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Abstract

In mathematical finance, economies are often presented with the specification of a probabil-

ity space equipped with a filtration that encodes information flow. The information-based

framework of Brody, Hughston and Macrina (BHM) emphasises the role of market informa-

tion in deriving asset price dynamics, instead of assuming price behaviour from the start.

We extend the BHM framework by (i) modelling the nature of access to information through

information blockages and activations of new information sources, and (ii) introducing a new

class of multivariate Markov processes that we call Generalised Liouville Processes (GLPs)

which can model the flow of information about vectors of assets. The analysis of access to

information allows us to derive price dynamics with jumps. It additionally enables us to

develop an information-switching framework, and price derivatives under regime-switching

economies. We also indicate some geometrical aspects of appearances of new information

sources. We represent information jumps on the unit sphere in the Hilbert space of square-

integrable functions, and on hyperbolic spaces. We use differential geometry, information

theory and what we call n-order piecewise enlargements of filtrations to dynamically quan-

tify the impact of sudden changes in the sources of information. This helps us to model

the stochastic evolution of what may be viewed as information asymmetry. In related work,

we construct GLPs on finite time horizons by splitting so-called Lévy random bridges into

non-overlapping subprocesses. The terminal values of GLPs have generalised multivariate

Liouville distributions, and GLPs can model a wide spectrum of information-driven depen-

dence structures between assets. The law of an n-dimensional GLP under an equivalent

measure is that of an n-vector of independent Lévy processes. We focus on a special type of

GLPs that we call Archimedean Survival Processes (ASPs). The terminal value of an ASP

has an `1-norm symmetric distribution, and hence, an Archimedean survival copula.
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Chapter 1

Introduction and Summary

Mathematicians and economists face a non-trivial problem when developing a realistic asset-

pricing model, since one can write a long list of interacting features that play a part in the

formation of prices. A desirable framework would be flexible enough to represent a wide

range of financial behaviour, and would also be able to deliver meaningful and interpretable

results in developing our understanding of finance. Satisfying these requirements is already

an ambitious challenge. Hence, it is not suprising that the analysis usually starts in a

relatively simpler framework, which is gradually elaborated.

Considering information as a mathematical concept advanced many important physical

applications in various scientific areas including electronic engineering, computer science and

quantum mechanics. In probability theory, a rigorous analysis of a stochastic model relies

heavily on the treatment of information. Thus, it is perhaps not surprising to see why

information plays such a significant role in mathematical finance, where financial markets

are often presented with the specification of a probability space equipped with a filtration

that encodes the revelation of information.

In the asset-pricing literature, many stochastic models have been proposed for price pro-

cesses, and these prices are usually adapted to some filtration. As a standard example, in

the Black-Scholes-Merton theory, a great deal of analytic tractability is attained by choosing

the underlying asset price to follow a geometric Brownian motion adapted to a Brownian

filtration. However, when one assumes price behaviour from the start, one may lose the inter-

pretation of how market information affects price dynamics. In particular, new information

that the market has about an asset causes asset prices to change. Therefore, reversing this

approach by first specifying the market information, and modelling the flow of information as

a driver of price movements presents itself as potentially fruitful in the quest to understand

asset price behaviour.

There may also exist small traders who are relatively more informed than the market, and

who may exploit their additional information for profit. This scenerio presents the question

as to how to model and quantify information asymmetry.
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The objective of this thesis is to provide an information-driven framework which (i)

admits the derivation of a rich class of asset price dynamics, (ii) allows dynamic represen-

tations and quantifications of information asymmetries, and (iii) enables the modelling of a

broad range of dependence structures between assets. We fix a probability space (Ω,F ,Q)

equipped with a filtration {Ft}0≤t≤∞, where F∞ = F and Q is the pricing measure. We

assume the existence of a pricing kernel and the absence of arbitrage to ensure the existence

of a pricing measure (see, for example, Cochrane, 2005). We consider an asset that pays a

random cash flow XT at a predetermined time T <∞. The cash flow XT can be expressed

as a function of a collection of independent market factors, say Mα
T for α = 1, 2, . . .. For

instance, XT = g(M1
T ,M

2
T , . . . ,M

m
T ), where g : Rm → R is a suitably chosen function. The

pricing models we discuss in this work can easily be extended to the case where there are

multiple cash flows at different times. An example is provided in Chapter 4. We assume

the existence of an information process {ξt} that provides noisy information about the value

of XT and that generates the market filtration {F ξt }, where F ξt ⊂ Ft. We shall model this

information process explicitly. Then, we define the asset price as the expectation of the

discounted cash flow, conditional on the market filtration. More specifically, denoting PtT as

the deterministic discount factor, the price at time t < T is given by Xt = PtTEQ[XT |F ξt ].

This work is organised as follows:

Chapter 2 gives a brief introduction to the information-based asset pricing framework of

Brody, Hughston and Macrina (BHM), where an asset is defined by its cash-flow structure.

First, we discuss the so-called Brownian information process, which consists of a signal

component plus an independent Brownian bridge noise component. The signal component is

the cash flow XT , and the Brownian bridge spans the time interval [0, T ]. Such an additive

construction of the information process is natural from the standpoint of filtering theory,

and the bridge property of the noise process ensures the revelation of the value of the cash

flow XT at time T . The cash flow can be represented as a function of various independent

market factors, each associated with a Brownian information process that generates the

market filtration. We provide the stochastic differential equations of asset price processes,

and also provide the value of a European option, which is of the Black-Scholes-Merton type.

In the context of aggregate claims (which may arise in insurance problems), where the cash

flow is determined by the terminal value of a cumulative process, we briefly discuss what

one may call a gamma information process. Such a process consists of a signal component

(i.e. the cash flow) multiplied by an independent gamma bridge noise component that spans

[0, T ]. We leave many relevant results on gamma information processes (or what we also call

gamma random bridges) to Chapter 7, when constructing Archimedean survival processes.

In Chapter 3, we model new information sources appearing in the market by the activation

of additional information processes that generate the market filtration. The market filtration

is generated by Brownian information processes that carry partial information about the
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cash flow XT , and we represent the availability of new sources of information at independent

stopping times. More specifically, we partition σ-algebras into subalgebras with respect to

their time dimension, and initiate the subalgebras at stopping times independent of the

information processes. The market filtration is then defined in terms of a σ-algebra that

contains all the collections of these subalgebras. In this respect, the stopping times may

be viewed as what one may call ‘measurable start-up times’. We prove a strong Markov

property of Brownian information processes and analyze the impact of availability of new

information sources on conditional expectations of XT . We show that the appearance of new

sources of information induces jumps in the conditional probability density process (given

that XT is a continuous random variable with a density), and thus the price process. We

provide the stochastic differential equations of the conditional probability density process

and the price process. The conditional probability density process (and the price process) is

càdlàg, and hence its paths are elements of a Skorokhod space. There exists a random jump

measure naturally associated with the conditional probability density process. We show that

the price process has jump-diffusion dynamics, and the jump sizes are determined by the

difference of two dependent exponential Brownian motions with stochastic volatilities. It is a

direct outcome of our framework that the price process has stochastic volatility with jumps,

since the volatility is a function of the number of information processes provided to the

market. In the Hilbert space of square-integrable functions, denoted by L2, we project the

square-root of conditional probability densities onto orthogonal subspaces. The impact of

appearances of new information sources can then be measured geometrically on the positive

orthant of the unit sphere S+ ⊂ L2. More precisely, information jumps can be characterised

by the spherical distance (or the Bhattacharyya angle) between the Fourier coefficients of

the square-root of the conditional probability density. We provide a generalisation of the

setting for the case when XT can be expressed as a function of independent market factors.

We associate different sequences of stopping times to different market factors. Hence, the

number of sources of information about each market factor may be different at any time. This

results in an elaborate expression for the price processes represented in terms of Kronecker

products, Hadamard products and matrix norms. Finally, we provide an alternative way

of modelling the availability of new sources of information at stopping times. In doing so,

we start with a larger filtration and project it to a smaller one that we assume to be the

market filtration. The market filtration is generated by information processes that become

alive starting from the stopping times.

In Chapter 4, we develop an information-based regime-switching framework. Our pri-

mary interpretation is that regime switches coincide with price jumps caused by entries of

new information sources to the market. One can then argue that, in between jumps, each

volatility process (of the price process) belongs to a different regime. This is a common view

in the regime-switching literature. We value European options while admitting activations
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of new sources of information. The option value is the weighted sum of different option

values induced by different number of information sources, where the nth weight equals the

probability of n information processes driving the market at maturity. We use a sequence of

measure changes to value European options. In a special case, we can obtain an option value

very similar to that of Merton (1976). In addition, letting XT ∈ {0, 1}, we value credit-risky

bonds and credit default swaps. The values of European options and credit-based products

may be interpreted as the values under regime-switching economies. Since it is still a rather

restrictive viewpoint to expect a jump in the price process at every regime switch, we de-

velop a more elaborate framework, where we view regime switches as changes in the sources

of market information. By changes, we do not neccesarily mean appearances of new infor-

mation sources, it may as well be that the information provided to the market stops flowing.

Thus, we also model a scenerio when information ceases to flow, by stopping information

processes at stopping times. By starting and stopping information processes, we construct

deactivation-reactivation dynamics for price processes. This leads to scenerios where condi-

tional expectations of cash flows may stick to a value for a random period of time, which may

arise in illiquid markets. We generalise the setting to the multiple market factor case, where

the source of information associated with a market factor may be switched on or switched

off at a given time. This allows the possibility to have random numbers and allocations of

active and inactive information processes in the market, where each stopping time does not

neccesarily induce a jump in the price dynamics. Since the Brownian information process

is strong Markov with respect to the given filtration, the price process is determined by the

last observations of the switched off information processes, and the new information coming

from the switched on information processes. If the total number of information sources is

k, then there are 2k possible economic states at a given time. Finally, as a special exam-

ple, we construct a σ-algebra where each stopping time induces a switch from one source

of information to another. That is, while each stopping time stops an information flow, it

simultaneously acts as a start-up time of another information source. It follows that the

price process jumps at each information switch. This example provides an alternative view

on regime switches that coincide with price jumps.

Chapter 5 focuses on addressing the following question: How can one dynamically quan-

tify the impact of changes in the source of information about a cash flow XT ? The motivation

arises from the wish to measure the informational advantage of a small trader who is more

informed than the market. A similar approach is presented in Brody et al. (2009), where

there is an informed trader who has access to extra information from time t = 0. The

value of the excess information is measured in terms of the difference between the mutual

information of the market and the informed trader. Chapter 5 may be seen as a generali-

sation of this scenerio with an alternative information-theoretic perspective. We construct

what we call information asymmetry processes on [0, T ] by using information-theoretic mea-
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sures and enlargements of filtrations. We assume that the filtration of an informed trader

is what we call an n-order piecewise enlargement of the market filtration. We focus on a

specific case where a small trader may receive additional sources of information at stopping

times, and where the market filtration is generated by a single Brownian information pro-

cess. Using f -divergences and piecewise enlargements of filtrations, we generate what we

call the Kullback-Leibler (KL) and the Squared-Hellinger (SH) asymmetry processes. The

KL and the SH asymmetry processes are jump-diffusion processes taking the value zero at

time T , and the jumps occur when the informed trader receives a new source of information.

Thus, each jump quantifies the impact of a change in information sources. We also build

a competitive setting involving two informed traders who can not see each others’ actions,

and whose filtrations are different piecewise enlargements of the same market filtration. We

focus on a scenerio where the informed traders receive additional information at different

stopping times. This way, we are able to quantify the competitive advantage of an informed

trader with respect to another, using the language of information theory. We model finan-

cial mispricing as a class of information asymmetry, and construct what we call mispricing

processes. We initially let an economy receive incorrect information about a future cash flow

as opposed to correct fundamental information. Therefore, the mispricing process represents

the dynamic evolution of the informational asymmetry between the market and the funda-

mentals. The mispricing process jumps to zero if the market instantaneously receives the

fundamental information flow, which represents a sudden market correction. This chapter

also provides the stochastic differential equation of a Shannon entropy process defined in

terms of an n-order piecewise enlargement of a filtration. In this particular example, we

show that the Shannon entropy process is a supermartingale.

In Chapter 6, we address the same question to that of Chapter 5, but with a slight mod-

ification: Can one dynamically quantify the impact of changes in the source of information

using geometry? The motivation partly arises from the fact that the SH asymmetry pro-

cess can be defined in terms of Bhattacharyya angles on the unit sphere S+ ⊂ L2 between

the square-roots of conditional probability densities. Thus, in a way, this angle provides a

geometric perspective on information asymmetry. It follows that the Bhattacharyya angle

process is the inverse cosine of a jump-diffusion process and it takes the value zero at time T .

To take matters further, we assume that XT is a Gaussian random variable. We parameterise

the conditional probability distributions to form a parametric class of Gaussian distributions,

in which the parameters (the mean and the variance) are functions of Brownian information

processes. This induces a natural geometry on a Riemannian manifold of which the points

are determined by Gaussian distributions. More specifically, the manifold is a hyperbolic

space that we denote by P , which is endowed with the Fisher metric tensor. It follows that

for each fixed time t < T , a Brownian information process determines a point on P . We

include the boundary of P , which we denote by ∂P , using Dirac measures as limits of Gaus-
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sian distributions, and define a manifold with boundary: M = P
⋃
∂P . Then, we are able

to construct what we call the Fisher-Rao (FR) asymmetry process on [0, T ], using points on

M that are determined by different numbers of information sources. The FR asymmetry

between points on the boundary ∂P takes the value zero at time T , and the FR asymmetry

process for t < T jumps when a new information source appears. In addition, at points on

P , infinitesimally close to each other, both the KL and the SH asymmetries coincide with

the FR asymmetry. The jumps of the SH and the FR asymmetry processes induce spher-

ical triangles and hyperbolic triangles on S+ and P , respectively. The triangular surfaces

allow us to measure the jump sizes of conditional probability densities using angles between

geodesics and the curvatures of the underlying manifolds. These surfaces provide alterna-

tive ways of quantifying the impact of the activation of new information sources. Also in a

way, these surfaces enable us to view information asymmetry as a geometric shape instead

of just a quantity. We introduce a mathematical analogy between the SH asymmetry and

an isometric invariant of the Poincaré disc under the action of the general Möbius group.

The analogy encourages us to propose the use of the isometric invariant as an alternative

way of measuring information asymmetry in the Gaussian setting. The isometric invariant

is zero if there is no information asymmetry, and is strictly positive otherwise. In addition,

similar to Chapter 5, we create a competitive environment between two informed traders

and quantify the competitive advantage with respect to each other geometrically. We also

model financial mispricing as a type of information asymmetry, and since the SH and the

FR asymmetry processes provide geodesic distances on S+ and P , respectively, they offer a

geometric perspective on quantifying sudden market corrections.

In Chapter 7, we introduce a class of multivariate processes that we name Archimedean

Survival Processes (ASPs) and we present some of their properties. An ASP is defined over

a finite time horizon and its terminal value has an `1-norm symmetric distribution and an

Archimedean survival copula. Indeed, there is a bijection between the class of Archimedean

copulas and the class of ASPs. We construct ASPs by splitting so-called gamma random

bridges (a gamma random bridge is the product of a gamma bridge with an independent

positive random variable) into non-overlapping pieces. The one-dimensional marginal pro-

cesses of an ASP are gamma random bridges. These marginal processes are increasing and,

in general, not independent, but they are identical in law. ASPs are Markov processes and

their increments have multivariate Liouville distributions. The `1-norm of an ASP is a one-

dimensional gamma random bridge. We also provide the first and second order moments of

ASPs. The law of an n-dimensional ASP is equivalent to that of a vector of n independent

gamma processes, and we provide details of the associated change of measure. The law of

an n-dimensional ASP is identical to the law of a positive random variable multiplied by

the Hadamard product of an n-dimensional Dirichlet random variable and an n-vector of

independent gamma bridges. An ASP may be viewed as a multivariate information process,
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where each marginal process carries partial information about an aggregate claim deter-

mined by the terminal value of a cumulative gains process. Therefore, ASPs can model a

rich class of dependence structures between cash flows by the use of Archimedean copulas.

One of the attractive features of copulas is that they allow the fitting of one-dimensional

marginal distributions to be performed separately from the fitting of cross-sectional de-

pendence. Archimedean copulas have received particular attention in the literature for both

their analytical tractability and practical convenience. ASPs present an avenue to extend the

theory and application of Archimedean copulas in multi-period and continuous-time frame-

works. The results presented in this chapter can also be found in Hoyle and Mengütürk

(2012). The material in this chapter and in Hoyle and Mengütürk (2012) are based on the

collaborative work with Ed Hoyle. The two authors contributed equally in this effort.

Chapter 8 introduces a family of multivariate Markov processes that we call Generalised

Liouville Processes (GLPs). GLPs are defined over a finite time horizon, and their terminal

values and increments have generalised multivariate Liouville distributions. We construct

GLPs by splitting so-called Lévy random bridges into non-overlapping pieces and by employ-

ing deterministic time changes. Lévy random bridges are introduced in Hoyle et al. (2011)

to model the flow of information as an extension to the BHM framework. A Lévy random

bridge (or a Lévy information process) is identical in law to a Lévy process conditioned to

have a fixed marginal law (say, the a priori law of the future cash flow) at a finite future

time. The one-dimensional marginal processes of GLPs are Lévy random bridges. Hence,

GLPs may be viewed as multivariate information processes, where each marginal is a Lévy

information for a cash flow. The sum of marginals of GLPs are one-dimensional Lévy ran-

dom bridges, and the law of an n-dimensional GLP under an equivalent measure is that of a

vector of n independent Lévy processes. GLPs generalise ASPs and allow us to model a wide

spectrum of dependence structures between cash flows that have a generalised multivariate

Liouville distribution. From an information-based viewpoint, the law of a GLP determines

the distribution of the prices of a vector of assets.
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Chapter 2

Information-Based Framework

We provide a general account of the information-based framework of Brody, Hughston and

Macrina (BHM), developed in Macrina (2006) and Brody et al. (2008a). The BHM frame-

work is applied to credit risk modelling in Brody et al. (2007), Rutkowski and Yu (2007)

and Brody et al. (2010), to interest rate theory in Hughston and Macrina (2008), to in-

surance problems in Brody et al. (2008b), and to insider trading in Brody et al. (2009).

The framework is extended in Hoyle et al. (2011) with the introducion of a larger class of

information processes called Lévy random bridges. The BHM framework is closely related

to other partial information approaches in the literature such as Giesecke (1994), Duffie and

Lando (2001), and Jarrow and Protter (2004).

Let (Ω,F ,Q) be a probability space equipped with a filtration {Ft}0≤t≤∞, where F∞ = F .

The probability measure Q is the pricing measure. We assume that all filtrations under con-

sideration are right-continuous and complete, and we fix a finite time horizon [0, T ]. We let

XT ∈ L2(Ω,F ,Q) be an F0-measurable square-integrable continuous random variable with

state-space (X,B(X)), and continuous density q(x) > 0 for x ∈ X. Here, L2 is the Hilbert

space of square-integrable functions and B(X) is the Borel σ-field (it is straightforward to

rewrite the following results if XT is a discrete random variable). We shall be using XT to

model a cash flow at time T , and we assume X ⊂ R. One may generalise the topological

conditions on X such that it is a complete separable metric space. Since we are working in

a financial context, X ⊂ R is a natural choice. We postulate the existence of an Ft-adapted

càdlàg process {ξt}t∈[0,T ], which generates the filtration {F ξt }, i.e.,

F ξt = σ({ξs}0≤s≤t), (2.1)

for 0 ≤ t ≤ T . We assume {F ξt } is the market filtration where the process {ξt} provides

noisy information about the cash flow XT . In other words, the σ-algebra F ξt ⊂ Ft is all the

information that the market has about XT at time t.

Brody et al. (2008a) model {ξt} through an additive construction, in particular, with a
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signal component (i.e., XT ) plus an independent Brownian bridge noise component. Such an

additive construction of the information process is natural from the standpoint of filtering

theory (see, for example, Davis and Marcus, 1981, and Krishnan, 2005). More specifically,

the market information process {ξt} is

ξt = κXT t+BtT , (2.2)

where {BtT}t∈[0,T ] is a Brownian bridge independent of XT to the value zero, and is not

F ξt -adapted. Also, the random variable XT is F ξT -measurable, but is not F ξt -measurable for

t < T . Note that the Brownian bridge {BtT} can be represented as

BtT = Bt −
t

T
BT , (2.3)

where {Bt} is a Q-Brownian motion. The value of XT is obscured by the noise {BtT} for

0 < t < T , and it is finally revealed without noise at time T . We call {ξt}, defined as in (2.2),

a Brownian information process. Setting ξT = κXTT ensures that the marginal law of the

Brownian information process at T is the a priori law of κXTT . We assume κ > 0 is finite

and call it the speed coefficient of {ξt}, since it controls the speed at which the true value

of XT is revealed to the market. Brody et al. (2007) proves that {ξt} is a Markov process

with respect to {F ξt }. In Chapter 3, we shall prove a strong Markov property of {ξt}.
Following BHM, we let the risk-free system of interest rates be deterministic. We denote

the corresponding system of discount functions by {P0t}0≤t<∞ and assume that P0t is differ-

entiable, strictly decreasing and satisfies 0 < P0t ≤ 1 and limt→∞ P0t = 0. The no-arbitrage

condition implies that PtT = P0T/P0t for t ≤ T . If {rt} is the risk-free rate process such that

rt > 0 and
∫∞
t
rs ds =∞, the discount function PtT is the no-arbitrage price of a zero-coupon

risk-free bond (paying unity) with maturity T :

PtT = exp

(
−
∫ T

t

rs ds

)
. (2.4)

Then the price of a cash flow XT at time t for 0 ≤ t < T , which we denote by Xt, is given

by the F ξt -conditional expectation of XT discounted by PtT :

Xt = PtTEQ
[
XT

∣∣∣F ξt ] , (2.5)

where EQ[.] denotes the expectation under Q. Note that since {ξt} generates the information

provided to the market, the dynamics of the price process are dependent on the law of {ξt}.
For x ∈ X, we denote the conditional probability density of XT at time t by ψt(x), i.e.,

ψt(x) = q(x|F ξt ) = q(x|ξt), (2.6)
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for 0 ≤ t < T . If Bb(X) is the space of bounded B(X)-measurable functions, the following

can be written for any g ∈ Bb(X):

EQ
[
g(XT )

∣∣∣F ξt ] =

∫
X
g(x)ψt(x) dx. (2.7)

Therefore, when we express XT as a function of m ∈ N+ independent market factors, we shall

choose a function from Bb(Xm). Note that the right-hand side of (2.7) is defined for t ∈ [0, T ),

excluding time T , whereas the left-hand side is defined including time T . In the following

chapters, we shall make use of distributions for calculating expectations including time T .

In fact, the reason why we introduce only the densities in this chapter is to demonstrate

their use in deriving the stochastic differential equation (SDE) of the price process.

Note that the Brownian bridge {BtT} is a Gaussian process with mean zero, and the

covariance between BuT and BtT is u(T − t)/T for u ≤ t. It follows from the Markovian

property of {ξt} and the Bayes formula that

ψt(x) =
exp

[
T

(T−t)(κxξt −
1
2
(κx)2t)

]
q(x)∫

X exp
[

T
(T−t)(κxξt −

1
2
(κx)2t)

]
q(x) dx

, (2.8)

for 0 ≤ t < T .

The SDE of {ψt}t∈[0,T ) can be calculated by the use of Ito’s lemma applied to (2.8). More

specifically, it can be shown that the process {ψt} is governed by

dψt(x) = σt(x)ψt(x) dWt, (2.9)

for 0 ≤ t < T , where the coefficient {σt}t∈[0,T ) is defined by

σt(x) =
Tκ(x− EQ [XT | ξt ])

(T − t)
, (2.10)

and where {Wt}t∈[0,T ) is a Q-Brownian motion given by

Wt = ξt +

∫ t

0

1

T − s
ξs ds− Tκ

∫ t

0

1

T − s
EQ [XT | ξs ] ds. (2.11)

It follows from (2.5) and (2.8) that the price Xt, for 0 ≤ t < T , can be expressed as

Xt = PtT

∫
X x exp

[
T

(T−t)(κxξt −
1
2
(κx)2t)

]
q(x) dx∫

X exp
[

T
(T−t)(κxξt −

1
2
(κx)2t)

]
q(x) dx

. (2.12)

From (2.2) and (2.4), PTTEQ
[
XT

∣∣∣F ξT ] = XT . The price of the asset is XT at time T .
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Making use of (2.9), it can be shown that the dynamics of the price process {Xt} are

governed by the following SDE:

dXt = rtXt dt+ PtT
Tκ

T − t
VarQ [XT | ξt ] dWt, (2.13)

for 0 ≤ t < T , where VarQ[XT | ξt ] = EQ [X2
T | ξt ]−EQ [XT | ξt ]2 is the conditional variance of

XT under Q. We provide a proof of a generalised version of (2.13) in Chapter 3. Note that

we do not specify a stochastic model for the price process from the start. The dynamics of

the price process are derived by specifying an information process that generates the market

filtration.

At time 0, the value of a European call option with strike K, exercisable at time t, is

C0 = P0tEQ [(Xt −K)+] , (2.14)

for 0 ≤ t < T , where (y)+ = max(y, 0). Hence, the option is exercisable on the time-t price

of an asset that has the cash flow XT at time T . Brody et al. (2008a) show that the value

of this option is given by

C0 = P0t

∫
X
xq(x)N

(
−zt + κx

√
tT

T − t

)
dx

− P0tK

∫
X
q(x)N

(
−zt + κx

√
tT

T − t

)
dx, (2.15)

where N (.) is the standard normal distribution function, and zt = ξ∗
√

T
t(T−t) , where ξ∗ solves

the following: ∫
X
(PtTx−K) exp

[
T

(T − t)

(
κxξ∗ − 1

2
(κx)2t

)]
q(x) dx = 0. (2.16)

Note that the information-based setting leads to a Black-Scholes-Merton type European call

option price. We provide a proof of a generalised version of (2.15) in Chapter 4.

In the BHM framework, the cash flow XT is represented as a function of a set of indepen-

dent random variables, say Mα
T , for α = 1, . . . ,m, with continuous densities qα(x) > 0. The

random variable Mα
T is called a market factor, and each market factor determines the value

of the cash flow XT . Without loss of generality, we assume that the state-space of each Mα
T

is (X,B(X)). We choose a function g ∈ Bb(Xm) such that g : Xm → X, and express XT as

follows:

XT = g(M1
T , . . . ,M

m
T ). (2.17)
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We associate a Brownian information process, that we denote by {ξαt }t∈[0,T ], with each market

factor Mα
T such that

ξαt = καMα
T t+Bα

tT , (2.18)

where {Bα
tT}t∈[0,T ], α = 1, . . . ,m are mutually independent Brownian bridges to the value

zero and which are independent of each Mα
T . The market filtration {F ξt } is then given by

F ξt = σ({ξαs }0≤s≤t : α = 1, . . . ,m), (2.19)

for 0 ≤ t ≤ T . For each α, Mα
T is F ξT -measurable, but not F ξt -measurable for t < T .

For x ∈ X, we denote the conditional density of Mα
T at time t by ψαt (x):

ψαt (x) = qα(x|F ξt ) = qα(x|ξαt )

=
exp

[
T

(T−t)(κ
αxξαt − 1

2
(καx)2t)

]
qα(x)∫

X exp
[

T
(T−t)(κ

αxξαt − 1
2
(καx)2t)

]
qα(x) dx

, (2.20)

for 0 ≤ t < T , since {ξαt }, α = 1, . . . ,m are Markovian and mutually independent. From

(2.7) it follows that the time-t price of XT is

Xt = PtTEQ [g(M1
T , . . . ,M

m
T )
∣∣ ξ1

t , . . . , ξ
m
t

]
= PtT

∫
Xm

g(x1, . . . , xm)ψ1
t (x1) · · ·ψmt (xm) dx1 · · · dxm. (2.21)

Then the dynamics of the price process {Xt} are governed by the following SDE:

dXt = rtXt dt+ PtT

m∑
α=1

Tκα

T − t
CovQ [XT ,M

α
T

∣∣ ξ1
t , . . . , ξ

m
t

]
dWα

t , (2.22)

for 0 ≤ t < T , where {Wα
t }t∈[0,T ) is a Q-Brownian motion satisfying

Wα
t = ξαt +

∫ t

0

1

T − s
ξαs ds− Tκα

∫ t

0

1

T − s
EQ [Mα

T | ξαs ] ds, (2.23)

for α = 1, . . . ,m. CovQ[XT ,M
α
T | F

ξ
t ] is the conditional covariance of XT and Mα

T under Q.

In Chapters 3-6, we shall work with Brownian information processes having the functional

form as shown in (2.2). In Chapter 7, when we introduce Archimedean survival processes,

we make use of what one may call gamma information processes (or what we also call

gamma random bridges). Gamma information processes are used within the BHM framework

(see Brody et al., 2008b) in the modelling of aggregate claims. Although we discuss these

processes in detail in Chapter 7, we shall give a brief overview here of how gamma information

processes are used in the BHM framework.
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Let {γt} be a gamma process, which is an increasing Lévy process with gamma distributed

increments (see for example, Bertoin 1996, and Sato, 1999). If XT > 0 is a cash flow, then

{ξ∗t }t∈[0,T ] = {XT
γt
γT
}t∈[0,T ], (2.24)

is a gamma information process, where {γt/γT} is a gamma bridge to the value 1 and

independent of XT . We can view XT as a signal and the gamma bridge as independent

multiplicative noise. Brody et al. (2008b) argue that such a representation is natural from

the standpoint of filtering theory, since many additive properties of the Brownian bridge are

analogues to multiplicative properties of the gamma bridge. We refer the reader to Emery

and Yor (2004) and Yor (2007) for some of these properties.

Note that if the market filtration is generated by a process of the form (2.24), the value

of XT is revealed without noise at time T . Let {F ξ
∗

t } be the market filtration given by

F ξ
∗

t = σ({ξ∗s}0≤s≤t), (2.25)

for 0 ≤ t ≤ T . Brody et al. (2008b) show that {ξ∗t } is a Markov process with respect to

{F ξ
∗

t }. It follows that

Xt = PtTEQ[XT | F ξ
∗

t ] = PtT

∫∞
ξ∗t
x2−mT (x− ξ∗t )m(T−t)−1q(x) dx∫∞

ξ∗t
x1−mT (x− ξ∗t )m(T−t)−1q(x) dx

, (2.26)

is the price of an asset with cash flow XT at time T , provided that m > 0 is a parameter of

the gamma process {γt}.
Hoyle et al. (2011) introduce the so-called Lévy random bridges (LRBs) to model the

flow of market information using a broader family of stochastic processes. LRBs are Markov

processes, and both Brownian information processes and gamma information processes are

examples of LRBs. We provide a formal definition of LRBs in Chapter 8 when we intro-

duce Generalised Liouville Processes. Briefly, an LRB is identical in law to a Lévy process

conditioned to have a fixed marginal law (say, the a priori law of the future cash flow) at a

fixed future time. The time-t price of an asset that pays XT at time T is calculated by the

discounted conditional expectation of XT with respect to the market filtration generated by

an LRB.
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Chapter 3

Brownian Information Processes and

Jump-Diffusion Dynamics

In this chapter, we model the appearance of new sources of information by the activation

of additional information processes that generate the market filtration. In particular, we

analyze the access of the market to new sources of information at stopping times. This

allows us to investigate how the flow of information may lead to jumps in prices.

Information about an asset influences the behaviour of the price of that asset. In other

words, new information that the market has about an asset causes its price to change. Em-

prically speaking, changes in asset price dynamics occasionally exhibit large jumps, usually

as a response to an announcement or a relevant newscast made to the market. Merton (1976)

decomposes price changes into two parts: marginal and non-marginal changes. If information

about an asset arrives gradually and continuously in time, then over short time intervals, the

impact of information on price dynamics is marginal. On the other hand, important news

about an asset may arrive infrequently, and new information sources may appear at discrete

points in time. Then it is reasonable to expect that the impact of a new broadcast or the

revelation of a new source of information is not marginal.

In the BHM framework, one specifies the law of information processes generating some

market filtration, and price dynamics are derived. Since the price of an asset is the expec-

tation of its discounted cash flow conditional on the market filtration, one may expect that

the price dynamics are continuous if the information processes are continuous, and price dy-

namics have jumps if the information processes have jumps. Although these statements are

true in general, we introduce a way to derive price dynamics with jumps even though the in-

formation processes are continuous. We do this by modelling the appearance of new sources

of information at stopping times, where we assume that the market filtration is generated

by Brownian information processes. Our framework is analytically tractable and provides

an alternative perspective on information-based price jumps in an economy.
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In order to model the appearance of new sources of information, we first partition σ-

algebras into subalgebras (by a subalgebra, we mean a σ-algebra that is contained in an-

other σ-algebra) with respect to time, and admit arbitrary starting times. We postulate

the existence of Brownian information processes {ξit}t∈[0,T ], i = 1, . . . , k, and admit these

information processes to enter the market filtration at stopping times. First, we define

F ξ
i

u,t =

σ({ξis}u≤s≤t) u ≤ t,

{Ω,∅} u > t,
(3.1)

for a fixed time u and for 0 ≤ t ≤ T . The set {Ω,∅} is the trivial σ-algebra, and F ξ
i

u,t is a

subalgebra of F ξ
i

t = σ({ξis})0≤s≤t, since F ξ
i

u,t ⊆ F
ξi

t for all u ≥ 0. We then employ stopping

times to initiate these subalgebras (instead of a fixed deterministic time u), which allows us

to represent random appearances of new sources of information in the market.

We shall first define a stopping time. Let (Ω,F , {Ft},Q) be a filtered probability space.

Then, a random time τ : Ω→ R+ is an Ft-stopping time, if {τ ≤ t} ∈ Ft. There are various

ways one can model stopping times, and our framework offers the flexibility to consider a

broad range of such models. One common example of a stopping time is the first hitting

time of a continuous process. For example, let {Lt}t≥0 be a continuous process adapted to

a filtration {FLt } (where FLt ⊂ Ft), then τB : Ω→ R+ defined by

τB(ω) = inf{s ≥ 0 : Ls(ω) ∈ B}, (3.2)

is an FLt -hitting time for ω ∈ Ω and B ∈ B, and hence, it is an FLt -stopping time. The

random variable τB is the first time the process {Lt} enters B.

Throughout this chapter, we assume that the stopping times are independent of the

information processes. We define the market filtration as the union of the filtrations of

subalgebras that are initiated at stopping times. Without loss of generality, we choose to

model stopping times as the jump times of Heaviside processes. We would like to note

that Heaviside processes are not what we call information processes (especially since they

are independent of the cash flows), and they simply serve as processes that indicate when

the new sources of information appear in the market. As noted above, one may model the

stopping times as the first hitting times of càdlàg processes instead of Heaviside processes. If

the càdlàg processes are continuous, then we can define a market filtration that is generated

only by processes that are continuous, and still be able to derive price dynamics with jumps.

We shall see that this follows since, instead of having jumps in the evolution of information

processes, we define the market filtration in such way that the filtration itself ‘jumps’ at a

stopping time, due to a sudden expansion of the σ-algebra.

We shall explicitly show how the appearance of a new source of information induces a
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jump in the price process. In fact, we shall show that the price process follows jump-diffusion

dynamics as a natural result of sudden appearances of Brownian information processes. This

is consistent with the jump-diffusion model of Merton (1976, pp. 127) who quotes:

“By its very nature, important information arrives only at discrete points in time.

This component is modeled by a jump process reflecting the non-marginal impact

of the information.”

This chapter draws particular attention to the time dimension of filtrations. Although

we present our results within the BHM framework, the models can be generalised within

stochastic filtering theory. Our work may also be regarded as an extension to a stream of

literature that assigns emphasis on the time dimension of filtrations (see for example, Jacod

and Skorohod, 1994, Jeanblanc and Valchev, 2005, and Guo et al., 2009). Jeanblanc and

Valchev (2005) use discrete-time filtrations and model default hazard processes, and Guo et

al. (2009) introduce delayed filtrations and model credit risk using time changes.

This chapter is organised as follows: Section 1 is the mathematical setting. Section

2 explains our model for the appearances of new information sources at stopping times.

Section 3 generalises the setting to the multiple market factor representation of the future

cash flow. Section 4 provides an alternative way of modelling the availability of new sources

of information at stopping times. Section 5 is price simulations.

3.1 Mathematical Setting

3.1.1 Hilbert Space Setting

Hilbert spaces allow us to measure the non-marginal impact of appearances of new infor-

mation sources using functional analysis and geometry. The reader may refer to Rudin

(1987), and Riesz and Nagy (1990) for more details on Hilbert spaces. We shall provide

some notations:

We denote a Hilbert space by H, a normed vector space associated with a metric and

endowed with an inner product 〈 . 〉, such that every Cauchy sequence inH converges inH. If

V is a vector space and F is a field, then the inner product 〈 . 〉 is a mapping 〈 . 〉 : V×V → F

which satisfies linearity, conjugate symmetry, and positive definiteness. We denote the norm

of g ∈ H by ||g||.
The elements g, h ∈ H are orthogonal if 〈g, h〉 = 0, and if g and h are orthogonal we

write g⊥h. Also, if M,N are two subspaces of H, and if all elements of M are orthogonal

to all elements of N , then M is orthogonal to N , denoted by M ⊥ N . Since 〈g, h〉 = 0

implies 〈h, g〉 = 0, the relation ⊥ is symmetric. If M is the orthogonal complement of N ,

then any g ∈ H can uniquely be represented as g = h(1) +h(2), where h(1) ∈M and h(2) ∈ N .
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Similarly, if {M1,M2, . . . ,Mn} is a collection of mutually orthogonal closed subspaces of H,

spanning H, then any g ∈ H can uniquely be represented as

g = h(1) + · · ·+ h(n), (3.3)

where h(i) ∈ Mi. If every element in the vector sum of the mutually orthogonal sets Mi

admits a unique representation of the form h(1) + · · ·+h(n), the direct sum, which we denote

by ⊕, of the Mi’s is H, i.e.,

H =
n⊕
i=1

Mi = M1 ⊕ · · · ⊕Mn. (3.4)

The elements em ∈ H for m = 1, 2, . . . are orthonormal, if in addition to being orthogonal

each satisfies ||em|| = 1. An orthonormal sequence em ∈ H for m = 1, 2, . . . is complete if

the only member of H which is orthogonal to all em, for m = 1, 2, . . ., is the zero vector.

We state a theorem and a definition from functional analysis that we shall later refer to:

Theorem 3.1.1. Let em for m = 1, 2, . . . be a complete orthonormal sequence in H. Then

for every g ∈ H,

g =
∞∑
m=1

〈g, em〉em. (3.5)

Definition 3.1.2. The coefficients 〈g, em〉 which appear in (3.5) are called the Fourier coef-

ficients of g ∈ H.

One of the most important examples of a Hilbert space is the space of square-integrable

functions defined on some measurable set. A square-integrable function g on B satisfies:∫
B

|g(t)|2µ(dt) <∞, (3.6)

where µ is the Lebesgue measure. We denote this space by L2(B). The space L2(B) is the

collection of Borel-measurable, square-integrable functions g on B, with the inner product

〈g, h〉 =

∫
B

g(t)h(t)µ(dt), (3.7)

for some h ∈ L2(B), and the norm

‖g − h‖ =

(∫
B

|g(t)− h(t)|2µ(dt)

) 1
2

. (3.8)

The integrals shown in (3.6)-(3.8) are Lebesgue integrals.
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3.1.2 Information-Based Setting

We let (Ω,F ,Q) be a probability space equipped with a filtration {Ft}0≤t≤∞, where F∞ = F .

We assume that all filtrations under consideration are right-continuous and complete, and

we fix a time horizon [0, T ], where T < ∞. We set Q to be the pricing measure. We let

XT ∈ L2(Ω,F ,Q) be an F0-measurable square-integrable cash flow at time T . That is, XT

is a continuous random variable with state-space (X,B(X)), X ⊂ R, and with continuous

density q(x) > 0 for x ∈ X.

For k ∈ N+, we postulate the existence of k {Ft}-adapted càdlàg processes that we

denote by {ξit}t∈[0,T ], i = 1, . . . , k. In addition, we let {F ξ
i

t } be the filtration of a subalgebra

F ξ
i

t ⊂ Ft for i = 1, . . . , k, i.e.,

F ξ
i

t = σ({ξis}0≤s≤t), (3.9)

for 0 ≤ t ≤ T . Throughout this chapter, {ξit} is a Brownian information process for i =

1, . . . , k:

ξit = κiXT t+Bi
tT , (3.10)

where {Bi
tT}t∈[0,T ] is a Brownian bridge independent of XT that takes the value 0 at time

T , and is not F ξ
i

t -adapted. The {Bi
tT}’s may be correlated and we assume that the speed

coefficients κi’s are positive and finite.

We denote by Q(X) the space of probability measures over (X,B(X)). Since X ⊂ R is

a complete seperable metric space, using Theorem 2.1 in Bain and Crisan (2009), we can

proceed by defining a Q(X)-valued, F ξ
i

t -adapted stochastic process {πit}t∈[0,T ] as follows:

πit(ω)(A) = Q(XT ∈ A|F ξ
i

t )(ω), (3.11)

for ω ∈ Ω, i = 1, . . . , k and A ∈ B(X). For the rest of this work, we fix some ω ∈ Ω outside

a Q-null set, and drop it from the expressions. Also, we fix A ∈ B(X). πit is a conditional

distribution (or a random probability measure) of XT with respect to F ξ
i

t . For pairwise

disjoint sets Am ∈ B(X) for m ≥ 1, πit satisfies the σ-additivity condition:

πit

(⋃
m

Am

)
=
∑
m

πit(Am). (3.12)

For any g ∈ Bb(X), we can write

EQ
[
g(XT )

∣∣∣F ξit ] =

∫
X
g(x)πit(dx). (3.13)

Until Section 3.3, we consider g(x) = x. Then, we express XT as a function of m ∈ N+

independent market factors, and generalise to other g ∈ Bb(Xm).
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For x ∈ X, we denote

ψit(x) dx = q(x|F ξ
i

t ) dx = πit(dx), (3.14)

for 0 ≤ t < T . Hence, ψit is a conditional density of XT . Note that we can write

πit(dx) = Q(XT ∈ dx|ξit), (3.15)

since {ξit} is a Markov process with respect to {F ξ
i

t }, and XT is a function of ξiT . Then,

ψit(x) =
exp

[
T

(T−t)(κ
ixξit − 1

2
(κix)2t)

]
q(x)∫

X exp
[

T
(T−t)(κ

ixξit − 1
2
(κix)2t)

]
q(x) dx

, (3.16)

for 0 ≤ t < T and i = 1, . . . , k. Since {ψit} is càdlàg and F ξ
i

t -adapted, {ψit} is progressively

measurable (see, for example, Karatzas and Shreve, 1991) such that ψi : ([0, T ]×Ω,B([0, T ])⊗
F ξ

i

t )→ (Q(X),B(Q(X))), t 7→ ψit is measurable for any T > 0, where ⊗ is the tensor product.

The stochastic differential equation (SDE) of {ψit} can be derived by the use of Ito’s

lemma. The process {ψit} is governed by the following SDE:

dψit(x) = σit(x)ψit(x) dW i
t , (3.17)

for 0 ≤ t < T , where the coefficient {σit}t∈[0,T ) is defined by

σit(x) =
Tκi(x−X i

t)

(T − t)
, (3.18)

where X i
t = EQ [XT | ξit ], and {W i

t }t∈[0,T ) is a Q-Brownian motion, satisfying

W i
t = ξit +

∫ t

0

1

T − s
ξis ds− Tκi

∫ t

0

1

T − s
X i
s ds. (3.19)

Note that we have not yet defined the market filtration. We simply introduced a cash

flow XT , the Brownian information processes {ξit}, i = 1, . . . , k, the process {πit}, and the

conditional density process {ψit}.

3.2 Appearance of New Sources of Information

This section provides a model for the entrance of new information sources to the market. We

first introduce an Ft-stopping time τ : Ω → R+. We assume that for some finite M ∈ R+,

0 < τ ≤M <∞.
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We define the Heaviside function at τ by

Hτ (t) =

1 if τ ≤ t,

0 otherwise.
(3.20)

Note that {Hτ (t)} is a càdlàg process, and Hτ (t) can equivalently be viewed as a Dirac

measure. The following can be written:

Hτ (t) =

∫ t

0

dHτ (u) =

∫ t

0

δτ (du), (3.21)

where δτ (.) is the Dirac measure centered at the stopping time τ . The first integral is a

Riemann-Stieltjes integral, and the second integral is a Lebesgue integral.

We shall first prove a strong Markov property of the Brownian information process.

Before we state our proposition, we would like to review that, from Hoyle et al. (2011),

Q(ξt1 ∈ dy1, . . . , ξtm ∈ dym|ξT = x) = Q(Bt1 ∈ dy1, . . . , Btm ∈ dym|BT = x), (3.22)

where {Bt} is a Q-Brownian motion as in (2.3). In fact, one can interpret {ξt} as a Brownian

motion conditioned to have the marginal density q at time T .

Given that {Bt} is a Q-Brownian motion, we denote FBt = σ({Bs}0≤s≤t) ⊂ Ft. Then

{Bt} is a strong Markov process with respect to {FBt }. We denote the probability density

of Bt by ft; thus Q(Bt ∈ dx) = ft(x) dx. Also, we define

θ0(dx; y) = q(x) dx, and θt(dx; y) =
fT−t(x− y)

fT (x)
q(x) dx, (3.23)

for t ∈ (0, T ). We are now in the position to state our proposition:

Proposition 3.2.1. Assume that τ : Ω→ R+ and τ ∗ : Ω→ R+ are random times.

