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Abstract

The aim of this dissertation is to provide nonparametric tools for analytic inference
on superpopulation models. To pursue the goal we approach to the problem in two
different ways. The first one is analytic. Following the classical empirical process
theory, we first derive a functional central limit theorem that fully characterizes
the asymptotic distribution of the Hàjek estimator of the distribution function of
the superpopulation. In addition, assuming some regularity conditions on the (su-
perpopulation) parameters of interest, we extend this analytic characterization to
a large class of possible paramaters of interest. The second one is more “practical”:
our aim is to construct a computer intensive procedure that allows for inferring the
superpopulation, also when the (asymptotic) distribution of an interest parameter
has an unmanageable analytic form. Clearly, such a procedure is resampling. Unfor-
tunately, the most famous resampling technique, the bootstrap procedure, does not
work in our framework. In fact, even if a superpopulation is assumed, the selected
units cannot be assumed independent in the presence of a non trivial sampling de-
sign when dealing with a finite population. This lack of independence makes the
classic bootstrap inadequate for our purposes. Of course, in the survey sampling
literature, many resampling procedures have been proposed, but them do not suit
our purposes because of two reasons: i) a largest part of these resampling techniques
have been developed to infer the finite population and not the superpopulation; ii)
we want to make a parallel between the classical non parametric theory and survey
sampling. Almost all of these procedures are justified by mimicking the first two
moments of the distribution of the considered estimator, and this is not the argu-
ment used to justify Efron’s bootstrap in classical nonparametric statistics. Thus,
we introduce the “ multinomial” scheme as a resampling procedure for the super-
population and we provide an asymptotic validation of this method, that involves
the whole distribution of the considered estimators, exactly as it happens for classic
bootstrap. In the last part of this work, the results obtained are applied to differ-
ent inferential problems and, for each one of the concerned problem, a simulation



study is performed to test the validity of our proposal. For these applications, we
especially focused on problems where the interest parameter is not a linear function
of the data.
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Introduction

The use of superpopulation models in survey sampling has a long history, going
back (at least) to Cochran (1939), where the limits of assuming the population
characteristics as fixed, especially in economic and social studies, are stressed. As
clearly appears, for instance, from Särdnal et al. (1992) and Pfeffermann (1993),
there are basically two types of inference in the finite populations setting. The first
one is descriptive or enumerative inference, namely inference about finite population
parameters. This kind of inference is a static “picture” on the current state of a
population, and does not take into account the mechanism generating the characters
of interest of the population itself. The second one is analytic inference, and consists
in inference on superpopulation parameters. This kind of inference is about the
process that generates the finite population. In contrast with enumerative inference
results, analytic ones are more general, and still valid for every finite population
generated by the same superpopulation model.

The present dissertation essentially focuses on providing nonparametric esti-
mates for superpopulation parameters. To this purpose we first characterize the
asymptotic distribution of the Hàjek estimator (or equivalently Horvitz-Thompson
esimator) for a large class of parameters. However, depending on the considered
parameter of interest, this characterization could be quite unmanageable in practi-
cal situation. In fact, the analytic variance of the estimated parameter, may have
a really complex form. This drawback is overtaken by resorting to a well known
idea of classical nonparametric statistics; approximate the estimator distribution
via bootstrap (cfr. Efron (1979), Romano (1988), Romano (1989) and references
therein). Efron’s bootstrap procedure (Efron (1979)) is based on a crucial assump-
tion: data are independent and identically distributed (i.i.d). Unfortunately, this
is not the case of finite population framework, where the presence of a complex
sampling design induces dependences in the data. A deeper discussion on this ”un-
lucky“ situation will be faced in Chapter 3, but it is important to say that the
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Fig.0.1. Diagram summarizing analytic inference and descriptive inference in superpopu-
lation approach.

main worst consequence of these dependences is the inconsistency of the original
bootstrap procedure.

Because of the bootstrap failure in survey sampling, several different resampling
techniques in finite populations setting have been proposed in the literature. How-
ever no one of these procedures suit our purposes. In fact, a large portion of such
techniques essentially refers to descriptive inference, and rests on the idea of mimick-
ing the moments of the sampling distributions of statistic of interest. In particular,
in case of Horvitz-Thompson estimator of the population mean, this idea reduces to
require that the variance of the resampled statistic should be equal (or at least very
close) to the variance estimate of the original statistic. This is usually attained by
resampling units according to some special sampling design that takes into account
the dependence between units: cfr. Antal and Tillé (2011) and references therein.

In addition, the arguments above are considerably different from those com-
monly used to justify the classical bootstrap, that are based on asymptotic consid-
erations involving the whole sampling distribution of a statistic, not only the first
two moments. In particular, in Bickel and Freedman (1981), usual Efron’s bootstrap
is justified by proving that the asymptotic distribution of a bootstrapped statistic
coincides with that of the original statistic. To our knowledge, the only papers that
develop resampling methods for finite populations justified via asymptotic argu-
ments are Chatterjee (2011), Conti and Marella (2015), Conti et al. (2015). All the
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above mentioned papers are based on the fixed population approach, i.e. refer to
the estimation of finite population parameters (descriptive inference). Furthermore,
Chatterjee (2011) is confined to quantile stimation under simple random sampling.
The results are then extended to general πps designs in Conti and Marella (2015).

In Conti et al. (2015) a class of resampling procedures based on a predictive
approach is defined, and their asymptotic distribution is studied. Such procedures
are essentially taylored for the estimation of finite population parameters, in a
descriptive inference perspective. For this reason Conti et al. (2015), represents our
starting point. In this dissertation, we will generalize the results in Conti et al.
(2015) to analytic inference. As it will be seen in the sequel, the analytic-inference
perspective dramatically changes the asymptotic distributions to be considered. As
a consequence, the resampling procedures defined in Conti et al. (2015) do not work
when superpopulation parameters are involved; the only exception is the so-called
“multinomial” approach, defined first in Pfeffermann and Sverchkov (2006).

The present dissertation is organized as follows. In Preliminaries Chapter, we
cite some well-known definitions and results about different fields (Probability, Em-
pirical Processes, Sampling Theory), that will be used in the whole work. In Chapter
1 we define the framework in which we will develop our theory, specifing how the
asymptotic is made, how the superpopulation generates the finite population and
deeply analizing the key assumption on how the data are collected from the finite
population. In the second part of the chapter, we define the class of parameters on
which we are interested and we discuss what kind of regularity conditions are needed
on these paramaters in order to derive easily the asymptotic results. The first part
of Chapter 2 is devoted to a review of Conti et al. (2015) that is the foundation
on which we build our methodology. The second section of Chapter 2 contains the
first crucial results, that addresses our first aim. In fact, in Propositions 2.2.2 we
fully characterize the asymptotic distribution of the Hàjek estimator of superpop-
ulation distribution function. Then, thanks to the regularity conditions introduced
in Chapter 1 we also characterize the asymptotic distribution of Hajek estimator
of interest parameters in Proposition 2.2.5. The last Section of Chapter 2 contains
a review of Boistard et al. (2015) where the authors obtain a result substantially
equivalent to Proposition 2.2.2, with some remarkable differences between our and
their methodology. The main goal of Chapter 3 is to address the aim of providing
a bootstrap-like procedure to avoid the explicit finding of the limiting distribution
of a interest parameter. The first Section is devoted to briefly summarize the most
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contributions to the literature of the last thirty years about resampling in survey
theory. In the second Section we introduce the “multinomial” resampling scheme
as a procedure to recover the asymptotic distribution of the Hajek estimator of a
superpopulation parameter. In addition, in the same spirit of Bickel and Freedman
(1981) we prove the validity of this procedure on the basis of asymptotic consider-
ations. In the last Section, we introduce the Monte Carlo procedure to practically
implement the resampling procedure proposed. In the Application Chapter we show
some of the possible applications of our method to common statistical problems,
with a special attention on measuring inequality. At the end, in the Appendix, the
proofs of all the original results contained in the present work are showed.



Preliminaries

The aim of this chapter is to refresh some well known results that will be useful to a
better understanding of this dissertation as well as to fix a large part of the notation
that will be employed in the sequel. The first part is devoted to some classical results
of probability theory. The second part is devoted to empirical process under the
classical assumption of i.i.d data. The last section is about some results of sampling
theory in finite population framework that are massively used in this work.

0.1 Probability

In this section we briefly analyze a particular functional space and its basic prob-
abilistic and topological properties. Using the same notation of Billingsley (1968)
let D[−∞,+∞] be the space of the càdlàg (French: "Continue à droite, limite à
gauche", that means right continuous with left limits) functions on the extended
real line. By definition, of course, every continuous function is in D[−∞,+∞], that
is C[−∞,+∞] ⊂ D[−∞,+∞]. It is also evident by construction that Cumulative
Distribution Functions are càdlàg functions. For the sake of brevity we will use
some symbols to indicate different types of convergences.

weak−−−→ expresses weak convergence.

probability−−−−−−→ expresses convergence in probability. In the sequel the superscript might con-
tain explicitly the distribution to which the convergence refers, for example
P−probability−−−−−−−−→.

D−→ expresses convergence in distribution. Although the meaning is the same, it
is used instead of weak−−−→ when dealing with succession of random variables.

a.s.−−→ expresses almost sure convergence. In the sequel the superscript might contain
explicitly the distribution to which the convergence refers, for example a.s.−P−−−−→.
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In the whole work we will consider the space D[−∞,+∞] endowed with the
Skorohod Topology. The Skoroohod topology is a generalization of the uniform
topology (the one generated by the sup norm metric) usually used with the space
C[−∞,+∞]. In fact the Skorohod topology relativized to C coincides with the uni-
form topology (for more formal definitions see Billingsley (1968) chapters 2-3). The
reason why we consider D[−∞,+∞] endowed with the Skorokhod Topology rather
than the uniform convergence topology is that the first one makes the space D sep-
arable and complete and, in addition, it can be seen as generated by a metric called
the Skorokhod metric. In order to make more easily understandable the rest of the
present section a few definitions, remarks and results are given in the sequel.

• A topological space (S,S) is separable if there exist a dense, countable subset
A contained in it. In a more intuitive way, a space is separable if you can
approximate every element of such a space with a countable sequence of el-
ements of A. For example R is a separable space because Q ⊂ R and Q is
countable and dense in R. In fact you can describe every real number by a
countable sequence of rational numbers. Essentially this property implies that
you do not need all the elements of a space to describe some properties of it.

• A metric space (S, d) is complete if every Cauchy sequence in S converges in
S. In a less formal language, this means that every “well behaved” sequence
of points in the space must converge in the same space. In this way the space
has no holes. For example the open interval (0, 1) with the absolute value
metric is not complete. In fact the sequence an = 1

n
is a Cauchy sequence, it

converges to 0, but 0 is not in (0, 1)

Separability and completeness of the considered (metric) space are necessary
assumptions of the Prohorov’s theorem, that follows

Theorem 0.1.1 (Prohorov). Let Π be a family of probability measures on a com-
plete, separable metric space S (that is S is a Polish space). The family Π is tight
if and only if it is relatively compact.

With reference to Prohorov’s Theorem two remarks are necessary.

• A family of probability measures Π on a generic metric space S is tight if for
every ε > 0 there exist a compact subset K of S such that P(K) > 1 − ε for
every P ∈ Π.
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• A family of probability measures Π on a measure space (S,S) (S is the Borel
σ-algebra) is relatively compact if every sequence of elements of Π contains a
weakly convergent subsequence. Formally for every sequence {Pn} ⊂ Π there
exist a subsequence {Pn′} ⊂ {Pn} and a probability measure Q defined on
(S,S) such that Pn′

weak−−−→ Q.

Usually to show weak convergence of a sequence of random elements of D to
some limit process, we have to show that the finite-dimensional distributions of
the considered processes converge to the finite-dimensional distribution of the limit
process and that the distributions of these processes are tight (see Theorem 15.1
p.124 Billingsley (1968)). Prohorov’s theorem provides an operational tool to show
the tightness, since it ties the notion of tightness to the more operational notion of
relative compactness. Separability is also a necessity for another important result,
known as Skorohod’s representation Theorem.

Theorem 0.1.2. Suppose that Pn
weak−−−→ P and that P is defined on a separable

space. Then there exist a sequence of random variable Xn and a variable X defined
on a common probability space, such that Pn is the the distribution of Xn for every
n and P is the distribution of X. Moreover it holds that Xn

a.s.−−→ X.

Weak convergence allows the probability space to be different for every considered
probability, while for a stronger form of convergence, like almost sure convergence,
this is not true. What is generally true, in fact, is that almost sure convergence im-
plies weak convergence; the converse is generally false. Skorohod’s Representation
theorem, makes the converse of the last proposition almost true, ensuring the exis-
tence of a representation of the weak convergence as an “almost” sure convergence.

The last results that we want to recall here is a Theorem that matches together
two types of convergences, the convergence in distribution and the convergence
in probability. This Theorem is known as Slutsky Theorem (see Corollary 2. in
Billingsley (1968) p. 31)

Theorem 0.1.3. Given two sequences of random variables Yn and Xn, suppose that
Yn

D−→ Y where Y is a random variable and Xn
probability−−−−−−→ c where c is a constant.
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Then it holds that:

Yn ×Xn
D−→ Y × c (0.1)

Yn
Xn

D−→ Y

c
if c 6= 0 (0.2)

What this last Theorem states is quite important. Generally we have that if two
sequences of random variables converges in distribution to a non degenerate random
variable, it is not true that the product (or equivalently the ratio) of the considered
sequences converges to the product (or the ratio) of the limit random variable.
The Slutsky Theorem ensures that this convergence holds if one of the considered
sequence converges in probability to a constant or equivalently to the convergence
in distribution to a degenerate random variable.

0.2 Empirical Processes

In this section we will provide some definitions and theorems related to the empir-
ical process, that is a well known topic of classic non-parametric statistics. If not
differently specified, we will identify a virtual or infinite population by its distri-
bution function. Consider a sample of independent, real valued random variables
Y1, . . . , Yn with common distribution F .

The most known non-parametric estimator of the distribution function is Em-
pirical Cumulative Distribution Function (ECDF), which is defined as:

Fn(y) = 1
n

n∑
i=1

I(Yi≤y), (0.3)

where

I(Yi≤y) =

1 if Yi ∈ (−∞, y]

0 otherwhise

are i.i.d. Bernoulli random variables with:
E[I{Yi≤y}] = F (y)
V[I{Yi≤y}] = F (y)(1− F (y)).
The symbols E[·] and V[·] denote, respectively, the expected value and the variance
with respect to the distribution of the population.
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Clearly, for every fixed y ∈ R, Fn(y) is itself a random variable with

E[Fn(y)] = F (y) (0.4)

V[Fn(y)] = F (y)(1− F (y))
n

. (0.5)

Concerning the pointwise convergence (remember that y is fixed) of the random
sequence Fn(y), by the strong law of the large numbers, we have:

Fn(y) a.s.−−→ F (y). (0.6)

Thus, asymptotically Fn(y) converges almost surely to the true value F (y), that is
Fn(y) is a (strongly) consistent estimator of F (y). Focusing on the limit distribution
of the random sequence Fn(y), using the Central Limit Theorem it is immediate to
see that:

√
n
Fn(y)− F (y)
F (y)(1− F (y))

D−→ N (0, 1) , ∀y ∈ R. (0.7)

We want to highlight that if we do not fix y, the whole Fn is a random function
and, by construction, is a random element of the space D[−∞,+∞]. In particular,
the process obtained centering and opportunely scaling the random function Fn is
well known in non-parametric statistic and it is referred to as empirical process. In
details the empirical process is defined as

√
n (Fn − F ) (0.8)

where the scaling factor
√
n and the centering factor F are obvious in virtue of

(0.4), (0.5). We now proceed with a characterization of the objects defined above.

We start with a result that is known as the Glivenko-Cantelli Theorem or also
as the Fundamental Theorem of Statistics (for a proof see Van der Vaart (2000)
p.266).

Theorem 0.2.1 (Glivenko-Cantelli). If X1, . . . , Xn are independent random vari-
ables with common distribution F , then

‖Fn − F‖∞ = sup
y∈R
|Fn(y)− F (y)| a.s.−−→ 0 (0.9)

This theorem strengthens (0.6). In fact it ensures almost surely a uniform
convergence of the ECDF to the population distribution function, that is the con-
vergence does not happen for a fixed point, as in (0.6), but for all the points of the
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real line. Term “fundamental” is now clearer. This theorem, in fact, guarantees
that in the presence of a “large” sample using the empirical cumulative distribution
function is almost equivalent to use the actual population distribution function F ,
independently from F . Moving from a pointwise analysis to a distributional one,
we cite the Donsker’s Theorem (for a proof see Billingsley (1968), Th. 16.4, p. 141)

Theorem 0.2.2 (Donsker). Let X1, . . . , Xn are independent random variables with
common distribution F , then

√
n(Fn − F ) D−→ B(F ) (0.10)

where B(·) is a Brownian bridge, that is a Brownian motion tied down to 0 at time
1.

Going a bit deeper we have that the limit in distribution of the Empirical Process
is a Gaussian process with zero mean function and a covariance function

C2(s, t) = F (s) ∧ F (t)− F (t)F (s) (0.11)

It is clear that we can look at Donsker’s Theorem like a functional extension of the
Central Limit Theorem.

In Figures 0.2-0.4, below, three plots of some simulations of the Empirical Pro-
cess for a uniform on (0, 1) population are reported. We want to highlight that in
case of uniform population, that is F (x) = x, the limit process in Donsker’s Theo-
rem is exactly a Brownian bridge. From all the situations listed in Figures 0.2-0.4,
the symmetry of the Empirical Process and the zero mean function are evident. Of
course, we have a better approximation to the Brownian bridge in case illustrated
in Fig. 0.4, when the sample size is very large. In fact in this case the actual ex-
pectation (the zero line) and the simulated mean (in black) are indistinguishable.
Also with a sample size of n = 100, that is the case of Fig. 0.3, we have a good
approximation, while in case of only n = 10 observations the approximation to the
Brownian bridge is clearly inadequate.

At the end of this section we want to introduce a result known as Dvoret-
zky–Kiefer–Wolfowitz (DKW) inequality from the name of the authors of the paper
in which it firstly appeared (see Dvoretzky et al. (1956)).

Theorem 0.2.3 (DKW inequality). Let Fn be the ECDF built on a sample X1, . . . , Xn
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Fig.0.2. Ten trajectories of the empirical process for a uniform (0, 1) population with
sample size n = 10

Fig.0.3. Ten trajectories of the empirical process for a uniform (0, 1) population with
sample size n = 100
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Fig.0.4. Ten trajectories of the empirical process for a uniform (0, 1) population with
sample size n = 1000

of independent variables with common distribution F . It holds that:

Pr

(
sup
x∈R
|Fn(x)− F (x)| > ε

)
≤ 2e−2nε2 , ∀ε > 0 (0.12)

To be more precise, the last result is the two-sided version of the DKW inequality
and is due to Massart (1990). In fact, in Dvoretzky et al. (1956), the inequality is
given with an unknown constant D <∞, only in 1990 Massart shows that it holds
for D = 2. This last result generalizes Glivenko-Cantelli Theorem. In particular
it, not only shows that the supremum of the absolute difference between the real
distribution function F and the ECDF Fn goes, almost surely, to zero when the
sample size grows, but it also quantifies the rate of this convergence. Moreover,
looking at the quantity

sup
x∈R
|Fn(x)− F (x)|

as the Kolmogorov-Smirnov (one sample KS) test statistic (for more on these tests
see Kolmogorov (1933), Smirnov (1939b) and Smirnov (1939a)), the DKW inequal-
ity upper bounds the tails of the distribution of the KS test.

0.3 Sampling Theory

In this last section of this chapter we move from the framework of infinite population
to the finite population one. Changing the point of view from infinite to finite
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population entails some modification of the approach to inferential problems. First
of all, the presence of a sampling design, usually without replacement, and the
finiteness of the population implies the inadequacy of the i.i.d assumption for the
data. Moreover, in the presence of a sampling design with non trivial sampling
weights, the usual estimator like sample means, sample variance and similar that
use uniform wights are biased. From this the need of other estimators that take into
account the sampling weights. This is the case of the well known Horvitz-Thompson
estimator and the Hajék estimator that will be recalled later.

Formally speaking let UN = {1, 2, . . . , N} be a finite population of size N and
s ⊂ UN a sample of effective size ns. Define S the space of all the possible samples
(for example if we admit all the possible subsets of UN as a sample, S could be
the power set P(UN ) of UN ). A (probabilistic) sampling design P is a probability
distribution over S. We say that the sampling design has fixed sample size n if
S = {s ∈ P(UN )|ns = n}, that is the sample space contains only samples of n
different units. Now let Y be a character of interest defined on the population UN ;
clearly there exists a one-to-one relation between i−th unit of the population and
the values of Y that it takes. Thus, in the sequel the notations UN = {1, 2, . . . , N}
and UN = {Y1, Y2, . . . , YN} are interchangeable.

For each unit in the population, let denote by

Di =

1 if unit i ∈ s

0 otherwise

be the sample inclusion (Bernoulli) random variable (r.v.), and let DN be the vector
composed by the N random variables D1, . . . , DN . The knowledge of s implies the
knowledge of (a realization of) DN and vice-versa. First and second order inclusion
probabilities (πi, i = 1, 2, . . . , N), (πi,j , i, j = 1, 2, . . . , N) can be defined using
the variables Dis respectively as the probability for Di to take value 1 and the
probability for the product DiDj to assume value 1. Formally

πi = P (Di = 1), πi,j = P (DiDj = 1).



0.3 Sampling Theory 10

The Horvitz-Thompson estimator of the population mean

Ȳ = 1
N

N∑
i=1

Yi

is defined as the weighted mean of the sample units yi, with weights equal to the
reciprocal of the first order inclusion probabilities, that is:

ŶHT = 1
N

∑
i∈s

π−1
i yi. (0.13)

Clearly the estimator (0.13) is unbiased and its variance has form

V ar(ŶHT ) = 1
N2

N∑
i=1

N∑
j=1

(πij − πiπj)
yi
πi

yj
πj

(0.14)

in addition, if the sampling design has a fixed sample size the variance can be written
as

V ar(ŶHT ) = 1
2N2

N∑
i=1

N∑
j=1

(
yi
πi
− yj
πj

)2

(πiπj − πij). (0.15)

For the sake of completeness we must add that expression (0.15) for the Horvitz-
Thompson estimator variance, has a fundamental role in sampling theory. In fact,
its sample version leads to the well known Yates-Grundy variance estimator (see
Yates and Grundy (1953)). It possesses a fundamental property: it is a positive
quantity provided that the condition πij < πiπj holds.

In Hajek (1971) the following ratio estimator is introduced

ŶH =
∑
i∈s π

−1
i yi∑

i∈s π
−1
i

. (0.16)

It is usually known as Hajek’s estimator. As suggested in Särdnal et al. (1992) pp.
182-184, thanks to its ratio structure this estimator shows a reduced variance than
the Horvitz-Thompson if the sample size is not fixed, if the units are homogeneous
(in the sense that the difference between a unit and the population mean is small)
or if there is a weak or negative correlation of the interest character Y with the
inclusion probabilities (in this case to ”huge“ value of Y corresponds a small value
of the inclusion probability, hence the sum of the reciprocals of the inclusion prob-
abilities at the denominator of the ratio balance the numerator). Hàjek estimator
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is asymptotically unbiased and using a Taylor expansion it is possible to show that

ŶH = Ȳ +
∑
i∈s

yi − Ȳ
πi

+Op(n−1). (0.17)

Thus, its variance can be approximated by using yi − Ȳ instead of yi in (0.14).

In this dissertation we consider only πps1 sampling designs with fixed sample
size. This class of sampling designs takes advantage of the knowledge of an auxiliary
character X (size variable) correlated with the interest character Y , to improve the
efficiency of the usual Horvitz-Thompson estimator. In fact from (0.15) it easy
to see that in case of perfect proportionality of the inclusion probabilities to the
character Y , the variance is 0. Thus the inclusion probabilities are usually chosen
proportional to the size variable X.

