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Abstract—This work investigates the impact of the analogue
front-end design (pre-amplifier, filter and converter) on spike
sorting performance in neural interfaces. By examining key
design parameters including the signal-to-noise ratio, bandwidth,
filter type/order, data converter resolution and sampling rate,
their sensitivity to spike sorting accuracy is assessed. This is
applied to commonly used spike sorting methods such as tem-
plate matching, 2nd derivative-features, and principle component
analysis. The results reveal a near optimum set of parameters to
increase performance given the hardware-constraints. Finally, the
relative costs of these design parameters on resource efficiency
(silicon area and power requirements) are quantified through
reviewing the state-of-the-art.

I. INTRODUCTION

Understanding how the trillions of action potentials of the
brain’s billions of neurons produce our thoughts, perceptions,
and actions is one of the greatest challenges of 21st century
science. The ability to connect these neurons to electronics
is presenting new opportunities for neural rehabilitation with
prosthetic devices. For example, cochlear implants, are already
impacting the quality of life of over 300,000 individuals with
profound deafness.

Experimental recording of large numbers of neurons is thus
an extremely important task, but one that requires overcoming
several technical challenges. Recent years have seen the de-
velopment of micro-fabricated neural probes such as the Utah
and Michigan arrays, now commonplace in experimental labs,
and likely soon in clinical applications such as brain-machine
interfaces for paralysis [1], [2]. For any portable or implantable
device, such probes require miniature electronics locally to
amplify the weak neural signals, filter out noise and out-of-
band interference and digitise for transmission. With recent
advances in modern semiconductor technology, this is now
possible and has sparked significant research activity in the
community, particularly in this last decade [3]–[12].

The specifics of the electrode material, the electrode/tissue
interface as well as the nature of the bio-potential signal itself
pose challenges on the front-end microelectronics. The signals
observed contain an electrode offset potential (due to the
electrode-electrolyte interface) as well as both the extracellular
action potentials (EAPs) and local field potentials (LFPs). The
EAPs typically have amplitudes of 25µV−1 mV with a signal
band of 100 Hz−3 kHz, whereas the LFPs have amplitudes up
to 5 mV with a signal band of 0.5−300 Hz. Additionally, the
electrode-electrolyte interface introduces an offset that can be

several 100’s of mV, with the microelectrodes themselves con-
tributing thermal noise due to their relatively high impedance.
All these factors dictate the minimum requirements for the
front-end electronics, that are additionally limited by resource
constraints (power, size and bandwidth). In particular, the
desire to make such systems implantable poses limits on
size and thermal dissipation (i.e. to prevent tissue damage),
as well as requiring wireless transmission (i.e. thus limiting
communication channel capacity) [13], [14].

Spike sorting is a technique commonly used on EAP record-
ings to separate the signal into spike patterns of individual
units (i.e. neurons). This is based on the fact that the dynamics
of each neuron varies, in addition to the topological placement
of the microelectrodes (i.e. in orientation and proximity). This
results in each neuron having a slightly different spike profile
when observed at the electrode and can be identified by means
of feature extraction followed by clustering. There exists a
multitude of different methods for achieving the feature ex-
traction (eg. templates, peaks, derivatives, wavelets, principle
component analysis), and clustering (eg. valley detection, k-
means, super-paramagnetic) [15].

This work investigates trade-offs imposed by front-end
circuits on spike sorting performance and hardware resources.
The paper is organised as follows: Section II identifies the
front-end requirements, Section III describes methods used in
the optimisation, Section IV details the different parameter
sensitivities on spike sorting accuracy, Section V discusses
the resource efficiency, and Section VI draws conclusions.

II. FRONT-END NEURAL INTERFACE ARCHITECTURE

A typical architecture for a front-end neural interface (for
applications using EAPs) is illustrated in Fig. 1. This consists
of three main blocks: (1) the bio-potential amplifier, (2)
bandpass filter, and (3) data converter. This section describes
the requirements for each of these blocks:
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Fig. 1. General architecture of a brain machine interface (BMI) showing:
(a) front-end neural interface, and (b) back-end spike sorting



1) Bio-potential Amplifier: A low noise preamplifier is
required to boost the signal level from sub-mV to 10’s of
mV, such that the subsequent stages can have relaxed noise
performance. This is often designed to be AC-coupled such as
to remove any DC levels due to electrode offset, and typically
provides a gain of 50−200, with a bandwidth of 3−10 kHz,
and input-referred noise of 1−10µVrms. Key parameters for
subsequent spike sorting are thus the Gain-Bandwidth Product
(GBW) and input-referred noise (IRN).