1. Let τ be an F ξt -stopping time and τ ∗ be an FBt -stopping time, such that

Q(ξt1 ∈ dy1, . . . , ξtm ∈ dym|ξT = x, τ = tm)Q(τ ∈ dtm|ξT = x) =

= Q(Bt1 ∈ dy1, . . . , Btm ∈ dym|BT = x, τ ∗ = tm)Q(τ ∗ ∈ dtm|BT = x). (3.24)

Then {ξt} is a strong Markov process with respect to {F ξt }, with transition law:

Q(ξT ∈ dx|ξτ = y) =
θτ∗(dx; y)∫
X θτ∗(dx; y)

, (3.25)

Q(ξt ∈ dz|ξτ = y) =

∫
X θt(dx; z)∫
X θτ∗(dx; y)

ft−τ∗(z − y) dz. (3.26)
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2. Let Zt = F ξt
∨
σ(τ), where τ is a Zt-stopping time independent of {ξt}. Then {ξt} is

a strong Markov process with respect to {Zt}, with transition law:

Q(ξT ∈ dx|ξτ = y) =

∫
R+

θs(dx; y)∫
X θs(dx; y)

δτ (ds), (3.27)

Q(ξt ∈ dz|ξτ = y) =

∫
R+

∫
X θt(dx; z)∫
X θs(dx; y)

ft−s(z − y) dzδτ (ds). (3.28)

Proof. For the first part of the statement, let τ be an F ξt -stopping time and τ ∗ be an FBt -

stopping time. Assume (3.24) holds. Then, first we need to show that

Q(ξt ≤ y | ξt1 , . . . , ξtn , ξτ ) = Q(ξt ≤ y | ξτ ), (3.29)

for 0 < t1 < . . . < tn < τ < t ≤ T . Without loss of generality, we assume κ = 1 and T = 1.

Hence, ξT = XT . Then from (3.22),

Q(ξt1 ∈ dy1, . . . , ξtn ∈ dyn, ξT ∈ dx) =
n∏
i=1

(fti−ti−1
(yi − yi−1) dyi)θtn(dx; yn). (3.30)

Since Brownian motion {Bt} is a strong Markov process with respect to {FBt }, it follows that

BT −Bτ∗ is independent of FBτ∗ , where the σ-algebra FBτ∗ = {A ∈ FB : A
⋂
{τ ∗ ≤ s} ∈ FBs }

for every s ≥ 0. Then, using the law of total probability, equation (3.24) and the strong

Markov property of {Bt}, we have

Q(ξT ∈ dx|ξτ = ym) =

∫
R+

Q(ξtm ∈ dym|ξT = x, τ = tm)Q(τ ∈ dtm|ξT = x)q(x) dx∫
X

∫
R+

Q(ξtm ∈ dym|ξT = x, τ = tm)Q(τ ∈ dtm|ξT = x)q(x) dx

=

∫
R+

Q(Btm ∈ dym|BT = x, τ ∗ = tm)Q(τ ∗ ∈ dtm|BT = x)q(x) dx∫
X

∫
R+

Q(Btm ∈ dym|BT = x, τ ∗ = tm)Q(τ ∗ ∈ dtm|BT = x)q(x) dx

=
Q(Bτ∗ ∈ dym|BT = x)q(x) dx∫
X Q(Bτ∗ ∈ dym|BT = x)q(x) dx

=
θτ∗(dx; ym)∫
X θτ∗(dx; ym)

. (3.31)

Similarly, we can write the following:

Q(ξT ∈ dx|ξt1 = y1, . . . , ξtn = yn, ξτ = ym) =

=

∫
R+

Q(ξt1 ∈ dy1, . . . , ξtn ∈ dyn, ξtm ∈ dym|ξT = x, τ = tm)Q(τ ∈ dtm|ξT = x)q(x) dx∫
X

∫
R+

Q(ξt1 ∈ dy1, . . . , ξtn ∈ dyn, ξtm ∈ dym|ξT = x, τ = tm)Q(τ ∈ dtm|ξT = x)q(x) dx

=
Q(Bt1 ∈ dy1, . . . , Btn ∈ dyn, Bτ∗ ∈ dym|BT = x)q(x) dx∫
XQ(Bt1 ∈ dy1, . . . , Btn ∈ dyn, Bτ∗ ∈ dym|BT = x)q(x) dx

. (3.32)
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Then, from the strong Markov property of {Bt} and (3.32), it follows that

Q(ξT ∈ dx|ξt1 = y1, . . . , ξtn = yn, ξτ = ym) =
θτ∗(dx; ym)∫
X θτ∗(dx; ym)

. (3.33)

Hence, (3.29) holds for t = T . For t < T , using (3.33), we can write

Q(ξt ≤ y|ξt1 , . . . , ξtn , ξτ ) =

∫
X
Q(ξt ≤ y|ξt1 , . . . , ξtn , ξτ , ξT = x)Q(ξT ∈ dx|ξτ )

=

∫
X
Q(ξt ≤ y|xt1 +Bt1T , . . . , xτ +BτT , ξT = x)Q(ξT ∈ dx|ξτ ). (3.34)

The process {xt + BtT}0≤t≤T is a Brownian bridge to the value x at time T = 1. From

Fitzsimmons et al. (1993), Brownian bridges are strong Markov processes (also, see Howard

and Zumbrun, 1998). Thus,

Q(ξt ≤ y|ξt1 , . . . , ξtn , ξτ ) =

∫
X
Q(xt+BtT ≤ y|xτ +BτT , ξT = x)Q(ξT ∈ dx|ξτ )

= Q(ξt ≤ y|ξτ ). (3.35)

From (3.33) and (3.35), {ξt} is a strong Markov process with respect to {F ξt }. Since 0 <

κ < ∞ and time T < ∞ can be chosen arbitrarily, it follows that {ξt} is a strong Markov

process with respect to {F ξt }. The transition law Q(ξt ∈ dz|ξτ = y) for t < T is

Q(ξt ∈ dz|ξτ = y) =

∫
X
Q(ξt ∈ dz|ξτ = y, ξT = x)Q(ξT ∈ dx|ξτ = y)

=

∫
X

Q(Bt ∈ dz,Bτ∗ ∈ dy|BT = x)

Q(Bτ∗ ∈ dy|BT = x)

θτ∗(dx; y)∫
X θτ∗(dx; y)

=

∫
X θt(dx; z)∫
X θτ∗(dx; y)

ft−τ∗(z − y) dz, (3.36)

which completes the proof of the first part of the statement.

For the second part of the statement, let Zt = F ξt
∨
σ(τ). Assume τ is independent of

{ξt}. Then, {ξt} is a strong Markov process with respect to {Zt}, since

Q(ξt ≤ y|Zτ ) =

∫
R+

Q(ξt ≤ y|F ξs
∨

σ(τ), τ = s)Q(τ ∈ ds|Zτ )

=

∫
R+

Q(ξt ≤ y|ξs)δτ (ds) = Q(ξt ≤ y|ξτ ), (3.37)

for 0 < τ < t ≤ T . Equation (3.37) follows since {ξt} is a Markov process with respect to

{F ξt } and Q(τ ∈ ds|Zτ ) is the Dirac measure centered at τ . The transition laws Q(ξT ∈
dx|ξs = y) and Q(ξt ∈ dz|ξs = y) follow from (3.30).
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From this point on, to focus attention on modelling the appearance of new sources of in-

formation, we consider only the parsimonious case where the stopping times are independent

of the information processes {ξit}, i = 1, . . . , k.

3.2.1 A New Information Source

It is stated in Chung (1982) that stopping times are the most effective tools to “tame the

continuum of time”. We shall use stopping times as what one may call ‘measurable start-up

times’, so that the market receives a new information source starting from a stopping time.

First, for a fixed time u and for 0 ≤ t ≤ T , we denote by {F ξ
i

u,t} the filtration given by

F ξ
i

u,t =

σ({ξis}u≤s≤t) u ≤ t,

{Ω,∅} u > t,
(3.38)

where {Ω,∅} is the trivial σ-algebra. Note that F ξ
i

u,t ⊆ F
ξi

t for all u ≥ 0, and F ξ
i

t,t = σ(ξit).

We are now in the position to define our market filtration. We start with the case where

the market is already provided with an information process {ξ1
t }, and the market receives

an additional source of information {ξ2
t } at time τ . To use τ as a start-up time, we define

{Vξ
2

t } as the filtration of the subalgebra Vξ
2

t ⊂ Ft given by

Vξ
2

t =

σ({Hτ (s)}0≤s≤t) τ > t,

σ({Hτ (s)}0≤s≤t, {ξ2
s}τ≤s≤t) τ ≤ t,

(3.39)

for 0 ≤ t ≤ T , where τ is a Vξ
2

t -stopping time independent of {ξ1
t } and {ξ2

t }. Note that the σ-

algebra Vξ
2

t is generated by the Heaviside process independent of the information processes,

and if τ ≤ t, it additionally encodes the information provided by {ξ2
s}s≥τ for s ≤ t.

Define the filtration {Gt} by

Gt = F ξ
1

t

∨
Vξ

2

t =

σ({Hτ (s)}0≤s≤t, {ξ1
s}0≤s≤t) τ > t,

σ({Hτ (s)}0≤s≤t, {ξ1
s}0≤s≤t, {ξ2

s}τ≤s≤t) τ ≤ t.
(3.40)

We assume {Gt} is the market filtration. The σ-algebra Gt ⊂ Ft encodes all the information

that market has about the cash flow XT . For example, {ξ2
t } may provide idiosyncratic

information about XT that has leaked to the market at time τ , or τ may represent the time

of an announcement regarding XT .

One may replace the Heaviside process in (3.39) and (3.40) with a continuous process

(independent of {ξ1
t } and {ξ2

t }), and model τ as the first hitting time of this process. As

an example, if {Lt}t≥0 is this process (which may represent an economic variable), we can
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define τ = inf{s ≥ 0 : Ls ∈ B} for some B ∈ B(X). Then τ is the first time {Lt} enters B,

which indicates the moment when the new information process {ξ2
t } appears in the market.

We denote the t-price of an asset with cash flow XT by X t, and define X t as follows:

X t = PtTEQ [XT | Gt ] , 0 ≤ t < T. (3.41)

Brody et. al (2009) detail an orthogonalization procedure to compactify the information

{ξ1
t , ξ

2
t } into the information, say {ξ̂(2)

t }. In particular, given that |ρ| < 1 is the correlation

between {B1
tT} and {B2

tT}, Brody et. al (2009) show that

Q(XT ∈ dx|ξ1
t , ξ

2
t ) = Q(XT ∈ dx|ξ̂(2)

t ), (3.42)

where {ξ̂(2)
t }0≤t≤T is the effective Brownian information process given by

ξ̂
(2)
t = κ̂(2)XT t+ B̂

(2)
tT , (3.43)

provided that

κ̂(2) =

√
(κ1)2 − 2ρκ1κ2 + (κ2)2

(1− ρ2)
, (3.44)

B̂
(2)
tT =

1

κ(2)

[
κ1 − ρκ2

1− ρ2
B1
tT +

κ2 − ρκ1

1− ρ2
B2
tT

]
. (3.45)

Note that {B̂(2)
tT }t∈[0,T ] is a Brownian bridge and the speed coefficient κ̂(2) is a function of κ1

and κ2. Equation (3.42) simplifies calculations considerably.

Define a Q(X)-valued stochastic process {πt}t∈[0,T ] by

πt(A) = Q(XT ∈ A|Gt), (3.46)

for A ∈ B(X). πt is a random probability measure. We further define

ψ
(1)
t (x) dx = π

(1)
t (dx) = Q(XT ∈ dx|ξ1

t ), (3.47)

ψ
(2)
t (x) dx = π

(2)
t (dx) = Q(XT ∈ dx|ξ̂(2)

t ), (3.48)

for 0 ≤ t < T . We shall be absolutely clear with our notation: {ξit} is the ith information

process as defined in (3.10), and {ξ̂(i)
t } is the effective information process constructed using

the first i information processes {ξ1
t }, . . . , {ξit}. Hence, ξ1

t = ξ̂
(1)
t , but ξ2

t 6= ξ̂
(2)
t for t ∈ (0, T ].

Proposition 3.2.2. The random probability measure πt can be represented as

πt(A) = π
(1)
t (A) (1−Hτ (t)) + π

(2)
t (A)Hτ (t), (3.49)
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and the asset price X t is given by

X t = PtT

∫X x exp
[

T
(T−t)(κ

1xξ1
t − 1

2
(κ1x)2t)

]
q(x) dx∫

X exp
[

T
(T−t)(κ

1xξt − 1
2
(κ1x)2t)

]
q(x) dx

 (1−Hτ (t))

+ PtT

∫X x exp
[

T
(T−t)(κ̂

(2)xξ̂
(2)
t − 1

2
(κ̂(2)x)2t)

]
q(x) dx∫

X exp
[

T
(T−t)(κ̂

(2)xξ̂
(2)
t − 1

2
(κ̂(2)x)2t)

]
q(x) dx

Hτ (t). (3.50)

Proof. The law of total probability can be used to project πt(A) onto the two orthogonal

subspaces {t < τ} and {τ ≤ t}. If we denote Q(τ ∈ du) = vτ (du), then since 0 < τ ≤ M

for some finite M :

Q(XT ∈ A|Gt) =

∫ M

t

Q(XT ∈ A|F ξ
1

t

∨
σ({Hτ (s)}0≤s≤t), τ = u)ντ (du|Vξ

2

t )

+

∫ t

0

Q(XT ∈ A|F ξ
1

t

∨
F ξ

2

u,t

∨
σ({Hτ (s)}0≤s≤t), τ = u)ντ (du|Vξ

2

t )

=

∫ M

t

Q(XT ∈ A|ξ1
t )ντ (du|V

ξ2

t ) +

∫ t

0

Q(XT ∈ A|ξ1
t , ξ

2
t )ντ (du|V

ξ2

t ), (3.51)

since {ξ1
t } and {ξ2

t } are Markovian, and independent of τ . From (3.42), it follows that

πt(A) = Q(XT ∈ A|ξ1
t )

(∫ M

t

ντ (du|Vξ
2

t )

)
+ Q(XT ∈ A|ξ̂(2)

t )

(∫ t

0

ντ (du|Vξ
2

t )

)
= π

(1)
t (A)

(∫ M

t

ντ (du|Vξ
2

t )

)
+ π

(2)
t (A)

(∫ t

0

ντ (du|Vξ
2

t )

)
. (3.52)

Since τ is a Vξ
2

t -stopping time, we can write∫ t

0

ντ (du|Vξ
2

t ) =

∫ t

0

δτ (du) =

∫ t

0

dHτ (u). (3.53)

Thus, the first integral in (3.52) is equal to 1−Hτ (t), and the second integral is Hτ (t). From

the law of total probability, the independence of τ and the strong Markov property of {ξit},

Q(XT ∈ A|Gτ ) = Q(XT ∈ A|ξ1
τ , ξ

2
τ ) = Q(XT ∈ A|ξ̂(2)

τ ), (3.54)

for τ < T . Hence, (3.52) and (3.54) are consistent. Equation (3.49) follows. The expression

for ψ
(1)
t (x) is already given in (3.16). From (3.42), the expression for ψ

(2)
t (x) is

ψ
(2)
t (x) =

exp
[

T
(T−t)(κ̂

(2)xξ̂
(2)
t − 1

2
(κ̂(2)x)2t)

]
q(x)∫

X exp
[

T
(T−t)(κ̂

(2)xξ̂
(2)
t − 1

2
(κ̂(2)x)2t)

]
q(x) dx

, (3.55)
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for 0 ≤ t < T . From (3.41), the price X t is

X t = PtT

∫
X
xπt(dx), (3.56)

for 0 ≤ t < T and the expression in (3.50) follows since τ is independent.

The price X t is expressed in terms of one information process if τ > t, and two processes

if τ ≤ t. The market adjusts the price after the appearance of a new information source.

3.2.2 Multiple Information Sources

We extend the model by introducing n ∈ N+ stopping times. We define an n-sequence of Ft-
stopping times {τi}ni=1 such that for some finite M ∈ R+, 0 < τ1 < τ2 < ... < τn ≤ M <∞.

We assume the existence of n+1 information processes mutually independent of each τi. We

denote the associated Heaviside functions centered at τi by Hτi , and define Vξ
i

t ⊂ Ft by

Vξ
i+1

t =

σ({Hτi(s)}0≤s≤t) τi > t,

σ({Hτi(s)}0≤s≤t, {ξi+1
s }τi≤s≤t) τi ≤ t,

(3.57)

for i = 1, . . . , n and 0 ≤ t ≤ T . We define the filtration {Gt} by

Gt = F ξ
1

t

n∨
i=1

Vξ
i+1

t , (3.58)

and assume {Gt} is the market filtration. Note that the market is provided with ξ1 from

time t = 0, and it receives additional information sources at stopping times.

In order to derive price dynamics in this market, we first define a Q(X)-valued process

{πt}t∈[0,T ] by

πt(A) = Q(XT ∈ A|Gt), (3.59)

for A ∈ B(X), with density

ψt(x) dx = πt(dx), (3.60)

for 0 ≤ t < T . We also define the processes {π(i)
t }t∈[0,T ], i = 1, ..., n+ 1, by

π
(i)
t (A) = Q(XT ∈ A|ξ1

t , ..., ξ
i
t), (3.61)

and their conditional densities are

ψ
(i)
t (x) dx = π

(i)
t (dx), (3.62)
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for 0 ≤ t < T . From (3.43)-(3.45), iterating the orthogonalization procedure detailed in

Brody et. al (2009) using pairs of information processes, we can write

π
(i)
t (dx) = Q(XT ∈ dx|ξ1

t , ..., ξ
i
t) = Q(XT ∈ dx|ξ̂(i)

t ), (3.63)

where the effective Brownian information process {ξ̂(i)
t }t∈[0.T ] is defined by

ξ̂
(i)
t = κ̂(i)XT t+ B̂

(i)
tT , (3.64)

for i = 1, . . . , n+ 1, given that

κ̂(i) =

√
(κ̂(i−1))2 − 2ρ̂(i)κ̂(i−1)κi + (κi)2

(1− (ρ̂(i))2)
, (3.65)

B̂
(i)
tT =

1

κ̂(i)

[
κ̂(i−1) − ρ̂(i)κi

(1− (ρ̂(i))2)
B̂

(i−1)
tT +

κi − ρ̂(i)κ̂(i−1)

(1− (ρ̂(i))2)
Bi
tT

]
, (3.66)

where κ̂(0) = 0, B̂
(0)
tT = 0, and ρ̂(1) = 0. Note that {B̂(i)

tT }t∈[0,T ] is a Brownian bridge

for i = 1, . . . , n + 1, where |ρ̂(i)| < 1 is the correlation between {B̂(i−1)
tT } and {Bi

tT} for

i = 2, . . . , n + 1. Also, ξ̂
(1)
t = ξ1

t , κ̂
(1) = κ1, B̂

(1)
tT = B1

tT , but such equalities do not hold for

i = 2, . . . , n+ 1. Finally, we define the following vectors:

Pt(A) =



π
(1)
t (A)

...

π
(i)
t (A)

...

π
(n+1)
t (A)


and It =



1−Hτ1(t)
...

Hτi−1
(t)(1−Hτi(t))

...

Hτn(t)


. (3.67)

Proposition 3.2.3. The random probability measure πt can be represented as

πt(A) = P>t (A)It, (3.68)

where the conditional density ψ
(i)
t is given by

ψ
(i)
t (x) =

exp
[

T
(T−t)

(
κ̂(i)xξ̂

(i)
t − 1

2
(κ̂(i)x)2t

)]
q(x)∫

X exp
[

T
(T−t)

(
κ̂(i)xξ̂

(i)
t − 1

2
(κ̂(i)x)2t

)]
q(x) dx

. (3.69)

Proof. We can project πt onto n+ 1 orthogonal subspaces with respect to time so that

πt(A) =
n∑
i=0

Q(XT ∈ A|Gt, τi ≤ t < τi+1)Q(τi ≤ t < τi+1|Gt), (3.70)
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where we set τ0 = 0 and t < τn+1. Each information process ξi is Markov and is mutually

independent of the τi’s. Since each τi is a Gt-stopping time, Q(τi ≤ t < τi+1|Gt) is a Dirac

measure. Following similar steps as done in the proof of Proposition 3.2.2, we have

πt(A) = Q(XT ∈ A|ξ1
t )

∫ M

t

Q(τ1 ∈ du1|Gt) + Q(XT ∈ A|ξ1
t , ξ

2
t )

∫ t

0

Q(τ1 ∈ du1, t < τ2|Gt)

+ · · ·+ Q(XT ∈ A|ξ1
t , . . . , ξ

n+1
t )

∫
[0,t]n

Q(τ1 ∈ du1, . . . , τn ∈ dun|Gt)

= π
(1)
t (A)(1−Hτ1(t)) + π

(2)
t (A)Hτ1(t)(1−Hτ2(t))

+ · · ·+ π
(n+1)
t (A)Hτn(t). (3.71)

From the law of total probability, independence of τi and the strong Markov property of

{ξit},

Q(XT ∈ A|Gτi) = Q(XT ∈ A|ξ1
τi
, . . . , ξi+1

τi
) = Q(XT ∈ A|ξ̂(i+1)

τi
), (3.72)

for τi < T . Hence, (3.71) and (3.72) are consistent. Equation (3.68) follows. Equation (3.69)

is from (3.63)-(3.66) and the Bayes formula.

Lemma 3.2.4. Let It(i) be the ith element of It for i = 1, . . . , n+ 1. Then,

dIt(i+ 1) = δτi(dt)− δτi+1
(dt), (3.73)

for i = 0, . . . , n, provided that τ0 < t < τn+1, and δτn+1(dt) = δτ0(dt) = 0.

Proof. It is defined in (3.67) and It(i) is the ith element of It for i = 1, . . . , n+ 1. Then,

dIt(i+ 1) = δτi(dt)(1−Hτi+1
(t)) +Hτi(t)(−1)δτi+1

(dt), (3.74)

where τ0 < t < τn+1. If τi = t, the condition t < τi+1 is immediately satisfied, and hence,

δτi(dt)(1−Hτi+1
(t)) = δτi(dt). If τi 6= t, δτi(dt) = 0 and so δτi(dt)(1−Hτi+1

(t)) = 0. If τi+1 = t,

the condition τi ≤ t is immediately satisfied, and hence, Hτi(t)(−1)δτi+1
(dt) = −δτi+1

(dt). If

τi+1 6= t, δτi+1
(dt) = 0 and so Hτi(t)(−1)δτi+1

(dt) = 0.

We are now in the position to provide the SDE of the conditional density process

{ψt}t∈[0,T ). First, we define the process {σ(i)
t }t∈[0,T ) as follows:

σ
(i)
t (x) =

T κ̂(i)

(T − t)

(
x− EQ

[
XT

∣∣∣ ξ̂(i)
t

])
, (3.75)

for i = 1, . . . , n + 1 and 0 ≤ t < T . Note that from (3.18), σ
(1)
t = σ1

t , but σ
(i)
t 6= σit for

i = 2, . . . , n + 1. That is, the random variable σit is defined in terms of the ith information
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process, whereas σ
(i)
t is defined in terms of i sources of information processes.

We also note that {W (i)
t }t∈[0,T ) satisfying

W
(i)
t = ξ̂

(i)
t +

∫ t

0

1

T − s
ξ̂(i)
s ds− T κ̂(i)

∫ t

0

1

T − s
EQ
[
XT

∣∣∣ ξ̂(i)
s

]
ds, (3.76)

is a Q-Brownian motion for i = 1, . . . , n+ 1, by Lévy’s characterisation.

Proposition 3.2.5. The dynamics of {ψt} are governed by the following SDE:

dψt(x) =
n+1∑
i=1

σ
(i)
t (x)ψ

(i)
t (x) dW

(i)
t It(i) +

n+1∑
i=2

(
ψ

(i)
t (x)− ψ(i−1)

t (x)
)
δτi−1

(dt). (3.77)

Proof. The expression for ψ
(i)
t (x) is given in (3.69). Then applying Ito’s lemma,

dψ
(i)
t (x) =

T κ̂(i)

(T − t)

(
x− EQ

[
XT

∣∣∣ ξ̂(i)
t

])
ψ

(i)
t (x) dW

(i)
t , (3.78)

for 0 ≤ t < T . Then (3.77) follows from Proposition 3.2.3 and Lemma 3.2.4.

The process {ψt} has jump-diffusion dynamics. Each {ψ(i)
t } is an exponential Brownian

motion with a different stochastic diffusion coefficient. Then every time a new information

source appears in the market, diffusion coefficient of {ψt} jumps.

For a fixed x ∈ X and τi = t, a jump of size (ψ
(i+1)
t (x)−ψ(i)

t (x)) occurs in ψt(x). Thus, the

law of the jump size of ψt(x) at τi = t is characterised by the joint law of ψ
(i)
t (x) and ψ

(i+1)
t (x).

For the fixed τi = t and x ∈ X, setting Y i
t (x) = ψ

(i+1)
t (x)−ψ(i)

t (x) and Ri
t(x) = ψ

(i+1)
t (x), the

Jacobian Jac(Y i
t (x), Ri

t(x)) = 1. From multivariate transformation theorem, if ht(pi, pi+1) is

the joint density of ψ
(i)
t (x) and ψ

(i+1)
t (x), Q(Y i

t (x) ∈ dy)/ dy is∫
R+

ht(r − y, r)|Jac(Y i
t , R

i
t)| dr =

∫
R+

ht(r − y, r) dr. (3.79)

The conditional density process {ψt} is a càdlàg process. It is possible to define a topology

along with the concept of convergence on the space of càdlàg functions. With this topology

and the Borel σ-algebra, the paths of {ψt} are elements of a Skorokhod space. In addition,

for every càdlàg process with jumps, taking values in M ⊆ Rd, one can naturally associate it

with a random measure on [0, T ]×M, which can be called the random jump measure. For a

fixed x ∈ X, each jump size Y i
τi

(x) is Gτi-measurable for τi < T , and the process {τi, Y i
τi

(x)}
contains all the information about the jump times and the jump sizes of {ψt(x)}. Then we

can construct a random jump measure for {ψt}, denoted by Jψ as follows:

Jψ(x)(ω, .) =
n∑
i=1

δ(τi(ω),Y iτi (x)(ω)), (3.80)
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for ω ∈ Ω, where we can view Jψ(x)([0, T ]×A), A ⊂ R, as the number of jumps of {ψt(x)} on

[0, T ], whose size belongs to A. The random jump measure Jψ contains all the information

about the jumps of {ψt}, but does not contain information about the continuous part.

We shall now provide the price dynamics. Using Proposition 3.2.3, the price X t is given

by

X t = PtTEQ[XT |Gt] = PtT

∫
X
xP

′

t(dx)It, 0 ≤ t < T. (3.81)

Proposition 3.2.6. The dynamics of the price {X t} are governed by the following SDE:

dX t = rtX t dt+ PtT

n+1∑
i=1

T κ̂(i)

(T − t)

(
VarQ

[
XT

∣∣∣ ξ̂(i)
t

])
dW

(i)
t It(i)

+ PtT

n+1∑
i=2

(
EQ
[
XT

∣∣∣ ξ̂(i)
t

]
− EQ

[
XT

∣∣∣ ξ̂(i−1)
t

])
δτi−1

(dt), (3.82)

for 0 ≤ t < T , where VarQ[XT | ξ̂(i)
t ] is a Q-supermartingale.

Proof. Using the Lebesgue Dominated Convergence, Proposition 3.2.5 and (3.81), we have

dX t = rtX t dt+ PtT

n+1∑
i=1

(∫
X
xσ

(i)
t (x)ψ

(i)
t (x) dx

)
dW

(i)
t It(i)

+ PtT

n+1∑
i=2

(∫
X
x
(
ψ

(i)
t (x)− ψ(i−1)

t (x)
)

dx

)
δτi−1

(dt)

= rtX t dt+ PtT

n+1∑
i=1

(∫
X
x
T κ̂(i)

(T − t)

(
x− EQ

[
XT

∣∣∣ ξ̂(i)
t

])
ψ

(i)
t (x) dx

)
dW

(i)
t It(i)

+ PtT

n+1∑
i=2

(∫
X
xψ

(i)
t (x) dx−

∫
X
xψ

(i−1)
t (x) dx

)
δτi−1

(dt)

= rtX t dt+ PtT

n+1∑
i=1

T κ̂(i)

(T − t)

(
EQ
[
(XT )2

∣∣∣ ξ̂(i)
t

]
− EQ

[
XT

∣∣∣ ξ̂(i)
t

]2
)

dW
(i)
t It(i)

+ PtT

n+1∑
i=2

(
EQ
[
XT

∣∣∣ ξ̂(i)
t

]
− EQ

[
XT

∣∣∣ ξ̂(i−1)
t

])
δτi−1

(dt), (3.83)

for 0 ≤ t < T . EQ[(XT )2 | ξ̂(i)
t ] is a Q-martingale and EQ[XT | ξ̂(i)

t ]2 is a Q-submartingale.

Hence, VarQ[XT | ξ̂(i)
t ] = EQ[(XT )2 | ξ̂(i)

t ]− EQ[XT | ξ̂(i)
t ]2 is a Q-supermartingale.

By allowing new Brownian information sources to appear randomly in the market, we

see that it is a natural outcome of this framework that the price process {X t} follows jump-

diffusion dynamics, and that it has stochastic volatility with jumps.
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3.2.3 A Hilbert Space Perspective on New Information Sources

We can view Proposition 3.2.3 from a Hilbert space perspective. We shall briefly discuss

the insight that the Hilbert space setting brings to the representation of {ψt}. This insight

allows us to measure the impact of new information sources geometrically.

We let G ⊂ R2 be a measurable set and assume that the following orthogonal decompo-

sition of L2(G) holds:

L2(G) =
n+1⊕
i=1

L2
i (G), (3.84)

where L2
i (G) and L2

j(G) are mutually orthogonal closed subspaces of L2(G) for i 6= j, such

that any function in L2(G) can uniquely be represented by the sum of its projections onto

the subspaces L2
i (G) for i = 1, . . . , n+ 1 that span L2(G).

Since ψt is a probability density for 0 ≤ t < T , it satisfies:
∫
X ψt(x) dx = 1. We define

ρt(x) =
√
q(x|Gt). (3.85)

Note that ρ is a square-integrable function such that ρ ∈ L2(X× [0, T )). Further we define

ρ
(i)
t (x) =

√
q(x|ξ1

t , ..., ξ
i
t). (3.86)

The function ρ(i) is square-integrable for i = 1, . . . , n + 1, where ρ(i) ∈ L2(X × [0, T )).

Let G be the domain of the measurable functions ρ and ρ(i) so that G = X × T, where

T = {t : 0 ≤ t < T}. That is, setting G = X×T, we consider the case where the orthogonal

decomposition in (3.84) can be written as

L2(X× T) =
n+1⊕
i=1

L2
i (X× T). (3.87)

Let the disjoint sets Wi, for i = 1, ..., n + 1 be such that W1 = {t ∈ T : t < τ1},
Wi = {t ∈ T : τi−1 ≤ t < τi} for i = 2, ..., n, and Wn+1 = {t ∈ T : τn ≤ t}. Note that

T =
⋃n+1
i=1 Wi. Now, we define the measurable function π̂(i), for i = 1, ..., n+ 1 by

π̂
(i)
t (x) =


√
q(x|Gt) if t ∈Wi,

0 otherwise.
(3.88)

From the strong Markovian property of {ξit} and the independence of τi’s, it follows that

π̂
(i)
t (x) =


√
q(x|ξ1

t , ..., ξ
i
t) if t ∈Wi,

0 otherwise.
(3.89)
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Note that π̂(i)⊥ π̂(j) for i 6= j on G. That is, 〈π̂(i), π̂(j)〉 = 0 for i 6= j on X × T. We write

π̂(i) ∈ L2
i (X× T) and π̂(j) ∈ L2

j(X× T), and we have the following representation:

ρ = π̂(1) + · · ·+ π̂(n+1), (3.90)

in L2(X×T). The Heaviside function Hτi(t) for i = 1, ..., n is measurable at each t ≤ T , and

is an element of the Hilbert space of square-integrable functions on T. Recall,

{It}0≤t≤T =
{[

1−Hτ1(t), . . . , Hτi−1
(t)(1−Hτi(t)), . . . , Hτn(t)

]>}
0≤t≤T

. (3.91)

Then σ({Is})0≤s≤t ⊂ Gt. Using (3.90) and denoting It(i) as the ith element of It, the function

ρ can be represented as

ρt(x) = π̂
(1)
t (x) + · · ·+ π̂

(n+1)
t (x)

= ρ
(1)
t (x)It(1) + · · ·+ ρ

(n+1)
t (x)It(n+ 1), (3.92)

in R for some x ∈ X. Note that by squaring ρ in (3.92), equation (3.68) is recovered:

ψt(x) =
(
ρ

(1)
t (x)It(1) + · · ·+ ρ

(n+1)
t (x)It(n+ 1)

)2

= ψ
(1)
t (x)It(1) + · · ·+ ψ

(n+1)
t (x)It(n+ 1), (3.93)

since It(i)It(j) = 0 for i 6= j and It(i)It(i) = It(i).

Since each ρ
(i)
t (x)It(i) takes values in R for i = 1, . . . , n + 1 and x ∈ X, we can as well

work with any H isomorphic to Rn+1 by using (3.92). That is, we can canonically represent

ρ as an (n+ 1)-tuple

ρ =
[
ρ(1), . . . , ρ(i), . . . , ρ(n+1)

]>
, (3.94)

in Rn+1, and represent each I(i) for i = 1, . . . , n+ 1 as

I(i) = ei = [0, . . . , 1, . . . , 0]> , (3.95)

where the ith element is 1 and the remaining n elements are 0. For H ∼= Rn+1, ei’s form a

complete orthonormal sequence ei ∈ H for i = 1, . . . , n+ 1. Then, we have

ρ =
n+1∑
i=1

〈ρ, ei〉ei =
n+1∑
i=1

ρ(i)ei, (3.96)

in H by Theorem 3.1.1. The representation (3.96) is equivalent to (3.92). From Definition

3.1.2, we shall refer to ρ(i)’s as the Fourier coefficients for i = 1, . . . , n+ 1.

The insight gained from the Hilbert space brings forth a geometrical interpretation. The
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function ρ is a non-negative function, and for a fixed time t, the integral of the square of

ρt on X is unity. Thus, from the transformation ψt 7→ ρt for fixed t, ρt determines a point

on the positive orthant of the unit sphere S ⊂ L2. Therefore, the process {ρt} determines

a stochastic trajectory on S+, where S+ is the positive orthant of S. Also, each Fourier

coefficient determines a stochastic evolution on S+, since each is a non-negative function

and the integral of their square on X is unity for a fixed time t.

The unit sphere S is a differentiable manifold, and, if equipped with a Riemannian metric,

it is a Riemannian manifold (see, for example Do Carmo, 1992). We provide a formal account

of Riemannian manifolds in Chapter 6 when quantifying information asymmetry. We shall

give a brief overview here of how geometry interacts with information:

The distance between the points determined by the Fourier coefficients ρ(i) and ρ(j), which

are defined by different numbers of information sources, has a natural geometry on S+. Any

two points on S lie on a circle with center coinciding with the center of S. The circle and

its segments are geodesics and the spherical distance between the points determined by ρ
(i)
t

and ρ
(j)
t is the length of the geodesic connecting these two points on S+. Since each {ρ(i)

t }
determines a trajectory on S+, the spherical distance between the points determined by

ρ
(i)
t and ρ

(j)
t can vary in the interval [0, π/2]. Since ρ(i) and ρ(i+1) are defined in terms of i

and i + 1 information processes respectively, the spherical distance between the two points

measures the effect of having the additional information source.

The Fourier coefficients ρ(i) and ρ(j) can also be used to define an angle process Θij =

{Θij
t }0≤t<T , for i, j = 1, . . . , n+ 1 by the L2-inner product,

cos Θij
t =

∫
X
ρ

(i)
t (x)ρ

(j)
t (x) dx = 1− 1

2

∫
X

(
ρ

(i)
t (x)− ρ(j)

t (x)
)2

dx, (3.97)

where Θij
t = Θji

t is called the Bhattacharyya angle (see Bhattacharyya, 1946) between ρ
(i)
t

and ρ
(j)
t . This is the angle from the center of S subtended to the endpoints on S+. Note that

Θij is stochastic, and the maximum angle between the Fourier coefficients is π/2 radians.

Given that i 6= j, the angle Θij
t can be used as a geometric quantity (equivalent to the

spherical distance) that measures the influence of additional information sources.

Note that the trajectory determined by {ρt} on S+ has jumps. Each jump size on S+

can be measured geometrically at stopping times.

Remark 3.2.7. The non-marginal impact of a new information source can be measured by

the spherical distance (or the Bhattacharyya angle) between the Fourier coefficients ρ(i) and

ρ(i+1) on S+ at stopping times.

Remark 3.2.7 is what partly motivates Chapter 6, where we dynamically quantify the

impact of changes in information sources geometrically. We shall provide a more detailed

account of it in Chapter 6.
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3.3 Multiple Market Factor Generalisation

We generalise our framework to the case where XT can be represented as a function of a set

of independent random variables. We address the question as to how to represent a market,

in which, new sources of information about different market factors may appear at different

stopping times. This is a valid problem since the market may receive a broadcast about a

particular market factor, but may not receive any for another market factor at that time.

We assume that the cash flow XT can be expressed as a function of a set of independent

random variables, say Mα
T , for α = 1, . . . ,m, with state-space (X,B(X)) and with continuous

densities qα(x) > 0. The random variables Mα
T are the market factors and they govern the

value of the cash flow XT . Choosing a function g ∈ Bb(Xm) such that g : Xm → X, we

represent XT as follows:

XT = g(M1
T ,M

2
T , . . . ,M

m
T ). (3.98)

We associate a sequence of Ft-stopping times to each market factor Mα
T denoted by {ταi }ni=1

for α = 1, . . . ,m. For fixed α, we let τα1 < τα2 < ... < ταn . However, for each i and j,

Q(ταi < τα+1
j ) 6= 1. Hence, the stopping times do not necessarily occur in a sequential order

across α. We denote the associated Heaviside functions at ταi by Hα
τi

:

Hα
τi

(t) =

1 if ταi ≤ t,

0 otherwise.
(3.99)

We use each stopping time to model the appearance of a new source of information in

the market. Accordingly, we associate multiple Brownian information processes {ξα,it }t∈[0,T ],

i = 1, . . . , n+ 1, with each Mα
T , such that

ξα,it = κα,iMα
T t+Bα,i

tT , (3.100)

where {Bα,i
tT }t∈[0,T ] is a Brownian bridge to the value zero. We assume that {Bα,i

tT }’s are mu-

tually independent across α (i.e., {Bα,i
tT } and {Bβ,j

tT } are independent) and independent from

each Mα
T . Hence, the information processes are mutually independent across α. However,

for a fixed α, {Bα,i
tT } and {Bα,j

tT } can be correlated. We further assume that each sequence of

stopping times is mutually independent from each other and mutually independent of each

information process.

For fixed α, we define {Vξ
α,i

t } as the filtration of the subalgebra Vξ
α,i

t ⊂ Ft such that

Vξ
α,i+1

t =

σ({Hα
τi

(s)}0≤s≤t) ταi > t,

σ({Hα
τi

(s)}0≤s≤t, {ξα,i+1
s }ταi ≤s≤t) ταi ≤ t,

(3.101)
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for i = 1 . . . , n and 0 ≤ t ≤ T . Let F ξ
α,1

t = σ({ξα,is }0≤s≤t) for 0 ≤ t ≤ T . Then we define

Zt =
m∨
α=1

F ξ
α,1

t

n∨
i=1

Vξ
α,i+1

t . (3.102)

We assume that {Zt} is the market filtration. Hence, Zt ⊂ Ft is all the information that the

market receives about the cash flow XT . We define a Q(X)-valued process {πt}t∈[0,T ] by

πt(A) = Q([M1
T ,M

2
T , . . . ,M

m
T ] ∈ A|Zt), (3.103)

for a fixed A ∈ B(Xm) = ⊗mi=1B(X). πt is a joint conditional distribution of the vector

of market factors. Note that due to the independence properties we imposed above, the

following can be written:

πt(A) = Q(M1
T ∈ A1|F ξ

1,1

t

n∨
i=1

Vξ
1,i+1

t )×Q(M2
T ∈ A2|F ξ

2,1

t

n∨
i=1

Vξ
2,i+1

t )

× · · · ×Q(Mm
T ∈ Am|F

ξm,1

t

n∨
i=1

Vξ
m,i+1

t ), (3.104)

for A = [A1, A2, . . . , Am] ∈ B(Xm). We denote the conditional density by

ψt(x) dx1 · · · dxm = πt(dx), (3.105)

for 0 ≤ t < T and x = [x1, . . . , xm] ∈ Xm. We also define the process {π(i)
t }t∈[0,T ] by

π
α,(i)
t (Aα) = Q(Mα

T ∈ Aα|ξ
α,1
t , ..., ξα,it ), (3.106)

for i = 1, ..., n+ 1 and α = 1, . . . ,m, and the conditonal density by

ψ
α,(i)
t (xα) dxα = π

α,(i)
t (dxα), (3.107)

for 0 ≤ t < T and xα ∈ X.

In order to derive asset price dynamics, we additionally define:

P1
t =



π
1,(1)
t
...

π
1,(i)
t
...

π
1,(n+1)
t


, P2

t =



π
2,(1)
t
...

π
2,(i)
t
...

π
2,(n+1)
t



>

, . . . , Pm
t =



π
m,(1)
t
...

π
m,(i)
t
...

π
m,(n+1)
t



>

. (3.108)

Note that each Pα
t is a vector of conditional distributions associated with each market factor
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Mα
T for α = 1, . . . ,m, where each vector element is determined by different number of

information processes. We also define the following vectors of Heaviside processes:

I1
t =



1−H1
τ1

(t)
...

H1
τi−1

(t)(1−H1
τi

(t))
...

H1
τn(t)


and {Iαt }

m
α=2 =





1−Hα
τ1

(t)
...

Hα
τi−1

(t)(1−Hα
τi

(t))
...

Hα
τn(t)



>


m

α=2

.

Note that each Iαt is a vector of Heaviside processes associated with each market factor Mα
T

for α = 1, . . . ,m.

The following proposition makes use of the Kronecker product, Hadamard product and

the entry-wise norm of a matrix. We shall provide a brief account of these operations:

If X ∈ Rm×n is a matrix and Y ∈ Rk×l, we denote the Kronecker product of X and Y

by (X⊗Y) ∈ Rmk×nl, such that

X⊗Y =


X11Y X12Y . . . X1nY

X21Y X22Y . . . X2nY
...

...
...

...
...

...
...

Xm1Y Xm2Y . . . XmnY

 , (3.109)

where Xij is the ijth element of the matrix X. The Kronecker product is a type of the tensor

product (this is why we choose to denote the Kronecker product by ⊗ as well), hence, it is

associative: (X⊗Y)⊗ Z = X⊗ (Y ⊗ Z). For matrices Xi for i = 1 . . . ,m, we write

m⊗
i=1

Xi = X1 ⊗ · · · ⊗Xi ⊗ · · · ⊗Xm. (3.110)

For matrices A,B ∈ Rm×n, we denote their Hadamard product by (A ◦ B) ∈ Rm×n, such

that

(A ◦B)ij = AijBij. (3.111)

The Hadamard product is commutative: (A ◦ B) = (B ◦ A). For a matix C ∈ Rm×n, we

denote the entry-wise p-norm of C by ||C||p, given by

||C||p =

(
m∑
i=1

n∑
j=1

|cij|p
)1/p

. (3.112)

We shall make use of the entry-wise 1-norm. To simplify the notation, we denote the entry-

wise 1-norm by ||C|| = ||C||1.
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We define an information process associated with Mα
T by {ξ̂α,(i)t }t∈[0,T ) where

ξ̂
α,(i)
t = κ̂α,(i)Mα

T t+ B̂
α,(i)
tT , (3.113)

for i = 1, . . . , n+ 1, such that

κ̂α,(i) =

√
(κ̂α,(i−1))2 − 2ρ̂α,(i)κ̂α,(i−1)κα,i + (κα,i)2

(1− (ρ̂α,(i))2)
, (3.114)

B̂
α,(i)
tT =

1

κ̂α,(i)

[
κ̂α,(i−1) − ρ̂α,(i)κα,i

(1− (ρ̂α,(i))2)
B̂
α,(i−1)
tT +

κα,i − ρ̂α,(i)κ̂α,(i−1)

(1− (ρ̂α,(i))2)
Bα,i
tT

]
, (3.115)

κ̂α,(0) = 0, B̂
α,(0)
tT = 0, and ρ̂α,(1) = 0. {B̂α,(i)

tT }t∈[0,T ] is a Brownian bridge for i = 1, . . . , n+ 1,

and |ρ̂α,(i)| < 1 for a fixed α is the correlation between {B̂α,(i−1)
tT } and {Bα,i

tT } for i = 2, . . . , n+

1. Also, ξ̂
α,(1)
t = ξα,1t , κ̂α,(1) = κα,1, B̂

α,(1)
tT = Bα,1

tT , but such equalities do not hold for

i = 2, . . . , n+ 1.

Proposition 3.3.1. The random probability measure πt can be represented as

πt(A) =

∥∥∥∥∥
(

m⊗
i=1

Pi
t(Ai)

)
◦

(
m⊗
i=1

Iit

)∥∥∥∥∥ , (3.116)

where the conditional density ψ
α,(i)
t is given by

ψ
α,(i)
t (x) =

exp
[

T
(T−t)

(
κ̂α,(i)xξ̂

α,(i)
t − 1

2
(κ̂α,(i)x)2t

)]
qα(x)∫

X exp
[

T
(T−t)

(
κ̂α,(i)xξ̂

α,(i)
t − 1

2
(κ̂α,(i)x)2t

)]
qα(x) dx

. (3.117)

Proof. The proof is similar to that of Proposition 3.2.3. Each stopping time ταi is a Zt-
stopping times. Hence, Q(ταi ≤ t < ταi+1|Zt)’s are Dirac measures for i = 1, . . . , n and

α = 1, . . . ,m. {ξα,it } is strong Markov and the stopping times are independent from each

Mα
T and each {ξα,it }. Also, each sequence of stopping times are independent from each other.

Then, the (n+ 1× (n+ 1)m−1)-dimensional matrix (P1
t ⊗P2

t ⊗· · ·⊗Pm
t ) encodes all possible

combinations of the conditional distributions by the use of law of total probability, which

follows from the fact that the information processes {ξα,it } are all independent across α. The

(n+1× (n+1)m−1)-dimensional matrix (I1
t ⊗I2

t ⊗· · ·⊗Imt ) encodes all possible combinations

of the number of information processes provided to the market on each market factor. The

Hadamard product associates each element of (P1
t ⊗P2

t ⊗· · ·⊗Pm
t ) with the correct element

of (I1
t ⊗ I2

t ⊗· · ·⊗ Imt ). The entry-wise norm of the resulting matrix is due to the law of total

probability. The expression (3.117) follows from (3.113)-(3.115) and the Bayes formula.