Let us now introduce a measure that quantifies how much a probability dis-
tribution is “random”. The form of measure of uncertainty that we will consider
is Shannon’s entropy (Shannon, 1948). Given a discrete probability distribution
q = q1, q2, . . . , qk entropy is defined as:

H(q) = E[log(q)] = −
k∑
j=1

qj log(qj) (0.18)

For the sake of brevity, we will skip all the properties that the quantity (0.18) has,
but we want to highlight that entropy is a non-negative quantity and it is zero
if the probability mass is degenerate, while it takes its maximum value (in this
case log(k)) when all the qjs are equal, that is the case of maximum uncertainty.
Although entropy H(q) was first introduced in Information Theory, it has a key
role in different branches of statistics like in measuring inequalities (see for instance
Theil (1967)) or in econometrics (cfr. Golan et al. (1996)). Entropy has been widely
studied also in sampling theory. In particular it has been shown that sampling
designs that have a High Entropy, like successive design, Poisson design, Sampford
design etc.. (cfr. Grafström (2010) and Brewer and Donadio (2003)) have lots
of interesting properties. A special role in this framework is played by the Poisson
(Po) and the rejective sampling design (R). We remind here that a Poisson sampling

1This acronym generally stands for probability proportional to size
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design of parameter p1, p2, . . . , pN such that p1 + p2 + . . . pN = n has mass function

Po(DN ) =
N∏
i=1

pi
Di(1− pi)1−Di . (0.19)

In fact it is characterized by the independence of the inclusion random variables
Dis and the inclusion probabilities πi coincide with its parameters. Formally

πPoi = Po(Di = 1) = pi.

The rejective sampling is obtained by a Poisson sampling by conditioning on a fixed
sample size. Clearly this condition implies the non-independence of the random
variables Dis for the rejective sampling. Moreover for the rejective sampling is not
true that the inclusion probabilities coincide with the parameters of the Poisson
sampling that originates the rejective design.

πRi = EPo[Di|ns = n] 6= pi

Of course asymptotically we can approximate the inclusion probabilities with the
parameters (see Hájek (1964)). In fact as intuition suggests, asymptotically increas-
ing n and N (Hàjek point of view for asymptotics in finite population framework)
in the rejective sampling the dependence between the variables Dis vanishes, while
for the Poisson sampling due to the law of large numbers the effective sample size ns
tends to its expected value that is EPo[ns] = EPo[D1 +D2 + . . . DN ] = n. However,
even when the sample size is not very large, it is possible to compute the inclu-
sion probabilities starting from the parameters and vice-versa, (see Tillé (2006) and
references therein). In Hájek (1959) it has been shown that the Poisson sampling
design within unequal probability sampling designs, is the maximum entropy one.
In the same paper it is also shown that the rejective sampling, inherits from the
Poisson design the high entropy property. Thus within the sampling design with
fixed first order inclusion probabilities and with fixed sample size, R is the maximum
entropy one.

In this work we deal only with fixed sample size designs, thus the rejective
sampling will play the role of benchmark design while considering the entropy.
Among the many properties of high entropy sampling design, we are particularly
interested in three of them. The first one is that if a (unequal probability, fixed
sample size) sampling design is asymptotically a high entropy sampling (meaning



13 Preliminaries

that entropy of the considered design asymptotically reaches the rejective sampling
entropy) it is equivalent in terms of first order inclusion probabilities, to the rejective
sampling (for more on this see the interesting work of Berger (1998)). The second
result we are interested in is the well known Hàjek approximation (crf. Hájek
(1964) p. 1511) for second order inclusion probabilities. This approximation has
the following form:

πij = πiπj

{
1− (1− πi)(1− πj)

d
[1 + o(1)]

}
, (0.20)

where

d =
N∑
i=1

πi(1− πi) (0.21)

is assumed to diverge. The importance of Hàjek approximation (0.20), as it is evi-
dent, is in the fact that it is possible to express the second order inclusion probabili-
ties only in terms of the first order inclusion probabilities. The latter approximation
is given by Hàjek only for rejective sampling, but it is clear from what we said above,
that if we deal with high entropy sampling designs it is still valid.
After these two results we can claim that high entropy sampling designs are asymp-
totically equivalent and the variance of the Horvitz-Thompson estimator does not
depend on the second order inclusion probabilities, but can be derived considering
only the first order inclusion probabilities.

The last result we want to recall here is Theorem 2 in Berger (1998). This
Theorem generalizes the result obtained in Hájek (1964). In particular it is a Central
Limit Theorem for Horvitz-Thompson estimator in the presence of a generic high
entropy sampling design (not only for the rejective sampling design as made by
Hàjek in 1964).

Theorem 0.3.1 (Berger (1998)). Consider a sampling design P with first order
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inclusion probabilities π1, . . . , πN and define the quantities:

d =
N∑
i=1

πi(1− πi), (0.22)

R = 1
d

N∑
i=1

yi(1− πi), (0.23)

Zi = yi −Rπi, (0.24)

S2
N =

N∑
i=1

Z2
i

(1− πi
πi

)
, (0.25)

L(ε) = 1
S2
N

∑
i:|Zi|>επiSN

Z2
i

(1− πi
πi

)
, (0.26)

e = inf{ε : L(ε) ≤ ε} (0.27)

then the Horvitz-Thompson estimator has a Normal asymptotic distribution if and
only if:

i) d→ +∞,

ii) P is a high entropy sampling design,

iii) e→ 0 (Lindeberg-Hàjek condition)

As it is clear from the latter Theorem the high entropy property is a key condi-
tion to obtain the asymptotic normality of the Horvitz-Thompson estimator. Con-
dition ii) has been specified in a very generic way. In the following chapters the
high entropy condition will be discussed in depth by introducing several conditions
to establish the high entropy property for a generic sampling design P .



Chapter 1

Assumptions

In this chapter the assumptions to develop our work are listed and commented.
The present chapter is divided in two sections. The first one deals with the basic
assumptions that put the basis to develop the asymptotic theory that will be the
subject of the next chapter. The second one is about the assumptions on what kind
of parameters we are interested in this work and their regularity.

1.1 Basic Assumption

H1. (UN , N ≥ 1) is a sequence of finite population of increasing size N

H2. Let Y be the character of interest, and let T1, T2, . . . , TL be the design vari-
ables. Denote further by P the superpopulation proability distribution of the
r.v.s (Yi, Ti1, . . . , TiL). For each size N , (yi, ti1, . . . , tiL), i = 1, 2, . . . , N are
realizations of a superpopulation {(Yi, Ti1, . . . , TiL), i = 1, . . . , N} composed
by i.i.d (L + 1)-dimensional random vectors. The symbols YN , TN are used
to denote the vector of N population yis values and the N × L matrix of
population tijs values (j = 1, . . . , L), respectively. Of course, the values
(ti1, . . . , tiL), i = 1, . . . , N are known prior to draw the sample s.

H3. For each population UN , sample units are selected according to a fixed size
sample design with positive first order inclusion probabilities π1, . . . , πN and
sample size n = π1 + . . .+πN . The first order inclusion probabilities are taken
proportional to a variable xi = g(ti1, . . . , tiL), i = 1, . . . , N , where g(·) is an
arbitrary positive function. For the sake of simplicity, we will assume that,
for each i, πi = nxi/

∑
j xj . The quantities n, πis, Dis obviously depend on

N . To avoid complications in the notation we will use the symbols n, πi, Di,
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omitting the explicit dependence on N . Furthermore is assumed that

EP[πi(1− πi)] = d,with 0 < d <∞ (1.1)

P
(

N∑
i=1

πi(1− πi) = dN →∞
)

= 1. (1.2)

H4. The sampling fraction tends to a finite, non-zero limit:

lim
N→∞

n

N
= f, 0 < f < 1.

H5. The actual sampling design P , with inclusion probabilities π1, . . . , πN satisfies
the relationship

dH(P,R)→ 0, as N →∞,

where R is the rejective sampling with the same inclusion probabilities as P
and dH(·, ·) is the Hellinger’s Distance.

H6. EP[X2
1 ] <∞.

Let now analyze the assumptions we made.

The first hypothesis is necessary to obtain asymptotic results in “Hàjek’s way”.
In fact asymptotic results here are obtained by pushing the sample size to infinity
and having a sequence of increasing size finite populations.

Assumption H2 is particularly relevant. In fact we assume that the finite pop-
ulation is obtained as a realization of a superpopulation. This assumption change
the classic point of view of sampling theory in which the finite population is seen
as a set of fixed unknown numbers, such that the only source of randomness is due
to the sampling design, that is the randomness is introduced by the statistician in
order to control the units selection process. By introducing a superpopulation we
are introducing a new source of variability in addition to the sampling design. Thus
in our work we are in the presence of two sources of variability; this point will be,
in more details, discussed later. In addition, with assumption H2 we are allowing
the presence of a dependence relationship between the interest character Y and the
design variables Ti. We want to highlight that we admit the possibility of a depen-
dence between the variables without specifying any form for this dependence, thus
we are in a very general framework.
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In assumption H3 we are essentially formalizing what usually happens in πps

sampling designs. Inclusion probabilities are taken proportional to a size variable
Xi that is a positive function of the design variables. We want to point out that in
our framework the inclusion probabilities are random variables and the regularity
condition (1.1) is necessary in the sequel of this work in order to explicitly derive
some results.

Hypothesis H4 is made to avoid trivial cases in our analysis, while H6 is an
integrability condition on the size variable X that brings as main consequence that
the quantity in (1.1) can be written as follows

d = f

(
1− E[X2

1 ]
E[X1]2

)
+ f(1− f) E[X2

1 ]
E[X1]2 . (1.3)

As far as assumption H5 is concerned we will spend a few more words. Firstly we
remember here the formal definition of the Hellinger’s Distance dH(·, ·), the Total
Variation Distance dv(·, ·) and the Kullback Leibler Divergence D(·‖·):

dH(P,R) =
∑
s∈S

(√
P (s)−

√
R(s)

)2
(1.4)

dv(P,R) = 1
2
∑
s∈S
|P (s)−R(s)| (1.5)

D(P‖R) =
∑
s∈S

P (s) log
(
P (s)
R(s)

)
. (1.6)

Distances 1.4-1.6 (although the Kullback Liebler’s divergence is not a mathemati-
cal distance) quantify the similarity between two probability distributions. In our
discussion, one distribution corresponds the rejective sampling design, that is the
benchmark distribution when dealing with entropy, as discussed in the previous
chapter, and the other to a generic sampling design P . The following relationships
hold:

dH(P,R)2 ≤ dv(P,R) ≤ 2dH(P,R) (1.7)

D(P‖R) ≥ 1
2dv(P,R)2. (1.8)

Using the maximum entropy property of the rejective sampling, as showed in Berger
(2011), it is possible to see that:

D(P‖R) = H(R)−H(P ) (1.9)
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so that the Kullback Liebler Divergence quantifies the difference in the entropies.
Hence the property of “high entropy” of a sampling design can be characterized by
an asymptotic null Kullback Liebler Divergence. As one can see from (1.7) requiring
that the Hellinger’s Distance goes to zero, implies that the Total Variation Distance
goes to zero. If the Total Variation Distance between P and R goes to zero it means
that P (s) ≈ R(s) thus H(P ) ≈ H(R) and D(P |R) → 0. Thus, at the end we may
conclude that hypothesis H5 requires that the sampling design P must be a high
entropy sampling design, and as we said in the previous chapter, this condition
is essential for several reasons, including the asymptotic normality of the Horvitz-
Thompson estimator.

For a finite population UN of size N we define the population distribution func-
tion (p.d.f.) of the interest character Y as:

FN (y) = 1
N

N∑
i=1

I(yi≤y), y ∈ R (1.10)

where I is the same indicator variable defined for the ECDF. It is worth to notice
that what we said about the ECDF is still valid for the population distribution
function. More specifically under the randomness of the superpopulation, as a
consequence of the Strong Law of Large Numbers, for every y ∈ R FN (y) is a
strongly consistent estimator of the distribution function F (y) of the superpopula-
tion, namely

FN (y)→ F (y), a.s.− P (1.11)

Clearly, the population distribution function contains all the information about the
finite population, but is an unknown quantity. The goal is to estimate it on the basis
of a sample s of the finite population UN . We consider here two possible estimators
of the population distribution function FN

F̂H(y) =

N∑
i=1

1
πi
DiI(yi≤y)

N∑
i=1

1
πi
Di

(1.12)

F̂HT (y) =

N∑
i=1

1
πi
DiI(yi≤y)

N
(1.13)
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The first one is the Hàjek estimator of the p.d.f. and the second is clearly the
Horvitz-Thompson one. Both of the above mentioned estimators play the same role
in finite population framework, played by the ECDF when dealing with an infinite
population. By virtue of their definition, both (1.12) and (1.13) are elements of
D[−∞,+∞] the càdlàg space introduced in the previous chapter. In particular, if
we do not fix any specific y, F̂H(y) and F̂HT (y) are random elements of the space
D. It is important to highlight that both F̂H and F̂HT are subject to two sources of
randomness, the superpopulation variability and the sampling one. Thus even if we
neglect the superpopulation approach by considering the finite population as a set
of fixed unknown numbers, these estimators are still random elements of the space
D. As already done for the ECDF, we want to briefly characterize these quantities.
We now list some basic properties of (1.12) (1.13)

The basic properties that identify the cumulative distribution functions are: i)
right continuity, ii) they tend to value 1 when the variable approaches huge positive
values, iii) they tend to 0 when the variable approaches huge negative values. We
define a proper estimator of a distribution function an estimator that satisfies all of
these conditions. The first claim is about that.

Claim 1: F̂H is a proper estimator of F while F̂HT is not.

The right continuity is valid for both F̂H F̂HT by construction. It is trivial to see
that when y → −∞ F̂H → 0 and F̂HT → 0. Let now focus on property ii). If
y → +∞ all the indicators variables Is will take value 1, thus F̂H will be exactly
equal to 1 in this situation.
This is not true for F̂HT because of the presence of N instead of the sum of the
weights at the denominator, thus we have no warranty that the limit is equal to 1.
It is worth to notice that the following lemma holds

Lemma 1.1.1. Under the assumptions H1-H6, the quantity

1
N

N∑
i=1

Di

πi
(1.14)

tends to 1 as N increases, for a set of (sequences of) yis, tijs having P-probability
1, and for a set of DN s of P -probability tending to 1.

Hence, the limit of FHT when y → +∞ is 1 in P -probability, a.s.-P.

Claim 2: For every y ∈ R, both F̂H(y) and F̂HT (y) are consistent estimators of FN (y),
hence they are also consistent estimator of F (y).
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The consistency as estimators of FN (y) is obtained with the same reasoning of
Lemma 1.1.1 and observing that 0 ≤ I(yi ≤ y) ≤ 1. In virtue of (0.6) the last part
of the claim is trivial.

1.2 Regularity Assumptions on Parameters

In this section we first define the objects of the inference, i.e. the parameters of
interest. We will define a finite population parameter as functional of the population
distribution function, formally

θFP = θ(FN ) (1.15)

where θ : D[−∞,+∞] → E and the space E is usually the real line or more
generally multidimensional euclidean spaces. Clearly, in the same way, we can
define a parameter of the superpopulation or hyper-parameter as

θSP = θ(F ). (1.16)

This work focuses on inference for hyper-parameters or analitycal inference. Thus,
in the sequel, for the sake of brevity and in order to make this work more readable,
the symbol θ will be used instead of the symbol θSP if not explicitly specified.

The consideration of parameters that can be expressed as functionals of the
distribution function of a character of interest Y , make us able to impose some
regularity condition on the considered functionals so that the asymptotic results
can be easily derived for a whole class of estimators.
Usually when dealing with statistical functionals, the sought regularity condition is
the Frechét differentiability. In some cases this condition is too restrictive. In fact
some statistical functionals, like variance and quantiles, do not satisfy the usual
Frechét differentiability assumption (see Serfling (1980), p. 220, and Osier (2009)).

In view of the above remarks, we resort to the Hadamard differentiability con-
dition.

Definition 1.2.1. Let θ(·) : l∞(−∞,∞)→ E be a map having as domain the Ba-
nach space (equipped with the sup-norm) of the bounded functions, and taking values
on a normed space E with norm ‖ · ‖E. The map θ(·) is Hadamard-differentiable at
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F if there exist a continuous linear functional θ′F (·) : l∞(−∞,∞)→ E such that

∥∥∥∥θ(F + tht)− θ(F )
t

− θ′F (h)
∥∥∥∥
E
→ 0, as t ↓ 0, ∀ht → h. (1.17)

The map θ′F (·) is the Hadamard derivative of θ at F .
For the sake of completeness we report here the definition of a functional Frechét
differentiable

Definition 1.2.2. Let θ(·) : l∞(−∞,∞) → E be a map having as domain the
Banach space (equipped with the sup-norm) of the bounded functions, and taking
values on a normed space E with norm ‖ ·‖E. The map θ(·) is Frechét-differentiable
at F if there exist a continuous linear functional θ′F (·) : l∞(−∞,∞)→ E such that

‖θ(F + h)− θ(F )− θ′F (h)‖E
‖h‖

→ 0, as ‖h‖ ↓ 0. (1.18)

From the last two definitions it appears that Frechét-differentiability implies the
Hadamard-differentiability. In fact the Frechét condition requires the same rate of
convergence for each direction h, while the Hadamard condition allows different
rates for each direction h. The converse generally does not hold. It is easy to see
that if the domain of the map θ is the usual euclidean space Rd (this is not the case
of our work), (1.17) and (1.18) coincide.

The Hadamard-differentiability assumption is well known in the empirical pro-
cesses theory, because it shows some good properties related to the weak conver-
gence. In order to make this more clear we report here Theorem 20.8 in Van der
Vaart (2000).

Theorem 1.2.1. Let D and E be normed linear spaces. Let θ : D→ E be Hadamard
differentiable at φ. Let Tn : Ωn → D be maps such that rn(Tn−φ) weak−−−→ T for some
sequence of numbers rn → +∞ and a random element T that takes its values in D.
Then rn(θ(Tn)− θ(φ)) weak−−−→ θ′φ(T ).

One of the most famous consequence of the Theorem 1.2.1 is the well known
delta method, that is obtained considering D = E = R.

We will examine in depth other consequences of this property in the next chap-
ter while studying the large sample distribution of the Hàjek’s estimator of the
superpopulation distribution function.





Chapter 2

Main Asymptotic Results

In this chapter we study the large sample distribution of the estimator F̂H . In the
first section a brief review of the paper by Conti et al. (2015) is proposed. This
work represents the starting point of the present dissertation and some of the results
contained there will be used in the following. The second section is the core of this
thesis, since it contains the main results about the asymptotic distribution of the
Hajék’s estimator F̂H of the superpopulation distribution function F . In particular
we fully recover the distribution of the limiting process and we also characterize the
limiting distribution when dealing with hyper-parameters.

2.1 Asymptotic Results When Considering A Fixed Fi-
nite Population

This thesis takes its inspiration from the work of Conti et al. (2015). Our first
contribution, consists in an extension of the results contained there, as well as in
new applications to test problems. In Conti et al. (2015) the authors study the
asymptotic distribution of the quantity F̂H considered as an estimator of the finite
population distribution function FN . In particular, assuming hypothesis H1-H6 of
the previous chapter, they study the asymptotic distribution of the stochastic pro-
cessWH

n (y) given by the deviation of the Hàjek estimator from the finite population
distribution function of a interest character Y , assuming that the finite population
is fixed1. Formally

WH
n (y) =

√
n
(
F̂H(y)− FN (y)

)
, y ∈ R. (2.1)

1This point is fundamental and it will be discussed in the sequel
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It is clear from (2.1) that we are in presence of a variation of the classic empirical
process recalled in the Preliminaries chapter.

It is worth to notice that although they assume hypothesis H2 (that is the
finite population is produced by a superpopulation model), they consider the finite
population as fixed. In such an approach the only source of randomness is the one
introduced by the statistician, that is the sampling design. In addition, considering a
fixed finite population requires a further clarification. In their asymptotic approach,
the authors consider the sequences y∞ = (y1, y2, . . .), x∞ = (x1, x2, . . .) of the
interest character Y and the auxiliary variable X when the finite population size
N is pushed to the infinity. Hence the actual finite population, composed by the
vectors yN = (y1, y2, . . . , yN ), xN = (x1, x2, . . . , xN ), is viewed as the segments of
the first N yis xis in the sequences y∞, x∞. Clearly the infinite sequences live in an
appropriate probability space, say

(
(R2)∞,B(R2)∞,P∞

)
where B(R2)∞ is the Borel

sigma-algebra over (R2)∞) and P∞ is the product measure on
(
(R2)∞,B(R2)∞

)
generated by P.

We now list preliminary Lemmas to prepare to the most interesting result con-
tained in Conti et al. (2015), that is the characterization of the large sample distri-
bution of the process WH

n when the finite population is considered fixed.

Lemma 2.1.1. Let dN =
N∑
i=1

πi(1− πi). Then as N →∞,

dN
N
→ d = f

(
1− EP[X2

1 ]
EP[X1]2

)
+ f(1− f) EP[X2

1 ]
EP[X1]2 a.s.− P (2.2)

Lemma 2.1.2. The following results hold:

1
N

N∑
i=1

1
πi

(
I(yi≤y) − FN (y)

)
→ EP[X1]

f

(
K−1(y)− EP[X−1

1 ]
)
F (y) as N →∞, a.s.− P

(2.3)

1
N

N∑
i=1

(1− πi)
(
I(yi≤y) − FN (y)

)
→ fF (y)

(
1− K+1

EP[X1]

)
as N →∞, a.s.− P,

(2.4)

where Kα(y) = EP[Xα
1 |Y1 ≤ y], y ∈ R, α = ±1
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Lemma 2.1.3. Define the quantities

Zi,N (y) =
(
I(yi≤y) − FN (y)

)
− πi

N∑
i=1

(1− πi)
(
I(yi≤y) − FN (y)

)
N∑
i=1

πi(1− πi)
, i = 1, 2, . . . , N,

(2.5)

S2
N =

N∑
i=1

( 1
πi
− 1

)
Z2
i,N . (2.6)

Then, as N approaches to infinity, almost surely w.r.t. P, the following results are
true

Zi,N −
(
I(yi≤y) − FN (y)

)
→ − f

EP[X1]Xi
f(1− k+1(y)/EP[X1])

d
F (y), (2.7)

1
N
S2
N (y)→

(EP[X1]
f

K−1(y)− 1
)
F (y)(1− F (y))− EP[X1]

f
(K−1(y)− EP[X−1

1 ])F (y)2

− f2

d

(
1− k+1(y)

EP[X1]

)2
F (y)2. (2.8)

Lemma 2.1.4. ∀ε > 0, there exists an integer Nε such that

P {|Zi,N (y)| ≤ επiSN ∀ N ≥ Nε} = 1, i = 1, 2, , . . . , N. (2.9)

Lemma 2.1.5. Let ε be a positive number and let

AN (ε) = {i ∈ UN : |Zi,N (y)| > επiSN},

LN (ε)2 =
∑

i∈AN (ε)

( 1
πi
− 1

)
Z2
i,N .

Then:
P
{

lim
N→∞

LN (ε)2

S2
N

= 0
}

= 1, ∀ε > 0. (2.10)

Lemmas 2.1.1-2.1.2 are preparatory and they can be proved very easily using the
Laws of Large Numbers. Remembering what we said about Hajek estimator vari-
ance it is clear that Lemma 2.1.3, through the same approach used in Hájek (1964),
specifies the asymptotic form of the variance of F̂H (it is sufficient to observe that
the arithmetic mean of the indicator variables I(yi≤y) is the finite population dis-
tribution function FN (y)). The last two Lemmas (Lemma 2.1.4-2.1.5) ensures the
fulfillment, with P−probability 1 of condition iii) of Theorem 0.3.1 (conditions i)
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and ii) are fulfilled by assumptions H3-H5 in order to obtain the asymptotic nor-
mality of the Horvitz-Thompson estimator and equivalently of the Hàjek estimator
by the Slutsky’s Theorem.

