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Abstract. Let La be a Schrödinger operator with inverse square potential a|x|−2 on Rd, d ≥ 3.
The main aim of this paper is to prove weighted estimates for fractional powers of La. The proof

is based on weighted Hardy inequalities and weighted inequalities for square functions associated

to La. As an application, we obtain smoothing estimates regarding the propagator eitLa .

1. Introduction

In this paper, we consider the following Schrödinger operators with inverse-square potentials on
Rd, d ≥ 3,

(1) La = −∆ +
a

|x|2
with a ≥ −

(d− 2

2

)2

.

Set

σ :=
d− 2

2
− 1

2

√
(d− 2)2 + 4a.

The Schrödinger operator La is understood as the Friedrichs extension of −∆ + a
|x|2 defined

initially on C∞c (Rd\{0}). The condition a ≥ −
(
d−2

2

)2
guarantees that La is nonnegative. It is well-

known that La is self-adjoint and the extension may not be unique as −
(
d−2

2

)2
< a < 1−

(
d−2

2

)2
.

For further details, we refer the readers to [23, 24, 21, 30, 32, 26].
It is well known that Schrödinger operators with inverse-square potentials La have a wide range

of applications in physics and mathematics spanning areas such as combustion theory, the Dirac
equation with Coulomb potential, quantum mechanics and the study of perturbations of classic
space-time metrics. See for example [4, 5, 33, 21] and their references.

Recently there has been a spate of activity dedicated to the operator La. Strichartz estimates,
which are an effective tool for studying the behavior of solutions to nonlinear Schrödinger equations
and wave equations related to La, were investigated in [4, 5] . In [17] the authors developed the
study of Strichartz estimates for the propagators eit(∆+V ) with V (x) ∼ |x|−2. The well-posedness
and behaviour of the solutions to the heat equation related to La was studied in [33]. In [34], using
Morawetz-type inequalities and Sobolev norm properties related to La, the long-time behavior of
solutions to nonlinear Schrödinger equations associated to La was considered. More recently, the
authors in [23] established the equivalence between Lp-based Sobolev norms defined in terms of

Ls/2a and in terms of (−∆)s/2 for all regularities 0 < s < 2.
In this paper, our first objective is to extend the estimates in [23] to weighted estimates. More

precisely, we will prove the following result.
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Theorem 1.1. Suppose that d ≥ 3, a ≥ −
(
d−2

2

)2
and 0 < s < 2. If r1 := 1 ∨ d

d−σ < p <
d

(s+σ)∨0 := r2 (where a ∨ b = max{a, b}) with convention d
0 = ∞ then for w ∈ Ap/r1 ∩ RH(r2/p)′

we have

(2) ‖(−∆)s/2f‖Lpw . ‖L
s/2
a f‖Lpw .

If 1 < p <∞ with p1 := 1 ∨ d
d−σ < p < d

s∨σ := p2 then for w ∈ Ap/p1 ∩RH(p2/p)′ we have

(3) ‖Ls/2a f‖Lpw . ‖(−∆)s/2f‖Lpw
Let us describe the motivation for the results in Theorem 1.1.

(i) When s = 1, (2) and (3) are known as the boundedness of the Riesz transforms and the reverse
Riesz transforms, respectively. Note that the boundedness of the Riesz transforms related to
La was obtained in [18]. Hence, Theorem 1.1 can be considered as a natural outgrowth of
this direction of research.

(ii) The second motivation of our present work is the need of the following estimate of the form:

‖|x|βLθaf‖L2 . ‖|x|β(−∆)θf‖L2

for certain β and θ. This type of estimate was studied in [6] for certain Schrödinger operators
instead of La and played a key role in studying dispersive properties of Schrödinger equations
on non-flat waveguides. See also [9] for related weighted estimates in Lp spaces with mixed
radial–angular integrability.

(iii) Another motivation of Theorem 1.1 is its utility in obtaining smoothing estimates related to
the propagators eitLa . We give such estimates in Theorem 1.2 below. Note that smoothing
estimates related to Schrödinger operators are a topic of interest in PDEs and have a close
relationship to Strichartz estimates. For further details, the reader can consult [31, 11, 19,
22, 27] and the references therein.

As an application of Theorem 1.1, we obtain the following smoothing estimates.

Theorem 1.2. Suppose that d ≥ 3, a > −
(
d−2

2

)2
+ 1

4 , and consider the Schrödinger flow eitLaf .
Then for all 0 < ε < 1 we have the following smoothing estimates, with C independent of ε:

(4)

ˆ ˆ [
|x|ε−1

(1 + |x|ε)2
|∇eitLaf |2 +

|x|ε−3

1 + |x|ε
|eitLaf |2

]
dxdt ≤ Cε−1‖(−∆)1/4f‖2L2

and also

(5) ‖w(x)1/2(−∆)1/4eitLaf‖L2(Rd+1) . Cε
−1/2‖f‖L2 , w(x) =

|x|ε−1

(1 + |x|ε)2
.