The Q(X)-valued process {πt} represents an economy in which the market is provided

45



with different numbers of information sources about different market factors. We are now

in the position to provide a representation of the price of an asset with the cash flow XT =

g(M1
T ,M

2
T , . . . ,M

m
T ). We denote the price by X t, which is

X t = PtTEQ [XT | Zt ] , 0 ≤ t < T. (3.118)

Proposition 3.3.2. The price X t can be written as

X t = PtT

∫
Xm

g(x1, . . . , xm)

∥∥∥∥∥
(

m⊗
i=1

Pi
t(dxi)

)
◦

(
m⊗
i=1

Iit

)∥∥∥∥∥ . (3.119)

Proof. The statement follows from (3.13), (3.116) and (3.118).

The processes {πt} and {ψt} jump at stopping times. Thus, the price process {X t} jumps

at every appearance of a new source of information about any of the market factors. Since

there are (n+ 1× (n+ 1)m−1) possible states at a given time, {X t} may jump a maximum

of (n+ 1× (n+ 1)m−1)− 1 times during the time interval [0, T ].

Note that all elements of the matrix (I1
t ⊗ I2

t ⊗· · ·⊗ Imt ) are pairwise orthogonal functions

in L2([0, T ]). Hence, the square-root of the elements of the matrix (P1
t ⊗· · ·⊗Pm

t )◦(I1
t ⊗I2

t ⊗
· · ·⊗ Imt ), written in terms of densities, are pairwise orthogonal functions in L2(Xm× [0, T )).

Following the arguments presented in Section 3.2, one can see that the square-root of each

density of (P1
t ⊗ · · · ⊗ Pm

t ) is a Fourier coefficient of the function
√
ψ, which determines

a stochastic trajectory on S+. Then again, the non-marginal impact of new information

sources can be measured by the spherical distance between the points on S+, determined by

the Fourier coefficients of
√
ψ at stopping times ταi , i = 1, . . . , n and α = 1, . . . ,m.

3.3.1 A Simplification: One Sequence of Stopping Times

Let’s assume there is only one sequence {ταi }ni=1 = {τi}ni=1 for α = 1, . . . ,m. Hence,

{Hα
τi
}mα=1 = Hτi for i = 1, . . . , n. The market filtration is defined in (3.102), the condi-

tional distribution πt and density ψ
α,(i)
t are given in (3.103) and (3.107), respectively. Also,

we define

Pt(A) =



ψ
1,(1)
t (A1)× ψ2,(1)

t (A2)× · · · × ψm,(1)
t (Am)

...

ψ
1,(i)
t (A1)× ψ2,(i)

t (A2)× · · · × ψm,(i)t (Am)
...

ψ
1,(n+1)
t (A1)× ψ2,(n+1)

t (A2)× · · · × ψm,(n+1)
t (Am)


, (3.120)

for A = [A1, . . . , Am] ∈ B(Xm). The way Pt(A) is defined makes sense, since the market

factors and information processes in each row are all independent from each other.
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Proposition 3.3.3. The random probability measure πt can be represented as

πt(A) = P>t (A)It. (3.121)

Proof. Proposition 3.3.3 is a special case of Proposition 3.3.1. By the law of total probability,

there are n+ 1 orthogonal states at each time t, represented by each row of Pt(A). The rest

of the proof is very similar to that of Proposition 3.3.1.

In this setting, the SDE of the price process has an elegant representation. First, we note

that {Wα,(i)
t }t∈[0,T ) satisfying

W
α,(i)
t = ξ̂

α,(i)
t +

∫ t

0

1

T − s
ξ̂α,(i)s ds− T κ̂α,(i)

∫ t

0

1

T − s
EQ
[
Mα

T

∣∣∣ ξ̂α,(i)s

]
ds, (3.122)

is a Q-Brownian motion by Lévy’s characterisation.

Proposition 3.3.4. The dynamics of the price {X t} are governed by the following SDE:

dX t = rtX t dt+ PtT

m∑
α=1

n+1∑
i=1

T κ̂α,(i)

(T − t)

(
CovQ

[
XT ,M

α
T

∣∣∣ ξ̂1,(i)
t , ξ̂

2(i)
t . . . , ξ̂

m,(i)
t

])
dW

α,(i)
t It(i)

+ PtT

n+1∑
i=2

(
EQ
[
XT

∣∣∣ ξ̂1,(i)
t , . . . , ξ̂

m,(i)
t

]
− EQ

[
XT

∣∣∣ ξ̂1,(i−1)
t , . . . , ξ̂

m,(i−1)
t

])
δτi−1

(dt),

for 0 ≤ t < T .

Proof. The statement follows from Proposition 3.3.3, (2.22), (3.118) and Lemma 3.2.4.

3.4 An Alternative Model for New Information Sources

We briefly present an alternative way of modelling the availability of new information sources

at stopping times. The idea is to start with a larger filtration, generated by Brownian

information processes, and project it to a smaller one.

Let {Y t}0≤t≤T be the filtration of the subalgebra Y t ⊂ Ft such that

Y t = σ({ξis}0≤s≤t, {Hτi(s)}0≤s≤t : i = 1, . . . , n+ 1), (3.123)

where each τi is a Y t-stopping time, independent of the Brownian information processes {ξit},
i = 1, . . . , n+ 1. In order to project the σ-algebra Y t to a smaller σ-algebra, we first define

the following information process:

ξ
i+1

t = ξi+1
t Hτi(t), (3.124)
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for i = 1, . . . , n. Note that the process {ξi+1

t }0≤t≤T is zero for t < τi and {ξi+1
t } for τi ≤ t.

In addition, {ξi+1

t } is a càdlàg process. We define

Yt = F ξ
1

t

n∨
i=1

σ({ξi+1

s }0≤s≤t, {Hτi(s)}0≤s≤t), (3.125)

for 0 ≤ t ≤ T , so that Yt ⊂ Y t. We assume {Yt} is the market filtration for XT . Note that

the market filtration is generated by information processes that become alive starting from

stopping times. Following similar steps as done in the proof of Proposition 3.2.3,

Q(XT ∈ A|Yt) =
n∑
i=0

Q(XT ∈ A|Yt, τi ≤ t < τi+1)Q(τi ≤ t < τi+1|Yt)

= Q(XT ∈ A|ξ1
t )(1−Hτ1(t)) + Q(XT ∈ A|ξ1

t , ξ
2
t )Hτ1(t)(1−Hτ2(t))

+ · · ·+ Q(XT ∈ A|ξ1
t , ξ

2
t , . . . , ξ

n+1
t )Hτn(t), (3.126)

since {ξit} is a strong Markov process, independent from each Yt-stopping time τi. Then

Q(XT ∈ A|Yt) = Q(XT ∈ A|Gt), (3.127)

where Gt is defined in (3.58). Therefore, the results in this chapter involving {Gt} follow

equivalently if {Yt} is the market filtration. However, there is a subtle difference between

the insights gained from {Gt} and {Yt}. The way Gt is defined suggests that the filtration

{Gt} ‘jumps’ at stopping times by expanding with new sources of information. The way Yt is

defined suggests that the information processes that generate {Yt} jump at stopping times.

The way {Gt} is defined offers flexibility in modelling the stopping times. Following

similar steps as shown in the proofs of this chapter, one can verify that by replacing the

{Hτi(t)}’s in Gt with continuous processes independent of the information processes, and

defining the stopping times as the first hitting times of these processes, one can still derive

dynamics with jumps for conditional densities. This would also enable us to introduce

previsible jump times in this framework, which we leave for future research.

3.5 Simulations

We shall provide some simulations of price processes. In the figures below, different colours

represent different numbers of information sources available to the market. Hence, each

colour is associated with a different volatility process and a Brownian motion governing the

price process. One may view each colour as a different economic regime, suggesting that

each jump is a regime switch. We shall develop a more general regime-switching framework

in Chapter 4.

48



Figure 3.1: A price process with four jumps. Different colours represent different economic regimes: Blue
regime, red regime, green regime and etc. The price process is governed by a different Brownian motion and
a stochastic volatility process during each regime. Cash flow: XT = 1. Parameters: T = 5, rt = 0, κi = 1/T
and ρi = 0.5. Stopping times are uniformly distributed on [0, T ].

Figure 3.2: A price process with two jumps. There are three different regimes. Cash flow: XT = 0.
Parameters: T = 5, rt = 0, κi = 1/T and ρi = 0.5. Stopping times are uniformly distributed on [0, T ].
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Figure 3.3: A price process with five jumps. There are six different regimes. Cash flow: XT = 1.
Parameters: T = 5, rt = 0, κi = 1/T and ρi = 0.5. Stopping times are uniformly distributed on [0, T ].

Figure 3.4: A price process with four jumps. There are five different regimes. Cash flow: XT = 0.
Parameters: T = 5, rt = 0, κi = 1/T and ρi = 0.5. Stopping times are uniformly distributed on [0, T ].
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Chapter 4

Random Deactivation-Reactivation of

Information and Regime Switches

The main aim of this chapter is to develop an information-based framework to model regime

switches in a given economy. In a way, in Chapter 3, we have already presented an approach

for modelling regime switches. More precisely, one may argue that there is a bicausal re-

lationship between appearances of new information sources (or public announcements) and

passing from one economic regime to another. From the results presented in Chapter 3, this

suggests that every regime switch coincides with a jump in the price process. However, we

believe that it is still a rather restrictive viewpoint to expect a price jump at every regime

switch. Therefore, we would like to adapt a more elaborate information-based standpoint in

our approach. In general terms, we prefer to view regime switches as events that coincide

with changes in the sources of information in the market. By changes of information sources,

we do not neccesarily mean appearances of new information sources. It may as well be that

a source of market information stops flowing for a random period of time before it is active

again.

There is a vast stream of mathematical literature on regime switches. For example, the

continuous-time version of the stochastic regime-switching model of Hamilton (1989) (also

see Hamilton, 1996) implies that asset prices switch between two states where the switches

are governed by a Markov point process, and prices are continuous during each state. In a

given economic regime, the continuous changes of a price process are governed by a diffusion

process with its own volatility. Diffusion processes together with Markov point processes

can be analysed under Hidden Markov models, which have a wide spectrum of applications

in mathematics (see, for example, Elliott, Aggoun, and Moore, 1997). Cecchetti, Lang

and Mark (1990), and Driffill and Sola (1998) model dividends using two-state Markov-

switching models to represent the US stock market. Kim, Piger and Startz (2005) discuss

the estimation of Markov regime switch models where the switches are endogenous. Driffill,
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Kenc and Sola (2002) price perpetual American call options when the underlying prices are

modelled as regime-switching processes which have stochastic dividends that switch between

two economic states characterised by different volatilities. Naik (1993), Bollen, Gray and

Whalley (2000) and Chourdakis and Tzavalis (2000) are few other examples of option pricing

under regime-switching economies.

In the literature, it is common to start with a model of a price process that has the char-

acteristics to represent regime switches in an economy. This motivates us to ask whether it

is possible to reverse this approach. More precisely, we start by specifying the flow of in-

formation first, and derive price processes under regime-switching economies, where regime

switches are events that coincide with changes in the sources of information in the market.

In addition, we would still like our price processes to exhibit similar behaviour as assumed

in the current literature. For example, price processes are usually assumed to have differ-

ent volatilities during different economic regimes. In this respect, the material presented

in Chapter 3 can be interpreted with a regime switch perspective, since we have seen that

price processes are governed by different diffusion and volatility processes in between stop-

ping times. Then, each time interval between the stopping times (say, between important

newscasts) can be interpreted as a different economic state. Our aim is to further develop an

information-based framework that allows us to derive a rich class of price dynamics under

regime-switching economies, and which potentially sheds light on our understanding of how

regime switches may arise in a given economy.

This chapter is organised as follows: Section 2 provides a brief mathematical setting.

Section 3 is the pricing of financial derivatives when new sources of information appear at

stopping times. This section includes European options and few examples of credit-based

products. In Section 4, we stop the flow of information. Section 5 presents the random

deactivation-reactivation of information sources. We generalise the deactivation-reactivation

setting to the multiple market factor scenerio. In addition, as a special example, we introduce

a market filtration where each stopping time induces a switch from one information source

to another.

4.1 Mathematical Setting

The mathematical setting in this chapter is almost exactly the same as the one in Chapter

3. To save space, we do not restate everything that we have already stated, and refer the

reader to Chapter 3.2.

We let (Ω,F ,Q) be the probability space equipped with {Ft}0≤t≤∞, where Q is the

pricing measure. We assume that all filtrations are right-continuous and complete, and we

fix a finite time horizon [0, T ]. The minor difference with respect to the previous chapter

arises in our view of the cash flow XT . In this chapter, XT is not neccessarily continuous.
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If XT is discrete, we denote its probability mass function by p(xj) > 0 (i.e., Q(XT = xj))

for some index j where xj ∈ X, and its conditional mass function at time t by φit(xj):

φit(xj) = p(xj|F ξ
i

t ) = p(xj|ξit), (4.1)

given that {ξit} is a Brownian information process for i = 1, 2, . . .. There may be countably

infinite information processes. We have

φit(xj) =
exp

[
T

(T−t)(κ
ixjξ

i
t − 1

2
(κixj)

2t)
]
p(xj)∑

X exp
[

T
(T−t)(κ

ixjξit − 1
2
(κixj)2t)

]
p(xj)

, (4.2)

for i = 1, 2, . . ., and 0 ≤ t < T . By the use of Ito’s lemma, we can write

dφit(xj) = σit(xj)φ
i
t(xj) dW i

t , (4.3)

for 0 ≤ t < T . The coefficient {σit}t∈[0,T ) is defined by

σit(xj) =
Tκi(xj −X i

t)

(T − t)
, (4.4)

where X i
t = EQ[XT | ξit], and {W i

t }t∈[0,T ) which is given by

W i
t = ξit +

∫ t

0

1

T − s
ξis ds− Tκi

∫ t

0

1

T − s
X i
s ds, (4.5)

is a Q-Brownian motion.

Note that nothing much changes when XT is a discrete random variable. In fact, our

primary motivation to introduce the discrete scenerio is to be able to let XT ∈ {0, 1}, and

price risky-bonds and credit default swaps under regime-switching economies.

4.2 Pricing Derivatives Under Regime Switches

For this section, we assume there is a bicausal relationship between appearances of new

information sources and regime switches. There are infinite Ft-stopping times τi such that

τi < τi+1. The market receives additional sources of information at these stopping times,

where {Gt} as defined in (3.58) is the market filtration (though, as an ∞ union). If XT is

discrete, Gt is the market information about the discrete cash flow XT . Recall that at each

activation of a new information source, the asset price jumps and it is governed by a different

diffusion and volatility process. We assume that the time intervals between the price jumps

represent different economic states. This is a common viewpoint in the current literature.
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4.2.1 Pricing European Options

We let X ⊂ R such that XT is continuous and bounded. We are interested in pricing a

European call option where the underlying asset has the time-t price X t given by

X t = PtTEQ [XT | Gt ] = PtT

∫
X
xπt(dx), (4.6)

for 0 ≤ t < T . The conditional density is ψt(x) = q(x|Gt), and the stopping times are

independent of the information processes. We want to price a European call option with

strike K that is exercisable at a fixed time t:

C0 = P0tEQ [(X t −K)+
]
, (4.7)

for 0 ≤ t < T . Let’s now define

X
(i)
t = PtTEQ [XT

∣∣ ξ1
t , ..., ξ

i
t

]
= PtT

∫
X
xπ

(i)
t (dx), (4.8)

for 0 ≤ t < T , where the conditional density is ψ
(i)
t (x) = q(x|ξ1

t , ..., ξ
i
t) for i = 1, 2, .... We

also define a measurable process Y = {Yt}t∈[0,T ] = sup{y : τy ≤ t}, independent of the

information processes, with state-space (Y = {0, 1, 2, ...},B(Y)). The process Y counts the

number of stopping times. For the remaining part of this section, we set τ0 = 0.

Lemma 4.2.1. The value of C0 is

C0 =
∞∑
i=1

Q(Yt = i− 1)C
(i)
0 , (4.9)

where C
(i)
0 is given by

C
(i)
0 = P0tEQ

[
(X

(i)
t −K)+

]
. (4.10)

Proof. The random variable Yt is the number of jumps until t. Using law of total expectation,

EQ [(X t −K)+
]

= EQ [EQ [(X t −K)+ |Yt
]]

=
∞∑
i=1

EQ [(X t −K)+ |Yt = i− 1
]
Q(Yt = i− 1)

=
∞∑
i=1

EQ
[
(X

(i)
t −K)+

]
Q(Yt = i− 1). (4.11)

The last equality follows since {ξit} is Markovian and independent of the process Y .
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Lemma 4.2.1 states that the option price is the weighted sum of different option prices

induced by different number of information processes, where the nth weight equals the prob-

ability of n information processes driving the market at maturity.

Due to the appearance of new information sources, the underlying process {X t} has

jump-diffusion dynamics:

X t = P0TEQ [XT ] +

∫ t

0

rsXs ds+
∞∑
i=1

∫ t

0

PsT
T κ̂(i)

(T − s)

(
VarQ

[
XT

∣∣∣ ξ̂(i)
s

])
dW (i)

s Is(i)

+
∞∑
i=2

∫ t

0

PsT

(
EQ
[
XT

∣∣∣ ξ̂(i)
s

]
− EQ

[
XT

∣∣∣ ξ̂(i−1)
s

])
δτi−1

(ds), (4.12)

where Is has infinite rows. Note that if we fix rs = 0 for every s ∈ [0, T ], P0T = PsT = 1.

Then, one may regard (4.12) as a martingale representation of {X t}.
There are various ways to find option prices when the underlying asset price has jump-

diffusion dynamics. For example, Cont and Tankov (2004) discuss how an option value can

be calculated by solving a partial integro-differential equation (PIDE), when the underlying

price has jumps. However, generally speaking, it is difficult to solve PIDEs, and one may

need to use viscosity solutions introduced by Crandall and Lions (1983).

We provide an explicit price for C0 by using Lemma 4.2.1 and by introducing a sequence

of measure changes. First, we let ẑ
(i)
t = ς̂(i)

√
T/t(T − t), where ς̂(i) solves∫

X
(PtTx−K) exp

[
T

(T − t)

(
κ̂(i)xς̂(i) − 1

2
(κ̂(i)x)2t

)]
q(x) dx = 0. (4.13)

We are now in the position to provide the price of C0:

Proposition 4.2.2. The price of the European call option C0 is

C0 = P0t

∞∑
i=1

Q(Yt = i− 1)

∫
X
xq(x)N

(
−ẑ(i)

t + κ̂(i)x

√
tT

T − t

)
dx

− P0t

∞∑
i=1

Q(Yt = i− 1)K

∫
X
q(x)N

(
−ẑ(i)

t + κ̂(i)x

√
tT

T − t

)
dx, (4.14)

where N (.) is the standard normal distribution function.

Proof. The functional form for the call price C
(1)
0 is given in (2.15), where ξ1

t = ξ̂
(1)
t . The

call prices C
(i)
0 for i = 2, ... have the same functional form, only with modified parameters.

More specifically, from (3.69):

ψ
(i)
t (x) =

exp
[

T
(T−t)

(
κ̂(i)xξ̂

(i)
t − 1

2
(κ̂(i)x)2t

)]
q(x)∫

X exp
[

T
(T−t)

(
κ̂(i)xξ̂

(i)
t − 1

2
(κ̂(i)x)2t

)]
q(x) dx

, (4.15)
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for 0 ≤ t < T . Following similar steps as done in Brody et al. (2008a), we define

χ
(i)
t (x) = exp

[
T

(T − t)

(
κ̂(i)xξ̂

(i)
t −

1

2
(κ̂(i)x)2t

)]
, (4.16)

and write (4.15) as follows:

ψ
(i)
t (x) =

χ
(i)
t (x)q(x)∫

X χ
(i)
t (x)q(x) dx

, (4.17)

for 0 ≤ t < T . From (4.10), the value of the option induced by i information processes is

C
(i)
0 = P0tEQ

[(
PtT

∫
X
xψ

(i)
t (x) dx−K

)+
]
. (4.18)

Substituting (4.17) into (4.18), the value of the option is

C
(i)
0 = P0tEQ

[
1

Φ
(i)
t

(∫
X
(PtTx−K)χ

(i)
t (x)q(x) dx

)+
]
, (4.19)

where

Φ
(i)
t =

∫
X
χ

(i)
t (x)q(x) dx. (4.20)

Brody et al. (2008a) prove that 1/Φ
(1)
t for 0 ≤ t < T can be used as a Radon-Nikodym

derivative to introduce a measure B on (Ω,F , {Ft}). Similarly, we can define an infinite

sequence {1/Φ(i)
t }∞i=1 and introduce the measure B on (Ω,F , {Ft}) as{

dB
dQ

∣∣∣∣
σ(ξ̂

(i)
t )

}∞
i=1

=

{
1

Φ
(i)
t

}∞
i=1

, (4.21)

which is a sequence of Radon-Nikodym derivatives. This follows since {1/Φ(i)
t } is a Q-

martingale: EQ
[
1/Φ

(i)
t |ξ̂

(i)
s

]
= 1/Φ

(i)
s for s < t, and also Φ

(i)
0 = 1 and Φ

(i)
t > 0. In particular,

(Φ
(i)
t )−1 = exp

(
−
∫ t

0

T κ̂(i)

T − s
EQ
[
XT |ξ̂(i)

s

]
dW (i)

s −
1

2

∫ t

0

(T κ̂(i))2

(T − s)2
EQ
[
XT |ξ̂(i)

s

]
ds

)
, (4.22)

and the Novikov’s condition

EQ
[
exp

(
1

2

∫ t

0

(T κ̂(i))2

(T − s)2
EQ
[
XT |ξ̂(i)

s

]
ds

)]
<∞, (4.23)

is satisfied. The martingale property follows.

56



Under the measure B, the random variable ξ̂
(i)
t is Gaussian with mean 0 and variance

t(T − t)/T for 0 ≤ t < T . This follows directly from Brody et al. (2008a) and (3.64)-(3.66).

Then, we can define an infinite sequence of call option prices:

{C(i)
0 }∞i=1 =

{
P0tEQ

[
1

Φ
(i)
t

(∫
X
(PtTx−K)χ

(i)
t (x)q(x) dx

)+
]}∞

i=1

=

{
P0tEB

[(∫
X
(PtTx−K)χ

(i)
t (x)q(x) dx

)+
]}∞

i=1

. (4.24)

Computing the constant critical value which we denote by ς̂(i) that solves (4.13), the expec-

tation of each term in the sequence (4.24) is

C
(i)
0 = P0t

∫
X
xq(x)N

(
−ẑ(i)

t + κ̂(i)x

√
tT

T − t

)
dx

− P0tK

∫
X
q(x)N

(
−ẑ(i)

t + κ̂(i)x

√
tT

T − t

)
dx, (4.25)

where N (.) is the standard normal distribution function. From Lemma 4.2.1, the price of

the European call option is

C0 = P0t

∞∑
i=1

Q(Yt = i− 1)EB

[(∫
X
(PtTx−K)χ

(i)
t (x)q(x) dx

)+
]
, (4.26)

which completes the proof.

Proposition 4.2.2 shows that the option price can be represented as the weighted sum of

the Black-Scholes-Merton prices induced by different number of information processes. We

have not yet specified any distribution for the stopping times, Q(Yt = i− 1) is arbitrary at

this point. Any reasonable distribution can be used to generate a large class of call prices.

Corollary 4.2.3. Let τi be a jump time of an independent Poisson process with intensity λ.

Then,

C0 =
∞∑
i=1

e−λt(λt)i−1

(i− 1)!
C

(i)
0

= P0t

∞∑
i=1

e−λt(λt)i−1

(i− 1)!

∫
X
xq(x)N

(
−ẑ(i) + κ̂(i)x

√
tT

T − t

)
dx

− P0t

∞∑
i=1

e−λt(λt)i−1

(i− 1)!
K

∫
X
q(x)N

(
−ẑ(i) + κ̂(i)x

√
tT

T − t

)
dx. (4.27)

Proof. The statement follows from Proposition 4.2.2.
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The option price in (4.27) is very similar to that of Merton (1976). We note that Merton

(1976) assumes the price process to have jump-diffusion dynamics, where the jumps are that

of a Poisson process. In our framework, we derive the price dynamics and do not need to

specify the distribution of the jumps from the start.

Remark 4.2.4. The sequence of measure changes as shown in (4.21) may be viewed as a

sequence of different regimes represented in terms of the Radon-Nikodym derivatives.

4.2.2 Pricing Credit-Risky Bonds and Credit Default Swaps

We first price a credit-risky bond without coupons. Let XT ∈ {0, 1} be the payoff of a risky

bond with maturity T . More precisely, let XT = 1−Hτ∗(T ) where τ ∗ is the possible default

time of the bond. Hence, XT = 1 if T < τ ∗ and XT = 0 if τ ∗ ≤ T . Define

φt(xj) = p(xj|Gt), (4.28)

for 0 ≤ t < T and xj ∈ {0, 1}. Also let Rt be the vector of probability mass functions φ
(i)
t ,

for i = 1, 2, . . ., such that

Rt(xj) = [φ
(1)
t (xj), . . . , φ

(i)
t (xj), . . .]

>, (4.29)

where, from (4.2), we can write

φ
(i)
t (1) =

p(1) exp
[

T
(T−t)

(
κ̂(i)ξ̂

(i)
t − 1

2
(κ̂(i))2t

)]
p(0) + p(1) exp

[
T

(T−t)

(
κ̂(i)ξ̂

(i)
t − 1

2
(κ̂(i))2t

)] , (4.30)

φ
(i)
t (0) = p(0)

(
p(0) + p(1) exp

[
T

(T − t)

(
κ̂(i)ξ̂

(i)
t −

1

2
(κ̂(i))2t

)])−1

. (4.31)

Proposition 4.2.5. The price of the bond is

X t = PtTEQ [XT | Gt ] = PtTR>t (1)It, 0 ≤ t < T. (4.32)

Proof. Similar to the proof of Proposition 3.2.3, one can show that φt = R>t It. Equation

(4.32) follows since XT ∈ {0, 1}.

From (4.3) and (4.32), one can verify that the bond price {X t} follows jump-diffusion

dynamics. Note that Q(T < τ ∗|Gt) = 1 − EQ [Hτ∗(T ) | Gt ] = R>t (1)It is the conditional

survival probability of the bond. Hence, at each regime switch, the market assigns a new

survival probability to the risky bond in a discontinuous way.

We now assume that the market receives partial information about future coupons and

the principal. For illustration purposes, we consider the case of a risky bond that has two
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payments. We represent the coupon payment as c, and the principal as p. We let R1 and R2

denote the effective recovery rates on the first and second payments, respectively. Following

Macrina (2006), we denote the payments by

CT1 = cXT1 +R1(c+ p)(1−XT1), (4.33)

CT2 = (c+ p)XT1XT2 +R2(c+ p)XT1(1−XT2), (4.34)

at times T1 and T2, respectively, where we set T = T2, and T1 < T2. We assume that

XT1 ∈ {0, 1} and XT2 ∈ {0, 1} are independent random variables, and let

ξ1,i
t = κ1,iXT1t+B1,i

tT1
(4.35)

ξ2,i
t = κ2,iXT2t+B2,i

tT2
, (4.36)

where the Brownian bridges {B1,i
tT1
} and {B2,i

tT2
} are independent of each other and of XT1

and XT2 . In Macrina (2006), the market filtration is generated by {ξ1,1
t } and {ξ2,1

t }. Then,

the time-t price of a risky bond that pays CT1 and CT2 , which we denote by Vt, is given by

Vt = PtT2
(
(c+ p)EQ[XT1

∣∣ ξ1,1
t ]EQ[XT2

∣∣ ξ2,1
t ] +R2(c+ p)EQ[XT1

∣∣ ξ1,1
t ]EQ[(1−XT2)

∣∣ ξ2,1
t ]
)

+ PtT1
(
cEQ[XT1

∣∣ ξ1,1
t ] +R1(c+ p)EQ[(1−XT1)

∣∣ ξ1,1
t ]
)
, (4.37)

for t < T1. We generalise this statement to regime-switching economies. We define {Vξ
α,i

t }
as the filtration of the subalgebra Vξ

α,i

t ⊂ Ft such that

Vξ
α,i+1

t =

σ({Hταi
(s)}0≤s≤t) ταi > t,

σ({Hταi
(s)}0≤s≤t), {ξα,i+1

s }ταi ≤s≤t) ταi ≤ t,
(4.38)

for 0 ≤ t ≤ Tα, i = 1, 2, . . ., and α = 1, 2. We assume that {τ 1
i } and {τ 2

i } are independent

of each other, and independent of {ξ1,i
t } and {ξ2,i

t }. We also let

I1
t =



1−H1
τ1

(t)

H1
τ1

(t)(1−H1
τ2

(t))
...

H1
τn(t)(1−H1

τn+1
(t))

...


and I2

t =



1−H2
τ1

(t)

H2
τ1

(t)(1−H2
τ2

(t))
...

H2
τn(t)(1−H2

τn+1
(t))

...


. (4.39)

We further define the filtration {Yt}0≤t≤T by

Yt =
2∨

α=1

F ξ
α,1

t

∞∨
i=1

Vξ
α,i+1

t . (4.40)
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We assume {Yt} is the market filtration. We define the time-t price of a risky bond that

pays CT1 and CT2 by

V t = PtT1EQ[CT1|Yt] + PtT2EQ[CT2|Yt], (4.41)

for t < T1. At each regime switch, the price of the risky bond jumps:

Proposition 4.2.6. The price V t is

V t = PtT1

∞∑
i=1

(
cEQ

[
XT1|ξ̂

1,(i)
t

]
+R1(c+ p)EQ

[
(1−XT1)|ξ̂

1,(i)
t

])
I1
t (i)

+ PtT2

∞∑
j=1

∞∑
i=1

(
R2(c+ p)EQ

[
XT1|ξ̂

1,(i)
t

]
EQ
[
(1−XT2)|ξ̂

2,(j)
t

])
I1
t (i)I

2
t (j)

+ PtT2

∞∑
j=1

∞∑
i=1

(
(c+ p)EQ

[
XT1|ξ̂

1,(i)
t

]
EQ
[
XT2|ξ̂

2,(j)
t

])
I1
t (i)I

2
t (j). (4.42)

Proof. Using the independence properties imposed above, Proposition 4.2.6 follows from

Proposition 3.3.1, (4.37) and (4.41).

Information-based approach provides a tractable framework in pricing swap-like instru-

ments. As done in Macrina (2006), we consider a simple credit default swap (CDS) written

on the risky bond we discussed above. There is a series of premiums denoted by v, payed by

the protection buyer to the protection seller. For simplification, we assume that premiums

are payed at coupon dates. The buyer continues paying unless the reference bond defaults,

at which the protection seller makes a payment of h.

Given that the market filtration is generated by {ξ1,1
t } and {ξ2,1

t }, Macrina (2006) shows

that the time-t price of this CDS, which we denote by CDSt, can be written as

CDSt = [(v + h)PtT1 − hPtT2 ]EQ[XT1

∣∣ ξ1,1
t ]− hPtT1

+ (v + h)PtT2EQ[XT1

∣∣ ξ1,1
t ]EQ[XT2

∣∣ ξ2,1
t ], (4.43)

for t < T1. We aim to price this CDS under a regime-switching economy. From (4.43), we

define the CDS price as follows:

CDSt = [(v + h)PtT1 − hPtT2 ]EQ[XT1|Yt]− hPtT1
+ (v + h)PtT2EQ[XT1|Yt]EQ[XT2|Yt], (4.44)

for t < T1.

Similar to Proposition 4.2.6, the next proposition shows that the CDS price jumps at

each regime switch:
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Proposition 4.2.7. The price CDSt is

CDSt = [(v + h)PtT1 − hPtT2 ]
∞∑
i=1

EQ
[
XT1|ξ̂

1,(i)
t

]
I1
t (i)− hPtT1

+ (v + h)PtT2

∞∑
j=1

∞∑
i=1

EQ
[
XT1|ξ̂

1,(i)
t

]
EQ
[
XT2 |ξ̂

2,(j)
t

]
I1
t (i)I

2
t (j). (4.45)

Proof. Using the independence properties imposed above, Proposition 4.2.7 follows from

Proposition 3.3.1, (4.43) and (4.44).

4.3 Randomly Stopping the Information Flow

This section considers the possibility when market information suddenly ceases to flow. For

demonstration purposes, we consider a single information source. This particular approach

is later used to model deactivation-reactivation of information sources, which allows us to

generalise our view towards regime switches. We only discuss the case when XT is continuous.

It is straightforward to adapt the discrete scenerio to all the results that follow.

It is rather optimistic to assume that the market has non-interrupted access to every

source of information. A particular information source may suddenly stop flowing, not being

able to provide updates about XT for a period of time. This may be understood as a

possible information blockage in the market. In order to represent this scenerio, we wish the

information process to stop at some measurable random instance. More formally, we model

a stopped filtration. For this section, the Brownian information process {ξ1
t } is denoted by

{ξt}, τ1 is τ , and ψ1
t is ψt.

We define {Fηt } as the filtration of the subalgebra Fηt ⊂ Ft such that

Fηt = σ({Hτ (s)}0≤s≤t, {ηs}0≤s≤t), (4.46)

for 0 ≤ t ≤ T , where the information process {ηt}0≤t≤T is defined by

ηt = ξt∧τ , (4.47)

given that τ is a Fηt -stopping time independent of {ξt}, and where t ∧ τ = min(t, τ).

We define a Q(X)-valued process {Υt}t∈[0,T ] by

Υt(A) = Q(XT ∈ A|Fηt ), (4.48)

for A ∈ B(X). The process {Υt} may stop. This means that the market has the possibility

of not being able to update the price of XT .
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Proposition 4.3.1. The random probability measure Υt can be represented as

Υt(A) = πt(A) (1−Hτ (t)) +

∫ t

0

πu(A) dHτ (u) = πt∧τ , (4.49)

and the asset price X t = PtTEQ[XT | Fηt ] is

X t = PtT

∫X x exp
[

T
(T−t)(κxξt −

1
2
(κx)2t)

]
q(x) dx∫

X exp
[

T
(T−t)(κxξt −

1
2
(κx)2t)

]
q(x) dx

 (1−Hτ (t))

+ PtT

∫ t

0

∫X x exp
[

T
(T−u)

(κxξu − 1
2
(κx)2u)

]
q(x) dx∫

X exp
[

T
(T−u)

(κxξu − 1
2
(κx)2u)

]
q(x) dx

 dHτ (u). (4.50)

Proof. We can project Υt(A) onto the two orthogonal subspaces {t < τ} and {τ ≤ t}. Then,

denoting ντ (.|Fηt ) as the conditional distribution of τ with respect to Fηt ,

Υt(A) =

∫ M

t

Q(XT ∈ A|σ({ξs}0≤s≤t)
∨

σ({Hτ (s)}0≤s≤t, τ = u)ντ (du|Fηt )

+

∫ t

0

Q(XT ∈ A|σ({ξs}0≤s≤u)
∨

σ({Hτ (s)}0≤s≤t, τ = u)ντ (du|Fηt ). (4.51)

It follows from the Markovian property of {ξt} and the independence of τ that

Υt(A) = Q(XT ∈ A|ξt)
(∫ M

t

ντ (du|Fηt )

)
+

∫ t

0

Q(XT ∈ A|ξu)ντ (du|Fηt )

= πt(A)

(∫ M

t

ντ (du|Fηt )

)
+

∫ t

0

πu(A)ντ (du|Fηt ). (4.52)

Since τ is an Fηt -stopping time, we have∫ t

0

πu(A)ντ (du|Fηt ) =

∫ t

0

πu(A)δτ (du) =

∫ t

0

πu(A) dHτ (u). (4.53)

The first integral in (4.52) equals 1−Hτ (t). Since {ξt} is strong Markov, for τ < T ,

Q(XT ∈ A|Fητ ) = Q(XT ∈ A|ξτ ) = πτ (A). (4.54)

Hence, (4.54) agrees with (4.52). Equation (4.49) follows. Having X t = PtTEQ[XT | Fηt ],

X t = PtT

∫
X
xΥt(dx), (4.55)

and (4.50) follows from the Bayes formula, Fubini’s theorem and the independence of τ .
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Note that the integral that appears in (4.53) can also be written as∫ t

0

πu(A) dHτ (u) = Q(XT ∈ A|ξτ )Hτ (t) = πτ (A)Hτ (t). (4.56)

Proposition 4.3.2. The dynamics of {ψt∧τ} are governed by the following SDE:

dψt∧τ (x) = (1−Hτ (t))σt(x)ψt(x) dWt. (4.57)

Proof. The statement follows from (4.49).

Proposition 4.3.3. The dynamics of {ηt} are governed by the following SDE:

dηt = (1−Hτ (t))

((
TκXt − ξt
T − t

)
dt+ dWt

)
, (4.58)

for 0 ≤ t < T , where Xt = EQ[XT | ξt].

Proof. Since τ is an Fηt -stopping time, the following representation of ηt can be written:

ηt = ξt (1−Hτ (t)) + ξτHτ (t), (4.59)

for 0 ≤ t ≤ T . Also, since dξτ = 0, it follows that

dηt = dξt (1−Hτ (t))− ξtδτ (dt) + ξτδτ (dt). (4.60)

Note that the term (ξτ − ξt)δτ (dt) = 0. Then the statement follows from (3.19).

4.4 Deactivation-Reactivation of Information Sources

We combine the models for appearances of new information sources and information block-

ages. This allows us to view regime switches not only as events coinciding with activation of

new information sources, but also as events coinciding with stopped information. In other

words, the sources of information may be switched on or switched off.

4.4.1 One Source of Information

We start with the case where there is a single information process. The source of information

may be deactivated for a random period of time, and may suddenly reactivate at another

random time. That is, the information flow may dry up for a period of time, and then may

start providing updates again. For parsimony, we fix n ∈ N+ and consider an n-sequence of

Ft-stopping times {τi}ni=1.
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We shall denote the set of odd integers by O and define the filtration {Rt} by

Rt = Fηt
n∨

i=1,i∈O

σ({Hτi+1
(s)}0≤s≤t, {Hτi+2

(s)}0≤s≤t) τi+1 > t,

σ({Hτi+1
(s)}0≤s≤t, {Hτi+2

(s)}0≤s≤t, {ξs∧τi+2
}τi+1≤s≤t) τi+1 ≤ t,

(4.61)

for 0 ≤ t ≤ T , where t < τi+1 if n < i+ 1. We assume that {Rt} is the market filtration.

Note that if i is an odd integer, then τi stops the information process, and if i is an even

integer, then τi acts as a start-up time. Keeping notations the same, we define a Q(X)-valued

process {πt}t∈[0,T ] by

πt(A) = Q(XT ∈ A|Rt), (4.62)

for A ∈ B(X). We denote the associated conditional density by

ψt(x) dx = πt(dx), (4.63)

for 0 ≤ t < T . Finally, we let E be the set of even integers.

Proposition 4.4.1. The random probability measure πt can be represented as

πt(A) =
n+1∑

i=1,i∈O

πt(A)It(i) +
n+1∑

i=2,i∈E

πτi−1
(A)It(i). (4.64)

The dynamics of {ψt} are governed by the following SDE:

dψt(x) =
n+1∑

i=1,i∈O

σt(x)ψt(x) dWtIt(i) +
n∑

i=2,i∈E

(
ψt(x)− ψτi−1

(x)
)
δτi(dt). (4.65)

Proof. The proof of the first part is similar to that of Proposition 3.2.3 and Proposition

4.3.1. In particular, using the law of total probability,

Q(XT ∈ A|Rt) =
n+1∑

i=1,i∈O

Q(XT ∈ A|Rt, τi−1 ≤ t < τi)Q(τi−1 ≤ t < τi|Rt)

n+1∑
i=2,i∈E

Q(XT ∈ A|Rt, τi−1 ≤ t < τi)Q(τi−1 ≤ t < τi|Rt), (4.66)

where we set τ0 = 0 and t < τn+1. Equation (4.64) follows from the strong Markov property

of {ξt}, the indepedence of τ and since Q(τi−1 ≤ t < τi|Rt) is a Dirac measure. The SDE of

{ψt} follows from (4.64) and Lemma 3.2.4.

The conditional density process {ψt} stops for random periods of time and jumps when
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the source of information is reactivated. We define the price by

X t = PtTEQ[XT |Rt ], 0 ≤ t < T. (4.67)

Proposition 4.4.2. The price {X t} is governed by the following SDE:

dX t = rtX t dt+ PtT

n+1∑
i=1,i∈O

Tκ

(T − t)
(
VarQ [XT | ξt ]

)
dWtIt(i)

+ PtT

n∑
i=2,i∈E

(
EQ [XT | ξt ]− EQ [XT

∣∣ ξτi−1

])
δτi(dt), (4.68)

for 0 ≤ t < T , where VarQ[XT | ξt] is a Q-supermartingale.

Proof. The proof is very similar to that of Proposition 3.2.6, and follows from (4.65).

If i is an odd integer, then from τi until τi+1, the price change is zero. The source of

information is active again at τi+1 (until τi+2), and the price is governed by a Brownian

motion. Such price behaviour may arise in illiquid markets. From (4.68) we can see that

the conditional expectation of the cash flow sticks to a value when the information source is

deactive, and it jumps when the information source is activated.

This scenerio inlcudes the possibility that the market never realizes the true value of XT

at time T , if it had deactivated at some time before T . To overcome this, we may first

assume that τi ∈ (0, T ) for i = 1, . . . , n, so that all stopping times are realized during the

lifespan of the asset price. Secondly, if we choose n to be an even number, then the market

realizes the true value of the cash flow XT at time T , since t < τi+1 if n < i+ 1.

At the end of this chapter, we provide two simulations of such price processes. Figure

4.1 is a simulation when the information source is deactivated-reactivated two times. We

set XT = 1 and T = 5, rt = 0, κi = 1/T and ρi = 0.5. Figure 4.2 is a simulation when

the source of information is deactivated-reactivated three times. We set XT = 0 and T = 5,

rt = 0, κi = 1/T and ρi = 0.5. Stopping times are uniformly distributed on [0, T ].

4.4.2 Multiple Market Factor Generalisation

We generalise the setting to the case where XT is represented as a function of independent

market factors. We assume that there is a single information process for each market factor,

which can switch on or off. As before, we represent the cash flow XT as a function of a

set of independent market factors Mα
T , α = 1, . . . ,m, with state-space (X,B(X)) and with

continuous densities qα(x) > 0. Choosing a function g ∈ Bb(Xm) such that g : Xm → X,

XT = g(M1
T ,M

2
T , . . . ,M

m
T ). (4.69)
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We associate a sequence of Ft-stopping times to each Mα
T denoted by {ταi }ni=1 for α =

1, . . . ,m. For fixed α, we let τα1 < τα2 < ... < ταn . For each i and j, Q(ταi < τα+1
j ) 6= 1.

We associate a Brownian information process {ξαt }t∈[0,T ] with each Mα
T :

ξαt = καMα
T t+Bα

tT . (4.70)

We assume that {Bα
tT}’s are mutually independent from each other across α (i.e., {Bα

tT} and

{Bβ
tT} are independent) and independent of each Mα

T . We further assume that each sequence

of stopping times is mutually independent from each other and mutually independent of each

information process.

We define the following σ-algebra:

Fη
α

t = σ({Hα
τ1

(s)}0≤s≤t, {ξαs∧τα1 }0≤s≤t), for 0 ≤ t ≤ T. (4.71)

We introduce a sequence of σ-algebras {Rα
t }mα=1 for 0 ≤ t ≤ T , where

Rα
t = Fη

α

t

n∨
i=1,i∈O

σ({Hα
τi+1

(s)}0≤s≤t, {Hα
τi+2

(s)}0≤s≤t) ταi+1 > t,

σ({Hα
τi+1

(s)}0≤s≤t, {Hα
τi+2

(s)}0≤s≤t, {ξαs∧ταi+2
}ταi+1≤s≤t) ταi+1 ≤ t,

(4.72)

Note that each sequence {ταi }ni=1 is a sequence of Rα
t -stopping times. We assume t < ταi+1 if

n < i+ 1. Also, we define the filtration {Rt} by

Rt =
m∨
α=1

Rα
t , (4.73)

and assume that {Rt} is the market filtration. The σ-algebra (4.73) is all the information

that the market receives about XT , where an information source may be active or inactive.

If we associate 1 to active information and 0 to inactive information, then we have 2m

different m-vectors of information processes, each representing a different economic state.

For example, if m = 5, and [1 0 0 1 0] represents a state in which only {ξ1
t } and {ξ4

t } are

active, then there are 31 additional vectors such as [1 0 1 0 1], [0 1 0 0 1], and etc., associated

with different numbers and allocations of active and inactive information processes.

We define a Q(X)-valued process {πt}t∈[0,T ] by

πt(A) = Q([M1
T ,M

2
T , . . . ,M

m
T ] ∈ A|Rt), (4.74)

for fixed A ∈ B(Xm).

Note that due to the independence properties we imposed above, we have

πt(A) = Q(M1
T ∈ A1|R1

t )×Q(M2
T ∈ A2|R2

t )× · · · ×Q(Mm
T ∈ Am|Rm

t ), (4.75)
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for A = [A1, A2, . . . , Am] ∈ B(Xm). We denote the conditional density by

ψt(x) dx1 · · · dxm = πt(dx), (4.76)

for 0 ≤ t < T , and x = [x1, . . . , xm] ∈ Xm. We also define the process {παt }t∈[0,T ] by

παt (Aα) = Q(Mα
T ∈ Aα|ξαt ), (4.77)

for α = 1, . . . ,m. We denote the associated conditonal density by

ψαt (xα) dxα = παt (dxα), (4.78)

for 0 ≤ t < T and α = 1, . . . ,m and xα ∈ X, where ψαt (xα) is as given in (2.20).

We assume that n ∈ E is an even number (it is straightforward to modify the following

results if n ∈ O is an odd number). Then, we define the following vectors:

Q1
t =



π1
t

π1
τ11

π1
t
...

π1
τ1n−1

π1
t


, Q2

t =



π2
t

π2
τ21

π2
t
...

π2
τ2n−1

π2
t



>

, . . . , Qm
t =



πmt

πmτm1
πmt
...

πmτmn−1

πmt



>

, (4.79)

for n ≥ 2. Note that Qα
t is the vector of conditional distributions associated with Mα

T . We

also define the following vectors of Heaviside processes:

I1
t =



1−H1
τ1

(t)

H1
τ1

(t)(1−H1
τ2

(t))
...