We are now in the position to easily introduce the proposition that fully char-
acterizes the large sample distribution of the process (2.1)

Proposition 2.1.1 (Conti et al. (2015)). If the sampling design P satisfies as-
sumptions H1−H6, the sequence of random functions (WH

n (·), N ≥ 1) converges
weakly, conditionally on the population UN , in D[−∞,∞] equipped with the Sko-
rokhod topology, to a Gaussian process W̃1(·) = (W̃1(y), y ∈ R) with zero mean
function and covariance kernel

C1(y, t) = f

{EP[X1]
f

K−1(y ∧ t)− 1
}
F (y ∧ t)

− f3

d

(
1− K+1(y)

EP[X1]

)(
1− K+1(t)

EP[X1]

)
F (y)F (t)

− f
{EP[X1]

f
(K−1(y) +K−1(t)− EP[X−1

1 ]− 1)
}
F (y)F (t) (2.11)

almost surely w.r.t. P, with d given by (1.1).

As we can imagine the limiting process is Gaussian, in fact as we have seen the
high entropy of the considered sampling design makes asymptotically normal the
finite distribution of the processWH

n . In addition the process is centered and this is a
simple consequence of the consistence of F̂H as an estimator of the finite population
distribution function FN Looking at the covariance Kernel, is immediately visible
the difference between the classic empirical process framework and the actual case,
with non i.i.d data. In fact the limiting process is Gaussian but quite far from
being a Brownian bridge, that is the limiting process of the classic non-parametric
empirical process.

By the covariance function is clear the role of the dependence between the inter-
est character Y and the auxiliary variable X that acts through the expected values
EP[X1],EP[X−1

1 ] and the conditional expected value Kα(y), α = ±1. Clearly this
dependence takes into account also the first order inclusion probabilities because of
the assumption of proportionality between the πis and the size variable Xi.

Clearly if we consider the Horvitz-Thompson estimator instead of the Hajek’s
one, we will have a slight different covariance kernel. We will introduce now a Propo-
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sition equivalent to Proposition 2.1.1 but with specific reference to the Horvitz-
Thompson estimator:

Proposition 2.1.2. If the sampling design P satisfies assumptions H1 −H6, the
sequence of random functions (

√
n(F̂HT (y) − FN (y)), N ≥ 1, y ∈ R) converges

weakly, conditionally on the population UN , in D[−∞,∞] equipped with the Sko-
rokhod topology, to a Gaussian process W̃HT

1 (·) = (W̃HT
1 (y), y ∈ R) with zero mean

function and covariance kernel

CHT1 (y, t) = f

{EP[X1]
f

K−1(y ∧ t)− 1
}
F (y ∧ t)

− f

d

(
1− f K+1(y)

EP[X1]

)(
1− f K+1(t)

EP[X1]

)
F (y)F (t) (2.12)

almost surely w.r.t. P, with d given by (1.1).

As it appears from (2.12), the covariance kernel when considering the Horvitz-
Thompson estimator is quite different from the one in (2.12), although the elements
that are involved in its form are always the same. In particular, we note the pres-
ence of the sampling fraction that takes into account that we are sampling from a
finite population and of Kα(y) that takes into account the dependence between the
interest variable Y and the size variable X. The special case when there is inde-
pendence between the interest variable Y and the auxiliary variable X is of some
interest. In this situation, observing that Kα(y) = EP[Xα], it is easy to see that the
covariance kernel (2.11) becomes:

C1(y, t) = f(A− 1)(F (y ∧ t)− F (y)F (t)). (2.13)

where
A = EP[X1]

f
EP[X−1

1 ]. (2.14)

From (2.13) and keeping in mind (0.11) it is evident that in case of independence the
limiting process is proportional to a Brownian Bridge scaled by a finite population
correction factor f(A − 1) that takes into account the sampling fraction (because
we are sampling from a finite population) and the presence of the sampling weights
(because we are sampling with non trivial inclusion probabilities). It is easy to
see that if we consider inclusion probabilities πi = n

N
, that is the case of the

Simple Random Sampling, the correction factor f(A − 1) becomes the usual and
well known finite population correction factor 1− f . This situation is well resumed
by the following corollary
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Corollary 2.1.1 (Conti (2014)). Suppose that the sampling design P satisfies as-
sumptions H1−H6 and that there is independence between the interest variable Y
and the size variable X. Then, pushing N to the infinity the sequence of random
functions (WH

n (·), N ≥ 1) converges weakly, conditionally on the population UN ,
in D[−∞,∞] equipped with the Skorokhod topology, to a Gaussian process that can
be represented in the form

(
√
f(A− 1)B(F (y)); y ∈ R) (2.15)

where B is a Brownian Bridge.

Let now see what would happen to the limit of the process WHT
n when we con-

sider the independence between the interest variable and the size variable. Noting
that in this case

Kα(y) = EP[X1]

the covariance kernel (2.12) becomes:

CHT1 = f

{
(A− 1)F (y ∧ s)− (1− f)2

d
F (y)F (s)

}
(2.16)

with A already defined in (2.14). As it is possible to see from (2.16) when the
Horvitz-Thompson estimator is concerned, the limiting process is no more propor-
tional to a Brownian Bridge. In particular the two quantities

CH1 (y, y) = f(A− 1)(F (y)− F (y)2) (2.17)

CHT1 (y, y) = f

{
(A− 1)F (y)− (1− f)2

d
F (y)2

}
(2.18)

are respectively, the asymptotic variances of F̂H(y) and F̂HT (y). As shown in Conti
(2014) the inequality

A− 1 ≥ (1− f)2

d
(2.19)

holds and this implies that

CH1 (y, y) ≤ CHT1 (y, y) (2.20)

The last inequality tells us a very interesting fact, i.e. the Hajek estimator is more
efficient of the Horvitz-Thompson estimator. Clearly, the gain in efficiency is due to
the restriction at the end of the time of the process. In other words the property of
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the Hajek estimator of being a proper estimator of a distribution function implies
that the process WH

n (y) goes to zero when y grows indefinitely. This is not true
for the Horvitz-Thompson estimator, where we have no warranty of the behavior
when y → +∞. This excess of variability of the Horvitz-Thompson estimator is the
reason of the gap between the Brownian Bridge and the limiting process of WHT

n ,
(in independence situation).

Remark 2.1.1. As highlighted in the previous chapter, when dealing with πps

sampling designs, the presence of a correlation between the size variable and the
interest variable is fundamental to gain some efficiency of the considered estimators.
Thus, from a practical point of view, considering a dependence between the size
variable and the interest variable is the most relevant case, although this implies
an augmented complexity in the covariance kernel of the limiting processes WH

n

and WHT
n . On the other hand, considering the independence case reduces the

complexity of the large sample distribution of the considered processes, but from a
practical point of view this case is not of main interest. In fact, the independence
case represents the ”worst“ scenario where you are not able to improve the efficiency
taking advantage of the auxiliary informations.

In order to make more evident these considerations, we have reported set of
figures representing the processes WH

n , W
HT
n in different situations.

Trajectories in Figures 2.1a–2.1d are obtained by assuming a finite population
generated by a uniform on (0, 1) superpopulation model, while the inclusion prob-
abilities show a negligible correlation with the interest character. The sampling
fraction is f = 1/4 and the horizontal zero line represents the theoretic mean of the
process. Samples are selected according to a Pareto design. The first evident thing
is that with a smaller sample size n = 50 we have some pathological trajectories.
In fact, in both the case of WH

n and WHT
n , there are some trajectories that depart

from the others exhibiting more variability if compared to the others. In the case
of Hàjek estimator, that is a proper estimator, the trajectories are constrained to
go to the zero line when y = 1, while for the Horvitz-Thompson they are allowed
to end far from the zero. These figures show why the process WHT

n could not be
a Brownian Bridge. Another consequence that is immediately showed by Figures
2.1a–2.1d is that the Hàjek estimator is more efficient than the Horvitz-Thompson
one. In fact the process WH

n shows a smaller variability if compared to the process
WHT
n . Both the process are “visually” symmetric, and they fluctuate around the
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zero line. The approximation to a Gaussian process is clearly better in the situation
of a large sample size, where it is exhibited a more regular behavior.

We now move to analyze the case of dependence between the size variable X and
the interest variable Y . Also in this case a finite population from a uniform on (0, 1)
distribution is generated and the inclusion probabilities are taken proportional to
a size variable X that shows a correlation, in the finite population, of about 0.40
with the interest character and the sampling fraction is 0.25. The horizontal zero
line represent the theoretical mean of the process. The first thing to be noticed is
that, the dependence between X and Y reduces the variability of the processes as
described in Figures 2.2a–2.2d compared to Figures 2.1a–2.1d, in particular for the
process WHT

n where we have not trajectories that go away from the others. Also in
this case the Hajek estimator shows a better efficiency (Figures 2.2a and 2.2b) with
respect to the Horvitz-Thompson estimator that exhibits a more variable behavior
being unconstrained at right limit of x-axis. The symmetry of the processes is well
visible in every of the situation considered.

Remark 2.1.2. The Pareto sampling design was first introduced in Rosén (1997a)
and Rosén (1997b). One of the key concept of this work is considering only sampling
designs that asymptotically reach maximum entropy. In our knowledge for Pareto
sampling design there is not a proof of its maximum asymptotic entropy. Although
this lack of an analytic proof, generally Pareto sampling is regarded as a high entropy
sampling design. In Grafström (2010) the entropy of the (adjusted)2 Pareto design
is computed and compared to other designs like (Poisson, Sampford ecc) in two
simple cases where the finite population has size of N = 6, 10 with a sampling
fraction of 1/2. Results of these experimentations shows that the entropy of the
(adjusted) Pareto design is substantially equivalent to the entropy of high entropy
sampling designs like Poisson and Sampford designs. Clearly, these considerations
are not a proof, but they make more plausible the conjecture of the asymptotic
high entropy of the Pareto design. Since the ease of its implementation and the last
considerations about its entropy, the Pareto design will be largely used in the sequel
of this dissertation, especially for the simulations studies reported in Chapter 4.

2With adjusted Pareto design, is intended a Pareto design where parameters are modified in
order to have the prescribed inclusion probabilities. For some of these modifications see Lundquist
(2009)-Bondesson et al. (2006). For our simulations we have used the adjustment proposed by
Bondesson et al..
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In the next section we will see how these results change when allowing the finite
population varying, that is the natural consequence of assuming a superpopulation
model. Consequently we will concern the process of the deviations of the Hajek
estimator from the superpopulation distribution function, not from the finite pop-
ulation distribution function.
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2.2 Asymptotic Results When Considering A Varying
Finite Population

The aim of this section is to study the large sample distribution of the process

WH(y) =
√
n(F̂H(y)− F (y)), y ∈ R. (2.21)

The main difference with what discussed in the previous section is that in this
case we focus on the superpopulation, and not on the finite population. The main
consequence of this changed point of view is that the finite population has to be
considered as variable and not fixed in order to make the process of the deviation
of the Hàjek estimator from the superpopulation distribution function able to catch
the variability of the superpopulation model.

It is easy to see that the process can be decomposed in the sum of two processes.
Formally:

WH(y) =
√
n(F̂H(y)− FN (y)) +

√
n√
N

√
N(FN (y)− F (y)) = WH

n (y) +
√
fWN (y)

(2.22)
We stress here that in this approach, based on considering the finite population

a random variable, the process (2.21) depends on two sources of variability, i.e. the
sampling design P (variability introduced by the statistician) and the variability of
the random mechanism that generates the finite population (superpopulation model
variability) P. As far as (2.22) is concerned, a few remarks are necessary. The first
one is that the two processes in whichWH is decomposed depend on the two sources
of variability mentioned before. The process WH

n (y) catches the variability due to
the sampling design while the processWN (y) is affected only by the superpopulation
variability. Another important observation is that the process WN is the deviation
of the finite population distribution function FN from the superpopulation distri-
bution function F . Thus, under our assumption of a finite population obtained as
i.i.d. replications of a superpopulation model, it is a classic empirical process as is
introduced in Section 0.2.It is also fascinating to see how formula (2.22) follows our
intuition. In fact if we consider a small sample size compared to the finite popu-
lation size (that is considering a very small sampling fraction f) we are rightly led
to believe that we have not enough information to distinctly catch the role of the
random mechanism that generates the finite population. For the biggest part we are
influenced only by the finite population role. This latter consideration is confirmed
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also by formula (2.22) where the process WN is scaled by a factor
√
f . The smaller

is f , the smaller is the contribution of the classic empirical process WN , thus of the
superpopulation variability to the whole process WH .

From the decomposition showed in (2.22) it is clear that results about the process
WH
n recalled in the previous section (Lemmas 2.1.1-2.1.5, Proposition 2.1.1) of the

present chapter are fundamental to study the asymptotic behavior of the process
WH . The first problem that we face in this chapter is the extension of the mentioned
results to the case of interest, that is admitting a variable finite population. To this
purpose we recall here an interesting Lemma contained in Csörgő and Rosalsky
(2003)

Lemma 2.2.1 (Csörgő and Rosalsky (2003)). Let Fn ⊂ F , n ∈ N be an arbitrary
sequence of σ-algebras. If V1, V2, . . . , and V are real or complex-valued random
variables such that E[|Vn|] <∞ and E[Vn|Fn] ≤ 1 a.s. for all n ≥ 1 and E[Vn|Fn] D−→
V , then E[Vn] → E[V ]. In particular if {An}∞n=1 is a sequence of events such that
P{An|Fn}

P−→ p for some constant p, then P{An} → p.

Thanks to the second statement of the latter Lemma, it is seen that the con-
vergence of the finite distributions of the process WH

n holds also unconditionally.
Hence, we are now able to state the main result of this section.

Proposition 2.2.1 (Unconditional Convergence). If the sampling design P satisfies
assumptions H1−H6, the sequence of random functions (WH

n (·), N ≥ 1) converges
weakly, in D[−∞,∞] equipped with the Skorokhod topology, to a Gaussian process
W̃1(·) = (W̃1(y), y ∈ R) with zero mean function and covariance kernel

C1(y, t) = f

{EP[X1]
f

K−1(y ∧ t)− 1
}
F (y ∧ t)

− f3

d

(
1− K+1(y)

EP[X1]

)(
1− K+1(t)

EP[X1]

)
F (y)F (t)

− f
{EP[X1]

f
(K−1(y) +K−1(t)− EP[X−1

1 ]− 1)
}
F (y)F (t) (2.23)

almost surely w.r.t. P, with d given by (1.1).

Hence we have that the limiting distribution of the processWH
n does not change

if we consider the finite population as not fixed. For what concern the second
process WN , we have already observed that it is a classic empirical process so that
the Donsker’s Theorem holds. As a consequence we have thatWN converges weakly
to a Gaussian process with zero mean function and covariance kernel C2(y, t) defined
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in (0.11). In order to study the whole process WH we have to put together the two
pieces above and get the limiting distribution. The next Proposition that is the
most important result of this chapter, will address this need.

Proposition 2.2.2. The two sequences (WH
n (y), y ∈ R) and (WN (y), y ∈ R) are

asymptotically independent. As a consequence, the whole process (WH(y), y ∈ R)
converges weakly in D[−∞,∞] endowed with the Skorokhod topology, to a Gaussian
process W with zero mean function and covariance kernel

C(y, t) = C1(y, t) + fC2(y, t) (2.24)

almost surely w.r.t. P, where C1(y, t) and C2(y, t) are given by (2.11) and (0.11)
respectively.

Proposition 2.2.2 tell us some interesting facts. The first one is that in the
process WH the sampling design variability and the superpopulation variability
are uncorrelated when considering large samples. This (asymptotic) independence
is reflected in the covariance kernel of the process WH , where we have a larger
variability if compared to the process WH

n analyzed in the previous chapter. The
last observation confirms the remark that the contribution to the covariance kernel
of the standard empirical processWN is scaled by a factor f having as a consequence
that considering a small sampling fraction, makes the role of the superpopulation
negligible with respect to the role of the finite population.

As we did in the previous chapter we are able to state a Proposition equivalent
to Proposition 2.2.2 that consider the Horvitz-Thompson estimator of the super-
population distribution function. Of course, the same reasoning followed to show
the unconditional convergence of the process WH

n is still valid also for the process

WHT
n =

√
n(F̂HT − F ). (2.25)

Results contained in Proposition 2.2.2 are still valid if we consider the process
WHT =

√
n(F̂HT − F ) where the Horvitz-Thompson is concerned, with a few

changes only in the covariance kernel.

Proposition 2.2.3. The two sequences (WHT
n (y), y ∈ R) and (WN (y), y ∈ R)

are asymptotically independent. As a consequence, it holds true that the whole pro-
cess (WHT (y), y ∈ R) converges weakly in D[−∞,∞] endowed with the Skorokhod
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topology, to a Gaussian process W ′ with zero mean function and covariance kernel

CHT (y, t) = CHT1 (y, t) + fC2(y, t) (2.26)

almost surely w.r.t. P, where CHT1 (y, t) and C2(y, t) are given by (2.12) and (0.11)
respectively.

We now investigate closer the case of independence between the interest variable
and the size variable, that, as seen in the previous section, is of special interest. Let
us first see what happens to the covariance kernel (2.24) when independence is
assumed. The covariance kernel becomes:

Cindep(y, t) = f(A− 1)(F (y ∧ t)− F (y)F (t)) + f(F (y ∧ t)− F (y)F (t))

= fA(F (y ∧ t)− F (y)F (t)) (2.27)

where A is defined in (2.14).
As we can see the limiting process is proportional to a Brownian Bridge on the scale
of F , with a factor of proportionality fA that takes into account the fact that we
are sampling from a finite population (factor f) and the dependence between units
induced by the sampling design P with inclusion probabilities π1, . . . , πN .

Going further, what would happen if we consider a simple random sampling as
sampling design? We have already observed that in presence of inclusion probabil-
ities equal to π1 = . . . = πN = f the factor A becomes equal to 1/f . Hence the
covariance kernel (2.27) becomes

CindepSRS (y, t) = F (y ∧ t)− F (y)F (t)3 (2.28)

that is the exactly the covariance kernel of a Brownian Bridge (on the scale of
F ). This means that the process WH has the same asymptotic behavior of an
empirical process under the standard assumption of i.i.d. data. This result is not
really surprising, since if we put in the Hajek estimator F̂H weights equal to N/n,
we have F̂H = F̂n, i.e. under the simple random sampling (S.R.S. in the sequel) the
Hàjek estimator of the distribution function is equal to the empirical cumulative
distribution function computed on the sample data (F̂n should not be confused with
FN that is substantially an ECDF but computed on the whole finite population). As

3We kept the superscript indep because, if considering the Simple Random Sampling design, as
a consequence you will have no relationship between Y and the design variable X
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suggested by intuition, asymptotically the role of the simple random sampling design
is negligible, increasing indefinitely the size of the population makes it virtually
infinite, and units can be seen as independently selected from the superpopulation.

With the same reasoning for the process WHT it is easy to see that under the
assumption of independence, the covariance kernel becomes:

CHT,indep(y, t) = f

{
AF (y ∧ t)−

(
(1− f)2

d
+ 1

)
F (y)F (s)

}
(2.29)

where A is defined in (2.14).
In this case we do not have the proportionality to the classic Brownian Bridge. As
we have discussed in the previous chapter, the property of the Horvitz-Thompson
estimator of not being a proper estimator of the distribution function F , brings
an excess of variability that destroys the Brownian Bridge structure. Let us see
now what happens if we consider a simple random sampling design. In this case it
is easy to see that the Horvitz-Thompson estimator, exactly as it happen for the
Hàjek estimator, becomes equal to the Empirical Cumulative Distribution Function
computed on the sample data (F̂HT = F̂n). As a consequence, under the S.R.S., also
the Horvitz-Thompson estimator becomes a proper estimator of the distribution
function F . In addition we have that under the S.R.S. design the divergence d
defined in (1.1) becomes

d = f − f2 = f(1− f).

Hence, it is easy to see that the limiting covariance kernel is equal to

CHT,indepSRS (y, t) = F (y ∧ t)− F (y)F (s) (2.30)

Hence, due to the property of normalizing the Horvitz-Thompson estimator of the
Simple Random Sampling design we have that also the processWHT asymptotically
behaves as a Brownian Bridge.

The next corollary summarizes the latest observations
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Corollary 2.2.1. The following claims hold:

Claim 1 If the interest character Y and the size variable X are independent the se-
quence WH defined in (2.21) converges weakly to the process

√
fAB(F (y)), y ∈ R (2.31)

where A is defined in (2.14) and B is a Brownian Bridge.

Claim 2 If the interest character Y and the size variable X are independent the se-
quence WHT defined in (2.25) converges weakly to a Gaussian process with
zero mean function and covariance kernel given by (2.29)

Claim 3 If the actual sampling design P is a Simple Random Sampling, both the se-
quences WH and WHT converges to the process

B(F (y)), y ∈ R (2.32)

where B is a Brownian Bridge.

Since in our opinion a graphic vision of very abstract concepts can sometimes
help the understanding, as done in the previous section we report graphs where some
simulated trajectories of the processes examined in the various situations considered
in this section are represented.
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Situation of S.R.S. Design

(a)

(b)

Fig.2.3. Trajectories of the empirical process (for finite population) where the finite popula-
tion is variable and the centering factor of the process is the superpopulation distribution
function F . The SRS sampling design is assumed.
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The trajectories in Figures 2.3, 2.4 and 2.5 are obtained by assuming a uniform
(0, 1) model for the superpopulation. In particular, Figure 2.3 shows the case where
a Simple Random Sampling design is assumed; as we have seen, in this case the
processes WHT and WH coincides and their limiting process is a Brownian Bridge
subordinated to F . It is worth to highlight that in the case under examination
F (y) = y, thus the limiting process is a standard Brownian Bridge on a linear scale.
Looking at both Figures 2.3a and 2.3b is evident the symmetry and the larger vari-
ability around y = 0.5. Clearly the approximation to the Brownian Bridge is better
when considering a bigger sample size (2.3b) with smoother trajectories, although
we have no pathological situation that evidently deviates from the Brownian Bridge,
also when the sample size is lower (2.3a).

Let consider now a situation of independence between the interest variable and
the size variable, but assuming a generic πps sampling design (Pareto design in
this case, see Remark 2.1.2 below for some clarifications) that is the case of Figure
2.4. In this case two things are quite important to see, when considering a lower
sample size (Figures 2.4a and 2.4c) independently from considering the Hajek esti-
mator or the Horvitz-Thompson one, we have some not well-behaved trajectories.
This pathological situation vanishes when the sample size (Figures 2.4b and 2.4d)
increases providing a better approximation to the limiting processes. The second
remark is that, as seen in the previous section for a fixed finite population, and as
suggested by theoretical results, when considering the Horvitz-Thompson estimator,
we have an extra variability with respect to the Hàjek estimator.

Looking at the most general case (Figure 2.5), that is assuming a correlation
between the interest variable Y and the auxiliary variable X (for this simulations
the correlation between these two variables is about 0.40) we first see that the
variability of the processes is smaller than the independence case. Thus, assuming
more information brings us a reduction of the variability. In addition, incorporating
more information entails well behaved trajectories also with a sample size of n =
50, as it is seen from Figures 2.5a and 2.5c, while this does not happen in the
independence case. When the sample size increases the processes are more regular
(Figures 2.5b and 2.5d) and quite similar, and the most important difference is due
to the properness property of the Hàjek estimator.

Making a comparison with the situations reported in Figures 2.1 and 2.2, it is
evident the difference in the variability of the processes. Processes analyzed in Fig-
ures 2.4 and 2.5 show a higher variability due to the presence of the superpopulation
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randomness that is not present in the cases examined in the previous section where
the attention were focused on the finite population distribution function.

We state now a generalization of the Glivenko-Cantelli Theorem that will be
useful in the next chapter

Proposition 2.2.4. Under the hypotheses H1−H6, we have:

sup
y

∣∣∣F̂H(y)− F (y)
∣∣∣→ 0 as N →∞ (2.33)

for a set of (sequences of) Yis, Tijs having P-probability 1, and for a set of DN s of
P -probability tending to 1 as N increases.

Proposition 2.2.4 states the uniform convergence of the Hajék estimator to the
real superpopulation distribution function F . What is different from the Glivenko-
Cantelli is the form of convergence. While for the Theorem 0.2.1 the convergence
is almost sure (as a consequence of the strong Law of Large Numbers), here we
have to consider two types of convergence because of the presence of two source
of randomness. Thus the convergence w.r.t. the sampling design is in probability
(as a consequence of the weak Law of Large Numbers and the dependence between
units) and the convergence w.r.t. the superopopulation model is almost sure (as a
consequence of the Strong Law of Large Numbers and independence of the finite
population units).