On the other hand, for the wave flow eitL
1/2
a f we have the estimate

(6) ‖w(x)1/2eitL
1/2
a f‖L2(Rd+1) . Cε

−1/2‖f‖L2 , w(x) =
|x|ε−1

(1 + |x|ε)2
.

We have a few comments on the theorem. The condition a > −
(
d−2

2

)2
+ 1

4 guarantees that
the weight w satisfies the conditions in Theorem 1.1. It is an open question whether the results in

Theorem 1.2 holds true for a > −
(
d−2

2

)2
. In the particular case of d = 3, the potential is repulsive

which is considered in [15, 2]; however, our results are new for d > 3. PLEASE CHECK!

To prove Theorem 1.1 although we follow the approach in [23], some significant modifications
and improvements are required due to the following reasons. The first reason is that we work on
the weighted Lebesgue estimates instead of unweighted estimates. The second one we need to point
out is that in our present paper we employ the vertical square functions in place of the (discrete)
Littlewood–Paley square functions. This allows us to bypass the use of spectral multipliers as in
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[23]. Moreover, due to the lack of regularity condition of the heat kernels of e−tLa , certain singular
integrals considered in the paper may be beyond the Calderón-Zygmund theory. This causes some
challenging matters, and we overcome these problems by using the criteria established in [1, 3] for
a sigular integrals to be bounded on weighted Lebesgue spaces.

The organization of the paper is as follows. In Section 2 we recall some preliminaries on the
Muckenhoupt weights and two criteria for a sigular integrals to be bounded on weighted and
unweighted Lebesgue spaces. Some kernels estimates will be derived in Section 3. In Section 4, we
first prove the weighted Hardy inequality and weighted estimates for square functions related to
La which are of interest in their own right. We conclude Section 4 by using these results to prove
Theorems 1.1 and 1.2.

Throughout the paper, we always use C and c to denote positive constants that are independent
of the main parameters involved but whose values may differ from line to line. We will write A . B
if there is a universal constant C so that A ≤ CB and A ∼ B if A . B and B . A. For a, b ∈ R,
we denote a ∨ b = max{a, b} and a ∧ b = min{a, b}. For p ∈ [1,∞], we denote by p′ = p

p−1 the

conjugate exponent of p.

2. Preliminaries

2.1. Muckenhoupt weights. We start with some notations which will be used frequently. For a
measurable subset E ⊂ Rd and a measurable function f we denote 

E

f(x)dx =
1

|E|

ˆ
E

f(x)dx.

Given a ball B, we denote Sj(B) = 2jB\2j−1B for j = 1, 2, 3, . . ., and we set S0(B) = B.
Let 1 ≤ q <∞. A nonnegative locally integrable function w belongs to the Muckenhoupt class

Aq, say w ∈ Aq, if there exists a positive constant C so that( 
B

w(x)dx
)(  

B

w−1/(q−1)(x)dx
)q−1

≤ C, if 1 < q <∞,

and  
B

w(x)dx ≤ C ess-inf
x∈B

w(x), if q = 1,

for all balls B in Rd. We say that w ∈ A∞ if w ∈ Aq for any q ∈ [1,∞). We shall denote
w(E) :=

´
E
w(x)dx for any measurable set E ⊂ Rd.

The reverse Hölder classes are defined in the following way: w ∈ RHr, 1 < r <∞, if there is a
constant C such that for any ball B ⊂ Rd,(  

B

wr(x)dx
)1/r

≤ C
 
B

w(x)dx.

The endpoint r = ∞ is given by the condition: w ∈ RH∞ whenever, there is a constant C such
that for any ball B ⊂ Rd,

w(x) ≤ C
 
B

w(y)dy for a.e. x ∈ B.

Let w ∈ A∞ . For 0 < p < ∞, the weighted space Lpw(Rd) is defined as the space of w(x)dx-
measurable functions f such that

‖f‖Lpw(Rd) :=
(ˆ

Rd
|f(x)|pw(x)dx

)1/p

<∞.

It is well-known that the power weight w(x) = |x|α ∈ Ap if and only if −d < α < d(p − 1).
Moreover, w(x) = |x|α ∈ RHq if and only if αq > −d.