2) Bandpass Filter: Following pre-amplification, a band-
pass filter is required to: (1) reject the out-of-band LFPs (high
pass), and (2) prevent aliasing (low pass). The high-pass cut-
off frequency is typically set between 100−300 Hz, and low-
pass between 3−10 kHz. Due to the close proximity between
the high- and low-pass cut-off frequencies, a sharp response is
required to avoid in-band attenuation and it is thus desirable to
use a high order filter. A key challenge is however, to minimise
the effect of phase distortion as this will impact subsequent
signal processing. Key parameters for the filter design are
therefore the filter type, order, and low-/high-pass cut-offs.

3) Data Converter: The main design specifications for the
analogue-to-digital converter (ADC) are the resolution and
sampling rate (typically 8-10 bit, and 16−32 kS/s). Although
these set the numerical accuracy in subsequent spike sorting
computation, this is fundamentally limited by the signal-to-
noise ratio (SNR) and bandwidth of the signal. The resolution
and sampling rate must therefore be optimised to minimise the
raw data throughput.

III. METHODOLOGY

The optimisation is achieved by investigating the effect of each
design parameter (i.e. those relevant to the front-end) on spike
sorting performance within a simulation environment using
Mathworks MatlabTM R2011b v7.13.

A. Spike Sorting

For the results reported herein, the spike sorting performance is
quantified using the effective accuracy, calculated by: % total
spikes classified × % spikes correctly classified (excluding
spike detection). This has been benchmarked for 3 different,
relatively computationally-efficient methods for spike sorting:

1) Template Matching (TM): Aligning the maximum peak
of the signal with a template and using the Squared Euclidean
Distance as a similarity/distance measure. The templates are
created by taking the mean of the spikes (within each cluster),
aligned to their individual maximum peaks.

2) Principle Component Analysis (PCA): Taking the first
two principle components (for each spike) and using k-means
for clustering (50 iterations). Uses the MatlabTM in-built
functions (princomp and kmeans).

3) 2nd Derivative Features (DER): Taking the minimum
and maximum values of the 2nd derivative (within each spike)
and using k-means for clustering (50 iterations). Uses the
MatlabTM in-built functions (gradient and kmeans) [16].
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Fig. 2. Mean spike profiles for the 6 datasets with corresponding Bray-Curtis
similarity measures applied between each neuron cluster within each dataset.

B. Test Datasets

The methods were applied to a total of 24 datasets based on
simulated extracellular recordings [15], [17]. These contain
6 different groups (each using 3 single units). Each group
is then used to generate 4 datasets at varying SNR levels
(26, 20, 16.5, and 14 dB). The different SNRs have been
obtained by superimposing attenuated spike waveforms such
as to mimic the background activity observed at the electrode.
The amplitudes and timing of both the spike and noise signals
have been randomly distributed within preset ranges, such as
to achieve the desired SNR and firing rate (with a target of
50 spikes/sec). Fig. 2 illustrates the mean (‘spikes’) of each
cluster together with corresponding similarity measures.

IV. DESIGN OPTIMISATION

The front-end design parameters tested are: (1) SNR, (2) high-
pass response, (3) low-pass response, (4) resolution, and (5)
sampling rate. Each test is repeated on all 6 dataset groups
with results showing the mean and spread. In all tests (with
exception of high-pass response), the LFPs have been removed
using a high order, zero-phase filter. In tests not involving
noise variations, an SNR of 20 dB is used as we found it to
be representative of the trends observed.