Remark 2.2.1. The usual Glivenko-Cantelli Theorem does not hold in this frame-
work even if the Yis are i.i.d in the superpopulation. In fact the usual empirical
cumulative distribution function based on the sample data defined as

F̂n(y) = 1
n

N∑
i=1

DiI(yi≤y). (2.34)

is not a consistent estimator of the superpopulation distribution function F .4 Com-
puting the expected value of the ECDF we have

EP,P
[
F̂n(y)

]
= 1

n

N∑
i=1
EP
[
πiI(yi≤y)

]
→ EP

[
XI(Y≤y)

]
/EP [X] 6= F (y) (2.35)

4If a Simple Random Sampling is considered the Hàjek estimator is equal to the ECDF based
on the sample data. Hence F̂n is consistent.
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as N increases. Relationship (2.35) shows that the ECDF (2.34) is asymptotically
biased, and hence inconsistent.

The above result can be slightly refined. Using the same approach as in Lemma
2.1.1, it is not difficult to show that by the Laws of Large Numbers, as N increases,

F̂n(y)→ EP
[
XI(Y≤y)

]
/EP [X] 6= F (y)

for a set of (sequences of) yis, tijs having P-probability 1, and for a set of DN s of
P -probability tending to 1. This makes it stronger the assertion about the inconsis-
tency of F̂n(y), because it shows that such an inconsistency is due to the inability
of the ECDF to take into account a complex sampling design.

Moving to parameter estimation we remember here that we are interested in
parameters that can be expressed as functional of the superpopulation distribution
function. Thanks to Propositions 2.2.2 and 1.2.1 we have that the following result
holds true.

Proposition 2.2.5. Suppose that θ(·) is (continuously) Hadamard-differentiable at
F , with Hadamard derivative θ′F (·). Assuming H1−H6, it holds that

i) The sequence (
√
n(θ(F̂H)− θ(F )), y ∈ R) converges weakly to θ′F (W ), almost

surely w.r.t. P, as N increases.

ii) The sequence (
√
n(θ(F̂HT )−θ(F )), y ∈ R) converges weakly to θ′F (W ′), almost

surely w.r.t. P, as N increases.

The Hadamard-differentiability assumption essentially allows us to characterize
the large sample distribution of the interest parameter without any additional effort.
In addition it is worth to notice that if θ(·) takes value on the real line, which is of a
primary interest in dealing with statistical parameters, the limiting random variable
θ′F (W ) is Gaussian and centered. In fact, the linearity of the Hadamard derivative
preserve both normality and the zero mean. Thus, the variance of θ′F (W ) is equal
to

σ2
θ = E[θ′F (W )2]. (2.36)

Clearly with the right modifications this latter observation holds when the Horvitz-
Thompson estimator is considered.
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2.3 Parallel Results

As a support to the modernity of the results shown in the present work, in this
section we will discuss the recent paper Boistard et al. (2015), contemporary to the
present dissertation, that reaches the same type of results shown in this chapter.

What Boistard et al. make in their work is to establish a (design-based) Func-
tional Central Limit Theorem valid in survey sampling framework. This is trans-
lated into recovering the large sample distribution of the Hajek empirical process
and Horvitz-Thompson empirical process by taking in exam both the situation of
considering only the sampling design variability (i.e. in our notation considering
the process WH

n and WH) and also taking into account the superpopulation ran-
domness (i.e. in our notation considering the process WHT

n and WHT ), that is
exactly the aim of the present chapter. In particular looking at results established
by Propositions 2.1.1, 2.1.2, 2.2.2 and 2.2.3 of the present work, it is easy to see that
they are very similar to those established by Theorems 3.1, 3.2 and Propositions
4.1, 4.2, but with some notable differences.

The first important difference is in the assumptions. In their paper Boistard
et al., in order to recover the large sample distribution of the considered empirical
processes, they impose some bounds on high order correlation between the inclusion
variables Dis. In particular these assumptions is used to prove the tightness of the
finite dimensional distribution of the empirical processes considered. As they no-
tice, this approach is well supported by sampling theory literature when dealing with
asymptotic approach. Another assumption they make is that the Horvitz-Thompson
estimator F̂HT (y) of the distribution function F is normally distributed for every
fixed y in R (such an assumption is needed to prove that the finite dimensional dis-
tribution of considered processes are Gaussian). Those assumptions together make
one able to establish the large sample behavior of the Horvitz-Thompson empirical
process or equivalently the Hàjek one. This approach is quite different from the one
we pursued. In our work the key assumption is made on the type of sampling designs
that we consider, that is considering only high entropy sampling design. Concern-
ing only sampling design that show a high entropy ensures: i) the normality of
the Horvitz-Thompson estimator F̂HT (y), and equivalently of the Hàjek estimator
F̂H trough the Theorem 0.3.1 (where the Lindeberg-Hajek conditions are verified by
Lemma 2.1.5), with no need of assuming it and ii) because of the asymptotic equiva-
lence between the high entropy sampling designs, discussed in Preliminaries, makes
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it easy proving the tightness of the finite dimensional distributions, allowing the
possibility of limiting the proof to the case were the rejective sampling is concerned
(for more on this see the appendix of Conti (2014)). On the other side however
we have to admit that although their approach can be judged quite intricate with
respect to the one that we propose, it is more general than ours.

Another important difference is in the approach pursued, that is more mathe-
matical and less statistical. Their asymptotic results are given in terms of the first
and second order inclusion probabilities, specifying that random inclusion proba-
bilities are allowed, but they do not develop this situation. They focused on the
simplest case where the inclusion probabilities of the first and second order are de-
terministic. In our opinion this approach does not take into account what usually
happens in statistical practice when dealing with survey sampling. In fact, it is a
common procedure, when dealing with finite populations that if additional infor-
mation about some auxiliary variables is available, this extra knowledge is used to
produce better estimates, taking the inclusion probabilities proportional to these
auxiliary variables (we have discussed this point when we recalled the Horvitz-
Thompson estimator in Preliminaries). Clearly, in this framework, if the presence
of a superpopulation model is assumed, it is more reasonable to see the inclusion
probabilities as random quantities defined through superpopulation variables, than
deterministic. Moreover, assuming a link between the inclusion probabilities and
some design variables in the superpopulation, allow to explicitly show the role of
the dependence between the interest character and the design variables in the co-
variance kernel. As a consequence, it is possible to fully analyze the behavior of
the limiting process of the empirical processes in finite population framework, in
different interesting scenarios that are common in sampling theory, as we have done
in the previous section of this chapter. The last point we aim at discussing is that
assuming a multivariate superpopulation model where the variables exhibits some
form of dependencies, that is our approach, is more general instead of considering
only a univariate superpopulation.

Let’s go back for a while to the key assumption of dealing only with High Entropy
sampling designs. As we have seen this assumption considerably simplifies results,
when asymptotic normality and tightness are concerned, but its consequences are
not ended. In fact looking at the covariance kernels of Theorems 3.1, 3.2 and Propo-
sitions 4.1, 4.2 in Boistard et al. (2015), we see that these kernels explicitly depend
on the second order inclusion probabilities. In our results second order inclusion
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probabilities do not appear in the covariances of the limiting processes. Also this
simplification is a consequence of the hypothesis of considering only High Entropy
sampling design. In fact, because of approximation given by (0.20), for sampling
designs that asymptotically maximize the entropy, the second order inclusion prob-
abilities can be expressed as function of only the first order inclusion probabilities,
making the results more easily readable and more easy applicable.

Moving to parameter estimation, also Boistard et al. exactly as we do, see in the
Hadamard-differentiability the regularity condition that allows an easy recovering
of the limiting law of interest parameter that can be seen as a functional of the
finite population distribution function FN or equivalently of the superpopulation
distribution function F . They focus on the poverty rate, while we will introduce in
the Applications Chapter some other Hadamard-differentiable functionals that can
be useful in very common statistical problems.

Although there are some little differences in our approach and their, our main
additional contribution is that in the next chapter we will provide a resampling
scheme that is able to recover the limit distribution of the considered processes and
also of interest parameters, while their work lacks of such a procedure. In particular,
we want to highlight that in order to use the Functional Central Limit Theorem
introduced by Boistard et al. we must explicitly derive the analytic form of the
Hadamard derivative of the parameter considered. Using a resampling technique,
computational power is needed, but it is possible to avoid the need for finding the
analytic form of the derivative of the parameter of interest, that can represent a
hard problem especially for statistics practitioners.



Chapter 3

Resampling

In this section we will face the problem of resampling techniques in survey sampling.
Firstly a general overview about resampling methods in finite population framework
is proposed (the discussion is focused on fixed-population design-based framework).
Then, we will introduce our original generalization to the superpopulation frame-
work of the resampling procedure proposed in Conti et al. (2015). At the end, the
properties and the methodological validation of such a procedure are provided.

3.1 State Of The Art

Nowadays resampling methods such as Bootstrap, are a standard tool in statis-
tics. Since the innovative paper by Efron (1979) has been published, because of its
applicability, and with the exponential growth of computational power and its avail-
ability, resampling became a trend topic studied by the scientific community. In the
literature, several variations to the usual bootstrap technique have been proposed in
order to extend the validity of this useful and simple method to different branches
of statistics. The main goal of this section is to discuss the main contributions to
resampling in survey sampling.

Original Efron’s bootstrap, was proposed for the classical setting of i.i.d. obser-
vations. The idea behind the usual bootstrap is simple. Using the data to mimic
the process that generates it. The mimicking process can be represented in a visual
way, by the following diagram:



3.1 State Of The Art 50

Real World =⇒ Bootstrap World
F (Unknown) Plug-in F̂H (Known)y Sampling

i.i.d.

y Sampling
i.i.d.

Y Y∗y Estimation
y Estimation

θ(Y) θ(Y∗)

Fig.3.1. Classic Bootstrap mimicking scheme

A few words about Figure 3.1 are necessary. Under i.i.d. assumption, what we
are assuming to be the truth, is that our sample of observation Y = (Y1, . . . , Yn) is
obtained as independent replications of a variable Y with distribution function F
that is partially or totally unknown (maybe we lack information about its parame-
ters but we know its functional form, or maybe we don’t know its form but we have
some information about some parameters or maybe we ignore everything about it).
After collecting the data, we proceed to the estimation step with the need of as-
sessing the accuracy of the estimate produced in such a way. This can be a difficult
problem. What “usual” bootstrap does, is to replace the unknown distribution F
with a known (consistent) estimator, usually the ECDF F̂N . Then, it follows the
same process that generates the original sample Y. In this case this means sampling
independently from F̂N or equivalently, resampling with replacements (in order to
have independence) from the sample Y obtaining a bootstrap sample Y∗. Quoting
Efron et al. (2003), the advantage of bootstrap procedure, is that the accuracy of
inference can be assessed by using the observed variability of the bootstrap repli-
cations θ(Y∗). Moving from the left hand side of Figure 3.1 to the right hand side
is what Efron defines as plug in principle. You move from the real world to the
bootstrap world by only plugging in an estimate of the distribution function and
this is the only hard part, the rest is just mimicking the data generating process.

Although the idea behind bootstrap is very intuitive, its theoretical justification
is not so easy. The validation of usual bootstrap is provided in Bickel and Freed-
man (1981) and it is based on asymptotic considerations. The key of the bootstrap
consistency is that asymptotically the resampling distribution (known, or at least
approximable using computational resources) of the statistics of interest is the same
of the true distribution (unknown, partially or totally) of the statistics themselves.
Hence, asymptotically the resampling distribution and original distribution are in-
terchangeable, in the sense that using one or the other brings to the same inferential
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conclusion. A very informal way to figure that is imagining bootstrap as a set of
chinese boxes. In the same way a sample brings you information about a popula-
tion, re-samples of a sample bring you information about the sample. If a “large”
sample is available (asymptotic approach), the difference between the population
and the sample is negligible hence the information that sub-samples bring about
the sample are also information about the population. We have also all the tools
to give a more formal sketch on why bootstrap works. Consider a n−sized sam-
ple S = (Y1, . . . , Yn) of i.i.d. replications of a variable Y ∼ F . We know that the
ECDF F̂n is a consistent estimator of F and also that for every fixed y its variance
takes value F (y)(1− F (y))

n
as showed in (0.5). Consider now a bootstrap sample

S∗ = (Y ∗1 , . . . , Y ∗n ) with the same size of S. Conditionally on the sample S, the
ECDF computed on the sample S∗ is equal to

F̂ ∗n = 1
n

n∑
i=1

I(Y ∗i ≤y) (3.1)

where

Y ∗i =


Y1 with probability 1/n
...

Yn with probability 1/n

. (3.2)

Hence,

I(Y ∗i ≤y) =


I(Y1≤y) with probability 1/n
...

I(Yn≤y) with probability 1/n

. (3.3)

By the law of large numbers, conditionally on Y ∗1 , . . . , Y ∗n , we have that

F̂ ∗n
a.s.−−→ E[F̂ ∗n ],

but
E[F̂ ∗n ] = 1

n

n∑
i=1
E[I(Y ∗i ≤y)] = E[I(Y ∗i ≤y)] = 1

n

n∑
i=1

I(Yi≤y) = F̂n (3.4)

Thus it holds
F̂ ∗n

a.s.−−→ F̂n
a.s.−−→ F. (3.5)
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Let have a look to the variance of F̂ ∗n

V[F̂ ∗n ] = 1
n2

n∑
i=1
V[I(Y ∗i ≤y)] = 1

n

 1
n

n∑
i=1

I(Yi≤y) −
(

1
n

n∑
i=1

I(Yi≤y)

)2
 = F̂n(1− F̂n)

n
.

(3.6)
By the consistency of F̂n and what we have just observed, it easy to prove that

√
n(F̂ ∗n − Fn) weak−−−→ B(F (y)) (3.7)

that is exactly what happens for the classic empirical process.

When dealing with finite populations and complex sampling designs, the usual
bootstrap fails. This is quite intuitive, in fact as we have seen to apply usual
bootstrap we have to resample from the ECDF of the sample data. Hovewer as we
have seen in Remark 2.2.1, the usual ECDF generally is not a consistent estimator
of the finite population distribution FN or also of the superpopulation ditribution
F , because it is not able to take into account the presence of the sampling weights.
This inconsistency implies that also if we are dealing with very large sample, F̂n
can be very different from the real distribution function, hence the bootstrap is
unable to recover information about the real distribution function. Under the same
assumptions and using the same notation introduced until now, we are able to show
in a more formal way the inconsistency of bootstrap procedure when dealing with
finite populations and complex designs.

We have already shown that the ECDF F̂n (based on the sample s, selected from
a finite population with a complex sampling design P with first order inclusion
probabilities proportional to a size variable) is not consistent as an estimator of
finite population distribution function if the sampling weights are not trivial. The
main consequence of this observation is that the stochastic process

√
n(F̂n − FN ) (3.8)

does not have a zero mean function neither asymptotically. If we want to use the
classic bootstrap procedure, we have to sample independently from F̂n for obtaining
a bootstrap sample s∗. The ECDF F̂ ∗n based on the bootstrap sample is defined as
in 3.1 and it is a consistent estimator of F̂n as shown in 3.4. Thus the process

√
n(F̂ ∗n − F̂n) (3.9)
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has a zero mean function asymptotically, thus it is different from process 3.8. This is
well represented by Figure 3.2. Here are represented some trajectories of the process
√
n(F̂n − FN ) and its resampled version

√
n(F̂ ∗n − F̂n) where the finite population

is generated as i.i.d replication of a uniform distribution on the unit interval and
samples from the finite population are drawn using a Pareto design, using a size
variable for the inclusion probabilities that shows an empirical correlation of about
0.40 with the interest variable. It is clear that the classical bootstrap does not
recover the original process (Figs. 3.2a 3.2b) neither when a “large” sample size of
n = 500 is considered (Figs. 3.2c 3.2d). The resampled process shows a Brownian
Bridge behavior while the original process if far away from being such a process.

Even if we consider F̂H that takes into account the presence of the sampling
weights and it is a consistent estimator of the distribution function FN the original
bootstrap procedure is not consistent. In fact from the previous chapter we know
analytically the limit distribution of the stochastic process WH

n . Let us see what
would happen if we resample from F̂H . If we resample independently from F̂H we
will have a bootstrap sample s∗ = (y∗1, . . . , y∗n) where

y∗i =



y1 with probability D1π
−1
1

N∑
i=1

Diπ
−1
i

...

yN with probability DNπ
−1
N

N∑
i=1

Diπ
−1
i

(3.10)

and, as a consequence,

I(y∗i≤y) =



I(y1≤y) with probability D1π
−1
1

N∑
i=1

Diπ
−1
i

...

I(yN≤y) with probability DNπ
−1
N

N∑
i=1

Diπ
−1
i

(3.11)

By the Law of Large Numbers, the ECDF of the sample s∗ is a consistent estimator
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of F̂H (and then of FN ) in fact, conditionally on the original sample s

E[F̂ ∗n ] = E
[

1
n

n∑
i=1

I(y∗i≤y)

]
= E[I(y∗i≤y)] =

N∑
i=1

I(yi≤y)Diπ
−1
i

N∑
i=1

Di

πi

= F̂H (3.12)

However the variance of F̂ ∗n is not equal, not even asymptotically, to the variance
of F̂H . By Lemma 2.1.3, we have that conditionally on Y ∗1 , . . . , Y ∗n

V[F̂ ∗n(y)] = 1
n2

∑
i∈s∗

I(y∗i≤y) = 1
n

(
E[I2

(yi≤y)]− E[I(yi≤y)]2
)

= F̂H(1− F̂H)
n

(3.13)

and by the Law of Large Numbers

nV[F̂ ∗n(y)]
F (y)(1− F (y)) → 1

that is different from the variance of F̂H(y) given by Lemma 2.1.3. Thus, i.i.d.
resampling fails to recover the distribution of the original sample process. With
reference to the last examined case, it is worth to quote the paper Conti and Marella
(2015), where assuming independence between the interest variable Y and the size
variable X, or equivalently assuming the inclusion probabilities πis as deterministic,
it is proposed a rescaled bootstrap procedure, because it holds that

√
n(F̂H − FN ) weak−−−→

√
f(A− 1)B(F (y)) (3.14)

√
n(F̂ ∗n − F̂H) weak−−−→ B(F (y)) (3.15)

that is, the original limiting process and the resampled limiting process coincide
up to a scaling factor, and the considered limiting process is exactly a Brownian
Bridge on the scale of F as it happens for the usual bootstrap procedure. We have
shown that classic bootstrap fails when trying to recover the distribution of the
finite population empirical process

√
n(F̂N −FN ) (where F̂N is an estimator of FN ).

Clearly, this happens also for the superpopulation empirical process
√
n(F̂ − F )

and it is clear by the decomposition introduced in (2.22). In addition it is easy to
understand that for a procedure (bootstrap) that takes into account only a sampling
variability (resampling from the original sample) is quite difficult to recover the
global variability of a process that takes into account two sources of randomness,
that is the case of interest of this dissertation.
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Because of the inconsistency of the classic bootstrap in survey sampling, a huge
amount of literature focused on resampling methods available for finite populations.
The most part of the resampling methods available in literature for survey sampling
pursues the aim of mimicking only the first two moments of the distribution of linear
functional of totals or means. In other words the goodness of these resampling
methods is evaluated on how close the variance is of the resampled mean to the
usual unbiased variance estimator of the original sample mean, without any further
asymptotic analysis. As well discussed in Ranalli and Mecatti (2012) and Chauvet
(2007) we can distinguish between two type of resampling approaches: the ad hoc
approach and the plug in approach.

In ad hoc approaches, in order to obtain a resampling variance that is close to
the Yates and Grundy unbiased variance estimator, units are resampled according
to a specific procedure. We now list some famous resampling ad hoc methods.
The first one is the rescaled bootstrap proposed in Rao and Wu (1988), where a
S.R.S. is assumed for the original sample and then the classic bootstrap is applied
to this sample. The main difference between the Rao and Wu bootstrap and Efron
bootstrap is that the resampled units are scaled by a specific factor that depends
on the size of the bootstrap samples, in order to have the variance of the resampled
mean equal to the unbiased variance estimator of the original mean estimator. Also
the resampling procedure proposed in McCarthy and Snowden (1985) is a simple
application of the classic bootstrap with a finite population and a sample selected
according to a simple random sampling. The variance of the mean of the resampled
units is equal to the unbiased variance estimator of the original sample mean, only
if the square of the sample size is equal to the finite population size (that is a
quite artificial condition) and if the bootstrap samples have the same size of the
original sample. In the procedure analyzed until now, the units in bootstrap samples
are selected independently, as in classic bootstrap. A quite different procedure is
the Mirror-Match Bootstrap proposed in Sitter (1992). In this case the bootstrap
samples are selected of a size n∗ � n without replacements (thus the units in the
bootstrap samples are dependent), and defining f∗ = n∗/n bootstrap samples are

selected in number of M = n(1− f∗)
n∗(1− f) . Then defining by S∗ the union of the

M bootstrap samples, it is shown that the mean computed on S∗ is an unbiased
estimator of the original sample mean, and also the variance of the bootstrapped
mean perfectly recovers the unbiased estimator of the variance of the original mean.
A bootstrap method that fully pursues the aim of mimicking the first two moments
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of the distribution of a linear statistics is the one of Antal and Tillé (2011). In this
paper the authors focus on the random variables that indicate how many times a
unit of the original population is resampled. They provide some sufficient conditions
on the expectation and covariances of these random variables, in order to have the
perfect matching between the resampled moments in the linear case with their
sample equivalent quantities. This bootstrap procedure is more general than the ad
hoc approaches seen before, it allows also unequal probability sampling designs and
has also the advantage of not scaling the data.

On the other side the plug in approach is based on the mimicking principle of
the classic bootstrap. In these resampling procedures, an artificial population that
plays the role of the original one is first generated based on the sample data. Then,
bootstrap samples are drawn from such a population. This idea first appears in
Gross (1980), where the finite population size N is assumed to be a multiple of
the sample size n, and where the sample is selected according to a simple random
sampling. Then a pseudo-population is generated by expanding every observation in
the sample N/n times. The bootstrap samples are obtained selecting samples of size
n with a simple design without replacements from the generated pseudo-population.
In such a way the bootstrapped mean is an unbiased estimator of the original sample
mean and the variance of the bootstrapped mean recovers the unbiased estimator of
the original sample mean variance up to a factor (n−1)/n. Several modifications to
this procedure have been proposed in literature, focusing on the pseudo population
generation. For instance, in Chao and Lo (1985) it is suggested to replicate each
unit bN/n− 1/2c times with a probability α or bN/n− 1/2c+ 1 with a probability
1 − α (where b·c is the integer part operator). Then, a simple random sample
without replacements is drawn from the pseudo population generated in such a way.
This procedure, on the average, has the same properties of the Gross bootstrap,
and avoids the restrictive assumption of N/n to be integer (if this happens this
procedure coincides with the Gross one). In Booth et al. (1994) it is suggested to
replicate each unit bN/n − 1/2c times, a pseudo population is obtained by adding
a sample of size N − n × bN/nc selected from the original sample. Clearly if the
inverse of the sampling fraction is an integer, this procedure coincides with the
Gross one. A very simple idea is proposed in Presnell and Booth (1994) where a
pseudo-population of the same size of the original finite population, is generated by
sampling with replacement N times from the original sample. In this framework
a particular role is played by the Holmberg scheme. The resampling procedure
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proposed in Holmberg (1998), allows more general sampling designs (πps) and it is
a generalization of the previous methods because it uses random weights to generate
the pseudo population. In particular, it works as follows. For each sampled unit in
the sample the sampling weights are decomposed in 1/πi = ci+Ri where ci = b1/πic
and clearly 0 ≤ Ri < 1. Let εi be the realization of a Bernoulli random variable of
parameter Ri and define N∗i = ci + εi. The pseudo population is defined replicating
each unit i, N∗i times. Thus, the size of the pseudo population is N∗ =

∑
i∈sN

∗
i .

It is clear that if the size of the finite population N is a multiple of the sample size
n, and the sampling design is a simple random sampling, this resampling procedure
is equivalent to the Gross one. We will come back on the Holmberg scheme in the
next chapter.

