in the Supporting Information.

Compounds 2 and 3 were prepared according to our previous
work starting from commercially available 2-methylhydroquinone
(Scheme 2)41. Details on the synthesis and chemical characteriza-
tion of 2 and 3 are reported in the Supporting Information.

Quinonoids 4–7 were described as synthetic intermediates in
our previous work towards the total synthesis of salvinorin A and
analogs42.
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Figure 1. Quinones and quinone-like compounds 1–7.
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Inhibition of CDC25A, B, and C by 1–7

A preliminary evaluation of the inhibitory activity of 1–7 against
CDC25 isoforms A, B and C was performed at 100 mM concentra-
tion of each compound, in order to remove low-potency inhibitors
and to focus further efforts on most promising molecules. Results
showed that four compounds, namely 1, and 3–5, were potent
inhibitors of the three CDC25 isoforms (Figure 2), whereas 2, 6
and 7 inhibited the CDC25 isoforms to a lesser extent (residual
activity of the CDC25 enzymes was higher than 10% at 100 mM).
For this reason, these molecules were discarded, while 1, and 3–5
were selected for further investigations.

The half-maximal inhibitory concentration (IC50) of compounds
1, and 3–5 was evaluated against each CDC25 isoform. Notably, all
values were below 20 mM, and the small molecules proved to inhibit
more potently CDC25A with respect to CDC25B and CDC25C.
Moreover, as reported in Table 1, compounds 1 and 5 were the
most potent inhibitors of CDC25A (IC50¼2.64 and 2.53mM, respect-
ively). These values are of particular interest, especially in compari-
son to literature data (best IC50 usually between 0.1 and 5mM)43.
CDC25B was inhibited by 1 and 3–5 with lower potency among the
CDC25 isoforms, with 3 and 4 being the weakest inhibitors of the
test set showing IC50 in the double digit micromolar concentration.
Finally, CDC25C was inhibited with IC50 from 5.41 and 9.43mM.
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Figure 2. Preliminary screening of the test-set. The inhibition of CDC25A (left/blue bars), CDC25B (middle/green bars), and CDC25C (right/red bars) isoforms by 100lM
of 1–7 was evaluated. DMSO served as negative inhibition control (100% residual CDC25 activity), while the reference inhibitor naphtoquinone at 20lM serve as posi-
tive control.
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Molecular modeling

The crystallographic structures of CDC25A, CDC25B and CDC25C
isoforms were selected as described in the experimental section,
and used as rigid receptors in molecular docking simulations.

Whereas multiple structures are available in the protein data bank
(rcsb.org/pdb) to describe the CDC25A and CDC25B catalytic
domain2,35,36, the only structure available of CDC25C has a resi-
dues gap within the active site, which may hamper structure-
based molecular simulations. Therefore, the full structure of
CDC25C catalytic domain was obtained by homology modeling.
Molecular docking was performed with FRED (OpenEye, Santa Fe,
NM)29–31. The best docking-base complex of each molecule was
then submitted to energy minimization in explicit water solvent,
before the ligand binding affinity was recalculated by means of
two different rescoring methods (see below).

Overall, molecular docking simulations showed that mole-
cules 1, and 3–5 are able to fit within the active site of
CDC25A, CDC25B and CDC25C (Figure 3) and to occlude the
accessibility to the catalytic cysteine, thus providing a structural

Figure 3. Predicted binding mode of active molecules 1, 3, 4 and 5 towards the crystallographic structure of CDC25A (Panel A), CDC25B (Panel B), and the homology
model of CDC25C catalytic domain (Panel C). Small molecules are shown as sticks. The protein is shown as cartoon. Side chains of residues within 5 Å from small mole-
cules are showed as lines. H-bond interactions are highlighted by dashed lines, and residues contacted by H-bonds are labeled. For the sake of representation, H atoms
were omitted. The catalytic cysteine residue is shown as sticks and is labeled.

Table 1. Inhibition of human CDC25 isoforms by quinones and quinone-like
compounds 1, and 3–5.

IC50 (lM)�

Mol CDC25A CDC25B CDC25C

1 2.64 ± 0.62 6.99 ± 0.21 5.72 ± 0.27
3 3.19 ± 1.02 11.13 ± 1.01 5.41 ± 0.52
4 3.73 ± 1.53 18.20 ± 1.68 9.43 ± 1.25
5 2.53 ± 0.23 7.46 ± 2.17 5.76 ± 0.42
�Values are expressed as mean of triplicates ± standard deviation (SD).
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explanation to the inhibitory effect observed in vitro. In detail,
the sulfoxide and the quinone moieties establish H-bond inter-
actions with the side chain of polar residues flanking the cata-
lytic cysteine in CDC25A (Figure 3A) such as Arg436 and
Arg439. The hydrophobic portion of 1 and 3 establishes hydro-
phobic interactions with Phe432 or Tyr386, whereas 4 and 5
share a very similar binding mode and establish a “parallel dis-
placed” p–p interaction with the aromatic side chain of His490.
Notably, the same pharmacophores were engaged in docking
towards CDC25B (Figure 3B). Indeed, the quinone and sulfoxide
moieties establish H-bond interactions with Arg482, Tyr428,
Arg479 and Arg544 of CDC25B that surround the catalytic cyst-
eine residue within the active site. In CDC25C, 1 and 3 share a
common binding mode and establish H-bonds with Arg383 and
Ser380 of the catalytic loop by means of the quinone moiety.
Similarly, 4 and 5 establish H-bonds with Arg383 and His437
and occupy the catalytic site by occluding the accessibility to
the catalytic Cys377 from the solvent area (Figure 3C).

Theoretical binding affinity of active molecules was computed
by means of MM-GBSA and XSCORE. The MM-GBSA approach
calculates the free energy of binding of a ligand towards a pro-
tein and is also used to rescore docking or virtual screening
results33,34,44–46; the XSCORE function performs a precise and
reliable estimation of the ligand’s pKd

32. Notably, results in
Table 2 reflect the trend of potency observed in vitro, showing
that compounds are expected to bind to CDC25 enzymes with
a micromolar affinity, further reinforcing the consistency of pre-
dicted binding modes.

Conclusion

In this work, we synthesized and tested in vitro a number of novel
quinonoid derivatives as inhibitors of CDC25 phosphatases. Due to
the implication of these enzymes in the fine regulation of the cell
cycle, as well as in the origin and progression of various types of
cancer, these molecules may be profitable starting points for fur-
ther investigations. The most promising leads showed inhibition of
CDC25 isoforms at low micromolar concentration (single digit).
Their binding mode to CDC25 isoforms was investigated by
molecular modeling, showing that these inhibitors are able to fit
the catalytic active site and to sterically occlude the access to the
catalytic cysteine residue from the bulk solvent.

In summary, these low molecular weight quinonoid derivatives
are tools for chemical biology studies, as well as profitable leads
for further investigation as anticancer candidates.
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