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Introduction

Robust methods in statistics are mainly concerned with deviations from model as-

sumptions. As already pointed out in Huber (1981) and in Huber & Ronchetti

(2009) “these assumptions are not exactly true since they are just a mathematically

convenient rationalization of an often fuzzy knowledge or belief”. For that reason “a

minor error in the mathematical model should cause only a small error in the final

conclusions”. Nevertheless it is well known that many classical statistical procedures

are “excessively sensitive to seemingly minor deviations from the assumptions”.

All statistical methods based on the minimization of the average square loss may

suffer of lack of robustness. Illustrative examples of how outliers’ influence may

completely alter the final results in regression analysis and linear model context are

provided in Atkinson & Riani (2012). A presentation of classical multivariate tools’

robust counterparts is provided in Farcomeni & Greco (2015).

The whole dissertation is focused on robust clustering models and the outline of the

thesis is as follows.

Chapter 1 is focused on robust methods. Robust methods are aimed at increasing

the efficiency when contamination appears in the sample. Thus a general definition

of such (quite general) concept is required. To do so we give a brief account of

some kinds of contamination we can encounter in real data applications. Secondly

we introduce the “Spurious outliers model” (Gallegos & Ritter 2009a) which is the

cornerstone of the robust model based clustering models. Such model is aimed at

formalizing clustering problems when one has to deal with contaminated samples.

The assumption standing behind the “Spurious outliers model” is that two differ-

ent random mechanisms generate the data: one is assumed to generate the “clean”

part while the another one generates the contamination. This idea is actually very

common within robust models like the “Tukey-Huber model” which is introduced in

Subsection 1.2.2. Outliers’ recognition, especially in the multivariate case, plays a

key role and is not straightforward as the dimensionality of the data increases. An

overview of the most widely used (robust) methods for outliers detection is provided

within Section 1.3. Finally, in Section 1.4, we provide a non technical review of the

classical tools introduced in the Robust Statistics’ literature aimed at evaluating the
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robustness properties of a methodology.

Chapter 2 is focused on model based clustering methods and their robustness’ prop-

erties.

Cluster analysis, “the art of finding groups in the data” (Kaufman & Rousseeuw

1990), is one of the most widely used tools within the unsupervised learning context.

A very popular method is the k-means algorithm (MacQueen et al. 1967) which is

based on minimizing the Euclidean distance of each observation from the estimated

clusters’ centroids and therefore it is affected by lack of robustness. Indeed even a

single outlying observation may completely alter centroids’ estimation and simulta-

neously provoke a bias in the standard errors’ estimation. Cluster’s contours may be

inflated and the “real” underlying clusterwise structure might be completely hidden.

A first attempt of robustifying the k- means algorithm appeared in Cuesta-Albertos

et al. (1997), where a trimming step is inserted in the algorithm in order to avoid

the outliers’ exceeding influence.

It shall be noticed that k-means algorithm is efficient for detecting spherical ho-

moscedastic clusters. Whenever more flexible shapes are desired the procedure be-

comes inefficient. In order to overcome this problem Gaussian model based cluster-

ing methods should be adopted instead of k-means algorithm. An example, among

the other proposals described in Chapter 2, is the TCLUST methodology (Garćıa-

Escudero et al. 2008), which is the cornerstone of the thesis. Such methodology is

based on two main characteristics: trimming a fixed proportion of observations and

imposing a constraint on the estimates of the scatter matrices. As it will be ex-

plained in Chapter 2, trimming is used to protect the results from outliers’ influence

while the constraint is involved as spurious maximizers may completely spoil the

solution.

Chapter 3 and 4 are mainly focused on extending the TCLUST methodology.

In particular, in Chapter 3, we introduce a new contribution (compare Dotto et al.

2015 and Dotto et al. 2016b), based on the TCLUST approach, called reweighted

TCLUST or RTCLUST for the sake of brevity. The idea standing behind such

method is based on reweighting the observations initially flagged as outlying. This

is helpful both to gain efficiency in the parameters’ estimation process and to pro-

vide a reliable estimation of the true contamination level. Indeed, as the TCLUST

is based on trimming a fixed proportion of observations, a proper choice of the

trimming level is required. Such choice, especially in the applications, can be cum-

bersome. As it will be clarified later on, RTCLUST methodology allows the user to

overcome such problem. Indeed, in the RTCLUST approach the user is only required

to impose a high preventive trimming level. The procedure, by iterating through a

sequence of decreasing trimming levels, is aimed at reinserting the discarded obser-

vations at each step and provides more precise estimation of the parameters and a
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final estimation of the true contamination level α̂.

The theoretical properties of the methodology are studied in Section 3.6 and proved

in Appendix A.1, while, Section 3.7, contains a simulation study aimed at evaluating

the properties of the methodology and the advantages with respect to some other

robust (reweigthed and single step procedures).

Chapter 4 contains an extension of the TCLUST method for fuzzy linear cluster-

ing (Dotto et al. 2016a). Such contribution can be viewed as the extension of

Fritz et al. (2013a) for linear clustering problems, or, equivalently, as the exten-

sion of Garćıa-Escudero, Gordaliza, Mayo-Iscar & San Mart́ın (2010) to the fuzzy

clustering framework. Fuzzy clustering is also useful to deal with contamination.

Fuzziness is introduced to deal with overlapping between clusters and the presence

of bridge points, to be defined in Section 1.1. Indeed bridge points may arise in case

of overlapping between clusters and may completely alter the estimated cluster’s

parameters (i.e. the coefficients of a linear model in each cluster). By introducing

fuzziness such observations are suitably down weighted and the clusterwise struc-

ture can be correctly detected. On the other hand, robustness against gross outliers,

as in the TCLUST methodology, is guaranteed by trimming a fixed proportion of

observations. Additionally a simulation study, aimed at comparing the proposed

methodology with other proposals (both robust and non robust) is also provided in

Section 4.4.

Chapter 5 is entirely dedicated to real data applications of the proposed contribu-

tions. In particular, the RTCLUST method is applied to two different datasets. The

first one is the “Swiss Bank Note” dataset, a well known benchmark dataset for clus-

tering models, and to a dataset collected by Gallup Organization, which is, to our

knowledge, an original dataset, on which no other existing proposals have been ap-

plied yet. Section 5.3 contains an application of our fuzzy linear clustering proposal

to allometry data. In our opinion such dataset, already considered in the robust

linear clustering proposal appeared in Garćıa-Escudero, Gordaliza, Mayo-Iscar &

San Mart́ın (2010), is particularly useful to show the advantages of our proposed

methodology. Indeed allometric quantities are often linked by a linear relationship

but, at the same time, there may be overlap between different groups and outliers

may often appear due to errors in data registration.

Finally Chapter 6 contains the concluding remarks and the further directions of

research. In particular we wish to mention an ongoing work (Dotto & Farcomeni,

In preparation) in which we consider the possibility of implementing robust parsi-

monious Gaussian clustering models. Within the chapter, the algorithm is briefly

described and some illustrative examples are also provided. The potential advan-

tages of such proposals are the following. First of all, by considering the parsimo-

nious models introduced in Celeux & Govaert (1995), the user is able to impose the
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shape of the detected clusters, which often, in the applications, plays a key role.

Secondly, by constraining the shape of the detected clusters, the constraint on the

eigenvalue ratio can be avoided. This leads to the removal of a tuning parameter of

the procedure and, at the same time, allows the user to obtain affine equivariant esti-

mators. Finally, since the possibility of trimming a fixed proportion of observations

is allowed, then the procedure is also formally robust.



Chapter 1

Robust Statistics: An overview

1.1 Contamination: some general notions

As briefly stated in the introduction, robust methods aim to provide methodologies

which are resistant with respect to mild deviations from the assumed parametric

model. This implies that in the observed sample there are points which do not

follow the underlying distribution, that is to say, contaminating points or outliers.

Contamination is a very general notion that may be defined in different ways de-

pending on the context of application. Following Farcomeni & Greco (2015) we try

here to give a non-exhaustive account of some types of contamination that are likely

to be found in data analysis:

• Extreme values or gross outliers. Points unusually large (or small) with respect

to one or more dimensions

• Influential outliers or leverage points. Points that do not follow the pattern

shown by the majority of the data (i.e. points presenting negative correlation

between two dimensions when data exhibit positive one)

• Inliers. Corrupted points that lie very close to the sample mean deflating the

variance.

• Bridge points. Points lying very close to the boundaries of two clusters. These

points play a key role in cluster analysis. Indeed bridge points may be very

difficult to assign to one cluster and can be dangerous for parameters’ estima-

tion.

Generally speaking robust procedures are designed in order to be efficient in cases

where contamination appears in the sample. As it will be clarified in the further
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chapters, impartial trimming (Garćıa-Escudero et al. 2008) is a useful tool in order

to deal with contaminating points.

It must be pointed out that trimming is supposed to discard the “farthest” values

from the clusters’ centers. In case of overlap between clusters, bridge points may

appear in the sample and trimming may not work well. Thus a different framework

will be considered in Chapter 4. In particular we will consider the case of fuzzy

partitions, instead of hard partitions. Considering hard partitions in clustering is

equivalent to assign a binary weight to the i-th observation uij ∈ {0, 1} and uij = 1

if and only if observation i belongs to cluster j. On the other hand, in case of

fuzzy partitions uij ∈ [0, 1]. Thus, within the fuzzy framework, each observation is

simultaneously assigned to more than one cluster and the degree of membership of

observation i to each cluster j is given by its fuzzy weight uij.

1.2 Contamination: models

Robust methods aim to contain the exceeding influence of the outlying points. To do

so, the sample is generally supposed to come from two different probability density

functions: one generating the “clean part” of the data, and the other one, generally

called contaminating density, generating the contaminated part of the sample. In-

deed, especially within the multivariate context, identifying the contaminated part

of the data is necessary to be able to contain its influence by treating it in a different

way (e.g by trimming or downweighting).

1.2.1 Spurious outliers model

One of the most widely used models suitable for cluster analysis is the “spurious

outliers model”, introduced in Gallegos & Ritter (2005). Such model keeps in ac-

count the presence of two different densities: one is a mixture made of k components,

where each component of the mixture generates each cluster, and the other is a con-

taminating density, which generated the outlying component of the data. A more

detailed definition follows.

Definition 1. Let xi ∈ Rp be a sample point, f(·) the multivariate normal density,

µj and Σj be location and scatter parameters, respectively, of the j-th group. Addi-

tionally let gψi(·) be the contaminating density and K the number of groups. Then

the likelihood function associated to the spurious outliers model is given by:[
K∏
j=1

∏
i∈Rj

f(xi;µj; Σj)

][ ∏
i/∈Rj

gψi(xi)

]
(1.1)
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Additionally it must be pointed out that, in equation (1.1), R =
⋃K
j=1Rj repre-

sents the set of the clean observation and is such that #R = dn(1− α)e. As it will

be clarified in the further sections, only the clean data give a contribution to the

likelihood function, while, outliers give no contribution to function (1.1).

1.2.2 Tukey-Huber contaminated model

Spurious outliers model is an adaptation of the Tukey-Huber contamination1 model

(Tukey 1962 and Huber et al. 1964), which is defined as follows.

Definition 2. Let F be the model generating the data, generally assumed to

be Gaussian throughout the whole dissertation, G the contaminating model and

ε the proportion of observation arising from the contaminating model. The ε-

neighborhood or Tukey-Huber contaminated model is defined as:

P(F, ε) = {Fε|Fε = (1− ε)F (X; θ) + εG(X), θ ∈ Θ, X ∈ X} (1.2)

Generally speaking the more a statistics (output of a procedure) T (F ) is resistant

to contamination, the more is considered as robust.

Definitions 1 and 2 provide a very general formalization of the concept of con-

taminated models. Throughout this dissertation, whenever we refer to contaminated

data, we implicitly refer to a data generating mechanism outlined either in Definition

1 or in Definition 2.

1.3 Multivariate Robust Statistics

1.3.1 Introduction

Given a multivariate sample X = (x1, . . . , xn) with xi ∈ Rp and p ≥ 1, the sample

mean vector, µ̂, and the sample covariance matrix, Σ̂, are standard tools for de-

scribing location, variability and pairwise dependence in the data. Usage of such

quantities is also motivated by the fact that these are the MLE estimators of the

location and scale parameters at the multivariate Gaussian model. It shall be no-

ticed that the multinormal distributional assumption of the data is pretty common

although it may be too restrictive in some cases.

As in the univariate case, such quantities suffer of lack of robustness since even one

single observation may completely spoil the yielding estimates. Illustrative exam-

ples may be encountered, among the others, in Garćıa-Escudero et al. (2012). Thus
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the influence of outlying points needs to be controlled although, as the dimension-

ality of the data increases, outliers’ identification becomes an hard task. Indeed, as

visualization’s tools can not be applied, alternative methods are required.

1.3.2 Multivariate outliers

Let us suppose, that xi ∼ N (µ,Σ) where xi ∈ Rp and N (µ,Σ) stands for the

multivariate normal distribution with location parameter µ and scale parameter

Σ. Generally speaking outliers are observation placed “far” from the bulk of the

data. For that reason suitable methods for defining the distance from the bulk of

the data are required. Clearly the usage of the simple Euclidean distance from a

suitably defined center of the data is not enough since such value is affected by the

scale. The most commonly used distance measure in multivariate statistics is the

Mahalanobis distance:

dΣ(xi, µ) =
√

(xi − µ)TΣ−1(xi − µ) (1.3)

where in equation (1.3) xi ∈ Rp is a sample point, µ ∈ Rp is a location parameter

and Σ ∈ PD(Mpxp) is a scale parameter. It easy to note that if Σ = Ipxp then the

Mahalanobis distance is equivalent to the Euclidean distance while, on the other

hand, as p = 1 the Mahalanobis distance reduces to the well known z-score. Maha-

lanobis distance evaluation plays a key role in multivariate outliers’ detection: every

observation exceeding a pre-fixed value of the Mahalanobis distance may be flagged

as outlying. In order to fix this value one may refer to the asymptotic distribution

of the Mahalanobis distance which can be approximated:

d2
Σ(xi;µ) ∼ χ2

p (1.4)

Clearly formula (1.4) provides a very “naive” approximation and the true param-

eters of the distribution are supposed to be known. In order to improve (1.4),

Gnanadesikan & Kettenring (1972) proposed an exact distribution for the Maha-

lanobis distance as the MLE is plugged in instead of the true parameters’ values:

d2
S̄(xi; x̄) ∼ (n− 1)2

n
Beta

(
p

2
,
n− p− 1

2

)
(1.5)

Typical choices for cut off values are .975 or .99 that correspond to flagging as outly-

ing observation out of the boundaries of the 97.5% or 99% of the tolerance ellipsoid.

Clearly neither approximation (1.4) nor approximation (1.5) are efficient under con-

tamination. Indeed even one single outlier may completely alter the estimation of

x̄ and, simultaneously, inflate, or deflate as well, |Σ̂|. Possible consequences are
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swamping or masking effects. Swamping occurs when clean observations are flagged

as outlying. Such undesired effect may be caused by a deflation of |Σ̂| which may

lead to wrongly consider many observations “too far” from the center of the data

and thus, flagging them as outlying. On the contrary, as |Σ̂| is overestimated, out-

liers may not be recognized and then masking occurs.

For these reasons, some robust counterparts of the classical methods are required.

1.3.3 MCD approach

In order to protect the estimators from the influence of the “farthest” points,

Rousseeuw (1985) proposed to estimate the parameters using a subset containing

only the bulk of the data. The bulk of the data can be recognized as the subsam-

ple containing the n(1 − α) data points which yield the covariance matrix having

the minimum determinant. Once the subset containing the data with the mini-

mum determinant of the covariance matrix is identified, then the population mean

is estimated straightforwardly by using the sample mean of these points; while the

covariance matrix is estimated by multiplying the sample variance of these points

for a constant which guarantees the consistency of the estimator. More formally,

let α be the fixed proportion discarded and let zi be a binary vector such that∑
zi = n · (1− α). The MCD estimators are defined as:

µ̂MCD =
1∑
i zi

n∑
i=1

zixi (1.6)

Σ̂MCD =
c(p, α)∑
i zi − 1

n∑
i=1

(xi − µ̂MCD)(xi − µ̂MCD)T zi (1.7)

where the constant term in equation (1.7) is a factor which makes the MCD consis-

tent at the Normal model by inflating the estimated covariance matrix. Its explicit

formula is the following:

c(p, α) =
1− α

Fχ2
p+2

(qp,1−α)
(1.8)

More theoretical details on this argument can be found in Liu et al. (1999).

The most popular algorithm for the MCD is the FASTMCD algorithm, proposed in

Rousseeuw & van Driessen (1999), which iterates the following steps:

Algorithm 1.

1. Let θ̂0 = (µ̂0, Σ̂0) an initial estimate of the parameters obtained by sampling

randomly a subset of observations having size n · (1− α)
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2. Calculate the robust distances d0i = d(xi, θ̂0)

3. Sort the distances in non increasing order and take the subset of size n ·(1−α)

having the lowest values

4. Update the estimate of the parameter θ̂1 = (µ̂1, Σ̂1)

5. Iterate steps 2-4 up to convergence

It is straightforward to see that at each iteration of the algorithm the determinant

of the estimated scatter matrix decreases, since, at each step, the observations “clos-

est” to each other are inserted in the subsample. By initializing the algorithm from

different starting points the global optimum for the objective function (the deter-

minant of the scatter matrix) is more likely to be reached. Usually the algorithm is

implemented by initializing it 500 times and typical values for α are either 0.25 or

0.50.

Despite computational issues, the MCD algorithm is one of the most widely used

approaches to provide robust estimates in a multivariate context; additionally there

are interesting asymptotic properties (Butler et al. 1993, in Croux & Haesbroeck

1999 and Cator et al. 2012). From the robustness’ point of view it can be shown

that the asymptotic breakdown point (to be better defined in the further sections)

is often equal to the chosen trimming rate. As it will be clarified later on, the maxi-

mum value for the breakdown point that can be reached by an estimator is 0.5 which

implies that, if α = 0.5, then the MCD estimator is the affine equivariant estimator

having the highest possible value for the asymptotic breakdown point.

1.3.4 Reweighted MCD approach

Robustness may cause loss of efficiency since part of the observations are generally

discarded. Indeed as α is fixed too high, then too many observations are discarded,

provoking a loss of efficiency in the parameter estimation. For that reason, the

MCD estimator may be reweighted to increase of efficiency. This leads to a new

estimator: the reweighted MCD, usually called RMCD. The reweighting process

works as follows:

Algorithm 2.

1. For each i = 1, . . . , n compute the distances di = dΣ̂MCD
(xi, µ̂MCD) from the

MCD estimators defined in (1.6) and (1.7)

2. Set zi = 1 if the value of di is below a fixed threshold and zi = 0 otherwise.
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3. Update the estimation using formulas (1.6) and (1.7) to update the estimates.

A common choice for fixing the threshold to be used in the step 1 of Algorithm

2 is the α′ quantile of the χ2
p distribution. Alternatively a better approximation is

provided in Hardin & Rocke (2004) where a scaled F distribution is proposed:

d2
Σ̂MCD

(xi; µ̂MCD) ∼ pm

(m− p− 1)
Fp,m−p+1 (1.9)

In equation (1.9) m is a constant whose expression can be found in Hardin & Rocke

(2005). It shall be pointed out that approximation (1.9) is optimal for MCD esti-

mators, while an suitable approximation for RMCD estimators, provided in Cerioli

(2010), is given by:

d2
Σ̂RMCD

(xi; µ̂RMCD) ∼ (
∑
zi − 1)2∑
zi

Beta

(
p

2
,

∑
zi − p− 1

2

)
(1.10)

1.3.5 Alternative Approaches

Another popular robust estimator has been proposed in Rousseeuw (1984) and in

Rousseeuw (1985) where the Minimum Volume Ellipsoid (MVE) estimator has been

introduced. Operatively speaking, the MVE estimator looks for the ellipsoid of the

minimum volume that contains n(1 − α) observations. It shall be noticed that the

idea of this estimator is pretty similar to the idea standing behind the MCD estima-

tors. An algorithmic method for computing the minimum volume ellipsoid has been

proposed Van Aelst & Rousseeuw (2009). Nevertheless, due to the efficiency of the

fast MCD algorithm (Algorithm 1), this last estimator has become much more pop-

ular than the MVE estimator so far. MCD and MVE are based on hard rejection

rules, following the “impartial trimming principle”, explained in Garćıa-Escudero

et al. (2008) and in Cuesta-Albertos et al. (2008a). Another method based on trim-

ming is the forward search approach, Atkinson et al. (2004) and Atkinson et al.

(2004), which is based on the idea of starting from a subset of clean observations

and iteratively looking for the best sets of increasing size based on the estimates at

the previous steps.

Alternative robust approaches are mainly based on underweighting outlying obser-

vations instead of trimming them. Among the others, we recall methodologies in

Donoho (1982) and Stahel (1981), where the idea is to assign a weight to each obser-

vation depending on its “outlyingness” measured by using a univariate projection

of each observation. To our knowledge, an application of these methodologies for

clustering has not been proposed yet.



1.4 Robust Statistics: some useful tools 12

1.4 Robust Statistics: some useful tools

A brief review of how to evaluate the robustness of a procedure follows. It must be

pointed out that some tools require technical arguments and a direct usage within

the robust clustering context is not straightforward. These concepts will be briefly

mentioned within this chapter and recalled, as required, along the whole thesis.