It is worth to notice that no one of the mentioned methods is justified by asymp-
totic considerations as it happens for the classic bootstrap. A procedure that takes
into account the whole distribution function of a statistics and not only its first
two moments is the rescaled bootstrap proposed in Conti and Marella (2015) that
we quoted before. In the next sections we will introduce the resampling scheme,
based on the mimicking principle, proposed in Conti et al. (2015). This resampling
scheme is used by Conti et al. to make inference about the finite population. We
will adapt it in order to be a valid tool to infer the superpopulation. We also provide
an asymptotic validation in view of a unification of the resampling procedures in
the different framework of the survey sampling and of the classic inference setting.

3.2 Resampling Procedure: Theoretical Properties

On the basis of the asymptotic results exposed in Chapter 1, making inference about
hyper-parameters requires the knowledge of the analytic form of the Hadamard-
derivative of the functional that defines the parameter. This can be generally quite
a hard problem. In addition we want to provide a simple tool addressed also to
statistics practitioners that could be not so strong in analytic math computation.

A resampling procedure allows us to recover the distribution of an hyper-parameter
of interest by avoiding the explicit computation of the Hadamard-derivative. As al-
ready said in the previous section, our goal is to provide a resampling procedure
and give a theoretical justification looking at the whole distribution function. Using
asymptotic considerations is not the common practice in survey sampling bootstrap,
where the usual procedure is recovering only the first two moments for linear statis-
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tics. This way of validating a resampling procedure is followed in Conti and Marella
(2015), where asymptotic considerations end into the mentioned rescaled bootstrap,
but this procedure is not thought to allow a relationship between an interest variable
and the design variables that is common in practice. This last point in developed
in Conti et al. (2015), but this work is focused on descriptive inference, i.e. they
infer the finite population and this make their class of resampling procedures not
suitable for our purpose except for the “multinomial scheme” described below.

As highlighted several times, when the object of inference is an hyper-parameter,
two sources of randomness have to be taken into account. Thus, for direct bootstrap
methods, like the ad hoc procedures described in the previous sections, it is quite
difficult to recover the variability of both random mechanisms. For this reason,
it is intuitive that the resampling procedure considered in this work is composed
by two phases. In the first phase, a prediction of the finite population is generated
starting from the sample data, in order to get information about the superpopulation
variability. In the second phase, a new sample, of the same size of the original one, is
selected according to a sampling design P ∗ that fulfills the high entropy requirement.
The inclusion probabilities of the resampling design are chosen proportional to the
size variable X of the predicted population constructed in Phase 1. Intuitively, in
such a way the sampling design randomness is also taken into account.

Phase 1. 1. Draw N units independently from the distribution F̂H , such that each
unit i ∈ s is selected with probability π−1

i /
∑
j∈s π

−1
j = π−1

i /
∑N
j=1Djπ

−1
j

2. For k = 1, 2, . . . , N , if the k − th sampled unit is unit i ∈ s, take y∗k = yi

and x∗k = xi.

3. Define a predicted population of N units U∗N , such that unit k possesses
y-value y∗k and x-value x∗k, k = 1, 2, . . . , N .

Phase 2. Draw a re-sample s∗ of size n from the population U∗N defined in phase
1, using a high entropy sampling design P ∗ with first order inclusion
probabilities π∗k = nx∗k/

∑N
j=1 x

∗
k.

Although the sampling design P ∗ used in Phase 2 has to be an high entropy sampling
design, it does not necessarily coincide with the sampling design P used to select
the sample s from UN , but the resampling inclusion probabilities have a similar
structure to the original ones.

This resampling scheme was first considered in Pfeffermann and Sverchkov
(2006), in a different framework. In principle, it is based on a simple idea: Phase
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1 mimics the generation process of the finite population from the superpopulation,
and Phase 2 mimics the selection of the sample from the finite population. This is
sketched in the scheme below.

Reality Resampling
F (Unknown) F̂H (Known)y Sampling independ.

y Sampling independ.

UN U∗Ny Design P
y Design P ∗

s s∗

Fig.3.3. Multinomial resampling mimicking scheme

Define now N∗i as the number of the predicted population units equal to unit i of
the sample s, and let P∗ be the probability distribution of the predicted population
generating process. It is easy to see that, given s, YN , TN , the r.v.s (N∗i , i ∈ s)
possesses a multinomial distribution with:

EP∗ [N∗i |DN ,YN , TN ] = N

Diπ
−1
i /

N∑
j=1

Djπ
−1
j

 (3.16)

VP∗ [N∗i |DN ,YN , TN ] = N

Diπ
−1
i /

N∑
j=1

Djπ
−1
j

1−Diπ
−1
i /

N∑
j=1

Djπ
−1
j

 (3.17)

CP∗ [N∗i , N∗j |DN ,YN , TN ] = −NDiDjπ
−1
i π−1

j /

(
N∑
k=1

Dkπ
−1
k

)2

, j 6= i (3.18)

The d.f. of the predicted population can be written as:

F ∗N (y) = 1
N

N∑
i=1

I(y∗i≤y) =
N∑
i=1

Di
N∗i
N
I(yi≤y). (3.19)

Consider next the bootstrap replicate of the Hajék estimator of F ∗N , which is equal
to

F ∗H(y) =
∑N
i=1

D∗i
π∗i
I(y∗i≤y)∑N

i=1
D∗i
π∗i

. (3.20)

Looking at the proposed resampling procedure, it is clear that pushing the sam-
ple size and the finite population size to the infinity makes it negligible the difference
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between the real and the predictive population (and the difference on how they are
generated, as well). In the sequel we aim at formalizing this remark by showing
that the asymptotic distribution of the resampled process

WH∗(y) =
√
n(F̂ ∗H(y)− F̂H(y)), y ∈ R, N ≥ 1. (3.21)

coincides with the asymptotic distribution of WH given in Proposition 2.2.2.

Exactly as it happens to the resampling procedure that mimics the data gener-
ation process, the theory will retrace what we have done in Chapter 1. We start by
stating the validity of the preparatory Lemmas 2.1.1-2.1.5 also for the resampled
process (3.21)

Lemma 3.2.1. Under hypothesis H1−H6, conditionally on YN , TN ,DN , as N ap-
proaches to infinity the statements of Lemmas 2.1.1-2.1.5 hold true for the predicted
population U∗N , in probability w.r.t. P∗, for a set of samples S of P−probability tend-
ing to 1, and for a set of yis and tijs of P-probability 1.

We are now ready to state the result that establishes the same limiting behavior
of WH for the resampled process WH∗

Proposition 3.2.1. Suppose the sampling design P and the resampling design P ∗

both satisfy assumptions H1−H6. The following claims hold.
Claim 1 Conditionally on YN , TN ,DN , N∗i s, the sequence (WH∗

n (y) =
√
n(F̂ ∗H(y)−

F ∗N (y)), y ∈ R, N ≥ 1) converges weakly, in D[−∞,∞] equipped with the Skorokhod
topology, to a Gaussian Process W̃ ∗1 with zero mean function and covariance function
given by (2.11). The convergence holds for almost all yis, tijs, for a set of DN s of
P -probability tending to 1, and for a set of N∗i s of P∗-probability tending to 1.
Claim 2 Conditionally on YN , TN ,DN , the sequence of random functions (WH∗

n (y) =
√
n(F̂ ∗H(y)− F ∗N (y)), y ∈ R, N ≥ 1) converges weakly, in D[−∞,∞] equipped with

the Skorokhod topology, to a Gaussian Process W ∗1 with zero mean function and
covariance function given by (2.11). The convergence holds for almost all yis and
tijs, and for a set of DN s of P -probability tending to 1.
Claim 3 The two sequences (WH∗

n (y), y ∈ R) and (W ∗N (y), y ∈ R) are asymptoti-
cally independent. Moreover, the following further statements hold true.

R1 The whole process (WH∗(y), y ∈ R) converges weakly in D[−∞,∞] endowed
with the Skorokhod topology, to a Gaussian process W ∗ with zero mean func-
tion and covariance kernel given by (2.24).
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R2 If θ(·) is continuously Hadamard differentiable at F , then (
√
n(θ(F̂ ∗H)−θ(F̂H)), N ≥

1) converges weakly to θ′F (W ∗), as N increases.

In both R1, R2 the convergence hold for almost all yis and tijs, and for a set of
DN s of P -probability tending to 1 as N increases.

Claim 1 is about the convergence of the resampled process WH∗
n . This approach

is the one pursued by Conti et al. (2015) to show that the “multinomial scheme”
works in their setting, where the object of the inference is the finite population
that is assumed fixed even if generated by a superpopulation model. In fact, the
convergence holds conditionally on the variables N∗i s, that in a less formal language
means that the predictive population U∗N is fixed, the only assumed variability is the
one of the resampling design P ∗. Claim 2 extends the convergence of the resampled
process WH∗

n considering a varying predictive population. Clearly this extension is
obtained by resorting to Lemma 2.2.1, that is exactly what we have done in order
to generalize the convergence of the process WH

n to the unconditional case. Claim
3 summarizes the limiting behavior of the whole resampled process WH∗ and of
the process obatined concerning a parameter of the superpopulation stating the
equivalence between the limiting distributions of the resampled processes and the
distributions of original processes.
Clearly in the spirit of Bickel and Freedman (1981), Proposition 3.2.1 provides a
full asymptotic justification of the resampling procedure considered in the present
section.

For the sake of completeness we want to remark that this resampling scheme
works also when the Horvitz-Thompson empirical processWHT is considered. Hence
the following proposition holds:

Proposition 3.2.2. Suppose the sampling design P and the resampling design P ∗

both satisfy assumptions H1−H6. The following claims hold.
Claim 1 Conditionally on YN , TN ,DN , N∗i s, the sequence (WHT∗

n (y) =
√
n(F̂ ∗HT (y)−

F ∗N (y)), y ∈ R, N ≥ 1) converges weakly, in D[−∞,∞] equipped with the Skorokhod
topology, to a Gaussian Process W̃ ∗1 with zero mean function and covariance func-
tion given by (2.12). The convergence holds for almost all yis, tijs, for a set of DN s
of P -probability tending to 1, and for a set of N∗i s of P∗-probability tending to 1.
Claim 2 Conditionally on YN , TN ,DN , the sequence of random functions (WHT∗

n (y) =
√
n(F̂ ∗HT (y)−F ∗N (y)), y ∈ R, N ≥ 1) converges weakly, in D[−∞,∞] equipped with

the Skorokhod topology, to a Gaussian Process W ∗1 with zero mean function and co-
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variance function given by (2.12). The convergence holds for almost all yis and tijs,
and for a set of DN s of P -probability tending to 1.
Claim 3 The two sequences (WHT∗

n (y), y ∈ R) and (W ∗N (y), y ∈ R) are asymptoti-
cally independent. Moreover, the following statements hold true.

S1 The whole process (WHT∗(y), y ∈ R) converges weakly in D[−∞,∞] endowed
with the Skorokhod topology, to a Gaussian process W ′∗ with zero mean func-
tion and covariance kernel given by (2.26).

S2 If θ(·) is continuously Hadamard differentiable at F , then (
√
n(θ(F̂ ∗HT ) −

θ(F̂HT )), N ≥ 1) converges weakly to θ′F (W ′∗), as N increases.

In both S1, S2 the convergence hold for almost all yis and tijs, and for a set of DN s
of P -probability tending to 1 and N increases.

In Figures 3.4-3.5 below some trajectories of the original processes and the re-
sampled processes are represented in order to graphically convey the statements of
Propositions 2.2.2 and 3.2.2, and to make some comparisons between the use of
the Horvitz-Thompson and the Hàjek estimator, as well. In particular Figures 3.4
(where the Hàjek estimator is considered) and 3.5 (where the Horvitz-Thompson
estimator is considered) are obtained assuming a uniform distribution on (0, 1) as
superpopulation model. The correlation between the interest character Y and the
size variable X is about 0.40 in the population. For both sampling and resampling
procedures, a Pareto design is assumed. with a sampling fraction of 1/4. On the
left side of the considered figures (Figs. 3.4a, 3.4c, 3.5a and 3.5c), the trajectories
of the original processes are depicted. On the right side (Figs. 3.4b, 3.4d, 3.5b
and 3.5d) the resampled process is represented. The dashed line is the zero line
(the theoretical mean of the process) the solid line is the empirical mean of the
process. As far as the Hàjek empirical process is concerned, the similarity between
the original process and the resampled one is evident also with a sample size of
n = 50. The variability of the resampled process is very similar to the variability
of the original one (cfr. Figs. 3.4a 3.4b where also some spikes in the trajectories
are recovered by the resampled process) and the resampled process shows a zero
mean function. Clearly, enlarging the size of the sample to n = 500 in our simula-
tion, makes it nearly indistinguishable the two processes (Figs. 3.4c 3.4d). When
considering the Horvitz-Thompson process WHT , is well visible in the resampled
process a bit of bias in the mean function. The empirical mean of the resampled
process depart from the zero line in both the situation of a sample size of n = 50
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and n = 500, this is probably a consequence of the lack of restriction at the end of
the “time” for the Horvitz-Thompson empirical process. Thus the extra variability
makes the convergence of the resampled process a bit slower than the case of the
Hàjek one. Although the resampled process WHT∗ seems to be quite biased in our
simulated scenario, it is clear that the whole behavior of this process mimics the
original process, especially when the sample size grows (Figs 3.5c 3.5d).

Remark 3.2.1. For a better understanding of why the resampling scheme intro-
duced so far works, reconsider the Holmberg (1998) scheme mentioned before, which
is a popular resampling scheme used in finite populations sampling. For each unit
i in the sample s, let Ri = π−1

i − bπ
−1
i c, and consider independent Bernoulli r.v.s

εis with Pr(εi = 1|DN ,YN , TN ) = Ri. Let further N∗i = bπ−1
i c+ εi. Even if

N∑
i=1

N∗i 6= N

it is shown in Conti et al. (2015) that a result similar to Proposition 3.2.1 still
holds. In other words the Holmberg scheme is able to recover the limit distribution
of the process WH

n . Clearly this is not enough. In our situation we have to take
into account the superpopulation randomness (the process WN that converges to a
Brownian Bridge), but the resampled version of WN under the Holmberg scheme,
that is

√
n(F ∗N∗(y)− F̂H(y)), does not converge to a Brownian bridge. To show this,

it is enough to observe first that adding and removing the quantity

N∑
i=1

π−1
i DiI(yi≤y)

N∑
i=1

(
bπ−1
i c+ εi

)
Di

we have that

√
n(F ∗N∗(y)− F̂H(y)) = A(y) +B(y) (3.22)
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where

A(y) =
√
n


N∑
i=1

(
bπ−1
i c+ εi

)
DiI(yi≤y)

N∑
i=1

(
bπ−1
i c+ εi

)
Di

−

N∑
i=1

π−1
i DiI(yi≤y)

N∑
i=1

(
bπ−1
i c+ εi

)
Di



B(y) =
√
n


N∑
i=1

π−1
i DiI(yi≤y)

N∑
i=1

(
bπ−1
i c+ εi

)
Di

−

N∑
i=1

π−1
i DiI(yi≤y)

N∑
i=1

π−1
i Di

 .

Conditionally on DN ,YN , TN , the variance of εi is Ri(1 − Ri) ≤ 1/4. Taking into
account Lemma 1.1.1, and observing that

E
[
N∑
i=1

(
bπ−1
i c+ εi

)
Di

]
= EP

[
EP∗

[
N∑
i=1

(
bπ−1
i c+ εi

)
Di

]]
= (3.23)

EP

[
N∑
i=1

(
bπ−1
i c+Ri

)
Di

]
= EP

[
N∑
i=1

(
π−1
i

)
Di

]
= N1 (3.24)

this shows that the limiting distribution of A(y) coincides with the limiting
distribution of

√
n

N

N∑
i=1

(εi −Ri)DiI(yi≤y).

In a similar way, it can be shown that the limiting distribution of B(y) coincides
with the limiting distribution of

−
√
n

N

N∑
i=1

(εi −Ri)DiFN (y)

and hence the limiting distribution of (3.22) coincides with the limiting distribution
of

C(y) =
√
n

N

N∑
i=1

(εi −Ri)Di

(
I(yi≤y) − FN (y)

)
.

The arguments of Proposition 2.2.2 can be used to show that, conditionally on

1The symbol EP∗ [·] defines the expected value where the only variability is due to the pseudo-
population randomness
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YN , TN , C(y) converges to a Gaussian process for almost all yis, tijs, and for a
set of DN s of P -probability tending to 1. To show that C(y) does not tend to a
Brownian bridge, it is sufficient to show that the asymptotic variance of C(y) is not
F (y)(1− F (y)). Since the conditional expectation of ε1 −Ri is zero, we have

V(C(y)|YN , TN ) = n

N2

N∑
i=1
E [Ri(1−Ri)Di|YN , TN ]

(
I(yi≤y) − FN (y)

)2

= n

N2

N∑
i=1

Ri(1−Ri)π−1
i

(
I(yi≤y) − FN (y)

)2

→ EP[X1]EP
[
R1(1−R1)X−1

1

(
I(Y≤y) − F (y)

)2
]

6= F (y)(1− F (y)) = EP
[(
I(Y≤y) − F (y)

)2
]
.

The failure of Holmberg scheme is a consequence of a simple fact: the scheme itself
cannot recover the generation process of the finite population from the superpopu-
lation.

3.3 Resampling procedure: Monte Carlo algorithm

Clearly, resampling is performed by resorting to Monte Carlo simulations and this is
a computer-intensive procedure. Thus, due to the factorial growth of the cardinality
of the space of the boostrap samples, recovering the true asymptotic (resampling)
distribution is practically infeasible. To overcome this problem, it necessary to ap-
proximate the actual asymptotic distribution of the Hajék estimator (or equivalently
of the Horvitz-Thompson estimator) with a simulated resampling distribution. This
procedure will be now clarified. For the sake o simplicity we assume θ(·) to be real-
valued, that is considering scalar parameters of the superpopulation.

1. Generate M independent bootstrap samples of size n on the basis of the two-
phase resampling procedure described above.

2. For each bootstrap sample, compute the corresponding Hajék estimator (3.20),
denoted by F̂ ∗H,m, m = 1, 2, . . . ,M .

3. Compute the corresponding estimates of θ(·):

θ̂∗m = θ(F̂ ∗H,m), m = 1, 2, . . . ,M.
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4. Compute the M quantities

Z∗n,m =
√
n(θ̂∗m − θ(F̂ ∗H)), m = 1, 2, . . . ,M. (3.25)

5. Compute the variance of (3.25):

Ŝ2∗ = 1
M − 1

M∑
m=1

(Z∗n,m − Z̄∗M )2 = n

M − 1

M∑
m=1

(θ̂∗m − θ̄∗M ) (3.26)

where

Z̄∗M = 1
M

M∑
m=1

Z∗n,m, θ̄
∗
M = 1

M

M∑
m=1

θ̂∗m.

Denote further by

R̂∗n,M (z) = 1
N

M∑
m=1

I(Z∗n,m≤z), z ∈ R (3.27)

the empirical distribution function of Z∗n,m, and by

R̂∗−1
n,M (p) = inf{z ∈ R : R̂∗n,M (z) ≥ p}, 0 < p < 1 (3.28)

the corresponding pth quantile.

The empirical distribution (3.27) is the Monte Carlo approximation of the true re-
sampling distribution of

√
n(θ(F̂ ∗H(y)) − θ(F̂H(y))). Next proposition establishes

convergence of the empirical distribution (3.27) to the actual asymptotic distribu-
tion of the resampled process and the convergence of the quantiles (3.28).

Proposition 3.3.1. Suppose the assumptions H1 − H6 are fulfilled, let σ2
θ =

VP(θ(F )), and let Φ0,σ2
θ
be a normal distribution function with expectation 0 and

variance σ2
θ and let Φ−1

{0,σ2}(p) be the p-quantile of Φ0,σ2
θ
. Conditionally on YN , TN ,DN ,

the following results hold:

sup
z
|R̂∗n,M (z)− Φ0,σ2

θ
(z)| a.s.−P

∗
−−−−−→ 0; (3.29)

R̂∗−1
n,M (p) a.s.−P∗−−−−−→ Φ−1

{0,σ2}(p) (3.30)

as M,N go to infinity. The convergence holds for almost all yis and tijs, for a set
of DN s of P−probability tending to 1, and is in probability w.r.t. P ∗.
If, in addition, supn,m EP∗ [Z2∗

n,m] < ∞, the sample variance Ŝ2∗ of (Z∗n,m, m =
1, 2, . . . ,M) is a consistent estimator of σ2

θ . Formally, for a set of yis and tijs
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of P−probability equal to 1 and for a set of DN s of P−probability tending to 1,
conditionally on YN , TN ,DN it holds that

Ŝ2∗ → σ2
θ , as M,N →∞ (3.31)

where the convergence in (3.31) holds in probability w.r.t. the resampling replications
and the pseudo-population generation.

.



Chapter 4

Applications

In this chapter we face the problem of bringing theoretical results obtained in the
previous chapters, into statistical practice. Together with this purpose, we want
to test the goodness of the proposed resampling procedure. The goodness of the
resampling procedure is evaluated via a simulation study, for each one of the ap-
plications proposed. All of the simulations produced in this chapter have the main
aim of simulating both the superpopulation variability and the sampling design
variability.

4.1 Confidence Intervals For Quantiles

The aim of this section is to provide asymptotic confidence intervals, for quantiles
of an interest character. Quantiles are very important when measuring poverty
or inequality. In fact, poverty and inequality measures are usually expressed as a
function of the estimated quantiles of the income or wealth distributions. In practice
the confidence intervals are obtained resorting to our resampling procedure.

Let assume a superpopulation as in H2 and let F be the distribution function
of the interest variable Y . We define the (superpopulation) quantile function as

Q(p) = inf{y ∈ R : F (y) ≥ p} = F−1(p),with 0 < p < 1. (4.1)

Thus, the (superpopulation) quantile function Q(·) can be seen as the inverse of the
(superpopulation) distribution function F . This implies that the quantile function
can be seen as a functional of the distribution function F . Let now focus on such a
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functional. Consider the real valued functional θp(·) : D[−∞,+∞]→ R such that

θp(F ) = F−1(p) = Q(p), (4.2)

that is θp(·) is the functional that brings a distribution function in its quantile
function. Hence we define

QN (p) = θp(FN ), 0 < p < 1 (4.3)

Q̂H(p) = θp(F̂H), 0 < p < 1 (4.4)

In order to use the methodology proposed in this dissertation, we have to show
the Hadamard-differentiability of the functional θp(·) defined in (4.2). To this pur-
pose we resort to Lemma 21.3 in Van der Vaart (2000) that gives sufficient conditions
in order to have the Hadamard-differentiability of the concerned functional θp(·).
These conditions are:

i) The superpopulation distribution function F has to be differentiable at the
point qp ∈ R such that F (qp) = p;

ii) The superpopulation distribution have to give a non-zero density to the quan-
tile in exam, i.e. F ′(qp) 
 0.

If both conditions i) and ii) are satisfied, then the functional θp(·) is Hadamard-
differentiable at F , and its Hadamard-derivative has the form

θ′p(h) = − h(qp)
F ′(qp)

, h ∈ D[−∞,+∞], h continuous at qp. (4.5)

Equation (4.5) shows why a resampling procedure, sometimes, could be a better
alternative to the analytic computation. In fact, we have that

√
n(θp(F̂H)− θp(F )) weak−−−→ θ′p(W ) = −W (qp)

F ′(qp)
, qp ∈ R, (4.6)

or equivalently

√
n(θp(F̂H)− θp(F )) weak−−−→ θ′p(W ) = −W (Q(p))

F ′(Q(p)) , 0 < p < 1. (4.7)
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Hence, the covariance kernel of the limiting process θ′p(W ) has the form

Cθ
′(y, t) = C(y, t)

F ′(y)F ′(t) , (y, t) ∈ R2 (4.8)

where C(y, t) is defined in (2.24). If you want to look at the process
√
n(θp(F̂H)−

θp(F )) as the quantile process
√
n(Q̂H(p)−Q(p)), 0 < p < 1 , the covariance kernel

can be explicitly written in terms of the quantile function Q(·) as follows:

Cθ
′(u, v) = 1

F ′(Q(u))F ′(Q(v))

{
f

[EP[X1]
f

K−1(Q(u) ∧Q(v))
]
u ∧ v

− f3

d

(
1− K+1(Q(u))

EP[X1]

)(
1− K+1(Q(v))

EP[X1]

)
uv

−f
[EP[X1]

f
(K−1(Q(u)) +K−1(Q(v))− EP[X−1

1 ]− 1) + 1
]
uv

}
, (u, v) ∈ (0, 1)2.