We sum up some of the properties of Muckenhoupt classes and reverse Hölder classes in the
following results. See [12, 20].
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Lemma 2.1. The following properties hold:

(i) w ∈ Ap, 1 < p <∞ if and only if w1−p′ ∈ Ap′ .
(ii) A1 ⊂ Ap ⊂ Aq for 1 ≤ p ≤ q ≤ ∞.
(iii) RH∞ ⊂ RHq ⊂ RHp for 1 < p ≤ q ≤ ∞.
(iv) If w ∈ Ap, 1 < p <∞, then there exists 1 < q < p such that w ∈ Aq.
(v) If w ∈ RHq, 1 < q <∞, then there exists q < p <∞ such that w ∈ RHp.
(vi) A∞ = ∪1≤p<∞Ap = ∪1<p≤∞RHp.

(vii) Let 1 < p0 < p < q0 <∞. Then we have

w ∈ A p
p0
∩RH(

q0
p )′ ⇐⇒ w1−p′ ∈ A p′

q′0

∩RH
(
p′0
p′ )
′
.

2.2. Hardy-Littlewood maximal functions. For r > 0, the Hardy-Littlewood maximal func-
tion Mr is defined by

Mrf(x) = sup
B3x

( 1

|B|

ˆ
B

|f(y)|r dy
)1/r

, x ∈ Rd,

where the supremum is taken over all balls B containing x. When r = 1, we write M instead of
M1.

We now record the following results concerning the weak type estimates and the weighted
estimates of the maximal functions.

Lemma 2.2. Let 0 < r <∞. Then we have for p > r and w ∈ Ap/r,

‖Mrf‖Lpw . ‖f‖Lpw .

2.3. Two theorems on the boundedness of singular integrals. We recall the definition of
linearizable operators in [16]. An operator T defined on L2(Rd) is said to be a linearizable operator
if there exists a Banach space B and a linear operator U from L2(Rn) into L2(Rd,B) so that

|Tf(x)| = ‖Uf(x)‖B
for all f ∈ L2(Rd) and a.e. x ∈ Rd.

It can be verified that a linearizable operator is a sublinear operator. The class of linearizable
operator includes linear operators, maximal operators and square functions.

We first recall a theorem which is taken from [3, Theorem 6.6] on a criterion for the singular
integrals to be bounded on the weighted Lebesgue spaces.

Theorem 2.3. Let 1 ≤ p0 < q0 ≤ ∞ and let T be Lq0 bounded linearizable operator. Assume that
there exists a family of operators {At}t>0 satisfying that for j ≥ 2 and every ball B

(7)
( 

Sj(B)

|T (I −ArB )f |q0dµ
)1/q0

≤ α(j)
( 

B

|f |q0dµ
)1/q0

,

and

(8)
( 

Sj(B)

|ArBf |q0dµ
)1/q0

≤ α(j)
( 

B

|f |p0dµ
)1/p0

,

for all f supported in B. If
∑
j α(j)2jd <∞, then T is bounded on Lpw(Rd) for all p ∈ (p0, q0) and

w ∈ A p
p0
∩RH(

q0
p )′ .

Note that [3, Theorem 6.6] proves Theorem 2.3 for q0 = 2, but their arguments also work well
for any value of q0.

The following theorem is a direct consequence of [1, Theorem 3.7] which give a sufficient con-
ditions for a singular integral to be bounded on Lebesgue spaces which plays an important role in
the sequel.
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Theorem 2.4. Let 1 ≤ p0 < q0 ≤ ∞. Let T be a bounded sublinear operator on Lp0(Rd). Assume
that there exists a family of operators {At}t>0 satisfying that( 

B

∣∣T (I −ArB )f
∣∣p0dx)1/p0

≤ CMp0(f)(x),(9)

and (  
B

∣∣TArBf ∣∣q0dx)1/q0
≤ CMp0(|Tf |)(x),(10)

for all balls B with radius rB, all f ∈ C∞c (Rn) and all x ∈ B. Then T is bounded on Lp(Rd) for
all p0 < p < q0.

3. Some kernel estimates

For a constant α ∈ R. We denote

dα =

{
d
α , α > 0

∞, α ≤ 0.

Theorem 3.1. Let {Tt}t>0 be a family of linear operators on L2(Rd) with their associated kernels
Tt(x, y). Assume that there exist C, c > 0 and α, β ∈ R with d′β < dα such that for all t > 0 and

x, y ∈ Rd\{0},

(11) |Tt(x, y)| ≤ C
(

1 +

√
t

|x|

)α(
1 +

√
t

|y|

)β
t−d/2e−

|x−y|2
ct .