1.4.1 The influence function and some related quantities

Influence function: definition

In order to describe the effect of the departure from the assumed model F within

a neighborhood Hampel (1974) and Huber (1981) introduced the idea of influence

function. From a mathematical point of view the influence function is defined as

the Gateaux derivative of the functional T (F ), with F ∈ F along the direction of

x. More precisely:

Definition 3. Let Fε = (1− ε)F + εδx where δx is Dirac delta random variable de-

generate in x. The influence function for an infinitesimal point mass contamination

ε, at location x, at the model F , is given by:

IF (x;T, F ) = lim
ε→0

T (Fε)− T (F )

ε
=

∂

∂ε
T (Fε)|ε=0 (1.11)

The influence function provides a global overview of the robustness properties of

an estimator as Gateaux derivative’s computation at location x aims at measuring

the effect that a contaminating point x may have on an estimator T (F ). Whenever

such effect is bounded we its yields that its influence function is bounded as well and

the estimator can be considered robust. As an illustrative example let us consider

the univariate standard Gaussian model. Let us also consider the sample mean and

the sample median as estimators of the location parameter. Their influence function

is given, respectively, by:

IF (x; µ̂,Φ) = x (1.12)

IF (x;Med,Φ) =

√
π

2
sign(x) (1.13)

It is clear from equations (1.12) and (1.13) that the influence function associated to

the sample mean is unbounded while it becomes bounded in the case of the median.

This reflects the well known properties of such estimators. Indeed the influence that

a single point may have on the sample mean estimator is unbounded, while, in the

case of the median, the estimator moves in the direction of the outlier in a bounded

way.
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The gross error sensitivity

As briefly stated in the previous paragraph, evaluation of the boundedness of the

influence function of an estimator is pretty important in order to assess its robustness

properties. Mathematically speaking, the boundedness of the influence function is

evaluated by computing the gross error sensitivity, defined as the upper bound of

the influence function:

γ∗ = sup
x∈Rp
||IF (x;T, F )|| (1.14)

Equation (1.14) allows to measure the highest influence that a fixed size contami-

nation may have on the value of an estimator. A bounded value of γ∗ implies that

an estimator is influenced in a “bounded” way by any type of contamination. It is

indeed a very important property from the robustness point of view and, as a re-

sult, estimators having bounded values of γ∗ are formally robust. They are usually

referred to B (bias) - robust estimators.

Local shift sensitivity

Data are often slightly changed (due to inaccuracies in data registration or to opera-

tions like rounding), and in terms of robustness it is interesting to measure the effect

that such changes may have on the chosen estimator. We recall here the definition

of local shift sensitivity given by:

λ∗ = sup
x 6=y;x,y,∈Rp

||IF (x;T, F )− IF (y;T, F )||
||x− y||

(1.15)

Equation (1.15) describes the effect of shifting an observation x to a close point y.

It is straightforward to see that as y = x + ε with ε → 0 we go back to equation

(1.11).

1.4.2 The breakdown point

Introduction

The notion of breakdown point is related with the proportion of observations that

can be arbitrarily replaced until an estimator (an output of a procedure) breaks

down. Roughly speaking, the higher is the breakdown point, the higher is the ro-

bustness of the given procedure. Formal definition of such concept depends strictly

on the application of interest. There follow some very general definitions of break-

down point and the formalization proposed in Gallegos & Ritter (2009a) which is

suitable to evaluate the robustness of a clustering method.
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Finite sample breakdown point and its generalizations

The finite sample breakdown point, also known as individual breakdown point (Ruwet

et al. 2013), provides a data dependent definition of the concept of the breakdown

point associated to a given dataset.

Definition 4. Let Xr ∈ Xr where Xr is the collection of all datasets Xr of size

having (n − r) elements in common with the original data Xn. The finite sample

breakdown point is defined as:

εi = max

{
r

n
: sup
Xr
||T (X)− T (Xr)|| ∈ K

}
(1.16)

where a K is a bounded and closed set that does not contain the boundary points

of the parameter space.

In order to overcome the dependency from the data Donoho & Huber (1983)

introduced the notion of universal breakdown point.

Definition 5. Let D be the set of all datasets Xn ∈ Rp in general position. The

universal breakdown point is defined as:

ε(u) = max
Xn∈D

ε(i) (1.17)

It shall be noticed that Definition 5 generalizes Definition 4 since the class con-

taining all the dataset Xn ∈ Rp is considered in computing the breakdown point

instead of considering a single dataset Xn.

Restricted breakdown point

As noticed in Ruwet et al. (2013), according to Definitions 4 and 5, a set of estimators

obtained by a clustering model may have 0 value for the breakdown point despite

their robustness. Indeed “some datasets can hardly be clustered in k clusters simply

because the do not come from a k-component model and this makes any clustering

method have a 0 value for the universal breakdown point” (Ruwet et al. 2013). For

that reason, Gallegos & Ritter (2005) introduced the notion of restricted breakdown

point with respect to some subclass K ⊂ D of admissible datasets. In particular,

within cluster analysis, the condition of “well clustered” datasets, proposed in the

reference above, is kept in account. The restricted breakdown point is defined as

follows.
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Definition 6. Let D be the set of all datasets Xn ∈ Rp in general position and let

K be a subset of D containing the datasets for which condition of “well clustered”

data holds. Then the restricted breakdown point is defined as

ε(r) = max
Xn∈K

ε(i) (1.18)

Definition 6 is generally the one adopted to assess the robustness of a clustering

model. Compare as an example Ruwet et al. (2013) where an explicit computation

of the tclust method is provided.

More details may be encountered, besides the reference provided so far, in Huber

(1981), in Huber & Ronchetti (2009), where the dissertation on the breakdown point

has been hugely extended, and in Ruckdeschel & Horbenko (2012).





Chapter 2

Robust Clustering Methods

2.1 Introduction and state of art

Generally speaking “clusters may be thought as regions of high density separated

from other such regions by regions of low density”(Hartigan 1975). Cluster anal-

ysis aims to identify a prefixed number of clusters within a given dataset. To do

so, observations are usually grouped around suitably defined centroids following the

aim of maximizing the heterogeneity between the groups and minimizing the homo-

geneity within the groups. Clusters’ centroids are either observations or quantities,

computed on clusters’ observations, somehow representative of the whole cluster.

Detailed reviews on clustering methods are provided, among the others, in Atkinson

& Riani (2012) and in Hennig et al. (2015), or in Farcomeni & Greco (2015) and

in Ritter (2014) for robust methods. Additionally alternative approaches based on

grouping around different types of structures have been proposed so far, as a dif-

ferent notion of cluster may be of interest. In particular, one may be interested in

clustering around linear structures or other type of manifolds as in Garćıa-Escudero

et al. (2009), in Garćıa-Escudero, Gordaliza, Mayo-Iscar & San Mart́ın (2010) and

in Hennig (2003).

Among the different approaches to cluster analysis we may distinguish between

distance based methods and model based methods. In the latter approach the as-

sumption of an underlying population model is needed. In our opinion the latter

approach has many advantages for mainly two reasons: first more flexible clusters’

shapes are allowed. Secondly, as we are referring to a specified (and flexible as pos-

sible) statistical model, further inferential properties of the clustering method can

be studied and assessed. Finally it must be pointed out that many distance based

methods aim at optimizing fixed quantities which are directly connected with prob-
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abilistic assumptions. As an example consider the k-means algorithm (MacQueen

et al. 1967). This clustering method aims to minimize the Euclidean distance from

k centroids which corresponds, from a probabilistic point of view, to assume that

the data arise from k spherical homoscedastic multinormal populations. As in the

case of the k means, oftentimes probabilistic assumptions are implicitly done even

in cases where an underlying model is not properly formalized.

The outline of the chapter is as follows. Firstly we introduce the most relevant con-

tributions related with robust clustering models. We start from the k-means’ robust

counterpart, the trimmed k-means (Cuesta-Albertos et al. 1997), and then, in sec-

tion 2.2, we introduce more sophisticated methods which are able to deal with data

divided in heterogeneous clusters. In section 2.3, we present the tclust method

(Garćıa-Escudero et al. 2008) and the open issues related with this methodology.

2.1.1 Trimmed k-means

One of the most widely adopted approach for cluster analysis is the k-means al-

gorithm. Given a sample {x1, . . . , xn} with xi ∈ Rp, k-means algorithm aims to

minimize the following quantity:

inf
m1,...,mk∈Rp

n∑
i=1

min
j=1,...,k

||xi −mj||2 (2.1)

It shall be noticed that the optimization problem introduced in formula (2.1) is

based on minimizing a least square criterium and therefore, every solution to (2.1)

may be affected by lack of robustness (Garćıa-Escudero, Gordaliza, Matrán & Mayo-

Iscar 2010). A naive way to robustify the solution of optimization (2.1) is to replace

the sample mean with the central observation of each cluster. This is, indeed, the

strategy that led to formalize the PAM (partitioning around medoids) algorithm.

Nevertheless, as it is proved in Garćıa-Escudero & Gordaliza (1999), PAM algo-

rithm only provide a mild robustification. It must be pointed out that the influence

function of the estimators of the centers is bounded, which implies that a single

observation has a bounded influence on the centers’ estimation, but, on the other

hand, the associated break down point is equal to 0 even in the cases where the

condition of “well clustered datasets” given in Ruwet et al. (2013) holds. This fact

implies that, although the influence of a single observation is bounded, even one

single observation placed very far can completely spoil the solution. Indeed, as a

very far observation is inserted within the sample, the centers’ estimation moves in

the direction of such observation, and thus, cluster’s contours may be inflated in an

uncontrolled way. As a consequence the true underlying clusterwise structure may

be completely hidden and the procedure completely breaks.
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Following the ideas behind the MCD estimators, Cuesta-Albertos et al. (1997) pro-

posed an embedded trimming step within the k-means algorithm in order to reach

a break down point equal to α, the prefixed trimming level. The methodology aims

to find the set of centroids optimizing the following minimization problem:

inf
Y

inf
m1,...,mk

n∑
xI∈Y

min
j=1,2...,k

||xi −mj||2 (2.2)

It shall be noticed that the squared distance from the estimated centroids is calcu-

lated only for the observations included in Y , where Y is a subset of the sample

having size equal to dn · (1 − α)e and α is the proportion of observations to be

trimmed off.

Despite its good properties, trimmed k-means has serious drawbacks when the as-

sumption of homoscedasticity and sphericity of the clusters does not hold. Mini-

mization of (2.2) is equivalent to maximizing the loglikelihood function associated

with a trimmed mixture of k spherical multinormal population with common unit

variances.

2.2 Heterogeneus robust clustering based on trim-

ming

2.2.1 Formalization of the problem

As briefly stated in the previous section trimmed k-means algorithm is optimal when-

ever spherical groups are supposed. On the other hand, as data strongly depart from

this assumption, the method potentially fails and yields wrong classification results.

The adaptation of trimmed k-means for heterogeneous groups detection leads to

the formulation of the “spurious outliers model”, introduced in Gallegos (2002) and

in Gallegos & Ritter (2005) and briefly outlined in Chapter 1 , Definition 2, and

whose likelihood function is given in formula (1.1) and recalled in formula (2.9).

Spurious outliers can be viewed as an extension of the Tukey-Huber contaminating

model within the clustering context, while, on the other hand, the resulting esti-

mators are an adaptation of the MCD philosophy for clustering models. The last

term of equation (1.1) is the likelihood function associated to the noise component

of the dataset. The maximum likelihood estimator of (1.1) exists if and only if the

following condition on the contaminating density holds:

arg max
R

max
µj ,Σj

k∏
j=1

∏
i∈Rj

f(xi;µj,Σj) ⊆ arg max
R

∏
i/∈∪kj=1Rj

gψ(xi) (2.3)
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As pointed out in Farcomeni (2014a), condition (2.3) states that identification of

clean observations by maximization of the right hand term of (2.3) identifies the same

observations as would identification of contaminated observations by maximizing the

part of the likelihood corresponding to the noise. Thus, once clean observations are

identified by maximizing the right hand term of (2.3), then the contaminated entries

are optimally identified.

Additionally, if the condition (2.3) holds, the MLE of the likelihood function (1.1)

has a simple representation and, its maximization reduces to the maximization of:

n∑
j=1

∑
i∈Rj

log f(xi;µj,Σj) (2.4)

keeping the constraint # ∪kj=1 Rj = dn(1 − α)e. The MLE of gψ(xi) is in fact the

Dirac’s delta.

Additionally it shall be noticed that minimizing (2.4) in the case k = 1 is equivalent

to perform the minimization that leads to the MCD estimators. In order to maximize

(2.4) an iterative procedure, which will be described in the further subsection, is

required.

2.2.2 A “naive” extension of the fast MCD algorithm

As pointed out in Garćıa-Escudero, Gordaliza, Matrán & Mayo-Iscar (2010) maxi-

mization of (2.4) requires an algorithm that is a “naive” extension of the fast MCD

algorithm outlined in Chapter 1. The algorithm iterates the following steps:

Algorithm 3.

1. Initialization: Initialize randomly k initial centers m1, . . . ,mk and k covariance

matrices Σ1, . . . ,Σk

2. Concentration steps:

2.1 Keep the set H containing the dn(1− α)e observations closest (w.r.t the

Mahalanobis distance) to the estimated centroids m1, . . . ,mk.

2.2 For each i = 1 . . . n obtain the clusters’ assignments by computing the

minimization infj d
2
Σj

(xi;mj).

2.3 Update the estimates of the clusters’ centers m1, . . . ,mk and Σ1, . . . ,Σk.

3. Repeat steps 2.1 - 2.3 until there are no improvements in equation (2.4).
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The iterative procedure is an EM-type algorithm whose convergence to a local

maximum has been proved in Dempster et al. (1977). To be more precise, it is a

Classification-EM algorithm (Celeux & Govaert 1992). Indeed, in the EM algorithm

the a posteriori probabilities of each observation to belong to each cluster are kept in

account. Such estimated probabilities play the role of weighting the yielding param-

eters’ estimations. This is a very common algorithm within the mixture modelling

context. As in clustering context one may be interested in fully assigning an obser-

vation to each group, crispy weights, computed by the a posteriori probabilities are

generally considered.

As a final remark it must be pointed out that equation (2.4) is unbounded. Thus

there can be spurious maximizers of the objective function which can completely

spoil the solution, as we now detail.

2.2.3 Spurious maximizers

Maximization of (2.4) is a mathematically ill-posed problem since the objective

function is unbounded. Such problem, noticed in many contributions (Maronna &

Jacovkis (1974) among the others), still remains an open issue within the mixture

modelling and model based clustering literature. Nowadays, in order to avoid prob-

lems related with the unboundedness of the objective function (2.4), the optimiza-

tion is performed under proper constraints. These generally involve the estimated

scatter matrices. Depending on the context of application, there are different con-

straints that have been proposed so far. Some examples, to be better defined in

the further sections are the eigenvalue ratio constraint or the the Hathaway-Dennis-

Beale-Thompson constraint.

Generally speaking, spurious maximizers can be defined as a set of points either too

close among each other or lying in a lower-dimensional space. As a consequence,

the covariance matrix associated to these points is almost singular, its determinant

is very close to 0 and thus the objective function tends to infinity. As a consequence

on the final results the clusterwise structure of the data is hidden and the set of such

observations is identified in the final output as one of the detected groups. Figure

2.1 reports the classification’s results of a clustering procedure when k = 2. Panel

(a) shows the results as no constraint has been imposed. As a consequence, a set

of collinear points, which yield variance equal to 0 for one component, is recognized

as a cluster and the real underlying clusterwise structure is not properly recognized

by the model. On the other hand, in panel (b), we plotted the results obtained by

keeping constraining the estimated clusters’ variances: the two clusters that clearly

appear in the data are correctly recognized by the procedure and the observations
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Figure 2.1: Comparison between constrained and unconstrained clustering.

look well classified.

2.2.4 Constraint based on the determinant

Unit determinant covariance matrix

In order to avoid that any determinant of the estimated scatter matrices potentially

goes to 0, Gallegos (2002) proposed to factorize the group covariance matrix Σj as

Σj = σjUj where Uj = Σj/|Σj|1/p. In this factorization Uj is the group “shape”

matrix and it is such that its determinant is equal to 1, while σj is the group scale

parameter. The resulting clustering algorithm iterates within the same steps of

Algorithm 3 but a modified computation of the Mahalanobis distance is used in the

Concentration step. The modified Mahalanobis distance is given by:

d̃Σj(x,mj) = (x−mj)
T (Uj)

−1(x−mj) (2.5)

This clustering method of course is able to avoid the undesired effects of the spurious

maximizers but, on the other hand, solutions containing groups with equal scales

are favored.
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Homogeneity

Another proposal can be found in Gallegos & Ritter (2005) where the same unknown

scatter matrix is imposed as the covariance matrix of each group. As in the pre-

viously presented cases, we refer to and adaptation of the spurious outliers model,

whose likelihood function is given by:

[
K∏
j=1

∏
i∈Rj

f(xi;µj,Σ)

][ ∏
i/∈Rj

gψi(xi)

]
(2.6)

It shall be noticed that in equation (2.6) the scatter component does not depend on

the estimated clusters. This method avoids the effect of the spurious maximizers

but, clearly, fails in presence of high heterogeneity between groups.

2.2.5 Hathaway-Dennis-Beale-Thompson constraints

A further proposal appeared in Gallegos & Ritter (2009b). This is based on con-

straining the Hathaway-Dennis-Beale-Thompson (HDBT) ratio of the k estimated

covariance matrices. This is an adaptation of the constraint proposed in Hathaway

(1985) for the multivariate case and is defined as follows.

Definition 7. Given a set of estimated covariance matrices Σ1 . . . ,Σk the HDBT

ratio is defined as the maximum value c such that the following holds:

Σj � cΣl for j ≤ 1, l ≤ k (2.7)

where the operator � in equation (2.7) recalls the Löwner ordering on the space of

the symmetric matrices.

It shall be noticed that, as c is imposed to be equal to 1, then homoscedasticity

is imposed, while, as c tends to 0 more degrees of freedom in the scatter estima-

tion are allowed. Furthermore Gallegos & Ritter (2009b) showed that an explicit

computation of the HDBT ratio is given by:

min
j,k,l

λk
(
Σ
−1/2
l ΣjΣ

−1/2
l

)
(2.8)

where λk(Σl) the k-th eigenvalue of the matrix Σl. Operatively speaking the re-

sulting algorithm, which iterates exactly the same steps of Algorithm 3, does not

yield constrained solutions. Indeed, as pointed out in Fritz et al. (2013b) “the au-

thors propose to obtain all possible local maxima of the trimmed likelihood and,

afterwards, the ratio in (2.7) and the value of the trimmed likelihood for these local
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maxima are monitored in order to choose sensible candidate clustering solutions”.

Usage of such approach has the advantage that affine equivariance of the estimators

is preserved. On the other hand finding an optimal combination of local maxima of

the objective function and a “suitable” value for the HDBT ratio is not straightfor-

ward even considering the heuristics proposed in Gallegos & Ritter (2009b).

2.3 The TCLUST methodology

2.3.1 Introduction

The tclust methodology (Garćıa-Escudero et al. 2008) is a robust model based

clustering method designed with the aim of fitting clusters with different scatters

and different weights. The robustness of the method is guaranteed by the fact that

a fixed proportion of observations α is trimmed. Additionally, the methodology is

designed to deal with collinear points that may arise in a given sample. Indeed,

the effect of the spurious maximizers is avoided by constraining the ratio between

the highest and the lowest eigenvalues of the estimated scatter matrices. Usage of

such constraint (ER, eigenvalue ratio) guarantees the consistency to the population

parameters. A formal proof of this statement is provided in Garćıa-Escudero et al.

(2008).

This methodology has been implemented in the open source software R, within the

tclust package (Fritz et al. 2012a). A formal study of its robustness properties

can be found in Ruwet et al. (2012) and in Ruwet et al. (2013). Nowadays many

extensions of such method have been proposed. In particular, the method has been

extended for linear clustering problems in Garćıa-Escudero et al. (2009) and in

Garćıa-Escudero, Gordaliza, Mayo-Iscar & San Mart́ın (2010), for fuzzy methods in

Fritz et al. (2013a), for achieving robustness against entry-wise outliers in Farcomeni

(2014a), and for double clustering methods in Farcomeni (2009).

2.3.2 Mathematical formulation

The objective function of the tclust is given by:

[
K∏
j=1

∏
i∈Rj

πjf(xi;µj; Σj)

][ ∏
i/∈Rj

gψi(xi)

]
(2.9)
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An equivalent formulation of such objective function that can be used whenever

condition (2.3) holds is given by:

n∑
j=1

∑
i∈Rj

log(πjf(xi;µj,Σj)) (2.10)

It shall be noticed that difference between (2.4) and (2.9) is that the latter include

clusters weights πj, and thus a bias toward equal sized clusters is avoided.

Additionally the maximization is performed under the so called eigenvalue ratio

(ER) constraint defined as:

Mn

mn

=
maxj=1,2,...,K maxl=1,2,...,p λl(Σj)

minj=1,2,...,K minl=1,2,...,p λl(Σj)
(2.11)

where, in formula (2.11), λl(Σj) are the eigenvalues of the scatter matrix Σj for

j = 1, 2, . . . , K and for l = 1, 2, . . . , p and c is a fixed constant ≥ 1. Usage of

the constraint defined in (2.11) has two main advantages: a feasible algorithmic

implementation is available (compare Garćıa-Escudero et al. (2015) for details) and

it has an easy geometric interpretation as well. Indeed, as c = 1 spherical clusters

are imposed, while, as c increases, more differently shaped clusters are allowed in the

final output of the procedure. Although the estimators obtained under constraint

(2.11) are not affine equivariant, imposing high values for the constant c allows

to obtain “almost” affine equivariant estimators. Finally ER constraint has strong

relationship with the HBDT constraint. Indeed it can proved that (Ruwet et al.