(4.9)

As (4.9) shows, if you want to proceed with an analytic (non parametric) ap-
proach, in order to recover the asymptotic variance of the estimated quantile, you
need to provide estimates of EP[X],Kα, F

′. This way might be more complex and
less efficient. Using resampling procedures allows you to avoid these estimation
steps making the inference procedure easier.

Define now

d̂α = R̂−1∗
n,M (α), (4.10)

zα = Φ−1
{0,1}(α). (4.11)

Expression (4.10) is the α−quantile of the Monte Carlo approximation of resam-
pling distribution of

√
n(θp(F̂ ∗H) − θp(F̂H)) as defined in (3.28), while (4.11) is the

α−quantile of a standard normal distribution. Due to Proposition 3.3.1 (that en-
sures the consistency of both the empirical distribution function R̂∗n,M of the resam-
pled parameter and also of the empirical quantile function R̂−1∗

n,M ), we have that:

[L̂P , ÛP ] =
[
θp(F̂H) + zα

2

Ŝ∗√
n
, θp(F̂H) + z1−α2

Ŝ∗√
n

]
1 (4.12)

[L̂NP , ÛNP ] =

θp(F̂H) +
d̂α

2√
n
, θp(F̂H) +

d̂1−α2√
n

 (4.13)
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are confidence intervals of asymptotic size 1− α. The confidence interval in (4.12)
is a parametric confidence interval in the sense that we use the parametric approx-
imation of the quantile distribution to a Gaussian distribution. The quantity in
(4.13) is a non-parametric confidence interval, because of using the empirical quan-
tiles based on bootstrap procedure, without assuming any additional information
about the form of the limiting distribution.

In order to test our resampling procedure applied to the estimation of confidence
intervals for quantiles, we conduct a small simulation study. For our simulations we
assume the same superpopulation model as in Antal and Tillé (2011), i.e.

Y = (β0 + β1X
1.2 + σε)2 + c (4.14)

where X ∼ |N(0, 7)|, ε ∼ N(0, 1), β0 = 12.5, β1 = 3, σ = 15 and c = 4000.
Parameters in (4.14) are chosen in order to make the interest variable distribution
similar to an income distribution. In order to stress our resampling procedure from
different points of view, we have simulated under some different scenarios. We
assumed three different sample sizes n ∈ {50, 150, 500} with two different sampling
fraction; a lower one f = 1/10 and an higher one f = 1/3. In addition we have
considered the situation in which in both sampling and resampling a successive
sampling design is considered (this will be indicated as SU − SU scenario) and
the situation in which in the sampling stage a successive sampling design is used
and in resampling stage a Pareto sampling design (We refer to this scenario with
SU − PA) is concerned. The inclusion probabilities are taken proportional to a
size variable, that is equal to Y (0.5)H where H ∼ LogN(0, 0.4) when the sampling
fraction is f = 1/10. In the situation that concerns a larger sampling fraction of
f = 1/3, the size variable is equal to Y (0.21)H ′ where H ′ ∼ LogN(0, 0.175). With
these choices the inclusion probabilities exhibit a wide range of variation (in this
way we have inclusion probabilities that can be very different from the sampling
fraction f) and a correlation (in the finite population) between the interest variable
and the size variable that is around 0.40. For each sample size, sampling fraction
and couple of sampling designs (SU − SU , SU − PA) we have generated from the
model (4.14) J = 1000 finite populations and for each sample drawn from these
finite populations, M = 1000 bootstrap samples are selected.

Using our resampling scheme we have computed confidence intervals for quan-
1Ŝ∗ is the square root of the quantity defined in (3.26)
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tiles of order p = 0.10, 0.25, 0.50, 0.75, 0.9 according to formulas (4.12)-(4.13) for
a nominal confidence level of 1 − α = 0.95. In order to test the goodness of the
proposed “multinomial resampling scheme” we introduce some indicators:

1. Estimated Coverage Probability

CP = 1
J

J∑
j=1

I(L̂jN/NP ≤ q̂p ≤ Û
j
P/NP ). (4.15)

2. Estimated Left and Right Errors

LE = 1
J

J∑
j=1

I(L̂jP/NP > q̂p); (4.16)

RE = 1
J

J∑
j=1

I(Û jP/NP < q̂p). (4.17)

3. Average Length

AL = 1
J

J∑
j=1

(Û jP/NP − L̂
j
P/NP ). (4.18)

4. Estimated Relative Bias (for the standard deviation)

RB = 1
J

J∑
j=1

σ̂MC − Ŝ∗j

σ̂MC
(4.19)

Some clarification are needed about the notation used in the previous indicators. In
(4.15) - (4.17) the quantity q̂p is the p−quantile obtained inverting the ECDF com-
puted on 107 simulated values from the model (4.14) in order to have a Monte Carlo
approximation of the true quantiles. Clearly with the notation L̂jP/NP (Û jP/NP )
we indicate the lower (upper) extreme of the parametric (sub-script P) (or non-
parametric with sub script NP) confidence interval for the j−th, j = 1, . . . , J sim-
ulated finite population. The function I(a) takes value 1 if a is true and zero
otherwise. In (4.19) with the symbol σ̂MC we indicate the estimated Monte Carlo
standard deviation of the estimated quantile, that is

σ̂MC =

√√√√ 1
J − 1

J∑
j=1

(
θp(F̂ jH)− θp

)2
(4.20)
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where

θp = 1
J

J∑
j=1

θp(F̂ jH). (4.21)

where Ŝ∗j indicates the bootstrap estimate of the variance (formula (3.26)) for the
j−th, j = 1, . . . , J simulated finite population.

Next tables show the estimated quantities (4.15) - (4.19) in scenarios of different
sample sizes, sampling fractions and couple of sampling designs.

Looking at Tables 4.1-4.2 that summarize the result of our simulation for the
smallest sample size (n = 50), it seems that in this case the non-parametric ap-
proach has quite better estimated coverage probabilities respect to the parametric
case. Only the case of p = 0.10 shows a really bad behavior if compared with the
parametric approach. It is worth to highlight that the cases of p = 0.10, 0.90 are the
harder ones. In fact, in this case the parameter falls near the border of the para-
metric space and this affects the inference procedure. The estimated right and left
errors are quite unbalanced, but this is probably due to both the small sample size
(our approach is an asymptotic one) and the skewness of the considered population
(that is build to resemble an income distribution that in general is highly positively
skewed). If we look at the two different sampling fractions considered, we do not
see any big difference. As you expect there is a quite better performance when a
higher sampling fraction is considered. In fact we have that the coverage probabili-
ties are closer to the nominal level and the average length is shorter if compared to
the case of a sampling fraction f = 1/10. In addition, also the case of the extreme
value for quantile of order p = 0.10, shows a better performance when a higher sam-
pling fraction is concerned. Moving to consider the same sampling design in both
sampling and resampling stage (SU-SU scenario) or two different designs (SU-PA
scenario) produces no relevant differences. Considering a sample size of n = 150,
Tables 4.3–4.4 implies generally better estimated coverage probabilities, also for the
extreme case of p = 0.10 in the non-parametric approach. In general the considera-
tions we made above for the sample size of n = 50 still hold in this case. We have a
better performance of the non-parametric approach and when the higher sampling
fraction is considered. Clearly we have more informative confidence intervals, in the
sense that the average length is shorter respect to the case of n = 50. When the
larger sample size of n = 500 is considered, Tables 4.5–4.6, the differences between
the parametric and non-parametric approach are not so evident. This might be
a consequence of a better convergence to the normal distribution of the quantiles
distribution. Also the cases of a higher and lower sampling fraction show now, very
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similar behaviors. It is worth to notice that some values of the estimated coverage
probabilities show a lower performance (p = 0.25, 0.75) if compared to the case
of n = 150. These fluctuations are probably consequence of considering inclusion
probabilities more variable when the sample size is increased.

As far as the estimated relative bias for the bootstrap estimate standard devia-
tion (4.19) is concerned, we have that when the smallest sample size is considered,
a high relative bias (estimated about 11%) affects the bootstrap estimate of the
variance of the quantile of order p = 0.10. When the considered quantile is the one
of order p = 0.90, the estimated relative bias is about 9%. These are the extreme
cases and thus they are the more pathological ones. The situation for the extreme
values of quantiles is worst if the higher sampling fraction is considered. For the
median we have only an absolute relative bias of about 6% if f = 1/10 and 4.5%
if f = 1/3. The SU-SU scenario and the SU-PA scenario have essentially the same
behavior. Moving to the case of n = 500, the resampling based variance estimator is
substantially unbiased in all of the considered cases, showing a maximum absolute
relative bias of about 4% when the order p = 0.90 is concerned.

4.2 Testing For Conditional Independence

Dependence tests are one of the widely investigated problem of statistical literature.
The goal of this paragraph is to perform an independence test for two interest
character, conditionally on discrete design variables Tjs. For the sake of simplicity
we will consider a single design variable T .

To achieve this purpose, the general measure of monotone dependence, proposed
in ((Cifarelli et al., 1996)) is extended to the present case. Given two continuous
variables X,Y , let F (x) and G(y) be the marginal distributions of the bivariate
variable (X,Y ) and H(x, y) the joint distribution. A general measure of the mono-
tone dependence γg between X and Y , is a real-valued functional γg of the bivariate
distribution H(x, y|T ) defined as follows

θγ(H(x, y|T )) = γg =
∫
R2
g(|F (x|T )+G(y|T )−1|)−g(|F (x|T )−G(y|T )|) dH(x, y|T ),

(4.22)
where g : [0, 1] → R is a strictly increasing, continuous and convex function, such
that g(0) = 0 with continuous first derivative. Under the hypothesis of indepen-
dence, that is H(x, y) = F (x)G(y), the latter quantity is equal to zero. Thus, we
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are considering a test of the formH0 : H(x, y|T ) = F (x|T )G(y|T )

H1 : H(x, y|T ) 6= F (x|T )G(y|T )

Using sample data we estimate the joint distribution function H(x, y) with its
Hàjek estimator

ĤH(x, y) =
∑N
i=1

Di
πi
I(xi≤x,yi≤y)∑N
i=1

Di
πi

. (4.23)

In addition we define the bivariate finite population distribution function as

HN (x, y) = 1
N

N∑
i=1

I(xi≤x,yi≤y). (4.24)

The basic idea is to estimate the quantity γg with a plug-in approach, substitut-
ing the distributions functions in (4.22) with their Hajék estimators F̂H , ĜH , ĤH ,
obtaining

γ̂g,H|T =

∑
i∈s

1
πi

(g(|F (xi|Ti) +G(yi|Ti)− 1|)− g(|F (xi|Ti)−G(yi|Ti)|))

∑
i∈s

1
πi

. (4.25)

Before analyzing the Hadamard differentiability of θγ(·) : D[−∞,∞]2 → R, we
stress that our results are given for the univariate case, but they can be simply
generalized to the multivariate case. When considering a bivariate character of
interest, in fact, following the same approach of the univariate case, you have that
the bivariate version of the process WH

n is defined as

WH
n (x, y) =

√
n(ĤH(x, y)−HN (x, y)) (4.26)

and you have that
WH
n (x, y) weak−−−→W1(x, y) (4.27)
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where W1(x, y) is a Gaussian process and with a covariance kernel of the form

C1((x, y), (s, t)) = f

{EP[Z1]
f

K−1(y ∧ x, s ∧ t)− 1
}
H(x ∧ y, s ∧ t) (4.28)

− f3

d

(
1− K+1(x ∧ y)

EP[Z1]

)(
1− K+1(s ∧ t)

EP[Z1]

)
H(x, y)H(s, t)

− f
{EP[Z1]

f
(K−1(x, y) +K−1(s, t)− EP[Z−1

1 ]− 1)
}
H(x, y)H(s, t)

(4.29)

where Kα(x, y) = EP[Zα|X ≤ x, Y ≤ y], with α = ±1 and Z is the size variable.
A multivariate extension of the Donsker’s Theorem ensures that under the i.i.d
assumption, it holds that

√
N(HN (x, y)−H(x, y)) weak−−−→W2(x, y) (4.30)

where W2(x, y) is a Brownian sheet on the scale of H(x, y), that is a Gaussian
process with covariance kernel

C2((x, y), (s, t)) = H(x ∧ y, s ∧ t)−H(x, y)H(s, t) (4.31)

Thus, proving the asymptotic independence of the two considered processes as in the
univariate case, the whole process WH(x, y) =

√
n(ĤH(x, y) − H(x, y)) converges

weakly to a Gaussian process W (x, y) with covariance kernel

C((x, y), (s, t)) = C1((x, y), (s, t)) + f(C2((x, y), (s, t)). (4.32)

To show the Hadamard-differentiabilty of the considered functional, it is sufficient
to use the same arguments as the proof of Theorem 4.1. in Cifarelli et al. (1996)
and then use result (4) in Gill et al. (1989).

Before illustrating our simulation study is important to stress a couple of re-
marks. First of all, the conditioning design variable is supposed discrete for the
sake of simplicity. In fact, estimating conditional distribution functions when the
conditioning variable is discrete, does not involve different estimation techniques,
but only focusing on a subgroup of the population than the whole population. Al-
lowing the conditioning variable being continuous implies more complex estimator
of the distribution function (like kernel estimators) that fall outside the spirit of
the present dissertation. In addition, assuming the conditioning variable discrete is
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quite usual in survey sampling. In fact, focusing on a subgroup of the population is
what happens in stratified design or when considering domains in a multipurpose
survey. The second remark is about the resampling procedure. In order to per-
form a test with resampling techniques, it is necessary to resample under the null
hypothesis, thus in our case we need to resample under the hypothesis of condi-
tional independence of the the two interest characters X,Y . To this purpose, the
pseudo-population generation phase of our resampling technique has been modified
as follows. According to the previous notation X,Y are variables of interest, and
T takes values T 1, . . . , T k. In addition, let s be a sample of units selected from
a N − sized finite population UN with a πps sampling design P , where the inclu-
sion probabilities πi ∝ Tj . Define sj = {i ∈ s|ti = T j}, j = 1, . . . , k, the set of
sampled units with T-value equal to T j . Let n1, . . . , nk be the size of s1, . . . , sk.
Firstly, a pseudo-population of N values T ∗1 , . . . , T ∗N is generated where each unit
is selected independently with probability π−1

i /
∑
j∈s π

−1
j . Then for l = 1, . . . , N if

T ∗l = T j , j = 1, . . . , k we sample independently from sj , with probability 1/nj , a
X-value X∗l and a Y -value Y ∗l . At the end of this procedure a pseudo population
U∗N = (X∗l , Y ∗l , T ∗l , l = 1, . . . , N) is obtained, where X∗ and Y ∗ are independent
conditionally on T ∗. At this point the second phase of the resampling method shown
in Chapter 3 can be used. The considered resampling scheme is able to recover the
distribution of

√
n(γ̂g,H|T − γg|T ) under the null hypothesis of independence, and

hence to perform the test. In fact, it is sufficient to notice that a stratum can be
considered itself as a population. Hence for each stratum all the results obtained
in Chapters 2-3 are still valid. The only thing we have to show, is that the resam-
pling procedure mimics effectively the strata generation process. Suppose that the
variables T that defines the groups in the superpopulation, takes values T 1, . . . , T k

with probability (p1, . . . , pk). Clearly, defined Nj = {i ∈ U |ti = T j} the size of
the j-th stratum in the finite population ( Uj in the sequel). We have that under
assumption H2, Nj ∼ Bin(pj , N). Hence we have that

EP
[
Nj

N

]
→ pj , a.s.− P. (4.33)

that is, the weight in the finite population of the j-th stratum is a consistent esti-
mator of the weight of the j-th stratum in the superpopulation.
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Define also

N̂j =
∑
i∈sj

1
πi

=
∑
i∈Uj

Di
1
πi

(4.34)

N̂ =
∑
i∈s

1
πi

=
∑
i∈U

Di
1
πi

(4.35)

it is clear by Definitions (4.34)-(4.35), result (4.33) and Lemma 1.1.1

N̂j

N̂

P−probability−−−−−−−−−→ EP

[
N̂j

N̂

]
≈ Nj

N
a.s.−P−−−−→ pj (4.36)

that is, the estimated weight of the j-th stratum is a (weak) consistent estimator
of the real weight. Consider now N∗j = {i ∈ U∗N |T ∗i = tj} the size of the j-th
stratum in the pseudo-population generated following the procedure described few
lines above. As we have already noticed in the previous chapter, N∗j follows a
Binomial distribution where the number of trials is N and the success probability
in this case is N̂j/N̂ . Hence we have that

N∗j
N

P∗−probability−−−−−−−−−→ EP∗
[
N∗j
N

]
= N̂j

N̂
(4.37)

and by what we observed in (4.36), we can conclude that the proposed modification
to the resampling scheme asymptotically mimics the mechanism that generates the
strata in the superpopulation.

In the sequel, we will focus on a simulation study where the function g(s) = s2

is used. With this choice of g, the coefficient γg become exactly the non-normalized
version of the Spearman’s rank coefficient ρs (cfr. Cifarelli et al. (1996)).

For the simulations study we assumed that in the superpopulation there are four
strata, indexed by the discrete variable T ∈ {1, 2, 3, 4}. For each stratum we have
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the interest variables (X,Y ) distributed as a bivariate normal N(µT ,Σ) where

Σ =

 1502 150 · 60 · 2 · sin(π6 · ρs)
150 · 60 · 2 · sin(π6 · ρs) 602

 (4.38)

µT =



(800, 300)′ if T = 1

(900, 400)′ if T = 2

(1000, 500)′ if T = 3

(1100, 600)′ if T = 4

(4.39)

In addition each stratum has a weight in the superpopulation equal to

ωT =



0.4 if T = 1

0.3 if T = 2

0.2 if T = 3

0.1 if T = 4

.

Setting the covariance matrix as in (4.38), involves having exactly a Spearman’s
correlation coefficient between X,Y of ρs in each group (for a proof see for in-
stance Kruskal (1958)). Thus we have an overall Spearman’s correlation coefficient
conditionally on T equal to ρs. The choice of the means (that are all on the line
y = x− 500) is made in order to have a strong dependence between X and Y when
not conditioning on T . In this setting our test becomesH0 : ρs|T = 0

H1 : ρs|T 6= 0
. (4.40)

The estimated region of rejection for test (4.40) based on resampling has the form:
{
|ρ̂s,H|T | > z1−α2

S∗√
n

}
, (4.41)

where z1−α2 is the 1 − α

2 -quantile of a standard normal distribution and S∗ is the
square root of the bootstrapped (under the null hypothesis) variance of ρ̂s,H|T .

For the simulations sample sizes n = 50, 150 and sampling fractions f = 1/3, 1/10
are considered. For each sample size and sampling fractions, J = 1000 finite pop-
ulations have been generated and for each sample selected from these populations,
M = 1000 bootstrap samples have been drawn. In addition, two sampling scenarios
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have been concerned. The first one (CP-PA) where samples are selected accord-
ing to a Conditional Poisson (CP) sampling design2 and in resampling procedure a
Pareto (PA) design has been used. The second one (PA-PA) where in both sampling
and resampling a Pareto (PA) design is implemented.
A test of nominal level α = 5% has been performed and to evaluate the performance
several Monte Carlo estimates have been computed

1. Estimated Type 1 Error

α̂ = 1
J

J∑
j=1

I

(
|ρ̂js,H|T | > z1−α2

S∗√
n

)
(4.42)

(4.43)

with ρs = 0 in (4.38).

2. Estimated Power

EP = 1
J

J∑
j=1

I

(
|ρ̂js,H|T | > z1−α2

S∗√
n

)
(4.44)

(4.45)

with ρs = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 in (4.38).

3. Median of Estimated P-values Me(P̂ j), j = 1, . . . , J where the Estimated
P-values are

P̂ j = 1
M

M∑
m=1

I(|Z∗n,m| > |ρ
j
s,H|T |) (4.46)

with Z∗n,m is defined in (3.25).

4. The estimated Relative Bias RB for the Spearman’s rho standard deviation
under the null hypothesis of independence. It is computed as in (4.19), with
the obvious modifications.

Results of our simulation study are summarized below.

2According to Hájek (1964) and Hájek and Dupac (1981) the Conditional Poisson sampling
design is equivalent to the rejective sampling design
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Sample size and Sampling fraction α̂ (CP-PA) α̂ (PA-PA)
n = 50, f = 0.1 0.053 0.051
n = 150, f = 0.1 0.045 0.048
n = 50, f = 0.3 0.06 0.051
n = 150, f = 0.3 0.05 0.048

Table 4.10. Estimated Type 1 Error for different sample sizes, sampling fractions and
couples of sampling designs for the sampling and resampling stage. Nominal α = 5%.

Fig.4.1. Median of estimated P-values for each level of correlation with n = 50, f =
1/3, f = 1/10. and considering CP-PA, PA-PA scenarios

Fig.4.2. Median of estimated P-values for each level of correlation with n = 50, f =
1/3, f = 1/10. and considering CP-PA, PA-PA scenarios
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Sample size and Sampling fraction RB (CP-PA) RB (PA-PA)
n = 50, f = 0.1 0.0025 0.0209
n = 150, f = 0.1 −0.019 −0.0313
n = 50, f = 0.3 0.0007 0.0179
n = 150, f = 0.3 0.0043 −0.01628

Table 4.11. Estimated Relative Bias in the different considered scenarios.

Fig.4.3. Estimated power function where n = 50, f = 1/3, f = 1/10. and considering
CP-PA, PA-PA scenarios

Fig.4.4. Estimated power function where n = 150, f = 1/3, f = 1/10. and considering
CP-PA, PA-PA scenarios

From Table 4.10, it is immediately seen that our procedure works well in both
situations of a small and big sampling fractions. In addition, we can notice that



4.3 Testing for marginal independence 90

using two different sampling designs for the sampling and resampling stages give
results similar to those obtained by using the same sampling design. In both sit-
uations the estimated level α̂ is very close to the nominal level of 5%. Another
important remark is that PA-PA scenario seems to be more stable with respect
to the CP-PA one, in the sense that the estimated type 1 error fluctuates less in
PA-PA scenario than in CP-PA. As far as the estimated P-values and the estimated
power functions, are concerned, it is seen from Figures 4.1-4.2 that the differences
for the same sample size in the different scenarios are really small, but we have
generally lower P-values, thus a better performance, when considering f = 1/3.
For a sample size of n = 50 the median of estimated P-values becomes zero when
the (superpopulation) Spearman correlation is 0.6. Of course, increasing sample
size implies a decrease of the Spearman correlation level beyond which the median
of the estimated P-values is zero. The analysis of the estimated power functions
leads to similar conclusions. In fact, for a sample size n = 50 the estimated power
functions are very similar, but the power is higher in the case of a larger sampling
fraction. This result is reasonable. In fact, the larger the sampling fraction the
larger the information that the sample carries. In this particular case, a larger sam-
pling fraction allows the sample to reconstruct more easily the correlation structure
present in the finite population (and in the superpopulation).

Results about the variance estimation with our resampling methods are reported
in Table 4.11. In all of the situations examined in our simulation study, we have
that the “multinomial scheme” based variance estimator is essentially unbiased. The
maximum absolute relative bias that we can observe is about 3% in the case of the
PA-PA scenario with a sample size of n = 150 and sampling fraction of 0.10. The
scenario where the samples are drawn according to a Rejective sampling (CP-PA)
seems to perform well for variance estimation if compared to the case where a Pareto
design is used in both sampling and resampling stages. In the PA-PA scenario the
estimated relative bias, fluctuates more than in the CP-PA scenario.