Assume that d′β < p ≤ q < dα. Then for every t > 0, any measurable subsets E,F ⊂ Rd, and all

f ∈ Lp(E), we have:

(12) ‖Ttf‖Lq(F ) ≤ Ct
− d2 ( 1

p−
1
q )e−

d(E,F )2

ct ‖f‖Lp(E).

To prove this theorem, we need the following elementary results.

Lemma 3.2. (a) Let κ ∈ (−∞, d). Then there exists C > 0 so that for all r > 0

ˆ
B(0,r)

1

|x|κ
dx ≤ Crd−κ.

(b) For p ∈ [1,∞) we have (ˆ
Rd

[ 1

td/2
e−
|x−y|2
ct

]p
dy
)1/p

≤ C

t
d

2p′

uniformly in x ∈ Rd.

Proof. The proof of this lemma is simple and we omit details. �

We now turn to prove Theorem 3.1.
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Proof of Theorem 3.1: From (11), for x ∈ F we have

‖Ttf‖Lq(F ) ≤
{ˆ

F

[ ˆ
E

(
1 +

√
t

|x|

)α(
1 +

√
t

|y|

)β
t−d/2e−

|x−y|2
ct |f(y)|dy

]q
dx

}1/q

≤

{ˆ
F∩B(0,

√
t)

[ ˆ
E∩B(0,

√
t)

(
1 +

√
t

|x|

)α(
1 +

√
t

|y|

)β
t−d/2e−

|x−y|2
ct |f(y)|dy

]q
dx

}1/q

+

{ˆ
F∩B(0,

√
t)

[ ˆ
E\B(0,

√
t)

(
1 +

√
t

|x|

)α(
1 +

√
t

|y|

)β
t−d/2e−

|x−y|2
ct |f(y)|dy

]q
dx

}1/q

+

{ˆ
F\B(0,

√
t)

[ ˆ
E∩B(0,

√
t)

(
1 +

√
t

|x|

)α(
1 +

√
t

|y|

)β
t−d/2e−

|x−y|2
ct |f(y)|dy

]q
dx

}1/q

+

{ˆ
F\B(0,

√
t)

[ ˆ
E\B(0,

√
t)

(
1 +

√
t

|x|

)α(
1 +

√
t

|y|

)β
t−d/2e−

|x−y|2
ct |f(y)|dy

]q
dx

}1/q

≤ E1 + E2 + E3 + E4.

By Hölder’s inequality, Lemma 3.2 and the fact that βp′ < d we have

E1 ≤ Ce−
d(E,F )2

ct

[ ˆ
F∩B(0,

√
t)

t−qd/2
(

1 +

√
t

|x|

)qα
dx
]1/q( ˆ

E

|f |p
)1/p[ ˆ

B(0,
√
t)

(
1 +

√
t

|y|

)βp′
dy
]1/p′

. e−
d(E,F )2

ct t−
d
2 ( 1
p−

1
q )
(ˆ

E

|f |p
)1/p

.

For the second term, using Hölder’s inequality, Lemma 3.2 again with the fact that αq < d we
arrive at

E2 .

{ˆ
F∩B(0,

√
t)

[ ˆ
E\B(0,

√
t)

(
1 +

√
t

|x|

)α
t−d/2e−

|x−y|2
ct |f(y)|dy

]q
dx

}1/q

. e−
d(E,F )2

2ct

{ˆ
F∩B(0,

√
t)

∣∣∣(1 +

√
t

|x|

)α( ˆ
E

|f |p
)1/p(ˆ

Rd

[
t−d/2e−

|x−y|2
2ct

]p′
dy
)1/p′ ∣∣∣qdx}1/q

. e−
d(E,F )2

2ct t−
d
2p

(ˆ
E

|f |p
)1/p[ ˆ

F∩B(0,
√
t)

(
1 +

√
t

|x|

)αq
dx
]1/q

. e−
d(E,F )2

2ct t−
d
2 ( 1
p−

1
q )
(ˆ

E

|f |p
)1/p

.

By a similar argument we can also dominate E3 by

t−
d
2 ( 1
p−

1
q )e−

d(E,F )2

2ct

(ˆ
E

|f |p
)1/p

.

It remains to estimate the last term E4. We observe that

E4 .

{ˆ
F\B(0,

√
t)

[ ˆ
E\B(0,

√
t)

t−d/2e−
|x−y|2
ct |f(y)|dy

]q
dx

}1/q

At this stage, by using the standard argument we can prove that{ˆ
F\B(0,

√
t)

[ ˆ
E\B(0,

√
t)

t−d/2e−
|x−y|2
ct |f(y)|dy

]q
dx

}1/q

. t−
d
2 ( 1
p−

1
q )e−

d(E,F )2

2ct

( ˆ
E

|f |p
)1/p

.
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Hence,

E4 . t
− d2 ( 1

p−
1
q )e−

d(E,F )2

2ct

(ˆ
E

|f |p
)1/p

.

