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Gallstones: Bad Company for the Steatotic Liver
See “Activation of the hypoxia inducible
factor 1a subunit pathway in steatotic liver
contributes to formation of cholesterol
gallstones,” by Asai Y, Yamada T, Tsukita S,
et al, on page 1521.

allstones are very frequent worldwide with a
Gprevalence ranging from 10% to 15% in Western
countries to <5% in Africa, with the geographic variations
being associated with genetic and environmental factors.1

Although asymptomatic in more than 80% of patients,
gallstone disease incurs one of the highest health care costs
among digestive diseases and hospitalization is frequent as
a consequence of its complications.1–3 In Western countries,
cholesterol stones largely predominate, and exogenous and
genetic risk factors have been carefully defined, including
female sex, age, and number of pregnancies.1,2 Several
epidemiologic studies have definitively demonstrated an
association between cholesterol gallstones and nonalcoholic
fatty liver disease (NAFLD).4 Cholesterol gallstones share
common risk factors with NAFLD, including obesity, dia-
betes mellitus, hypertension, hyperlipidemia, insulin resis-
tance, sedentary lifestyle, and the metabolic syndrome.1–5

Other than being more prevalent, gallstones are also more
symptomatic and complicated when they occur in conjunc-
tion with NAFLD2,5 and, therefore, they are unwanted
company. Much less clear are the pathogenetic mechanisms
linking NAFLD and gallstones. In the different conditions
leading to NAFLD, one or more of the following mechanisms
could predominate: (i) hepatic cholesterol oversecretion in
bile as consequence of insulin resistance,6 (ii) supersatu-
rated bile and rapid phase transition owing to increased
concentrations of mucins or other pronucleating agents,7

(iii) gallbladder hypomotility, which frequently occurs in
diabetics or patients with obesity,8 and (iv) intestinal dys-
biosis perturbing the cholehepatic bile salt (BS) circulation.9

The article by Asai et al10 in this issue of Gastroenterology
proposes a novel and intriguing pathogenetic mechanism
linking liver steatosis with gallstones. Indeed, the authors10

propose that, in steatotic livers, hypoxia up-regulates the
expression of hypoxia-inducible factor 1 alpha subunit
(HIF1A), which reduces the expression of aquaporin (AQP)-
8 and concentrates biliary lipids by suppressing water
secretion from hepatocytes. In addition, inflammation and
mucin deposition in the gallbladder wall, associated with
experimental liver steatosis, was reduced in iHIF knockout
mice. An effect of HIF1A knockdown was that gallstone
formation was markedly decreased. In sum, this article is
suggesting that steatotic hepatocytes secreted more
concentrated bile on the basis of suppressed water secretion
and this significantly affects gallbladder wall integrity and
function, thus favoring gallstone formation.

How can more concentrated bile favor gallstone for-
mation? Pioneering studies in the field have clearly
demonstrated the importance of bile concentration for
nucleation time and cholesterol saturation index.11,12

Indeed, nucleation time is shortened if bile is concentrated
whereas, conversely, nucleation time is prolonged by serial
in vitro dilution of bile.11 In addition, more concentrated
bile may affect gallbladder motility by increasing the
movement of biliary compounds into gallbladder epithelial
cells, by increasing the permeability of the gallbladder
epithelium to cholesterol, and by favoring its accumulation
in muscle membranes, thus reducing contraction.13

Increased concentration of secondary BS may alter phos-
pholipid acyl groups and, therefore, cholesterol solubility
within the micelle/vesicle.13 Finally, higher BS concentra-
tions reaching the gut lumen may perturb the microbiota
and, as a consequence, the enterohepatic BS circulation.9