4.3 Testing for marginal independence

The goal of the present section is to construct a test for the marginal independence
of two (continuous) characters of interest Y , Z, without conditioning on the design
variables Tjs. For the sake of simplicity, in the sequel we will consider a single design
variable T , say. The general framework is the same of the previous Section. We
resort to the unconditioned version of the measure of monotone dependence defined
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in (4.22) with g(s) = s2, that is

ρs =
∫
R2

(F (x) +G(z)− 1)2 − (F (x)−G(z))2 dH(x, z), (4.47)

and its sample version

ρ̂s,H =

N∑
i=1

Diπ
−1
i

(
(F̂H(x) + ĜH(z)− 1)2 − (F̂H(x)− ĜH(z))2

)
N∑
i=1

Diπ
−1
i

, (4.48)

to test the hypothesis H0 : ρs = 0

H1 : ρs 6= 0
.

Clearly all the results derived in the previous paragraph are still valid, in particular
we have that

√
n(ρ̂s,H−ρs) is asymptotically normal with zero mean and a complex

variance that depends on the Hadamard derivative of the functional θγ that brings
a bivariate distribution function, in the associated measure of dependence γg.

Although from the theoretical point of view it seems to be an easy problem, from
the practical point of view it presents more difficulties than the case analyzed before.
In fact, performing a test with resampling requires the ability of sampling under
the null hypothesis. In this framework, for each sampling unit we have a triplet
(yi, zi, ti); thus, a unique sample value of T is associated to each pair (yi, zi). In
order to apply our resampling procedure to the testing problem, we have to generate
a pseudo-population Y ∗i , Z∗i , T ∗i from the sample values in such a way that Y ∗ and
Z∗ are marginally independent (null hypothesis). Independence can be obtained by
sampling independently from the (Hajék) estimators of the marginal distribution
functions of Y , Z. However, in this way it is not possible to uniquely associate
a value T ∗i to each pair (Y ∗i , Z∗i ). To avoid this problem, we look at the testing
problem as the inverse of an interval confidence problem: an asymptotic confidence
interval of size 1 − α provides an asymptotic test of size α. Of course this way of
looking at the problem is simpler but has some limits. One of them is that we can
not provide estimated p-values, because for their computation it would be necessary
to resample under the null hypothesis.
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With the previous notation, the following intervalρ̂s,H + zα
2

√
Ŝ2∗

n
, ρ̂s,H + z1−α2

√
Ŝ2∗

n

 (4.49)

where zα is the α-quantile of a standard Normal distribution and Ŝ2∗ is the bootstrap
estimate of the variance of Spearman coefficient, is a confidence interval for ρs of
asymptotic size 1 − α. The null hypothesis of independence is accepted if the
bootstrapped confidence interval covers the 0 , and rejected otherwise.

Focusing on (4.47) it easy to see that the Spearman coefficient ρs depends only
on the copula associated to the joint distributionH(x, z) (this can proved by making
the change of variables (U, V ) = (F (Y ), G(Z)) in (4.47)). This fact is quite intuitive.
A ”good“ measure of dependence has to summarize only the association between
two variables, being invariant to the marginal and the joint distributions. In virtue
of what we have just observed, for our simulation study we assumed a copula as
superpopulation model for our interest variables, without specifying any particular
marginal distribution for the interest characters. In particular, (Y, Z) is assumed
to be a bivariate Marshall-Olkin copula (for more see Marshall and Olkin (1967b),
Marshall and Olkin (1967a), Mai and Scherer (2012)).

One of the advantages of the bivariate Marshall-Olkin copula is that it allows
a Spearman’s correlation coefficient that has an analytic form, that only depends
on the parameter of the copula (as for the Gaussian copula used in the previous
paragraph), and that takes value in the interval [0, 1]. For the simulation study three
different sample sizes, n = 50, 150, 250 have been considered, in both situations
of a large (f = 1/3) and small (f = 1/10) sampling fractions. For each sample
size and sampling fraction, J = 1000 finite populations have been generated, and
for each sample selected from these populations, M = 1000 samples have been
drawn. Samples were selected according to a Conditional Poisson design. As far
as the resampling stage is concerned, a Pareto design was used. The inclusion
probabilities πi have been taken proportional to T = f(U)W , where U = Y + Z,
f(u) = u3/3− 0.5u2 + 0.10u+ 0.5 and W ∼ logN(0, σ2) with σ2 = 0.4 if f = 1/10
and σ2 = 0.08 if f = 1/3. The design variable T possesses correlation with Y and
Z in the finite population, ranging in between 0.4 and 0.5, and a broad range of
variation of the inclusion probabilities (about [0.02, 0.95]). Tests of different sizes
α = 0.1, 0.05, 0.01 have been performed.
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To evaluate the performance of our procedure, we have computed the same
estimators as for the previous case of conditional independence. Exception is made
for the median of estimated P-values, because as specified above, in the present
situation we are unable to recover the null distribution via resampling. Clearly in
(4.42) and (4.44) some modification in order to take into account how many times
the resampled confidence interval does not cover the “zero” . To give the idea on the
goodness of the variance estimation via resampling, we report here the relaive bias
only for ρs = 0, 0.3, 0.7 that express a situation of independence, average correlation
and strong correlation.

Results are summarized below.

α = 0.1 α = 0.05 α = 0.01
f = 1/10 f = 1/3 f = 1/10 f = 1/3 f = 1/10 f = 1/3

n = 50 0.124 0.116 0.074 0.065 0.02 0.017
n = 150 0.126 0.11 0.064 0.062 0.021 0.012
n = 250 0.109 0.1 0.055 0.061 0.012 0.016

Table 4.12. Estimated type I error probability α̂, for different sample sizes and sampling
fractions.

ρs = 0 ρs = 0.3 ρs = 0.7
f = 1/10 f = 1/3 f = 1/10 f = 1/3 f = 1/10 f = 1/3

n = 50 0.0196 0.0135 0.069 0.0493 0.0614 0.0727
n = 150 0.0260 −0.0069 0.0306 0.0092 0.0357 0.0341
n = 250 −0.0047 0.0174 0.0263 −0.0081 0.0534 0.0270

Table 4.13. Estimated relative bias for the standard deviation of ρ̂s in different scenarios.

For the sake of brevity, only graphs of estimated power functions for a nominal
level α = 0.05 are shown.
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Fig.4.5. Estimated power function where n = 50, f = 1/3, f = 1/10.

Fig.4.6. Estimated power function where n = 150, f = 1/3, f = 1/10.
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Fig.4.7. Estimated power function where n = 250, f = 1/3, f = 1/10.

From table 4.12, it is seen that estimated type I error is very close to the nominal
α. As expected, the largest error corresponds to the smallest sample size (n = 50)
with a maximum absolute difference between α and α̂ of 2.4%. Of course, these
errors decrease when the sample size increases. As far as the sampling fractions
are concerned, results in the cases f = 1/3 and f = 1/10 are similar; hence, the
sampling fraction seems to play no special role. The estimated power functions
(figures 4.5-4.7) exhibit a behavior similar to that of the estimated power functions
studied in the previous section. In fact, the estimated power function when f = 1/3
dominates the estimated power function when f = 1/10 for all sample sizes. Fur-
thermore, differences between power functions decrease as the sample size increases.
This suggests that the tests asymptotically have the same power, whatever the sam-
pling fraction may be. For what concerns estimated relative bias reported in Table
(4.13), we have a good performance in independence situation ρs with a relative bias
equal to 2.6%. There is no evident difference between the two considered sampling
fractions. The worst case in results summarized in Table (4.12) is when a sample
size of n = 50, a correlation of 0.7 and a sampling fraction of 1/3 are considered.
In such case the estimated relative bias is about 7%. When the sample size is in-
creased the situation improves in all of the considered scenarios, except for the case
n = 250, f = 1/10, ρs = 0.7 that shows a larger relative bias if compared to the
other analyzed cases.
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4.4 Confidence Bands For Lorenz Curves

When dealing with economics data, especially when analyzing income distribution,
Lorenz curve and related quantities (such as Gini’s index) are useful tools of inves-
tigation. For instance, Lorenz curve is one of the most known measure of inequality
used to understand (or forecast) the consequences of economic policies of a nation.
Due to the importance of this measure, in this section and in the next one, we aim
at providing some easily-implementable inferential tools, with special attention for
statistics practitioners that may hardly handle analytic computation.

The aim of this section is to provide asymptotic confidence bands of fixed size,
for a given (superpopulation) Lorenz curve. This means, finding two random curves
that upper and lower bound the superpopulation Lorenz curve with a fixed proba-
bility. It is clearly the extension of the confidence intervals to the functional case.

Let now fix some notation. Given the superpopulation distribution function F
of a non-negative interest character Y (this is the classical setting when dealing
with Lorenz curves, where negative incomes are not allowed) the superpopulation
generalized Lorenz curve is defined as

G(p) =
∫ p

0
Q(u)du, 0 ≤ p ≤ 1 (4.50)

where Q(·) is the quantile function defined in (4.1). The usual Lorenz curve is
the normalized version of (4.50), that is purged by the effect of the mean of the
considered distribution. Formally

L(p) =
∫ p

0 Q(u)du,∫ 1
0 Q(u)du

= G(p)
G(1) =

∫ p
0 Q(u)du,
EP[Y ] , 0 ≤ p ≤ 1. (4.51)

Clearly, the finite population and the sample counterparts of (4.50) and (4.51) are
defined as

GN (p) =
∫ p

0
QN (u)du and LN (p) =

∫ p
0 QN (u)du∫ 1
0 QN (u)du

= GN (p)
GN (1) , 0 ≤ p ≤ 1 (4.52)

ĜH(p) =
∫ p

0
Q̂N (u)du and L̂H(p) =

∫ p
0 Q̂H(u)du∫ 1
0 Q̂H(u)du

= ĜH(p)
ĜH(1)

, 0 ≤ p ≤ 1 (4.53)

Let us now focus on the functional θL(·) : D[0,+∞]→ C[0, 1] that brings a dis-
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tribution function F in its Lorenz curve. In order to apply results obtained in the
present dissertation, we need fot θL to be an Hadamard-differentiable functional.
The Hadamard differentiability at F of the map θL is proved, under different as-
sumptions, in both Donald et al. (2004) and Bhattacharya (2007). In Donald et al.
(2004) it is required that: i) F has to be twice continuously differentiable and ii)
0 < inf ψ(y) < supψ(y) where ψ(y) = F ′(y) is the density associated to F . In
Bhattacharya (2007) the author relaxes the assumptions on F in order to have the
Hadamard differentiability of θL at F . The assumptions made in Bhattacharya
(2007) are listed below.

i) F is differentiable with strictly positive derivative on the compact subset of
(0, 1) and the moments up to order 2 must be finite.

ii)

lim
y→+∞

(1− F (y))1+δ

ψ(y) = 0 (4.54)

iii)

lim
y→0

F (y)δ

ψ(y) (4.55)

for some δ ∈ (0, 1)

Conditions (4.54)-(4.55) control the tail behavior of the density function when the
density approaches 0. As noticed in Bhattacharya (2007) these conditions are sat-
isfied by the Pareto and the lognormal family of distributions that are two of the
most important parametric families of distributions widely used to model income.
By virtue of what we have just observed, conditions (4.54)-(4.55) hold also for dis-
tributions that have thinner tails than the Pareto, like exponential ecc.

Assume that the conditions for the Hadamard differentiability of the map θL(·)
are satisfied. Considering the Lorenz process LH defined as

LH(p) =
√
n
(
θL(F̂H)(p)− θL(F )(p)

)
, 0 ≤ p ≤ 1 (4.56)

by Theorem 1.2.1 and Proposition 2.2.2 we have that

LH(p) weak−−−→ L(p) = θ′L(W )(p) = −
∫ p

0

W (Q(u))
ψ(Q(u)) du, 0 ≤ p ≤ 1 (4.57)

where the expression for θ′L is given in Donald et al. (2004). One of the possible ways
to obtain an asymptotic confidence band of a fixed size, is to find the distribution
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of the quantity
sup
p∈(0,1)

|L(p)|. (4.58)

In fact, defining qα the α-quantile of the distribution of (4.58) you have that

Pr

(
sup
p
|L(p)| < q1−α

)
= 1− α (4.59)

⇒ Pr (−q1−α < L(p) < q1−α) = 1− α ≈ (4.60)

≈ Pr
(
−q1−α <

√
n(L̂H(p)− L) < q1−α

)
. (4.61)

Hence, the region [
L̂H(p)− q1−α√

n
; L̂H(p) + q1−α√

n

]
, 0 < p < 1 (4.62)

is a confidence band of fixed size for L of asymptotic confidence level 1− α.

Remark 4.4.1. It is clear that our aim is recovering via resampling, the distribution
of the quantity (4.58). What we have as a consequence of the theory exposed in
Chapter 2 is resumed by (4.57), but we are interested in the convergence of the
supremum of the Lorenz process. The convergence holds, observing that the Lorenz
curve is a continuous function, hence the supremum map is continuous and the
weak convergence of (4.58) is a consequence of the continuous mapping theorem
(cfr. Billingsley (1968)).

In the sequel, we resort to the Monte Carlo approach introduced in Chapter 3
to perform the resampling. Obviously, in order to approximate the distribution of
(4.58), instead of (3.25) we will compute the quantity

sup
p
|θL(F̂ ∗H)(p)− θL(F̂H)(p)|. (4.63)

Following the same approach of Proposition 3.3.1 it is easy to see that

sup
z

∣∣∣∣∣R∗n,M − Pr
{

sup
p
|L(p)| ≤ z

}∣∣∣∣∣ a.s.−−→ 0 (4.64)

R∗−1
n,M (α) a.s.−−→ qα, 0 < u < 1 (4.65)

where R∗n,m it is the ECDF of the quantities (4.63) over the bootstrap samples, and
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R∗−1
n,M is its inverse. Thanks to (4.65) we have that

[
L̂H(p)−

R∗−1
n,M (1− α)
√
n

; L̂H(p) +
R∗−1
n,M (1− α)
√
n

]
, 0 < p < 1 (4.66)

is a confidence band for L of asymptotic size 1− α

We are now in a position to introduce our simulation study. For our simulations
we have assumed as superpopulation model a variable Y distributed as a lognormal
distribution LogN(µ, σ) with µ = 0.85 and σ = 0.6. These choices for parameters
are the same used for the simulation study in Barrett and Donald (2003) From the
superpopulation model we have generated J = 1000 finite populations and for each
sample drawn from these populations, M = 1000 bootstrap samples are drawn. In
both sampling and resampling we have used a successive sampling design. We have
computed confidence bands for three level of confidence 1 − α = 0.90, 0.95, 0.99
and for two different sampling fractions f = 1/10, f = 1/3. In order to have
inclusion probabilities correlated with the interest character Y we have generated a
size variableX in two different ways, depending on the considered sampling fraction.
If f = 1/10 X = Y 0.5U where U ∼ LogN(0, 0.52). If f = 1/3 X = Y 0.2U where
U ∼ LogN(0, 0.16). With this choice of the size variable, the correlation between
Y and X in the finite population is about 0.40, and the inclusion probabilities
are spread over the unit interval. To test the goodness of our proposal we have
computed the following Monte Carlo estimates:

1. Estimated Coverage Probability

CP = 1
J

J∑
j=1

I(sup |L̂H − L| > d̂1−α) (4.67)

where d̂1−α is the 1 − α quantile of the Monte Carlo approximation of the
resampling distribution of supLH , as in 3.28, and I(a) takes value 1 if a is
true, 0 otherwise.

2. Estimated Relative Bias for the quantiles qα

RB = 1
J

J∑
j=1

q̂MC
α − d̂jα
q̂MC
α

(4.68)

where qMC
α is obtained as empirical quantile of the distribution of the supre-

mum M j computed for each of the J = 1000 samples selected from the
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J = 1000 finite populations. Formally:

M j = sup
p

√
n|L̂jH(p)− L(p)|, j = 1, . . . , 1000

R(m) = 1
J

J∑
j=1

I(Mj≤m)

q̂MC
α = R−1(α)

Results of our simulations are summarized in Table 4.14-4.15

Estimated Coverage Probability
1 − α = 0.90 1 − α = 0.95 1 − α = 0.99

f = 1/10 f = 1/3 f = 1/10 f = 1/3 f = 1/10 f = 1/3
n = 50 0.884 0.847 0.930 0.904 0.972 0.961
n = 150 0.0.897 0.881 0.943 0.931 0.983 0.981
n = 250 0.891 0.894 0.946 0.944 0.987 0.985

Table 4.14. Estimated coverage probabilities for different nominal levels 1 − α =
0.90, 0.95, 0.99) and sampling fractions f = 1/3, 1/10.

Estimated Relative Bias
1 − α = 0.90 1 − α = 0.95 1 − α = 0.99

f = 1/10 f = 1/3 f = 1/10 f = 1/3 f = 1/10 f = 1/3
n = 50 0.0070 0.0628 0.0284 0.0264 0.0313 0.0717
n = 150 −0.0219 0.0020 0.0056 −0.0087 0.0286 0.0073
n = 250 −0.0227 −0.0105 −0.0179 −0.0235 −0.0368 −0.0107

Table 4.15. Estimated relative bias for quantiles of different order 1−α = 0.90, 0.95, 0.99)
and sampling fractions f = 1/3, 1/10.

As we can see from Table 4.14 the coverage probabilities are very close to the
nominal values of the confidence level. The worst case is when the sampling fraction
is f = 1/3 and the sample size is n = 50. When the sample size increases, we have
a good performance in both the case of a smaller and larger sampling fraction. As
expected when the estimated relative bias is concerned (Table 4.15), the situation
is better when the sample size increases, although we have some fluctuations of the
relative bias when the sample size goes from n = 150 to n = 250. Probably, these
variations are due to the closeness of some inclusion probabilities to the upper limit
of 1, when n = 250.
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4.5 Testing For Stochastic Dominance

As already said in the previous section, Lorenz curve is a useful tool of investigation
of economic inequality. In addition to the analysis of a single Lorenz curve, it is
sometimes more interesting to compare two (or more) Lorenz curves. For example,
this is the case of analyzing inequality in different subgroups of the population
or analyzing if a taxes increment for the richest people of a nation facilitates an
inequality reduction and so on. Clearly, comparisons between Lorenz curves can
be made in a descriptive way. This is not our purpose, we want an inferential tool
that is able to distinguish if the differences between the considered Lorenz curve
are due to the sample or if they actually exist. This kind of inferential tool is a test
of stochastic dominance. To this purpose we will extend the previous results about
confidence bands for a single Lorenz curve, to the case where we have two Lorenz
curves.

Being more formal, let UN1 = (yN1,xN1) and UN2 = (yN2,x′N2) (of size N1, N2,
respecively) be two independent finite populations generated as in H2 by two inde-
pendent superpopulation models. The interest variable is Y , say the income, and
X and X ′ are the size variables in the two populations. Assume that Y ∼ F in
the first superpopulation and Y ∼ G in the second one. With the notation of the
previous chapter, the (superpopulation) Lorenz curve for the two populations are

LF (p) =
∫ p

0 QF (u)du,∫ 1
0 QF (u)du

, 0 ≤ p ≤ 1 (4.69)

LG(p) =
∫ p

0 QG(u)du,∫ 1
0 QG(u)du

, 0 ≤ p ≤ 1 (4.70)

where QF and QG are the quantile functions associated to F and G respectively.

We say that the Lorenz curve L1 weakly dominates L2 if

LF (p)− LG(p) ≥ 0, ∀p ∈ [0, 1] (4.71)

that is, the income distribution in the first population exhibits a level of inequality
at most as that in the second population. Our aim is to infer the curve L1−L2 and
test for the presence of weak dominance. Formally, the hypothesis in which we are
interested are H0 : LF (p)− LG(p) ≥ 0, ∀p ∈ [0, 1]

H1 : LF (p)− LG(p) < 0, for some p ∈ [0, 1]
(4.72)
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The null hypothesis in (4.72), is the hypothesis of weak dominance of curve L1 over
L2. This choice of null hypothesis, is supported from the econometric literature
(for example, cfr. Barrett et al. (2014) and reference therein). The null hypothesis
incorporates also the case were L1 = L2. This situation occurs only when F (y) =
G(αy) with α ≥ 0 (see Lambert (1993)).

Before introducing our idea to perform test (4.72) we have to extend a bit our
asymptotic results. Consider now the two samples s1 and s2 selected from UN1

and UN2, according to high entropy sampling designs. We want to characterize the
asymptotic behavior of the process

WH
F,G(y) =

√
n1n2
n1 + n2

(
F̂H(y)− ĜH(y)− F (y) +G(y)

)
, y ∈ R (4.73)

where F̂H and ĜH are the Hàjek estimator of F,G and n1, n2 are the sizes of the
samples s1, s2. Allowing different sizes of the samples involved in (4.73), makes it
necessary a remark. In order to study the asymptotic behavior of WH

F,G we have to
“jointly” limit the asymptotic behavior of the sample sizes, in addition to condition
H4. Hence, we require that

lim
N1,N2

n2
n1 + n2

= γ, 0 < γ < 1. (4.74)

It is evident, from definition of WH
F,G that

WH
F,G =

√
n1n2
n1 + n2

(
F̂H − F

)
−
√

n1n2
n1 + n2

(
ĜH −G

)
=
√

n2
n1 + n2

WH
F −

√
n1

n1 + n2
WH
G

(4.75)
where WH

F , W
H
G have the same form of (2.21). Clearly, as a consequence of Propo-

sition 2.2.2, we have that

WH
F

weak−−−→WF (4.76)

WH
G

weak−−−→WG (4.77)

where WF and WG are the limiting processes obtained by Proposition 2.2.2 Hence,
by the independence of the considered populations, (4.74) and the symmetry of the
Gaussian processes

WH
F,G

weak−−−→ √γWF +
√

1− γWG. (4.78)
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Consider now the corresponding Lorenz process

LHF,G =
√

n1n2
n1 + n2

(
L̂HF − L̂HG − LF + LG

)
(4.79)

where LHF and LHG are the Hàajek estimators of LF and LG, computed as in (4.53).
By Theorem 1.2.1 we have that

LHF,G
weak−−−→ √γθ′FL (WF ) +

√
1− γθ′GL (WG) = LF,G (4.80)

where θ′FL and θ′GL are the Hadamard derivative of the functional θL introduced
in the previous section, at F and G respectively. Clearly by Proposition 3.2.1 we
have that also the resampled Lorenz process LH∗F,G converges to the same limit of
(4.80). We will use these asymptotic result to implement a decision rule in order to
perform, via resampling, the test (4.72).

Following the same approach of the previous section, we have that for 0 ≤ p ≤ 1,
[
L̂HF (p)− L̂HG (p)−

√
n1 + n2R

∗−1
n,M (1− α)

√
n1n2

; L̂HF (p)− L̂HG (p) +
√
n1 + n2R

∗−1
n,M (1− α)

√
n1n2

]
(4.81)

is a confidence band of asymptotic size 1−α for the difference of the Lorenz curves
LF − LG.

We now come back to the original problem of testing the weak stochastic domi-
nance of two Lorenz curves. Our decision rule for test (4.72) is very intuitive. If the
difference of LF (p)−LP (p) is “sufficiently” negative for some p ∈ (0, 1) (this means
that in some points LF is really smaller than LG), we reject the null hypothesis,
otherwise we do not. Of course, we have to specify what “sufficiently” means. To
this purpose we come back to confidence band defined in (4.81). We will reject the
null hypothesis if and only if for some p̃ ∈ (0, 1) we have that

L̂HF (p̃)− L̂HG (p̃) +
√
n1 + n2R

∗−1
n,M (1− α)

√
n1n2

< 0. (4.82)

Remark 4.5.1. It is clear that if (4.82) holds for a p̃ 6= minp(L̂HF (p) − L̂HG (p)) it
holds also for min(L̂HF − L̂HG ). Vice-versa, if condition (4.82) holds for the minimum,
by the continuity of the Lorenz curves L̂HF and L̂HG , it holds for some point p̃ 6=
minp(L̂HF (p) − L̂HG (p)). This proves that to perform the test (4.72) with the above
described decision rule, it is sufficient to look if the confidence band (4.81) is under
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the zero line at the minimum of L̂HF (p)− L̂HG (p).

