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Abstract: In the present work, the flow field in a splitting-junction micro channel with a Y shape,
which is the simplest geometry to be employed for heat and mass transfer in micro-devices such
as micro-heat-exchangers and micro-mixers, is investigated experimentally using micro Particle
Image Velocimetry (µPIV). The angular divergence in the Y splitting is changed, as well as the
Reynolds number, in order to investigate the instantaneous and mean flow fields to determine
which configurations are more suitable for practical applications. The results show that the flow
configuration is strongly dependent on the Y shape angle, especially in the junction part, and that
there is also a significant dependence on the Reynolds number.
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1. Introduction

The use of micro-devices is nowadays widely increasing due to their relevant advantages in
efficiency when compared to their macro counterparts, as resulting from the heat transfer coefficient
being inversely proportional to the characteristic length of the contact surface [1]. This has led to
several applications in the fields of Biomedicine and Bio-Engineering, as well as in Sensors, Control
and Automation and Energy Engineering, namely in Energy Conversion Systems for solar energy,
gas conversion and sequestration and optimization of fuel cells [2]. The starting point of the present
research is just in the framework of applications of micro-devices to the field of Energy Engineering,
in order to improve heat and mass transfer, in those devices usually employed in this field as
micro-heat-exchangers, micro-mixers or micro-pumps [3–5]. Specifically, drawing from previous
investigations on micro fuel cells [2], it is clear how challenging it can be to design such systems
in micro-scales by ensuring net momentum (or temperature) diffusion using only passive methods,
i.e., by using changes in geometry or by inserting external passive elements in the flow. In such
a way, heat and mass transfer among two or more fluid streams is performed without external actions
and without using another phase besides the fluid phase (for example bubbles, solid particles or
other species).

Considering the effects due to change in geometry in micro-channel flow, a very effective and
simple geometry to increase diffusion is to add a Y splitting section and then recombine the two
branches in an inverse Y junction [6–9]. This configuration is rather simple to be manufactured
and can be also used for flow measurements (flow rate) and control. However, the effect of the
angular divergence and convergence of the Y junction, also considered in relation to differences in the
Reynolds number, has not yet been entirely investigated. In previous studies, the focus was mainly on
investigating the effects of abrupt geometrical changes on the field flow, such as a T-junction, rather than
on the combined effects of smoother geometries and different Reynolds numbers. Thus, the aim of the
present experimental work is to investigate the effect of a Y section angle and flow velocity (Reynolds
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number) in the resulting flow configuration with micro Particle Image Velocimetry (µPIV), in order
to optimize the design of micro-heat-exchangers and micro-mixing devices. Another major objective
of the work is to set up an efficient image analysis procedure, i.e., image acquisition and processing,
in order to minimize the effects of external disturbances and noise on the data, thus improving
their reliability.

2. Device and Setup Specifications

The test section consists of a channel, filled with distilled water, with a rectangular cross-section
(height = 0.4 mm, width = 4 mm) followed by a splitting section with two possible angles, 30◦ and
45◦, which in turn is followed by a junction with reverse angles respectively equal to 45◦ and 30◦.
These angles have been selected because they are the maximum angles the prevent separation at the
splitting and junction sections, as well as at the upper and lower bends. The device was manufactured
by the German company ibidi GmbH and is part of the µ-slide Luer family, made of a special polymer
hydrophobic uncoated coverslip (ibidi Polymer Coverslip), which prevents cell growth on the surface
and is also fully optically transparent. The reported error on surface roughness is quoted to be ±5 µm.
The overall experimental configuration with an example of the Y splitting-junction channel is given
in Figure 1 (at the top left and right), together with an example of the acquired image (at the bottom).
The measurements were performed in a range of velocities from 0.01 m/s to 0.1 m/s, thus resulting
in a maximum Reynolds number around 50 (based on the bulk velocity and the hydraulic diameter).
The illumination of the test section is provided by three commercial LED lamps, 60 W each, giving
uniform light distribution without any major heating problems. A 50-mm focal lens objective Nikon
macro Nikkor f1.8 is used with multiple extension tubes up to 36 mm. The depth of focus was around
0.6 mm, so that all tracer particles in the channel are in focus, as observed in Figure 1, whereas the
magnification factor is around 20 µm/px. High resolution images of the region upstream of the
splitting section, of the two branches and of the junction are acquired by a high speed Photron-Fastcam
video-camera (for the present measurements, between 500 frames/s and 1000 frames/s at the maximum
spatial resolution of 1024 × 1024 pixels, with a shutter time equal to 1/2000 s) and stored on a PC.
The water flow is seeded with hollow glass spherical tracers with an average diameter of 10 µm
and a standard deviation of ±2 µm. The relative density in comparison to water is equal to 1.1,
thus resulting in a Stokes time scale of less than 10−5 s. This means that the tracers are able to follow
fluid velocity fluctuations up to 100 kHz. Typical examples of acquired images are provided in Figure 1
(at the bottom) and Figure 2. Tracers and fluid are injected in the flow continuously by means of
a syringe pump (KD Scientific—410 series), with a minimum flow rate of 0.1 mL/min. In the present
measurements, the flow rates are varied between 4 mL/min and 10 mL/min, with an error of less than
0.1 mL/min.
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Figure 1. Measurement of the overall configuration (a), detail of the Y channel junction in direct and 
inverse configurations with angle definition (b), and example of the acquired image in the 30° 
configuration (c), flow from left to right. 