2012), if ER holds, then also HDBT holds but the converse is not true. Additionally,

in the afore mentioned reference is proved, in terms of influence function, that

TCLUST method is robust under more general conditions, which can be veiwed,

as authors commented in Ruwet et al. (2013) as “compensation for the loss of affine

equivariance”.

2.3.3 The algorithm

Clearly maximization of (2.9) cannot be performed analytically, and thus an iterative

procedure is required. In particular the tclust algorithm is given by the following

steps:

Algorithm 4.

1. Initialization: Initialize randomly k initial centers m0
1, . . . ,m

0
k, k covariance

matrices Σ0
1, . . . ,Σ

0
k and k values p0

1, . . . , p
0
k or the clusters’ weights.

2. Concentration steps:
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2.1 Keep the set H containing the dn(1− α)e observations closest (w.r.t the

Mahalanobis distance) to the estimated centroids m1, . . . ,mk.

2.2 For each i = 1 . . . n obtain the clusters’ assignments by computing the

minimization minj d
2
Σj

(xi;mj).

2.3 Update the estimates of the clusters’ centers m1, . . . ,mk, clusters’ scat-

ter matrices Σ1, . . . ,Σk, and clusters’ weights p1, . . . , pk. In the scatter

matrices’s estimation apply the algorithm proposed in Garćıa-Escudero

et al. (2015) to obtain variances obeying constraint (2.11).

3. Repeat Steps 2.1 - 2.3 until there are no improvements in equation (2.9).

4. Draw several different random starting values and recompute the values of the

objective function. Keep the configuration yielding the maximal value of (2.9)

as the final output of the algorithm.

It shall be noticed that, as we are referring to an impartial trimming based

method, only the fixed proportion of dn · (1 − α)e observations contribute to the

parameters’estimation, while the remaining are discarded.

2.3.4 Open Issues

Simulations and theoretical results have shown that the TCLUST method is robust

and gives efficient estimations both in terms of the clusters’ parameters and in terms

of classification’s results. Nevertheless, as often times happens for robust methods,

tuning of the procedure is required and is not automatic. Reasonable values” for

the trimming level α and for the constraint on the eigenvalues c are required.

Fixing the trimming level

All trimming based methods, including the TCLUST, require to fix in advance α,

the proportion of observations to be discarded. The loss in fixing a trimming level α

is not symmetric: if it is too low, outliers can completely spoil the solution. If it is

too high, a loss of efficiency (which is usually less problematic than the first scenario)

is incurred. We now outline some heuristic proposals to fix such tuning parameter.

Fritz et al. (2012a) introduced the ctl curves, that will be used, within this thesis

in Chapter 4. ctl curves are helpful for the user to find the number of underlying

groups have an idea of the amount of contamination. Operatively speaking, by

looking at the plot of the ctl curves the user is able to monitor the evolution of the
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objective function as the imposed trimming level and the number of clusters are in-

creased. The idea is that once the outlying component of the data is trimmed, then

the objective function shows a more stable trend for increasing values of α. Useful

guidelines on the interpretation of this plot are also provided in Garćıa-Escudero

et al. (2015). Another heuristic method for fixing reasonable values of α is proposed

in Farcomeni & Greco (2015) where the G-statistics has been introduced.

Our proposal, to be better explained within Chapter 3, is to use an iterative method

based on reweighting. The idea is to fix a high initial trimming level α0. Then

reweighting is based on flagging as outlying observations whose Mahalanobis dis-

tance is above the opportune quantile of the χ2 distribution, and updating the

parameters. The procedure is stopped as soon as the trimming level and the pro-

portion of observations discarded by the outlier test coincide. As it can be seen from

the simulation study, such method does not need much tuning, can resist to high

proportion of outliers and is efficient even with little or no contamination.

Fixing reasonable value for the ER constraint

Fixing a proper constraint c is also cumbersome. There are indeed two important

facts that should be kept in mind:

1. Whenever too “restrictive” values are imposed, one may incur in solution

biased towards spherical clusters. On the contrary, as too “high values” are

imposed, the risk of considering spurious solutions increases.

2. Imposition of constraint (2.11) leads to the loss of the affine equivariance of

the estimators (although this problem may be overcome by imposing “very”

high values)

In Garćıa-Escudero et al. (2015) appeared a contribution mainly focused on fixing

reasonable values for the constant c. In the afore mentioned reference the authors

propose to monitor the evolution of the objective function obtained as different

values of c are imposed. Indeed, is not necessary to be really precise in fixing such

constant. A huge range of values of c is suitable for avoiding the effect of the spurious

maximizers and simultaneously contain the bias in the scatters’ estimations.

The idea of using the geometric constraints outlined in Celeux & Govaert (1995),

instead of the ER, is an ongoing work that will be briefely outlined in the section

containing the further direction of research. Depending on the imposed constraint

different properties in terms of the affine equivariance of the estimators can be

obtained. Additionally these constraints have a direct geometric interpretability.
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Other clustering methods

All the robust clustering methods mentioned so far are based on trimming. However

there are several interesting robust proposals which are not based on trimming.

As usual, let us assume that the dataset is divided in k groups. Non trimming

approaches are based on fitting a mixture of k Gaussian components and accom-

modating the “noisy” part of the data in a component generated by a different

probability distribution.

Banfield & Raftery (1993) and Fraley & Raftery (1998) propose to fit a mixtures of

k Gaussian distributions for the set of the “clean” data and a uniform distribution

defined on the convex hull of the data for the noisy component of the dataset. Later

on Coretto & Hennig (2013) provided a more robust approach. This is based on the

idea of classifying the data as noisy whenever they have the density, for all Gaussian

components, with values smaller than a fixed constant c. Such method is robust and

several theoretical properties have been proved in Coretto & Hennig (2013), but tun-

ing is cumbersome. Indeed fixing and interpreting the values of the afore mentioned

threshold for the “contaminating” Gaussian density is not straightforward. Some

guidelines are provided in Coretto & Hennig (in press 2016). Additionally robust

clustering models can be implemented by adapting the “forward search” to the clus-

tering context. Indeed, the plots outlined in Atkinson et al. (2004) provide some

heuristic useful to both determine the number of underlying groups in the dataset

and recognize the farthest observations.



Chapter 3

Reweighting in Robust Clustering

3.1 Introduction

Within this chapter we propose an iterative method targeted at simultaneously in-

creasing the efficiency and estimating the proportion of contamination in a dataset.

The main part of the contents of this Chapter can be found in Dotto et al. (2015) and

in Dotto et al. (2016b). The outline of the chapter is as follows. Firstly we briefly

introduce the problem. In section 3.2 we formally introduce the methodology. In

Section 3.3 we outline the algorithm while a detailed explanation of each step is

reported in section 3.4. Section 3.5 contains some illustrative examples, in Section

3.6 we study the theoretical properties of the methodology while in Section 3.7 we

report the simulation study. Finally, in Chapter 5 we apply the proposed method-

ology to two different dataset and report the results obtained, while the proofs of

the theoretical statements are stored in Appendix A.1.

Generally speaking robust clustering models aim to provide robustness by consid-

ering outlier-free subsamples extracted from the data and by discarding observations

outside these subsamples. To do so trimming is generally used. In Chapter 2 the

problem of fixing a proper value for the trimming level α, compulsory for applying

robust methods based on trimming, has been generally introduced. We now wish

to recall that the loss in fixing a trimming level α is not symmetric: if it is too low,

outliers can completely spoil the solution. If it is too high, a loss of efficiency (which

is usually less problematic than the first scenario) is incurred. For this reason, a

preventive (higher than needed) trimming level is often considered. This could result

in a high number of non-outlying observations which are wrongly trimmed, and loss

of efficiency in subsequent statistical analyses. Carefully tuning the trimming level
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may be cumbersome in several applications, and the final results may be dependent

on a subjective choice of this tuning parameter. Additionally a high number of

wrongly trimmed observations (due to the consideration of high initial preventive

α0 trimming levels) could be a major problem as researchers usually would like to

assign as many observations as possible to a cluster. Failure to assign a clean obser-

vation to a cluster might be associated with practical consequences. For instance in

marketing research not assigning a potential buyer to a his/her appropriate cluster

is associated to loss of the revenue associated with the future transaction. For that

reason we now aim to reduce as much as possible, in a data driven fashion, the

trimming proportion.

A popular solution in robust statistics is to resort to reweighting methodologies.

Reweighting of each observation xi is usually based on the Mahalanobis distance

through wi = v(di), with v(·) being a non-increasing function. The weights wi allow

us to compute (one-step) reweighed location and scatter estimators which have good

robustness performance and better efficiency behavior just by considering weighted

sample means and weighted sample covariances. See Lopuhaa (1999) for a detailed

discussion on the properties of reweighted estimators. The approach could be then

iterated (e.g., Cerioli 2010).

A very simple and widely applied approach is to use binary weights. Given initial

T and S (robust) location and scatter matrices estimators and their associated

Mahalanobis distances di = dS(xi, T ), we can simply use

wi = 1 if di ≤
√
χ2
p,αL

and wi = 0 otherwise. (3.1)

We use the notation χ2
p,β for a 1− β quantile of the χ2

p distribution and αL is taken

as a positive value close to 0. This allows to recover some of the wrongly trimmed

observations, which could have not been taken into account when computing T

and S, by assuming a normal distribution for the non-outlying part of data. In

our proposal, as we now detail, we fix a sequence of decreasing trimming level and

for each trimming level we update parameter’s estimation. At each step we aim

to reinsert observations initially flagged as outlying comparing their Mahalanobis

distance with the threshold given in (3.1) in order to increase the efficiency and

reduce the number of discarded observations.

3.2 Methodology

Let us assume that the number of clusters k is known in advance but the proportion

of observations πj in each cluster is unknown and the true contamination level π0
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is also unknown. Non-outlying observations come from a mixture of k normally

distributed components, and contamination might be present in our data. We also

loosely make the assumption that the components are not too much overlapping.

The proposed methodology is initialized with a large trimming level α0 which -

hopefully- guarantees the detection of a proportion 1−α0 of outlier-free observations

in the most central regions of each cluster. These observations can be seen somehow

as the cores of the clusters. Starting from the cores we will consider a sequence of

decreasing trimming levels α0 > α1 > ... > αL with α0 being an initial preventive

(i.e., surely higher than needed) trimming level and αL is a value close to 0 that can

be interpreted in a similar fashion as parameter αL in (3.1).

In this iterative process better estimates of the cluster centroids, scatter matrices,

cluster proportions, and the contamination level are consecutively obtained. Pro-

viding efficient estimates of these parameters is helpful to detect the outliers and,

consequently, avoid their insertion in the final set of the clustered data eventually

stopped prior to reaching the small trimming levels that would include outliers in

estimation sets. Our proposal, to be better detailed below, can be seen as an exten-

sion of the procedure presented in Garćıa-Escudero & Gordaliza (2007) where the

final trimming level had to be determined manually.

Figure 3.1 shows the result of applying the proposed methodology to two sim-

ulated datasets. The first one shown in panel (a.1) is the result of simulating a

mixture of two normal components with no contamination. In panel (b.1) 10% of

the observations are replaced by outlying data points. A more detailed description

of the simulation scheme will be given in Section 3.7. Panels (a.2) and (b.2) show the

results of TCLUST (Garćıa-Escudero et al. 2008) with α0 = 0.33 trimming. Several

wrongly trimmed observations can be seen, but also that the TCLUST procedure

successfully identifies cluster cores. Finally, panels (a.3) and (b.3) show the results of

the proposed methodology, which we name RTCLUST, which in both cases adapts

well to the true underlying contamination.

The underlying idea is that using an initial very robust estimator would make

the procedure resistant to a very high proportion of outliers (i.e., have a breakdown

point of α0). On the other hand, iteratively decreasing the trimming level would

make the procedure almost as efficient as the non-robust counterparts. A similar

idea but with a different rationale was proposed in Hardin & Rocke (2004), where an

initial solution is improved based on a scaled F approximation to the distribution

of Mahalanobis distances (see also Hardin & Rocke 2005). We will compare in

simulations below.
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Figure 3.1: Two simulated data sets with their true assignments in (a.1) and (b.1).

The result of TCLUST with α0 = 0.33 in (a.2) and (b.2). The final assignments

obtained after applying the proposed methodology are given in (a.3) and (b.3).

Noisy data and trimmed are denoted by ◦ in all graphs throughout the manuscript.

It is important to stress that while we will estimate the contamination level,

and evaluate masking and swamping, what we are proposing is not a method to

simultaneously perform robust clustering and outlier detection. We aim at obtaining

robust and efficient estimates of partitions and model parameters. Outlier detection

should then be based on robust estimators, but should be performed separately

based on formal rules (see e.g. Cerioli & Farcomeni (2011) for a general discussion

on this point).
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3.3 The algorithm

There it follows a brief description of the algorithm which iterates the following

steps:

Algorithm 5.

1. Initialization: Set the initial parameters’ set π0
1, ..., π

0
k, π

0
k+1, µ0

1, ..., µ
0
k and

Σ0
1, ...,Σ

0
k obtained by applying the TCLUST with a high trimming level α0.

2. Reweighting process: Consider αl = α0 − l · ε with ε = (αL − α0)/L for

l = 1, ..., L

2.1 Fill the clusters: Given πl−1
1 , ..., πl−1

k , πl−1
k+1, µl−1

1 , ..., µl−1
k

and Σl−1
1 , ...,Σl−1

k from the previous step, let us consider

Di = min
1≤j≤k

d2
Σl−1
j

(xi, µ
l−1
j ) (3.2)

and sort these values as D(1) ≤ ... ≤ D(n). Take the sets

A = {xi : Di ≤ D([n(1−αl)])} and B = {xi : Di ≤ χ2
p,αL
}

Now, use the distances in (3.2) to obtain a partition A∩B = {H1, ..., Hk}
with

Hj =

{
xi ∈ A ∩B : dΣl−1

j
(xi, µ

l−1
j ) = min

q=1,...,k
dΣl−1

q
(xi, µ

l−1
q )

}
.

2.2 Update cluster weights The proportion of contamination is estimated by

computing

πlk+1 = 1− #B

n
.

Given nj = #Hj and n0 = n1 + ...+ nk the cluster weights are estimated

by computing:

πlj =
nj
n0

(
1− πlk+1

)
. (3.3)

2.2 Update locations and scatters: Update the cluster centers by taking µlj
equal the sample mean of the observations in Hj and the scatter by com-

puting the sample covariance matrix of the observations in Hj multiplied

by its consistency factor.

3. Output of the algorithm: µL1 , ..., µ
L
k and ΣL

1 , ...,Σ
L
k are the final parameters

estimates for the normal components. From them, final assignments are done

by computing

Di = min
1≤j≤k

d2
ΣLj

(xi, µ
L
j ),
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for i = 1, ..., n. Observations assigned to cluster j are those in Hj with

Hj =

{
xi : dΣLj

(xi, µ
L
j ) = min

q=1,...,k
dΣLq

(xi, µ
L
q ) and Di ≤ χ2

p,αL

}
and the trimmed observations are observations not assigned to any of these

Hj sets (i.e., those observations with Di > χ2
p,αL

).

3.4 Comments on the algorithm

Initialization

As briefly stated in the previous section we initialized the algorithm with the output

of the TCLUST methodology on which a high trimming level has been imposed.

Nevertheless we wish to point out that other robust proposals may also be used

as initialization of the rtclust algorithm. For instance, methods derived from

the maximization of ( 2.10 ) with different constraints on the Σj matrices and/or

removing πj weights can be used. See Cuesta-Albertos et al. (1997), Hennig (2003),

Gallegos & Ritter (2005) or Neykov et al. (2007) among others. Whenever an

initialization that does not keep in account the πj weights is used, then one may

consider π0
1 = ... = π0

k = 1/k to initialize the procedure.

Filling the clusters

Step 2.1 is targeted at keeping outliers outside A∩B, while increasing the trimming

size in a controlled fashion. Indeed at each step of the reweighting process only a

prefixed number of closest observations, given by dn(1−αl)e, where αl represents the

current trimming level, are inserted in the set of the clean observations. Alongside,

better parameter estimates are obtained by increasing the active sample size.

Estimating clusters weights

It shall be noticed that clusters weights are not estimated by directly computing

the estimated cluster proportions. Indeed, in order to provide better estimations of

location and scatter parameters, each cluster is filled, in the reweighting process, by

considering the subset of the most central observations. On the other hand, we aim

to provide precise estimations of the cluster weights and thus, we estimate them by

applying formula (3.3).
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Estimating covariance matrices

In the step 2.2 we use well-known correction factors (see, e.g. Liu et al. 1999) to

inflate the covariance matrix estimates based on trimmed data. These guarantee

consistency at the normal model. At each stage the fraction of observations in the

central region of group j is nj/nπ
l
j = n0/(n(1 − πlk+1)), where nπlj is an estimate

of the total number of observations in group j. Additionally, covariance estimates

need to be corrected by considering correcting factor defined as

cj =

(
η n0
n(1−πl

k+1
)

)−1

if
n0

n(1− πlk+1)
< 1

and

cj = 1 if
n0

n(1− πlk+1)
≥ 1

where ηβ = P
(
χ2
p+2 ≤ χ2

p,β

)
/β and β = #Hj/nπj.

We finally update the scatter matrices as

Σl
j = Slj · cj.

Remark 1. More sophisticated rules for discarding outliers, for instance, based

on using the Beta distribution or multiple testing corrections could have been tried

(Cerioli 2010, Cerioli & Farcomeni 2011). However, for sake of clarity of presentation,

we have preferred the simpler use of a rule just based on χ2
p,αL

. There is still room

for improvement regarding better detection of outlying observations.

Remark 2. Sometimes, we could be interested in forcing some “a priori” constraints

like those in (2.11 ) to the final estimated clusters scatter matrices. In this case, con-

straints can be forced by truncating the scatter matrices eigenvalues in the updating

step 2.2, as done in Fritz et al. (2013b).

3.5 Illustrative examples

The two component normal mixture shown in panels (b.1) of Figure 3.1 account for

36% and 54% of the observations, respectively, while a 10% of not “very overlapped”

contamination is added. The scatter matrix for the first component is Σ1 equal to the

identity matrix and Σ2 is a scatter matrix with |Σ2| = 20 and eigenvalues equal to

11.708 and 1.708. This means that the “true” eigenvalue ratio for these two scatter

matrices is equal to 11.708. A more detailed description of the process generating

this data set will be given in Section 3.7. We will use this data set in order to

illustrate the lack of dependence of the final solution on the initializing trimming
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level α0 and on the initial value of the restriction factor c when TCLUST is used

as initializing procedure. Figure 3.2 shows the evolution of the determinants of the

scatter matrices, i.e. {|Σl
j|}Ll=0 for j = 1, 2 in panel (a), and the evolution of the

estimated contamination level and estimated cluster sizes, i.e. {πlj}Ll=0 for j = 0, 1, 2

in (b). These evolutions are studied for different values of α0 = 0.3, 0.25, 0.2 and

0.15 and it is always considered the same (wrong) eigenvalue ratio constraint value

c = 5 for the TCLUST method as initializing procedure. We can see that the final

output is not very dependent on the initializing trimming level and that the output

estimated parameters are very close to the true ones we want to estimate (i.e.,

|Σ1| = 1 and |Σ2| = 20 for the cluster scatter matrices determinants and π0 = 0.1,

π1 = 0.36 and π2 = 0.54 for the contamination level and cluster sizes).
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Figure 3.2: Evolution of |Σl
j| in (a) and of πlj in (b) for different initial α0 values

(α0 = .3, .25, .2 and .15) for the data set shown in Figure 3.1 (b.1). The up-triangle

symbols are the true parameters to be estimated.

Analogously, the same type of study was made to analyze the possible dependence

on the initializing choice of c. The results are shown in Figure 3.3 where c values

equal to 1, 10 and 20 were chosen. Recall that the true eigenvalue ratio for the

considered scatter matrices was exactly equal to 11.708 (which is not equal to any

of the c initializing values tried). We can see again that the obtained results are

accurate and that they are not very dependent on the initial c value.

It is also important to note, in Figure 3.2 and Figure 3.3, that no great changes are

noticeable in the estimated parameters when the procedure approximately reaches
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Figure 3.3: Evolution of |Σl
j| in (a) and of πlj in (b) for different initial c values

(c = 1, 10 and 20 while the true c needed was 11.71) for the data set shown in

Figure 3.1 (b.1). The up-triangle symbols are the true parameters to be estimated.

the true contamination level. This is because, we count on quite accurate estima-

tors of the parameters of the normal distributions components throughout µlj and

Σl
j when αl ≈ 0.1. Due to their effect the set A ∩ B defined in Step 2.1 remains

essentially the same and equal to the set having all the regular (non-noisy) obser-

vations already included. On the other hand, one-step procedures only take into

account the information from truncated sub-samples corresponding to central re-

gions in the normal components. From this central regions, it is not so easy to have

very accurate parameters estimations for the normal components parameters.

To reinforce our previous claims, we will illustrate the advantages of the proposed

iterative trimming procedure with respect to one-step reweighting approaches even

in the k = 1 case. When k = 1, the reweighted MCD is clearly one of the most

popular robust location and scatter estimator. After considering an initial large

trimming level α0, reweighting is done to increase efficiency as described in Section

3.1.