Let now see how to obtain a test with type I error equal to a fixed α ∈ (0, 1).
Firstly, it is worth to be noticed, that from the decision rule that we have assumed,
the bigger is the difference (that is positive or at least equal to zero, under the null
hypothesis) between the two Lorenz curves, the lower is the probability of making
a type I error. This implies that the supremum under the null hypothesis of that
probability (that is the definition of the type I error), is reached when the equality
holds in the null hypothesis. In order to compute the asymptotic type I error of
our procedure it is sufficient to observe that, from (4.81) and assuming LF = LG,
the relationships

α ≈ Pr
{√

n1n2
n1 + n2

sup
p∈[0,1]

|L̂HG − L̂HF | > R∗−1
n,M (1− α)

}
= (4.83)

= Pr

{√
n1n2
n1 + n2

sup
p∈[0,1]

(
L̂HG − L̂HF

)
> R∗−1

n,M (1− α)
}

(4.84)

+ Pr

{√
n1n2
n1 + n2

sup
p∈[0,1]

(
L̂HF − L̂HG

)
> R∗−1

n,M (1− α)
}

= Pr

{√
n1n2
n1 + n2

inf
p∈[0,1]

(
L̂HF − L̂HG

)
< −R∗−1

n,M (1− α)
}

(4.85)

+ Pr

{√
n1n2
n1 + n2

sup
p∈[0,1]

(
L̂HF − L̂HG

)
> R∗−1

n,M (1− α)
}

= 2Pr
{√

n1n2
n1 + n2

inf
p∈[0,1]

(
L̂HF − L̂HG

)
< −R∗−1

n,M (1− α)
}

(4.86)

hold, where (4.86) is due to the symmetry of the process√
n1n2
n1 + n2

(
L̂HF − L̂HG

)
under the null hypothesis. Hence we have that

Pr

{
inf

p∈[0,1]

(
L̂HF − L̂HG

)
+
√
n1 + n2R

∗−1
n,M (1− α)

√
n1n2

< 0
}
≈ α

2 . (4.87)

Thus, if we want to perform a test of asymptotic type I error equal to α we have
to compute a confidence band of level 1 − 2α. It is worth to be noticed that such
a procedure gives us the ability of performing two tests. The one where the null
hypothesis assumes the weak dominance of LF over LG and clearly the one where
the null hypothesis assumes that LG dominates LF .
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We are now able to introduce our simulation study. For our simulations we
considered three different cases as in Donald et al. (2004)

Case 1.

F = LogN(0.85, 0.6) (4.88)

G = LogN(0.85, 0.6) (4.89)

Clearly this case corresponds to the null hypothesis

Case 2.

F = LogN(0.85, 0.6) (4.90)

G = LogN(0.7, 0.5) (4.91)

In this case we have that LG (strictly) dominates LF

Case 3.

F = LogN(0.85, 0.6) (4.92)

G = I(U ≥ 0.2)LogN(0.6, 0.2) + I(U < 0.2)LogN(1.8, 0.3) (4.93)

where U is a uniform variable on [0, 1] and I(a) takes value 1 if a is true. In
this latter case we have two crossing Lorenz curves.

For each one of the cases above, we have generated J = 1000 couples of finite pop-
ulations UN1 UN2. From each population we have selected samples according to a
successive sampling design. For what concerns sample and finite population sizes
(n1, n2, N1, N2) we have simulated two different scenarios. A balanced one, in
which both n1 = n2 and N1 = N2 and an unbalanced one, where the sizes are differ-
ent. The sampling fraction f is constantly equal to 1/10. The inclusion probabilities
are taken proportional to a size variable equal to Y (0.5)×LogN(0, 0.52). With this
choice the correlation between the inclusion probabilities and the interest characters
is about 0.40 in the finite populations. For each of the considered samples we have
selected M = 1000 bootstrap samples according to a successive sampling design. In
computing confidence bands (4.81) confidence levels of 1− α̃ = 0.90, 0.95, 0.99 have
been considered, corresponding to tests of nominal sizes α = 0.05, 0.025, 0.005.

In order to test the performance of our proposal for each one of the cases above
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we have performed both the tests:

TF =

 HF
0 : LF (p)− LG(p) ≥ 0, ∀p ∈ [0, 1]

HF
1 : LF (p)− LG(p) < 0, for some p ∈ [0, 1]

(4.94)

TG =

 HG
0 : LG(p)− LF (p) ≥ 0, ∀p ∈ [0, 1]

HG
1 : LG(p)− LF (p) < 0, for some p ∈ [0, 1]

(4.95)

and we have computed these indicators, naturally obtained as Monte Carlo estimates
of the correspondent analytic quantity:

1. Estimated Type I Errors (when the Case 1. is considered)

α̂F = 1
J

J∑
j=1

I

(
inf

p∈[0,1]

(
L̂HF − L̂HG

)
+
√
n1 + n2R

∗−1
n,M (1− α̃)

√
n1n2

< 0
)

(4.96)

α̂G = 1
J

J∑
j=1

I

(
inf

p∈[0,1]

(
L̂HG − L̂HF

)
+
√
n1 + n2R

∗−1
n,M (1− α̃)

√
n1n2

< 0
)

(4.97)

2. Estimated Power, that is formally computed as (4.96) and (4.97) when Case
3 is assumed instead of Case 1.

Results are summarized in tables below.

Estimated Type 1 Error, Case 1
α = 0.05 α = 0.025 α = 0.005
TF TG TF TG TF TG

n1 = 50, n2 = 50 0.048 0.048 0.028 0.023 0.008 0.007
n1 = 150, n2 = 150 0.054 0.045 0.029 0.018 0.01 0.003
n1 = 250, n2 = 250 0.055 0.046 0.03 0.027 0.01 0.004

Table 4.16. Estimated type I error in the balanced scenario. In columns T k are reported
the quantity α̂k with k = F, G.

α = 0.05 α = 0.025 α = 0.005
TF TG TF TG TF TG

n1 = 50, n2 = 150 0.032 0.077 0.012 0.051 0.000 0.015
n1 = 150, n2 = 50 0.063 0.029 0.034 0.014 0.01 0.002
n1 = 100, n2 = 250 0.028 0.071 0.012 0.037 0.002 0.013
n1 = 250, n2 = 100 0.071 0.035 0.04 0.018 0.005 0.005

Table 4.17. Estimated type I error in the unbalanced scenario. In columns T k are reported
the quantity α̂k with k = F, G.

From Tables 4.16-4.17 it is evident that the balanced case performs better than
the unbalanced one. In the balanced case we have estimated type I errors very close
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Estimated Type 1 Error and Estimated Power, Case 2
α = 0.05 α = 0.025 α = 0.005
TF TG TF TG TF TG

n1 = 50, n2 = 50 0.28 0.005 0.182 0.002 0.061 0.001
n1 = 150, n2 = 150 0.561 0.001 0.459 0.001 0.241 0.000
n1 = 250, n2 = 250 0.757 0.000 0.637 0.000 0.383 0.000

Table 4.18. Balanced scenario. In TG columns estimated type I error is reported because
in Case 2, HG

0 holds. In columns TF is reported the estimated power, because in Case
2, HF

1 holds.

α = 0.05 α = 0.025 α = 0.005
TF TG TF TG TF TG

n1 = 50, n2 = 150 0.301 0.005 0.192 0.003 0.057 0.001
n1 = 150, n2 = 50 0.431 0.000 0.331 0.000 0.163 0.000
n1 = 100, n2 = 250 0.503 0.000 0.373 0.000 0.160 0.000
n1 = 250, n2 = 100 0.497 0.000 0.368 0.000 0.153 0.000

Table 4.19. Balanced scenario. In TG columns estimated type I error is reported because
in Case 2, HG

0 holds. In columns TF is reported the estimated power, because in Case
2, HF

1 holds.

Estimated Power, Case 3.
α = 0.05 α = 0.025 α = 0.005
TF TG TF TG TF TG

n1 = 50, n2 = 50 0.046 0.31 0.017 0.198 0.002 0.063
n1 = 150, n2 = 150 0.162 0.678 0.073 0.536 0.007 0.297
n1 = 250, n2 = 250 0.336 0.892 0.155 0.803 0.022 0.564

Table 4.20. Estimated power in balanced scenario. In columns TF the estimated power
for test (4.94) is reported. Columns TG refer to test (4.95)

α = 0.05 α = 0.025 α = 0.005
TF TG TF TG TF TG

n1 = 50, n2 = 150 0.049 0.486 0.013 0.378 0.001 0.2
n1 = 150, n2 = 50 0.065 0.311 0.032 0.183 0.004 0.039
n1 = 100, n2 = 250 0.143 0.677 0.043 0.566 0.002 0.357
n1 = 250, n2 = 100 0.115 0.629 0.053 0.489 0.013 0.213

Table 4.21. Estimated power in balanced scenario. In columns TF the estimated power
for test (4.94) is reported. Columns TG refer to test (4.95)
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Fig.4.8. Crossing Lorenz Curves. The solid line is LF and the dotted one is LG.

to the nominal level and quite balanced. There are some fluctuation of estimated
α when the sample size is increased, probably due to the bigger variability of the
inclusion probanilities. The unbalanced scenario performs also well, but if compared
to the balanced scenario the performance is lower. In fact, by the symmetry of the
confidence band, the type I errors αF and αG have to be equal,but if we look
at Table 4.17 we see some differences. Moving to Case 2. where the curve LG
dominates LF we have results concordant to what intuition suggests. In fact as we
can see from Tables 4.18-4.19, we have an estimated power that increases with the
size in both the scenarios. In addition, when the sample size increases, the estimated
type I error decreases to zero. The balanced case performs well in terms of power,
being able to reject the null hypothesis a larger number of times if compared to
the unbalanced case. To better understands case 3, we have to look Figure 4.8. As
we can see, the biggest difference between the two curves, is around 0.8, when the
curve LF is over the curve LG. This observation explain why, the estimated power
in Tables 4.20-4.21 is bigger when the test (4.95) is considered. However, increasing
the size of the samples makes our procedure able to reject both HF

0 and HG
0 , even

if the strength of rejection for HF
0 is not as high as the one for HG

0 . At the end we
want to highlight that from Tables 4.16-4.17 in Case 1., the size of the confidence
band is well estimated in both the balanced and the unbalanced scenario. Thus the
procedure of constructing a confidence band for the difference of two Lorenz curves
performs well when two sample size are considered, while testing the stochastic
dominance has a bit lower performance in the unbalanced scenario.



Conclusions And Additional
Considerations

Nowadays the superpopulation approach is widespread in survey sampling. It allows
more general inferential results and sometimes it is a necessity like in small area
estimation, where the (direct) design-based inference is unfeasible. In addition,
the use of a superpopulation in a model-assisted inference, can improve the results
obtained by the classical design-based inference. For all of these reasons the present
dissertation focused on deriving some inferential tools to use when the statistician
interest is about the superpopulation.

In this work we followed a non-parametric approach in the sense that we have no
parametric assumptions on the superpopulation model and in addition the inference
procedure is totally design-based. This choice is made in order to obtain a robustness
to violations of the assumed superpopulation model.

Assuming samples selected by a finite population with a complex sample design,
it makes classical inferential results not valid, even if a superpopulation model is
assumed. In this work the first main contribution is an extension of the Donsker’s
theorem to finite population framework with superpopulation approach. As dis-
cussed in Chapter 2 there are some recent parallel results, but they are derived
under different assumptions. Making a bridge with classical empirical processes
theory, we have shown the convergence of the Hàjek estimator of the superpopula-
tion distribution function (opportunely scaled and centered), to a Gaussian process.
Our functional central limit theorem fully characterizes the asymptotic distribution
of the Hàjek estimator, providing an analytic tool for the inference about the su-
perpopulation. In addition this characterization is also needed in order to prove the
validity of our resampling scheme, following the same spirit of classical nonpara-
metric statistics. In fact, our second main contribution is about the consistency of



Conclusions And Additional Considerations 110

the “multinomial” resampling scheme. The consistency is proved showing that the
asymptotic distribution of the Hàjek estimator based on the resampled units is the
same of the Hàjek estimator based on the original units. To our knowledge it is
not available in the literature a resampling procedure that allows for inferring the
superpopulation, and that is justified by asymptotic considerations. The proposed
resampling procedure is tested in different situation via simulations. Several dif-
ferent applications are proposed, providing also an intuitive test procedure for the
stochastic dominance of Lorenz curve. The resampling procedure showed a really
well behavior in each one of the simulation studies. Clearly a next stage of this
research will be testing the performance of our procedure on real data.

Before concluding, we want to add some considerations. Our functional limit
theorem is derived assuming that the finite population is obtained as i.i.d. replica-
tions of the superpopulation model. This result is proved showing the convergence
of two processes, one that takes into account the sampling variability and one that
considers the superpopulation variability. It is worth to notice that the convergence
of the first process does not require in any way the i.i.d. assumption. This condition
is necessary to use the classic Donsker’s Theorem. Thus, the whole convergence can
be still proved if the i.i.d. assumption is replaced by one that makes, a relaxed ver-
sion of Donsker’s Theorem, hold. Of course, as a consequence it changes the way the
convergence happens. The last consideration is about one of the possible further de-
velopments of this work. In fact, in this work the auxiliary information is involved
only at the sampling stage. It could be interesting to verify if our methodology
is improved using it also in the estimation stage. One possibility to incorporate
the auxiliary information in the estimation stage is represented by the distribution
function estimator proposed in Rao et al. (1990).



Appendix

Appendix 1.

Proof of Lemma 1.1.1. Conditionally on YN , TN , the expectation of (1.14) w.r.t
the sampling design P is equal to 1. The variance of (1.14) w.r.t. the sampling
design P , conditionally on YN , TN , is equal to

VP

(
1
N

N∑
i=1

Di

πi

∣∣∣∣∣YN , TN
)

= 1
N2

{
N∑
i=1

1
π2
i

VP (Di |YN , TN )

+
N∑
i=1

∑
j 6=i

1
πiπj

CP (Di, DJ |YN , TN )


≤ 1

N2


N∑
i=1

1
πi

+
N∑
i=1

∑
j 6=i

∣∣∣∣∣πij − πiπjπiπj

∣∣∣∣∣
 .

From πi = nxi/
∑N
j=1 xj (with xi = g(ti1, . . . , tiL)) and the strong law of large num-

bers, it is not difficult to see that theN−1∑
i π
−1
i converges for a set of (sequences of)

yis, tijs of P-probability 1. Furthermore, from the assumption of maximal asymp-
totic entropy of the sampling design implies (cfr. Hájek and Dupac (1981), Th. 7.4)
that ∣∣∣∣∣πij − πiπjπiπj

∣∣∣∣∣ ≤ C

N

C being an absolute constant. This shows that (1.14) tends to 1 as N increases, for a
set of (sequences of) yis, tijs of P-probability 1 and for a set of DN s of P -probability
tending to 1.

Appendix 2.

Proofs of preparatory Lemmas 2.1.1-2.1.5 are given in Conti et al. (2015)
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Proof of Proposition 2.1.1. The formal proof is equivalent to the proof of Propo-
sition 1 contained in the appendix of Conti (2014). Here we just give an informal
idea on how the proof works In order to prove the weak convergence to a Gaussian
process, two steps are necessary. The first one is to prove the convergence of the
finite-dimensional distribution to a Gaussian variable, then we have to prove that
these distributions are tight. The first step is reached observing that, because of
Lemmas 2.1.1-2.1.5 and applying Theorem 0.3.1 (under assumption of high entropy
sampling designs), the quantity (for a fixed y ∈ R

√
N
F̂H(y)− FN (y)

SN (y)
weak−−−→ N(0, 1) (4.98)

Then to prove the convergence of the finite-dimensional distributions, result (4.98) is
extended to the multivariate case through the Cramer-Wold device. The tightness
part is obtained resorting to a practical criterion contained in Billingsley (1968)
p.133 and using the high entropy assumption.

Proof of Proposition 2.1.2. The proof of the weak convergence is obtained mim-
icking the proof of Proposition 1 in Conti (2014). We limit our selves to prove the
form of the covariance kernel 2.12. Define the quantities:

Zi,N (y) = I(yi≤y) − πi

N∑
i=1

(1− πi)I(yi≤y)

N∑
i=1

πi(1− πi)

S2
N (y) =

N∑
i=1

( 1
πi
− 1

)
Zi,N (y)2

Following the same approach as in Hájek (1964) it is clear that, pushing N to the
infinity, S2

N (y)/N gives the asymptotic variance of F̂HT (y). We have that

S2
N (y)
N

= B1,N +B2,N +B3,N
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where

B1,N = 1
N

N∑
i=1

( 1
πi
− 1

)
I(yi≤y)

B2,N = 1
N

N∑
i=1

πi(1− πi)


N∑
i=1

(1− πi)I(yi≤y)

N∑
i=1

πi(1− πi)


2

B3,N =− 2B2,N

By the strong law of large number and by the assumption πi = nxi/
∑N
i=1 xi =

fxi/x̄N where x̄N is the arithmetic mean of xis, we have that

B1,N →
(EP[X1]

f
K−1(y)− 1

)
F (y), a.s.− P (4.99)

B2,N → F (y)− f K+1(y)F (y)
EP[X] (4.100)

Hence,

S2
N (y)
N

→
(EP[X1]

f
K−1(y)− 1

)
F (y)− 1

d

(
F (y)− f K+1(y)F (y)

EP[X1]

)2
(4.101)

Because of the presence of the scaling factor
√
N in (4.101), instead of

√
n (that is

the scaling factor considered for the empirical process WHT
n ) the covariance kernel

must be rescaled by a factor f and hence, it has the form expressed in (2.12).

Proof of Proposition 2.2.2. We only have to prove that the asymptotic inde-
pendence of the two sequences of processes WH

n and WN . To this purpose, it is
sufficient to show the asymptotic independence of their finite-dimensional distribu-
tions. Letm, l be positive integers, and takem+l points y(1)

1 , . . . , y
(1)
m , y

(2)
1 , . . . , y

(2)
l .



Appendix 114

It is not difficult to see that

lim
N→∞
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n (y(1)

1 ) ≤ z(1)
1 , . . . ,WH
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W2(y(2)
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}
which proves the asserted asymptotic independence.

Proof of Proposition 2.2.4. As shown in proof of Proposition 6 in Conti (2014),
from Proposition 2.1.1 and the Skorokhod representation theorem (cfr. Billingsley
(1968)), it follows that

sup
y

∣∣∣F̂H(y)− FN (y)
∣∣∣→ 0 as N →∞ (4.102)

for a set of DN s with P -probability tending to 1, and for a set of (sequences of
Yis, Tijs having P-probability 1. In the second place, from the “classical” Glivenko-
Cantelli theorem, we have:

sup
y
|FH(y)− F (y)| → 0 as N →∞ (4.103)

for a set of (sequences of) Yis, Tijs having P-probability 1. Conclusion (2.33) easily
follows from (4.102) and (4.103).

Appendix 3.

Proof of Proposition 3.2.1. We want to show that Lemmas 2.1.1-2.1.5 hold for
the predicted population conditionally on the sample and on the original population:
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i) We want to show that d
∗
N

N
→ f − f2 EP[X2

1 ]
EP[X1]2 , a.s.− P

∗.

d∗N
N

= 1
N

∑
j∈U∗N

nx∗i∑
j∈U∗N

x∗j

1− nx∗i∑
j∈U∗N

x∗j

 = f − f2 1
Nx̄∗N

N∑
i=1

x∗2i (4.104)

where,

x∗i =



x1 with prob D1π
−1
1∑

UN

Dkπ
−1
k

x2 with prob D2π
−1
2∑

UN

Dkπ
−1
k

...
...

xN with prob DNπ
−1
N∑

UN

Dkπ
−1
k

(4.105)

and x̄∗N is the mean over the pseudo population U∗N of x∗i s. Clearly, condition-
ally on s,UN , are i.i.d random variables. In addition, observing that

EP∗ [x∗i ] =
∑N
i=1 xiDiπ

−1
i∑N

j=1Djπ
−1
j

in P−probability−−−−−−−−−−→
∑N
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a.s.−P−−−−→ EP[X1] <∞

(4.106)

EP∗ [x∗2i ] =
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i=1 x

2
iDiπ
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j
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(4.107)

using the weak law of large numbers we have that

∑N
i=1 x
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hence,
d∗N
N
→ f − f2 EP[X2

1

EP[X1]2 (4.110)

ii) For what concerns the equivalent of Lemmas (2.1.2) for the resampling, it is



Appendix 116

sufficient to notice that

1
N

N∑
i=1

1
π∗i

(
I(y∗i≤y) − F ∗N

)
=
∑N
i=1 x

∗
i

fNN

N∑
i=1

1
x∗i
I(y∗i≤y) − F ∗N

∑N
i=1 x

∗
i

fNN

N∑
i=1

1
x∗i
(4.111)

and observing that, by the laws of large numbers (and the consistency of the
Horvitz-Thompson estimator)

F ∗N
in P∗−probability−−−−−−−−−−−→ F̂H

in P−probability−−−−−−−−−−→ FN
a.s.−P−−−−→ F (4.112)

iii) The proof of the resampling version of 2.1.3 is obtained replacing these quan-
tities

Z∗i,N (y) =
(
I(y∗i≤y) − F ∗N

)
− π∗i

N∑
i=1

(1− π∗i )
(
I(y∗i≤y) − F ∗N

)
N∑
i=1

π∗i (1− π∗i )

S∗2N (y) =
N∑
i=1

(
1
π∗i
− 1

)
Z∗2i,N (y)

in the Proof of Proposition 2.1.2 and using (4.108), (4.109) and (4.112)

iv) We have to prove that

∀ε > 0,∃Nε such that |Z∗i,N | ≤ επ∗i S∗N (y), ∀N ≥ Nε (4.113)

By the resampling equivalent of Lemma 2.1.3 you have that ∀ε > 0 there exist
a Nε such that ∀N ≥ Nε it holds:

S∗2N
N

>

(EP[X1]
f

K−1(y)− 1
)
F (y)(1− F (y))− EP[X1]

f
(K−1(y)− EP[X−1

1 ])F (y)2

− f2

d

(
1− k+1(y)

EP[X1]

)2
F (y)2 − ε, (4.114)

|Z∗i,N | ≤1 + ε+ f

EP[X1]Xi
f(1−K+1(y)/EP[X1])

d
F (y). (4.115)
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From (4.114) the inequalities

επ∗i S
∗
N (y) ≥ ε

2
f

EP[X1]Xi

{(EP[X1]
f

K−1(y)− 1
)
F (y)(1− F (y)) (4.116)

−EP[X1]
f

(K−1(y)− EP[X−1
1 ])F (y)2 − f2

d

(
1− k+1(y)

EP[X1]

)2
F (y)2 − ε

} 1
2 √

N

(4.117)

≥
(

1 + ε+ f

EP[Xi]
Xi
f(1−K+1(y)/EP[X1])

d
F (y)

)
Nγ (4.118)

hold with 0 < γ < 1/2, ∀N ≥ Nε. Inequalities (4.115) (4.118) prove (4.113)

v) Is a consequence of iii) and iv).

The proof is completed observing that the sequences of y∗i s and x∗i s have P and
P∗-probability tending to 1 and P-probability equal to 1.
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Proof of Proposition 3.2.1. This Proposition is composed of 3 claims.

Claim 1 The proof is obtained mimicking the proof of Proposition 1 in Conti (2014).

Claim 2 The unconditional convergence is obtained resorting to Lemma 2.2.1, as well
as we have done for the original process WH

n

Claim 3 The asymptotic independence is obtained mimicking the proof of Proposition
2.2.2 given few lines above.

Proof of Proposition 3.3.1. Let

R∗n(z) = P ∗{Z∗n,m ≤ z|s,U∗N}

be the true (resampling) distribution function of Z∗n,m (defined in (3.25)). By the two
sided Dvoretzky-Kiefer-Wolfowitz inequality (for more see Dvoretzky et al. (1956)
and Massart (1990)), we have

Pr

{
sup
z∈R
|R̂∗n,M (z)−R∗n(z)| > ε

∣∣∣∣∣ s,UN
}
≤ 2e{−2Mε2}. (4.119)

Taking into account that by Glivenko-Cantelli theorem (see Theorem 19.1 Van der
Vaart (2000) p. 266)R∗n converges uniformly to Φ0,σ2

θ
, and you have that (3.29) holds

in probability. To obtain the almost sure convergence it is sufficient to use the Borel-
Cantelli first lemma. Convergence (3.30) follows by the Skorohod’s representation
Theorem, observing that Pr

{
R∗−1
n,M ≤ z

}
= R∗n,M (z).
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