A. Signal-to-Noise Ratio

The overall effect of SNR on spike sorting accuracy is tested
for all 6 dataset groups at the 4 SNR levels (as described pre-
viously). This represents the overall effective SNR including
noise in both the front-end electronics and the signal itself (i.e.
due to the background activity). The results (Fig. 3) show that
by reducing the SNR (over the range 14−26 dB), the spike
sorting accuracy decreases by up to 30% (depending on spike
sorting method used). The results also show that the algorithm
based on second derivative features has the highest noise
immunity, with template matching being the most sensitive
to noise.
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Fig. 3. Effect of SNR on spike sorting accuracy of the overall system (mean
and spread shown over all data sets).
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Fig. 4. Effect of high pass (top) and low pass (bottom) filtering on spike
sorting accuracy (mean over all datasets for a noise level of 0.1, i.e. SNR =
20 dB). This is shown for 2nd order Elliptic, Butterworth and Bessel filters.

B. High-pass Response

This test examines the effect of the high-pass filter response on
spike sorting accuracy. Key parameters in the high-pass filter
design are: filter type, order and cut-off frequency (i.e. f3dB).
To emulate the effect of LFPs we extracted (200 Hz low-
pass filtered and normalised for a 5:1 LFP to EAP amplitude
ratio) LFPs from a hippocampus data set from the CRCNS
database. These were tested by pre-filtering the datasets using
2nd order Elliptic, Butterworth and Bessel filter types at
f3dB={300,400,500,600,700}Hz. The results (Fig. 4) show
that the high-pass frequency marginally increases the overall
spike sorting accuracy across all datasets and filter types.
This is mainly the result of LFP rejection coupled with phase
distortion due to the analogue filtering.

C. Low-pass Response

This test examines the effect of the low-pass filter response
on spike sorting accuracy. Key parameters in the low-pass
filter design are as those previously identified for the high-
pass. Again, these were tested by pre-filtering the datasets
(using SNR=20 dB) using 2nd order Elliptic, Butterworth and
Bessel filter types at f3dB={2,3,4,5,6.5,8,9,10,11.5}kHz. The
results (Fig. 4) show that increasing the low pass cut-off
improves the spike sorting accuracy as no phase distortion is
introduced. However, it can be observed that beyond 4-6 kHz,
there is moderate improvement in performance. Also the filter
type appears to have negligible impact on performance (1.5%
difference between types). In both low- and high-pass filtering,
2nd vs. 4th order filter implementations yielded negligible
accuracy differences.

D. Resolution

This test examines the effect of data converter resolution (i.e.
quantisation) on spike sorting accuracy (with scaling of the
dataset to optimally fill the input range of the converter). The
results are shown in Fig. 5(a). It can be observed that although
the performance does increase with resolution, it saturates
beyond 5−6 bit resolution. This maximum useful resolution is
ultimately limited by the SNR. However, since the amplitude
of the observed EAPs can vary, typically, by one order of
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Fig. 5. Effect of data conversion (a) resolution, and (b) sampling rate on
spike sorting accuracy (mean and spread shown over all datasets for a noise
level of 0.1, i.e. SNR = 20 dB).

magnitude, additional resolution is needed (i.e. 2−3 bit), given
the fixed amplification gain.

E. Sampling Rate

This test examines the effect of data converter sampling rate
on spike sorting accuracy. The results are shown in Fig. 5(b).
It can be observed that increasing the sampling rate can sig-
nificantly increase spike sorting accuracy, however saturating
beyond 24−36 kHz. Increasing sampling rate is expected to
improve performance, since this captures finer features which
may help further differentiate the signals.

F. Template Similarity

In addition to these front-end design parameters, we also
investigated the correlation of template similarity to accuracy
at different noise levels for all three spike sorting methods.
We hypothesise that the maximum similarity (using the Bray-
Curtis similarity measure) between each of the three templates
will account for the errors seen in sorting. For TM the simi-
larity is measured between time-domain templates (as shown
in Fig. 2). For PCA similarity was determined based on the
extracted PCA components (first two) for each template and
for derivatives the similarity is based on the 2nd derivative of
the templates (as per the spike sorting method). These results,
illustrated in Fig. 6, show that there is a relation between the
difficulty of template separation and spike sorting accuracy.
Overall, the derivative approach shows the best tolerance to
noise and dissimilarity.
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Fig. 6. The relation of accuracy and noise to template similarity (using the
Bray-Curtis measure) for all three spike sorting methods.