H1
τn−1

(t)(1−H1
τn(t))

H1
τn(t)


, and {Iαt } =





1−Hα
τ1

(t)

Hα
τ1

(t)(1−Hα
τ2

(t))
...

Hα
τn−1

(t)(1−Hα
τn(t))

Hα
τn(t)



>

m

α=2

.

Note that each Iαt is a vector associated with Mα
T for α = 1, . . . ,m.

Proposition 4.4.3. The random probability measure πt can be represented as

πt(A) =

∥∥∥∥∥
(

m⊗
i=1

Qi
t(Ai)

)
◦

(
m⊗
i=1

Iit

)∥∥∥∥∥ . (4.80)

Proof. The proof is very similar to that of Proposition 3.3.1. All the stopping times ταi ’s are

Rt-stopping times. Hence, Q(ταi ≤ t < ταi+1|Rt)’s are Dirac measures for i = 1, . . . , n and
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α = 1, . . . ,m. Note that {ξαt }’s are independent from each other across α and are strong

Markov. The stopping times are independent from each Mα
T and each information process

{ξαt }. Also, each sequence of stopping times is independent from each other as well. The

statement follows from the law of total probability.

We are now in the position to provide a representation of the price of the asset with cash

flow XT = g(M1
T ,M

2
T , . . . ,M

m
T ). The time-t price, which we denote by X t, is

X t = PtTEQ[XT |Rt ], 0 ≤ t < T. (4.81)

Proposition 4.4.4. The price X t is

X t = PtT

∫
Xm

g(x1, . . . , xm)

∥∥∥∥∥
(

m⊗
i=1

Qi
t(dxi)

)
◦

(
m⊗
i=1

Iit

)∥∥∥∥∥ . (4.82)

Proof. The statement follows from (3.13), (4.80) and (4.81).

If inactive information is activated, then there is a jump in the price dynamics. If active

information is deactivated, then there is no jump. If all sources of information are deactive,

then the conditional expectation of XT sticks to a value. Similar to Chapter 3, one can also

employ
√
ψ and each

√
ψα to bring forth a geometrical perspective.

As a simplification, similar to what is done in Chapter 3.3.1, let’s assume there is only one

sequence of stopping times associated to every market factor. Then we have the following

representation for the SDE of {X t}:

Proposition 4.4.5. Let {ταi }ni=1 = {τi}ni=1 for α = 1, . . . ,m, so that {Hα
τi
}mα=1 = Hτi for

i = 1, . . . , n. Then,

dX t = rtX t dt+ PtT

m∑
α=1

n+1∑
i=1,i∈O

Tκα

T − t
CovQ

[
XT ,M

α
T

∣∣ ξ1
t , . . . , ξ

m
t

]
dWα

t It(i)

+ PtT

n∑
i=2,i∈E

(
EQ [XT

∣∣ ξ1
t , . . . , ξ

m
t

]
− EQ

[
XT

∣∣∣ ξ1
τi−1

, . . . , ξmτi−1

])
δτi(dt). (4.83)

for 0 ≤ t < T .

Proof. The statement follows from (2.22), (4.81) and Proposition 4.4.4.

This framework is an alternative way of viewing regime switches. One may interpret

that any given switch in an information source coincides with a switch from one regime to

another. Each regime switch does not neccessarily coincide with a price jump, but rather

with a change in the information source provided to the market.
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4.4.3 Switching From One Source of Information to Another

We make a slight modification, and introduce a setting where each stopping time induces a

switch from one source of information to another. More precisely, we develop this framework

by initiating and stopping σ-algebras at stopping times such that each stopping time τi

stops an information flow and simultaneously acts as a start-up time of another source of

information.

Suppose there are n ∈ N+ Ft-stopping times {τi}ni=1 independent of m ∈ N+ information

processes, where m ≤ n + 1. We denote the modular of two integers i and m by mod(i,m)

(i.e., if m = 5, mod(1, 5) = 1, mod(5, 5) = 0, mod(7, 5) = 2, etc.).

We denote the (mod(i,m)+1)th Brownian information process forXT by {ξmod(i,m)+1
t }t∈[0,T ],

where

ξ
mod(i,m)+1
t = κmod(i,m)+1XT t+B

mod(i,m)+1
tT . (4.84)

That is, if m = 5, then for example {ξmod(1,5)+1
t } = {ξ2

t } as defined in (3.10) and so on. We

define the filtration {Zt}0≤t≤T by

Zt = Fη
1

t

n∨
i=1

σ({Hτi(s)}0≤s≤t, {Hτi+1
(s)}0≤s≤t) τi > t,

σ({Hτi(s)}0≤s≤t, {Hτi+1
(s)}0≤s≤t, {ξmod(i,m)+1

s∧τi+1
}τi≤s≤t) τi ≤ t,

(4.85)

where t < τn+1. We assume that {Zt} is the market filtration. From (4.85) we can see

that every time an information source stops flowing, another source of information becomes

active. This scenerio can as well be interpreted as a sudden switch from one regime to

another, while different sources of information are active during different economic states.

Keeping notations the same to that of previous sections, we define a Q(X)-valued process

{πt}t∈[0,T ] by

πt(A) = Q(XT ∈ A|Zt), (4.86)

for A ∈ B(X). We also define the following matrix:

Nt =



1−Hτ1(t) 0 . . . 0

0 Hτ1(t)(1−Hτ2(t)) 0 . . .
...

...
...

...

0 . . . 0 Hτm−1(t)(1−Hτm(t))

Hτm(t)(1−Hτm+1(t)) 0 . . . 0

0 Hτm+1(t)(1−Hτm+2(t)) 0 . . .
...

...
...

...

Hτn(t) Hτn(t) Hτn(t) Hτn(t)


.

We let N(i, j) denote the ith row and jth column element of the matrix N. In addition,
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we let τk = 0 for k ≤ 0, which is a slight abuse of notation, but simplifies the following

definitions:

π
(i,1)
t (A) = Q(XT ∈ A|ξ1

t , ξ
2
τi−(m−1)

, ξ3
τi−(m−2)

, . . . , ξmτi−1
), (4.87)

for i = 1, 1 +m, 1 + 2m, .. ≤ n+ 1. Also,

π
(i,j)
t (A) = Q(XT ∈ A|ξ1

τi−(j−1)
, . . . , ξj−1

τi−1
, ξjt , ξ

j+1
τi−(m+j−(j+1))

, . . . , ξmτi−j), (4.88)

for i = j, j +m, j + 2m, ... ≤ n+ 1 and 1 < j < m. Finally,

π
(i,m)
t (A) = Q(XT ∈ A|ξ1

τi−(m−1)
, ξ2
τi−(m−2)

, . . . , ξm−1
τi−1

, ξmt ), (4.89)

for i = m, 2m, 3m, ... ≤ n+1. Note that (4.87)-(4.89) make sense due to the strong Markovian

property of the information processes. We denote the conditional density of πt by

ψt(x) dx = πt(dx), (4.90)

for 0 ≤ t < T . In addition, for i = 1, . . . , n+ 1, and 1 ≤ j ≤ m ≤ n+ 1, we let

ψ
(i,j)
t (x) dx = π

(i,j)
t (dx), (4.91)

for 0 ≤ t < T , and for a fixed m and n.

Denoting χ{.} as the Kronecker delta, for k ∈ N+ ∪ {0}, we also define

Mt(A) =



π
(1,1)
t (A) 0 . . . 0

0 π
(2,2)
t (A) 0 . . .

...
...

...
...

0 . . . 0 π
(m,m)
t (A)

π
(m+1,1)
t (A) 0 . . . 0

0 π
(m+2,2)
t (A) 0 . . .

...
...

...
...

π
(n+1,1)
t (A)χ{km+1=n+1} . . . 0 π

(n+1,m)
t (A)χ{(k+1)m=n+1}


. (4.92)

Proposition 4.4.6. The random probability measure πt can be represented as

πt(A) = ||M>
t (A)Nt||, for k ∈ N+ ∪ {0}. (4.93)

Proof. The proof is similar to that of Proposition 3.2.3. Each stopping time τi is a Zt-
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stopping time. By the use of law of total probability, we can write

πt(A) =
n∑
i=0

Q(XT ∈ A|Zt, τi ≤ t < τi+1)Q(τi ≤ t < τi+1|Zt), (4.94)

where we set τ0 = 0 and t < τn+1. Each Q(τi ≤ t < τi+1|Zt) is a Dirac measure. Then, from

the strong Markov property of {ξit}, and the independence of the stopping times,

πt(A) = π
(1,1)
t (A)Nt(1, 1) + π

(2,2)
t (A)Nt(2, 2) + · · ·+ π

(m,m)
t (A)Nt(m,m)

+ π
(m+1,1)
t (A)Nt(m+ 1, 1) + · · ·+ π

(n+1,1)
t (A)Nt(n+ 1, 1)χ{km+1=n+1} + · · ·

· · ·+ π
(n+1,m)
t (A)Nt(n+ 1,m)χ{(k+1)m=n+1}. (4.95)

The Kronecker delta, where k ∈ N+∪{0} must be satisfied, ensures that the correct element

of the last row of Mt is non-zero when τn ≤ t for the fixed m and n. Since both Mt and Nt

are (n+ 1)×m matrices, (4.93) follows by taking the transpose of Mt.

We call the m×m matrix M>
t Nt the information-switching matrix. At every information

switch, a jump in {ψt} occurs. From then on, since the information processes are strong

Markov, {ψt} is driven by the last observations of the switched off information processes and

the new observations of the single switched on information process. Also, since the price is

X t = PtTEQ[XT | Zt ] = PtT

∫
X
xπt(dx), 0 ≤ t < T, (4.96)

every time a switch between two different information sources occurs, the process {X t}
jumps. This example provides an alternative way of viewing regime switches as events that

coincide with price jumps.

For a demonstration, we shall give a simple example of the information switching detailed

above:

Example 4.4.7. Let n = 2, and m = 2. Hence, there are two switches between two infor-

mation processes. Then, the conditional distribution is given by:

πt(dx) = π
(1,1)
t (dx)(1−Hτ1(t)) + π

(2,2)
t (dx)Hτ1(t)(1−Hτ2(t)) + π

(3,1)
t (dx)Hτ2(t)

= Q(XT ∈ dx|ξ1
t )(1−Hτ1(t)) + Q(XT ∈ dx|ξ1

τ1
, ξ2
t )Hτ1(t)(1−Hτ2(t))

+ Q(XT ∈ dx|ξ1
t , ξ

2
τ2

)Hτ2(t). (4.97)

From (4.96) and (4.97), we can see that the price process {Xt} is governed by {ξ1
t } for t < τ1,

is governed by ξ1
τ1

and {ξ2
t } for τ1 ≤ t < τ2 and is governed by {ξ1

t } and ξ2
τ2

for τ2 ≤ t. That

is, at each regime switch, one of the information sources is switched off and the other is

switched on.
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Figure 4.1: A price process. The single source of information is deactivated-reactivated two times. There
are two regimes when no new information enters the market and when the price “sticks” to a value with zero
interest rates. Cash flow: XT = 1. Parameters: T = 5, rt = 0, κi = 1/T and ρi = 0.5. Stopping times are
uniformly distributed on [0, T ].

Figure 4.2: A price process. The single source of information is deactivated-reactivated three times. There
are three regimes when no new information enters the market. Cash flow: XT = 0. Parameters: T = 5,
rt = 0, κi = 1/T and ρi = 0.5. Stopping times are uniformly distributed on [0, T ].
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Chapter 5

Information-Theoretic Dynamics of

Information Asymmetry

We construct what we call information asymmetry processes with jumps by using information-

theoretic measures and enlargements of filtrations.

One main aim of constructing the so-called asymmetry processes is to address the ques-

tion: How can one dynamically quantify the impact of changes in the source of information

about a cash flow XT ? Our motivation stems from the aim of measuring the informational

advantage of a small trader who is more informed than the market. A similar approach is

considered in Brody et al. (2009), where there is an informed trader who is more susceptible

to information than the market, and who is provided with an extra source of information

from time t = 0. Brody et al. (2009) provide examples of how informed traders may be

able to exploit statistical arbitrage opportunities by using their additional information, and

demonstrate how this extra information transforms into profit. The value of excess informa-

tion is measured by the difference of the mutual information between the market and the

trader, which is shown to be nonnegative.

Information asymmetry in financial markets has attracted considerable attention in recent

years, and the literature can be traced back to Kyle (1985), Duffie and Huang (1986), and

Back (1992). Models generally consist of two agents making decisions based on different

information. One of the agents behaves purely based on the knowledge of the evolution

of the market, whereas the other agent (insider) has additional information. The insiders

are usually assumed to be small, and cannot affect market price dynamics. One stream

of models relies heavily on the works of Jeulin (1980), Jacod (1980) and Yor (1980) on

enlargements of filtrations. These works laid the mathematical foundations later to be used

in modelling information asymmetry between agents. Amongst many examples, Imkeller

(1996), Amendinger et al. (1998), Grorud and Pontier (1998), and Biagini and Oksendal

(2005) are few of the important papers to mention. In most of these works, the expected
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increase in the utility gained from the insider’s additional information is analyzed.

Assume all filtrations under consideration are right-continuous and complete. Formally,

an enlargement of {Yt} in (Ω,F , {Ft},Q) is a filtration {Mt}, which satisfies: (i) Yt ⊂Mt for

all t ∈ R+, and (ii) the Ft-stopping time τ <∞ is anMt-stopping time. In the information

asymmetry literature, a considerable attention is directed towards what are called initial

enlargements of filtrations and progressive enlargements of filtrations. An initial enlargement

of a filtration {Yt} is a filtration {Jt} given by Jt = σ(τ)
∨
Yt. A progressive enlargement

of {Yt} is the minimal (smallest) filtration {J ∗t }, which satisfies: (i) Yt ⊂ J ∗t for all t ∈ R+,

and (ii) τ <∞ is a J ∗t -stopping time. More explicitly, J ∗t = σ(τ ∧ t)
∨
Yt. In the literature,

it is usually the case that the filtrations of informed traders are assumed to be either initial

or progressive enlargements of the market filtration.

We shall construct information asymmetry processes using enlargements of filtrations.

Note that {Gt} as shown in (3.58) is an enlargement of {F ξ
1

t }. However, {Gt} is neither an

initial nor a progressive enlargement of {F ξ
1

t }. We want the flexibility of being able to handle

an informed trader who may have access to more information additional to the stopping time

τ , and may start receiving extra information about new economic variables. For example,

if τ is the default time of a bond (which is common in the current literature), an informed

trader may start observing previously non-observed data starting from τ , especially if this

default represents a serious economic shock or possibly an early warning signal for a financial

turbulance. To formalize this mathematically, we introduce a new type of an enlargement of

filtrations that we call an n-order piecewise enlargement. We choose this name due to the

nature of the enlarged filtrations that expand at n ∈ N+ stopping times:

Definition 5.0.8. Let {τi}ni=1 for n ∈ N+ be an increasing sequence of Ft-stopping times

in (Ω,F , {Ft},Q) such that τn < ∞, and let {X i
t}t∈R+ be an Ft-adapted càdlàg process for

i = 1, . . . , n. Then an n-order piecewise enlargement of a filtration {Yt} in (Ω,F , {Ft},Q)

is a filtration {Gt}, which satisfies: (i) Yt ⊂ Gt for all t ∈ R+, (ii) {τi}ni=1 is an increasing

sequence of Gt-stopping times, and (iii) σ({X i
u}τi≤u≤t) ⊂ Gt if τi ≤ t for i = 1, . . . , n.

One can then consider what one may call an initial n-order piecewise enlargement {GIt }
of {Yt} given by GIt =

∨n
i=1 σ(τi)

∨
Yt
∨n
i=1 σ({X i

u}τi≤u≤t) if τi ≤ t for all i = 1, . . . , n,

or a progressive n-order piecewise enlargement {GPt } of {Yt} given by GPt =
∨n
i=1 σ(τi ∧

t)
∨
Yt
∨n
i=1 σ({X i

u}τi≤u≤t) if τi ≤ t for all i = 1, . . . , n.

In our framework, we assume the existence of a restricted number of small traders whose

filtrations are n-order piecewise enlargements of the market filtration. Introducing n-order

piecewise enlargements allows us to represent informed traders who may have access to

more information additional to the stopping time. Note that {Gt} as shown in (3.58) is a

(progressive) n-order piecewise enlargement of {F ξ
1

t }. Since we have this explicit example,

we focus on a scenerio where informed trader’s filtration is given by {Gt} and the market
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filtration is {F ξ
1

t }. We assume that the actions of informed traders do not affect price

dynamics, and XT is a continuous random variable (until we discuss the Shannon entropy).

Our work may be viewed as a generalisation of the framework presented in Brody et

al. (2009), with the introduction of the n-order piecewise enlargements of filtrations. Also,

instead of using mutual information, we refer to a broad class of information-theoretic mea-

sures, namely f -divergences, to quantify the impact of changes in the source of information.

In particular, using f -divergences and piecewise enlargements of filtrations, we generate what

we call the Kullback-Leibler (KL) and the Squared-Hellinger (SH) asymmetry processes. The

KL divergence is commonly used to measure the information gain from passing from a prior

distribution to a posterior distribution. The SH divergence measures the distance between

two distributions, and it brings a geometrical perspective that motivates our next chapter.

We also build a competitive setting involving two informed traders whose filtrations are

different piecewise enlargements of the same market filtration. We focus on a scenerio where

the informed traders receive additional information at different stopping times. This allows

us to dynamically quantify the competitive edge between two informed traders who have

different accesibility to additional information. The informed traders can not see each others’

actions, and at a given time, the trader who has access to more sources of information has an

informational advantage over the other. Another motivation in constructing the asymmetry

processes is to model financial mispricing as a type of information asymmetry. We assume

that the market receives incorrect information about a future cash flow as opposed to correct

information. The mispricing process represents the dynamic evolution of the information

asymmetry between the market and the fundamentals. The mispricing process jumps to

zero if the market receives the correct information flow, which represents a sudden market

correction.

This chapter is organised as follows: Section 1 is a brief preliminary on f -divergences.

Section 2 introduces the asymmetry processes. Section 3 is the competition between two

informed traders. Section 4 models mispricing. Section 5 quantifies the level of uncertainty

of an informed trader using the Shannon entropy. Section 6 is the Appendix.

5.1 Preliminaries

5.1.1 Information-Theoretic f-Divergences

For our purposes, we shall use the class of so-called f -divergences, introduced by Ali and

Silvey (1966), Csiszár (1967). We let ∆f [ . ↪→ . ] denote an f -divergence. In a measure-

theoretic sense, the f -divergence between equivalent probability measures Q and P is defined

as follows:

∆f [Q ↪→ P] =

∫
Ω

f

(
dP(ω)

dQ(ω)

)
dQ(ω), (5.1)
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for ω ∈ Ω, where f is a convex function which satisfies f(1) = 0, and dP/ dQ is the Radon-

Nikodym derivative of P over Q. Also, ∆f [P ↪→ Q] is defined similarly only with P and Q
interchanged in (5.1). Alternatively, an f -divergence can be defined in terms of probability

densities (given that they exist):

∆f [q ↪→ p] =

∫
X
f

(
p(x)

q(x)

)
q(x) dx, (5.2)

where q(x) > 0 and p(x) > 0 for x ∈ X. An f -divergence ∆f [Q ↪→ P] (or ∆f [q ↪→ p])

measures the discrepancy from Q to P (or q to p), which is not exactly a distance, since

it may not satisfy properties such as symmetry and triangle inequality. In fact, we use the

symbol ↪→ to emphasize the direction from Q to P, since many examples exist such that

∆f [Q ↪→ P] 6= ∆f [P ↪→ Q]. We denote an f -divergence that satisfies the symmetry property

∆f [Q ↪→ P] = ∆f [P ↪→ Q] (or ∆f [q ↪→ p] = ∆f [p ↪→ q]) by ∆f [Q||P] = ∆f [P||Q] (or

∆f [q||p] = ∆f [p||q]). We refer to Csiszár (1967), Chentsov (1972), and Amari and Cichocki

(2010) for some interesting properties of f -divergences.

The Kullback-Leibler (KL) divergence forms an important subclass of f -divergences, and

is widely used in applied mathematics and engineering to measure the information gain from

passing from a prior distribution to a posterior distribution. The KL divergence is

∆KL(Q ↪→ P) = −
∫

Ω

log

(
dP(ω)

dQ(ω)

)
dQ(ω) =

∫
Ω

log

(
dQ(ω)

dP(ω)

)
dQ(ω). (5.3)

The KL divergence is not a distance metric defined on the space of probability distributions,

since ∆KL(P ↪→ Q) 6= ∆KL(Q ↪→ P), and it does not satisfy the triangle inequality.

The Squared-Hellinger (SH) divergence forms another important subclass of f -divergences,

which is used in problems that involve measuring the distance between two different dis-

tributions. Unlike the KL divergence, the SH divergence is symmetric. Thus, we write

∆SH(P||Q) = ∆SH(Q||P). The SH divergence can be defined as

∆SH(Q||P) =
1

2

∫
Ω

(√
dP(ω)

dQ(ω)
− 1

)2

dQ(ω) =
1

2

∫
Ω

(√
dQ(ω)

dP(ω)
− 1

)2

dP(ω). (5.4)

Also, if L denotes the Lebesgue measure, and Q and P are equivalent to L, then we can

write the following:

∆SH(Q||P) =
1

2

∫
Ω

(√
dQ(ω)

dL(ω)
−

√
dP(ω)

dL(ω)

)2

dL(ω). (5.5)

As we shall see later in Chapter 6, by the use of (5.5), the SH divergence brings forth a

geometrical perspective.
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5.2 Information Asymmetry, Piecewise Enlargements

of Filtrations, f-Divergences

We would like the f -divergence to be symmetric in order to eliminate any bias towards a

probability measure. In order to ensure this, we can do the following:

∆f (Q||P) =
1

2
[∆f (Q ↪→ P) + ∆f (P ↪→ Q)] = ∆f (P||Q). (5.6)

We shall define a Radon-Nikodym derivative to introduce what we call an f -asymmetry

with respect to an n-order piecewise enlargement. For fixed A ∈ B(X), let Y ⊂ G be two

σ-algebras in (Ω,F ,Q), where {Gt} is an n-order piecewise enlargement of {Yt}. Define

Yt(XT ∈ A) = Q(XT ∈ A|Yt) and Gt(XT ∈ A) = Q(XT ∈ A|Gt), (5.7)

such that EYt [XT ] = EQ[XT |Yt] and EGt [XT ] = EQ[XT |Gt]. We shall denote the conditional

measures in (5.7) as Yt and Gt, respectively. Let Yt be equivalent to Gt and

Zt =
dYt

dGt

, (5.8)

be a Radon-Nikodym derivative such that

EGt [XTZt] =

∫
Ω

XT (ω)
dYt(ω)

dGt(ω)
dGt(ω) =

∫
Ω

XT (ω) dYt(ω) = EYt [XT ]. (5.9)

We define the time-t f -asymmetry ∆f (.||.) between the probability measures Yt and Gt by

∆f (Yt||Gt) =
1

2
[∆f (Yt ↪→ Gt) + ∆f (Gt ↪→ Yt)]

=
1

2

[∫
Ω

f

(
1

Zt(ω)

)
dYt(ω) +

∫
Ω

f (Zt(ω)) dGt(ω)

]
. (5.10)

Equation (5.10) makes sense since conditional probability distributions are probability distri-

butions. Similarly, we shall use conditional probability densities (since they are probability

densities) to derive the dynamics of the f -asymmetry process {∆f (q(x|Yt)||q(x|Gt))}, where

∆f (q(x|Yt)||q(x|Gt)) =
1

2
[∆f (q(x|Yt) ↪→ q(x|Gt)) + ∆f (q(x|Gt) ↪→ q(x|Yt))]

=
1

2

[∫
X

(
f

(
q(x|Gt)
q(x|Yt)

)
q(x|Yt) + f

(
q(x|Yt)
q(x|Gt)

)
q(x|Gt)

)
dx

]
. (5.11)

We shall focus on the case where the market filtration is {Yt} = {F ξt } (we write ξ = ξ1),

and the filtration of the informed trader is {Gt} as shown in (3.58).
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5.2.1 Kullback-Leibler Asymmetry

We define the time-t KL asymmetry, which we denote by KL(.||.), as

KLt(Yt||Gt) =
1

2

[∫
Ω

log

(
dYt(ω)

dGt(ω)

)
dYt(ω) +

∫
Ω

log

(
dGt(ω)

dYt(ω)

)
dGt(ω)

]
, (5.12)

between Yt and Gt, which are the conditional measures given F ξt and Gt, respectively. We can

now quantify the impact of activation of new information sources, and derive the dynamics

of the information asymmetry process between the market and the informed trader. In order

to do so, we define {KLt(ψt||ψt)}t∈[0,T ] as follows:

KLt(ψt||ψt) =


1
2

∫
X

(
ψt(x) log

(
ψt(x)

ψt(x)

)
+ ψt(x) log

(
ψt(x)
ψt(x)

))
dx if t < T ,

0 if t = T ,
(5.13)

where ψt and ψt are as shown in (3.47) and (3.60), respectively.

Lemma 5.2.1. Let

A
(i)
t =

1

2

∫
X
ψt(x) log

(
ψt(x)

ψ
(i)
t (x)

)
dx, and B

(i)
t =

1

2

∫
X
ψ

(i)
t (x) log

(
ψ

(i)
t (x)

ψt(x)

)
dx, (5.14)

for 0 ≤ t < T , where A
(i)
T = B

(i)
T = 0. Then,

KLt(ψt||ψt) =
n+1∑
i=1

(A
(i)
t +B

(i)
t )It(i). (5.15)

Proof. It’s trivial when t = T . For some t < T , note that we can write

∫
X
ψt(x) log

(
ψt(x)

ψt(x)

)
dx =

∫
X
ψt(x) log

(
ψt(x)∑

i ψ
(i)
t (x)It(i)

)
dx =

=

∫
X
ψt(x)

∑
i

log

(
ψt(x)

ψ
(i)
t (x)

)
It(i) dx =

∑
i

(∫
X
ψt(x) log

(
ψt(x)

ψ
(i)
t (x)

)
dx

)
It(i), (5.16)

and similarly, we can write the following:

∫
X
ψt(x) log

(
ψt(x)

ψt(x)

)
dx =

∫
X

(∑
i

ψ
(i)
t (x)It(i)

)∑
j

log

(
ψ

(j)
t (x)

ψt(x)

)
It(j) dx

=
∑
i

(∫
X
ψ

(i)
t (x) log

(
ψ

(i)
t (x)

ψt(x)

)
dx

)
It(i). (5.17)

The statement (5.15) follows directly from (5.16) and (5.17).
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Recall that {Wt} and {W (i)
t } are defined in (2.11) and (3.76), respectively. We also define

(µ
(i)
t )↪→ =

1

4

∫
X
ψt(x)

(
(σ

(i)
t (x))2 − 2σt(x)σ

(i)
t (x)ρ(i) + σ2

t (x)
)

dx, (5.18)

(µ
(i)
t )←↩ =

1

4

∫
X
ψ

(i)
t (x)

(
(σ

(i)
t (x))2 − 2σt(x)σ

(i)
t (x)ρ(i) + σ2

t (x)
)

dx, (5.19)

where ρ(i) is the correlation between {Wt} and {W (i)
t }. In addition,

(σ
(i)
t )↪→ =

1

2

∫
X
σt(x)ψt(x) log

(
ψt(x)

ψ
(i)
t (x)

)
dx and (σ

(i)
t )←↩ =

1

2

∫
X
ψ

(i)
t (x)σt(x) dx, (5.20)

and also

(θ
(i)
t )↪→ =

1

2

∫
X
ψt(x)σ

(i)
t (x) dx and (θ

(i)
t )←↩ =

1

2

∫
X
σ

(i)
t (x)ψ

(i)
t (x) log

(
ψ

(i)
t (x)

ψt(x)

)
dx. (5.21)

Proposition 5.2.2. Let KLt(Yt||Gt) be the time-t KL asymmetry. Then,

dKLt(ψt||ψt) =
n+1∑
i=1

((µ
(i)
t )↪→+(µ

(i)
t )←↩)It(i) dt+

n+1∑
i=2

(
A

(i)
t − A

(i−1)
t +B

(i)
t −B

(i−1)
t

)
δτi−1

(dt)

+
n+1∑
i=1

((σ
(i)
t )↪→ − (σ

(i)
t )←↩)It(i) dWt +

n+1∑
i=1

(
(θ

(i)
t )←↩ − (θ

(i)
t )↪→

)
It(i) dW

(i)
t . (5.22)

Proof. See Appendix 5.6.1.

The KL asymmetry process between the market and the informed trader has jump-

diffusion dynamics. For t < τ1, the process is zero. The drift and the diffusion coefficients

of the asymmetry process jump, which quantify the impact of new information sources.

By definition, the KL asymmetry process takes the value zero at t = T . This is not

simply an ad hoc condition we impose. Note that {KLt(ψt||ψt)} gets arbitrarily close to

zero, as t→ T . This is due to limt→T πt(dx) = limt→T πt(dx) = δXT (dx).

Remark 5.2.3. The terms involving ψt/ψ
(i)
t and ψ

(i)
t /ψt can alternatively be written as

ψt(x)

ψ
(i)
t (x)

= C
(i)
t ζ

(i)
t (x) and

ψ
(i)
t (x)

ψt(x)
=
(
C

(i)
t ζ

(i)
t (x)

)−1

, (5.23)

provided that

C
(i)
t =

∫
X exp

[
T

(T−t)

(
κ̂(i)xξ̂

(i)
t − 1

2
(κ̂(i)x)2t

)]
q(x) dx∫

X exp
[

T
(T−t)

(
κxξt − 1

2
(κx)2t

)]
q(x) dx

, (5.24)
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and

ζ
(i)
t (x) = exp

[
T

(T − t)

((
κξt − κ̂(i)ξ̂

(i)
t

)
x− 1

2

(
κx)2 − (κ̂(i)x)2

)
t

)]
. (5.25)

Recall that ξ̂
(1)
t = ξt and κ̂(1) = κ. Hence, C

(1)
t = 1 and ζ

(1)
t (x) = 1. Also note that

(σ
(i)
t )↪→ =

Tκ

2(T − t)

(∫
X
xψt(x) log

(
C

(i)
t ζ

(i)
t (x)

)
dx− EQ[XT |ξ1

t ]A
(i)
t

)
, (5.26)

(θ
(i)
t )←↩ =

T κ̂(i)

2(T − t)

(∫
X
xψ

(i)
t (x) log

((
C

(i)
t ζ

(i)
t (x)

)−1
)

dx− EQ[XT |ξ̂(i)
t ]B

(i)
t

)
. (5.27)

Figure 5.1 at the end of this chapter is a simulation of the KL asymmetry process. The

process is zero until the informed trader receives an additional information source. Different

colours represent different number of sources that the informed trader has. The parameters

are T = 5, κi = 1/T and ρi = 0.25. Stopping times are uniformly distributed on [0, T ].

5.2.2 Squared-Hellinger Asymmetry

We define the time-t SH asymmetry, which we denote by SH2(.||.), as

SHt(Yt||Gt) =
1

2

∫
Ω

(√
dGt(ω)

dYt(ω)
− 1

)2

dYt(ω) =
1

2

∫
Ω

(√
dYt(ω)

dGt(ω)
− 1

)2

dGt(ω), (5.28)

between Yt and Gt, which are the conditional measures given F ξt and Gt, respectively. Also,

if L denotes the Lebesgue measure, and Yt and Gt are equivalent to L, then

SHt(Yt||Gt) =
1

2

∫
Ω

(√
dYt(ω)

dL(ω)
−

√
dGt(ω)

dL(ω)

)2

dL(ω). (5.29)

Using (5.29), we define {SHt(ψt||ψt)}t∈[0,T ] by

SHt(ψt||ψt) =


1
2

∫
X

(√
ψt −

√
ψt

)2

dx if t < T ,

0 if t = T .

(5.30)

Following similar steps as done in the proof of Lemma 5.2.1, we have

SHt(ψt||ψt) = 1−
∫
X

(√
ψt(x)

√
ψt(x)

)
dx

= 1−
n+1∑
i=1

(∫
X

(√
ψt(x)

√
ψ

(i)
t

)
dx

)
It(i) = 1−

n+1∑
i=1

M
(i)
t It(i), (5.31)
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for 0 ≤ t < T . When we do calculations, we use the representation shown in (5.31).

We make the following definitions:

µ
(i)
t =

1

8

∫
X

√
ψ

(i)
t (x)√
ψ3
t (x)

σ2
t (x)ψ2

t (x) +

√
ψt(x)√

(ψ
(i)
t (x))3

(σ
(i)
t (x))2(ψ

(i)
t (x))2

 dx

− 1

4

∫
X

σ
(i)
t (x)ψ

(i)
t (x)σt(x)ψt(x)ρ(i)√
ψt(x)ψ

(i)
t (x)

dx, (5.32)

and also

υ
(i)
t = −1

2

∫
X

√
ψ

(i)
t (x)√
ψt(x)

σt(x)ψt(x) dx and θ
(i)
t = −1

2

∫
X

√
ψt(x)√
ψ

(i)
t (x)

σ
(i)
t (x)ψ

(i)
t (x) dx. (5.33)

Proposition 5.2.4. Let SHt(Yt||Gt) be the time-t SH asymmetry. Then,

dSHt(ψt||ψt) =
n+1∑
i=1

µ
(i)
t It(i) dt+

n+1∑
i=1

υ
(i)
t It(i) dWt

+
n+1∑
i=1

θ
(i)
t It(i) dW

(i)
t −

n+1∑
i=2

(M
(i)
t −M

(i−1)
t )δτi−1

(dt). (5.34)

Proof. Using the Lebesgue Dominated Convergence,

− dM
(i)
t = −

∫
X

(
d
√
ψt(x)

√
ψ

(i)
t (x)

)
dx−

∫
X

(√
ψt(x) d

√
ψ

(i)
t (x)

)
dx

−
∫
X

(
d
√
ψt(x) d

√
ψ

(i)
t (x)

)
dx, (5.35)

for 0 ≤ t < T . We write − dM
(i)
t = J∗1 + J∗2 + J∗3 , and define g

(i)
t (x) =

√
ψ

(i)
t (x). Then,

dg
(i)
t =

1

2

√
ψ

(i)
t

σ
(i)
t ψ

(i)
t dW

(i)
t −

1

8(

√
ψ

(i)
t )3

(σ
(i)
t )2(ψ

(i)
t )2 dt. (5.36)

It follows that

J∗1 = −
∫
X

1

2

√
ψ

(i)
t (x)√
ψt(x)

dψt(x)− 1

8

√
ψ

(i)
t (x)√
ψ3
t (x)

σ2
t (x)ψ2

t (x) dt

 dx, (5.37)

J∗2 = −
∫
X

1

2

√
ψt(x)√
ψ

(i)
t (x)

dψ
(i)
t (x)− 1

8

√
ψt(x)√

(ψ
(i)
t (x))3

(σ
(i)
t (x))2(ψ

(i)
t (x))2 dt

 dx, (5.38)
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and finally, we have

J∗3 = −1

4

∫
X

σ(i)
t (x)ψ

(i)
t (x)σt(x)ψt(x)ρ(i) dt√
ψt(x)ψ

(i)
t (x)

 dx, (5.39)

where ρ(i) is the correlation between {Wt} and {W (i)
t }. This completes the proof.

The process {SHt(ψt||ψt} is a jump-diffusion process. It takes the value zero at t = T .

This is not an ad hoc condition, since {SHt(ψt||ψt)} gets arbitrarily close to zero as t→ T .

Figure 5.2 at the end of this chapter is a simulation of the SH asymmetry process, where

T = 5, κi = 1/T and ρi = 0.25. Stopping times are uniformly distributed on [0, T ].

5.3 Competitive Edge in Information

We consider a financial setting where there are two informed traders who are unaware of each

others’ actions. We assume that the filtrations of the informed traders are different n-order

piecewise enlargements of the same market filtration. This is a valid assumption, since not

every informed trader has the same accessibility to extra information. Some informed traders

may have better facilities to extract additional information compared to other informed

traders. As an example, we focus on a scenerio where the informed traders are provided

with extra sources of information (the same sources of information) at different stopping

times. Then at a given time, an informed trader has a competitive edge with respect to the

other if she has access to more information sources, which can be used to seek statistical

arbitrage opportunities. We aim to quantify this competitive edge in a dynamic framework.

We call these traders Agent 1 and Agent 2.

First, we define two independent sequences of stopping times {τi}ni=1 and {τ ∗i }ni=1 such

that τ1 < τ2 < . . . < τn and τ ∗1 < τ ∗2 < . . . < τ ∗n. We note that Q(τi < τ ∗j ) 6= 1 and

Q(τ ∗i < τj) 6= 1 for i, j = 1, . . . , n. Also, τi 6= τ ∗j for any i, j. We let {Gt} as shown in (3.58)

be the filtration of Agent 1. We define {G∗t } as the filtration of Agent 2, such that

G∗t = F ξ
1

t

n∨
i=1

σ({Hτ∗i
(s)}0≤s≤t) τ ∗i > t,

σ({Hτ∗i
(s)}0≤s≤t, {ξi+1

s }τ∗i ≤s≤t) τ ∗i ≤ t,
(5.40)

for 0 ≤ t ≤ T . Then τ ∗i ’s are G∗t -stopping times. Also, we let

I∗t =
[
1−Hτ∗1

(t), . . . , Hτ∗i−1
(t)(1−Hτ∗i

(t)), . . . Hτ∗n(t)
]>
. (5.41)

For demonstration purposes, we shall quantify the competitive edge using only the KL

asymmetry process. The SH asymmetry process can also be used in a similar sense.
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We also define the following probability measure:

G∗t (XT ∈ A) = Q(XT ∈ A|G∗t ), (5.42)

and denote it by G∗t . In addition, denoting ψ∗t (x) = q(x|G∗t ), we write

KLt(ψt||ψ∗t ) =


1
2

∫
X

(
ψ∗t (x) log

(
ψ∗t (x)

ψt(x)

)
+ ψt(x) log

(
ψt(x)
ψ∗t (x)

))
dx if t < T ,

0 if t = T .
(5.43)

Lemma 5.3.1. Let

A
(i,j)
t =

1

2

∫
X
ψ

(j)
t (x) log

(
ψ

(j)
t (x)

ψ
(i)
t (x)

)
dx, and B

(i,j)
t =

1

2

∫
X
ψ

(i)
t (x) log

(
ψ

(i)
t (x)

ψ
(j)
t (x)

)
dx, (5.44)

for 0 ≤ t < T , where A
(i,j)
T = B

(i,j)
T = 0. Then,

KLt(ψt||ψ∗t ) =
n+1∑
i=1

n+1∑
j=1

(A
(i,j)
t +B

(i,j)
t )I∗t (j)It(i). (5.45)

Proof. It’s trivial when t = T . For some t < T , using Lemma 5.2.1, we have

∫
X
ψ∗t (x) log

(
ψ∗t (x)

ψt(x)

)
dx =

∑
i

(∫
X
ψ∗t (x) log

(
ψ∗t (x)

ψ
(i)
t (x)

)
dx

)
It(i)

=
∑
i

(∫
X

(∑
j

ψ
(j)
t (x)I∗t (j)

∑
k

log

(
ψ

(k)
t (x)

ψ
(i)
t (x)

)
I∗t (k)

)
dx

)
It(i)

=
∑
i

∑
j

(∫
X
ψ

(j)
t (x) log

(
ψ

(j)
t (x)

ψ
(i)
t (x)

)
dx

)
I∗t (j)It(i), (5.46)

and similarly, the following can be written:

∫
X
ψt(x) log

(
ψt(x)

ψ∗t (x)

)
dx =

∑
i

(∫
X
ψ

(i)
t (x) log

(
ψ

(i)
t (x)

ψ∗t (x)

)
dx

)
It(i)

=
∑
i

(∫
X
ψ

(i)
t (x)

∑
j

log

(
ψ

(i)
t (x)

ψ
(j)
t (x)

)
I∗t (j) dx

)
It(i)

=
∑
i

∑
j

(∫
X
ψ

(i)
t (x) log

(
ψ

(i)
t (x)

ψ
(j)
t (x)

)
dx

)
I∗t (j)It(i), (5.47)

and the result follows.

Lemma 5.3.1 implies the following: At some time t, where I∗t (j)It(i) = 1 for the chosen
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i and j, if i = j, there is no competitive edge between the informed traders, since A
(i,j)
t =

B
(i,j)
t = 0. The information asymmetry between them is zero. On the other hand, if i > j,

then A
(i,j)
t 6= 0 and B

(i,j)
t 6= 0 in favor of Agent 1. That is, Agent 1 has informational

advantage over Agent 2. If j > i, then A
(i,j)
t 6= 0 and B

(i,j)
t 6= 0 in favor of Agent 2. We let

(µ
(i,j)
t )↪→ =

1

4

∫
X
ψ

(j)
t (x)

(
(σ

(i)
t (x))2 − 2σ

(j)
t (x)σ

(i)
t (x)ρ(i,j) + (σ

(j)
t )2(x)

)
dx, (5.48)

(µ
(i,j)
t )←↩ =

1

4

∫
X
ψ

(i)
t (x)

(
(σ

(i)
t (x))2 − 2σ

(j)
t (x)σ

(i)
t (x)ρ(i,j) + (σ

(j)
t )2(x)

)
dx, (5.49)

where ρ(i,j) is the correlation between {W (i)
t } and {W (j)

t }, and we let

(σ
(i,j)
t )↪→ =

T κ̂(j)

2(T − t)

(∫
X
xψ

(j)
t (x) log

(
ψ

(j)
t (x)

ψ
(i)
t (x)

)
dx− EQ[XT |ξ̂(j)

t ]A
(i,j)
t

)
, (5.50)

(σ
(i,j)
t )←↩ =

1

2

∫
X
ψ

(i)
t (x)σ

(j)
t (x) dx, (5.51)

and also,

(θ
(i,j)
t )↪→ =

1

2

∫
X
ψ

(j)
t (x)σ

(i)
t (x) dx, (5.52)

(θ
(i,j)
t )←↩ =

T κ̂(i)

2(T − t)

(∫
X
xψ

(i)
t (x) log

(
ψ

(i)
t (x)

ψ
(j)
t (x)

)
dx− EQ[XT |ξ̂(i)

t ]B
(i,j)
t

)
. (5.53)

Proposition 5.3.2. Let KLt(Gt||G∗t ) be the time-t KL asymmetry. Then, the competition

between Agent 1 and Agent 2 has the following dynamics:

dKLt(ψt||ψ∗t ) =
n+1∑
j=1

n+1∑
i=1

((µ
(i,j)
t )↪→ + (µ

(i,j)
t )←↩)It(i)I

∗
t (j) dt

+
n+1∑
j=1

n+1∑
i=1

((σ
(i,j)
t )↪→ − (σ

(i,j)
t )←↩)It(i)I

∗
t (j) dW

(j)
t

+
n+1∑
j=1

n+1∑
i=1

(
(θ

(i,j)
t )←↩ − (θ

(i,j)
t )↪→

)
It(i)I

∗
t (j) dW

(i)
t

+
n+1∑
j=1

n+1∑
i=2

(
A

(i,j)
t − A(i−1,j)

t +B
(i,j)
t −B(i−1,j)

t

)
δτi−1

(dt)I∗t (j)

+
n+1∑
i=1

n+1∑
j=2

(
A

(i,j)
t − A(i,j−1)

t +B
(i,j)
t −B(i,j−1)

t

)
δτ∗j−1

(dt)It(i). (5.54)

Proof. Using Lemma 5.3.1, the proof is almost the same as shown in Appendix 5.6.1. Note

that since τi 6= τ ∗j for any i, j, we have δτ∗j−1
(dt)δτi−1

(dt) = 0.
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Figures 5.3 and 5.4 at the end of this chapter are simulations of the KL asymmetry

process between two informed traders. The process is zero when both agents have the same

number of information sources. If the colour is red, Agent 1 has an informational advantage

over Agent 2. If the colour is blue, Agent 2 has an advantage over Agent 1. The parameters

are T = 5, κi = 1/T and ρi = 0.25. Stopping times are uniformly distributed on [0, T ].

5.4 Financial Mispricing and Information Asymmetry

We view financial mispricing as a special type of information asymmetry. The market receives

incorrect information about XT that will not be paid at t = T . We postulate the existence

of a fundamental information flow, which carries information about the correct cash flow

XT − c, for some constant c ∈ R. We call c the mispricing component. The market receives

the fundamental information flow at some stopping time τ ∈ (0, T ). Let

F ξ
b

t = σ({ξbs}0≤s≤t) where ξbt = κbXT t+Bb
tT , (5.55)

for 0 ≤ t ≤ T and 0 < κb <∞. We assume that {ξbt}t∈[0,T ] carries partial information about

the wrong cash flow XT . We call {ξbt} a mispriced information process. We let

ξct = κbXT t− κct+Bc
tT , (5.56)

be the fundamental information process, where {Bc
tT−κct} is a Brownian bridge to the value

−κcT at t = T (see also, Andruszkiewicz and Brody, 2011, who include a drift in the noise

term to model anomalous price dynamics). To simplify calculations, we set

κ =

√
2(κb)2(1− ρ)

1− ρ2
, (5.57)

where |ρ| < 1 is the correlation between {Bb
tT} and {Bc

tT}. Note that 0 < κ <∞. We define

Jt = σ({Hτ (s)}0≤s≤t, {ξbs}0≤s≤t, {ξcs}0≤s≤t), (5.58)

for 0 ≤ t ≤ T , where τ is the independent Jt-stopping time. We define

ξ∗t = κ(XT − c)t+B∗tT , (5.59)

where the Brownian bridge {B∗tT}t∈[0,T ] is

B∗tT =
1

κ

[
κb(1− ρ)

(1− ρ2)
(Bb

tT +Bc
tT )

]
, (5.60)
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and where κ is as shown in (5.57). Note that (5.60) follows similarly to (3.66). Since a

filtration generated by both {ξbt} and {ξct} is equivalent to a filtration generated by {ξ∗t }, we

can write

ψ∗t (x) = q(x|Jt) = q(x|ξ∗t ) for 0 ≤ t ≤ T. (5.61)

Lemma 5.4.1. The dynamics of {ψ∗t }t∈[0,T ) are governed by the following SDE:

dψ∗t (x) = σ∗t (x)ψ∗t (x) dW ∗
t +

Tκc

(T − t)
σ∗t (x)ψ∗t (x) dt, (5.62)

where {W ∗
t }t∈[0,T ) is a Q-Brownian motion with negative drift if c > 0, or with positive drift

if c < 0, satisfying

W ∗
t = ξ∗t +

∫ t

0

1

T − s
ξ∗s ds− Tκ

∫ t

0

1

T − s
EQ [XT | ξ∗s ] ds, (5.63)

and where

σ∗t (x) =
Tκ
(
x− EQ [XT | ξ∗t ]

)
(T − t)

. (5.64)

Proof. See Appendix 5.6.2.