This completes the proof of (12).
�

Theorem 3.3 ([29, 25]). Assume d ≥ 3 and a ≥ −
(
d−2

2

)2

. Let pt(x, y) be the kernel associated

to the semigroups e−tLa . Then there exist two positive constants C and c such that for all t > 0
and x, y ∈ Rd\{0},

pt(x, y) ≤ C
(

1 +

√
t

|x|

)σ(
1 +

√
t

|y|

)σ
t−d/2e−

|x−y|2
ct .

The following results gives some estimates of the heat kernels pz(x, y) for z ∈ Cπ/4 := {z ∈ C :
| arg z| < π/4}.

Proposition 3.4. Let pz(x, y) be the kernels associated to the semigroups e−zLa with z ∈ Cπ/4 :=
{z ∈ C : | arg z| < π/4}. Then there exists constants C and c such that

(13) |pz(x, y)| ≤ C
(

1 +

√
|z|
|x|

)σ(
1 +

√
|z|
|y|

)σ
|z|−d/2e−

|x−y|2
c|z|

Proof. We adapt the standard argument in [11] to our present situation.
It suffices to claim that

(14) |w(x)pz(x, y)w(y)| ≤ C

|z|d/2
,

where w(x) =
(

1 +

√
|z|
|y|

)−σ
Now for f : Rd → R, we define the norm

|f |wL∞ = sup
x
|f(x)w(x)| .

Hence (14) is equivalent to that

‖e−zLa‖L1
w−1→wL∞ ≤

C

|z|d/2
.

Assume that z = 2t+ is where t ≥ 0 and s ∈ R. Then we have t ∼ |z| and

‖e−zLa‖L1
w−1→wL∞ ≤ ‖e

−tLa‖L2→wL∞‖e−isLa‖L2→L2‖e−tLa‖L1
w−1→L2 .

Since La is nonnegative and self-adjoint, ‖e−isLa‖L2→L2 ≤ 1. We now claim that

‖e−tLa‖L1
w−1→L2 . t−d/4 and ‖e−tLa‖L2→wL∞ . t

−d/4.

We now show ‖e−tLa‖L1
w−1→L2 . t−d/4. The inequality ‖e−tLa‖L2→wL∞ . t−d/4 can be done in

the same manner. Indeed, for f ∈ L1
w−1 we have

‖e−tLaf‖L2 .

(ˆ
Rd

∣∣∣∣ˆ
Rd

(
1 +

√
t

|x|

)σ(
1 +

√
t

|y|

)σ
t−d/2e−

|x−y|2
ct |f(y)|dy

∣∣∣∣2 dx
)1/2

.
ˆ
Rd

(ˆ
R

∣∣∣∣(1 +

√
t

|x|

)σ
t−d/2e−

|x−y|2
ct

∣∣∣∣2 dx
)1/2 (

1 +

√
t

|y|

)σ
|f(y)|dy
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Arguing similarly to the proof of Theorem 3.1 we get that(ˆ
Rd

∣∣∣∣(1 +

√
t

|x|

)σ
t−d/2e−

|x−y|2
ct

∣∣∣∣2 dx
)1/2

. t−d/4.

Hence,

‖e−tLaf‖L2 . t−d/4
ˆ
Rd

(
1 +

√
t

|y|

)σ
|f(y)|dy := t−d/4‖f‖L1

w−1

which implies
‖e−tLa‖L1

w−1→L2 . t−d/4.

This completes our proof.
�

As a direct consequence of Proposition 3.4 and Cauchy formula, we obtain the following result.

Proposition 3.5. Assume d ≥ 3 and a ≥ −
(
d−2

2

)2

. For any k ∈ N, there exist two positive

constants Ck and ck such that for all t > 0 and x, y ∈ Rd\{0},

|pt,k(x, y)| ≤ Ck
(

1 +

√
t

|x|

)σ(
1 +

√
t

|y|

)σ
t−(k+d/2)e

− |x−y|
2

ckt ,

where pt,k(x, y) is an associated kernel to Lkae−tLa .

4. Riesz transforms and smoothing estimates

4.1. Weighted Hardy inequalities. The Hardy inequality for Laplacian −∆ was studied in [34]
and then was generalized for Schrödinger operators La in [23]. In this section, we extend to the
weighted Hardy inequalities for La.