Figure 3.4 is based in a simulated data set of size n = 1000 generated from a

bivariate normal distribution accounting for 73% of the data (the bulk of data), a

24% amount of pointwise contamination placed at (4, 8) (labeled with an “arrow”

symbol) and 3% of background contamination. Figure 3.4,(b) shows the result of

applying the reweighted MCD approach in Section 3.1 by using the “robustbase”
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package in R available in the CRAN repository with the default initial trimming

level α0 ' 0.5 and αL = 0.01 and the function “tolEllipsePlot” (from “robustbase”)

to plot the 0.99 tolerance ellipses (the classical and the MCD-based robust ones).

Despite there exists a “good” initial sub-population including more than half of the

observations, the final estimation is very distorted by the added pointwise contam-

ination as can be seen in 3.4,(b). On the other hand, Figure 3.4,(a) shows how the

proposed iterative trimming resists very well this pointwise contamination.
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Figure 3.4: (a) The proposed iterative reweighting procedure when k = 1 started

from α0 = 0 and αL = 0.01 (b) The (traditional) reweighted MCD started from

α0 = 0 and αL = 0.01. Trimmed points are the black points.

Finally, an additional important parameter for the proposed methodology is αL.

In all the shown illustrative examples, the same αL = 0.01 has been take. The

αL parameter has to do with the quantile in the χ2
p distribution and it plays the

same role as in all analogous reweighting methods. For instance, αL = 0.01 means

that around 1% of the observations are wrongly discarded when we have normal

components without contamination. The smaller the αL the lesser is the number of

proportion of wrongly trimmed observations but higher is the risk of incorporating

near outlying observations.
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3.6 Theoretical results

The algorithm proposed in the previous section admits a population counterpart for

a theoretical underlying probability P . Let us denote by

θ0
P = (π0

1P , . . . , π
0
kP , 0, µ

0
1P , . . . , µ

0
kP ,Σ

0
1P , . . . ,Σ

0
kP )

the population parameters obtained when applying the TCLUST methodology to

distribution P , for a fixed α0 and c. This solution does exist under very mild

assumptions (see Proposition 2 in Garćıa-Escudero et al. 2008). Note also that we

are setting π0
k+1P = 0 and

∑k
j=1 π

j
1P = 1 given that we do not dispose of reliable

estimators for the contamination level at this initial l = 0 stage. In a similar fashion,

we use the notation

θlP = (πl1P , . . . , π
l
kP , π

l
k+1P , µ

l
1P , . . . , µ

l
kP ,Σ

l
1P , . . . ,Σ

l
kP )

for the population values of the parameters obtained after applying l steps of the

proposed algorithm when considering as fixed and known the underlying distribution

P . A more formal definition of these population θlP parameters is given in the

Appendix A.1.

Let {x1, ..., xn} be a realization of an independent identically distributed sample

from distribution P and let Pn denote its associated empirical measure. We have

that the θlPn parameters exactly coincide with those obtained from the algorithm

presented in Section 3.3.

Next result shows that the parameters are bounded when considering a finite

number of steps L under mild assumptions on P . In Theorem 1, the assumption

concerning the noncoincidence of population centers at any iteration serves to ex-

clude certain pathological cases in clustering problems. The proof of this result and

other in this section appears in Appendix A.1.

Theorem 1. Assume P is an absolutely continuous distribution with a strictly

positive density function. Additionally assume that µlj1P 6= µlj2P for every j1 6= j2

and every l = 0, 1, ..., L. We have that

max
j=1,...,k;l=0,1,...,L

‖µljP ‖ <∞

and

0 < min
j=1,...,k;l=0,1,...,L;q=1,...,p

λq(Σ
l
jP ) ≤ max

j=1,...,k;l=0,1,...,L;q=1,...,p
λq(Σ

l
jP ) <∞

where {λq(S)}pq=1 is the set of eigenvalues of matrix S.
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As shown in Appendix A.1, the proof of the previous result relies on the fact

that the optimal set (i.e., the set including all the non-trimmed regions in Rp) can

be represented as a union of k ellipsoids having all of them non-null P probability

mass.

The following result needs the same assumptions as in Theorem 1 but notice that

these assumptions only concern the underlying distribution P .

Theorem 2. Under the same assumptions of Theorem 1, we have that there exists

a compact set K and n0 ∈ N such that θlPn ∈ K for n > n0 with probability 1.

Now, we can state a consistency result for the parameters obtained from random

samples of size n from P toward those obtained from the population problem when

n increases.

Theorem 3. Under the same assumptions of Theorem 1, we have

θlPn → θlP , P -almost surely,

for every l = 0, 1, ..., L when n→∞.

Another important issue is to analyze if this reweighting approach is able to re-

tain the robustness properties of the TCLUST initializing method. In order to do

that, we resort to the “addition r-components” breakdown-point (BP) notion, as

given in Cuesta-Albertos et al. (2008b). This notion is a multivariate adaptation of

a univariate proposal by Hennig (2004). It is easy to see that classical BP notions

in clustering are sample-dependent and, then, they cannot be directly applied. The

considered BP notion is based on the assumption that measuring the BP of a clus-

tering procedure should require “well-clusterized” data set prior to contamination

(compare Definition 6 in Chapter 1 and Ritter 2014). With this idea in mind, a

sequence of data sets composed by groups with bounded “intra-group” variability

and with “between-groups” distance going to infinity are considered for studying

the change in the estimated parameters caused by the addition of r outliers. The

“separation” of this r outlier should converge to infinity (a more precise formulation

of these two concepts can be encountered in the aforementioned references). Under

this ideal setting, the BP of a clustering procedure corresponds to the minimum r

required in order that one of the estimated parameters breaks down (in the classical

sense) of the estimation of any parameter in the model.

Theorem 4. Let Xn = {x1, ..., xn}, n ∈ N, be sequence of well-clustered data sets in

k ≥ 2 clusters and let Yn = {y1,n, ..., yr,n}, n ∈ N, be sequence of r outliers with sep-

arations converging to infinity (see Cuesta-Albertos et al. (2008b) for a more precise
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statement). If r ≤ [α0n], then the obtained parameters from TCLUST with trim-

ming level α0 and the L subsequent parameters obtained throughout the described

reweighting procedure do not break down by the addition of these r outliers.

It is important to note that, even under this very “ideal” clustering setting (well-

clustered), Hennig (2004) proves that maximum likelihood estimator of a normal

mixture model breaks down with the addition of only r = 1 outlier, as well as other

robust proposals like maximum likelihood estimators of t-mixture models or the

addition to the normal mixture of a uniformly distributed component in the convex

hull defined by the data.

3.7 Simulation study

We now study the performance of the previously described procedure when ap-

plied to several (contaminated) mixtures of Gaussian distributions. Additionally,

we detail how the data sets used in previous sections have been simulated in the

illustrative examples.

The non-outlying part of the dataset comes from a mixture of two p-variate

normal distributions π1N(µ1,Σ1)+π2N(µ2,Σ2) with centers µ1 = (0, 0, 0, ..., 0)′ and

µ2 = (8, 0, ..., 0)′ and covariance matrices

Σ1 = Ip and Σ2 =
p
√
λ


1 1 1 1 · · · 1

1 2 2 2 · · · 2

1 2 3 3 · · · 3
...

...
...

...
. . .

...

1 2 3 4 · · · p

 .

This means that |Σ1| = 1 and |Σ2| = λ.

To generate outliers we fix an hypercube where each dimension includes the range

of the non-contaminated data. Outlying observations are generated uniformly within

this hypercube, but outliers with squared Mahalanobis distances from µ1 and µ2

(using Σ1 and Σ2) smaller than χ2
p,ν are discarded. The operation is repeated until

the desired proportion of ε outliers have been obtained. The parameter ν controls

how far away contaminated data points are.

We generate data sets of size n = 1000 under all possible combinations of the

following scenarios:

• Three data dimensions: p = 2, 4 and 6
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• Three contamination levels ε = 0.10, 0.05, and zero.

• Two scales λ = 1 and 5

• Balanced clusters πj = 0.5 for j = 1, 2 and unbalanced clusters π1 = 0.4 and

π2 = 0.6

• Two ν values, ν = 0.01 and ν = 0.005

• Two types of contamination: a symmetric one obtained sampling from a uni-

form distribution in the hypercube defined by the range of the non-contaminated

part of the data and an asymmetric one obtained by sampling from a uniform

distribution defined on [−3, 0] × [−7,−2] × [−2, 2]p−2, which is closer to the

second cluster than to the first.

The case ε = 0 is used to evaluate efficiency of the proposed methodology when

applied to clean data.

Regarding the illustrative examples in Figure 3.1 we generated two datasets once

from a bivariate normal distribution, fixing λ = 20, π1 = 0.4 π2 = 0.6, with sym-

metric contamination and ν = 0.01. A contamination level ε = 0 was used in (a.1)

and ε = 0.10 in (b.1).

We compare the performance of the following robust clustering proposals:

• rtclust33 and rtclust20: The proposed iterative reweighting approach started

from TCLUST with initial trimming levels α0 = 0.33 and α0 = 0.2

• HR33 and HR20: a one-step version of the procedure by Hardin & Rocke (2004)

started from TCLUST with initial trimming levels α0 = 0.33 and α0 = 0.2

• HR-it33 and HR-it20: the iterated and adapted version of Hardin & Rocke

(2004) started from TCLUST with initial trimming levels α0 = 0.33 and α0 =

0.2

• tclust33, tclust20, tclust10 and tclust05: TCLUST with fixed trimming

levels α0 = 0.33, 0.2, 0.1 and 0.05

The same value αL = 0.01 was used for RTCLUST and Hardin and Rocke’s

methods. For iterative procedures we fixed L = 20. The TCLUST procedure was

included with with trimming levels which could be higher or the correct one. The

same eigenvalue restriction factor c = 12 is always applied when using TCLUST

(in the initialization of RTCLUST and in the direct application of TCLUST). Note
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that c = 12 could be smaller or larger than the true eigenvalue ratio, depending on

p and λ.

The Hardin and Rocke’s methods are clustering algorithms based on the MCD

philosophy. These methods are going to be initialized in this simulation study with

exactly the same TCLUST robust clustering initial solution used for RTCLUST.

Indeed Hardin & Rocke (2004) commented in their work that “any” robust clus-

tering solution can be used and we have seen that TCLUST always provides quite

sensible initial solutions for all the considered data sets in the simulation study. In

fact, TCLUST always removes all noisy observations (together with others wrongly

trimmed ones) with these high trimming levels (α0 = 0.33 and 0.2). Let µ0
1, ..., µ

0
k,

Σ0
1, ...,Σ

0
k and H0

0 , H
0
1 , ..., H

0
k being the solution obtained by applying the TCLUST

method. The Hardin and Rocke’s approach proposes cut-off values to declare outliers

based on the approximation

kj(mj − p+ 1)

pmj

d2
Σ0
j
(xi, µ

0
j) ∼ Fp,mj−p+1, (3.4)

where kj = ηβj is a correction factor (as that used in Section 3.3) with

βj = h̃j/nj for h̃j = #H0
j

and

nj = #
{
xi : dΣlj

(xi,m
l
j) = min

q=1,...,k
dΣlq

(xi,m
l
q)
}

and mj is the approximated degrees of freedom for the associated Wishart distribu-

tion (see details in Hardin & Rocke (2004) and Hardin & Rocke (2005)). “HR33”

and “HR20” apply directly the cut-off values in (3.4) to the observations in the

H0
j sets while “HR-it33” and “HR-it20” refine these H0

j sets until stabilization by

applying the iterative steps described in Section 3.3 of Hardin & Rocke (2004).

For all the 96 different data scenarios, we generated the data 500 times and

evaluated the performance of the methods in terms of:

• Mean Square Error for estimation of the mean vectors µ1 and µ2, indicated in

the plot with MSEµ.

• Mean Square Errors associated to the logarithm of the eigenvalue ratio, indi-

cated in the plots with MSEΣ. We decided to report the error associated to

this quantity since this ratio is forced in the initialization step to be smaller

than a fixed constant c = 12 to avoid spurious maximizers. Nevertheless, as

already commented, this is not necessarily the true eigenvalue ratio and we

want to see how far the final estimated ratio is with respect the true one given
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that the proper estimation of the cluster scales play a key role in the detection

of outliers.

• The estimated contamination level ε̂.

• Swamping: the proportion of non outlying observations that are trimmed

• Masking: the proportion of outliers that are not trimmed

Figures 3.5 and 3.6 summarize the simulation results obtained when ε = 0.05 and

0.1, respectively. Figures are separated in five row panels, one for each performance

measure, and three column panels, one for each data dimensionality p. Given that

there are several settings, in order to summarize the results in a concise way we

do not distinguish among them further and just report the average performance

measures all together. Note that some values exceed the scale of the plots, as

identified by the upward triangle symbols.

The iterative reweighing procedure efficiently estimates the mean vector and the

covariance matrix in every data scenario. In all cases we see small MSE values,

and not much variability, meaning that results do not depend on the simulation

setting considered. The MSE values are smaller than those obtained when applying

TCLUST with large trimming values as 0.20 and 0.33. Moreover, MSE is even

slightly better than what obtained with an oracle TCLUST whose trimming level is

exactly equal to the true contamination level ε. This happens for two reasons. The

first is that reweighting can adapt well to the positioning of the outliers, therefore

flexibly trimming more or less as needed within each replicate. The second is that

TCLUST is based on a sometimes wrong eigenvalue ratio constraint value c = 12.

RTCLUST does not have further constraints and therefore can exceed this value

when needed.

As far as estimation of the contamination level ε̂ is concerned, RTCLUST provides

very stable results in all simulation scenarios, with a systematic slight overestimation

of ε. On the other hand, the procedures based on Hardin and Rocke approach may

underestimate contamination levels in a remarkable way. The swamping proportion

is small for all reweighting approaches but masking proportions can be very high in

some scenarios with Hardin and Rocke’s proposals. Underestimation of the contam-

ination level is clearly more harmful than overestimation, as outliers included in the

estimation set might break down the estimates. We believe that the problem with

the Hardin and Rocke’s approach is within the correction factor, which exploits an

estimator of the fraction of observations in each cluster. The latter might not be

resistant to outliers in our experience.
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Figure 3.5: Results when ε = 0.05. Every procedure is labeled as explained in the

text. Values appearing in the Figure that are fixed in advance (e.g the trimming level

for the tclust method) are plotted with the symbol “×” while when the considered

value exceeds the scale of the plot we used a “4”

We end this section by comparing the performance of these methods in the non

contaminated ε = 0 case. This is reported in Figure 3.7.

We can see that the iteratively reweighting approach exhibits a very good per-

formance in terms of providing small MSE values. We can also see that the (non-

iterated) Hardin and Rocke’s approaches are very competitive in this non-contaminated

ε = 0 case. RTCLUST wrongly discards a limited proportion of observations, about

1%. This is not so surprising as αL = 0.01 in this section.
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Figure 3.6: Results when ε = 0.10. Every procedure is labeled as explained in the

text.
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Figure 3.7: Simulation results study under no contamination (ε = 0).





Chapter 4

Extension of TCLUST to fuzzy

linear clustering

4.1 Introduction

In this chapter we report the contribution proposed in Dotto et al. (2016a). As we

now detail, the proposed method is a robust fuzzy linear clustering model. It shall

be noticed that these type of models appear in the literature with different names

(e.g switching regression models, linear clustering models or regression clustering

models). Throughout this thesis we refer to such models using the term “linear

clustering” in order to stress the fact that we aim to cluster our dataset around a

linear structure.

Linear clustering models are based on searching k groups of units forming a linear

structure. This implies that each unit is assigned to the group minimizing the

regression error (i.e. its squared residuals from the estimated regression line). First

attempts to fit k = 2 regression lines can be found in David & David (1974), that

applied this type of procedure in economics, in Lenstra et al. (1982) where this type

of procedures are applied in marketing segmentation, and in Späth (1982), where

the details about a feasible algorithm are provided. In DeSarbo & Cron (1988) the

EM algorithm has been used in this context and the methodology has been extended

to the multidimensional case and for k > 2. The general linear clustering method

could be then applied in many different research fields like medicine, psychology,

biology, image reconstruction, and many others. See also Spiliopoulou et al. (2006)

and Van Aelst et al. (2006) where such type of methodology has been extended,

respectively, in a hierarchical clustering framework and for orthogonal regression

clustering.
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Our aim is to provide a fuzzy linear clustering method that is robust. To be more

precise, we focus on extending the TCLUST approach. The TCLUST approach was

adapted to be applied in fuzzy clustering problems in Fritz et al. (2013a). Another

contribution where trimming is applied in fuzzy clustering to reach robustness can be

found in D’Urso et al. (2015) and Kim et al. (1996). However, these proposals were

not aimed at dealing with linear clusters. An extension of the TCLUST methodology

for linear clustering problems appeared in Garćıa-Escudero, Gordaliza, Mayo-Iscar

& San Mart́ın (2010) and, following this idea, we are now interested in extending

that methodology for performing robust linear fuzzy clustering.

Since we focus on model based clustering we will a formal maximum likelihood

approach, as in Hathaway & Bezdek (1993), Wu et al. (2009) and Honda et al.

(2008). A review of robust regression can be found for instance in Heritier et al.

(2009) and Farcomeni & Ventura (2012). Robust methods for linear regression ap-

peared for instance in Bai (2012). Methods for robustly estimating several unknown

regression lines have appeared for instance in Ingrassia et al. (2014), McLachlan &

Peel (2004), Yao & Li (2014). It shall be noted that fuzzy modeling is a framework

which might seem somehow related to mixture modeling, but it is instead different

in principles. In mixture models of regressions (e.g., DeSarbo & Cron 1988) a true

underlying cluster label is always assumed to exist for each observation, and pos-

terior probabilities summarize the researcher’s uncertainty for this label. In fuzzy

modeling, nonnegative membership values are assumed which may generate overlap-

ping clusters where subjects may be shared among all clusters. Moreover, as we will

see later, the proposed methodology in this work allows a kind of transition between

“hard/crisp” and “fuzzy” clustering partition. The method can return a “core” of

observations with 0-1 membership values and the remaining observations may be-

long to more than one cluster (i.e., membership values within the (0, 1) interval).

The degree of “fuzziness” is controlled throughout a tuning parameter m ≥ 1, while

it would make no sense to tune posterior probabilities. Fuzziness in clustering, that

has been introduced in Ruspini (1969) and extended in Bezdek (2013), has several

advantages in many applications. In some cases, e.g., Gustafson & Kessel (1978) or

Ali et al. (2008), it is not possible to define meaningful hard partitions. See also

D’Urso et al. (2011).

Our robust fuzzy linear clustering model can also be seen as an extension of

the methodology introduced in Hathaway & Bezdek (1993). This last method is

an adaptation of the fuzzy c-means algorithm (Bezdek 2013) for linear clustering

problems and is based on minimization of the sum of the weighted distance of each

point from the estimated regression line. The weights of the residual distance are

given by the fuzzy membership values of each point to each cluster. This proposal is
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not robust with respect to contamination and additionally can not take into account

varying cluster weights. An alternative robust approach has been proposed in Wu

et al. (2009) where an alternative measure of the distance of the residuals has been

proposed. This method is indeed robust but it is seen in simulation to resist only

to certain types of contamination.

The outline of the chapter is as follows. We provide the methodology in Section

4.2. We discuss in Section 4.3 the interpretation of the tuning parameters and,

additionally, we give heuristics and an automatic method for choosing them. In

Section 4.4 we report a simulation study.

4.2 Methodology and algorithm

4.2.1 Defining the problem

Let {(yi,x′i)}ni=1 ⊂ Rp+1 be a dataset where xi ∈ Rp are p explanatory variables and

yi ∈ R is a continuous response for the individual i. We are interested in grouping

them into k clusters in a fuzzy way, and estimating a linear model within each

group. Therefore, our aim is twofold: first of all we estimate a set of membership

values uij ∈ [0, 1] for all i = 1, ..., n and j = 1, ..., k, where a membership value

1 indicates that object i belongs at all to cluster j and conversely a membership

value 0 indicates that object i does not belong to cluster j. Intermediate degrees of

membership are obtained when uij ∈ (0, 1). We estimate the regression coefficients

and the intercept parameters bj ∈ Rp and b0
j ∈ R . Additionally we consider that an

observation is fully trimmed if uij = 0 for all j = 1, ..., k and, thus, this observation

has no membership to any of the clusters. This is in contrast with the alternative

robust approach in Wu et al. (2009), which sets uij = 1/k for outliers.

Let α ∈ [0, 1) be a fixed trimming proportion, c ≥ 1 a fixed constant controlling

ratio of cluster residual variances, m ≥ 1 a fixed value of the fuzzifier parameter.

A robust constrained fuzzy linear clustering problem can be defined as the task of

maximizing the objective function

n∑
i=1

k∑
j=1

umij log
(
f(yi;x

′
ibj + b0

j , s
2
j)
)

(4.1)

where f(·;µ, σ2) is the p.d.f of a normal distribution with mean µ and standard

deviation σ, f(x;µ, σ2) = (2πσ2)−1/2 exp(−(x−µ)2/(2σ2)). The membership values
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uij ≥ 0 are assumed to satisfy

k∑
j=1

uij = 1 if i ∈ I and
k∑
j=1

uij = 0 if i /∈ I,

for a subset

I ⊂ {1, 2, ..., n} with #I = [n(1− α)],

and s2
1, . . . , s

2
k are the residual variances which satisfy the constraint

maxkj=1 s
2
j

minkj=1 s
2
j

≤ c. (4.2)

Note that ui1 = ... = uik = 0 for all i /∈ I, so these “trimmed” observations do not

contribute to the objective function (4.1).

Constraint in (4.2) is needed as the target function (4.1) is unbounded otherwise.