An emerging novel concept is that steatotic, hypoxic
hepatocytes (mainly in the centrilobular zone) secrete less
water in bile as a consequence of HIF1A-mediated sup-
pression of AQPs (specifically AQP8), a family of integral
membrane proteins that facilitate osmotically induced
water transport through cell membranes.14 Bile secretion
is an osmotically driven secretory process resulting from
the flow of water into the canalicular lumen in response to
osmotic gradients created by active solute excretion.14 The
current findings, therefore, open new scenarios in
different and unexplored areas. How do water movement
and cell volume regulatory mechanisms change in hepa-
tocytes accumulating lipid droplets or in cells where lipid
and glucose metabolism is changed? What are the key
regulators of these adaptive mechanisms? The answers
could lie within the HIF family of proteins, where HIF1A is
the most well-established member.15 HIFs act as key
mediators of cellular adaptation to changes in oxygen
tension.15 Under hypoxic conditions, HIF1A up-regulates a
series of genes, which enables cells to adapt to reduced
oxygen availability; it is estimated that >800 genes are
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direct HIF targets, including heme oxygenase-1, vascular
endothelial growth factor, glucose transporters, and
glycolytic enzymes.15 Indeed, increased glycolysis during
hypoxia is a crucial step needed to meet modified cell
energy demands.15 It is now known that HIF1A can be
induced and activated also at physiological oxygen
tensions in a mitogen-activated protein kinase-dependent
manner.15 Asai et al10 suggest that HIF1A activation is a
defensive and survival pathway for hypoxic hepatocytes.
However, HIFs can be activated by proinflammatory
cytokines, extracellular hyperosmolarity owing to high
sodium intake, and also merely as a consequence of
metabolic cellular changes.15 It remains unclear how
oxygen cell tension changes during the different facets of
NAFLD and whether hypoxic hepatocytes reflect only
certain degrees of oxidative stress, damage, and hepatic
Figure 1. Steatotic hypoxic hepatocytes secrete more concentra
the inhibitory effects of hypoxia-inducible factor 1 alpha subuni
affects gallbladder wall integrity and function, thus favoring ga
concentrated bile may simply reflect the dysmetabolic chang
consumption is enhanced by metabolic needs and water ex
osmolarity; at low oxygen tension, all these mechanisms co
mechanisms involved in the regulation of intracellular pH (pH
hyperlactemia.
microcirculation impairment, but not simple steatosis;
these are key areas of future research. However, inde-
pendent of cell damage or hypoxia, HIF1A could be acti-
vated to modulate, as consequence of lipid accumulation
or fatty liver–associated dysmetabolism, ion transport
mechanisms involved in the regulation of cell size/volume
and intracellular pH (pHi; Figure 1).15–18 Indeed, in the
first signs of hypoxia, the rapid intracellular accumulation
of lactate and Hþ implies activation of pHi and cell volume
regulatory ion transport mechanisms, including Naþ/Hþ

exchange, that are vital for maintaining cell viability and
represent steps where HIF1A could play a role.15,16

Notably, the accumulation of lactate and Hþ, mainly owing
to increased whole body rates of nonoxidative glycolysis,
may occur in insulin-resistant cells independent of hyp-
oxia.19 Indeed, hyperlactemia induced by insulin
ted bile primarily owing to suppressed water secretion, where
t (HIF1A) on aquaporin 8 (AQP8) play a role. This significantly
llstone formation. As an alternative mechanism, secretion of
es occurring in insulin-resistant hepatocytes, where water
change with extracellular spaces is adapted to intracellular
uld be amplified. HIF1A could also modulate ion transport
i) and of cell volume, which are activated by intracellular
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resistance may modulate HIF1A activity20 being associated
with profound changes in intracellular glucose meta-
bolism, including decreased glycogen synthesis, increased
nonoxidative glycolysis, and impaired glucose oxidative
metabolism.19 The hypothesis that increased levels of
lactate would be able to activate pHi and cell volume
regulatory ion transport mechanisms, in addition and
irrespective of hypoxia, and the exact involvement of HIFs
deserves special attention.

In summary, secretion of concentrated bile may simply
reflect dysmetabolic changes occurring in steatotic hepato-
cytes where water consumption is enhanced by metabolic
needs and water exchange with extracellular spaces is
adapted to the intracellular osmolarity. At low oxygen ten-
sion, all these mechanisms could be amplified.
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