Theorem 4.1. Suppose 0 < s < d, d − s − 2σ > 0, and d′σ < p < ds+σ. Then for w ∈ A p
d′σ
∩

RH(
ds+σ
p

)′ we have

‖|x|−sf‖Lpw(Rd) . ‖Ls/2a f‖Lpw(Rd).

Proof. It suffices to prove that

‖|x|−sL−s/2a g‖Lpw(Rd) . ‖g‖Lpw(Rd).

for d′σ < p < ds+σ and w ∈ A p
d′σ
∩RH(

ds+σ
p

)′ . To do so we shall apply Theorem 2.3.

We define a linear operator

TLa,sf(x) = |x|−sL−s/2a f(x).

Fix p ∈ (d′σ, ds+σ) and w ∈ A p
d′σ
∩RH(

ds+σ
p

)′ . Then we can find d′σ < p1 < p < p2 < ds+σ so that

w ∈ A p
p1
∩RH( p2p )

′ .

We now fix a ball B ⊂ Rd and m > d+ d/p2. For any function f supported in B we claim that

(15)
(ˆ

Sj(B)

|TLa,s(I − e−r
2
BLa)mf(x)|p2dx

)1/p2
. 2−2mj

( ˆ
B

|f(x)|p2dx
)1/p2

.

Indeed, using the formula

L−s/2a =
1

Γ(s/2)

ˆ ∞
0

ts/2e−tLa
dt

t

to obtain that

(16) TLa,s(I − e−r
2
BLa)mf(x) =

1

Γ(s/2)

ˆ ∞
0

ts/2|x|−se−tLa(I − e−r
2
BLa)mf(x)

dt

t
.
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This along with Minkowski’s inequality implies that

‖TLa,s(I − e−r
2
BLa)mf‖Lp2 (Sj(B)) .

1

Γ(s/2)

ˆ ∞
0

ts/2‖ |x|−se−tLa(I − e−r
2
BLa)mf(x)‖Lp2 (Sj(B))

dt

t

.
1

Γ(s/2)

ˆ r2B

0

ts/2‖ |x|−se−tLa(I − e−r
2
BLa)mf(x)‖Lp2 (Sj(B))

dt

t

+
1

Γ(s/2)

ˆ ∞
r2B

ts/2‖ |x|−se−tLa(I − e−r
2
BLa)mf(x)‖Lp2 (Sj(B))

dt

t

. E1 + E2.

We first take care of E1. Observe that

(17) E1 ≤
m∑
k=0

Cmk

ˆ r2B

0

ts/2‖ |x|−se−(t+kr2B)Laf(x)‖Lp2 (Sj(B))
dt

t
.

Note that the associated kernel of the linear operator f(x) 7→ |x|−se−(t+kr2B)Laf(x) is given by
|x|−spt+kr2B (x, y) and by Theorem 3.3 it is dominated by

|x|−s
(

1 +

√
t+ kr2

B

|x|

)σ(
1 +

√
t+ kr2

B

|y|

)σ
(t+ kr2

B)−d/2e
− |x−y|2

c(t+kr2
B

)

≤ (t+ kr2
B)−s/2

(
1 +

√
t+ kr2

B

|x|

)σ+s(
1 +

√
t+ kr2

B

|y|

)σ
(t+ kr2

B)−d/2e
− |x−y|2

c(t+kr2
B

) .

Therefore, applying Theorem 3.1 we get that

‖ |x|−se−(t+kr2B)Laf(x)‖Lp2 (Sj(B)) . (t+ kr2
B)−s/2e

− 4jr2B
c(t+kr2

B
)

(ˆ
B

|f |p2
)1/p2

.

Inserting this into (17) to obtain that

E1 .
m∑
k=0

ˆ r2B

0

ts/2(t+ kr2
B)−s/2e

− 4jr2B
c(t+kr2

B
)
dt

t
×
(ˆ

B

|f |p2
)1/p2

.
m∑
k=0

ˆ r2B

0

ts/2(t+ kr2
B)−s/2

( t+ kr2
B

4jr2
B

)m dt
t
×
(ˆ

B

|f |p2
)1/p2

. 2−2mj
(ˆ

B

|f |p2
)1/p2

.

To estimate E2, we note that

(I − e−r
2
BLa)m =

ˆ r2B

0

. . .

ˆ r2B

0

Lma e−(s1+···+sm)Lad~s,

where d~s = ds1 . . . dsm.
Hence, the associated kernel to the linear operator f(x) 7→ |x|−se−tLa(I−e−r2BLa)mf(x) is given

by
ˆ r2B

0

. . .