For instance, if we pick any xi and take b0
1 and b1 such that yi = b0

1 +x′ib1 then (4.1)

tends to infinity whenever ui1 = 1 and ul1 = 0 for every l 6= i, just by taking s2
1 → 0.

The maximization of (4.1) assumes “a priori” that clusters have equal size and,

thus, biases the procedure towards the detection of clusters with similar sizes (where

the “size” of cluster j is seen in fuzzy clustering as
∑n

i=1 uij). To remove this

assumption we might include clusters’ weights pj and replace (4.1) with this new

target function
n∑
i=1

k∑
j=1

umij log
(
pjf(yi;x

′
ibj + b0

j , s
2
j)
)
, (4.3)

where pj ∈ [0, 1] and
∑k

j=1 pj = 1 are additional parameters. Conditionally on the

membership values, these weights are optimally determined as

p̂j =
n∑
i=1

umij/

n∑
i=1

k∑
j=1

umij . (4.4)

This extra term so implies adding an “entropy regularization” term to the target

function (4.1). This type of “entropy regularization” was discussed in Sadaaki &

Masao (1997), see also Farcomeni (2014a).

4.2.2 Proposed algorithm

Maximization of (4.3) shall be performed through a constrained iterative procedure.

We suggest to repeatedly initialize from several random starting points, and iterate

two steps up to convergence or until a maximum number of iterations is reached. The
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two updating steps are as follows: first, conditionally on current parameter values,

membership values are obtained. Secondly, conditionally on current membership

values, parameters are updated in order to maximize (4.3). Therefore we propose,

in order to estimate the regression parameter in all the groups, the adaptation of an

EM-type procedure (Dempster et al. (1977), McLachlan & Peel (2004)). Updating

formulas are similar to those used in Hathaway & Bezdek (1993), Wu et al. (2009)

and Honda et al. (2008). As the model might be viewed as an adaptation of Fritz

et al. (2013a) for linear clustering, also the algorithm presents several analogies.

algorithm iterates the following steps::

Algorithm 6.

1. Initialize randomly k initial regression parameters bj and b0
j and k values

p0
1, . . . , p

0
k for the clusters’ weights.

2. Compute the unconstrained residual variances

d2
j =

∑n
i=1 u

m
ij (yi − b0

j − x′ibj)2∑n
i=1 u

m
ij

(4.5)

Apply the algorithm for constraining the variances, if required, to the quanti-

ties obtained in formula (4.5) to obtain the estimated residual variances sj.

3. Update membership values: Using the current parameter estimates we update

the membership values. If

max
q=1,...,k

{pqf(yi;x
′
ibq + b0

q, s
2
q)} ≥ 1,

then we define “hard” assignments as

uij = I
{
pjf(yi;x

′
ibj + b0

j , s
2
j) = max

q=1,...,k
pqf(yi;x

′
ibq + b0

q, s
2
q)
}

with I{·} being a 0-1 indicator function. If

max
q=1,...,k

{
pqf(yi;x

′
ibq + b0

q, s
2
q)
}
< 1,

then we define “fuzzy” assignments as

uij =

( k∑
q=1

(
log(pjf(yi;x

′
ibj + b0

j , s
2
j)

log(pjf(yi;x′
ibq + b0

q, s
2
q)

) 1
m−1
)−1

.

4. Trimming: Compute

ri =
k∑
j=1

umij log(pjf(yi;x
′
ibj + b0

j , s
2
j)) (4.6)
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and sort them as r(1) ≤ r(2) ≤ ... ≤ r(n). The membership values for the ob-

servations xi with ri < r([nα]) are fixed as uij = 0 and, thus, these observations

are discarded at this stage of the algorithm.

5. Update parameters:

• The cluster weights (if included) pj are updated as (4.4)

• For b0
j and bj, with j = 1, 2, . . . , k, the usual (weighted) least square

method is used. Closed forms are available as

bj =

(∑n
i=1 u

m
ijxix

′
i∑n

i=1 u
m
ij

−
∑n

i=1 u
m
ijxi∑n

i=1 u
m
ij

·
∑n

i=1 u
m
ijx
′
i∑n

i=1 u
m
ij

)−1

(4.7)

·
(∑n

i=1 u
m
ijyixi∑n

i=1 u
m
ij

−
∑n

i=1 u
m
ijyi∑n

i=1 u
m
ij

·
∑n

i=1 u
m
ijxi∑n

i=1 u
m
ij

)
,

b0
j =

∑n
i=1 u

m
ijyi∑n

i=1 u
m
ij

− b′j

∑n
i=1 u

m
ijxi∑n

i=1 u
m
ij

.

• s2
j , is updated by computing the initial unconstrained estimation d2

j

d2
j =

∑n
i=1 u

m
ij (yi − b0

j − x′ibj)2∑n
i=1 u

m
ij

(4.8)

and then applying, if required, a suitable algorithm to impose the required

constraint and obtain s2
j , as we now detail.

Whenever the weighted sample residual variances dj does not obey to the desired

constraint (4.2) a similar procedure to that used in Fritz et al. (2013a) is then

needed. In that case, let us consider the j-th residual variance component d2
j and

its truncated value given by

[d2
j ]t =


d2
j if d2

j ∈ [t, ct]

t if d2
j < t

ct if d2
j > ct

, (4.9)

with t being a threshold value. These truncated residual components do satisfy the

required scatter constraint. An optimal threshold value topt is obtained by taking

into account the aim of maximizing the target function (4.3). It can be seen (see

details in the Appendix) that topt is the value of t minimizing the real-valued function

t 7→
k∑
j=1

pj

(
log
(
[d2
j ]t
)

+
d2
j

[d2
j ]t

)
, (4.10)

with pj as given in (4.4). A closed way to get topt exists by evaluating (4.10) in 2k+1

points (see, again, the Appendix section for details). Once this optimal threshold

value is determined, the s2
j parameters are finally updated as s2

j = [d2
j ]opt.
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At each step of the algorithm the objective function (4.3) is increased. A more

detailed justification of each step is provided in the Appendix.

4.3 Interpretation and choice of the tuning pa-

rameters

The methodology described was designed to be as general as possible. A drawback

of this is that there are five choices to be done in advance: the number of clusters, k,

the fuzzifier parameter m, the trimming level α, the bound on the ratios of residual

variances c, and whether or not including cluster weights (that is, whether or not to

shrink towards approximately balanced clusters).

Although “clustering” is clearly an “unsupervised learning” method, there is an

increasing global consensus about the fact that it may not be a fully automatized

task. For instance, the user is supposed to play an active role by specifying the

type of clusters that he/she is particularly interested in (see, e.g., Hennig & Liao

(2013)). As different choices of parameters yield very different clustering results,

this choice must be guided by the final purpose of the analysis. Discussions on the

role of tuning in robust clustering can be found in Coretto & Hennig (in press 2016).

Note also that parameters are clearly interrelated. For instance, a high trimming

level α could delete smaller clusters and, thus, a smaller number of groups k may be

needed. If we allow for higher cluster variabilities, then some observations, which

may be otherwise considered as noise, may be included within the main clusters and

a smaller k is so needed. Therefore, we do not think that a fully automatized way to

fix simultaneously all these parameters is to be expected. However, we consider that

some practical guidelines and helpful heuristic tools may be given in order to help

the user to make this choice. Note also that fixing some of these parameters may

be seen as a way to specify the type of clusters the user of the clustering method is

actually interested in. This section is aimed at presenting the importance of each

parameter choice and give some guidelines on how to make each decision in practice.

In order to do that, we resort to an illustration based on simple simulated

datasets. We simulate two overlapped two-dimensional linear clusters. The first

cluster is made of 144 observations. The explanatory variable X1i is generated as

a uniform distribution in the range [0, 5], while the response variable is generated,

for each i = 1, . . . , n, as yi = 1 + 2x1i + ε1i where ε1i ∼ N (0, σ2
1) and σ1 = 0.4.

The second cluster is made of 216 observations. The independent variable X2i is

generated from a uniform in [0, 4] and the response variable as: yi = 10−1.5x2i+ε2i
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where ε2i ∼ N (0, σ2
2) and σ2 = 0.6. Additional noisy observations are added to our

data set as needed.

It must be pointed out that information criteria (like i.e BIC or AIC) may be not

applicable since these are monotone with respect to some of the tuning parameters

(e.g. m and α). We nevertheless provide a method for providing a kind of automatic

choice of the five tuning parameters simultaneously, or a subset of them, at the end

of this section by resorting to a pseudo “cross-validation” criterium.

4.3.1 Including clusters’ weights

Although this is properly not a tuning parameter, choosing to maximize likelihood

(4.1) or (4.3) is an important decision to be made. As was commented in Section

4.2.1, the maximization of (4.1) assumes that clusters have equal size and, thus,

biases the procedure towards the detection of clusters with similar ‘sizes. In Figure

4.1 we represented a scenario where there are 40% of the clean observations in one

cluster, 60% in the other one, and let us suppose that we search for k = 3 clusters.

We compare the performance of the proposed procedure when the weights are kept

into account in the likelihood function, like in equation (4.3), and when the weights

do not appear in the objective function, like in (4.1). When the weights pj are

taken into account, we are able to recover the real structure of the data even though

we wrongly set k = 3. Indeed, the cluster sizes obtained (
∑n

i=1 uij) are equal to

0.01, 0.42 and 0.57 (one of them is really close to 0) and two of the three estimated

regression lines are overlapped. On the other hand, the cluster sizes obtained are

0.41, 0.30 and 0.29 when pj weights are not used in the likelihood, which are clearly

biased towards an equal balanced clusters scenario and two almost parallel clusters

are recovered.

Therefore, if there are no particular interest in the detection of clusters with

similar sizes, it might be useful to maximize (4.3) given that clusters with weights

pj close to 0 are obtained if a higher k than needed was wrongly chosen. In fact,

this is the rationale behind the “classification trimmed likelihood curves” that will

be presented in the following subsection.

4.3.2 Number of clusters

Parameter k obviously has to do with the number of clusters that the procedure

initially looks for. The choice of the number of groups is one of the more difficult

problems in cluster analysis. An underlying issue is the definition of what a cluster
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Figure 4.1: (a) Robust fuzzy clustering results when k = 3 and pj are used within

the objective function. (b) Results when k = 3 and pj are not used within the

objective function.

is. In this section we extend a heuristic tool based on monitoring the objective

function (4.3) depending on the number of clusters k and the trimming proportion

α, which has been proposed in Garćıa-Escudero et al. (2011) for non-fuzzy robust

clustering. The “classification trimmed likelihood curves” (ctlcurve method) can

be used to fix k and α, simultaneously once that parameters c and m are fixed in

advance by the user.

In Figure 4.2,(b), we plot the objective function (4.3) with respect to different

values of the trimming level α and number of groups k when c = 5 and m = 1.5. It

is to easy to see that when 10% of observations are trimmed the objective function

moderately increases as the number of clusters is increased. This plot leads to set

k = 2 (which is the minimum number of clusters at which there is curve convergence

with the one above), that is, in fact, the real number of linear components set in the

data generation process. These curves also suggest a trimming level α around 0.1

(recall that the true contamination level was 10%) given that there are not noticeable

improvements in (4.3) when increasing k at this point. Note that a higher k value is

needed when, for instance, α = 0 but there is no need to increase k when considering

a trimming level higher than the “true” 10% contamination level.



4.3 Interpretation and choice of the tuning parameters 58

−2 0 2 4 6

0
2

4
6

8
10

12

(a)

x

y

0.00 0.10 0.20 0.30

−9
00

−8
00

−7
00

−6
00

−5
00

−4
00

−3
00

(b)

α

Va
lue

 of
 th

e t
ar

ge
t fu

nc
tio

n

k=1
k=2
k=3
k=4
k=5

Figure 4.2: (a) A simulated dataset with two overlapped linear clusters and 10% of

contaminated points. (b) The associated “classification trimmed likelihood curves”

when c = 5 and m = 1.5.

4.3.3 Fuzzification Parameter

The fuzzifier parameter m in equations (4.1) and (4.3) takes values in the range

[1,+∞) and it regulates the degree of fuzziness of the final clustering. Letting

m → ∞ implies equal membership values uij = 1/k regardless of the data; while

when m = 1 crispy weights {0, 1} are always obtained and all observations are hard

assigned to one and only one cluster. In fact, if we fix m = 1, our procedure reduces

to the method in Garćıa-Escudero, Gordaliza, Mayo-Iscar & San Mart́ın (2010),

after the removal of the proposed second trimming step. Thus, the optimal value of

m depends on the degree of overlap among clusters and on how much the researcher

is prepared to accept and use fuzzy membership values.

It is also very important to take into account that the effect of a fuzzifier param-

eter m > 1, for the proposed methodology, is dependent on the measurement scale

used for the response variable. In order to see that, we applied in Figure 4.3 our pro-

cedure to a simulated data set and having different scales for the response variable.

We did so by multiplying the response variable by s ∈ R+ (i.e. yi is replaced by

yi · s) and for each scenario we chose two different values for the fuzzifier parameter:

m = 1.5 (a quite standard choice for the fuzzifier parameter) and m = 1 which

implies no fuzzification at all. In order to graphically represent the degree of fuzzifi-

cation, we used a mixture of “red” and “green” colors with intensities proportional

to the membership values of each observation. Additionally, throughout the paper,
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points flagged as outlying under the model have been represented by “∗”. Figure

4.3 shows that the scale of the response variable leads to changes in the results when

m > 1, while when m = 1 (hard clustering) results are scale independent.
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Figure 4.3: Different degrees of fuzzification obtained for different scale values s (yi

is replaced by yi · s). m = 1.5 and s = 0.5 in (a); s = 1 in (c); s = 10 in (e); s = 32

in (g). m = 1 (hard clustering) and s = 0.5 in (b); s = 1 in (d); s = 10 in (f); s = 32

in (h).

It is not difficult to see that this issue is a shared problem with others likelihood-

based fuzzy clustering algorithms as Trauwaert et al. (1991), Rousseeuw et al. (1996)

and Gath & Geva (1989). To our knowledge, this has been noted so far only in Fritz

et al. (2013a). Note also that no additional problems appear due to the residual

variance terms constraint as long as (4.2) is equivariant with respect to scale changes

in the response variable.

Our proposal for choosing the m parameter is to monitor simultaneously the

following two quantities: the proportion of hard assignments and the relative entropy

of the fuzzy weights. The proportion of hard assignments (or approximately hard
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assignments) has to do with the size of the cluster “cores” (i.e., the proportion of

observations undoubtedly assigned to clusters). For certain applications, it is clearly

interesting to have as higher as possible percentage of observations within these

cores. The relative entropy measures residual uncertainty in cluster assignments,

and it is proposed to be computed as

k∑
j=1

n∑
i=1

uij log uij

/
[n(1− α)] log(k). (4.11)

There is a clear trade-off between the proportion of hard assignments and the rel-

ative entropy. These two criteria cannot be simultaneously controlled by moving

parameter m but the user can set m by considering a kind of “compromise” be-

tween these two opposite goals. The user may also change the response variable

measurement scale in cases in which the proportion of hard assignments is basically

constant with respect to m.

Figure 4.4 shows the proportion of hard assignments and the relative entropy as

a function of m in our simulated example. We did so by repeatedly applying our

procedure for different values of m. These plots suggest interesting m parameter

values as those shown in Figure 4.3. These type of plots are useful to avoid extreme

situations (very large degrees of fuzziness or zero proportions of hard assignments)

and to explore the underlying degree of overlap.

4.3.4 Constraints on the residual variances

An important feature is that no cluster homoscedasticity assumption is made when

c > 1. This is a novel feature as in many fuzzy switching regression models (see,

e.g., Hathaway & Bezdek 1993, Wu et al. 2009) the residual variances are not kept

into account and clusters are (implicitly or explicitly) assumed to be homoscedastic.

In the “crisp” switching regression literature heteroscedasticity has already been

considered in DeSarbo & Cron (1988) and Leisch (2006).

In order to give a brief illustration of how much clustering results might change

by allowing for homoscedastic residuals, we compare in Figure 4.5 estimates based

on c = 1 and c = 5 in two different heteroscedastic scenarios. To be more precise,

we use the simulation scheme as before but with σ1 = 0.4 and σ2 = 0.6 in (a)

and (b) and σ1 = 0.2 and σ2 = 1 in (c) and (d). In Figure 4.5,(a), the residual

variances are correctly estimated when c = 5 and classification is very good as only

18 observations out of 360 are wrongly classified. On the other hand, in Figure

4.5,(b), we run the procedure on the same data set but after fixing c = 1. The

estimated residual variances are now forced to be equal and 3 additional observations
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Figure 4.4: Left panels: relative entropy of the fuzzy weights, “×”, proportion of

hard assignments, “◦”, as a function of scale; (a) s = 0.5. (c) s = 1 (e) s = 10.

(g) s = 32. Right panels: clustering obtained for specific values of m through (b)

s = 0.5, m = 2.2. (d) s = 1, m = 1.8. (f) s = 10, m = 1.6. (h) s = 32, m = 1.4.

are misclassified. In panels (c) and (d), we repeated this experiment, but with an

increased difference in the underlying variances. In Figure 4.5,(c) we still have

18 misclassified observations when c = 5 but in (d), where c = 1, we have 32

misclassified observations.

One would be tempted to set a large value for the constraint limit c, but too

large values might be associated with spurious maximizers. Compare Chapter 2

for further details. In the following example, a set of spurious maximizers, we add

a small proportion of almost collinear points(points that approximately lie on the

same hyperplane) that form a spurious cluster (McLachlan & Peel 2000) . We

have applied the proposed methodology with k = 2 and constraints on the residual

variances, with k = 2 without constraints (almost unconstrained with c = 1010)

and with k = 3 and constraints. The results obtained can be seen in Figure 4.6.
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Figure 4.5: Estimated robust fuzzy clustering for different c values in two (less and

more) heteroscedastic data sets. c = 5 is used in (a) and (d) and c = 1 in (b) and

(d). The plotted bands are obtained by adding ±2ŝj to each fitted regression line.

We can see that these few almost collinear points are detected as a new additional

cluster in Figure 4.6,(c). However, when k = 2, we clearly can see that the cluster

partition shown in (a) is surely a more sensible one that the one shown in (b) where

no constraints to avoid spurious solutions have been incorporated.
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Figure 4.6: (a) FTCR with c = 5 and k = 2. (b) FTCR with c = 1010 and k = 2.

(c) FTCR with c = 1010 and k = 3.
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4.3.5 Trimming level

The issue of fixing a proper trimming level has been hugely discussed in Chapter

2, while in Chapter 3 we outlined a method based on reweighting which basically

overcomes this problem. Since we now focus on a different problem we wish to

outline some simple heuristic methods. The usage of ctlcurves as outlined above has

proved to be intuitive and effective. An alternative heuristic approach is based on

plotting r[n(1−α)] against the trimming level α, where r(1) ≤ r(2) ≤ ... ≤ r(n) are the

sorted ri values that were introduced in (4.6). These ri values are the individual

contributions of our n observations to (4.3). Given a candidate trimming level

α0, we apply the proposed methodology to obtain optimal regression and optimal

membership values. We then plot the associated {α, r[n(1−α)]} curve. Our proposal

is to consider α0 as a sensible choice for the trimming level if this curve increases

quickly when α < α0 but slowly when α ≥ α0. The idea is that after all outliers

have been removed, the individual contributions to the likelihood r[n(1−α)] for two

observations must be essentially the same when considering similar α values. We

show these curves different candidate α0 values (α = 0.2, 0.1 and 0.05) in the left.

Figure 4.7,(a), clearly shows that when α0 = 0.2 too many observations have been

trimmed. This can be seen in panel (b) as the individual contributions to the

likelihood have stabilized for much smaller values of α than α0 = 0.2. On the other

hand, panel (e) clearly shows that not enough observations have been trimmed with

α0 = 0.05. This can be also seen in panel (f) as the individual contributions are still

increasing quickly when α = α0 = 0.05 and, hence, there still are outliers available

for trimming. Finally, α = 0.1, the true underlying contamination level, is a fine

choice.

4.3.6 Automatically choosing all parameters

In the proposed method many tuning parameters are involved, and the choices are

interwined (that is, the optimal α depends on the chosen k, and so on). A user

might not be willing to spend time exploring the data, or prior information might

not be strong enough to guide the choice. We propose here a pseudo cross-validation

method which we have found promising for choosing a good set of parameters. This

will be demonstrated for some simulated data sets in this Section and in Section 4.4.

Cross-validation in unsupervised learning is slightly more complicated than the

supervised framework, as no measurement of the target outcome is available. For

a general discussion see Perry (2009) and references therein. In our framework, the

user has no choice other than checking stability. We proceed as follows: we fix a
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Figure 4.7: Left panels: Estimated linear clustering result for different trimming

levels and m = 1.5. (a) α = 0.20. (c) α = 0.10. (e) α = 0.05. Right panels: Average

contribution to the likelihood for different values of α. A red line corresponds to the

trimming level used on the corresponding left panel. (b): α = 0.20. (d): α = 0.10.

(f): α = 0.05.

grid of candidate tuning parameters. For each combination of tuning parameters,

we randomly select a subset of observations (e.g., 50 or 75% of them), fit the model,

and record the Euclidean distance between the estimated intercepts and slopes and

the estimates based on the full data. We then repeat several (e.g., 100) times and use

the mean or median Euclidean distance as a scoring rule. The Adjusted Rand Index

(Hubert & Arabie 1985) can be also applied as stability measure. The “optimal”

combination of parameters is that based on the minimal scoring rule.

To illustrate, consider the example in Figure 4.8. It can be seen that pseudo cross

validation in this case was able to recover the true structure.