Alternative to Appendix 5.6.2, to see that {W ∗
t } is a Q-Brownian motion with drift, we

let YT = XT − c. Then,

dψ∗t (y) = σ∗t (y)ψ∗t (y) dZt, (5.65)

with y = x− c, where {Zt} is a Q-Brownian and

σ∗t (y) =
Tκ(y − EQ [YT | ξ∗t ])

(T − t)
=
Tκ(x− EQ [XT | ξ∗t ])

(T − t)
= σ∗t (x). (5.66)

More specifically, {Zt} is a Q-Brownian motion such that

dZt = dW ∗
t +

Tκc

(T − t)
dt, (5.67)

or in the integral form

Zt = ξ∗t +

∫ t

0

1

T − s
ξ∗s ds− Tκ

∫ t

0

1

T − s
EQ [XT | ξ∗s ] ds+ Tκc

∫ t

0

1

T − s
ds. (5.68)

Using (5.62) and (5.63) together with (5.67) and (5.68) is another way of seeing that {W ∗
t }

is a Q-Brownian motion with negative drift if c > 0, or with positive drift if c < 0. Then,

from (5.67), equation (5.62) can be written as

dψ∗t (x) = σ∗t (x)ψ∗t (x) dZt, (5.69)
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which we shall make use of in the following statements. We define the filtration {Zt} by

Zt = F ξ
b

t

∨σ({Hτ (s)}0≤s≤t) τ > t,

σ({Hτ (s)}0≤s≤t, {ξcs}τ≤s≤t) τ ≤ t.
(5.70)

for 0 ≤ t ≤ T , and assume that {Zt} is the market filtration. Note that the market is

initially provided with the incorrect information until the correct information appears at τ .

We define σbt (x) = Tκb
(
x− EQ

[
XT

∣∣ ξbt ]) /(T − t). Also, {W b
t } is a Q-Brownian motion

given by W b
t = ξbt +

∫ t
0

1
T−sξ

b
s ds−Tκb

∫ t
0

1
T−sE

Q
[
XT

∣∣ ξbt ] ds. We also denote ψat (x) = q(x|Zt)
and ψbt (x) = q(x|F ξ

b

t ).

Proposition 5.4.2. The dynamics of {ψat }t∈[0,T ) are governed by the following SDE:

dψat (x) = σbt (x)ψbt (x) dW b
t It(1) + σ∗t (x)ψ∗t (x) dZtIt(2) + (ψ∗t (x)− ψbt (x))δτ (dt). (5.71)

Proof. The dynamics for {ψbt} follow directly from (3.17)-(3.18). The SDE of {ψat } is derived

by using the law of total probability and by following the steps as done in Chapter 3.

5.4.1 Mispricing Processes

We shall only provide the dynamics of what we call the SH mispricing process. The SH

mispricing between ψat and ψ∗t is the SH asymmetry between ψat and ψ∗t . The KL mispricing

process can be introduced in a similar sense. We define the following probability measures:

Zt(XT ∈ A) = Q(XT ∈ A|Zt) and Jt(XT ∈ A) = Q(XT ∈ A|Jt), (5.72)

and denote them as Zt and Jt, respectively. Note that

SHt(ψ
a
t ||ψ∗t ) =

{ (
1−

(∫
X

(√
ψbt (x)

√
ψ∗t

)
dx
))

It(1) if t < T ,

0 if t = T ,

and hence, we can write the following:

SHt(ψ
a
t ||ψ∗t ) = SHt(ψ

b
t ||ψ∗t )It(1). (5.73)

We define

µt =
1

8

(∫
X

√
ψbt (x)√

(ψ∗t )
3(x)

(σ∗t )
2(x)(ψ∗t )

2(x) +

√
ψ∗t (x)√

(ψbt )
3(x)

(σbt )
2(x)(ψbt )

2(x)

)
dx

− 1

4

∫
X

σbt (x)ψbt (x)σ∗t (x)ψ∗t (x)ρb,∗√
ψ∗t (x)ψbt (x)

dx, (5.74)
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where ρb,∗ is the correlation between {W b
t } and {Zt}, and

υt = −1

2

∫
X

√
ψbt (x)√
ψ∗t (x)

σ∗t (x)ψ∗t (x) dx and θt = −1

2

∫
X

√
ψ∗t (x)√
ψbt (x)

σbt (x)ψbt (x) dx. (5.75)

Proposition 5.4.3. Let SHt(Jt||Zt) be the time-t SH mispricing. Then,

dSHt(ψ
a
t ||ψ∗t ) = µtIt(1) dt+ θtIt(1) dW b

t + υtIt(1) dZt − SHt(ψ
b
t ||ψ∗t )δτ (dt). (5.76)

Proof. Using Proposition 5.4.2, the proof is almost exactly the same to that of Proposition

5.2.4.

The SH mispricing process is a diffusion process with drift for t < τ . At τ , the process

jumps to zero and remains zero. In other words, when the correct information flow appears

in the market at τ , the information asymmetry between the market and the fundamentals

jumps to zero. This jump represents a sudden market correction.

One can interpret that the time-t price of the asset is not the correct price of the asset

prior to the appearance of the fundamental information flow. Prior to this appearance, the

market has incorrect expectations about the future cash flow, since the asset will actually

pay XT − c instead of XT at time T . Then, with the emergence of the correct information,

the market abruptly changes the price, which represents the sudden market correction on

the price of the asset.

5.5 Shannon Entropy

The Shannon entropy quantifies the level of uncertainty or the lack of information in a given

system. The higher entropy is, the lower the information content is (see, for example, Jaynes,

1982, Cover and Thomas, 1991). We shall provide the dynamics of a Shannon entropy process

with respect to an n-order piecewise enlargement to quantify the level of uncertainty of an

informed trader.

For this section, we assume XT is a discrete cash flow (see Chapter 4.1 for neccessary

notations of the discrete setting). The Shannon entropy, which we denote by S, is

S = −
∑
X

p(xj) log p(xj). (5.77)

Equation (5.77) is the standard way to define the Shannon entropy. As a continuous ex-

tension, one may also define entropy using probability densities, which is often called the

differential entropy. However, unlike the Shannon entropy, the differential entropy is usu-

ally not a good measure of uncertainty. For example, differential entropy can be negative,
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whereas S ∈ R+. It is possible to define a Shannon entropy process by introducing a time

dimension into the setting (see, for instance, Brody and Hughston, 2002). We shall consider

the case when new information sources appear at stopping times. Again, we assume that

the filtration of the informed trader is given by (3.58). We define a Shannon entropy process

St = −
∑
X

φt(xj) log φt(xj). (5.78)

We also define

µ
(i)
t = −

∑
X

(σ
(i)
t (xj))

2

2
φ

(i)
t (xj), (5.79)

ζ
(i)
t =

T κ̂(i)

(T − t)

(
X

(i)
t S

(i)
t −

∑
X

xjφ
(i)
t (xj) log φ

(i)
t (xj)

)
, (5.80)

where S
(i)
t = −

∑
X φ

(i)
t (xj) log φ

(i)
t (xj) and X

(i)
t = EQ[XT | ξ̂(i)

t ].

Proposition 5.5.1. The entropy process {St} is governed by the following SDE:

dSt =
n+1∑
i=1

µ
(i)
t It(i) dt+

n+1∑
i=1

ζ
(i)
t It(i) dW

(i)
t +

n+1∑
i=2

(
S

(i)
t − S

(i−1)
t

)
δτi−1

(dt). (5.81)

Proof. At a fixed time t, for 0 ≤ t < T , the Shannon entropy St can be rewritten as

St = −
∑
X

Rt(xj)It log (Rt(xj)It) = −
∑
X

[
n+1∑
i=1

φ
(i)
t (xj)It(i) log

(
n+1∑
j=1

φ
(j)
t (xj)It(j)

)]

= −
∑
X

[
n+1∑
i=1

φ
(i)
t (xj)It(i)

n+1∑
j=1

log
(
φ

(j)
t (xj)

)
It(j)

]

= −
n+1∑
i=1

(∑
X

φ
(i)
t (xj) log φ

(i)
t (xj)

)
It(i). (5.82)

Then, we can write

dS
(i)
t = −

∑
X

dφ
(i)
t (xj) log φ

(i)
t (xj)−

∑
X

φ
(i)
t (xj) d log φ

(i)
t (xj)

−
∑
X

dφ
(i)
t (xj) d log φ

(i)
t (xj). (5.83)

We define the function: g
(i)
t = log φ

(i)
t . Then,

dg
(i)
t =

1

φ
(i)
t

dφ
(i)
t −

1

2(φ
(i)
t )2

(dφ
(i)
t )2 = σ

(i)
t dW

(i)
t −

1

2
(σ

(i)
t )2 dt. (5.84)
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It follows that

−
∑
X

dφ
(i)
t (xj) d log φ

(i)
t (xj) = −

∑
X

(σ
(i)
t (xj))

2φ
(i)
t (xj) dt. (5.85)

In addition,

−
∑
X

dφ
(i)
t (xj) log φ

(i)
t (xj) = −

∑
X

σ
(i)
t (xj)φ

(i)
t (xj) dWt log φ

(i)
t (xj), (5.86)

and the second term is

−
∑
X

φ
(i)
t (xj) d log φ

(i)
t (xj) = −

∑
X

σ
(i)
t (xj)φ

(i)
t (xj) dWt +

∑
X

1

2
(σ

(i)
t (xj))

2φ
(i)
t (xj) dt

=
∑
X

1

2
(σ

(i)
t (xj))

2φ
(i)
t (xj) dt−

∑
X

dφ
(i)
t (xj)

=
∑
X

1

2
(σ

(i)
t (xj))

2φ
(i)
t (xj) dt. (5.87)

The statement follows from Lemma 3.2.4.

Note that the Shannon entropy process follows jump-diffusion dynamics. At each entry

of a new information source, the level of uncertainty jumps to a new one. Also, it follows

that

EQ[S
(i)
t ] ≤ EQ[S

(i−1)
t ], (5.88)

for 0 ≤ t < T , since S
(i)
t is defined in terms of an additional information source about XT

when compared to S
(i−1)
t . Hence, the expected values of jump sizes of {St} are nonpositive.

In addition, note that

EQ[µ
(i)
t ] ≤ 0. (5.89)

Then the following remark can be written:

Remark 5.5.2. The Shannon entropy process {St} is a Q-supermartingale.

The uncertainty of the informed trader is decreasing on average. In other words, the in-

formed trader gains information on average. The level of uncertainty exhibits discontinuities

at every appearance of a new source of information. Proposition 5.5.1 is a way of quantifying

this qualitatively intuitive result.
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5.6 Appendix

5.6.1 Proof of Proposition 5.2.2

Proof. Using the Lebesgue Dominated Convergence,

dKLt(ψt ↪→ ψ
(i)
t ) =

∫
X

dψt(x) log

(
ψt(x)

ψ
(i)
t (x)

)
dx+

∫
X
ψt(x) d log

(
ψt(x)

ψ
(i)
t (x)

)
dx

+

∫
X

dψt(x) d log

(
ψt(x)

ψ
(i)
t (x)

)
dx, (5.90)

for 0 ≤ t < T . We write dKLt(ψt ↪→ ψ
(i)
t ) = J>1 +J>2 +J>3 . Define gt = log(ψt/ψ

(i)
t ) = log(ut).

Denoting the quadratic variation by 〈 , 〉v and using Ito quotient rule:

dut =
ψt

ψ
(i)
t

 dψt
ψt
− dψ

(i)
t

ψ
(i)
t

+
d
〈
ψ

(i)
t , ψ

(i)
t

〉v
(ψ

(i)
t )2

−
d
〈
ψt, ψ

(i)
t

〉v
ψtψ

(i)
t


=

ψt

ψ
(i)
t

(
σt dWt − σ(i)

t dW
(i)
t + (σ

(i)
t )2 dt− σtσ(i)

t ρ
(i) dt

)
, (5.91)

where ρ(i) is the correlation between {Wt} and {W (i)
t }. Then from (5.91),

(dut)
2 =

ψ2
t

(ψ
(i)
t )2

(
σ2
t dt− 2σtσ

(i)
t ρ

(i) dt+ (σ
(i)
t )2 dt

)
. (5.92)

It follows that

d log(ut) = σt dWt − σ(i)
t dW

(i)
t +

1

2

(
(σ

(i)
t )2 − σ2

t

)
dt. (5.93)

Then, having the expression for d log(ψt/ψ
(i)
t ) as given above, it follows that:

J>2 =

∫
X
ψt(x)

(
σt(x) dWt − σ(i)

t (x) dW
(i)
t +

1

2

(
(σ

(i)
t (x))2 − σ2

t (x)
)

dt

)
dx

=
1

2

(∫
X
ψt(x)

(
(σ

(i)
t (x))2 − σ2

t (x)
)

dx

)
dt−

(∫
X
ψt(x)σ

(i)
t (x) dx

)
dW

(i)
t . (5.94)

In addition, the terms J1 and J3 are

J>1 =

(∫
X
σt(x)ψt(x) log

(
ψt(x)

ψ
(i)
t (x)

)
dx

)
dWt, (5.95)

J>3 =

(∫
X

(
σ2
t (x)ψt(x)− σt(x)σ

(i)
t (x)ψt(x)ρ(i)

)
dx

)
dt. (5.96)
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Then, the SDE for {KLt(ψt ↪→ ψ
(i)
t } is

dKLt(ψt ↪→ ψ
(i)
t ) =

(∫
X
σt(x)ψt(x) log

(
ψt(x)

ψ
(i)
t (x)

)
dx

)
dWt −

(∫
X
ψt(x)σ

(i)
t (x) dx

)
dW

(i)
t

+
1

2

(∫
X
ψt(x)

(
(σ

(i)
t (x))2 − 2σt(x)σ

(i)
t (x)ρ(i) + σ2

t (x)
)

dx

)
dt. (5.97)

For the dynamics of {KLt(ψ
(i)
t ↪→ ψt)}, let dKLt(ψ

(i)
t ↪→ ψt) = J<1 + J<2 + J<3 . Then,

J<1 =

∫
X

dψ
(i)
t (x) log

(
ψ

(i)
t (x)

ψt(x)

)
dx

=

(∫
X
σ

(i)
t (x)ψ

(i)
t (x) log

(
ψ

(i)
t (x)

ψt(x)

)
dx

)
dW

(i)
t , (5.98)

J<2 =

∫
X
ψ

(i)
t (x) d log

(
ψ

(i)
t (x)

ψt(x)

)
dx

=
1

2

(∫
X
ψ

(i)
t (x)

(
σ2
t (x)− (σ

(i)
t (x))2

)
dx

)
dt−

(∫
X
ψ

(i)
t (x)σt(x) dx

)
dWt, (5.99)

J<3 =

∫
X

dψ
(i)
t (x) d log

(
ψ

(i)
t (x)

ψt(x)

)
dx

=

(∫
X
(σ

(i)
t )2(x)ψ

(i)
t (x) dx

)
dt−

(∫
X
σt(x)σ

(i)
t (x)ψ

(i)
t (x)ρ(i) dx

)
dt. (5.100)

Thus, the SDE for {KLt(ψ
(i)
t ↪→ ψt} is

dKLt(ψ
(i)
t ↪→ ψt) =

(∫
X
σ

(i)
t (x)ψ

(i)
t (x) log

(
ψ

(i)
t (x)

ψt(x)

)
dx

)
dW

(i)
t −

(∫
X
ψ

(i)
t (x)σt(x) dx

)
dWt

+
1

2

(∫
X
ψ

(i)
t (x)

(
(σ

(i)
t (x))2 − 2σt(x)σ

(i)
t (x)ρ(i) + σ2

t (x)
)

dx

)
dt. (5.101)

The SDE for {KLt(ψt||ψt)} follows from (5.97), (5.101), Lemma 3.2.4 and Lemma 5.2.1.

5.6.2 Proof of Lemma 5.4.1

Proof. Note that the following can be written:

dψ∗t (x) = d

 exp
[

T
(T−t)

(
κ(x− c)ξ∗t − 1

2
(κ(x− c))2t

)]
q(x)∫

X exp
[

T
(T−t)

(
κ(x− c)ξ∗t − 1

2
(κ(x− c))2t

)]
q(x) dx


= d

(
V ∗t (x)

Y ∗t

)
, (5.102)
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for 0 ≤ t < T . By the Ito quotient rule,

d

(
V ∗t
Y ∗t

)
=

[
V ∗t
Y ∗t

(
dV ∗t
V ∗t
− dY ∗t

Y ∗t
+

d 〈Y ∗t , Y ∗t 〉
v

(Y ∗t )2
− d 〈V ∗t , Y ∗t 〉

v

V ∗t Y
∗
t

)]
. (5.103)

Let the numerator be denoted by the function V ∗t = g(t, ξ∗t ). Then, by Ito’s lemma,

dg(t, ξ∗t ) =

[
∂g

∂t
dt+

∂g

∂ξ∗t
dξ∗t +

1

2

∂2g

∂(ξ∗t )
2
(dξ∗t )

2

]
, (5.104)

where the following can be written:

∂g

∂t
dt =

(
T

(T − t)2

(
κ(x− c)ξ∗t −

1

2
(κ(x− c))2t

)
− T

T − t

(
1

2
(κ(x− c))2

))
V ∗t dt

=
V ∗t

(T − t)2

[
Tκ(x− c)ξ∗t −

1

2
T 2(κ(x− c))2

]
dt. (5.105)

It also follows that

∂g

∂ξ∗t
dξ∗t =

V ∗t Tκ(x− c)
(T − t)

dξ∗t and
1

2

∂2g

∂(ξ∗t )
2
(dξ∗t )

2 =
V ∗t (Tκ(x− c))2

2(T − t)2
dt, (5.106)

for 0 ≤ t < T , since (dξ∗t )
2 = dt due to the fact that (dB∗tT )2 = dt. Thus,

dV ∗t (x)

V ∗t (x)
=

(
Tκ(x− c)ξ∗t

(T − t)2
dt+

Tκ(x− c)
(T − t)

dξ∗t

)
, (5.107)

for 0 ≤ t < T . Note that Y ∗t =
∫
X V

∗
t (x) dx and from the Lebesgue Dominated Convergence,

dY ∗t =

∫
X

[
V ∗t (x)

(
Tκ(x− c)ξ∗t

(T − t)2
dt+

Tκ(x− c)
(T − t)

dξ∗t

)]
dx, (5.108)

for 0 ≤ t < T . We have

dY ∗t
Y ∗t

=

∫
X

[
V ∗t (x)

(
Tκ(x−c)ξ∗t

(T−t)2 dt+ Tκ(x−c)
(T−t) dξ∗t

)]
dx∫

X V
∗
t (x) dx

, (5.109)

for 0 ≤ t < T . By definition,

EQ [XT | ξ∗t ] =

∫
X xV

∗
t (x) dx∫

X V
∗
t (x) dx

. (5.110)

Then, the following can be written:

dY ∗t
Y ∗t

=
TκEQ [XT | ξ∗t ] ξ∗t

(T − t)2
dt+

TκEQ [XT | ξ∗t ]

(T − t)
dξ∗t −

Tκcξ∗t
(T − t)2

dt− Tκc

(T − t)
dξ∗t . (5.111)
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This is the second term in the Ito quotient bracket. The third term in the bracket can be

written as

d 〈Y ∗t , Y ∗t 〉
(Y ∗t )2

=

(
TκEQ [XT | ξ∗t ]

)2

(T − t)2
dt+

(Tκc)2

(T − t)2
dt+

T 2κ2cEQ [XT | ξ∗t ]

(T − t)2
dt, (5.112)

for 0 ≤ t < T . The last term in the Ito quotient bracket is

d 〈V ∗t , Y ∗t 〉
V ∗t Y

∗
t

=
T 2κ2(x− c)EQ [XT | ξ∗t ]

(T − t)2
dt− T 2κ2(x− c)c

(T − t)2
dt, (5.113)

for 0 ≤ t < T . Then, putting all the terms together and rearranging, we can write the

following:

dψ∗t (x)

ψ∗t (x)
=

Tκ

(T − t)

[
Lt(x) dξ∗t +

(
Lt(x)ξ∗t
(T − t)

− Tκ

(T − t)
Lt(x)EQ [XT − c | ξ∗t ]

)
dt

]
, (5.114)

for 0 ≤ t < T , where Lt(x) = x− EQ[XT | ξ∗t ]. This statement can be rewritten as

dψ∗t (x) = σ∗tψ
∗
t (x) dW ∗

t + σ∗tψ
∗
t (x)

Tκc

(T − t)
dt, (5.115)

for 0 ≤ t < T , where {W ∗
t } is defined by

W ∗
t = ξ∗t +

∫ t

0

1

T − s
ξ∗s ds− Tκ

∫ t

0

1

T − s
EQ [XT | ξ∗s ] ds, (5.116)

and σ∗t (x) = Tκ
(
x− EQ [XT | ξ∗t ]

)
/(T − t).

We need to show that {W ∗
t } is a Q-Brownian motion with drift. We follow similar steps

as done in Brody et al. (2008a). For 0 ≤ t ≤ u < T , note that we can write

EQ [W ∗
u | ξ∗t ] = EQ [(W ∗

u −W ∗
t ) |ξ∗t ] +W ∗

t

= W ∗
t + EQ [ξ∗u − ξ∗t | ξ∗t ]− TκEQ

[∫ u

t

1

T − s
EQ [XT | ξ∗s ] ds | ξ∗t

]
+ EQ

[∫ u

t

1

T − s
ξ∗s ds | ξ∗t

]
. (5.117)

Then, by the tower property,

EQ [W ∗
u | ξ∗t ] = W ∗

t + EQ [κXTu+B∗uT | ξ∗t ]− κcu− EQ [κXT t+B∗tT | ξ∗t ] + κct

+ κEQ [XT | ξ∗t ]

∫ u

t

s

T − s
ds+ EQ

[∫ u

t

1

T − s
B∗sT ds | ξ∗t

]
− κc

∫ u

t

s

T − s
ds

− κEQ [XT | ξ∗t ]

∫ u

t

T

T − s
ds. (5.118)
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Note that all the terms involving XT disappear from (5.118):

EQ [W ∗
u | ξ∗t ] = W ∗

t + EQ [B∗uT | ξ∗t ]− EQ [B∗tT | ξ∗t ] +

∫ u

t

1

T − s
EQ [B∗sT | ξ∗t ] ds

+ κc

(
t− u−

∫ u

t

s

T − s
ds

)
. (5.119)

Using the independence of XT and {B∗tT}, and the tower property, we can write

EQ [B∗uT | ξ∗t ] = EQ [EQ [B∗uT |XT , B
∗
tT ] | ξ∗t

]
= EQ [EQ [B∗uT |B∗tT ] | ξ∗t

]
=
T − u
T − t

EQ [B∗tT | ξ∗t ] . (5.120)

When (5.120) is inserted in (5.119), we can see that

EQ[B∗uT | ξ∗t ]− EQ[B∗tT | ξ∗t ] +

∫ u

t

1

T − s
EQ[B∗sT | ξ∗t ] ds = 0, (5.121)

which proves

EQ [W ∗
u | ξ∗t ] = W ∗

t + κc

(
t− u−

∫ u

t

s

T − s
ds

)
. (5.122)

Since t ≤ u and κ > 0, the second term is negative if c > 0 and positive if c < 0. Note

that {W ∗
t } is continuous and (dW ∗

t )2 = dt. Then, by Lévy’s characterisation, {W ∗
t } is a

Q-Brownian motion with negative drift if c > 0, or with positive drift if c < 0.
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Figure 5.1: A KL asymmetry process between the informed trader and the market. The informed trader
receives five additional sources of information when compared to the market. The asymmetry is zero before
the informed trader receives its first additional information source. Parameters: T = 5, κi = 1/T and
ρi = 0.25. Stopping times are uniformly distributed on [0, T ].

Figure 5.2: A SH asymmetry process between the informed trader and the market. The informed trader
receives five additional sources of information when compared to the market. Parameters: T = 5, κi = 1/T
and ρi = 0.25. Stopping times are uniformly distributed on [0, T ].
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Figure 5.3: A KL asymmetry process between two agents. The process is zero when both agents have equal
sets of information. Red shows when Agent 1 is more advantegous and blue shows the opposite. In this plot,
Agent 1 gains the advantage by receiving the first additional information source and another one after that.
Then, Agent 2 receives two sources in succession which brings the asymmetry back to zero. Finally, Agent
2 recevies yet another information source, hence gains the advantage, and sustains this advantage until the
end. Parameters: T = 5, κi = 1/T and ρi = 0.25. Stopping times are uniformly distributed on [0, T ].

Figure 5.4: A KL asymmetry process between two agents. In this plot, although Agent 2 gains the first
advantage, Agent 1 gains and sustains the final advantage with one more source of information compared to
Agent 2. Parameters: T = 5, κi = 1/T and ρi = 0.25. Stopping times are uniformly distributed on [0, T ].
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Chapter 6

Geometric Quantification of

Information Asymmetry

We use differential geometry to quantify information asymmetry. We assume that the filtra-

tion of an informed trader is an n-order piecewise enlargement of the market filtration.

One main aim of this chapter is to address the question: How can one dynamically

quantify the impact of changes in information sources about a cash flow XT using geometry?

We are partly motivated to ask this question, since the SH asymmetry can be characterised

by the spherical distance between two points on the unit sphere, determined by square-roots

of two conditional probability densities. Following the setting we discuss in Chapter 5, this

angle provides a geometric measurement on information asymmetry, and we aim to find other

geometric measures to quantify it. This chapter indicates how differential geometry interacts

with information, and introduces the use of various geometric objects to bring an alternative

perspective on information asymmetry. In this respect, we aim to analyze the geometric

evolution of the informational advantage of a small trader who is relatively more informed

than the market. Since {Gt} as shown in (3.58) is an explicit example of an n-order piecewise

enlargement of the market filtration {F ξ
1

t }, we focus on the case where the informed trader’s

filtration is {Gt}. We shall introduce an asymmetry process that we call the Fisher-Rao (FR)

asymmetry process on a hyperbolic space, as an alternative to the SH asymmetry process

on a sphere. Similar to Chapter 5, we are also interested in quantifying the competitive

advantage between two informed traders with different piecewise enlargements of the same

market filtration, and consider financial mispricing with a geometric standpoint.

Geometry is becoming increasingly popular in stochastic analysis, since it may shed light

on sophisticated relations that may be hidden from a purely probabilistic point of view.

Accordingly, there is a growing interest of using geometry in mathematical finance. For

instance, Hughston (1994) uses stochastic differential geometry (see, for example, Emery,

1989, Ikeda and Watanabe, 1989) and formulates a no-arbitrage asset price model when
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the underlying state-space is a Riemannian manifold. The work interprets geometric objects

such as torsion and curvature in a financial context. Nunes and Webber (1997) build interest

rate models on two-dimensional manifolds, and Kuruc (2003) applies differential geometry

to hedging problems and risk management. Labordère (2008) provides a detailed synthesis

of the use of differential geometry in financial problems such as option pricing, stochastic

volatility models and portfolio optimization. Brody and Hughston (2001) construct geo-

metric measures to quantify the difference of two term structures. Our work is perhaps

most closely related to the stream of literature concerned in measuring distances between

distributions. Rao (1945) introduces a method of measuring distances between distributions

using Riemannian geometry. It seems that the work of Rao (1945) received little attention

at first. However, the interest is re-established with the works of Efron (1975), Atkinson and

Mitchell (1981), Reverter and Oller (2003), Arwini and Dodson (2008), and many others.

We shall give a brief overview of this chapter. First, when we discuss the SH asymmetry

on the unit sphere S, we don’t specify a distribution for the cash flow XT . Later, we

assume that XT is a Gaussian random variable. Then we can parameterise the conditional

probability distributions to form a parametric class of Gaussian distributions, in which the

parameters (the mean and the variance) are functions of Brownian information processes.

Based on the work of Rao (1945), this induces a natural Riemannian geometry on a manifold

of which the points are determined by Gaussian distributions, and where the parameters are

the local coordinates of the manifold. In particular, the manifold is a hyperbolic space,

which we denote by P , endowed with the Fisher metric tensor. It follows that for each

fixed time t < T , a Brownian information process determines a point on this hyperbolic

space. We include the boundary of this space by using Dirac measures as limits of Gaussian

distributions, and define a manifold with boundary that we denote byM. Then we are able

to construct what we call the FR asymmetry process on [0, T ] using points on M that are

determined by different numbers of information sources. We shall see that the FR asymmetry

between points on the boundary takes the value zero at t = T , and the FR asymmetry

process for t < T jumps when a new information source appears. The jumps of the SH and

the FR asymmetry processes induce spherical triangles and hyperbolic triangles on S+ and

P , respectively. The surfaces enable us to measure the jump sizes of conditional probability

densities using angles between geodesics and the curvatures of the underlying manifolds, and

offer alternative ways of quantifying the impact of appearances of new information sources.

Also in a way, these surfaces allow us to view information asymmetry as a geometric shape

instead of just a quantity. We introduce an analogy between the SH asymmetry and an

isometric invariant of the Poincaré disc under the action of the general Möbius group. The

analogy motivates us to propose the use of the isometric invariant as an alternative measure

of information asymmetry in the Gaussian setting. The isometric invariant is zero if there

is no information asymmetry, and is strictly positive otherwise.
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This chapter is organised as follows: Section 1 is a brief background on Riemannian

geometry. Section 2 is the geometric perspective gained from the SH asymmetry on the

unit sphere. Section 3 is the geometric modelling of information asymmetry on a hyperbolic

space. Section 4 is the geometric quantification of the competitive advantage between two

informed traders, and also of financial mispricing.

6.1 Preliminaries on Riemannian Geometry

We provide a brief preliminary background on Riemannian geometry (see for example, Do

Carmo, 1992 and O’Neill, 2006). We focus on some concepts that we shall later refer to when

we discuss information asymmetry. The definitions and notations given below are mostly

based on Do Carmo (1992).

We first require the notion of a differentiable manifold to generalise differential calculus

to spaces generalising Rn.

Definition 6.1.1. An n-dimensional differentiable manifold is a set M and a family of

injective transformations ϕα : Vα ⊂ Rn →M of open sets Vα, such that

1. The union
⋃
α ϕα(Vα) =M,

2. Given any pair α and β such that ϕα(Vα)
⋂
ϕβ(Vβ) = G 6= ∅, the sets ϕ−1

α (G) and

ϕ−1
β (G) are open sets in Rn, and the transformations ϕ−1

β ◦ ϕα are differentiable,

3. The family {(Vα, ϕα)} is maximal relative to the first two conditions.

An n-dimensional differentiable manifold M is locally diffeomorphic to the Euclidean

space Rn. There is a natural topology induced by M, if a set A ⊂ M is open if and only

if for all α, ϕ−1
α (ϕα(Vα)

⋂
A) is open in Rn. We further impose topological restrictions on

differentiable manifolds such that they are Hausdorff spaces with countable bases (this is to

ensure uniqueness of limits of convergent sequences and existence of a differentiable partition

of unity). Based on Whitney’s theorem, any n-dimensional Hausdorff differentiable manifold

M with a countable basis can be embedded in R2n+1. From this point on, when we use the

term differentiable, we mean smooth, or of class C∞.

Definition 6.1.2. A Riemannian metric on a differentiable manifold M is a differentiable

family of transformations:

g 〈 , 〉p : TpM× TpM→ R for x ∈M, (6.1)

that is a bilinear, symmetric, positive-definite form on each tangent space TpM where p ∈M.

A differentiable manifold with a Riemannian metric is called a Riemannian manifold.
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Hence, a Riemannian manifold is a differentiable manifold where each tangent space is

equipped with an inner product. It can be shown that any differentiable manifoldM, which

is Hausdorff with a countable basis, has a Riemannian metric (see Do Carmo, 1992, pp. 43).

The Riemannian metric can be represented in the coordinate system as gij = gji. Locally,

at each point p ∈ M, each g 〈 , 〉p can be written as an n × n matrix [gij]. For each vector

x ∈ TpM, the norm of x, denoted by ||x|| can be written as: ||x|| =
√
g 〈x,x〉. The angle

between any two vectors x and y on the same tangent space is

cos Θ =
g 〈x,y〉√

g 〈x,x〉 g 〈y,y〉
. (6.2)

Therefore, the Riemannian metric allows one to define lengths, angles and volumes on a

differentiable manifold.

Differentiating vector fields on an Euclidean space is straightforward, since nearby tangent

spaces can be identified by translation. However, differentiation of vector fields on a manifold

is less clear, since nearby tangent spaces cannot be identified in such a natural way. As a

remedy, an affine connection allows vector fields to be differentiated by connecting nearby

tangent spaces.

Formally, let Λ(M) be the set of differentiable vector fields on M and let R(M) denote

the ring of real valued differentiable functions onM. Then, an affine connection ∇ onM is

a transformation

∇ : Λ(M)× Λ(M) −→ Λ(M)

(X, Y ) 7→ ∇XY, (6.3)

which satisfies: 1) ∇X(Y + Z) = ∇XY +∇XZ, and 2) ∇fX+gYZ = f∇XZ + g∇YZ, and 3)

∇X(fY ) = f∇XY +X(f)Y , given that X, Y, Z ∈ Λ(M) and f, g ∈ R(M).

In particular, let αi : V → R be a function. If X is a vector field and x : V ⊂ Rn →M
(where V is an open set), the following can be written:

X(p) =
n∑
i=1

αi(p)
∂

∂xi
, (6.4)

where ∂/∂xi is the basis for i = 1, . . . , n. Then, with X and Y being vector fields, ∇XY can

be calculated as follows:

∇XY =
∑
m

(
∑
i,j

xiyjΓ
m
ij +X(ym))Xm, (6.5)

provided that X =
∑

i xiXi where Xi = ∂/∂xi. Here, Γmij is called the Christoffel symbol of
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∇, defined by

Γmij =
1

2

∑
k

(
∂gjk
∂xi

+
∂gki
∂xj
− ∂gij
∂xk

)
gkm, (6.6)

where gkmgmj = χ{k=j}, or where [gkm] is the inverse of the matrix [gkm]. An affine connection

is symmetric if ∇XY −∇YX = XY − Y X.

We now need to define the so-called covariant derivative to give a formal definition of a

geodesic on M. We make use of geodesics quite extensively in our analysis of information

asymmetry. Briefly, a covariant derivative is a generalisation of the directional derivative

(from Euclidean geometry), which identifies a derivative of vector fields on a differentiable

manifold.

Formally, the correspondence which associates a vector field X with another vector field

DX/ du along the differentiable curve c : I → M, is called the covariant derivative of X

along c, which satisfies: 1) D
du

(X + Y ) = DX
du

+ DY
du

, and 2) D
du

(fX) = df
du
X + f DX

du
, f being

a differentiable function on I, and 3) If X(u) = Y (c(u)), then DX
du

= ∇ dc/ duY , given that ∇
is the affine connection on M.

An affine connection is compatible with the Riemannian metric if for any pair of parallel

vector fields X and Y (parallel means DX
du

= DY
du

= 0) along any differentiable curve on M,

the metric g 〈X, Y 〉 = c for some constant c. If the affine connection is also symmetric, then

we call such connections Levi-Civita connections.

Definition 6.1.3. Let M be a Riemannian manifold with its Levi-Civita connection ∇. A

parametrized curve γ : I →M is a geodesic at u ∈ I, if D
du

( dγ
du

) = 0, for all u ∈ I.

Therefore, geodesics ofM are the curves with zero acceleration, or more intuitively, they

are the curves which locally minimize the distance between two points on M. If [a, b] ⊂ I,

then the restriction of γ to [a, b] connects γ(a) to γ(b), which is a segment of the geodesic γ.

Geodesics are the generalisation of straight lines defined on an Euclidean space.

In our analysis, we make use of what are called Riemannian curvatures of the underlying

manifolds. Riemannian curvature is a special type of a curvature of a Riemannian manifold.

Formally, the curvatureK of a Riemannian manifoldM with its Levi-Civita connection∇
is a correspondence that associates each pair of vector fields X, Y ∈ Λ(M) a transformation

K(X, Y ) : Λ(M)→ Λ(M) such that

K(X, Y )Z = ∇Y∇XZ −∇X∇YZ +∇[XY ]Z, (6.7)

for Z ∈ Λ(M), where the bracket [X, Y ] = XY − Y X.

We can view the curvature as a measure of how farM is from being Rn, since Rn is flat

with zero curvature. The bracket [X, Y ] is also known as the Lie bracket.
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Definition 6.1.4. Let p ∈M, and E be a two-dimensional subspace E ⊂ TpM. Given that

x, y ∈ E are linearly independent vectors, the real number R(x, y) = R(E) defined by

R(x, y) =
g 〈K(x, y)x, y〉
|x|2|y|2 − g 〈x, y〉2

, (6.8)

is called the Riemannian curvature of E at the point p.

The Riemannian manifolds with constant curvatures are quite important for our purposes.

For example, SH asymmetry characterises points on the unit sphere S, which is a Riemannian

manifold (if endowed with the metric) with constant curvature R = +1. We shall see later

in Section 6.3 that we can also analyze information asymmetry on a Riemannian manifold

with constant negative curvature R = −1.

6.2 Squared-Hellinger Asymmetry and the Sphere

Using the bijection between probability densities and square-roots of probability densities,

the SH asymmetry can be represented as the squared-norm between the square-roots of

two conditional probability densities in the Hilbert space L2. Since probability densities

are non-negative functions and their integral is unity, taking the square-root of conditional

probability densities determines points on the positive orthant of the unit sphere S ⊂ L2.

As done in Chapter 3, we denote the positive orthant of S by S+.

Any two points on S can be defined on a great circle with its center coinciding with the

center of S. Then, denoting ||.||L2 as the L2-norm, we can define the SH asymmetry as

SHt(q(x|Yt)||q(x|Gt)) =
1

2
||
√
q(x|Yt)−

√
q(x|Gt)||2L2

= 1− cos
(
ϑt(
√
q(x|Yt),

√
q(x|Gt))

)
, (6.9)

for 0 ≤ t < T , which follows from (3.7), (3.8), (3.97) and (5.29).

In equation (6.9), the geometric quantity ϑt(
√
q(x|Yt),

√
q(x|Gt)) is the Bhattacharyya

angle (the angle from the center of S, subtended to the endpoints on S+) between the square-

roots of the conditional probability densities q(x|Yt) and q(x|Gt). Measured in radians, the

Bhattacharyya angle equals the spherical distance (arc length) between the points determined

by the square-roots of the conditional densities, since S is the unit sphere. In addition, since

the points are on the positive orthant S+, the Bhattacharyya angle can vary in the interval

[0, π/2].

The unit sphere S is a differentiable manifold in the Hilbert space L2. When equipped

with the Riemannian metric, it is a Riemannian manifold. Note that the Riemannian metric

g〈 , 〉 on S ⊂ L2 can be defined as an inner product on L2. Then one can see from (3.7),
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(6.2) and (6.9) that

cos
(
ϑt(
√
q(x|Yt),

√
q(x|Gt))

)
=

g
〈√

q(x|Yt),
√
q(x|Gt)

〉
√
g
〈√

q(x|Yt),
√
q(x|Yt)

〉
g
〈√

q(x|Gt),
√
q(x|Gt)

〉
=

∫
X

√
q(x|Yt)

√
q(x|Gt) dx

= 1− 1

2
||
√
q(x|Yt)−

√
q(x|Gt)||2L2 ,

since ||
√
q(x|Yt)||L2 = ||

√
q(x|Gt)||L2 = 1. The geodesics on S are great circles. Hence, the

length of a geodesic γ between points on S+ is the spherical distance. Since the spherical dis-

tance equals the Bhattacharya angle on S, the SH asymmetry induces a natural Riemannian

geometry when represented in terms of Bhattacharyya angles.

We are now in the position to provide a geometric remark on Proposition 5.2.4:

Remark 6.2.1. The Bhattacharyya angle (or the spherical distance) process {ϑt(
√
ψt,
√
ψt)}

on S+ is the inverse cosine of a jump-diffusion process for 0 ≤ t < T .

6.3 Geometry and Information Asymmetry

From this point on, we assume that XT is a Gaussian random variable. We can then

parametrise conditional distributions in a way that allows us to work on a Riemannian

manifold other than S. In particular, each point on this new manifold is determined by a

Gaussian distribution with parameters as functions of the Brownian information processes.

We assume XT has the parameter set ΘX = {µX , σ2
X}, where the mean satisfies −∞ <

µX < ∞ and the variance satisfies 0 < σ2
X < ∞. We write A 
 B to denote that B is the

parameterization of A.

Lemma 6.3.1. The information process {ξ̂(i)
t } is Gaussian with mean and variance:

µ
(i)
t = κ̂(i)µXt and σ

(i)
t =

√
(κ̂(i)σXt)2 +

t(T − t)
T

. (6.10)

Proof. If XT is Gaussian with mean µX and variance σ2
X , the information process {ξ̂(i)

t } is

also Gaussian (note that XT is independent from the Brownian bridge), where

EQ[ξ̂
(i)
t ] = µ

(i)
t = κ̂(i)µXt, (6.11)

VarQ[ξ̂
(i)
t ] = (σ

(i)
t )2 = (κ̂(i)σXt)

2 +
t(T − t)

T
, (6.12)

which gives the statement.
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Proposition 6.3.2. The conditional density ψ
(i)
t can be parametrically represented as

ψ
(i)
t 
 q(x, µ̂

(i)
t , (σ̂

(i)
t )2) =

1
√

2πσ̂
(i)
t

exp

(
−(x− µ̂(i)

t )2

2(σ̂
(i)
t )2

)
, (6.13)

where the parameters µ̂
(i)
t and σ̂

(i)
t are given by

µ̂
(i)
t = µX +

σX

σ
(i)
t

ρ
(i)
t (ξ̂

(i)
t − µ

(i)
t ), and σ̂

(i)
t =

√
(1− (ρ

(i)
t )2)σ2

X , (6.14)

and the function ρ
(i)
t = κ̂(i)σXt/σ

(i)
t is the correlation between XT and ξ̂

(i)
t .

Proof. Using Lemma 6.3.1, the conditional distribution of XT given ξ̂
(i)
t is

XT |ξ̂(i)
t ∼ Φ

(
µX +

σX

σ
(i)
t

ρ
(i)
t (ξ̂

(i)
t − µ

(i)
t ), (1− (ρ

(i)
t )2)σ2

X

)
∼ Φ

(
µ̂

(i)
t , (σ̂

(i)
t )2

)
, (6.15)

where Φ(.) is the Gaussian distribution, and ρ
(i)
t is the correlation between XT and ξ̂

(i)
t .

At each time t, ψ
(i)
t is a density belonging to a parametric family of Gaussian distributions

on R. Note that the parameters of the Gaussian distributions are functions of ξ̂
(i)
t .

It can be shown that the parameter space of Gaussian distributions with the parameter

set Θ = {µ, σ2}, satisfying −∞ < µ < ∞ and 0 < σ < ∞, is a 2-dimensional differentiable

manifold (see, for example, Arwini and Dodson, 2008), say P , which is locally diffeomorphic

to R2. The parameters µ and σ are the local coordinates of the manifold, and the points of

the manifold are determined by Gaussian distributions with varying parameters. When P
is endowed with a Riemannian metric, it is a Riemannian manifold. More specifically, P is

a hyperbolic space with constant curvature R = −1/2, where the Riemannian metric tensor

on P is what is called the Fisher information metric gij (see Fisher, 1925 and Rao, 1945),

given by

gij(Θ) =

∫
X
q(x,Θ)

∂ log q(x,Θ)

∂Θi

∂ log q(x,Θ)

∂Θj

dx. (6.16)

On P , the 2× 2 matrix [gij(Θ)] is a positive-definite matrix given by

[gij(Θ)] =

[
σ2 2µσ

2µσ22σ2 2µ2 + σ2

]
. (6.17)

Setting XT = x, we can write the following limits: limt→T ρ
(i)
t = 1 which implies limt→T σ̂

(i)
t =

0 and limt→T µ̂
(i)
t = x. It can be observed that the limits for i = 1, . . . , n + 1 are the same,

regardless of the number of information processes. It can also be seen that the limits are
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not on the Riemannian manifold P . However, by allowing 0 ≤ σ < ∞, we can form

a manifold with boundary (see for example, Lafferty and Lebanon, 2005, and Tu, 2010).

The points on the boundary ∂P are determined by Dirac measures centered at a point

mass, which, by taking σ → 0, are the limits of Gaussian distributions. Also, ∂P is itself

a 1-dimensional manifold, and is flat with zero curvature. Therefore, we can construct a

manifold M = P
⋃
∂P , where P = Int(M) is the interior of M and ∂P = ∂M is the

boundary of M. This ensures that the limits are included on the manifold M.

The Fisher information metric gij can be used to define a distance metric between two

distributions by integrating the infinitesimal line element along the geodesic connecting the

two points on the manifold P . We call this distance the Fisher-Rao distance (also see, Brody

and Hughston, 2001). The geodesics γ : I → P with respect to gij are the solutions of the

following Euler-Lagrange differential equation:

2∑
i=1

gik
d2Θi(u)

du2
+

2∑
i,j=1

Γijk
dΘi(u)

du

dΘj(u)

du
= 0, (6.18)

for k = 1, 2, where Θ(u) is a curve on P between the given two end points, which are the

boundary conditions. Γijk is the Christoffel symbol of the first kind:

Γijk =
1

2

(
∂gjk
∂Θi

+
∂gik
∂Θj

− ∂gij
∂Θk

)
, for k = 1, 2. (6.19)

We shall find the distance between the Gaussian distributions with densities ψ
(1)
t = ψt

and any given ψ
(i)
t for i = 2, . . . , n + 1, at any given time t ≤ T . The boundary ∂M has

zero curvature and its geodesics are linear curves. Also, since π
(i)
T (dx) = δXT (dx) for all

i = 1, . . . , n+ 1, the limits are the same point on ∂M, and hence the distance between them

is zero.

Therefore, we confine ourselves in finding the distance between points at times t < T .