ˆ r2B

0

|x|−spt+s1+···+sm,m(x, y)d~s,
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and hence by using Theorem 3.5 we can dominate it by

|x|−st−m
(

1 +

√
t+ s1 + · · ·+ sm

|x|

)σ(
1 +

√
t+ s1 + · · ·+ sm

|y|

)σ
(t+ s1 + · · ·+ sm)−d/2e

− |x−y|2
c(t+s1+···+sm)

. |x|−st−m
(

1 +

√
t

|x|

)σ(
1 +

√
t

|y|

)σ
t−d/2e−

|x−y|2
c(t)

. t−(s/2+m)
(

1 +

√
t

|x|

)σ+s(
1 +

√
t

|y|

)σ
t−d/2e−

|x−y|2
c(t) ,

where in the first inequality we used the fact that t + s1 + · · · + sm ∼ t for t ≥ r2
B and si ∈

(0, r2
B ], i = 1, . . . ,m.

This in combination with Theorem 3.1 implies that

‖ |x|−se−tLa(I − e−r
2
BLa)mf(x)‖Lp2 (Sj(B)) . t

−(s/2+m)e−
4jr2B
ct

( ˆ
B

|f |p2
)1/p2

Inserting this into the expression of E2 to get that

E2 .
ˆ ∞
r2B

ts/2t−(s/2+m)e−
4jr2B
ct

dt

t
×
(ˆ

B

|f |p2
)1/p2

.
ˆ ∞
r2B

ts/2t−(s/2+m)
( t

4jr2
B

)m dt
t
×
(ˆ

B

|f |p2
)1/p2

. 2−2mj
(ˆ

B

|f |p2
)1/p2

.

From the estimates of E1 and E2 we conclude (15).
With estimate (15) in hand, we can now complete the proof of the theorem. First note that it

was proved in [23] that TLa,s is bounded on Lp for p ∈ (d′σ, ds+σ). For each ball B, we now set

ArB = I − (I − e−r
2
BLa)m.

Then from (15), we conclude that ‘

(18)
(  

Sj(B)

|TLa,s(I −ArB )f(x)|p2dx
)1/p2

. 2−j(2m−d/p2)
( 

B

|f(x)|p2dx
)1/p2

.

On the other hand from Theorem 3.1 and Proposition 3.5 we imply that ‘

(19)
( ˆ

Sj(B)

|ArBf(x)|p2dx
)1/p2

. e−c2
2j

|B|
1
p1
− 1
p2

(ˆ
B

|f(x)|p1dx
)1/p1

which implies that ‘

(20)
(  

Sj(B)

|ArBf(x)|p2dx
)1/p2

. 2−j(2m−d/p2)
( 

B

|f(x)|p1dx
)1/p1

.

From (18), (20) and Theorem 2.3 we obtained the desired result. �

4.2. Weighted estimates for square functions. Let α ∈ (0, 1) we consider the following square
function

SLa,αf(x) =
(ˆ ∞

0

|(tLa)1−αe−tLaf |2 dt
t

)1/2

.

Note that by functional calculus theory in [28], the square funtion SLa,α is bounded on L2. In the
following theorem, we prove the weighted Lp estimates for SLa,α.
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Theorem 4.2. Suppose that d ≥ 3, a ≥ −
(
d−2

2

)2
and α ∈ (0, 1). Then for all d′σ < p < dσ and

w ∈ A p
d′σ
∩RH( dσp )′ we have

‖SLa,αf‖Lpw ∼ ‖f‖Lpw .

As a consequence, for 0 < s < 2, d′σ < p < dσ and w ∈ A p
d′σ
∩RH( dσp )′ we have

∥∥∥∥( ˆ ∞
0

t−s|tLae−tLaf |2
dt

t

)1/2
∥∥∥∥
Lpw

∼ ‖Ls/2a f‖Lpw .

Proof. We shall apply again Theorem 2.3. To do so we assume for now that SLa,α is bounded on
Lp for p ∈ [2, dσ). This assumption will be justified later.

Fix d′σ < p < dσ and w ∈ A p
d′σ
∩RH( dσp )′ . Then we can pick d′σ < p1 < p < p ∨ 2 < p2 < dσ so

that w ∈ A p
p1
∩RH(

p2
p )′ .

Fix m > 1 + d+ d/p2, we will claim that

(21)
(ˆ

Sj(B)

|SLa,α(I − e−r
2
BLa)mf |p2dx

)1/p2
. 2−2(m−1)j

(ˆ
B

|f |p2dx
)1/p2

, j ≥ 2,

for all balls B and all f ∈ C∞ supportted in B.
Indeed, by Minkowski’s inequality we have

(ˆ
Sj(B)

|SLa,α(I − e−r
2
BLa)mf |p2dx

)1/p2
≤
(ˆ r2B

0

∥∥∥(tLa)1−αe−tLa(I − e−r
2
BLa)mf

∥∥∥2

Lp2 (Sj(B))

dt

t

)1/2

+
( ˆ ∞

r2B

∥∥∥(tLa)1−αe−tLa(I − e−r
2
BLa)mf

∥∥∥2

Lp2 (Sj(B))

dt

t

)1/2

:= I1 + I2.