A typical image of the entire Y splitting-junction section is presented in Figure 2, where typical 
examples of optical disturbances are also shown, including background light, diffused light from the 
source lamp, light reflections on the walls, light scattering due to small air bubbles, external 
interferences and flickering (which can be appreciated only in video). A specific image 
pre-processing procedure has been developed in order to minimize these effects before performing 
PIV analysis. Specifically, all sources which are more or less steady can be removed by evaluating 
the minimum intensity for each pixel over a sequence of images, and then subtracting the given 
minimum from each image of the sequence [10]. This operation eliminates all disturbances except for 
moving bubble contribution and flickering, which can be reduced by computing a moving average 
minimum. At this stage, a contrast enhancement algorithm is applied to the images in order to 
emphasize tracer particle images, as reported in Figure 3. Lastly, a mask is added to the images in 
order to avoid the evaluation of the vector field by PIV outside the channels, thus reducing the 
computational cost. Details on image pre- and post-processing are reported elsewhere [11]. 

 

Figure 2. The Y splitting-junction section with examples of optical disturbances for the 45° 
configuration (flow from left to right). 

Figure 1. Measurement of the overall configuration (a), detail of the Y channel junction in direct
and inverse configurations with angle definition (b), and example of the acquired image in the 30◦

configuration (c), flow from left to right.

A typical image of the entire Y splitting-junction section is presented in Figure 2, where typical
examples of optical disturbances are also shown, including background light, diffused light from
the source lamp, light reflections on the walls, light scattering due to small air bubbles, external
interferences and flickering (which can be appreciated only in video). A specific image pre-processing
procedure has been developed in order to minimize these effects before performing PIV analysis.
Specifically, all sources which are more or less steady can be removed by evaluating the minimum
intensity for each pixel over a sequence of images, and then subtracting the given minimum from
each image of the sequence [10]. This operation eliminates all disturbances except for moving bubble
contribution and flickering, which can be reduced by computing a moving average minimum. At this
stage, a contrast enhancement algorithm is applied to the images in order to emphasize tracer particle
images, as reported in Figure 3. Lastly, a mask is added to the images in order to avoid the evaluation
of the vector field by PIV outside the channels, thus reducing the computational cost. Details on image
pre- and post-processing are reported elsewhere [11].
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On the other hand, when the junction section is considered, as presented in Figure 5 
emphasized by red curves, the velocity values obtained with the largest in-diverging angle (45°, seen 
on the right in Figure 5) show a velocity reduction at the centerline persisting further downstream in 
comparison to the other configuration (30°, seen on the left). Thus, the maximum velocity at the 
centerline is higher for this last configuration, compared to the reverse, by about 10% to 20% 
depending on the Reynolds number, and the velocity profile is flatter downstream of the junction. 
Presumably, this is due to the thinner mixing layer developing between the two merging streams for 
the lower value of the in-diverging angle (30°) in comparison to that with higher value (45°). This is 
why the flow uniformity is recovered further downstream in this second case. It is also important to 
recall that the lowest in-diverging angle corresponds to the highest out-converging angle and vice 

Figure 3. The schematics of image processing to derive the instantaneous flow vector field. Original
image (a), image after subtraction of the minimum and contrast enhancement (b), and the resulting
instantaneous vector field with mask (c). Flow is from left to right.