To do so, one should calculate integrals of infinitesimal line elements along the geodesics on

P . The infinitesimal line element ds on P is given by

ds2 =
∑
i,j

gij(Θ) dΘi dΘj, (6.20)

which is also called the squared local distance. The length of the curve Θ(u), connecting

two points Θ(u1) and Θ(u2) is given by the following:

D =

∫ u2

u1

∑
i,j

√
gij(Θ(u)) dΘi(u) dΘj(u). (6.21)

As discussed previously, the geodesic γ is the curve which minimizes the length D. It follows
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from (6.16) that ds2 = ( dµ2 + 2 dσ2) /σ2. Then, at each fixed time t < T , the geodesic

distance on Int(M) between points determined by ψ1
t and ψ

(i)
t for i = 2, . . . , n + 1 is given

by

Dt(ψ
(1)
t , ψ

(i)
t ) =

√
2

∣∣∣∣∣log

(
1 + ζ1,i

t

1− ζ1,i
t

)∣∣∣∣∣ = 2
√

2 tanh−1(ζ1,i
t ), (6.22)

where the function ζ1,i
t is defined as follows:

ζ1,i
t =

(
(µ̂

(i)
t − µ̂

(1)
t )2 + 2(σ̂

(i)
t − σ̂

(1)
t )2

(µ̂
(i)
t − µ̂

(1)
t )2 + 2(σ̂

(i)
t + σ̂

(1)
t )2

) 1
2

. (6.23)

The functional form of the Fisher-Rao geodesic distance (6.22) for Gaussian distributions

can be found in Atkinson and Mitchell (1981), and Burbea and Rao (1982). This is the

metric when both parameters are different. The metric takes alternative forms when the

mean or variance is fixed (we omit these formulas since, in our setting, the probability of

such events is zero Q-a.s., and we refer to Atkinson and Mitchell, 1981).

We define what we call the Fisher-Rao asymmetry process {FRt(ψ
(1)
t ||ψ

(i)
t )}t∈[0,T ] onM,

as follows:

FRt(ψ
(1)
t ||ψ

(i)
t ) =

Dt(ψ
(1)
t , ψ

(i)
t ) if t < T ,

0 if t = T .
(6.24)

The FR asymmetry process takes the value zero at the boundary ∂M, where by definition,

FRT (ψ
(1)
T ||ψ

(i)
T ) = 0. This holds on ∂M since the limits of the Gaussian distributions under

consideration is the Dirac measure δXT (dx) ∈ ∂M at t = T , irrespective of the number of

information sources.

The next proposition shows that the FR asymmetry process jumps at every entry of a

new source of information. Since XT is Gaussian, at a fixed time t < T , each Brownian

information parameterises a point on Int(M). Evolving the time in between information

entries, a continuous trajectory is determined on Int(M) by the information processes. If

the FR asymmetry process jumps, the new information source parameterises a new point in

a discontinuous way. Hence, each jump of the FR asymmetry process measures the impact of

the appearance of a new information source geometrically on the hyperbolic space Int(M).

Proposition 6.3.3. The dynamics of {FRt(ψ
(1)
t ||ψt)} on Int(M) are governed by

dFRt(ψ
(1)
t ||ψt) =

n+1∑
i=1

dDt(ψ
(1)
t , ψ

(i)
t )It(i)

+
n+1∑
i=2

(
Dt(ψ

(1)
t , ψ

(i)
t )−Dt(ψ

(1)
t , ψ

(i−1)
t )

)
δτi−1

(dt). (6.25)
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Proof. On Int(M), at each fixed time t for 0 ≤ t < T , we can write

Dt(ψ
(1)
t , ψt) = Dt(ψ

(1)
t ,

n+1∑
i=1

ψ
(i)
t It(i)) =

n+1∑
i=1

Dt(ψ
(1)
t , ψ

(i)
t )It(i), (6.26)

since the elements of It are orthogonal such that It(i) = 1 implies It(j) = 0 for all i 6= j.

We can also show that the FR asymmetry between ψ
(1)
t and ψt coincides with the KL

asymmetry between ψ
(1)
t and ψt at points on Int(M) infinitesimally close to each other.

Assume an open neighborhood Er(p) around p ∈ Int(M) for some r > 0, such that for a fixed

time t, the FR distance Dt(ψ
(1)
t , ψt) between the points inside Er(p) can be approximated to

an arbitrary precision by the squared infinitesimal line element ds2. In the parametric case,

the KL asymmetry between ψ
(1)
t and ψt can then be written as

KLt(ψ
(1)
t ||ψt) 
 KLt(q(x, µ̂

(1)
t , σ̂

(1)
t )||

n+1∑
i=1

q(x, µ̂
(i)
t , σ̂

(i)
t )It(i))

= KLt(q(x, µ̂
(1)
t , σ̂

(1)
t )||

n+1∑
i=1

q(x, µ̂
(1)
t + ε(i)µ (t), σ̂

(1)
t + ε(i)σ (t))It(i)), (6.27)

for small ε
(i)
µ (t) > 0 and ε

(i)
σ (t) > 0. Therefore, the KL asymmetry between points belonging

to Er(p) can be represented with the following functional form:

KL(q(x,Θ)||q(x,Θ + dΘ)). (6.28)

As discussed in Brigo et al. (1995), using the Taylor series expansion:

KL(q(x,Θ)||q(x,Θ + dΘ)) = −
2∑
i=1

∫ (
∂ log q(x,Θ)

∂Θi

q(x,Θ) dx

)
dΘi

−
2∑
i=1

∫ (
∂2 log q(x,Θ)

∂Θi∂Θj

q(x,Θ) dx

)
dΘi dΘj +O(| dΘ|3)

=
2∑

i,j=1

gij(Θ) dΘi dΘj +O(| dΘ|3)

= ds2 +O(| dΘ|3), (6.29)

where gij is the Fisher information metric on Int(M). Hence, the KL asymmetry coincides

with the FR asymmetry at points in Er(p).
In fact, the FR asymmetry between ψ

(1)
t and ψt coincides with any f -asymmetry between

ψ
(1)
t and ψt at points infinitesimally close to each other on Int(M). From Amari and Ci-

chocki (2010, Theorem 5), any f -divergence induces a unique Riemannian metric, which is

108



the Fisher information metric gij. Also, by the Taylor series expansion, any f -divergence

∆f (q(x,Θ)||q(x,Θ + dΘ)) for some small dΘ can be written as

∆f (q(x,Θ)||q(x,Θ + dΘ)) ≈
∑
i,j

gij(Θ) dΘi dΘj = ds2. (6.30)

The statement that the FR asymmetry coincides infinitesimally with any f -asymmetry fol-

lows since the FR asymmetry is defined by the Fisher information metric gij. The same line

of argument holds for the KL (or the SH) asymmetry, since KL (or SH) is an f -divergence.

6.3.1 Surfaces of Information Asymmetry

At each entry of a new information source, the jump sizes of the SH and the FR asymmetry

processes quantify the sudden impact of a new source of information. However, note that

these processes alone do not directly provide the jump sizes of the conditional density process

{ψt} itself. We shall show that at each entry of a new information source, both the SH and the

FR asymmetries characterise triangles on S+ and P , respectively. These triangles allow us to

represent the jump sizes of {
√
ψt} on S+ and of {ψt} on P , using geodesics and curvatures

of the underlying manifolds. We call these triangles surfaces of information asymmetry.

Spherical Surfaces of Information Asymmetry

We have shown that at each entry of a new source of information, the SH asymmetry process

{SHt(ψt||ψt)} jumps. The jumps of the SH asymmetry by themselves do not tell much about

the actual jump sizes of {
√
ψt}, but instead, tell us about the jumps of the distances between

{
√
ψt} and {

√
ψt}. Although, we can still bring forth a geometrical machinery in determining

the jump sizes of {
√
ψt} on S+ from the SH asymmetry process.

First, for a fixed time t < T , we write

SHt(ψt||ψt) = SHt(ψt||
n+1∑
i=1

ψ
(i)
t It(i)) =

n+1∑
i=1

SHt(ψt||ψ(i)
t )It(i), (6.31)

since I(i) = 1 implies I(j) = 0 for i 6= j. This allows us to write

dSHt(ψt||ψt) =
n+1∑
i=1

It(i) dSHt(ψt||ψ(i)
t ) +

n+1∑
i=2

(
SHt(ψt||ψ(i)

t )− SHt(ψt||ψ(i−1)
t )

)
δτi−1

(dt)

= −
n+1∑
i=1

It(i) d cos

(
ϑt

(√
ψt,

√
ψ

(i)
t

))

+
n+1∑
i=2

[
cos

(
ϑt

(√
ψt,

√
ψ

(i−1)
t

))
− cos

(
ϑt

(√
ψt,

√
ψ

(i)
t

))]
δτi−1

(dt), (6.32)
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for 0 ≤ t < T on S+. From this point on, we shall denote ρt =
√
ψt and ρ

(i)
t =

√
ψ

(i)
t .

Note that at τi = t, we can identify 3 points on S+ determined by ρt, ρ
(i)
t and ρ

(i+1)
t for

i = 2, . . . , n (ignoring the case of ρ
(1)
t , since ρt = ρ

(1)
t ). Then, it can be seen from (6.32)

that each jump of the SH asymmetry process is characterised by two spherical distances:

ϑt(ρt, ρ
(i)
t ) and ϑt(ρt, ρ

(i+1)
t ), and not directly by ϑt(ρ

(i)
t , ρ

(i+1)
t ). At each jump, two main

events may occur: (i) the new point determined by ρ
(i+1)
t may be on the same geodesic

connecting the points determined by ρt and ρ
(i)
t , or (ii) otherwise.

At τi = t, we denote the jump size of
√
ψt by ϑt(ρ

(i)
t , ρ

(i+1)
t ) on S+. Then, for case (i)

ϑt(ρ
(i)
t , ρ

(i+1)
t ) =

[
ϑt

(
ρt, ρ

(i)
t

)
− ϑt

(
ρt, ρ

(i+1)
t

)]
or (6.33)

=
[
ϑt

(
ρt, ρ

(i+1)
t

)
− ϑt

(
ρt, ρ

(i)
t

)]
or (6.34)

=
[
ϑt

(
ρt, ρ

(i)
t

)
+ ϑt

(
ρt, ρ

(i+1)
t

)]
, (6.35)

if, on the same geodesic: ρ
(i+1)
t determines a point between the points determined by ρt

and ρ
(i)
t , or ρ

(i)
t determines a point between the points determined by ρt and ρ

(i+1)
t , or

ρ
(i+1)
t determines a point on the opposite direction from the points determined by ρt to ρ

(i)
t ,

respectively.

If at τi = t, the new point determined by ρ
(i+1)
t is not on the same geodesic connecting

the points determined by ρt and ρ
(i)
t , this induces a compact spherical triangle on S+. In

particular, we can identify three pairs from three points determined by ρt, ρ
(i)
t and ρ

(i+1)
t

on three distinct geodesics on S+. This forms a spherical triangle of which the three points

are the vertices. This characterises a geometric surface at each entry of a new information

source, which we call a spherical surface of information asymmetry. We can now exploit

more rules from spherical geometry. We use the term geodesic angles, which in the usual

notion, are the angles between the tangent lines of the geodesics.

Proposition 6.3.4. At τi = t, the jump size of
√
ψt on S+, denoted by ϑt(ρ

(i)
t , ρ

(i+1)
t ) can

be represented as

cos
(
ϑt(ρ

(i)
t , ρ

(i+1)
t )

)
= cos

(
ϑt(ρt, ρ

(i)
t )
)

cos
(
ϑt(ρt, ρ

(i+1)
t )

)
+ sin

(
ϑt(ρt, ρ

(i)
t )
)

sin
(
ϑt(ρt, ρ

(i+1)
t )

)
× cos

(
βt

(
γ(ρt, ρ

(i)
t ), γ(ρt, ρ

(i+1)
t )

))
, (6.36)

where βt

(
γ
(
ρt, ρ

(i)
t

)
, γ
(
ρt, ρ

(i+1)
t

))
is the geodesic angle in radians between the geodesics

denoted by γ
(
ρt, ρ

(i)
t

)
and γ

(
ρt, ρ

(i+1)
t

)
, connecting the associated points on S+.

Proof. The statement follows from the spherical law of cosines.
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Hence, spherical surfaces of information asymmetry allow us to represent the jump sizes of

{
√
ψt} using the angles between geodesics, which are determined by the points characterising

the SH asymmetry at each entry of a new information source. Obviously, any other length

of the triangle can be found by the lengths of the remaining two sides and the corresponding

geodesic angle. We can also analyse the areas of these surfaces. The areas of the spherical

triangles offer an alternative way of quantifying the impact of a new source of information.

Proposition 6.3.5. Denote a spherical triangle on S+ as Ξ and its surface area as Π(Ξ).

The area of the spherical surface of information asymmetry at τi = t is

Π(Ξt) = βt

(
γ
(
ρt, ρ

(i)
t

)
, γ
(
ρt, ρ

(i+1)
t

))
+ αt

(
γ
(
ρt, ρ

(i)
t

)
, γ
(
ρ

(i)
t , ρ

(i+1)
t

))
+ φt

(
γ
(
ρt, ρ

(i+1)
t

)
, γ
(
ρ

(i)
t , ρ

(i+1)
t

))
− π, (6.37)

where β, α and φ are the corresponding geodesic angles in radians on S+.

Proof. The sum of the geodesic angles of a spherical triangle on S always exceeds the sum

of the angles of an Euclidean triangle, which is called the spherical excess. Girard’s theorem

(a special case of Gauss-Bonnet theorem) states that spherical excess alone determines the

surface area of any spherical triangle on S. The expression in (6.37) follows.

The sum of the angles at τi = t is Π(Ξt) + π. Using the geodesic angles on S+ and the

spherical areas, we can represent the jump size of
√
ψt at τi = t, in an alternative way. First,

we define

Qt =
(Π(Ξt) + π)

2
. (6.38)

Proposition 6.3.6. At τi = t, the jump size of
√
ψt on S+, denoted by ϑt(ρ

(i)
t , ρ

(i+1)
t ) can

be represented as

tan

(
ϑt(ρ

(i)
t , ρ

(i+1)
t )

2

)
=
[
− cos(Qt) cos

(
Qt − βt

(
γ(ρt, ρ

(i)
t ), γ(ρt, ρ

(i+1)
t )

))] 1
2

× 1/
[
cos
(
Qt − αt

(
γ(ρt, ρ

(i)
t ), γ(ρ

(i)
t , ρ

(i+1)
t )

))] 1
2

× 1/
[
cos
(
Qt − φt

(
γ(ρt, ρ

(i+1)
t ), γ(ρ

(i)
t , ρ

(i+1)
t )

))] 1
2
, (6.39)

where β, α and φ are the corresponding geodesic angles in radians on S+.

Proof. The statement follows from the half-side formula in spherical geometry.

The Riemannian curvature of S is R = +1, and hence, it does not explicitly appear in

equations (6.36)-(6.39). However, (6.36)-(6.39) are implicitly determined by the curvature
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of S. The Riemannian curvature will explicitly appear in the following section.

Hyperbolic Surfaces of Information Asymmetry

Similar to the SH asymmetry, the jumps of the FR asymmetry process by themselves do not

directly provide the jump sizes of {ψt}. Then again, we can adopt a geometrical approach

in determining the jump sizes of {ψt} on P from the FR asymmetry process. First, to make

more sense of the geometry, we further specify the underlying model of the hyperbolic space

P . In particular, we define the more general hyperbolic spaceW by using the Poincaré upper-

half-plane model, and exploit the associated trigonometry on P . For a detailed account of

hyperbolic geometry, see for example, Anderson (2005).

Define the Riemannian sphere C as follows:

C = C
⋃
{∞}, (6.40)

where C is the complex plane. The construction of C is an example of a more general

topological construction called the one-point compactification. The underlying hyperbolic

space of Poincaré upper-half-plane model is the upper-half planeW in the complex plane C:

W = {z ∈ C : =(z) > 0}, (6.41)

where =(z) is the imaginary part of z. W is an open subset of the Riemannian sphere C,

and the angles between curves in W are the angles between the tangent lines of curves in C.

As a 2-dimensional space, W has negative constant Riemannian curvature. We can now use

the trigonometric rules of W on the hyperbolic space P . First, recall that

dFRt(ψt||ψt) =
n+1∑
i=1

dDt(ψt, ψ
(i)
t )It(i) +

n+1∑
i=2

(
Dt(ψt, ψ

(i)
t )−Dt(ψt, ψ

(i−1)
t )

)
δτi−1

(dt), (6.42)

for 0 ≤ t < T on P . Hence, at τi = t, we can identify 3 points on P determined by ψt, ψ
(i)
t

and ψ
(i+1)
t for i = 2, . . . , n (again, ignoring the case of ψ

(1)
t , since ψt = ψ

(1)
t ). If the new point

determined by ψ
(i+1)
t is on the same geodesic that connects the points determined by ψt and

ψ
(i)
t on P , the jump size of ψt at τi = t, denoted by Dt(ψ

(i)
t , ψ

(i+1)
t ) is

Dt(ψ
(i)
t , ψ

(i+1)
t ) =

[
Dt

(
ψt, ψ

(i)
t

)
−Dt

(
ψt, ψ

(i+1)
t

)]
or (6.43)

=
[
Dt

(
ψt, ψ

(i+1)
t

)
−Dt

(
ψt, ψ

(i)
t

)]
or (6.44)

=
[
Dt

(
ψt, ψ

(i)
t

)
+Dt

(
ψt, ψ

(i+1)
t

)]
, (6.45)

given that: ψ
(i+1)
t determines a point between the points determined by ψt and ψ

(i)
t , or ψ

(i)
t
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determines a point between the points determined by ψt and ψ
(i+1)
t , or ψ

(i+1)
t determines a

point on the opposite direction from the points determined by ψt to ψ
(i)
t , respectively.

If at τi = t, the new point determined by ψ
(i+1)
t is not on the same geodesic connecting the

points determined by ψt and ψ
(i)
t , this induces a compact hyperbolic triangle on P . Similar

to the spherical case, we can identify three pairs from the three points determined by ψt,

ψ
(i)
t and ψ

(i+1)
t on three distinct geodesics on P . This forms a hyperbolic triangle of which

the three points are the vertices. This characterises a geometric surface at each entry of a

new information source, which we call a hyperbolic surface of information asymmetry.

The links between angles and sides of hyperbolic triangles are analagous to those of

spherical triangles. It is more convenient to state the following results when the lengths

on P are adjusted such that they are measured in an alternative unit that we denote by r

(which is a unit that is analogous to the radian on S), where

r = −
√
−R
R

=
√

2, (6.46)

since the Riemannian curvature is R = −1/2 on P . Note that if W has curvature R = −1,

then r = 1 on W .

Proposition 6.3.7. At τi = t, the jump size of ψt on P, denoted by Dt(ψ
(i)
t , ψ

(i+1)
t ) can be

represented as

cosh

(
Dt(ψ

(i)
t , ψ

(i+1)
t )√

2

)
= cosh

Dt

(
ψt, ψ

(i)
t

)
√

2

 cosh

Dt

(
ψt, ψ

(i+1)
t

)
√

2


− sinh

Dt

(
ψt, ψ

(i)
t

)
√

2

 sinh

Dt

(
ψt, ψ

(i+1)
t

)
√

2


× cos

(
βt

(
γ(ψt, ψ

(i)
t ), γ(ψt, ψ

(i+1)
t )

))
, (6.47)

where βt

(
γ
(
ψt, ψ

(i)
t

)
, γ
(
ψt, ψ

(i+1)
t

))
is the geodesic angle in radians between the geodesics

shown as γ
(
ψt, ψ

(i)
t

)
and γ

(
ψt, ψ

(i+1)
t

)
, connecting the associated points on P.

Proof. The statement follows from the hyperbolic law of cosines. Note that the denominator√
2 comes from (6.46).

Any other length of the hyperbolic triangle can be found by the lengths of the remaining

two sides and the corresponding geodesic angle. The areas of the hyperbolic triangles provide

an alternative way of quantifying the impact of a new information source:

Proposition 6.3.8. Denoting a hyperbolic triangle on P as Ξ and its surface area as Π(Ξ),
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the area of the hyperbolic surface of information asymmetry at τi = t is

Π(Ξt) = 2π − 2βt

(
γ
(
ψt, ψ

(i)
t

)
, γ
(
ψt, ψ

(i+1)
t

))
− 2αt

(
γ
(
ψt, ψ

(i)
t

)
, γ
(
ψ

(i)
t , ψ

(i+1)
t

))
− 2φt

(
γ
(
ψt, ψ

(i+1)
t

)
, γ
(
ψ

(i)
t , ψ

(i+1)
t

))
, (6.48)

where β, α and φ are the corresponding geodesic angles on P.

Proof. The sum of the geodesic angles of a hyperbolic triangle is always less than the sum

of the angles of an Euclidean triangle, which may be called the hyperbolic defect. By the

Gauss-Bonnet theorem, the surface area of any hyperbolic triangle is r2(π−α−β−φ), given

that β, α and φ are the geodesic angles. On P , the unit r is as shown in (6.46).

The sum of the angles at τi = t is π−Π(Ξt)/2. It can be seen that hyperbolic surfaces of

information asymmetry allow us to represent the jump sizes of {ψt} using the angles between

geodesics, which are determined by the FR asymmetry at each entry of a new information

source. Their areas are explicitly determined by the curvature of P .

Remark 6.3.9. Suppose we are interested in multiple asymmetries between the probability

density ψt and any other m ∈ N+ densities ψ
j

t for j = 1 . . . ,m at t < T . Let’s further assume

that the time of each jump of {ψjt}’s coincide. Then, for times in between the stopping times,

we can identify m+ 1 points on the associated manifolds S and P.

At every appearance of a new information source, we can identify 2m + 1 points on S
and P. Hence, each appearance may induce spherical polygons on S and hyperbolic polygons

on P, which can be represented as unions of spherical triangles and hyperbolic triangles,

respectively. Spherical and hyperbolic surfaces form geometrical bases to characterise higher

dimensional asymmetries with polygons.

6.3.2 Squared-Hellinger Asymmetry and Isometric Invariant of

Poincaré Disc Under the Action of General Möbius Group

We shall show a geometric relationship between the SH asymmetry and an isometric invariant

of the Poincaré disc under the action of the general Möbius group (for groups and actions

of groups, see for example, Allenby, 1991, or Beachy and Blaire, 2006). This relationship

motivates us to suggest the use of an alternative geometric measure to quantify information

asymmetry.

First, we shall explain what Möbius transformations are, and what the general Möbius

group is. We then discuss the Poincaré disc model of the hyperbolic space, and using Möbius

transformations from the upper-half-plane W to the Poincaré disc, we shall highlight the

relationship between the SH asymmetry and an isometric invariant of the Poincaré disc.
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There exists an important group of transformations of C, called the general Möbius group

(the group operation being composition), where geometric quantities such as hyperbolic

lengths and angles are invariant under its action. A Möbius transformation is a holomorphic

function η∗ : C→ C, with the following functional form:

η∗(z) =
az + b

cz + d
, (6.49)

where a, b, c, d ∈ C and ad − bc 6= 0. The set of all Möbius transformations forms a group

under composition, and we denote the group of Möbius transformations by Möb∗. The gen-

eral Möbius group is generated by the set of Möbius transformations and the set of complex

conjugations. Denoting Möb as the general Möbius group, η ∈ Möb is the composition:

η = C ◦ η∗k ◦ . . . ◦ C ◦ η∗1, (6.50)

for some k ≥ 1, each η∗j being a Möbius transformation, and where

C(z) = z given C(∞) =∞, (6.51)

for z ∈ C. We note that C is a homeomorphism of C. It can be shown that Möb is equal

to the set of homeomorphisms of C that take circles in C to circles in C. In fact, it can be

shown that elements of Möb are conformal homeomorphisms of C (homeomorphisms that

preserve angles), and Möb(W) = {η ∈ Möb|η(W) =W} is equal to the group of isometries

(homeomorphisms that preserve distances) of W given its metric. A hyperbolic area in W
is invariant under the action of Möb(W). For the proofs, refer to Anderson (2005).

Remark 6.3.10. The FR asymmetry is invariant under the action of Möb(P). Also if η ∈
Möb(P) acts on a hyperbolic triangle, the transformed points induce an equivalent hyperbolic

triangle, since η is a conformal isometry on P.

The underlying hyperbolic space of Poincaré disc model is the unit disc D in the complex

plane C such that

D = {z ∈ C : |z| < 1}. (6.52)

Since both D and W are in C, it is possible to find a broad class of η ∈ Möb, such that

η : D → W . Therefore, Möb allows to use D and W interchangeably when modelling

hyperbolic spaces. In particular, if z and α are points in W and z∗ is a point in D, then

z∗ = eiθ
z − α
z − α

, (6.53)

is a Möbius transformation that maps W to D conformally. The point z∗ ∈ D is the
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corresponding point of z ∈ W , and α ∈ W is an arbitrary point mapped to the center of the

disk D, where θ rotates the disk.

Without loss of generality, we let the curvature ofW be -1. From Poincaré uniformization

theorem, we can transform the metric on P to the metric on W , since P and W are confor-

mally equivalent. We can do this by multiplying the metric on P with a positive constant.

Then the distance between the points determined by ψt and ψ
(i)
t mapped on W is

dW(ψ
(1)
t , ψ

(i)
t ) = 2 tanh−1(ζ1,i

t ), (6.54)

at each fixed t < T , where dW is the distance onW , and the function ζ1,i
t is defined in (6.23).

Note that the distance between the points determined by ψ
(1)
t = ψt and ψ

(i)
t on P is given

in (6.22), and the expression in (6.54) follows by multiplying the metric on P by 1/
√

2.

Now, let x, y be points on W , and A(x, y) denote the nonempty collection of hyperbolic

paths h : [a, b] → W satisfying h(a) = x and h(b) = y. Also, having x, y be points on

D, B(x, y) denotes the nonempty collection of hyperbolic paths f : [a, b] → D satisfying

f(a) = x and f(b) = y. Let dW and lW be the distance and the length on W , respectively.

Let dD and lD be the distance and the length on D, respectively. Then, using η ∈ Möb(C),

such that η : D →W , the following can be written:

dD(x, y) = inf{lD(ft)|ft ∈ B(x, y)}

= inf{lH(η ◦ ft)|ft ∈ B(x, y), η ∈ Möb(C)}

= inf{lD(η−1 ◦ gt)|gt = η ◦ ft, gt ∈ A(x, y), ft ∈ B(x, y), η ∈ Möb(C)}. (6.55)

Hence, using Möb, we can find the distances between two points on D starting from distances

on W (or from distances on P). One can also conformally map the points on W to points

on D by (6.53), and calculate the distances on D. We shall denote the distance between the

points determined by ψt and ψ
(i)
t mapped on D by dD(ψt, ψ

(i)
t ).

We can now define an isometric invariant of D under the action of Möb(D), which we

denote by G:

G(x||y) =
2||x− y||2

(1− ||x||2)(1− ||y||2)
, (6.56)

where x, y are points on D, and ||.|| is the Euclidean norm. G characterises the distance dD

on D (see for example, Anderson, 2005, Proposition 4.3, pp. 126), such that

Gt(ψt||ψ(i)
t ) = cosh

(
dD(ψt, ψ

(i)
t )
)
− 1. (6.57)

From (6.9), the SH asymmetry can be written as SHt(ψt||ψ(i)
t ) = 1− cos

(
ϑt(
√
ψt,

√
ψ

(i)
t )

)
.
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Also, note that we can replace ϑ with dS , provided that dS is the distance on the unit sphere

S. This follows since the Bhattacharyya angle ϑ is equal to the spherical distance on S+:

SHt(ψt||ψ(i)
t ) = 1− cos

(
dS(
√
ψt,

√
ψ

(i)
t )

)
. (6.58)

It can be seen from (6.57) and (6.58) that the SH asymmetry is closely related to the isometric

invariant G. The curvature of D and the curvature of S are opposite in sign: -1 for D and

+1 for S. In addition, the cosine on the sphere S is replaced by the hyperbolic cosine on

the hyperbolic space D. In particular, G is the hyperbolic analogue of SH, and SH is the

spherical analogue of G.

Note that dD(ψt, ψ
(i)
t ) ≥ 0, since it is a metric. Also, since cosh(0) = 1 and cosh(x) is

monotonically increasing in x ∈ R+, the isometric invariant G(.||.) ≥ 0. Given the analogy

with the SH asymmetry, we are encouraged to propose the use of G(.||.) as an alternative

measure of divergence between Gaussian distributions. That is, Gt(ψt||ψt) can be used to

quantify the information asymmetry between ψt and ψt geometrically, given that both are

Gaussian. Note that the measure G(.||.) = 0 when there is no information asymmetry since

cosh(0) = 1, and is strictly positive otherwise.

6.4 Competitive Edge and Financial Mispricing

6.4.1 Geometry and Competitive Edge in Information

We assume the same financial setting as discussed in Chapter 5, where there are two in-

formed traders who are unaware of each others’ actions. The trader who has access to more

information sources has a competitive edge with respect to the other. We let XT be Gaussian.

We assume that the filtration of Agent 1 is {Gt} as shown in (3.58), and the filtration of

Agent 2 is {G∗t } as shown in (5.40). Recall that ψ∗t (x) = q(x|G∗t ). Also, τi 6= τ ∗j for any i, j

for i, j = 1 . . . , n+ 1.

Proposition 6.4.1. The dynamics of the competition between Agent 1 and Agent 2 in terms

of {FRt(ψ
∗
t ||ψt} on Int(M) are governed by

dFRt(ψ
∗
t ||ψt) =

n+1∑
i=1

n+1∑
j=1

dDt(ψ
(j)
t , ψ

(i)
t )It(i)I

∗
t (j)

+
n+1∑
j=1

n+1∑
i=2

(
Dt(ψ

(j)
t , ψ

(i)
t )−Dt(ψ

(j)
t , ψ

(i−1)
t )

)
δτi−1

(dt)I∗t (j)

+
n+1∑
i=1

n+1∑
j=2

(
Dt(ψ

(j)
t , ψ

(i)
t )−Dt(ψ

(j−1)
t , ψ

(i)
t )
)
δτ∗i−1

(dt)It(i). (6.59)
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Proof. On Int(M), at each fixed time t for 0 ≤ t < T , we have

FRt(ψ
∗
t ||ψt) =

n+1∑
i=1

Dt(
n+1∑
j=1

ψ
(j)
t I∗t (j), ψ

(i)
t )It(i) =

n+1∑
i=1

n+1∑
j=1

Dt(ψ
(j)
t , ψ

(i)
t )It(i)I

∗
t (j), (6.60)

since It(i) = 1 implies It(j) = 0 and I∗t (i) = 1 implies I∗t (j) = 0 for all i 6= j.

At each appearance of a new information source, a new hyperbolic triangle may be formed

that quantifies the competition between the agents.

6.4.2 Geometry and Financial Mispricing

We consider the same financial setting as discussed in Chapter 5, and model financial mis-

pricing as a special type of information asymmetry. The only difference is that we assume

XT is Gaussian.

We define the filtration {Jt} as in (5.58), the information process {ξ∗t } as in (5.59), and

denote ψ∗t = q(x|Jt) = q(x|ξ∗t ). We assume that {Zt} given by (5.70) is the market filtration,

and denote ψat (x) = q(x|Zt). We refer the reader to Chapter 5.5 to recall other notations.

We define the parameters

µ̂∗t = µX +
σX
σ∗t
ρ∗t (ξ

∗
t − µ∗t ), and (σ̂∗t )

2 = (1− (ρ∗t )
2)σ2

X , (6.61)

where ρ∗t = κσXt/σ
∗
t is the correlation between XT and ξ∗t , also

µ̂bt = µX +
σX
σbt
ρbt(ξ

b
t − µbt), and (σ̂bt )

2 = (1− (ρbt)
2)σ2

X , (6.62)

where ρbt = κ̂σXt/σ
b
t is the correlation between XT and ξbt . In (6.61) and (6.62),

µ∗t = κ(µX − c)t, and σ∗t =

√
(κσXt)2 +

t(T − t)
T

, (6.63)

are the mean and variance of ξ∗t , and

µbt = κ̂µXt, and σbt =

√
(κ̂σXt)2 +

t(T − t)
T

, (6.64)

are the mean and variance of ξbt .

Lemma 6.4.2. The conditional densities ψ∗t and ψat can be parametrically represented as

follows:

ψ∗t 
 q(x, µ̂∗t , (σ̂
∗
t )

2) =
1√

2πσ̂∗t
exp

(
−(x− µ̂∗t )2

2(σ̂∗t )
2

)
, (6.65)
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and also,

ψat 
 q(x, µ̂bt , (σ̂
b
t )

2)It(1) + q(x, µ̂∗t , (σ̂
∗
t )

2)It(2)

=
It(1)√
2πσ̂bt

exp

(
−(x− µ̂bt)2

2(σ̂bt )
2

)
+

It(2)√
2πσ̂∗t

exp

(
−(x− µ̂∗t )2

2(σ̂∗t )
2

)
. (6.66)

Proof. Note that ψat = q(x|ξbt )It(1) + q(x|ξ∗t )It(2). Then due to the independence of τ , the

proof is very similar to that of Proposition 6.3.2.

For a fixed time t < T , we now define the distance:

Dt(ψ
b
t , ψ

∗
t ) = 2

√
2 tanh−1(ζb,∗t ), (6.67)

where the function ζb,∗t is

ζb,∗t =

(
(µ̂∗t − µ̂bt)2 + 2(σ̂∗t − σ̂bt )2

(µ̂∗t − µ̂bt)2 + 2(σ̂∗t + σ̂bt )
2

) 1
2

. (6.68)

Proposition 6.4.3. The dynamics of the mispricing in terms of {FRt(ψ
a
t ||ψ∗t )} on Int(M)

are governed by

dFRt(ψ
a
t ||ψ∗t ) = dDt(ψ

b
t , ψ

∗
t )It(1)−Dt(ψ

b
t , ψ

∗
t )δτ (dt). (6.69)

Proof. The statement follows since, for a fixed time t for 0 ≤ t < T , FRt(ψ
a
t ||ψ∗t ) =

Dt(ψ
b
t , ψ

∗
t )It(1) on Int(M).

Note that the FR asymmetry process provides a geometric perspective on financial mis-

pricing. When the fundamental information appears in the market, the FR mispricing pro-

cess becomes zero and remains zero. The jump represents a sudden market correction at

τ = t, determined by the distance 2
√

2 tanh−1(ζb,∗t ).

Remark 6.4.4. The SH and the FR asymmetries offer a geometric view on quantifying

market corrections by providing geodesic distances on S+ and P, respectively.
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Chapter 7

Archimedean Survival Processes

This chapter introduces a family of multivariate stochastic processes that we call Archimedean

survival processes (ASPs). ASPs are constructed in such a way that they are naturally linked

to Archimedean copulas.

At this point, we would like to note that an ASP is a multivariate extension of what we call

a gamma random bridge (see Hoyle et al., 2011 for Lévy random bridges), and hence, it can be

viewed as a multivariate information process within the information-based framework. In this

respect, if an ASP is assumed to generate the market filtration where each marginal process

carries partial information about an asset, the law of the ASP determines the dependence

structure of a vector of assets at a given time. We do not focus on the information-based

application of ASPs in this chapter (we provide an information-based account in Chapter 8),

and instead, we provide a detailed analysis of the stochastic properties of such processes. As

an overview, an ASP is defined over a finite time horizon, and, a priori, its terminal value

has an `1-norm symmetric distribution. This implies that the terminal value of an ASP has

an Archimedean survival copula. Indeed, there is a bijection from the class of Archimedean

copulas to the class of ASPs. The results presented in this chapter can also be found in

Hoyle and Mengütürk (2012).

The use of copulas has become commonplace for dependence modelling in finance, insur-

ance, and risk management (see, for example, Cherubini et al., 2004, Freez and Valdez, 1998,

and McNeil et al., 2005). The Archimedean copulas, a subclass of copulas, have received

particular attention in the literature for both their tractability and practical convenience.

An n-dimensional Archimedean copula C : [0, 1]n → [0, 1] can be written as

C(u) = h(h−1(u1) + · · ·+ h−1(un)), (7.1)

where h is the generator function of C.

Schönbucher and Schubert (2001), and Rogge and Schönbucher (2003) describe continuous-

time processes that have Archimedean copulas at all times, and model default times in
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credit-risk applications. By construction, these processes are limited to have copulas with

completely monotone generating functions. Although they bear the link to stochastic pro-

cesses with Archimedean copulas, these processes are otherwise not closely related to the

present work.

A random vector X has a multivariate Liouville distribution if

X
law
= R

G∑n
i=1 Gi

, (7.2)

where R is a non-negative random variable, G is a vector of n independent gamma random

variables with identical scale parameters, and Gi is an element of G (see, for example, Fang et

al., 1990). In the special case where G is a vector of identical exponential random variables,

X has an `1-norm symmetric distribution. McNeil and Nes̃lehová (2009) give an account of

how Archimedean copulas coincide with survival copulas of `1-norm symmetric distributions

which have no point-mass at the origin. This particular relationship relies on the charac-

terization of n-monotone functions through an integral transform introduced by Williamson

(1956), which is analogous to the Laplace transform characterisation of completely mono-

tone functions (see, for example, Widder, 1946). McNeil and Nes̃lehová (2010) generalise

Archimedean copulas to so-called Liouville copulas, which are defined by the survival copulas

of multivariate Liouville distributions.

Norberg (1999) suggests using a randomly-scaled gamma bridge for modelling the cumu-

lative payments made on insurance claims (also see, Brody et al., 2008b). The process is an

increasing process {ξtT}0≤t≤T constructed as

ξtT = XγtT , (7.3)

where X is a positive random variable and {γtT} is an independent gamma bridge satisfying

γ0T = 0 and γTT = 1 for some T ∈ (0,∞). Such a process is useful in modelling of cumulative

gains or losses. The random variable X is the total, final gain. We can interpret X as a

signal and the gamma bridge {γtT} as independent multiplicative noise. Brody et al. (2008b)

shows that {ξtT} is a Markov process, and that

EQ[X | ξtT = x] =

∫∞
x
z2−mT (z − x)m(T−t)−1 ν(dz)∫∞

x
z1−mT (z − x)m(T−t)−1 ν(dz)

, (7.4)

where ν is the law of X, and m > 0 is a parameter.

The process {ξtT} as shown in (7.3) can be considered to be a gamma process conditioned

to have the marginal law ν at time T , and so belongs to the class of Lévy random bridges. As

such, we call a process that can be decomposed as in (7.3) a gamma random bridge (GRB).

In the information-based framework, GRBs model the flow of market information about an
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aggregate claim determined by the terminal value of a cumulative gains process (for details,

see Brody et al., 2008b).

ASPs are an n-dimensional extension of GRBs. That is, each one-dimensional marginal

process {ξ(i)
t } of an ASP {(ξ(1)

t , ξ
(2)
t , . . . , ξ

(n)
t )>}0≤t≤T is a GRB. This is the reason why an

ASP may be viewed as a multivariate information process, where each marginal process

carries partial information about an aggregate claim. At this point, we should clarify the

notation we shall use for this chapter and the next: {ξ(i)
t } denotes a marginal process, and

the integer in the bracketed superscript is not used in the same sense as in the previous

chapters. We can write

ξ
(i)
t = Xiγ

(i)
tT , (7.5)

for some gamma bridge {γ(i)
tT } and someXi > 0 independent of {γ(i)

tT }. TheXi’s are identically

distributed but in general not independent, and the {γ(i)
tT }’s are identically distributed but

in general not independent.

We shall construct each {ξ(i)
t } by splitting a master GRB into n non-overlapping subpro-

cesses. This method of splitting a Lévy random bridge into subprocesses (which are them-

selves Lévy random bridges) is used by Hoyle et al. (2010b) to develop a bivariate insurance

reserving model based on random bridges of the stable-1/2 subordinator. A remarkable

feature of the proposed construction is that the terminal vector (ξ
(1)
T , ξ

(2)
T , . . . , ξ

(n)
T )> has an

`1-norm symmetric distribution, and hence an Archimedean survival copula. In particular,

we shall show that

Q
(
F̄ (ξ

(1)
T ) > u1, F̄ (ξ

(2)
T ) > u2, . . . , F̄ (ξ

(n)
T ) > un

)
= F̄

(
n∑
i=1

F̄−1(ui)

)
, (7.6)

where

F̄ (u) = Q
(
ξ

(i)
T > u

)
, for i = 1, 2, . . . , n. (7.7)

In (7.6) and (7.7), F̄ (x) is the marginal survival function of the ξ
(i)
T ’s, and F̄−1(u) is its

generalised inverse. The right-hand side of (7.6) is an Archimedean copula with generator

function F̄ (x).

A direct application of ASPs is to the modelling of multivariate cumulative gain (or loss)

processes. Consider, for example, an insurance company that underwrites several lines of

motor business (such as personal motor, fleet motor or private-hire vehicles) for a given

accident year. A substantial payment made on one line of business is unlikely to coincide

with a substantial payment made on another line of business (e.g. a large payment is unlikely

to be made on a personal motor claim at the same time as a large payment is made on a fleet

motor claim). However, the total sums of claims arising from the lines of business will depend

on certain common factors such as prolonged periods of adverse weather or the quality of the
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underwriting process at the company. Such common factors will produce dependence across

the lines. An ASP might be a suitable model for the cumulative paid-claims processes of the

lines of motor business, if the terminal claims have an Archimedean survival copula.

ASPs can also be used to interpolate the dependence structure when using Archimedean

copulas in discrete-time models. Consider a risk model where the marginal distributions

of the returns on n assets are fitted for the future dates t1 < · · · < tn < T < ∞. An

Archimedean copula C is used to model the dependence of the returns to time T . At this

stage we have a model for the joint distribution of returns to time T , but we have only the

one-dimensional marginal distributions at the intertemporal times t1, . . . , tn. The problem

then is to choose copulas to complete the joint distributions of the returns to the times

t1, . . . , tn in a way that is consistent with the time-T joint distribution. For each time ti,

this can be achieved by using the time-ti survival copula implied by the ASP with survival

copula C at terminal time T .

Our analysis of ASPs also motivates our next chapter, where we generalise ASPs to what

we call Generalised Liouville Processes (GLPs). We do this by splitting Lévy random bridges

into n pieces, where we allow more flexibility in the splitting mechanism and employ some

deterministic time changes. This extension allows us to work with a much larger class of

dependence structures under generalised Liouville distributions.

This chapter is organized as follows: Section 1 provides some preliminaries including

`1-norm symmetric distributions, Archimedean copulas and GRBs. In Section 2, we define

ASPs and provide various characterisations of their law. Finally, we construct a multivariate

process such that each one-dimensional marginal is uniformly distributed.

7.1 Preliminaries

This chapter draws together ideas from the theory of stochastic processes and the theory of

multivariate distributions. The preliminary section gives relevant background results from

both subjects.

We fix a probability space (Ω,F ,Q) and assume that all filtrations are right-continuous

and complete. We let f−1 denote the generalised inverse of a monotonic function f , i.e.,

f−1(y) =

{
inf{x : f(x) ≥ y} f increasing,

inf{x : f(x) ≤ y} f decreasing.
(7.8)

We denote the `1-norm of a vector x ∈ Rn by ‖x‖, i.e.,

‖x‖ =
n∑
i=1

|xi|. (7.9)
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7.1.1 Multivariate Distributions

In this subsection we present some definitions and results from the theory of multivariate

distributions. We refer the reader to the thorough exposition of Fang et al. (1990) for further

details.

Multivariate `1-norm Symmetric Distributions

The multivariate `1-norm symmetric distributions form a family of distributions that are

closely related to Archimedean copulas. The n-dimensional `1-norm symmetric distribution

is defined in terms of a random variable U which is uniformly distributed on the simplex

S = {u ∈ [0, 1]n : ‖u‖ = 1} . (7.10)

Such a random variable U has the following representation:

U
law
=

E

‖E‖
, (7.11)

where E is a vector of n independent, identically-distributed, exponential random variables.

Note that this representation holds for any value of the rate parameter λ > 0 of the ex-

ponential random variables, and that the random variable ‖E‖ has a gamma distribution

with shape parameter n, and scale parameter λ−1. Each marginal variable Ui has a beta

distribution with parameters α = 1 and β = n− 1; thus the survival funciton of Ui is

Q(Ui > u) = (1− u)n−1, (7.12)

for 0 ≤ u ≤ 1.

Definition 7.1.1. A random variable X taking values in Rn has a multivariate `1-norm

symmetric distribution if

X
law
= RU, (7.13)

where R is a non-negative random variable, and U is a random vector uniformly distributed

on the simplex S. We call the law of R the generating law.

Remark 7.1.2. The construction of multivariate `1-norm symmetric random variables is

similar to the construction of spherical random variables. To be precise, in (7.13) if U was

uniformly distributed on the unit sphere in Rn, then X would have a spherical distribution

(a special case of elliptical distribution).

Note that if R admits a density, then X satisfying (7.13) admits a density, and this

density is simplectically contoured. This is analogous to the elliptical contours of elliptical

distributions.
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If X is a multivariate `1-norm symmetric random variable with generating law ν, then

the survival function of each one-dimensional marginal of X is

F̄ (x) = Q(Xi > x)

=

∫ ∞
x

(1− x/r)n−1 ν(dr), (7.14)

for x ≥ 0. The survival function F̄ determines the law ν. Indeed, using the results of

Williamson (1956), McNeil and Nes̃lehová (2009) show that

ν([0, x]) = 1−
n−2∑
k=0

(−1)kxkF̄
(k)
0 (x)

k!
− (−1)n−1xn−1 max[0, F̄

(n−1)
0 (x)]

(n− 1)!
, (7.15)

where F̄ (k) is the kth derivative of F̄ , and

F̄0(x) =

{
F̄ (x) x > 0,

1− F̄ (0) x = 0.
(7.16)

The following theorem provides the multivariate version of (7.14); the proof can be found in

Fang et al. (1990, Theorem 5.4).

Theorem 7.1.3. If X has a multivariate `1-norm symmetric distribution with generating

law ν, then the joint survival function of X is

Q(X1 > x1, X2 > x2, . . . , Xn > xn) =

∫ ∞
‖x‖

(1− ‖x‖/r)n−1 ν(dr)

= F̄ (‖x‖) , (7.17)

for x ∈ Rn
+.