V. HARDWARE RESOURCE

Hardware resource requirements rely on key parameters that
include power and area. Table I reviews recently reported state-
of-the-art neural interfaces, listing the key design parameters



TABLE I
REVIEW OF STATE-OF-THE-ART NEURAL INTERFACES COMPARING KEY DESIGN PARAMETERS AND RESOURCE UTILISATION

Amplifier Filter Data Converter

Ref. Tech. Noise Gain Area Power Order, Low-pass High-pass ENOB Samp. Rate Area Power
(µm) (µVrms) (dB) (mm2) (µW) Type (kHz) (Hz) (bits) (kS/s) (mm2) (µW)

[3] 0.5 5.1 60 0.16 42 1, GmC 5 300, 800 10 15 0.15‡ 1‡
[4] 0.13 1.95 38.3 - 12.5 - - - 8 10−100 0.27† 1
[5] 0.35 2.5 39.2 0.4† 0.03 1, GmC 0.03−0.3 0.005−3.6 12 - 0.3† 0.2
[6] 0.35 4.9 40 0.07† 6.6 - 2−20 0.1−200 9 640 0.6† -
[7] 0.13 14 40 0.3† 0.6 - - - 8 - 0.1† -
[8] 0.35 6.1 54−73 - 12.8 - 5 0.5−50 8 111 - 2.8
[9] 0.18 5.4 49−66 0.03 16.7 GmC 11.7 350* 8 125 0.02 1.9
[10] 0.13 2.2 - - - 2, GmC + SC 10 280 10 31.3 0.3 1.1
[11] 0.35 2.3−2.9 40−75 0.9 371‡ 4 0.2−6.2 2.6−572 - - - -
[12] 0.13 3.8 47.5 0.06† 1.9 - 4.8−9.8 11.5-167 8 22.5−90 0.05† 0.5−1.8
Notes: †area estimated from microphotograph, ‡reported for multiple channels (value scaled per channel)

and achieved specifications for the pre-amplifier, filter and
ADC (using reported data). In general for the pre-amplifier and
data converter, the resource requirements are approximately
directly proportional to the specifications. Specifically, the
noise/gain for the pre-amplifier, and the resolution/sampling
rate for the data converter are proportional to power consump-
tion and area (depending upon technology used). The resource
requirements for the filter are however more variable, due
to the number of different applicable design methodologies.
The filter order is typically the only parameter that is directly
related to resource requirements.

VI. CONCLUSION

With next generation neural interfaces targeting 100s to 1000s
of channels, the resource-budget on the front-end electronics
are becoming increasingly stringent. To inform front-end op-
timisation, this work has quantified the effect of varying key
design parameters on the performance of downstream spike
sorting. By running our tests on multiple datasets that have
been generated based on realistic parameters, the ground truth
(i.e. absolute accuracy) is reported. By testing three different
methods (template matching, principle component analysis
and 2nd derivative feature) for spike sorting, the trends to
parameter sensitivities are shown to be broadly applicable.

The results show that for systems operating in a high-noise
environment, the 2nd derivative feature method is most robust
(compared to TM and PCA). Furthermore, reducing the SNR,
degrades the accuracy of spike sorting accuracy by approx-
imately 1% per dB (for DER), 2% per dB (PCA), and 3%
per dB (TM). With filtering, in particular the phase distortion
introduced by the high pass filter significantly degrades the
spike sorting accuracy, and thus a zero-phase or linear-phase
response filter here is highly desirable. The optimum cut-
off frequencies for the low- and high-pass filters have been
determined to be 500 Hz and 8 kHz, with a 2nd order response
being sufficient. Finally, the data converter resolution is fun-
damentally limited by the neural SNR, and thus the input-
referred system noise performance should be comparable. For
SNR=20 dB, the optimum resolution for the converter is 8 bit
(allowing 2−3 bit for variation in spike amplitudes) with an
optimum sampling rate of between 24−32 kHz.
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