As was commented, different users may be interested in different clustering parti-

tions depending on their final data-analysis purposes. We believe that we can surely

find the best partition, depending on our clustering purposes, among a reduced list

of partitions having the highest pseudo cross-validation indexes. I.e., it is recom-
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Figure 4.8: (a) The scatter plot of our dataset. (b) The results obtained using the

tuning parameters chosen by cross-validation

mended to have a careful look at other stable partitions (not only the “optimal”

one) by using the heuristic tools already presented in this Section. Finally, as a

concluding remark, we would like to point out that a sensitivity analysis, obtained

by varying the tuning parameters in a reasonable range, is always recommended

regardless of how tuning parameters are chosen.

4.4 Simulation study

4.4.1 Settings and methods

In order to validate the proposed approach, a simulation study has been performed.

We compared the proposed method (tagged FTCR throughout) with (i) the pro-

posed method with no trimming, that is, α = 0 with c = 1010 and m = 1.5 (tagged

EM throughout), (ii) the c-regression model of Hathaway & Bezdek (1993) (tagged

cReg) and (iii) the alternative switching regression model of Wu et al. (2009), tagged

A-cReg throughout. Two of these procedures (EM and cReg) are not designed to

resist to contamination, while A-cReg and FTCR are formally robust. It is also im-

portant to note that the EM approach without constraints (c = 1010) often provides

very poor results, specially in higher p cases, because it might return partitions

including clusters made up of few almost collinear observations (i.e., “spurious”

clusters).
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We generated data based on k =2 and 3 linear clusters and p =1, 2 and 3

covariates. For each setting we have four possible contamination schemes: (i) no

contamination, (ii) uniform contamination, (iii) uniformly distributed background

noise contamination and (iv) pointwise contamination. Contamination scheme (ii)

corresponds to generating outliers from a uniform distribution with support within

the range of the data (response and explanatory variables). Contamination scheme

(iii) corresponds to the same, but with each dimension of the support brought farther

from zero by two units when p = 1, 2 and five units when p = 4. Contamination

scheme (iv) corresponds to generating outliers from a Gaussian distribution centered

in a point (x, y), specified below, with standard deviation 0.1. This creates very

concentrated “spherical” cluster of outliers, which do not follow a linear structure

but might be influential. For each scenario we moreover compare homoscedastic and

heteroscedastic underlying clusters.

The total number of settings is therefore 48. For each setting we generate data,

estimate parameters based on the four procedures, and evaluate the Mean Squared

Error (MSE) for slope and regression parameters (after matching through an in-

creasing order for the slopes) and misclassification rate of observations. The results

are averaged over B = 500 replicates.

We now outline for each combination of k and p how data was generated in more

detail, and the results. Throughout tuning parameters are fixed at reasonable values

given the data generating distribution, for all of the four procedures.For instance

the trimming level α has been fixed equal to 0.10 while m = 1.5 and c = 5. It shall

be noticed that in case of uncontaminated data we run our model overestimating

the proportion of outliers. Nevertheless simulation’s results have shown that the

overestimation of the true contamination level lead us to moderate loss in terms

of efficiency in the parameter estimation process. At the end of the section we

very briefly discuss the performance of our automatic method for choosing tuning

parameters with FTCR.

Setting S1: p = 1 and k = 2 where the data is generated as follows:

1. The first cluster is made of n1 = 144 observations; the explanatory variable

X11i is distributed according to a uniform distribution with support in (0, 5)

and the regression model is yi = 1 + 2x1i + ε1i.

2. The second cluster is made of n2 = 216 observations; the explanatory vari-

able X21i is distributed according to a uniform distribution in (0, 4) and the

regression model is yi = 10− 1.5x2i + ε2i
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3. 40 (that is to say an amount of 10%) contaminating points have been added

as described previously. Pointwise contamination has been obtained from a

Gaussian centered in (x, y) = (−1.5, 17).

The errors ε1i and ε2i are zero-centered normals with standard deviation σ1 and

σ2, respectively, where σ1 = 0.4, and σ2 = 0.8 in the heteroscedastic case, and

σ1 = σ2 = 0.4 in the homoscedastic case.

In Figures 4.9 and 4.10 we report the MSE for slopes and intercepts, and mis-

classification rates, respectively.
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Figure 4.9: Simulation study. Boxplots representing the MSE of bj and b0
j for setting

S1: p = 1, k = 2. The Homoscedastic clusters are in (a),(c),(e),(g). Heteroscedastic

clusters are in (b), (d), (f), (h). Uniform contamination is in (a) and (b). Inflated

uniform contamination is in (c), and(d). Pointwise contamination in (e) and (f).

Clean dataset is in (g) and (h)

Setting S2: p = 2 and k = 2 where the data is generated, with two covariates, as

follows:

1. The first cluster is made of n1 = 144.. The two covariates X11i and X12i are

uniformly distributed in the range (0, 5) and (5, 9), respectively. The underly-

ing regression model is yi = 3 + 4x11i − 2x12i + ε1i.
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Figure 4.10: Simulation study. Misclassification error for setting S1: p = 1, k = 2.

Legend as in Figure 4.9.

2. The second cluster is made of n2 = 216 observations. The two covariates X21i

and X22i are uniformly distributed in the range (0, 6) and (6, 9), respectively.

The underlying regression model is yi = −2− 2x21i + 2x22i + ε2i.

3. 40 contaminating points have been added as described previously. Pointwise

contamination has been obtained by centering the Gaussian distribution on

(x1, x2, y) = (1,−1.5, 18.5).

The errors ε1i and ε2i are zero-centered normals with standard deviation σ1 and

σ2, respectively, where σ1 = 0.4, and σ2 = 0.8 in the heteroscedastic case, and

σ1 = σ2 = 0.4 in the homoscedastic case.

Results are reported in Figures 4.11 and 4.12.

Setting S3: p = 4 and k = 2 where the data is generated as follows:

1. The first cluster is made of n1 = 144 observations. The four covariates

X11i, X12i, X13i, X14i are uniformly distributed in the range (0, 5), (5, 9), (2, 7)

and (3, 8), respectively. The underlying linear model is yi = 3+2x11i−0.5x12i+

2x13i + 4x13i + ε1i
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Figure 4.11: Simulation study. Boxplots representing the MSE of bj and b0
j for

setting S2: p = 2, k = 2. Same legend of Figure 4.9.

2. The second cluster is made of n2 = 216 observations. The four covariates

X21i, X22i, X23i, X24i are uniformly distributed in the range (0, 6), (4, 12), (0, 8)

and (1, 5), respectively. The underlying linear model is yi = 6 − 1.5x21i −
0.1x22i + 3x23i + 6x24i + ε2i.

3. 40 contaminated points are added following the schemes described in the pre-

vious section. Pointwise contamination is generated by centering the Gaussian

distribution on (x1, x2, x3, x4, y) = (3, 8, 4, 2.5, 9).

The error terms εi are zero-centered normal variables having standard deviation σi

equal to 0.4 in case of homoscedastic clusters and to σ1 = 0.4 and σ2 = 0.8 in the

heteroscedastic case.

Results are reported in Figures 4.13 and 4.14.

Setting S4: p = 1 and k = 3 where the data is generated as follows:

1. n1 = 150 observations from the first cluster. A covariate X11i is uniformly

distributed in the range (0, 5) and the underlying linear model is given by

yi = 3 + 2x11i + ε1i
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Figure 4.12: Simulation study. Misclassification error for setting S2: p = 2, k = 2.

Legend as in Figure 4.9

2. The second cluster is made of n2 = 160 observations and the covariate X21i is

uniformly distributed in the range (0, 6). The underlying linear model is given

by yi = 6− 2x21i + ε2i

3. The third cluster is made of n3 = 140 observations and the covariate X31i is

uniformly distributed in the range (0, 5). The underlying linear model is given

by: yi = 5 + 4x31i + ε3i

4. 50 contaminated points are added following the schemes described in the pre-

vious section. In the case of pointwise contamination we center the Gaussian

distribution on (x1, y) = (−1.5, 20).

The errors ε1i, ε2i and ε3i are zero-centered normals with standard deviations σ1, σ2,

and σ3, respectively; where σ1 = 0.5, and σ2 = 0.6 and σ3 = 0.4 in the heteroscedas-

tic case, and σ1 = σ2 = σ3 = 0.4 in the homoscedastic case.

Results are reported in Figures 4.15 and 4.16.

Setting S5: p = 2 and k = 3 where the data is generated as follows:

1. The first cluster is made of n1 = 150 observations. The two covariates
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Figure 4.13: Simulation study. Boxplots representing the MSE of bj and b0
j for

setting S3: p = 4, k = 2. Same legend of Figure 4.9

X11i and X12i are uniformly distributed in the range (0, 5) and (5, 9), respec-

tively. The underlying linear model is given by yi = 3 + 2x11i − 0.5x21i + ε1i

2. The second cluster is made of n2 = 160 observations. The two covariates

X21i and X22i are uniformly distributed in the range (0, 6) and (4, 12), respec-

tively. The underlying linear model is given by yi = 6− 2x21i − 0.1x22i + ε2i

3. The third cluster is made of n3 = 140 observations and the two covariates

X31i and X32i are identically distributed to X11i and X12i, respectively. The

underlying linear model is given by: yi = 5 + 4x31i − 2.5x32i + ε3i

4. 50 contaminated points are added following the schemes described in the pre-

vious section. In the case of pointwise contamination the Gaussian is centered

on (x1, x2, y) = (−1, 1, 20).

The errors ε1i, ε2i and ε3i are zero-centered normals with standard deviation σ1 and

σ2, respectively, where σ1 = 0.5, and σ2 = 0.6 and σ3 = 0.6 in the heteroscedastic

case, and σ1 = σ2 = σ3 = 0.4 in the homoscedastic case.

Results are reported in Figures 4.17 and 4.18.
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Figure 4.14: Simulation study. Misclassification error for setting S2: p = 2, k = 2.

Legend as in Figure 4.9

Setting S6: p = 4 and k = 3 where the data is generated as follows:

1. The first cluster is made of n1 = 150 observations. The four covariates

X11i, X12i, X13i and X14i are uniformly distributed in the range (0, 5), (5, 9),

(1, 7) and (1, 5), respectively. The underlying linear model is yi = 3 + 2x11i −
1x12i + 2x13i + x14i + ε1i

2. The second cluster is made of n2 = 160 observations. The covariatesX21i, X22i, X23i and X24i

are uniformly distributed in the range (0, 6), (4, 9), (0, 7) and (1, 5), respec-

tively. The underlying linear model is yi = 6− 2x21i + x22i + x23i + 6x24i + ε2i

3. The third cluster is made of n3 = 140 observations and the covariatesX31i, X32i, X33i and X34i

are uniformly distributed in the range (0, 6), (5, 9), (0, 8) and (1, 5), respec-

tively. The underlying linear model is given by yi = 8+4x31i−2.5x32i+2x33i+

3x34i + ε3i

4. 50 contaminated points are added following the schemes described in the

previous section. Pointwise contamination is generated centered on (x1, x2,

x3, x4, y) = (1, 5, 2, 2, 18.5).
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Figure 4.15: Simulation study. Boxplots representing the MSE of bj and b0
j for

setting S4: p = 1, k = 3. Legend as in Figure 4.9

The errors ε1i, ε2i and ε3i are zero-centered normals with standard deviation σ1 and

σ2, respectively, where σ1 = 0.4, and σ2 = 0.5 and σ2 = 0.3 in the heteroscedastic

case, and σ1 = σ2 = σ3 = 0.4 in the homoscedastic case.

Results are reported in Figures 4.19 and 4.20.

4.4.2 Automatic choice of the tuning parameters

We give in this section a brief evaluation of our proposed resampling method for

automatic choice of the tuning parameters. In Figure 4.21 we report the MSE for

slopes and intercepts in two scenarios extrapolated from scenario S1. For comparison

we report also the same for “oracle” FTCR with fixed tuning parameters, and the

three other methods. It can be seen that the MSE with automatically chosen tuning

is slightly definitely comparable with that of the oracle FTCR. We therefore deem

pseudo cross-validation as promising.

Quite similar results (not reported for reasons of space) are reported also in other

scenarios.
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Figure 4.16: Simulation study. Misclassification error for setting S4: p = 1, k = 3.

Legend as in Figure 4.9

4.4.3 Comments on the results of the simulation study

In all scenarios it can be seen that the procedures have more or less the same per-

formance under no contamination, with the EM being only slightly better than the

other three and FTCR being only slightly worse than the other ones. This is the loss

of efficiency which is expected for any robust procedure, and it is in our opinion very

reasonable. On the other hand, in contaminated scenarios non-robust procedures

break down, showing very large MSE values (especially in scenarios (e) and (f), that

are the pointwise contaminated scenarios) and high variability in performance. We

speculate the superior performance of FTCR in pointwise contaminated scenarios is

due to the fact that jittered clustered outliers might be wrongly detected as a spuri-

ous cluster by other methods, or might not be sufficiently downweighted. Trimming

is able to completely remove the influence of outliers.

As a matter of fact, FTCR is mostly unaffected by contamination and it shows

by far the best MSE and misclassification rates in presence of outliers. In setting S6

with pointwise contamination (panels (e) and (f) of Figures 4.19 and 4.20) not much

difference is seen among the procedures due to the curse of dimensionality and lack

of clear true underlying structures. Nevertheless, FTCR seems to be left-skewed,
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Figure 4.17: Simulation study. Boxplots representing the MSE of bj and b0
j for

setting S5: p = 2, k = 3. Legend as in Figure 4.9
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Figure 4.18: Simulation study. Misclassification error for setting S5: p = 2, k = 3.

Legend as in Figure 4.9 .
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Figure 4.19: Simulation study. Boxplots representing the MSE of bj and b0
j for

setting S6: p = 4, k = 3. Same legend of Figure 4.9
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Figure 4.20: Simulation study. Misclassification error for setting S6: p = 4, k = 3.

Legend as in Figure 4.9.

therefore still dominating the other procedures in many of the simulated scenarios.
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Figure 4.21: Boxplots with Mean Square Error for tuned and crossvalidated model,

with competitors for comparison. C-val denotes FTCR with automatically chosen

tuning. (a) Two Homoscedastic clusters uniformly contaminated, p = 1 covariate

(Setting S1). (b) Two Heteroscedastic clusters with pointwise contamination, p = 1

covariate (Setting S1).





Chapter 5

Real data examples

5.1 Introduction

Within this chapter we apply the proposed contributions to real datasets. The out-

line of the chapter is as follows.

In section 5.2.1 we report the application of the RTCLUST methodology to the

“Swiss Bank Note” dataset as already done in Dotto et al. (2016b). Such dataset,

provided within many different R packages (tclust by Garćıa-Escudero et al. 2008

and mclust by Fraley & Raftery (2012) among the others), has been widely used

to illustrate other clustering proposals (both robust and non robust). For the sake

of brevity we just report the results obtained applying the TCLUST method, which

also served as initialization for applying the RTCLUST methodology, and the results

obtained after the reweighting process

In Section 5.2.2 we report the analysis appeared in Dotto et al. (2016b) on a dataset

provided by the GALLUP Organization. This is a novel dataset ans to our knowl-

edge no applications have appeared yet.

In Section 5.3 we report the application of the proposed fuzzy linear clustering

model to allometry data (Dotto et al. 2016a). As a comparison we also applied all

the methods used in the simulation study and compare the results.
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5.2 Applications of reweighted TCLUST

5.2.1 Swiss Bank Notes

In this Section we apply the proposed iterative reweighting approach to the 6-

dimensional “Swiss Bank Notes” data set presented in Flury & Riedwyl (1988)

which describes certain features of 200 Swiss 1000-franc bank notes divided in two

groups: 100 genuine and 100 counterfeit notes. This is a well known benchmark data

set. In Flury & Riedwyl (1988), it is pointed out that the group of forged bills is not

homogeneous since 15 observations arise from a different pattern and are, for that

reason, outliers. Figure 5.1,(a) shows a scatterplot of the fourth (“Distance of the

inner frame to lower border”) against the sixth variable (“Length of the diagonal”)

with the classification of bills given in Flury & Riedwyl (1988) by using symbols

“G” for the genuine bills and “F” for the forged ones. The previously commented

15 “anomalous” forged bills are surrounded by circles in this graph. Figure 5.1,(b)

shows the results of applying TCLUST with a high trimming level α0 = 0.33 and

c = 12. We can see that the 15 outlying points are successfully discarded and ob-

servations in the “cores” of the genuine and forged bills groups are correctly found.

However, due to the use of this high trimming level, many observations are also

discarded apart from the 15 clear outliers. We have surrounded these “probably

wrongly” trimmed observations by square symbols. Finally, Figure 5.1,(c) shows

the results of applying the proposed iterative trimming approach starting from the

TCLUST’s solution in (b) with αL = 0.001. We can see that the proportion of

“probably wrongly” trimmed observations reduces to 4 (also surrounded by square

symbols). One of these 4 observations is a genuine bill which clearly exhibits certain

anomalous behavior in these two plotted variables and we could also see that the

other 3 (wrongly) trimmed observations analogously seems to exhibit slight devia-

tions in some of the (non-plotted) variables.

We have used a smaller αL = 0.001 value in this real data example. If αL = 0.01

then 7 wrongly trimmed observations (instead of 4) are obtained. As stated in

the introduction, RTCLUST is not an outlier detection method. Estimates of the

clusters location and scatter matrices do not change notably with the choice of

αL, which makes RTCLUST a good choice for robust clustering and parameters

estimation for this data set. Formal rules for outlier detection could be then based

on RTCLUST robustly estimated parameters.

As a final comment to the analysis we also report the table containing the confidence

intervals for the estimated clusters’ centroids obtained by the TCLUST with α0 =

.33 and for the estimation provided by the reweighted TCLUST. It can be seen that
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Figure 5.1: Fourth against the sixth variable of the Swiss Bank Notes data set. (a)

G stands for genuine bills, F for forged ones and 15 bills listed in Flury & Riedwyl

(1988) as anomalous ones are surrounded by ◦ symbols. (b) The initial TCLUST

solution with α0 = 0.33 (c) Final solution when applying the proposed iterative

approach. Trimmed observations not coinciding with those in Flury and Riedwyl’s

list are surrounded by 2 symbols.

in most of the cases the confidence intervals associated to the RTCLUST estimation

are narrower which mean that more precise estimations are available.

Table 5.1: 99% simultaneous confidence intervals for µ̂ provided by the TCLUST

and the RTCLUST

TCLUST RTCLUST

C-1 C-2 C-1 C-2

Variable lower upper lower upper lower upper lower upper

Length 214.78 215.15 214.64 214.90 214.83 215.15 214.65 214.91

Ht Left 129.76 130.09 130.13 130.38 129.77 130.08 130.15 130.39

Ht Right 129.53 129.83 130.05 130.27 129.57 129.85 130.04 130.33

IF Lower 7.87 8.51 10.49 11.30 8.01 8.59 10.44 11.25

IF Upper 9.98 10.50 10.82 11.46 9.87 10.44 10.80 11.40

Diagonal 141.31 141.71 139.44 139.75 141.37 141.73 139.47 139.79

We conclude with an analysis based on k = 1. As half of the bank notes are gen-

uine ones, one could think that setting k = 1 and trimming 50% of the observations

would identify them. Use of TCLUST with k = 1, α0 = 0.5 and c = 12 (which is

the default value of c fixed in the tclust package in Fritz et al. 2012b) successfully

identifies 96 genuine bills (out of the 100 non-trimmed observations). The stan-

dard application of RTCLUST, started from this TCLUST solution with α0 = .5
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and αL = 0.001, returns a final set with 102 notes which includes 98 genuine bills.

Therefore, RTCLUST is well-suited to discover, in an automatized way, the genuine

observations. On the other hand, use of MCD through the well-known robustbase

package with α = 0.5 returns 103 bills (i.e., the largest integer less than or equal to

(n+ p+ 1)/2 as the “best” subset found and used for computing the raw estimates.

Surprisingly, only 42 out of these 103 observations are genuine ones. Additionally,

things become even worse when applying the default consistency correction factor

for the covariance matrix estimation and the use of (3.1) with αL = 0.025, as this

finally leads to 176 notes used for robust estimation.

5.2.2 Food Security Data

In this section we apply the proposed procedure to an original and very recent data

set on an investigation of the status of food insecurity in the world in 2014. Food

security is defined by the Committee on World Food Security of United Nations as

when people

at all times, have physical, social and economic access to sufficient safe

and nutritious food that meets their dietary needs and food preferences

for an active and healthy life.

For reviews see Godfray et al. (2010) and Jones et al. (2013).

In 2014, the Gallup Organization conducted a World Poll based on a question-

naire given to a representative sample of about 1000 adults from each of several areas

in the world. Areas mostly correspond to countries, while in some cases countries

have been split in different areas (e.g., Congo has been split in two, Brazzaville and

Kinshasa areas). The Gallup World Poll (GWP) answers are then routinely summa-

rized by Gallup into thematic indeces, which are evaluated for each polled subject

and could be used to make comparisons across countries. A detailed description of

the GWP can be found at http://www.gallupworldpoll.com/content/24046/About.aspx.