Multivariate Liouville Distributions

The multivariate Liouville distribution is an extension of the multivariate `1-norm symmetric

distribution. Before defining the multivariate Liouville distribution, it is convenient to first

define the Dirichlet distribution. The n-dimensional Dirichlet distribution is a distribution

on the simplex S defined in (7.10).

Definition 7.1.4. Let G be vector of independent random variables such that Gi is a gamma

random variable with shape parameter αi > 0 and scale parameter unity. Then the random

vector

D =
G

‖G‖
, (7.18)

has a Dirichlet distribution with parameter vector α = (α1, . . . , αn)>.
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Remark 7.1.5. The scaling property of the gamma distribution implies that κG, κ > 0, is

a vector of gamma random variables each with scale parameter κ. Since (7.18) holds, if we

replace G with κG, we could have used an arbitrary positive scale parameter in Definition

7.1.4.

In two dimensions, a Dirichlet random variable can be written as (B, 1− B)>, where B

is a beta random variable. If all the elements of the parameter vector α are identical, then

D is said to have a symmetric Dirichlet distribution. Notice that if αi = 1 for i = 1, 2, . . . , n,

then D is uniformly distributed on the simplex S. The density of (D1, D2, . . . , Dn−1)> is

x 7→
∏n

i=1 Γ[αi]

Γ [‖α‖]

n∏
i=1

xαi−1
i , (7.19)

for x ∈ [0, 1]n−1, ‖x‖ ≤ 1, where xn = 1−
∑n−1

i=1 xi, and Γ[z] is the gamma function, defined

as usual for x > 0 by

Γ[x] =

∫ ∞
0

ux−1e−u du. (7.20)

The first- and second-order moments of the Dirichlet distribution are given by

EQ[Di] =
αi
‖α‖

, (7.21)

VarQ[Di] =
αi(‖α‖ − αi)
‖α‖2(‖α‖+ 1)

, (7.22)

CovQ[Di, Dj] = − αiαj
‖α‖2(‖α‖+ 1)

, for i 6= j. (7.23)

The Dirichlet distribution is an extension of a random variable uniformly distributed on

a simplex. The multivariate Liouville distribution is a similar extension of the multivariate

`1-norm symmetric distribution:

Definition 7.1.6. A random variable X has a multivariate Liouville distribution if

X
law
= RD, (7.24)

for R ≥ 0 a random variable, and D a Dirichlet random variable with parameter vector α.

We call the law of R the generating law, and α the parameter vector of the distribution.

In the case where R has a density p, the density of X exists and can be written as

x 7→ Γ[‖α‖] p (‖x‖)
(‖x‖)‖α‖−1

n∏
i=1

xαi−1
i

Γ[αi]
, (7.25)

for x ∈ Rn. Writing µ1 = EQ[R] and µ2 = EQ[R2] (when these moments exist), the first- and
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second-order moments of X are given by

EQ[Xi] = µ1
αi
‖α‖

, (7.26)

VarQ[Xi] =
αi
‖α‖

(
µ2

αi + 1

‖α‖+ 1
− µ2

1

αi
‖α‖

)
, (7.27)

CovQ[Xi, Xj] =
αiαj
‖α‖

(
µ2

‖α‖+ 1
− µ2

1

‖α‖

)
, for i 6= j. (7.28)

7.1.2 Archimedean Copulas

A copula is a distribution function on the unit hypercube with the added property that each

one-dimensional marginal distribution is uniform. For further details, we refer to Nelsen

(2006). We define a copula as follows:

Definition 7.1.7. An n-copula defined on the n-dimensional unit hypercube [0, 1]n is a

function C : [0, 1]n → [0, 1], which satisfies the following:

1. C(u) = 0 whenever uj = 0 for at least one j = 1, 2, .., n.

2. C(u) = uj if ui = 1 for all i 6= j.

3. C is n-increasing on [0, 1]n, that is

2∑
i1=1

· · ·
2∑

in=1

(−1)i1+···+inC(u1,i1 , . . . , un,in) ≥ 0, (7.29)

for all (u1,1, u2,1, . . . , un,1)> and (u1,2, u2,2, . . . , un,2)> in [0, 1]n with uj,1 ≤ uj,2.

Condition 3 is necessary to ensure that the function C is a well-defined distribution

function. The theory of copulas is founded upon a theorem of Sklar. This theorem is

reformulated in terms of survival functions by McNeil and Nes̃lehová (2009) as follows:

Theorem 7.1.8. Let H̄ be an n-dimensional survival function with margins F̄i, i = 1, 2, . . . , n.

Then there exists a copula C, referred to as the survival copula of H̄, such that, for any

x ∈ Rn,

H̄(x) = C(F̄1(x1), . . . , F̄n(xn)). (7.30)

Furthermore, C is uniquely determined on

D =
{
u ∈ [0, 1]n : u ∈ ranF̄1 × · · · × ranF̄n

}
, (7.31)

where ranf denotes the range of f . In addition, for any u ∈ D,

C(u) = H̄(F̄−1
1 (u1), . . . , F̄−1

n (un)). (7.32)
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Conversely, given a copula C and univariate survival functions F̄i, i = 1, . . . , n, H̄ defined

by (7.30) is an n-dimensional survival function with marginals F̄1, . . . , F̄n and survival copula

C.

From a modelling perspective, one of the attractive features of copulas is that they

allow the fitting of one-dimensional marginal distributions to be performed separately from

the fitting of cross-sectional dependence. Although, this two-step approach of modelling

multivariate phenomena by first specifying marginals, and then choosing a copula is not

suited to all situations (for criticism see, for example, Mikosch, 2006).

Archimedean copulas are copulas that take a particular functional form. The following

definition given in McNeil and Nes̃lehová (2009) is convenient for the present work:

Definition 7.1.9. A decreasing and continuous function h : [0,∞) → [0, 1] which satis-

fies the conditions h(0) = 1 and limx→∞ h(x) = 0, and is strictly decreasing on [0, inf{x :

h(x) = 0}] is called an Archimedean generator. An n-dimensional copula C is called an

Archimedean copula if it permits the representation

C(u) = h(h−1(u1) + · · ·+ h−1(un)), u ∈ [0, 1]n, (7.33)

for some Archimedean generator h with inverse h−1 : [0, 1]→ [0,∞), where we set h(∞) = 0

and h−1(0) = inf{u : h(u) = 0}.

If X is a random vector with a multivariate `1-norm symmetric distribution such that

Q(X = 0) = 0, then its marginal survival function F̄ given in (7.14) is continuous. Hence,

it follows from Theorem 7.1.3 that

Q(F̄ (X1) > u1, F̄ (X2) > u2, . . . , F̄ (Xn) > un) = F̄

(
n∑
i=1

F̄−1(ui)

)
. (7.34)

In other words, X has an Archimedean survival copula with generating function h(x) = F̄ (x).

McNeil and Nes̃lehová (2009) show that the converse is also true:

Theorem 7.1.10. Let U be a random vector whose distribution function is an n-dimensional

Archimedean copula C with generator h. Then (h−1(U1), h−1(U2), . . . , h−1(Un))> has a mul-

tivariate `1-norm symmetric distribution with survival copula C and generating law ν. Fur-

thermore, ν is uniquely determined by

ν([0, x]) = 1−
n−2∑
k=0

(−1)kxkh(k)(x)

k!
− (−1)n−1xn−1 max[0, h(n−1)(x)]

(n− 1)!
. (7.35)

Remark 7.1.11. There is one-to-one mapping from distribution functions on the positive

half-line to the class of n-dimensional Archimedean copulas through the invertible transfor-

mation ν ↔ h.
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7.1.3 Gamma Random Bridges

A gamma random bridge is an increasing stochastic process, and both the gamma process

and gamma bridge are special cases.

Gamma Process

A gamma process is an increasing Lévy process (see, for example, Sato, 1999) with gamma

distributed increments. Let {γt} denote a gamma process with mean and variance m > 0 at

t = 1. The law of {γt} is determined by its mean and variance at t = 1, and the density of

γt is

ft(x) = 1{x>0}
xmt−1

Γ[mt]
e−x, (7.36)

where 1{.} is the indicator function (or the Heaviside function). For notational convenience,

we shall use 1{.} in this chapter instead of H.(.) that we used in previous chapters. The mean

and variance of a gamma process are

EQ[γt] = mt, and VarQ[γt] = mt. (7.37)

The gamma distribution has scaling property. Therefore, for some κ > 0, the process {κγt}
is also a gamma process, but with mean mκ, and variance mκ2, at t = 1. The characteristic

function of γt is

EQ[eiλγt ] = (1− iλ)−mt. (7.38)

As noted in Brody et al. (2008b), the parameter m has units of inverse time, and so {γt}
is dimensionless. Taking κ = 1/m, the scaled process {κγt} has units of time, making this

alternative parameterisation suitable as a basis for a stochastic time change (see, for example,

Madan and Seneta, 1990). The characteristic function of κγt is then

EQ[eiλκγt ] = (1− iλ/m)−mt. (7.39)

It can be shown that κγt
law
= t in the limit m → ∞, since the characteristic function of κγt

coincides with the characteristic function of the Dirac measure centered at t (which is eiλt)

in the limit m→∞.

Gamma Bridge

A gamma bridge is a gamma process conditioned to have a fixed value at a fixed future time.

A gamma bridge is a Lévy bridge, and hence a Markov process (see, for example, Hoyle,

2010a). Emery and Yor (2004) present some remarkable similarities between gamma bridges

and Brownian bridges. Let {γtT}0≤t≤T denote a gamma bridge identical in law to the gamma
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process {γt} pinned to the value 1 at time T . Using the Bayes formula,

Q (γtT ∈ dy | γsT = x) = Q (γt ∈ dy | γs = x, γT = 1)

=
ft−s(y − x)fT−t(1− y)

fT−s(1− x)

= 1{x<y<1}

(
y−x
1−x

)m(t−s)−1 ( 1−y
1−x

)m(T−t)−1

(1− x)B[m(t− s),m(T − t)]
dy, (7.40)

for 0 ≤ s < t ≤ T and x ≥ 0. We say that m is the activity parameter of {γtT}. In (7.40),

B[α, β] is the beta function, given by

B[α, β] =

∫ 1

0

xα−1(1− x)β−1 dx

=
Γ[α]Γ[β]

Γ[α + β]
, (7.41)

for α, β > 0. If γsT = x, then the gamma bridge will complete a distance of 1 − x during

(s, T ], where the proportion of this distance over (s, t] has a beta distribution with parameters

α = m(t− s) and β = m(T − t), which can be seen from (7.40).

The characteristic function of γtT given γsT is

EQ [eiλγtT
∣∣ γsT = x

]
= M [m(t− s),m(T − s), i(1− x)λ], (7.42)

where M [α, β, z] is Kummer’s confluent hypergeometric function of the first kind (see Hoyle,

2010a, and Abramowitz and Stegun, 1964):

M [α, β, z] = 1 +
α

β
z +

α(α + 1)

β(β + 1)

z2

2!
+
α(α + 1)(α + 2)

β(β + 1)(β + 2)

z3

3!
+ · · · . (7.43)

In the limit m → ∞, γtT
law
= t/T . This follows from the Markovian property of {γtT} and

also since, in the limit m→∞ in (7.42), the characteristic function of γtT given γsT is

EQ [eiλγtT
∣∣ γsT = x

]
=
∞∑
k=0

(
t− s
T − s

)k
(i(1− x)λ)k

k!
= exp

(
i
t− s
T − s

(1− x)λ

)
. (7.44)

This coincides with the characteristic function of the Dirac measure centered at (1− x)(t−
s)/(T − s). In other words, since γ0T = 0, the characteristic function of γtT coincides with

the Dirac measure centered at t/T in the limit m→∞.

It can be shown that the process {γt/γT}0≤t≤T is independent of γT , and that the following

holds:

{γtT}
law
=

{
γt
γT

}
. (7.45)
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The process {γt/γT}0≤t≤T is a Markov process with transition law as shown in (7.40).

Equation (7.45) implies that the joint distribution of increments of a gamma bridge is

Dirichlet. To see this fact, fix times 0 = t0 < t1 < · · · < tn = T and define

∆̄i = γti − γti−1
, (7.46)

∆i = γti,T − γti−1,T . (7.47)

Then ∆̄i has a gamma distribution with shape parameter αi = m(ti − ti−1) and scale pa-

rameter unity. Hence

(∆1,∆2, . . . ,∆n)
law
=

(∆̄1, ∆̄2, . . . , ∆̄n)

‖(∆̄1, ∆̄2, . . . , ∆̄n)‖
. (7.48)

From Definition 7.1.4, the joint distribution of increments of a gamma bridge is Dirichlet.

Equation (7.45) also implies that the bridge of the gamma process {κγt} for some κ > 0, is

equal in law to the bridge of {γt}. Also, the bridge of {γt} to some value a > 0 at time T ,

is equal in law to {aγtT}.

Gamma Random Bridge

A gamma random bridge (GRB) is identical in law to a gamma process conditioned to have

a fixed marginal law at some finite future time. Brody et al. (2008b) use a GRB to model an

information process that generates the market filtration and that provides noisy information

about a future cumulative claim.

We define a gamma random bridge as follows:

Definition 7.1.12. The process {Γt}0≤t≤T is a gamma random bridge if

{Γt}
law
= {RγtT}, (7.49)

for R > 0 a random variable, and {γtT} a gamma bridge, independent of R. We say that

{Γt} has generating law ν and activity parameter m, where ν is the law of R and m is the

activity parameter of {γtT}.

Remark 7.1.13. Suppose that {Γt} is a GRB satisfying (7.49). If Q(R = z) = 1 for some

z > 0, then {Γt} is a gamma bridge. If R is gamma random variable with shape parameter

mT and scale parameter κ, then {Γt} is a gamma process such that EQ[Γt] = mκt and

VarQ[Γt] = mκ2t, for t < T .

Gamma random bridges (GRBs) fall within the class of Lévy random bridges described

by Hoyle et al. (2011). The process {Γt} is identical in law to a gamma process defined over

[0, T ], and conditioned to have the law of R at time T . The bridges of a GRB are gamma

131



bridges. GRBs are Markov processes with stationary increments, and the transition law of

{Γt} is given by (see Hoyle et al., 2011)

Q(Γt ∈ dy |Γs = x)

=
1{y>x}

B[m(T − t),m(t− s)]

∫∞
y

(z − y)m(T−t)−1z1−mT ν(dz)∫∞
x

(z − x)m(T−s)−1z1−mT ν(dz)
(y − x)m(t−s)−1 dy, (7.50)

and

Q(ΓT ∈ dy |Γs = x) =
1{y>x}(y − x)m(T−s)−1y1−mT ν(dy)∫∞

x
(z − x)m(T−s)−1z1−mT ν(dz)

, (7.51)

where B[α, β] is the Beta function.

Since increments of a gamma bridge have a Dirichlet distribution, it follows from Def-

inition 7.1.6 that the increments of a gamma random bridge have multivariate Liouville

distributions.

The following proposition, stated as a corollary in Hoyle et al. (2011) for a general Lévy

random bridge, is a key result for the construction of ASPs:

Proposition 7.1.14. Let {Γt} be a GRB with generating law ν and activity parameter m.

(A) Fix times s1, T1 satisfying 0 < T1 ≤ T − s1. The time-shifted, space-shifted partial

process

ξ
(1)
t = Γs1+t − Γs1 , (0 ≤ t ≤ T1), (7.52)

is a gamma random bridge with activity parameter m, and with generating law

ν(1)(dx) =
xmT1−1

B[mT1,m(T − T1)]

∫ ∞
z=x

zmT−1(z − x)m(T−T1)−1ν(dz) dx. (7.53)

(B) Construct partial processes {ξ(i)
t }0≤t≤Ti, i = 1, . . . , n, from non-overlapping portions

of {Γt}, in a similar way to that above. The intervals [si, si + Ti], i = 1, . . . , n, are

non-overlapping except possibly at the endpoints. Set ξ
(i)
t = ξ

(i)
Ti

when t > Ti.

If u > t,

Q
(
ξ(1)
u − ξ

(1)
t ≤ x1, . . . , ξ

(n)
u − ξ

(n)
t ≤ xn

∣∣∣F ξt ) =

Q

(
ξ(1)
u − ξ

(1)
t ≤ x1, . . . , ξ

(n)
u − ξ

(n)
t ≤ xn

∣∣∣∣∣
n∑
i=1

ξ
(i)
t

)
, (7.54)

where the filtration {F ξt } is is given by

F ξt = σ
({
ξ(i)
s

}
0≤s≤t , i = 1, 2, . . . , n

)
. (7.55)
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Remark 7.1.15. Define the process {Rt} by

Rt =
n∑
i=1

ξ
(i)
t , (7.56)

for t ∈ [0,maxi Ti]. Then {Rt} is a GRB with generating law ν, and time-dependent activity

parameter

M(t) = m

n∑
i=1

1{t≤Ti}. (7.57)

The proof of this result is similar to the proof that appears later in Proposition 7.2.6.

We can construct an n-dimensional Markov process {ξt} from the partial processes of

Proposition 7.1.14, part (B), by setting

ξt = (ξ
(1)
t , . . . , ξ

(n)
t )>. (7.58)

The Markov property means that, for any fixed time s ≥ 0, the F ξs -conditional law of {ξt}s≤t
is identical to the ξs-conditional law of {ξt}s≤t. The remarkable feature of Proposition 7.1.14

part (B), together with Remark 7.1.15, is that the F ξs -conditional law of {ξt − ξs}s≤t is

identical to the Rs-conditional law of {ξt − ξs}s≤t. Hence the increment probabilities of the

n-dimensional process {ξt} can be described by the one-dimensional state process {Rt}. In

financial modelling, working with Rt is quite convenient when one works with total claims.

7.2 Archimedean Survival Processes

We construct an Archimedean survival process (ASP) by splitting a gamma random bridge

into n non-overlapping subprocesses. We start with a master GRB {Γt}0≤t≤n with activity

parameter m = 1 and generating law ν, where n ∈ N+, n ≥ 2. In this section, we write ft

for the gamma density with shape parameter unity and scale parameter unity (in (7.36), we

set m = 1). That is,

ft(x) =
xt−1e−x

Γ[t]
. (7.59)

Definition 7.2.1. The process {ξt}0≤t≤1 is an n-dimensional Archimedean survival process

if

{ξt}0≤t≤1 =





ξ
(1)
t

...

ξ
(i)
t

...

ξ
(n)
t




0≤t≤1

law
=





Γt − Γ0

...

Γ(i−1)+t − Γi−1

...

Γ(n−1)+t − Γn−1




0≤t≤1

, (7.60)
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where {Γt}0≤t≤n is a gamma random bridge with activity parameter m = 1. We say that the

generating law of {Γt} is the generating law of {ξt}.

Note that, from Definition 7.1.12, Q(Γn = 0) = 0, and so Q(ξ1 = 0) = 0. Each one-

dimensional marginal process of an ASP is a subprocess of a GRB, and hence a GRB. Then,

ASPs are a multivariate generalisation of GRBs.

We defined ASPs over the time interval [0, 1]; it is straightforward to restate the definition

to cover an arbitrary closed interval.

Proposition 7.2.2. The terminal value of an ASP has an Archimedean survival copula.

Proof. Let {ξt} be an n-dimensional ASP with generating law ν. Then we have

Q(ξ1 ∈ dx) = Q (Γ1 ∈ dx1,Γ2 − Γ1 ∈ dx2, . . . ,Γn − Γn−1 ∈ dxn)

= Q
(
R
γ1

γn
∈ dx1, R

γ2 − γ1

γn
∈ dx2, . . . , R

γn − γn−1

γn
∈ dxn

)
, (7.61)

for x ∈ Rn, R a random variable with law ν, and {γt} a gamma process such that γt has the

density (7.59). Each increment γi − γi−1 has an exponential distribution (with unit rate).

Thus,

Q(ξ1 ∈ dx) = Q
(
R

E

‖E‖
∈ dx

)
, (7.62)

for E an n-vector of independent, identically-distributed, exponential random variables.

From Definition 7.1.1, ξ1 has a multivariate `1-norm symmetric distribution. Therefore,

it has an Archimedean survival copula.

Remark 7.2.3. Let gi : R+ → R be strictly decreasing for i = 1, . . . , n, and let {ξt} be an

ASP. Then, a priori, the vector-valued process{(
g1(ξ

(1)
t ), . . . , gi(ξ

(i)
t ), . . . , gn(ξ

(n)
t )
)>}

0≤t≤1

, (7.63)

has an Archimedean copula at time t = 1.

Figure 7.1 at the end of this chapter is a simulation of a 10-dimensional ASP, and Figure

7.2 is a simulation of a 20-dimensional ASP. The time horizon is [0, 1], and we fix R = 1.

In these simulations, each different colour represents a marginal process of the ASP, where

each marginal process is a GRB.

7.2.1 Characterisations

In this subsection we shall characterize ASPs first through their finite-dimensional distribu-

tions, and then through their transition probabilities.

134



Finite-Dimensional Distributions

The finite-dimensional distributions of the master process {Γt} are given by

Q(Γt1 ∈ dx1, . . . ,Γtk ∈ dxk,Γn ∈ dz) = Q(Γt1 ∈ dx1, . . . ,Γtk ∈ dxk |Γn = z) ν(dz), (7.64)

where x0 = 0, for all k ∈ N+, all partitions 0 = t0 < t1 < · · · < tk < n, all z ∈ R+, and

all (x1, . . . , xk)
> = x ∈ Rk

+. It was mentioned earlier that the bridges of a GRB are gamma

bridges. (In fact, this is the basis of the definition of Lévy random bridges given in Hoyle et

al., 2011). Hence, for {γt} a gamma process such that EQ[γ1] = 1 and VarQ[γ1] = 1, we have

Q(Γt1 ∈ dx1, . . . ,Γtk ∈ dxk,Γn ∈ dz)

= Q(γt1 ∈ dx1, . . . , γtk ∈ dxk | γn = z) ν(dz). (7.65)

From (7.45) and (7.49), we have

(Γt1 − Γt0 , . . . ,Γtk − Γtk−1
,Γn − Γtk)

law
=

R

γn
(γt1 − γt0 , . . . , γtk − γtk−1

, γn − γtk). (7.66)

Hence, from Definition 7.1.6, (Γt1−Γt0 , . . . ,Γtk−Γtk−1
,Γn−Γtk)

> has a multivariate Liouville

distribution with generating law ν and parameter vector (t1 − t0, . . . , tk − tk−1, n− tk)>.

We can use these results to characterise the law of the ASP {ξt} through the joint

distribution of its increments. Fix ki ≥ 1 and the partitions

0 = ti0 < ti1 < · · · < tiki = 1, (7.67)

for i = 1, . . . , n. Then define the non-overlapping increments {∆ij} by

∆ij = ξ
(i)

tij
− ξ(i)

tij−1
, (7.68)

for j = 1, . . . , ki and i = 1, . . . , n. The distribution of the vector

∆ = (∆11,∆12, . . . ,∆1k1 ,

∆21,∆22, . . . ,∆2k2 ,

...

∆n1,∆n2, . . . ,∆nkn)> (7.69)

characterises the finite-dimensional distributions of the ASP {ξt}. Thus it follows from the

Kolmogorov extension theorem that the distribution of ∆ characterises the law of {ξt}. Note

that ∆ contains non-overlapping increments of the master GRB {Γt} such that ‖∆‖ = Γn.
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Hence ∆ has a multivariate Liouville distribution with parameter vector

α = (t11 − t10, t12 − t11, . . . , t1k1 − t
1
k1−1,

t21 − t20, t22 − t21, . . . , t2k2 − t
2
k2−1,

...

tn1 − tn0 , tn2 − tn1 , . . . , tnkn − t
n
kn−1)>, (7.70)

and the generating law ν.

Transition Law

We denote the filtration generated by {ξt}0≤t≤1 by {Fξ
t }. From Proposition 7.1.14, {ξt} is a

Markov process with respect to {Fξ
t }. We shall calculate the transition probabilities of {ξt}

after introducing some further notation.

For a set B ∈ B(R) and a constant x ∈ R, we write B + x for the shifted set such that

B + x = {y ∈ R : y − x ∈ B}. (7.71)

In what follows, we assume that {ξt} is an n-dimensional ASP with generating law ν, and

that {Γt} is a master process of {ξt}. We define the process {Rt}0≤t≤1 by setting

Rt =
n∑
i=1

ξ
(i)
t = ‖ξt‖. (7.72)

The terminal value of {Rt} is the terminal value of the master process {Γt}, i.e., R1 = Γn.

We define a family of unnormalised measures, indexed by t ∈ [0, 1) and x ∈ R+, as follows:

θ0(B;x) = ν(B), (7.73)

θt(B;x) =

∫
B

fn(1−t)(z − x)

fn(z)
ν(dz)

=
Γ[n]ex

Γ[n(1− t)]

∫
B

1{z>x}z
1−n(z − x)n(1−t)−1 ν(dz), (7.74)

forB ∈ B(R). We also write Ψt(x) = θt([0,∞);x). It follows from (7.65) and the independent

increments of gamma processes that

Q(Γt1 ∈ dx1, . . . ,Γtk ∈ dxk,Γn ∈ dz) =
k∏
i=1

[fti−ti−1
(xi − xi−1) dxi]

fn−tk(z − xk)
fn(z)

ν(dz)

=
k∏
i=1

[fti−ti−1
(xi − xi−1) dxi]θtk/n(dz;xk). (7.75)
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Proposition 7.2.4. The ASP {ξt} is a Markov process with the transition law given by

Q
(
ξ

(1)
1 ∈ dz1, . . . , ξ

(n−1)
1 ∈ dzn−1, ξ

(n)
1 ∈ B

∣∣∣ ξs = x
)

=

θτ(s)(B +
∑n−1

i=1 zi;xn +
∑n−1

i=1 zi)

Ψs(‖x‖)

n−1∏
i=1

(zi − xi)−se−(zi−xi)

Γ[1− s]
dzi, (7.76)

and

Q (ξt ∈ dy | ξs = x) =
Ψt(‖y‖)
Ψs(‖x‖)

n∏
i=1

(yi − xi)(t−s)−1e−(yi−xi)

Γ[t− s]
dyi, (7.77)

where τ(t) = 1− (1− t)/n, 0 ≤ s < t < 1, and B ∈ B(R).

Proof. We begin by verifying (7.76). From the Bayes formula we have

Q
(
ξ

(1)
1 ∈ dz1, . . . , ξ

(n−1)
1 ∈ dzn−1, ξ

(n)
1 ∈ B

∣∣∣ ξs = x
)

=

=
Q
(
ξ

(1)
1 ∈ dz1, . . . , ξ

(n−1)
1 ∈ dzn−1, ‖ξ1‖ ∈ B +

∑n−1
i=1 zi, ξs ∈ dx

)
Q (ξs ∈ dx)

. (7.78)

The a priori law of R1 = ‖ξ1‖ is ν; hence using (7.75) the numerator of (7.78) is∫
u∈B+

∑n−1
i=1 zi

Q
(
ξ

(1)
1 ∈ dz1, . . . , ξ

(n−1)
1 ∈ dzn−1, ξs ∈ dx

∣∣∣R1 = u
)
ν(du) =

n∏
i=1

[fs(xi) dxi]
n−1∏
i=1

[f1−s(zi − xi) dzi]

∫
u∈B+

∑n−1
i=1 zi

f1−s(u−
∑n−1

i=1 zi − xn)

fn(u)
ν(du), (7.79)

and the denominator is

Q(ξs ∈ dx) = Q(Γs ∈ dx1,Γ1+s − Γ1 ∈ dx2, . . . ,Γn−1+s − Γn−1 ∈ dxn)

= Q(Γs ∈ dx1,Γ2s − Γs ∈ dx2, . . . ,Γns − Γ(n−1)s ∈ dxn) (7.80)

=
n∏
i=1

[fs(xi) dxi]

∫ ∞
u=0

fn(1−s)(u− ‖x‖)
fn(u)

ν(du). (7.81)

In (7.79) we have used the fact that, given ‖ξ1‖ = R1, {ξt} is a vector of subprocesses of

a gamma bridge. Equation (7.80) follows from the stationary increments property of GRBs

and (7.81) follows from (7.75). Dividing (7.79) by (7.81) yields

∫
u∈B+

∑n−1
i=1 zi

1
fn(u)

f1−s(u−
∑n−1

i=1 zi − xn) ν(du)∫∞
u=0

1
fn(u)

fn(1−s)(u− ‖x‖) ν(du)

n−1∏
i=1

[f1−s(zi − xi) dzi] =

θτ(s)(B +
∑n−1

i=1 zi;xn +
∑n−1

i=1 zi)

θs([0,∞); ‖x‖)

n−1∏
i=1

(zi − xi)−se−(zi−xi)

Γ[1− s]
dzi, (7.82)
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as required. We shall now verify (7.77) following similar steps. From the Bayes formula we

have

Q(ξt ∈ dy | ξs = x) =
Q(ξt ∈ dy, ξs ∈ dx)

Q(ξs ∈ dx)
. (7.83)

The numerator of (7.83) is∫ ∞
z=0

Q (ξt ∈ dy, ξs ∈ dx |R1 = z) ν(dz) =

n∏
i=1

[fs(xi) dxi]
n∏
i=1

[ft−s(yi − xi) dyi]

∫ ∞
z=0

fn(1−t)(z − ‖y‖)
fn(z)

ν(dz), (7.84)

and the denominator is given in (7.81). Dividing (7.84) by (7.81) yields∫∞
z=0

1
fn(z)

fn(1−t)(z − ‖y‖) ν(dz)∫∞
z=0

1
fn(z)

fn(1−s)(z − ‖x‖) ν(dz)

n∏
i=1

[ft−s(yi − xi) dyi] =

θt([0,∞); ‖y‖)
θs([0,∞); ‖x‖)

n∏
i=1

(yi − xi)(t−s)−1e−(yi−xi)

Γ[t− s]
dyi, (7.85)

which completes the proof.

Remark 7.2.5. When the generating law ν admits a density p, (7.78) is equivalent to the

following:

Q (ξ1 ∈ dz | ξs = x) =
Γ[n]e‖x‖p(‖z‖)
Ψs(‖x‖)‖z‖n−1

n∏
i=1

(zi − xi)−s

Γ[1− s]
dzi. (7.86)

Increments of ASPs

We shall now show that the increments of an ASP have n-dimensional Liouville distributions.

Indeed, at time s ∈ [0, 1), the increment ξt − ξs, t ∈ (s, 1], has a multivariate Liouville

distribution with a generating law that can be expressed in terms of the ξs-conditional law

of the norm variable Rt = ‖ξt‖. Before we show this, we shall first examine the law of the

process {Rt}.

Proposition 7.2.6. The process {Rt}0≤t≤T is a GRB with generating law ν and activity

parameter n. That is,

Q(Rt ∈ dr | ξs = x) =
Ψt(r)

Ψs(‖x‖)
(r − ‖x‖)n(t−s)−1 exp(−(r − ‖x‖))

Γ[n(t− s)]
dr, (7.87)

and

Q(R1 ∈ dr | ξs = x) =
θs(dr; ‖x‖)

Ψs(‖x‖)
, (7.88)
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for 0 < s < t < 1.

Before proceeding the proof, note that, after simplification, (7.87) and (7.88) are consis-

tent with (7.50) and (7.51).

Proof. Since {ξt} is a Markov process with respect to {Fξ
t }, {Rt} is a Markov process with

respect to {Fξ
t }. Thus, to prove the proposition we need only verify that the transition

probabilities {Rt} match those given in (7.87) and (7.88).

We first verify the ξs-conditional law of R1. We can calculate this using the Bayes

formula,

Q(R1 ∈ dr | ξs = x) =
Q(ξs ∈ dx |R1 = r)Q(R1 ∈ dr)∫∞

r=0
Q(ξs ∈ dx |R1 = r)Q(R1 ∈ dr)

=

1
fn(r)

fn(1−s)(r − ‖x‖) ν(dr)∫∞
r=0

1
fn(r)

fn(1−s)(r − ‖x‖) ν(dr)

=
θs(dr; ‖x‖)

Ψs(‖x‖)
. (7.89)

The ξs-conditional law of Rt for t ∈ (s, 1) can be derived by the use of the Bayes formula,

Q(Rt ∈ dr | ξs = x) =

∫∞
z=0

Q(ξs ∈ dx, Rt ∈ dr |R1 = z)Q(R1 ∈ dz)∫∞
z=0

∫∞
r=0

Q(ξs ∈ dx, Rt ∈ dr |R1 = z)drQ(R1 ∈ dz)

=

∫∞
z=0

1
fn(z)

fn(t−s)(r − ‖x‖)fn(1−t)(z − r)dr ν(dz)∫∞
z=0

1
fn(z)

∫ z
r=‖x‖ fn(t−s)(r − ‖x‖)fn(1−t)(z − r)dr ν(dz)

=
Ψt(r)

Ψs(‖x‖)
fn(t−s)(r − ‖x‖)dr. (7.90)

The denominator of (7.90) is simplified using the fact that gamma densities with common

scale parameter are closed under convolution.

For a set B ∈ B(R), we define the measure νst, 0 ≤ s < t ≤ 1, by

νst(B) = Q(Rt ∈ B | ξs). (7.91)

Thus we have

νs1(dr) =
θs(dr;Rs)

Ψs(Rs)
, (7.92)

and

νst(dr) =
Ψt(r)

Ψs(Rs)

(r −Rs)
n(t−s)−1 exp(−(r −Rs))

Γ[n(t− s)]
dr, for t < 1. (7.93)
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When νst admits a density, we denote it by pst(r) = νst(dr)/dr. We see from (7.93) that pst

exists for t < 1. When t = 1, it follows from the definition of θt that ps1 only exists if ν

admits a density.

Note that from Proposition 7.2.6, Q(Rt ∈ dr | ξs) = Q(Rt ∈ dr |Rs) for t ∈ (s, 1]. This

is not surprising since {Rs} is a GRB, and hence it is a Markov process with respect to its

natural filtration.

Proposition 7.2.7. Fix s ∈ [0, 1). Given ξs, the increment ξt − ξs, t ∈ (s, 1], has an

n-variate Liouville distribution with generating law

ν∗(B) = νst(B +Rs), (7.94)

and parameter vector α = (t− s, . . . , t− s)>, for a set B ∈ B(R).

Proof. First we prove the case t < 1. Thus, the density pst exists. From (7.77) and (7.93),

we have the following:

Q(ξt − ξs ∈ dy | ξs) =
Ψt(‖y‖+Rs)

Ψs(Rs)

n∏
i=1

y
(t−s)−1
i e−yi

Γ[t− s]
dyi

=
pst(‖y‖+Rs)Γ[n(t− s)]

‖y‖n(t−s)−1

n∏
i=1

y
(t−s)−1
i

Γ[t− s]
dyi. (7.95)

Comparing (7.95) to (7.25) shows it to be the law of Liouville distribution with generating

law pst(x+Rs)dx and parameter vector (t−s, . . . , t−s)>. Noting that pst(x+Rs)dx = ν∗(dx),

where ν∗ is given by (8.40), yields the required result.

We now consider the case t = 1 when ν admits a density p. Thus, the density ps1 exists.

From (7.86) and (7.92), we have

Q(ξ1 − ξs ∈ dy | ξs) =
Γ[n]eRsp(‖y‖+Rs)

Ψs(Rs)(‖y‖+Rs)n−1

n∏
i=1

y−si
Γ[1− s]

dyi

=
Γ[n(1− t)]ps1(‖y‖+Rs)

‖y‖n(1−t)−1

n∏
i=1

y−si
Γ[1− s]

dyi. (7.96)

Hence ξt − ξs has the required density.

For the final case where t = 1 and ν has no density, the proof is as follows: Given ξs,

the law of the increment ξ1 − ξs is characterised by (7.76). Then by mixing the Dirichlet

density (7.19) with the random scale parameter X, it follows that this law is equal to the

law of XD, where X is a random variable with law ν∗ which is given by (8.40), and D is a

Dirichlet random variable independent of X, with parameter vector (1− s, . . . , 1− s)>. The

statement follows.
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7.2.2 Moments

In this subsection we fix a time s ∈ [0, 1), and we assume that the first two moments of ν

exist and are finite.

Proposition 7.2.8. The first- and second-order moments of ξt, t ∈ (s, 1], are

1. EQ
[
ξ

(i)
t

∣∣∣ ξs] =
1

n
µ1 + ξ(i)

s , (7.97)

2. VarQ
[
ξ

(i)
t

∣∣∣ ξs] =
1

n

[(
t− s+ 1

n(t− s) + 1

)
µ2 −

1

n
µ2

1

]
, (7.98)

3. CovQ
[
ξ

(i)
t , ξ

(j)
t

∣∣∣ ξs] =
t− s
n

[
µ2

n(t− s) + 1
− µ2

1

n(t− s)

]
, (i 6= j), (7.99)

where

µ1 =
t− s
1− s

(
EQ[R1 |Rs]−Rs

)
, (7.100)

µ2 =
(t− s)(1 + n(t− s))
(1− s)(1 + n(1− s))

EQ[(R1 −Rs)
2 |Rs]. (7.101)

Proof. Given ξs, the increment ξt − ξs has an n-dimensional Liouville distribution with

generating law

ν∗(A) = νst(A+Rs), (7.102)

for t ∈ (s, 1], and with parameter vector (t− s, . . . , t− s)>. We have

µ1 =

∫ ∞
0

y ν∗(dy) =

∫ ∞
Rs

y νst(dy)−Rs = EQ[Rt | ξs]−Rs, (7.103)

µ2 =

∫ ∞
0

y2 ν∗(dy) =

∫ ∞
Rs

(y −Rs)
2 νst(dy) = EQ[(Rt −Rs)

2 | ξs]. (7.104)

It then follows from equations (7.26)-(7.28) that

1. EQ
[
ξ

(i)
t

∣∣∣ ξs] =
1

n

(
EQ[Rt | ξs]−Rs

)
+ ξ(i)

s , (7.105)

2. VarQ
[
ξ

(i)
t

∣∣∣ ξs] =
1

n

[(
t− s+ 1

n(t− s) + 1

)
EQ[(Rt −Rs)

2 | ξs]−
1

n

(
EQ[Rt | ξs]−Rs

)2
]
,

(7.106)

3. CovQ
[
ξ

(i)
t , ξ

(j)
t

∣∣∣ ξs] =
t− s
n

[(
EQ[(Rt −Rs)

2 | ξs]
)

n(t− s) + 1
−
(
EQ[Rt | ξs]−Rs

)2

n(t− s)

]
, (i 6= j).

(7.107)

To compute EQ[Rt | ξs] and EQ[(Rt−Rs)
2 | ξs], we use two results about Lévy random bridges
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found in Hoyle et al. (2011). First, we can write

EQ[Rt |Rs] =
t− s
1− s

EQ[R1 |Rs] +
1− t
1− s

Rs. (7.108)

The expression for µ1 then follows directly. Second, given Rs, the process {Rt −Rs}s≤t≤1 is

a GRB with generating law ν̄(B) = νs1(B+Rs) and activity parameter n. Hence, given Rs,

we can write

{Rt −Rs}s≤t≤1
law
= {Xγt1}s≤t≤1, (7.109)

where X is a random variable with law ν̄, and {γt1}s≤t≤1 is a gamma bridge with activity

parameter n, independent of X, satisfying γs1 = 0 and γ11 = 1. Note that γt1, t ∈ (s, 1), is a

beta random variable with parameters α = n(t− s) and β = n(1− t). Therefore, it follows

that

EQ[(Rt −Rs)
2 |Rs] = EQ[γ2

t1]EQ[X2] = EQ[γ2
t1]

∫ ∞
0

x2 ν̄(dx)

= EQ[γ2
t1]

∫ ∞
Rs

(y −Rs)
2 νs1(dx)

=
(t− s)(1 + n(t− s))
(1− s)(1 + n(1− s))

EQ[(R1 −Rs)
2 |Rs], (7.110)

which completes the proof.

7.2.3 Measure Change

In this section we shall show that the law of an n-dimensional ASP is equivalent to a vector

of n independent gamma processes. To demonstrate this result, we begin by assuming that

under some probability measure Q̃ the process {ξt} is a vector of n independent gamma

processes, and then show that {ξt} is an ASP under an equivalent measure Q.

In particular, under Q̃, we assume that {ξt} is a vector of n independent gamma processes

such that

Q̃(ξt ∈ dx) =
n∏
i=1

xt−1
i

Γ[t]
e−xi dxi. (7.111)

Hence, the gamma processes {ξ(i)
t }, i = 1, 2, . . . ,m, are independent, and they are identical

in law. The process {Rt}0≤t≤1, defined as above by Rt = ‖ξt‖, is a one-dimensional gamma

process and satisfies the following:

Q̃(Rt ∈ dx) =
xnt−1

Γ[nt]
e−x dx. (7.112)

As before, the filtration {Fξ
t } is generated by {ξt}.
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We shall show that the process {Ψt(Rt)}0≤t<1 is a martingale, where

Ψt(Rt) =

∫ ∞
Rt

fn(1−t)(z −Rt)

fn(z)
ν(dz)

=
Γ[n] exp(Rt)

Γ[n(1− t)]

∫ ∞
Rt

z1−n(z −Rt)
n(1−t)−1 ν(dz). (7.113)

For times 0 ≤ s < t < 1, we have

EQ̃ [Ψt(Rt)
∣∣Fξ

s

]
= EQ̃

[∫ ∞
Rt

fn(1−t)(z −Rt)

fn(z)
ν(dz)

∣∣∣∣Fξ
s

]
= EQ̃

[∫ ∞
Rt

fn(1−t)(z −Rs − (Rt −Rs))

fn(z)
ν(dz)

∣∣∣∣ ξs]
=

∫ ∞
y=0

∫ ∞
z=Rs+y

fn(1−t)(z −Rs − y)

fn(z)
ν(dz) fn(t−s)(y) dy

=

∫ ∞
z=Rs

1

fn(z)

∫ z−Rs

y=0

fn(1−t)(z −Rs − y)fn(t−s)(y) dy ν(dz)

=

∫ ∞
Rs

fn(1−s)(z −Rs)

fn(z)
ν(dz)

= Ψs(Rs). (7.114)

Since Ψ0(R0) = 1 and Ψt(Rt) > 0, the process {Ψt(Rt)}0≤t<1 is a Radon-Nikodym density

process.

Proposition 7.2.9. Define a measure Q by

dQ
dQ̃

∣∣∣∣
Fξ
t

= Ψt(Rt). (7.115)

Under Q, {ξt}0≤t<1 is an ASP with generating law ν.

Proof. We prove the proposition by verifying that the transition law of {ξt} under Q is that

of an ASP.

Q
(
ξt ∈ dx | Fξ

s

)
= EQ[1{ξt ∈ dx} |Fξ

s ]

=
1

Ψs(Rs)
EQ̃[Ψt(Rt)1{ξt ∈ dx} | ξs]

=
Ψt(Rt)

Ψs(Rs)

n∏
i=1

ft−s(xi − ξ(i)
s ) dxi

=
Ψt(Rt)

Ψs(Rs)

n∏
i=1

(xi − ξ(i)
s )(t−s)−1e−(xi−ξ

(i)
s )

Γ[t− s]
dxi. (7.116)

Comparing equations (7.116) and (7.77) completes the proof.

143



We can restate the results of this subsection by the following:

Proposition 7.2.10. Suppose that {ξt}0≤t≤1 is an ASP with generating law ν under some

measure Q. Then

dQ̃
dQ

∣∣∣∣∣
Fξ
t

= Ψt(Rt)
−1, (7.117)

defines a probability measure Q̃ for t ∈ [0, 1). Furthermore, under Q̃, {ξt}0≤t<1 is a vector

of n independent gamma processes such that

Q̃(ξt ∈ dx) =
n∏
i=1

xt−1
i

Γ[t]
e−xi dxi. (7.118)

7.2.4 Independent Gamma Bridges Representation

In this section, we shall show that the increments of an n-dimensional ASP are identical in

law to a positive random variable multiplied by the Hadamard product of an n-dimensional

Dirichlet random variable and a vector of n independent gamma bridges.

For vectors X,Y ∈ Rn, we denote their Hadamard product by X ◦ Y. Recall from

Chapter 3 that we can write

X ◦Y = (x1y1, . . . , xnyn)>. (7.119)

Proposition 7.2.11. Given the value of ξs, the ASP process {ξt} satisfies the following

identity in law:

{ξt − ξs}s≤t≤1
law
= {R∗D ◦ γt1}s≤t≤1, (7.120)

where

1. D ∈ [0, 1]n is a symmetric Dirichlet random variable with parameter vector (1 −
s, . . . , 1− s)>;

2. {γt1} is a vector of n independent gamma bridges, each with activity parameter m = 1,

starting at the value 0 at time s, and terminating with unit value at time 1;

3. R∗ > 0 is a random variable with law ν∗ given by

ν∗(A) = νs1(A+Rs), for A ∈ B(R); (7.121)

4. R∗, D, and {γt1} are mutually independent.

Proof. Fix ki ≥ 1 and the partition

s = ti0 < ti1 < · · · < tiki = 1, (7.122)
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for i = 1, . . . , n. Define the non-overlapping increments {∆ij} by

∆ij = ξ
(i)

tij
− ξ(i)

tij−1
, (7.123)

for j = 1, . . . , ki and i = 1, . . . , n. The distribution of the vector

∆ = (∆11,∆12, . . . ,∆1k1 ,

∆21,∆22, . . . ,∆2k2 ,

...

∆n1,∆n2, . . . ,∆nkn)>, (7.124)

characterises the finite-dimensional distributions of the process {ξt − ξs}s≤t≤1. It follows

from the Kolmogorov extension theorem that the distribution of ∆ characterises the law of

{ξt − ξs}. Note that ∆ are non-overlapping increments of the master GRB {Γt}. Thus,

given ξs, ∆ has a multivariate Liouville distribution with parameter vector

α = (t11 − t10, t12 − t11, . . . , t1k1 − t
1
k1−1,

t21 − t20, t22 − t21, . . . , t2k2 − t
2
k2−1,

...

tn1 − tn0 , tn2 − tn1 , . . . , tnkn − t
n
kn−1)>, (7.125)

and generating law

ν∗(A) = νs1(A+Rs), (7.126)

for t ∈ (s, 1] and A ∈ B(R).

It follows from (Fang et al. 1990, Theorem 6.9) that

(∆i1, . . . ,∆iki)
> law

= R∗DiYi, for i = 1, . . . , n, (7.127)

where (i) R∗ has law ν∗, (ii) D = (D1, . . . , Dn)> has a Dirichlet distribution with parameter

vector (1−s, . . . , 1−s)>, (iii) Yi ∈ [0, 1]ki has a Dirichlet distribution with parameter vector

(ti1 − ti0, . . . , tiki − t
i
ki−1)>, (iv) Y1, . . . ,Yn, R∗, and D are mutually independent.