Two consecutive frames of the time sequence are analyzed to determine the flow tracer
displacements as usual in micro Particle Image Velocimetry (µPIV) [10]. An example of the result of the
instantaneous flow field is presented in Figure 3. The velocity measurements are obtained from two
consecutive images, as those in Figure 1 or Figure 3, by applying iterative cross-correlation algorithms,
using 32 × 32 pixel final sub-windows with overlapping 50%. In Figure 3 on the right, velocity vectors
are clearly seen without major spurious data. About 1000 frame couples are acquired in each condition
to derive mean and root mean square (rms) fields.

3. Results

In Figure 4, the resulting mean fields of the axial velocity for the Y channel splitting section are
presented for two diverging angles at the same Reynolds number (around 50). It is clearly observed
that the two configurations are rather similar, both in the diverging sections and after the change in
direction. This is in agreement with the fact that at such a low Reynolds number the flow is almost
laminar, even where the flow abruptly changes directions, and is without any major separation region.
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On the other hand, when the junction section is considered, as presented in Figure 5 emphasized
by red curves, the velocity values obtained with the largest in-diverging angle (45◦, seen on the right
in Figure 5) show a velocity reduction at the centerline persisting further downstream in comparison
to the other configuration (30◦, seen on the left). Thus, the maximum velocity at the centerline is
higher for this last configuration, compared to the reverse, by about 10% to 20% depending on the
Reynolds number, and the velocity profile is flatter downstream of the junction. Presumably, this is
due to the thinner mixing layer developing between the two merging streams for the lower value
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of the in-diverging angle (30◦) in comparison to that with higher value (45◦). This is why the flow
uniformity is recovered further downstream in this second case. It is also important to recall that the
lowest in-diverging angle corresponds to the highest out-converging angle and vice versa. Also, in the
30◦ configuration, higher velocity rms fluctuations (not shown here) are measured in the junction
section (about 20%, i.e., more than double those measured in the other configuration and much larger
than the inlet rms level equal to 5%–8%). For the reverse configuration (on the right in Figure 5), a flat
velocity profile is recovered further downstream in comparison to the previous one, thus indicating
that the two streams are separated for a longer distance. In any case, this is an indication of a strong
dependence on the velocity field from the specific Y junction angle, which presumably influences the
mixing of the two streams.
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The dependence on the Reynolds number of these results is also related to the specific geometry.
In Figure 6, the velocity profiles at the outlet of the junction (the first profile just after the junction,
as indicated by dotted lines) for different flow rates are compared for the two geometrical configurations.
Again, there are differences among the two geometries which are observed whatever the Reynolds
number. However, for the 30◦ diverging angle, the shape of the velocity profile also exhibits a remarkable
dependence on the Reynolds number, which is not so high for the reverse geometry.
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4. Discussion and Conclusions

A high-speed micro PIV system was set up and optimized to measure details of mixing in
micro flows. In order to derive reliable data, specific image analysis procedures were developed
to remove external optical disturbances, such as moving average minimum subtraction and
contrast enhancements.

In this way, a Y splitting-junction section was investigated by changing the diverging angles
and the Reynolds number of the flow. The configuration with a small splitting angle at the inlet of
the bifurcation followed by a large junction angle seemed to produce a better mixing performance in
comparison to the opposite (reverse configuration). This is confirmed by the higher level of velocity
fluctuations measured in the first configuration. The reason for this behavior resides in the different
amplitudes of the related mixing layers, as well as the higher converging angle.

On the other side, while the reverse configuration exhibited rather similar results in the range of
tested Reynolds numbers, there was a remarkable Reynolds number dependence for the configuration
with the best mixing performances. This indicated that such a simple mixing device design must be
optimized for the specific Reynolds number and geometry used in each practical application. However,
in addition to the angle between the two sections, there are many other geometrical parameters which
deserve further specific investigations in such a Y splitting-junction, as for example roundness details
of the vertex of the splitting and junction, top and bottom channel bends and specific values of the
surface roughness.
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