In 2014 the usual GWP questionnaire has been augmented with eight questions, in

partnership with the Voices of the Hungry (VoH) project of the Food and Agricul-

ture Organization (FAO) of the United Nations. These questions were aimed at

evaluating specifically a new index, the Food Insecurity Experience Scale (FIES). A

very challenging issue that has been tackled by the VoH team is the standardization

of the FIES score over different cultures and languages. Details on how this was

performed are given in Cafiero et al. (2016). A more general discussion is provided

in Ballard et al. (2013), Cafiero et al. (2014).
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We have obtained the individual standardized FIES scores, in addition to the

rest of GWP data for 2014. Data have been aggregated at country level, taking

sampling weights into account. Our aim is to cluster and identify outlying countries,

and secondly to evaluate the discriminating power of FIES after taking into account

information collected by the other indices. Our final data set, aggregated over

subjects, is therefore made of n = 127 countries and p = 6 indeces. These are

Food Insecurity Experience Scale, Civic Engagement Index, Struggling Index, Food

Security Index, Corruption Index, Youth Development Index. The aim of each index

is rather self-explanatory from its name. Details can be found in Gallup (2015) and

on the GWP website.

In order to explore the number of groups we use the ctlcurves of Garćıa-

Escudero et al. (2011), which for different values of k show the log-likelihood at

convergence of TCLUST, as a function of α and k. They can be used to determine

both the number of groups and the optimal trimming level. The ctlcurve for the

FIES data is reported in Figure 5.2.
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Figure 5.2: ctlcurve plot for the FIES data.

As sometimes happens, Figure 5.2 clearly indicates that there should be k > 2

groups, but it is unclear as with respect to the choice between k = 3 and k = 4.

Additionally, it is definitely not conclusive with respect to the optimal trimming

level α, which here is a parameter of interest as it is connected with the number

(and identity) of outlying nations. The final estimates depend on the choice of α. In

this example, RTCLUST can be seen as an automatic way of choosing the optimal

trimming level, as the one balancing between robustness and efficiency. For the
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proposed methodology we do not need to specify α. We have applied our method

both based on k = 3 and k = 4. As with k = 4 two groups are not very separated,

we prefer k = 3 and report only those results for reasons of space. We run rtclust

with k = 3, initial trimming level α0 = 0.2, αL = 0.001.The results are remarkably

stable with respect to the tuning parameters. Nine countries (7.1%) are flagged

as outlying, 13 are classified in group 1, 95 in group 2, and 10 in group 3. The

cluster profiles (cluster means) and raw measurements for the outlying countries are

reported in Table 5.2. It shall be noted that groups 1 and 3 are of similar size as the

group of outliers. Countries in groups 1 and 3 are very similar though and close to

the reported profiles, while outliers are provably scattered, or have extremal values

at least in one of the dimensions considered.

Table 5.2: Cluster profiles and measurements for the outlying countries. FIES:

Food Insecurity Experience Scale. CE: Civic Engagement. St: Struggling. FS:

Food Security. Co: Corruption index. YD: Youth Development. C-j: j-th cluster

profile.

FIES CE St FS Co YD

C-1 -0.34 44.64 55.19 69.66 45.53 75.79

C-2 0.13 31.42 63.24 53.99 74.33 58.61

C-3 0.41 22.55 63.94 52.51 67.97 44.90

Myanmar -0.95 66.84 85.80 13.21 53.33 85.48

Sweden -0.64 43.22 48.08 76.68 37.39 59.67

Georgia -0.43 21.24 60.49 41.31 30.85 67.56

New Zealand -0.12 57.98 55.52 67.02 40.50 66.94

Paraguay 0.06 17.43 81.05 88.26 66.31 40.64

Rwanda 0.27 13.12 69.74 61.54 9.29 84.48

Cambodia 0.90 26.93 62.30 20.61 73.53 86.70

South Sudan 3.81 35.17 51.53 35.22 58.29 49.97

Haiti 5.04 35.33 51.47 43.66 57.24 32.07

It can be seen that the three clusters are well separated in terms of all of the

items considered. The first cluster is characterized by the lowest food insecurity (and

largest food security), corruption and struggling, and by the largest civic engagement

and youth development. Sadly, only a minority of countries are assigned to cluster 1.

The third cluster is characterized by largest food insecurity, lowest civic engagement

and youth development. No differences are seen in terms of struggling and FS index

between clusters 2 and 3. Finally, not surprisingly the corruption index is higher in

the slightly more developed countries belonging to cluster 2 than in those in cluster

3. The outliers are easily explained, as for instance Haiti and South Sudan have an
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extremely high FIES. Sweden might belong to cluster 1, but its corruption is so low

and its food security (however measured) is so large that it is outlying. All other

outliers have at least one measurement in complete disagreement with the three

clusters. A special note regards Myanmar, where there might have been problems

with the questionnaire and with the sampling, and whose measurements therefore

might not be completely reliable.

It shall be noted that the new FIES score is able to separate very well the three

clusters, while Gallup’s FS score only discriminates between the first and the other

two. Other evidence in favor of the added value of FIES is that if we remove it and

repeat the analysis the average silhouette width decreases by about 4%.

5.3 Applications of fuzzy linear clustering

Allometry studies the relationships between biometric measurements in humans, an-

imals, and plants. Clusterwise regression is particularly useful for allometric studies

since relations between biometric measurements are often linear or close to linear,

possibly after transformation, and additionally there might be different relation-

ships according to other variables which might not even be measured. For instance,

the relationship between head circumference and height in humans is different at

different age classes. In our experience, groups are seldom perfectly separated and

overlapping may hinder the true relationships if not properly taken into account

(e.g., through fuzzy weights). Additionally, outlying biometric measurements are

often present.

We illustrate based on an example already considered in Garćıa-Escudero, Gordal-

iza, Mayo-Iscar & San Mart́ın (2010), where sharp clusterwise regression was imple-

mented. Here we implement fuzzy clusterwise regression, showing that use of fuzzy

weights leads to better clustering and better understanding of bridge points between

clusters. Data is made of 362 measurements of height and diameter of Pinus Ni-

gra trees located in the north of Palencia (Spain). We aim to explore the linear

relationship between these two quantities. Our explanatory variable is “diameter”,

while the outcome is “height”. This is justified by the fact that roughly measuring

the diameter of a tree is extremely simple, while measuring the height is expensive

as the tree must be climbed or at least measured with more complex tools and by a

team of operators. Hence a reliable way of predicting the height from the diameter

would be cost-effective. The diameter and height can be used to roughly estimate

the age and the volume (that is, the amount of wood) of each tree.

The scatter plot in Figure 5.4 clearly shows that there should be three approxi-
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mately linear groups, and an isolated group of outliers.

To confirm this we use both our heuristic and automatic methods for choosing

the tuning parameters. In Figure 5.3,(a) gives the ctlcurve, which indicates that

we should fix k = 3 and α = 0.04. This is confirmed in panel (b), where we show

the average contribution to the likelihood. Finally, from panel (c) we see that for

m > 1.3 the proportion of hard assignments decreases sharply. This makes us set

m = 1.3.
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Figure 5.3: Pinus Nigra example. (a) ctlcurve. (b) average contribution to the

likelihood as a function of α. (c) relative empty entropy and proportion of hard

assignments as a function of m.

Finally, it shall be noted that the tuning parameters chosen with our proposed

automatic method based on pseudo cross-validation are k = 3, m = 1.3, α = 0.04

and c = 25. There is substantial agreement between heuristics and automatic tuning,

and these are the parameters we use in the following.

We apply four procedures: the fuzzy c-means regression method, Figure 5.4,(a),

our method without trimming in (b), the A-cReg method in (c), and, our proposal

in (d).

It can be seen that the untrimmed procedures are not able to detect the most

likely underlying linear relationships even if one additional cluster is used, as done

in Figure 5.5, as the small isolated groups of observations have a direct influence on

one of the clusters, and an indirect one on the other two. A very large coefficient is

estimated for the group including the isolated outliers, while another group includes

too many observations with many fuzzy memberships.
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Figure 5.4: Pinus Nigra example: (a) Scatter plot and results of cReg method. (b)

results of the “EM” method. (c) results of the A-cReg method. (d) results of the

FTCR method. Circled observations are fuzzy assignments.

On the other hand, by trimming as few as 15 observations, we recover quite nicely

the linear structures. A similar result is obtained with A-cReg, but at the price of

a longer computational time. The FTCR procedure (and similarly A-cReg) give a

good proportion of hard assignments, indicating that the estimated clusters are well

separated. There is also a fair proportion of fuzzy cluster assignments, which might

mislead interpretation if hard assigned to one of the clusters. The FTCR procedures

formally detects outliers while A-cReg gives uij = 1/k membership values. More

distant outliers, as seen in simulations, might lead the two procedures to behave

differently. In Figure 5.4, less fuzzy observations (i.e. whose maxj uij ≤ 0.95) are

plot with the symbol “◦”.

A clear interpretation for the three clusters is that pines are sampled in three

different zones. It can be seen that three almost parallel lines are obtained, indi-
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Figure 5.5: Pinus Nigra Data example: Results of the proposed procedure when

searching for k = 4 clusters and no trimming imposed

cating a similar relationship between diameter and height within the three zones.

We can therefore speculate that environmental conditions (e.g., quota, rainfall, sun

exposure) are similar in the three zones, but that immigration of the species has

occurred in different times; where in the “green” zone trees are older (and therefore

bigger) and the most recent colonization (with younger and smaller trees) has oc-

curred in the “blue” zone. Additionally, outliers can be easily justified since they

are trees of a different species which seems to be misclassified as “Pinus Nigra”.



Chapter 6

Conclusions and further directions

6.1 Concluding remarks on the reweighted TCLUST

contribution

In Chapter 3 we have presented an iteratively reweighed approach that can recover

wrongly trimmed observations when applying robust clustering procedures based

on high (preventive) trimming levels. This approach also makes easier the use of

the TCLUST robust clustering method by eliminating the need to calculate the ini-

tial trimming level and the eigenvalue constraint. RTCLUST has two advantages

over TCLUST: first, a sometimes not easily chosen tuning parameter, the trimming

level, does not need to be perfectly specified in advance and the same happens for

the eigenvalue ratio constraint value c. Secondly, it conjugates high robustness (as it

can resist to an α0 proportion of outliers) with high efficiency (as under no or little

contamination the proportion of discarded observations will be much lower than α0).

The simulation study and the real data example also show how this methodology

could be useful in practical applications. There is still room for further work. Formal

theoretical properties could be explored. As commented in Remark 1, the outlier

labeling process at each iteration could also be refined. We have applied very sim-

ple thresholds based on the χ2 approximation for the Mahalanobis distances. More

accurate procedures could be obtained, for instance, by considering small sample

approximations or correcting for the multiple testing when labeling outliers (see,

e.g., Cerioli 2010, Cerioli & Farcomeni 2011). The multiple testing approach to

reweighting might be tweaked to yield a simultaneous robust estimation and outlier

detection method. The proposed methodology assumes that the number of groups k

is known in advance. Estimating a correct k value is an important, but difficult too,

problem. In fact, this is an ill-posed problem because the total number of groups
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depends on the type of clusters we are searching for or on what we understand as

noise. For instance, a set made up with several disperse observations can be seen

as a proper group with a large scatter or it can also be seen as background noise.

Therefore, searching for the proper number of groups k would require making some

subjective choices specifying all these aspects somehow. Another interesting open

research line has to do with the extension of this iteratively reweighing approach for

mixture modeling. This could be useful in order to address severe overlaps among

groups.

6.2 Concluding remarks on the TCLUST exten-

sion to fuzzy linear clustering models

In Chapter 4 we have proposed a procedure for robust fuzzy linear clustering. The

procedure can resist to different types of contamination, still being efficient in param-

eter estimation. When there is overlap between groups (and m is well calibrated),

some observations might receive fractional membership values. On the other hand,

observations that are well separated are hard assigned to a cluster and form the

cluster core. Finally, observations far from any cluster are trimmed.

The updating algorithm is based on several closed form expressions. This avoids

us the use of numerical maximization routines, with obvious advantages in terms of

computational complexity.

As often happens with robust procedures, tuning is required in order to obtain

sensible results. We have described some heuristical tools that we found useful for

satisfactory tuning. We have also briefly outlined a new method, based on pseudo

cross-validation. We have provided some initial evidence that the method might

provide reasonable results, but a full exploration of its properties and performance

is beyond the scope of this thesis. We leave it for further work.

As another further direction for research, the robustness’ properties of the proce-

dure could be extended in order to guarantee robustness against the effect of entry-

wise outliers. In order to perform this improvement, instead of applying trimming

to a fixed proportion of observations, snipping techniques, like the one proposed in

Farcomeni (2014b) and Farcomeni (2014a), may be applied. Additionally assessing

the goodness of fit of the procedure may be necessary and meaningful results might

be obtained for instance by extending one of the robust tests proposed in Cerioli &

Farcomeni (2011) and Cerioli et al. (2013).
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6.3 Overall conclusions and further direction of

research

The two contributions proposed within this thesis are based on the tclust method.

In particular we focused on making the tuning of the tclust easier and extending

it to the linear clustering models. Besides the possible extensions of the such contri-

butions there is still room for extending the tclust approach to different statistical

frameworks.

As an example we wish to introduce here an ongoing work (Dotto & Farcomeni,

In preparation) aimed at introducing geometric constraints within the tclust algo-

rithm. We consider the parameterizations of the covariance matrix of each group

outlined in Celeux & Govaert (1995) and implemented within the mclust R package

in Fraley & Raftery (2002). Let us consider the eigenvalue decomposition given by:

Σk = λkDkAkD
T
k (6.1)

where λk = |Σk|1/d is a measure of the volume of the k-th cluster, Ak is an orthogonal

matrix with the eigenvalues of Σk on the diagonal and it describes the shape of each

cluster, and Dk is a matrix whose columns are given by the eigenvectors of Σk and it

determines the direction of each cluster. Combining all possible assumptions regard-

ing scale, volume and orientation, Celeux & Govaert (1995) described 14 different

models. A shorter list can be found in Fraley & Raftery (2007), and we summarize

it in Table 6.1. In such table we report the model name as commonly referred (and

used also in R library mclust), the final parameterization of Σk, cluster shapes and

properties of invariance of the solutions. The simplest model, EII, involves spherical

clusters and its solution corresponds to homogeneous model-based clustering and

k-means. The solution is invariant only with respect to isometric transformations

(that is, preserving distances). Model VVV, on the other hand, corresponds to the

unconstrained case where Σk is arbitrary.

As stated in Table 6.1 different parameterizations of the covariance matrix imply

different properties in terms of equivariance. A notable drawback of (2.11), which

is recalled in the following formula,

Mn

mn

=
maxj=1,2,...,K maxl=1,2,...,p λl(Σj)

minj=1,2,...,K minl=1,2,...,p λl(Σj)
(6.2)

is that all properties of affine invariance are lost, as any affine transformation (ex-

cept for traslations) lead to different eigenvalue ratios. We note here that spurious

solutions need not arise under some formulations, basically those pooling scale or

volume across clusters. A full account on whether (2.11) is needed to avoid spurious
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Table 6.1: List of 10 different models obtained by imposing different constraint in

decomposition (6.1)

Model Name Parametrization ER Invariance

EII λI Not required Isometric transformations

VII λkI Not required Isometric transformations

EEI λA Not required Scaling

VEI λkA Not required Scaling

EVI λAk Not required Traslation

VVI λkAk Required Traslation

EEE λDADT Not required Linear transformations

EEV λDkAD
T
k Not required Linear transformations

VEV λkDkAD
T
k Not required Linear transformations

VVV λkDkAkD
T
k Required Traslation

solutions is given in the ER column of Table 6.1. All the models above are not re-

sistant to contamination and for that reason, in our proposal, we robustly estimate

model parameters by developing a CEM algorithm augmented with an impartial

trimming step. Our task is to maximize the classification log-likelihood

L(θ) =
n∑
i=1

zij

[
ln

K∑
k=1

πkφ(xi|µk,Σk)

]
, (6.3)

where zij is a binary indicator that the i-th observation belongs to the j-th cluster,

with
∑

j zij ≤ 1 and
∑

ij zij = n(1−α), where α is the trimming level. Consequently,

nα observations are not classified into any cluster, and do not contribute to the

objective function (6.3). In particular the algorithm aimed at maximizing the (6.3)

iterates the following steps:

Algorithm 7.

1. Initialization: Initialize randomly k initial centers m0
1, . . . ,m

0
k, k covariance

matrices Σ0
1, . . . ,Σ

0
k and k values p0

1, . . . , p
0
k or the clusters’ weights.

2. Concentration steps:

2.1 Keep the set H containing the dn(1− α)e observations closest (w.r.t the

Mahalanobis distance) to the estimated centroids m1, . . . ,mk.

2.2 For each i = 1 . . . n obtain the clusters’ assignments by computing the

minimization minj d
2
Σj

(xi;mj).

2.3 Update the estimates of the clusters’ centers m1, . . . ,mk, clusters’ scat-

ter matrices Σ1, . . . ,Σk, and clusters’ weights p1, . . . , pk. Depending on
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the chosen model different procedures are needed in order to update the

scatter matrices. In particular Celeux & Govaert (1995) analyzed all the

possible cases outlined in Table 6.1 and provided closed forms, when-

ever these are available, and the required iterative procedure, whenever

a closed form for the given estimator does not exist.

3. Repeat Steps 2.1 - 2.3 until there are no improvements in equation (6.3).

4. Draw several different random starting values and recompute the values of the

objective function. Keep the configuration yielding the maximal value of (2.9)

as the final output of the algorithm.

Preliminary simulation study showed very good results both in terms of robust-

ness and efficiency. Clearly optimal choice of a proper model plays a key role.

Besides the heuristics we are now also working on an automatic method of choosing

the parametrization of the scatter matrix which suits best the underlying structure

of the data. Pretty good results have been reached by using the tests provided in

Vuong (1989) and Clarke (2003). Within these contributions the authors developed

parametric and non parametric tests for model selection both in case of nested and

overlapping models.

In synthesis, in this further work, we will propose the MTCLUST methodology, that

is, TCLUST restricted to parametrizations of the kind (6.1). The advantages are

that in certain cases the eigenvalue ratio constraint is not needed, and hence affine

equivariance is retained; and that robust and parsimonious clustering will be made

available to the interested audience.

6.3.1 Preliminary simulation results

Within this subsection we provide the preliminary simulation’s results obtained com-

paring the new outlined methodology with the TCLUST methodology. In particular

we generate the data following the different schemes outlined within table (6.1) and

add a fixed proportion (α) of contaminating points. Then we compare the perfor-

mance of the new proposed methodology and of the TCLUST methodology imposing

two different trimming levels (i.e 5% and 10%) in terms of mean square error of the

estimated vector mean of each cluster. Additionally, in the last column we reported

the mean square error of the model automatically chosen by performing the para-

metric test introduced in Vuong (1989). The procedures involved in this preliminary

simulation study are labelled as follows:

• mtclust.10 Our poposed method on which we imposed a trimming level equal
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to 10%. The constraint applied is either the eigenvalue ratio, when required,

or a constraint which obeys the true data generation mechanism.

• tclust.10 The tclust method on which we imposed a trimming level equal

to 10%

• mtclust.05 Our proposed method on which we imposed a trimming level equal

to 5%.The constraint applied is either the eigenvalue ratio, when required, or

a constraint which obeys the true data generation mechanism.

• tclust.05 The tclust method on which we imposed a trimming level equal

to 5%

• The model automatically chosen by applying the Vuoung Test (Vuong 1989)

for selecting nested and overlapping models on which we imposed a trimming

level equal to 10%.