Let {γ(t)}s≤t≤1 be a gamma bridge with activity parameter m = 1 such that γ(s) = 0

and γ(1) = 1. Then the increment vector

(γ(ti1)− γ(ti0), . . . , γ(tiki)− γ(tiki−1))>, (7.128)

has a Dirichlet distribution with parameter vector (ti1 − ti0, . . . , t
i
ki
− tiki−1)>. Hence the

increment vector (7.128) is identical in law to Yi. From the Kolmogorov extension theorem,
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this identity characterises the law of {γ(t)}. It follows that

{ξ(i)
t − ξ(i)

s }s≤t≤1
law
= {R∗Diγt1}s≤t≤1, for i = 1, . . . , n, (7.129)

which completes the proof.

7.2.5 Uniform Process

We construct a multivariate process from the ASP {ξt} such that each one-dimensional

marginal is a priori uniformly distributed for every time t ∈ (0, 1].

Fix a time t ∈ (0, 1]. Each ξ
(i)
t is a scale-mixed beta random variable with survival

function

F̄t(x) =

∫ ∞
x

(
1− Ix/y[t, n− t]

)
ν(dy)

=

∫ ∞
x

I1−x/y[n− t, t] ν(dy), (7.130)

where Iz[α, β] is the regularized incomplete Beta function, defined as usual for z ∈ [0, 1] by

Iz[α, β] =

∫ z
0
uα−1(1− β)β−1 du∫ 1

0
uα−1(1− β)β−1 du

(α, β > 0). (7.131)

The random variables

Y
(i)
t = F̄t(ξ

(i)
t ), i = 1, . . . , n, (7.132)

are then uniformly distributed.

We now define a process {Y}0≤t≤1 by

Yt =
(
F̄t(ξ

(1)
t ), . . . , F̄t(ξ

(n)
t )
)>

. (7.133)

By construction, each one-dimensional marginal Y
(i)
t is uniform for t > 0. For fixed t, Yt

is a draw from the survival copula of the Liouville distribution, and Y1 is a draw from an

Archimedean survival copula.
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Figure 7.1: A 10-dimensional Archimedean survival process. An Archimedean survival process is a mul-
tivariate gamma random bridge, since each marginal process is a gamma random bridge. Time horizon:
[0, 1].

Figure 7.2: A 20-dimensional Archimedean survival process. Each marginal process is a gamma random
bridge. Time horizon: [0, 1].
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Chapter 8

Generalised Liouville Processes

We introduce a class of Markovian multivariate stochastic processes that we call Generalised

Liouville Processes (GLPs). We construct GLPs by splitting Lévy random bridges into n

non-overlapping pieces. We allow more flexibility in the splitting mechanism when compared

to the way ASPs are constructed, and employ some deterministic time changes. GLPs

generalise ASPs.

We have seen in Chapter 7 that ASPs are n-dimensional extensions of gamma random

bridges. Hence, an ASP can be viewed as a multivariate gamma information process about a

vector of dependent claims determined by the terminal values of cumulative gains processes.

We shall show below that we can view GLPs as multivariate information processes as well.

This interpretation follows from the fact that GLPs are a natural multivariate extension of

Lévy random bridges, and one-dimensional Lévy random bridges are used in Hoyle et al.

(2011) as market information processes.

This chapter is organized as follows: Section 1 is a brief review of Lévy processes, Lévy

bridges and Lévy random bridges. In Section 2, we define GLPs and provide various charac-

terisations of their law. As an example, we introduce what we call Liouville processes as a

subclass of GLPs, and show that ASPs are special cases of Liouville processes. We also intro-

duce what we call Standard Variance Gamma Liouville Processes (SVGLPs), and show that

SVGLPs can be represented in terms of Liouville processes. Section 3 is an information-based

perspective of GLPs.

8.1 Lévy Random Bridges

8.1.1 Lévy Processes and Lévy Bridges

Let (Ω,F ,Q) be a probability space equipped with a filtration {Ft}0≤t≤∞. We fix a finite

time horizon [0, T ] and assume that all filtrations are right-continuous and complete. An

n-dimensional càdlàg process {Yt}t≥0 with Y0 = 0 is a Lévy process if it is stochastically
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continuous, and has independent and stationary increments. The characteristic function of

a Lévy process satisfies EQ[eizYt ] = etµ̃(z), for z ∈ Rn, where the characteristic exponent

µ̃(z) : Rn → Cn can be written as

µ̃(z) = i〈γ, z〉 − 1

2
〈z, Az〉+

∫
Rn

(ei〈z,x〉 − 1− i〈z, x〉1{|x|<1})Λ(dx). (8.1)

Equation (8.1) is the Lévy-Khintchine representation, where 〈 , 〉 is the inner product, γ ∈ Rn,

A is a symmetric positive-definite n× n matrix, and Λ is the Lévy measure which satisfies

Λ({0}) = 0 and

∫
Rn

(|x|2 ∧ 1)Λ(dx) <∞. (8.2)

Let {Yt}t∈[0,T ] be a one-dimensional Lévy process defined on (R,B(R)), and assume that

the density of Yt exists for every t ∈ (0, T ]. For the density to exist, the law of Yt must be

absolutely continuous with respect to the Lebesgue measure.

We denote the density of Yt by ft : R→ R+. The densities of a Lévy process satisfy the

Chapman-Kolmogorov convolution identity

ft(x) =

∫
R
ft−s(x− y)fs(y) dy, (8.3)

and the finite-dimensional laws of {Yt} are given by

Q(Yt1 ∈ dy1, . . . , Ytn ∈ dyn) =
n∏
i=1

fti−ti−1
(yi − yi−1) dyi, (8.4)

for n ∈ N+, 0 < t1 < . . . < tn < T and (y1, . . . , yn) ∈ Rn. Lévy processes are Markovian.

A Lévy bridge is a Lévy process conditioned to take some fixed value at a fixed future

time. See, for example, Fitzsimmons et al. (1993) for an analysis of bridges of Markov

processes.

If {Y (z)
tT } is a bridge of {Yt} to the value z ∈ R at time T , then

Q(Y
(z)
tT ∈ dy|Y (z)

sT = x) =
ft−s(y − x)fT−t(z − y)

fT−s(z − x)
dy, (8.5)

is its transition probability for 0 ≤ s < t < T and 0 < fT (z) < ∞. It is shown in Hoyle et

al. (2011) that Lévy bridges are Markovian.

8.1.2 Lévy Random Bridges

Hoyle et al. (2011) define Lévy random bridges (LRBs) as follows:

Definition 8.1.1. {Lt}t∈[0,T ] is a Lévy random bridge with law LRBC([0, T ], {ft}, υ) if the
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following conditions are satisfied:

1. LT has marginal law ν.

2. There exists a Lévy process {Yt} such that Yt has density ft(x) for all t ∈ (0, T ].

3. ν concentrates mass where fT (z) is positive and finite, i.e. 0 < fT (z) <∞ ν-a.s.

4. For every n ∈ N+, every 0 < t1 < . . . < tn < T , every (x1, . . . , xn) ∈ Rn, and ν-a.e. z,

Q(Lt1 ≤ x1, . . . , Ltn ≤ xn|LT = z) = Q(Yt1 ≤ x1, . . . , Ytn ≤ xn|YT = z). (8.6)

The finite-dimensional distributions of an LRB {Lt} are given by

Q(Lt1 ∈ dx1, . . . , Ltn ∈ dxn, LT ∈ dz) =
n∏
i=1

(fti−ti−1
(xi − xi−1) dxi)θtn(dz;xn), (8.7)

where the measure θt(dz; y) is defined by

θ0(dz; y) = ν(dz) and θt(dz; y) =
fT−t(z − y)

fT (z)
ν(dz), (8.8)

for t ∈ (0, T ). The transition law of {Lt} is

Q(LT ∈ dz|Ls = y) =
θs(dz; y)

θs(R; y)
and Q(Lt ∈ dx|Ls = y) =

θt(R;x)

θs(R; y)
ft−s(x− y) dx. (8.9)

Hoyle et al. (2011) introduce LRBs to model the flow of market information within the

information-based framework. An LRB (or what one may call a Lévy information process)

is identical in law to a Lévy process conditioned to have a fixed marginal law (say, the a priori

law of the future cash flow) at a finite future time. It is proven in Hoyle et al. (2011) that

LRBs are Markov processes with stationary increments. Note that GRBs form a subclass of

LRBs.

8.2 Generalised Liouville Processes

We are now in the position to introduce what we call Generalised Liouville Processes (GLPs).

To construct a GLP, we start with a master LRB {Lt}0≤t≤un where Lun has marginal law ν

for un ∈ N+ and n ≥ 2. We assume that ν has no continuous singular part (see Sato, 1999).

Then we split {Lt}0≤t≤un into n non-overlapping subprocesses. At this point, we would like to

note that one can also construct GLPs from Lévy processes which have discrete state-spaces.

Refer to Hoyle et al. (2011) for details on LRBs where their finite-dimensional distributions

are given in terms of probability mass functions.
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Definition 8.2.1. Fix n ∈ N+, n ≥ 2, and let {ui}ni=1 be a strictly increasing sequence with

u0 = 0. Then a process {ξt}0≤t≤1 is an n-dimensional Generalised Liouville Process (GLP)

if

{ξt}0≤t≤1 =





ξ
(1)
t

...

ξ
(i)
t

...

ξ
(n)
t




0≤t≤1

law
=





Lt(u1) − L0

...

Lt(ui−ui−1)+ui−1
− Lui−1

...

Lt(un−un−1)+un−1 − Lun−1




0≤t≤1

, (8.10)

where {Lt}0≤t≤un is an LRB. We say that the marginal law of Lun is the generating law of

{ξt}.

Each one-dimensional marginal process of a GLP is a subprocess of an LRB. Hoyle et

al. (2011) prove that subprocesses of LRBs are themselves LRBs. Hence, GLPs are a

multivariate generalisation of LRBs.

We define GLPs over the time interval [0, 1] for parsimony. It is straightforward to

generalise the definition for GLPs to arbitrary closed time horizons.

Proposition 8.2.2. The law of a GLP is characterised by a generalised multivariate Liou-

ville distribution.

Proof. Since ν has no continuous singular part, we can write ν(dz) =
∑∞

j=−∞ ciδzi(z) dz +

p(z) dz, where ci ∈ R is a point mass of ν located at zi ∈ R+, and p : R→ R+ is the density

of the continuous part of ν (see, Sato, 1999). Then from (8.7), the joint density of an LRB

{Lt} is given by

Q(Lt1 ∈ dx1, . . . , Ltk ∈ dxk, Lun ∈ dxn) =

=
n∏
i=1

[fti−ti−1
(xi − xi−1) dxi]

∑∞
j=−∞ ciδzi(xn) + p(xn)

fn(xn)
, (8.11)

where x0 = 0, for all k ∈ N+, all partitions 0 = t0 < t1 < · · · < tn−1 < tn = un, all xn ∈ R,

and all (x1, . . . , xk)
> = x ∈ Rk. Let α ∈ Rn

+ be the vector of time increments αi = ti − ti−1,

and α = ||α|| = un. The Jacobian of the transformation y1 = x1, y2 = x2 − x1, . . . yn =

xn − xn−1 is 1, and it follows that

Q(Lt1 − Lt0 ∈ dy1, . . . , Lun − Ltk ∈ dyn) =

=
n∏
i=1

fαi(yi) dyi

∑∞
j=−∞ ciδzi(

∑n
i=1 yi) + p(

∑n
i=1 yi)

fα(
∑n

i=1 yi)
. (8.12)
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From the definition given in Gupta and Richards (1995), (Lt1−Lt0 , . . . , Ltk−Ltk−1
, Lun−Ltk)>

has a generalised multivariate Liouville distribution. Fix ki ≥ 1 and the partitions 0 = ti0 <

ti1 < · · · < tiki = 1, for i = 1, . . . , n. Then define the non-overlapping increments {∆ij} by

∆ij = ξ
(i)

tij
− ξ(i)

tij−1
, for j = 1, . . . , ki and i = 1, . . . , n. The distribution of the k1 × · · · × kn-

element vector ∆ = (∆11, . . . ,∆1k1 , . . . ,∆n1, . . . ,∆nkn)> characterises the finite-dimensional

distributions of the GLP {ξt}. It follows from the Kolmogorov extension theorem that

the distribution of ∆ characterises the law of {ξt}. Note that ∆ contains non-overlapping

increments of the master LRB {Lt} such that ‖∆‖ = Lun . Hence, ∆ has a generalised

multivariate Liouville distribution.

From Definition 8.2.1 and Proposition 8.2.2, we can see that the terminal value ξ1 has a

generalised multivariate Liouville distribution.

8.2.1 Transition Laws

In what follows, we let {ξt} be an n-dimensional GLP with generating law ν, and {Lt} is a

master process of {ξt}. We denote the filtration generated by {ξt}0≤t≤1 by {Fξ
t }. Note that

{ξt} may be viewed as an n-dimensional LRB, so {ξt} is Markov with respect to {Fξ
t }.

We define a family of unnormalised measures, indexed by t ∈ [0, 1) and x ∈ R, as follows:

θ0(B;x) = ν(B), (8.13)

θt(B;x) =

∫
B

fun(1−t)(z − x)

fun(z)
ν(dz), (8.14)

for B ∈ B(R). We also denote Ψt(x) = θt(R;x). We define the sum of marginals of ξt as

Rt =
n∑
i=1

ξ
(i)
t . (8.15)

Note that R1 = Lun .

Proposition 8.2.3. The GLP {ξt} is a Markov process with the transition law given by

Q
(
ξ

(1)
1 ∈ dz1, . . . , ξ

(n−1)
1 ∈ dzn−1, ξ

(n)
1 ∈ B

∣∣∣ ξs = x
)

=

θτ(s)(B +
∑n−1

i=1 zi;xn +
∑n−1

i=1 zi)

Ψs(
∑n

i=1 xi)

n−1∏
i=1

[f(1−s)(ui−ui−1)(zi − xi) dzi], (8.16)

and

Q (ξt ∈ dy | ξs = x) =
Ψt(
∑n

i=1 yi)

Ψs(
∑n

i=1 xi)

n∏
i=1

[f(t−s)(ui−ui−1)(yi − xi) dyi], (8.17)

where τ(t) = 1− (un − un−1)(1− t)/un, 0 ≤ s < t < 1, and B ∈ B(R).
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Proof. The proof is similar to that of Proposition 7.2.4. We begin by verifying (8.16). From

the Bayes formula we have

Q
(
ξ

(1)
1 ∈ dz1, . . . , ξ

(n−1)
1 ∈ dzn−1, ξ

(n)
1 ∈ B

∣∣∣ ξs = x
)

=

=
Q
(
ξ

(1)
1 ∈ dz1, . . . , ξ

(n−1)
1 ∈ dzn−1,

∑n
i=1 ξ

(i)
1 ∈ B +

∑n−1
i=1 zi, ξs ∈ dx

)
Q (ξs ∈ dx)

. (8.18)

The law of R1 =
∑n

i=1 ξ
(i)
1 is ν; hence the numerator of (8.18) is∫

r∈B+
∑n−1
i=1 zi

Q
(
ξ

(1)
1 ∈ dz1, . . . , ξ

(n−1)
1 ∈ dzn−1, ξs ∈ dx

∣∣∣R1 = r
)
ν(dr) =

n∏
i=1

[fs(ui−ui−1)(xi) dxi]
n−1∏
i=1

[f(1−s)(ui−ui−1)(zi − xi) dzi]

×
∫
r∈B+

∑n−1
i=1 zi

f(1−s)(un−un−1)(r −
∑n−1

i=1 zi − xn)

fun(r)
ν(dr), (8.19)

and the denominator is

Q (ξs ∈ dx) =
n∏
i=1

[fs(ui−ui−1)(xi) dxi]

∫ ∞
−∞

fun(1−s)(r −
∑n

i=1 xi)

fun(r)
ν(dr). (8.20)

Equation (8.19) follows from the fact that, given
∑n

i=1 ξ
(i)
1 = R1, {ξt} is a vector of subpro-

cesses of a Lévy bridge. Equation (8.20) follows from the stationary increments property of

LRBs and (8.7). Dividing (8.19) by (8.20) yields (8.16).

We shall now verify (8.17). From the Bayes formula we have

Q(ξt ∈ dy | ξs = x) =
Q(ξt ∈ dy, ξs ∈ dx)

Q(ξs ∈ dx)
. (8.21)

The numerator of (8.21) is∫ ∞
−∞

Q (ξt ∈ dy, ξs ∈ dx |R1 = z) ν(dz) =

n∏
i=1

[fs(ui−ui−1)(xi) dxi]
n∏
i=1

[f(t−s)(ui−ui−1)(yi − xi) dyi]

∫ ∞
−∞

fun(1−t)(z −
∑n

i=1 yi)

fun(z)
ν(dz), (8.22)

and the denominator is given in (8.20). Dividing (8.22) by (8.20) yields (8.17).

8.2.2 Sum of Marginals

We shall now show that the one-dimensional process {Rt}0≤t≤1 is an LRB.
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Proposition 8.2.4. The process {Rt}0≤t≤1 is an LRB with law LRBC([0, 1], {ftun}, υ).

Proof. Since {ξt} is a Markov process with respect to {Fξ
t }, {Rt} is a Markov process with

respect to {Fξ
t }. Thus, we need to verify whether the transition probabilities of {Rt} match

those of LRBs. We first verify the ξs-conditional law of R1. From the Bayes formula,

Q(R1 ∈ dr | ξs = x) =

1
fun (r)

fun(1−s)(r −
∑n

i=1 xi) ν(dr)∫∞
−∞

1
fun (r)

fun(1−s)(r −
∑n

i=1 xi) ν(dr)

=
θs(dr;

∑n
i=1 xi)

Ψs(
∑n

i=1 xi)
. (8.23)

Similarly, from the Bayes formula, the ξs-conditional law of Rt for t ∈ (s, 1) is

Q(Rt ∈ dr | ξs = x) =

∫∞
−∞

1
fun (z)

fun(t−s)(r −
∑n

i=1 xi)fun(1−t)(z − r)dr ν(dz)∫∞
−∞

1
fun (z)

∫∞
r=−∞ fun(t−s)(r −

∑n
i=1 xi)fun(1−t)(z − r)dr ν(dz)

=
Ψt(r)

Ψs(
∑n

i=1 xi)
fun(t−s)(r −

n∑
i=1

xi)dr. (8.24)

The denominator of (8.24) is simplified since the densities of Lévy processes are closed under

convolution. The transition probabilities match those of LRBs given in (8.9).

8.2.3 Measure Change

We shall show that the law of an n-dimensional GLP is equivalent to a vector of n independent

Lévy processes. First, we assume that under some measure Q̃, the process {ξt} is a vector of

n independent Lévy processes such that Q(ξt ∈ dx) =
∏n

i=1 ft(ui−ui−1)(xi) dxi. Under Q̃, the

process {Rt}0≤t≤1 is a Lévy process, since the sum of independent Lévy processes is itself a

Lévy process. In particular, Q(Rt ∈ dx) = ftun(x) dx. The filtration {Fξ
t } is generated by

{ξt}. We shall show that the process {Ψt(Rt)}0≤t<1 is a martingale, where

Ψt(Rt) =

∫ ∞
−∞

fun(1−t)(z −Rt)

fun(z)
ν(dz). (8.25)

For times 0 ≤ s < t < 1, we have

EQ̃ [Ψt(Rt) | Fs ] = EQ̃
[∫ ∞
−∞

fun(1−t)(z −Rs − (Rt −Rs))

fun(z)
ν(dz)

∣∣∣∣ ξs]
=

∫ ∞
z=−∞

1

fun(z)

∫ ∞
y=−∞

fun(1−t)(z −Rs − y)fun(t−s)(y) dy ν(dz)

=

∫ ∞
−∞

fun(1−s)(z −Rs)

fun(z)
ν(dz)

= Ψs(Rs). (8.26)
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Since Ψ0(R0) = 1 and Ψt(Rt) > 0, the process {Ψt(Rt)}0≤t<1 is a Radon-Nikodym density

process.

Proposition 8.2.5. Define a measure Q by

dQ
dQ̃

∣∣∣∣
Fξ
t

= Ψt(Rt). (8.27)

Under Q, the process {ξt}0≤t<1 is a GLP with generating law ν.

Proof. We prove by verifying that under Q, the transition law of {ξt} is that of a GLP:

Q
(
ξt ∈ dx | Fξ

s

)
= EQ[1{ξt ∈ dx} |Fξ

s ]

=
1

Ψs(Rs)
EQ̃[Ψt(Rt)1{ξt ∈ dx} | ξs]

=
Ψt(Rt)

Ψs(Rs)

n∏
i=1

f(t−s)(ui−ui−1)(xi − ξ(i)
s ) dxi. (8.28)

Comparing equations (8.28) and (8.17) completes the proof.

Proposition 8.2.6. Suppose that {ξt}0≤t≤1 is a GLP with generating law ν under some

measure Q. Then

dQ̃
dQ

∣∣∣∣∣
Fξ
t

= Ψt(Rt)
−1, (8.29)

defines a probability measure Q̃ for t ∈ [0, 1). Under Q̃, the process {ξt}0≤t<1 is a vector of

n independent Lévy processes.

8.2.4 Liouville Processes

We now introduce a subclass of GLPs that we call Liouville processes and show that ASPs

are special cases of Liouville processes. Most of the results presented here about Liouville

processes can also be found in Hoyle and Mengütürk (2012). A Liouville process is a Markov

process whose increments have multivariate Liouville distributions. Liouville processes dis-

play a broader range of dynamics than ASPs. This generalisation comes at the expense

of losing the direct connection to Archimedean copulas. However, a Liouville process has

a natural link to a Liouville copula, which is defined by the survival copula of a Liouville

distribution (see, McNeil and Nes̃lehová, 2010).

Liouville processes are a natural multivariate extension of GRBs, and thus are a flexible

tool in the modelling of cumulative processes. Their one-dimensional marginal processes are

in general not identically distributed. Also, the marginal processes are increasing and do not

exhibit simultaneous large jumps, but they can display strong correlation.
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Definition 8.2.7. Fix n ∈ N+, n ≥ 2, and the vector m ∈ Rn
+ satisfying mi > 0, i =

1, . . . , n. Define the strictly increasing sequence {ui}ni=1 by u0 = 0 and ui = ui−1 + mi for

i = 1, . . . , n. Then a process {ξt}0≤t≤1 is an n-dimensional Liouville process if

{ξt}0≤t≤1
law
=
{[

Γt(u1) − Γ0, · · · ,Γt(un−un−1)+un−1 − Γun−1

]>}
0≤t≤1

, (8.30)

where {Γt}0≤t≤un is a GRB with activity parameter m = 1. We say that the generating law

of {Γt} is the generating law of {ξt} and the activity parameter of {ξt} is m.

Note that allowing the activity parameter of the master GRB to differ from unity in

Definition 8.2.7 is equivalent to multiplying the vector m by a scale factor. Each one-

dimensional marginal process of {ξt} is a GRB with activity parameter mi, and Definition

8.2.7 ensures that ξt is well-defined for each t ∈ [0, 1].

From Definition 7.1.6, it can be seen that ξ1 has a Liouville distribution. Hence, in the

language of McNeil and Nes̃lehová (2010), ξ1 has a Liouville copula.

We shall provide the transition law, moments, distribution of increments and an indepen-

dent gamma bridge representation of a Liouville process. Since the proofs are very similar

to those of ASPs, we omit them.

First, we define a family of unnormalised measures, indexed by t ∈ (0, 1) and x ∈ R+, as

follows:

θt(B;x) =
Γ[un]ex

Γ[un(1− t)]

∫
B

1{z>x}z
1−un(z − x)un(1−t)−1 ν(dz), (8.31)

for B ∈ B(R) where un = ‖m‖. We write Ψt(x) = θt([0,∞);x), and also Rt = ‖ξt‖. The

process {Rt} is a GRB with activity parameter un. Given ξs, the law of R1 is given in (8.23),

and the law of Rt for t ∈ (s, 1) is

νst(dr) =
Ψt(r)

Ψs(‖x‖)
(r − ‖x‖)un(t−s)−1 exp(−(r − ‖x‖))

Γ[un(t− s)]
dr. (8.32)

The Liouville process {ξt} is a Markov process with the transition law given by

Q
(
ξ

(1)
1 ∈ dz1, . . . , ξ

(n−1)
1 ∈ dzn−1, ξ

(n)
1 ∈ B

∣∣∣ ξs = x
)

=

θτ(s)(B +
∑n−1

i=1 zi;xn +
∑n−1

i=1 zi)

Ψs(‖x‖)

n−1∏
i=1

(zi − xi)mi(1−s)−1e−(zi−xi)

Γ[mi(1− s)]
dzi, (8.33)

and

Q (ξt ∈ dy | ξs = x) =
Ψt(‖y‖)
Ψs(‖x‖)

n∏
i=1

(yi − xi)mi(t−s)−1e−(yi−xi)

Γ[mi(t− s)]
dyi, (8.34)

where τ(t) = 1−mn(1− t)/un, 0 ≤ s < t < 1, and B ∈ B(R).
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Fix s ∈ [0, 1). The first- and second-order moments of ξt, t ∈ (s, 1], are

1. EQ
[
ξ

(i)
t

∣∣∣ ξs] =
mi

un
µ1 + ξ(i)

s , (8.35)

2. VarQ
[
ξ

(i)
t

∣∣∣ ξs] =
mi

un

[(
mi(t− s) + 1

un(t− s) + 1

)
µ2 −

mi

un
µ2

1

]
, (8.36)

3. CovQ
[
ξ

(i)
t , ξ

(j)
t

∣∣∣ ξs] =
mimj(t− s)

un

[
µ2

un(t− s) + 1
− µ2

1

un(t− s)

]
, (i 6= j), (8.37)

where we have

µ1 =
t− s
1− s

(EQ[R1 |Rs]−Rs), (8.38)

µ2 =
(t− s)(1 + un(t− s))
(1− s)(1 + un(1− s))

EQ[(R1 −Rs)
2 |Rs]. (8.39)

Fix s ∈ [0, 1). Given ξs, the increment ξt − ξs, t ∈ (s, 1], has an n-variate Liouville

distribution with generating law

ν∗(B) = νst(B +Rs), (8.40)

and parameter vector α = (t− s)m for a set B ∈ B(R).

Given the value of ξs, the Liouville process {ξt} satisfies the following identity in law:

{ξt − ξs}s≤t≤1
law
= {R∗D ◦ γt1}s≤t≤1, (8.41)

where

1. D ∈ [0, 1]n has a Dirichlet distribution with parameter vector (1− s)m;

2. {γt1} is a vector of n independent gamma bridges, such that the ith marginal process

is a gamma bridge with activity parameter mi, starting at the value 0 at time s, and

terminating with unit value at time 1;

3. R∗ > 0 is a random variable with law ν∗ given by

ν∗(A) = νs1(A+Rs), for A ∈ B(R); (8.42)

4. R∗, D, and {γt1} are mutually independent.

Note that in Definition 8.2.7, if we set mi = 1 so that ui = ui−1 + 1 for i = 1, . . . , n, this

implies that ui = i for i = 1, . . . , n, since u0 = 0. In other words, setting ui−ui−1 = 1 means

splitting the time interval [0, un] into n equal pieces. Then, comparing Definition 7.2.1 and
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Definition 8.2.7, it is clear to see that an n-dimensional Liouville process is an n-dimensional

ASP if mi = 1 for i = 1, . . . , n.

8.2.5 Standard Variance Gamma Liouville Processes

We shall show the relationship between a particular class of GLPs, which we call Standard

Variance Gamma Liouville Processes (SVGLPs), and Liouville processes. Before doing so,

we shall briefly provide some background on variance gamma processes, variance gamma

bridges and variance gamma random bridges (see Hoyle, 2010).

Let {Wt} be a standard Brownian motion, and {γt} be an independent gamma process

where EQ[γ1] = VarQ[γ1] = m. A variance gamma (VG) process {Vt} is a Brownian motion

subordinated with an independent gamma process:

Vt = σWγt + βγt, (8.43)

for σ > 0 and β ∈ R. From this point on, we assume {Vt} is a standard VG process with

σ = 1 and β = 0. That is, {Vt}
law
= {Wγt}. We denote the density of Vt by f

(m)
t , which is

given by (see Madan et al., 1998):

f
(m)
t (y) =

√
2

π

mmt

Γ[mt]

(
y2

2m

)mt
2
− 1

4

Kmt− 1
2

[√
2y2m

]
, (8.44)

where Ky[x] is the modified Bessel function of the third kind (see Abramowitz and Stegun,

1964).

Let {V (a)
tT } be the bridge of a standard VG process to the value a ∈ R \ {0} at time T .

Then, we have

Q
[
V

(a)
tT ∈ dy

∣∣∣V (a)
sT = x

]
=
f

(m)
t−s (y − x)f

(m)
T−t(a− y)

f
(m)
T−s(a− x)

dy. (8.45)

Following the arguments presented in Hoyle (2010), we can write the following identity in

law:

{V (a)
tT }

law
= {aγ̂tT +HTµ(γ̂tT − γtT )}, (8.46)

where {γ̂tT} and {γtT} are identical gamma bridges (with parameter m > 0), independent

from each other and independent of HT . The parameter µ =
√
m/2 and HT > 0 is a random

variable with density

h 7→ 1{h>0}
m2mt

Γ[mT ]2f
(m)
T (a)

(ha+ h2)mT−1e−m(2h+a). (8.47)
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Now let {Lt}0≤t≤T be a standard VG random bridge, with terminal law ν, where ν({0}) = 0.

Then, from (8.46), the following can be written:

{Lt}
law
= {LT γ̂tT +HTµ(γ̂tT − γtT )} law

= {(LT +HTµ)γ̂tT −HTµγtT )}, (8.48)

where given LT , HT > 0 is a random variable with density

h 7→ 1{h>(−LT ,0)+}
m2mt

Γ[mT ]2f
(m)
T (LT )

(hLT + h2)mT−1e−m(2h+LT ). (8.49)

Note that if LT +HTµ > 0, statement (8.48) suggests that a standard variance gamma bridge

is equal in law to the difference of two dependent gamma random bridges. More specifically,

if LT > 0, from Definition 7.1.12, we can see that

(LT +HTµ)γ̂tT = Zγ̂tT and HTµγtT = RγtT (8.50)

are dependent gamma random bridges, where Z = (LT +HTµ) and R = HTµ are dependent

non-negative random variables. This observation motivates us to represent SVGLPs in terms

of Liouville processes.

First, we define a SVGLP:

Definition 8.2.8. Fix n ∈ N+, n ≥ 2, and let {ui}ni=1 be a strictly increasing sequence

with u0 = 0. Then a process {ξt}0≤t≤1 is an n-dimensional standard VG Liouville process

(SVGLP) if

{ξt}0≤t≤1
law
=
{[
Lt(u1) − L0, · · · , Lt(un−un−1)+un−1 − Lun−1

]>}
0≤t≤1

, (8.51)

where {Lt}0≤t≤un is a standard VG random bridge.

Set T = un and let Lun + Hunµ > 0. Denote by νZ the law of Z, and νR the law of

R. Also let {ξZt }0≤t≤1 and {ξRt }0≤t≤1 be Liouville processes with generating laws νZ and νR,

respectively.

Proposition 8.2.9. Fix n ∈ N+, n ≥ 2, and the vector m ∈ Rn
+ satisfying mi > 0,

i = 1, . . . , n. Define the strictly increasing sequence {ui}ni=1, where u0 = 0 and ui = ui−1 +mi

for i = 1, . . . , n. Then, the n-dimensional SVGLP {ξt}0≤t≤1 satisfies

{ξt}0≤t≤1
law
= {ξZt − ξRt }0≤t≤1, (8.52)

where {Lt}0≤t≤un is a standard VG random bridge.

Proof. Note that for each of the marginals of the Standard VG Liouville process {ξt}, the
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following can be written:

{ξ(i)
t }

law
= {Lt(ui−ui−1)+(ui−1) − Lui−1

}
law
= {(Zγ̂t(ui−ui−1)+(ui−1),un −Rγt(ui−ui−1)+(ui−1),un)− (Zγ̂ui−1,un −Rγui−1,un)}
law
= {Z(γ̂t(ui−ui−1)+(ui−1),un − γ̂ui−1,un)−R(γt(ui−ui−1)+(ui−1),un − γui−1,un)}
law
= {(ξ(i)

t )Z − (ξ
(i)
t )R}, (8.53)

for 0 ≤ t ≤ 1, where by Definition 8.2.7, {(ξ(i)
t )Z} and {(ξ(i)

t )R} are the marginals of the Liou-

ville processes {ξZt } and {ξRt }, with generating laws νZ and νR, respectively. The statement

follows.

Since ASPs are special cases of Liouville processes, SVGLPs can also be represented in

terms of ASPs:

Remark 8.2.10. Fix n ∈ N+, n ≥ 2. Set ui = ui−1 + 1 for i = 1, . . . , n with u0 = 0. Then,

the n-dimensional SVGLP {ξt}0≤t≤1 satisfies

{ξt}0≤t≤1
law
= {ξZt − ξRt }0≤t≤1, (8.54)

where {Lt}0≤t≤n is a standard VG random bridge, and {ξZt }0≤t≤1 and {ξRt }0≤t≤1 are ASPs

with generating laws νZ and νR, respectively.

8.3 An Information-Based Perspective

GLPs allow us to model a rich class of dependence structures between cash flows that have

a generalised multivariate Liouville distribution. Hence, one can model an information-

driven dependence structure for a vector of assets, where the law of a GLP determines the

distribution of the asset prices at a given time.

We shall briefly demonstrate the use of GLPs in an information-based model. First,

on the filtered probability space (Ω,F , {Ft},Q), we let the probability measure Q be the

pricing measure. We introduce X1 ∈ L1(Ω,F ,Q) as an n-dimensional random vector with

state-space (Xn,B(Xn)), where Xn ⊂ Rn.

We assume that

X1 = [X
(1)
1 , . . . , X

(n)
1 ]> (8.55)

is a vector of n cash flows with values X
(1)
1 , . . . , X

(n)
1 at time T = 1. One can introduce

w = [w1, . . . , wn] ∈ Rn
+ as a vector of number of shares associated to each cash flow, and

view wX1 as a portfolio of assets.
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We assume that X1 has a generalised Liouville distribution and the market receives

partial information about X1. We let {Fξ
t } be the market filtration generated by a GLP

{ξt}0≤t≤1, such that ξ
(1)
1 = X

(1)
1 , . . . , ξ

(n)
1 = X

(n)
1 .

The prices of the cash flows, which we denote by Xt, are given by

Xt = PtTEQ
[
X1

∣∣∣Fξ
t

]
= PtT

[
EQ[X

(1)
1 | ξt ], . . . ,EQ[X

(n)
1 | ξt ]

]>
, (8.56)

for 0 ≤ t < 1. In order to proceed further, we define Q(X)-valued stochastic processes

{πit}t∈[0,1], i = 1, . . . , n, by

πit(A) = Q
(
X

(i)
1 ∈ A

∣∣∣Fξ
t

)
= Q(X

(i)
1 ∈ A | ξt ), (8.57)

for A ∈ B(X). Using the random probability measure πit, the time-t price of X
(i)
1 is given by

X
(i)
t = PtTEQ

[
X

(i)
1 | ξt

]
= PtT

∫
X
ziπit(dzi), (8.58)

for 0 ≤ t < 1 and i = 1, . . . , n.

Note that the measure-valued processes {πit} and {πjt} are dependent. It follows that the

law of the multivariate information ξt determines the distribution of asset prices at time t.

Hence, GLPs allow us to model a broad range of information-driven dependence structures

between assets.

Many subclasses of GLPs can be analyzed in more detail. As an example, one may study

the properties of what one may call Brownian Liouville processes constructed from Brownian

information processes. Perhaps another interesting process to analyze is what one may call

a Poisson Liouville process constructed from a Poisson random bridge. We leave a formal

analysis of such processes for further research.
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Chapter 9

Conclusion

This final section presents a brief summary of the thesis and provides a general overview of

the work by including the objectives, approaches and some of the achievements. Also, we

briefly discuss some ideas for future research.

This work is comprised of three main themes within the information-based asset pricing

framework of Brody, Hughston and Macrina (BHM): (i) regime-switching information, (ii)

information asymmetry, and (iii) multivariate dependence modelling. We shall consider each

theme seperately:

9.1 Regime-Switching

Our objective is to develop an information-driven regime-switching framework that allows

us to derive a rich class of asset price dynamics and to price financial derivatives. It is our

aim to build a framework that is both analytically tractable and financially interpretable.

Our motivation arises from the fact that sudden changes in market information may cause

asset prices to jump. Also, significant changes in market information may coincide with

regime switches. Hence, we extend the BHM framework by considering filtrations driven by

regime-switching information sources. In this extended framework: (i) there may be regimes

where no new information enters the market, (ii) at the point of switching jumps may appear

in the asset price, (iii) jumps can propagate into the volatility of asset returns, and (iv) the

effective flow rate of information into the market may increase or decrease.

As an example, we are able to show that under switching Brownian information processes,

the asset price process has jump-diffusion dynamics. We see that during each regime, the

price process is governed by a different Brownian motion and a different stochastic volatility

process. In fact, it is a natural outcome of our framework that the stochastic volatility of the

price process may jump at regime switches. We also extend our regime-switching framework

to the multiple market factor setting. More precisely, we allow the possibility that each

162



economic variable which determines the value of an asset is subject to different regime

switches, and provide mathematical expressions for the asset price processes. In addition,

we price European options and credit-based products under regime-switching economies. For

example, when regime switches coincide with jumps of a Poisson process, we show that the

option price takes a form very similar to what Merton (1976) presents in his jump-diffusion

model. Since our pricing formula admits any reasonable distribution for regime switches, we

are able to generate a large class of option prices. We also show that CDS prices may jump

at every regime switch, which means that the probability of default that the market assigns

to a risky bond changes in a discontinuous way.

9.2 Information Asymmetry

Our aim is to quantify the impact of changes in information sources. This includes measur-

ing the information asymmetry between the market and an informed trader, the information

asymmetry between two informed traders, and the information gap between the market-

implied view of an asset and its fundamentals. In order to achieve our objective, we develop

the concept of an n-order piecewise enlargement of the market filtration to model the infor-

mation set of an informed trader. Then we use information-theoretic and geometric measures

to quantify information asymmetry, which in turn quantify the impact of changes in infor-

mation sources. We also consider a single information-based model where the view of the

market towards the value of an asset is different from the fundamental value of that asset.

We derive the dynamics of information asymmetry processes in various models. These

processes jump at every activation of a new information source. We construct the infor-

mation asymmetry processes based on the following measures: (i) Kullback-Leibler, (ii)

Squared-Hellinger, and (iii) Fisher-Rao. The reasons we choose these measures are as fol-

lows: In information theory, the Kullback-Leibler divergence is widely used to measure the

information gain when passing from a prior distribution to a posterior distribution. Since

we have information jumps in our framework, the Kullback-Leibler divergence presents itself

as a good candidate in measuring the difference between the information content before and

after a jump, thus, quantifying the impact of the activation of an information source. We

introduce the use of the Fisher-Rao metric in our analysis due to its mathematical link with

the Brownian information process when the value of an asset has a Gaussian distribution.

More precisely, when we work with Gaussian distributions, we can determine points on a

Riemannian manifold in which the Riemannian metric is the Fisher-Rao metric. There-

fore, the Fisher-Rao metric is a natural choice when quantifying the distance between two

Gaussian distributions determined by different sets of information. The reason why we use

the Squared-Hellinger divergence is two-fold. Not only is it commonly used in information

theory to measure the distance between two different distributions, but it also brings forth

163



a geometric perspective due to its link with the unit sphere. Thus, the Squared-Hellinger

measure is a smooth transition from an information-theoretic setting to a geometric setting.

In fact, motivated by this, we are able to show a relationship between the Squared-Hellinger

divergence and an isometric invariant of the Poincaré disc under the action of the general

Möbius group.

We are able to provide the dynamics for the asymmetry between two informed traders who

have differing access to information. In particular, we consider two informed agents who have

additional access to information compared to the market, but they have access at different

stopping times. This leads to a dynamic interplay between the amount of information that

the two informed agents have until the revelation of the value of an asset. If one of the agents

has access to more information sources at a given time, then that agent has an informational

advantge over the other. If both agents have equal access, then the information asymmetry

between them is zero. We are also able to provide the dynamics of market mispricing and

the ensuing correction following the arrival of fundamental information. In order to do this,

we assume that the market is initially provided with partial information about a cash-flow

that will not be paid. That is, the market has incorrect expectations about the value of an

asset. At the time when the market receives the information process about the true value

of the asset, the asymmetry between the market and the fundamentals jump to zero. This

represents a sudden market correction.

9.3 Multivariate Dependence

One of our main objective is to generalise the gamma random bridges to the multivariate

Archimedean survival processes (ASPs). We explore their deep links with Archimedean cop-

ulas, and provide various characterisations of ASPs. We then discuss further generalisations

under what we call Generalised Liouville Processes (GLPs). Our approach in constructing

these multivariate processes relies on splitting Lévy random bridges into non-overlapping

subprocesses. Since these subprocesses are themselves Lévy random bridges, GLPs can be

regarded as multivariate information processes.

We manage to provide numerous results about ASPs. For example, we show that there

is a bijection between ASPs and Archimedean copulas. We characterise ASPs as Markov

processes through their transition laws, and through their finite-dimensional distributions.

We show that they are processes equivalent in law to multivariate gamma processes, and we

detail the associated measure change. We are also able to provide an independent-gamma-

bridges representation of ASPs. Then we generalise ASPs to Liouville processes. Liouville

processes are also constructed from gamma random bridges, but we allow more flexibility

in our splitting mechanism. Finally, we present further generalisations and introduce GLPs,

which are constructed from arbitrary Lévy random bridges. We provide several character-
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isations for GLPs, and discuss their use in multi-factor information-based models. More

precisely, we consider a market filtration generated by a GLP, where each marginal process

carries partial information about an asset. This allows us to introduce information-driven

dependence structures across assets.

9.4 Future Research

This thesis offers future research within the three themes mentioned above. We shall briefly

discuss them.

In our work, we consider stopping times that are independent of the information pro-

cesses. This brings forth a level of parsimony and tractability for deriving the stochastic

differential equations of price processes and pricing financial derivatives. One natural exten-

sion is to relax the independence assumption, and model economies where regime switches

depend on information. For instance, we can allow the stopping times to be dependent

on the value of the asset and independent of the market noise. Then we can work with

conditional independence, instead of complete independence, and would be able to derive

dynamics exhibiting even richer price behaviour. In addition, we mainly detail the case when

the stopping times are inaccessible, since we model them by the jump times of Heaviside

processes. Hence, jumps in asset prices are sudden and unexpected. However, our framework

by construction admits the use of previsible stopping times as well. For example, we can

model stopping times as the first hitting times of continuous processes, which would allow

us to introduce previsible regime switches.

Another potentially fruitful extension arises from the choice of information processes

that generate the market filtration. In our work regarding regime switches, we only consider

Brownian information processes. But what if different regimes are characterised by infor-

mation processes that have different laws? More precisely, what if different Lévy random

bridges are active during different regimes? Answering these questions offers the flexibil-

ity to represent regime switches as jumps from one law to another. This should lead to a

framework that admits the derivation of a large class of asset price dynamics under regime

switches.

Some extensions on derivatives pricing can also be made. Hoyle et al. (2011) provide

pricing formulas for European options when the market filtration is generated by an arbitrary

Lévy random bridge. These results are highly promising building blocks to generate a large

class of option prices under regime-switching economies. In addition, in CDS pricing, what if

the recovery rates are random and depend on the economic regime? In order to answer this,

we can model recovery rates as functions of information processes that characterise different

regimes. One can then generate recovery rate processes that jump at every regime switch.

Further extensions can be made on our analysis on information asymmetry by the use
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of n-order piecewise enlargements of filtrations. A detailed analysis of n-order piecewise

enlargements and their applications to finance offer a potentially prolific route to follow. For

instance, we can apply n-order piecewise enlargements to utility maximization problems for

insider trading. In addition, we may find other natural relationships between Riemannian

manifolds and information processes to quantify information asymmetry geometrically.

Finally, since GLPs form a large class of stochastic processes, they offer a wide range of

special examples. We can analyse these special cases in more detail. For instance, we can

introduce Brownian Liouville Processes constructed from Brownian information processes,

or Poisson Liouville Processes constructed from Poisson random bridges. This would al-

low us to introduce many relevant financial applications. It should also be possible to use

these processes within the regime-switching framework. Then, we can develop an exten-

sive information-based framework which enables us to start discussing about dependence

structures that change under different regimes.
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[9] Anderson, J. W., 2005. Hyperbolic Geometry. Springer-Verlag.

[10] Arwini, K., Dodson, C. T. J., 2008. Information Geometry, Near Randomness and Near

Independence. Springer-Verlag, Berlin.

[11] Atkinson, C., Mitchell, A. F. S., 1981. Rao’s Distance Measure. Sankhya 43, 345-365.

[12] Back, K., 1992. Insider Trading in Continuous Time. Review of Financial Studies 5,

387-409.

[13] Bain, A., Crisan, D., 2009. Fundamentals of Stochastic Filtering. Springer, New York.

167



[14] Baudoin, F., 2003. Conditioned Stochastic Differential Equations: Theory, Examples

and Application to Finance. Stochastic Processes and their Applications 100, 109-145.

[15] Beachy, J.A., Blaire, W.D., 2006. Abstract Algebra. Waveland Pr. Inc. 3rd Edition.
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[118] Schönbucher, P. J., Schubert, D., 2001. Copula Dependent Default Risk in Intensity

Models. Working paper, ETH Zurich.

[119] Shannon, C. E., 1948. A Mathematical Theory of Communication. The Bell System

Technical Journal 27, 379-423, 623-656.

[120] Tu, L.W., 2010. An Introduction to Manifolds. Springer, 2nd Edition.

[121] Widder, D. V., 1946. The Laplace Transform. Princeton University Press, Princeton.

[122] Williamson, R. E., 1956. Multiply Monotone Functions and Their Laplace Transforms.

Duke Mathematical Journal 23(2), 189-207.

[123] Yor, M., 1980. Grossisement de Filtration et Absolue Continuité de Noyaux.. In: Jeulin,
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