It shall be noticed that the performance obtained are, in most cases, pretty

similar to the one obtained by applying the tclust. Moderate improvements are

obtained as trimming level is underestimated. We believe that this happens because

of the effect of the geometric constraint imposed in the different cases. Indeed by

constraining the shape of each cluster we include “less dangerous” outliers when

the true trimming level is underestimated. Additionally substantial improvements

are obtained in the cases in which the eigenvalue ratio is unconstrained. Indeed,

within this simulation setting the imposed bound for the eigenvalue ratio is equal

to 12. This of course leads to a great loss of efficiency whenever the true eigenvalue

ratio is above this value. Nevertheless by choosing constrained models which do not

require the usage of the eigenvalue ratio this loss of efficiency can be avoided. As

an example if we consider settings 41 or 54 of Table 6.2 we can easily see that by

choosing a different constrained model a significant improvement of efficiency can

be obtained, and similar consideration con be done by reading settings 45 and 48.
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Table 6.2: Simulation results based on B=500 replicates: average MSE of the esti-

mated vector mean in each cluster

Setting p α Data Genearation mtclust.10 tclust.10 mtclust.05 tclust.05 Chosen Model

1 2 0.1 EII 0.128 0.128 0.362 0.544 0.128

2 4 0.1 EII 0.182 0.182 0.377 0.606 0.182

3 6 0.1 EII 0.229 0.229 0.415 0.751 0.229

4 2 0.05 EII 0.137 0.137 0.123 0.123 0.123

5 4 0.05 EII 0.192 0.193 0.178 0.178 0.178

6 6 0.05 EII 0.236 0.236 0.219 0.219 0.219

7 2 0.1 VII 0.209 0.208 0.570 0.615 0.208

8 4 0.1 VII 0.288 0.288 0.681 0.737 0.288

9 6 0.1 VII 0.359 0.358 0.78 0.833 0.358

10 2 0.05 VII 0.221 0.221 0.195 0.196 0.196

11 4 0.05 VII 0.310 0.308 0.278 0.278 0.278

12 6 0.05 VII 0.383 0.383 0.344 0.344 0.344

13 2 0.1 EEI 0.156 0.157 0.369 0.471 0.157

14 4 0.1 EEI 0.294 0.294 0.447 0.536 0.296

15 6 0.1 EEI 0.417 0.418 0.567 0.660 0.420

16 2 0.05 EEI 0.166 0.166 0.152 0.151 0.152

17 4 0.05 EEI 0.302 0.302 0.283 0.283 0.284

18 6 0.05 EEI 0.439 0.440 0.413 0.413 0.414

19 2 0.1 VEI 0.196 0.196 0.470 0.525 0.196

20 4 0.1 VEI 0.354 0.354 0.588 0.681 0.354

21 6 0.1 VEI 0.524 0.524 0.802 0.896 0.524

22 2 0.05 VEI 0.204 0.203 0.185 0.185 0.185

23 4 0.05 VEI 0.375 0.375 0.349 0.348 0.348

24 6 0.05 VEI 0.541 0.540 0.498 0.498 0.498

25 2 0.1 EVI 0.267 0.267 0.384 0.409 0.266

26 4 0.1 EVI 0.414 0.414 0.516 0.542 0.414

27 6 0.1 EVI 0.549 0.549 0.664 0.699 0.549

28 2 0.05 EVI 0.272 0.272 0.249 0.249 0.249

29 4 0.05 EVI 0.434 0.434 0.405 0.405 0.405

30 6 0.05 EVI 0.569 0.569 0.536 0.536 0.536

31 2 0.1 VVI 0.266 0.266 0.546 0.553 0.267

32 4 0.1 VVI 0.395 0.395 0.705 0.713 0.395

33 6 0.1 VVI 0.492 0.492 0.826 0.838 0.492

34 2 0.05 VVI 0.301 0.300 0.266 0.266 0.266

35 4 0.05 VVI 0.416 0.415 0.374 0.373 0.374

36 6 0.05 VVI 0.523 0.523 0.477 0.477 0.478

37 2 0.1 EEV 0.356 0.365 0.552 0.502 0.356

38 4 0.1 EEV 1.289 1.344 1.493 1.483 1.289

39 6 0.1 EEV 2.710 2.774 2.727 4.845 2.710

40 2 0.05 EEV 0.371 0.396 0.344 0.351 0.344

41 4 0.05 EEV 1.339 1.435 1.264 1.274 1.264

42 6 0.05 EEV 2.875 3.169 2.716 2.759 2.716

43 2 0.1 VEV 0.396 0.410 1.208 0.490 0.396

44 4 0.1 VEV 1.410 1.480 1.787 1.673 1.410

45 6 0.1 VEV 2.981 35.193 11.427 63.947 2.981

46 2 0.05 VEV 0.452 0.494 0.397 0.412 0.397

47 4 0.05 VEV 1.504 1.675 1.346 1.414 1.346

48 6 0.05 VEV 3.284 10.449 2.982 35.849 2.982

49 2 0.1 VVV 0.593 0.594 0.656 0.653 0.548

50 4 0.1 VVV 1.987 1.987 2.228 2.243 1.872

51 6 0.1 VVV 83.816 83.875 85.751 94.9 3.930

52 2 0.05 VVV 0.613 0.613 0.540 0.539 0.508

53 4 0.05 VVV 2.355 2.352 1.915 1.912 1.807

54 6 0.05 VVV 74.705 74.590 83.400 83.636 3.878





Appendix A

A.1 Proofs of the theoretical properties of the

RTCLUST methodology

A.1.1 Introduction and notation

In this section some modifications to the notation used in Chapter 3 are introduced

in order to better outline the proofs of the theoretical results stated within the

chapter.

Let θ = (π1, . . . , πk, πk+1, µ1, . . . , µk,Σ1, . . . ,Σk) ∈ Θ, where Θ is the considered

parametric space. We define

Dθ(x) = min
1≤j≤k

Dj
θ(x)

where Dj
θ(x) = d2

Σj
(x, µj) is the Mahalanobis distance from the center µj and the

scatter matrix Σj.

Given a fixed probability measure P , let us consider GP
θ (u) = P [Dθ(·) ≤ u] and

its β quantile DP,β
θ = infu{GP

θ (u) ≥ β}. If θl−1
P with

θl−1
P = (πl−1

1P , . . . , π
l−1
kP , π

l−1
k+1P , µ

l−1
1P , . . . , µ

l−1
kP ,Σ

l−1
1P , . . . ,Σ

l−1
kP ),

are the values of the parameters at stage l − 1, we consider the sets

AP,1−αl
θl−1
P

= {x|Dθl−1
P

(x) < DP,1−αl
θl−1
P

},

Bθl−1
P

= {x|Dθl−1
P

(x) ≤ χ2
p,1−αL}

and

HP,1−αl
jθl−1
P

=
{
x|Dj

θl−1
P

(x) = Dθl−1
P

(x)
}
∩ AP,1−αl

θl−1
P

∩Bθl−1
P
.

97
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The consistency factors for the scatter matrices are obtained as(
cP,1−αl
θl−1
P

)−1

= η
P

(
A
P,1−αl
θl−1
P

∩B
θl−1
P

)/
P

(
B
θl−1
P

)

if P
(
AP,1−αl
θl−1
P

∩ Bθl−1
P

)
/P (Bθl−1

P
) < 1 and equal to 1 otherwise. As done in Chapter

3, ηβ = P
(
χ2
p+2 ≤ χ2

p,β

)
/β. Then, by using this notation and IA(·) as the indicator

function of set A, we have updated parameters:

πljP = P
(
HP,1−αl
jθl−1
P

)
,

πlk+1P = 1− P
(
Bθl−1

P

)
,

µljP =

∫
xI

H
P,1−αl
jθl−1
P

(x)dP (x)

and

Σl
jP =

(∫
xx′I

H
P,1−αl
jθl−1
P

(x)dP (x)− µljP (µljP )′

)
cP,1−αl
θl−1
P

.

Given {x1, ..., xn} being a realization of an independent identically distributed

(i.i.d.) sample from distribution P , let Pn denote its associated empirical measure.

When replacing the (unknown) P by Pn in previous expressions, we obtain θlPn
exactly as the parameters appearing in Algorithm 5.

A.1.2 Proof of Theorem 1

The required bounds for the parameters have already been proved when l = 0

in Garćıa-Escudero et al. (2008). Notice that assuming an absolutely continuous

distribution P automatically guarantees the PR condition in Garćıa-Escudero et al.

(2008).

Let us also assume that the solution of that TCLUST population problem satisfy

π0
jP > 0 for 1 ≤ j ≤ k (otherwise it is clear that k should have been decreased

for clustering purposes). In order to apply an inductive reasoning, let us suppose

that the parameters in θl−1
P do satisfy the boundedness condition in the statement

of Theorem 1. Given that P has a strictly positive density function, if µl−1
j1P
6= µl−1

j2P

for every j1 6= j2, then it is trivial to prove that each HP,1−αl
jθl−1
P

contains a non empty

open ball and consequently πljP > 0 for 1 ≤ j ≤ k. This also implies that the

eigenvalues {λq(Σl
jP )}pq=1 can be uniformly bounded from below by a strictly positive

constant. The other bounds follow from the boundedness of the HP,1−αl
jθl−1
P

sets, which

is a consequence of the previously assumed bounds for the θl−1
P parameters.
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A.1.3 Proof of Theorem 2

As commented before, we recover the parameters in Algorithm 5 in Chapter 3 when

the unknown probability measure P is replaced by the empirical measure Pn. There-

fore, we use the notation θlPn for those parameters obtained from an i.i.d. random

sample {x1, ..., xn} from P .

Lemma A.4 and Lemma A.5 in Garćıa-Escudero et al. (2008) guarantee that

there exists a compact set K satisfying θ0
Pn
∈ K for n > n0 with probability 1. An

inductive reasoning, similar to that applied in the proof of Theorem 1, would show

that the HPn,1−αl
jθl−1
Pn

is uniformly bounded with probability 1. It may happen that one

of these sets would have 0 probability mass under Pn. In that case, we just need to

take µljPn = µl−1
jPn

(recall that µl−1
jPn

was bounded because of the inductive reasoning

applied) and take Σl
jPn

equal to the zero matrix.

A.1.4 Proof of Theorem 3

In this proof, we will apply results from of Empirical Processes theory (see, e.g.,

van der Vaart & Wellner 1997) and the inductive reasoning again to prove consis-

tency of the sample parameters toward the population ones. Some technical lemmas

will be also needed in this proof.

From Garćıa-Escudero et al. (2008) we know that the sample solution of the

TCLUST is consistent to the population one. I.e., we have that

θ0
Pn → θ0

P , P -almost surely.

By assuming the consistency in the (l − 1)-th iteration, i.e.

θl−1
Pn
→ θl−1

P , P -almost surely, (A.1)

we now have to prove the consistency for the l-th iteration.

By the notation introduced in as A.1 we see that:

Lemma 1. For a probability distribution Q in Rp, for each θ ∈ Θ, a ∈ R, and

1 ≤ j ≤ k, the sets AQθ , Bθ are contained in a Vapnik-Chervonenkis (VC) classes of

sets Ξ, AQ,1−αθ ∩ Bθ are contained in a VC class Λ and HQ,1−α
jθ are contained in a

VC classes of sets Ψ. These classes are given by

Ξ = {Uθa|θ ∈ Θ; a ∈ R}

Λ = {Uθa ∩ Uθb|θ ∈ Θ; a, b ∈ R}
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and

Ψ = {Vθj ∩ Uθa ∩ Uθb|θ ∈ Θ; 1 ≤ j ≤ k; a, b ∈ R},

where

Uθa = {x|Dθ(x) ≤ a} and Vθj = {x|Dθ(x) = Dj
θ(x)}.

Proof. Since Dθ(x), for θ ∈ Θ, is the minimum of k functions belonging to a finite

dimensional subspace of functions, then {Dθ(x)|θ ∈ Θ} is a VC class by lemmas

2.6.15 and 2.6.18 in van der Vaart & Wellner (1997). Analogously. Ξ,Λ and Ψ are VC

classes of sets by application of lemmas 2.6.15, 2.6.17 and 2.6.18 in van der Vaart &

Wellner (1997). Sets AQ,1−αθ and Bθ are contained in Ξ for θ ∈ Θ. Their intersection

AQ,1−αθ ∩Bθ are contained in Λ and, for j = 1, . . . , k, HQ,1−α
jθ are contained in Ψ.

Lemma 2. Under the assumptions of Theorem 3 and assuming (A.1), we have

DPn,1−αl
θl−1
Pn

→ DP,1−αl
θl−1
P

, P -almost surely.

Proof. In order to prove this lemma we need to show

sup
θ∈K

∣∣DPn,1−αl
θ −DP,1−αl

θ

∣∣→ 0, P -almost surely,

in a compact set K ⊆ Θ. This follows exactly as in Lemma A.7 in Garćıa-Escudero

et al. (2008), given the assumed convergence (A.1).

Lemma 3. Under the assumptions of Theorem 3 and assuming (A.1), the following

convergences hold

πljPn → πljP , for j = 1, . . . , k, k + 1, µljPn → µljP and Σl
jPn → Σl

jP .

Proof. Due to the Glivenko-Cantelli property of the classes Ψ, Λ and Ξ together

with (A.1) and the consistency results for the quantiles in Lemma 2, we can state

that

Pn

(
HPn,1−αl
jθl−1
Pn

)
→ P

(
HP,1−αl
jθl−1
P

)
,

and, consequently πljPn → πljP for 1 ≤ j ≤ k. Analogously, the consistency πlk+1Pn
→

πlk+1P follows from the convergence

Pn
(
Bθl−1

Pn

)
→ P

(
Bθl−1

P

)
, (A.2)

that it is obtained in a similar fashion.
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Due to Glivenko-Cantelli property for the class {xIH(x)|H ∈ Ψ} and Lemma 2,

we have that µljPn → µljP , P -almost surely.

Additionally, we have consistency for the consistency factors as

cPn,1−αl
θl−1
Pn

→ cP,1−αl
θl−1
P

, P -almost surely.

This last consistency is trivial given that

Pn

(
APn,1−αl
θl−1
Pn

∩Bθl−1
Pn

)
→ P

(
AP,1−αl
θl−1
P

∩Bθl−1
P

)
,

together with the convergence (A.2) and the fact that ηβ = P
(
χ2
p+2 ≤ χ2

p,β

)
/β (seen

as a function on β) is a continuous function for β ∈ (0, 1).

Therefore, given that the class {xx′IH(x)|H ∈ Ψ} is also a Glivenko-Cantelli

class and the consistency of those cPn,1−αl
θl−1
Pn

factors, we see that Σl
jPn
→ ΣjP P -almost

surely for 1 ≤ j ≤ k.

The combination of all the above lemmas then allow us to argue in favor of

consistency at each iteration l = 1, . . . , L, by applying the inductive reasoning.

A.1.5 Proof of Theorem 4

It can be easily proven, by using the same arguments as in Cuesta-Albertos et al.

(2008b) and in Hennig (2004), that the TCLUST with a trimming level α0 does not

break down with the addition of less than [α0n] outliers for these well-clusterized

dataset and this type of contamination scheme. This level of resistance to outliers,

given by [α0n], cannot be deteriorated throughout the proposed reweighing approach

in a finite number of iterations L by applying a straightforward inductive reasoning

again.
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A.2 Justification of Algorithm 6

At each step of the algorithm an increase of the target function (4.3) is obtained,

therefore the algorithm must converge at least to a local maximum. By using several

random starting points we increase the likelihood of finding the global maximum of

the target function. The rest of this section aims at justification of these claims:

Membership values : Conditionally on bj, b
0 and sj for j = 1, . . . , k, maximizing

(4.3) is equivalent to minimizing

n∑
i=1

k∑
j=1

umijDij (A.3)

whereDij = − log(pjf(yi;x
′
ibj+b

0
j , s

2
j)) = log

[
p−1
j (2πs2

j)
1/2 exp

(
(yi−x′

ibj−b0
j)

2/(2s2
j)
)]

.

If pjf(yi;x
′
ibj + b0

j , s
2
j) < 1 for all j then Dij(> 0) can be seen as a measure of the

distance between yi and its fitted value x′ibj + b0
j . Thus minimization of (A.3) with

respect to the uij yields

uij =

(
k∑
q=1

(
Dij

Diq

) 1
m−1

)−1

.

If there exists j such that log(pjf(yi;x
′
ibj + b0

j , s
2
j)) ≥ 0, in order to maximize

(4.3) a crisp assignment is required. To see that assume without loss of generality

that

log(p1f(yi;x
′
ib1 + b0

1, s
2
1)) = max

j=1,2...,k
log(pjf(yi;x

′
ibj + b0

j , s
2
j)) > 0,

then the following holds

k∑
j=1

umij log
(
pjf(yi;x

′
ibj + b0

j , s
2
j))
)
≤ log

(
p1f(yi;x

′
ib1 + b0

1, s
2
1))

k∑
j=1

umij

≤ log
(
p1f(yi;x

′
ib1 + b0

1, s
2
1))
) k∑
j=1

uij = log
(
p1f(yi;x

′
ib1 + b0

1, s
2
1)
)
.

and thus the optimal solution is ui1 = 1 and uij = 0 for every j 6= 1.

Trimmed observations: Within our algorithm a fixed proportion α of observations

is allowed to be discarded. It is straightforward to see that discarding the dnαe
observations with lowest values of the quantity ri defined in (4.6) maximizes our

target function (4.3).

Parameter estimation: Conditionally on uij we then maximize (4.3) with respect

to pj, b
0
j , bj and s2

j .
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It is straightforward to see that (4.4) is the optimal solution of (4.3) in terms of

pj.

To estimate b0
j , and bj a weighted least squares approach is required. The weights

are the current uij values. Formally speaking the following minimization problem

arises:

min
β0
j∈R, βj∈Rp

[ n∑
i=1

k∑
j=1

umij (yi − β0
j − x′iβj)2

]
for which a closed form solution is given in (4.7).

Finally, to estimate the residual variances we need to solve

min
σ2
1 ,...,σ

2
k>0

[ n∑
i=1

k∑
j=1

umij

(
1

2
log(σ2

j ) +
(yi − b0

j − x′ibj)2

2σ2
j

)]
(A.4)

that easily translates into the following problem:

min
σ2
1 ,...,σ

2
k>0

[ k∑
j=1

pj

(
log(σ2

j ) +
d2
j

σ2
j

)]
(A.5)

where in dj is the j-th weighted residual variance component defined in (4.8) and

the values σ2
1 . . . , σ

2
k must satisfy the constraint σ2

j/σ
2
l < c for every j 6= l. From

(A.5), it is easy to see that the use of truncated residual variance components, as

done in Section 4.2.1, is the optimal way of updating the s2
j parameters.

For sake of self-containedness, we show that the optimal threshold value can be

obtained by evaluating 2k+1 times function (4.10). This can be done by considering

e1 ≤ e2 ≤ ... ≤ e2k obtained after ordering d2
1, d

2
2, ..., d

2
k, d

2
1/c, d

2
2/c, ..., d

2
k/c. Then,

let us consider any 2k + 1 values f1, ..., f2k+1 satisfying f1 < e1 ≤ f2 ≤ e2 ≤ ... ≤
f2k ≤ e2k < f2k+1. The critical points of the auxiliary target function (4.10) are

ti =

∑k
j=1 pj

(
d2
jI{d2

j < fi}+ 1
c
d2
jI{d2

j > cfi}
)∑k

j=1 pj
(
I{d2

j < fi}+ I{d2
j > cfi}

) ,

and, thus, these are the only 2k + 1 points that need to be evaluated.
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A.3 A proposal for standardizing the residual com-

ponent in Algorithm 6

It shall be noticed that calibrating the fuzzification parameter m may be cumber-

some due to its sensibility w.r.t. the scale of the data. As outlined in Section 4.3.3

the user may be forced to change the measurement scale of the response variable in

case the proportion of hard assignments is basically constant with respect to m. We

now outline a standardization step which may be embedded within the algorithm

and moderates the effect of the scale of the response variable on the computation of

the fuzzy weights. Let us recall that the update is given by:

uij =

( k∑
q=1

(
log(pjf(yi;x

′
ibj + b0

j , s
2
j)

log(pjf(yi;x′
ibq + b0

q, s
2
q)

) 1
m−1
)−1

. (A.6)

where f(·; bj + b0
j , s

2
j) stands for the p.d.f of the Gaussian random variable centered

at x′
ibj + b0

j with variance equal to s2
j .Let assume, without loss of generality, that

y ∼ N (µ, σ2), then if we multiply y by a fixed positive constant a it yields that

a · y ∼ N (aµ, a2σ2). It easy to see that the increase in the variance component

is not linear as the increase in the mean of the variable. Thus, as a increases

then the resulting density becomes closer and closer to a uniform density. As a

result the required ratio needed for computing of the fuzzy weights of each cluster,

formula (A.6), tends to be equal to 1/k for each observation. In such case the

clusterwise struture of the data is completely hidden and the method is not able

to estimate the different cluster centroids (which in our case are represented by

the coefficients of a linear model). In order to overcome this issue we briefly outline

here a standardization of the residual component sj which moderates such undesired

effect and is given by:

uij =

( k∑
q=1

(
log(pjf(yi/s

2
j ; (x′

ibj + b0
j , 1)/s2

j , 1)

log(pjf(yi/s2
q; (x′

ibq + b0
q)/s

2
q, 1)

) 1
m−1
)−1

(A.7)

It shall be noticed that in formula (A.7) the same quantities of (A.6) are involved.

The only difference is in the residual component since formula (A.7) involves stu-

dentized residuals which allow to contain the effect of the scale of the explanatory

variable. Figure A.1 contains an application of the proposed standardization on

a simulated dataset, as described in Section 4.3. As in Subsection 4.3.3, once we

generated the data, we multiplied the values of the response variable by two fixed

constants (i.e. 1000 and 1/1000) and reported the results. Figure A.1 clearly shows

how the impact of the scale can be fully contained by standardizing the variables in

the fuzzy weigths’ computation. In particular, as the data are displayed on “high”
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Figure A.1: Empirical Comparison of the impact of the scale of the data as before

and after the standardization (A.7)

values for the scale parameters, then a complete fuzzification is obtained and no

linear model can be corrected estimated. On the other hand, as the scale is very

low, then, regardless to m, no fuzzification is reached. On the contrary, the plots on

the right side show how such problems are completely overcome with studentized

residuals.
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Fritz, H., Garćıa-Escudero, L. & Mayo-Iscar, A. (2013b), ‘A fast algorithm for robust

constrained clustering’, Computational Statistics and Data Analysis 61, 124–136.

Gallegos, M. (2002), Maximum likelihood clustering with outliers, in K. Jajuga,

A. Sokolowski & H. Bock, eds, ‘Classification, Clustering and Data Analysis:

Recent advances and applications’, Springer-Verlag, pp. 247–255.

http://CRAN.R-project.org/package=mclust
http://www.jstatsoft.org/v47/i12


113 Bibliography

Gallegos, M. & Ritter, G. (2005), ‘A robust method for cluster analysis’, Annals of

Statistics 33, 347–380.

Gallegos, M. & Ritter, G. (2009a), ‘Trimmed ML estimation of contaminated mix-

tures’, Sankhya 71, 164–220.

Gallegos, M. & Ritter, G. (2009b), ‘Trimming algorithms for clustering contaminated

grouped data and their robustness’, Advances in Data Analysis and Classification

3, 135–167.

Gallup (2015), Worldwide Research Methodology and Codebook, Gallup, Inc., Wash-

ington, D.C.
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Späth, H. (1982), ‘A fast algorithm for clusterwise linear regression’, Computing

29, 175–181.

Spiliopoulou, M., Kruse, R., Borgelt, C., Nürnberger, A. & Gaul, W. (2006), From

data and information analysis to knowledge engineering: proceedings of the 29th

Annual Conference of the Gesellschaft für Klassifikation eV, University of Magde-

burg, March 9-11, 2005, Springer Science & Business Media.

Stahel, W. A. (1981), Robuste schätzungen: infinitesimale optimalität und schätzun-
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