We now take care of I1 first. Note that

L−αa =
1

Γ(α)

ˆ ∞
0

uαe−uLa
du

u

and

(22) (I − e−r
2
BLa)m =

ˆ
[0,r2B ]m

Lma e−(s1+···+sm)Lad~s,

where d~s = ds1 . . . dsm.
Hence,

I1 .

ˆ r2B

0

[ˆ r2B

0

(u
t

)α ∥∥∥tLae−(t+u)La(I − e−r
2
BLa)mf

∥∥∥
Lp2 (Sj(B))

du

u

]2
dt

t

1/2

+

ˆ r2B

0

[ˆ ∞
r2B

(u
t

)α ∥∥∥tLae−(t+u)La(I − e−r
2
BLa)mf

∥∥∥
Lp2 (Sj(B))

du

u

]2
dt

t

1/2

:= I11 + I12.
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We now have

I11 .
m∑
k=0

ˆ r2B

0

[ˆ r2B

0

(u
t

)α t

t+ u+ kr2
B

∥∥∥(t+ u+ kr2
B)Lae−(t+u+kr2B)Laf

∥∥∥
Lp2 (Sj(B))

du

u

]2
dt

t

1/2

.
m∑
k=0

ˆ r2B

0

[ˆ r2B

0

(u
t

)α t

t+ u+ kr2
B

exp
(
− 4jr2

B

c(t+ u+ kr2
B)

)
‖f‖Lp2 (B)

du

u

]2
dt

t

1/2

.
m∑
k=0

ˆ r2B

0

[ˆ r2B

0

(u
t

)α t

4jr2
B

( t+ u+ kr2
B

4jr2
B

)m
‖f‖Lp2 (B)

du

u

]2
dt

t

1/2

. 2−2mj ‖f‖Lp2 (B) .

Now we use (22) to obtain that

I12 .

ˆ r2B

0

[ˆ
[0,r2B ]m

ˆ ∞
r2B

(u
t

)α ∥∥∥tLm+1
a e−(t+u+s1+...+sm)Laf

∥∥∥
Lp2 (Sj(B))

du

u
d~s

]2
dt

t

1/2

which along with Theorem 3.1 and the fact that u ∼ t+ u+ s1 + . . .+ sm implies that

I12 .

ˆ r2B

0

[ˆ
[0,r2B ]m

ˆ ∞
r2B

(u
t

)α t

um+1
e−

4jr2B
cu ‖f‖Lp2 (B)

du

u
d~s

]2
dt

t

1/2

. 2−2mj ‖f‖Lp2 (B) .

As a consequence,

I1 . 2−2mj ‖f‖Lp(B) .

Similarly, we split I2 as follows

I2 .

ˆ ∞
r2B

[ˆ r2B

0

(u
t

)α ∥∥∥tLae−(t+u)La(I − e−r
2
BLa)mf

∥∥∥
Lp2 (Sj(B))

du

u

]2
dt

t

1/2

+

ˆ ∞
r2B

[ˆ ∞
r2B

(u
t

)α ∥∥∥tLae−(t+u)La(I − e−r
2
BLa)mf

∥∥∥
Lp2 (Sj(B))

du

u

]2
dt

t

1/2

:= I21 + I22.

The argument used to estimate I12 can be applied again to show that

I21 . 2−2mj ‖f‖Lp(B) .

On the other hand, using this argument, we also dominate I22 as follows

I22 .

ˆ ∞
r2B

[ˆ
[0,r2B ]m

ˆ ∞
r2B

(u
t

)α t

(u+ t)m+1
e−

4jr2B
c(u+t) ‖f‖Lp2 (B)

du

u
d~s

]2
dt

t

1/2

.

ˆ ∞
r2B

[ˆ
[0,r2B ]m

ˆ ∞
r2B

(u
t

)α 1

u(u+ t)m−1
e−

4jr2B
c(u+t) ‖f‖Lp2 (B)

du

u
d~s

]2
dt

t

1/2

. 2−2(m−1)j ‖f‖Lp2 (B) .
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Therefore,

I22 . 2−2(m−1)j ‖f‖Lp2 (B) .

Hence, this completes the proof of (21). At this stage, arguing similarly to Theorem 4.1, we obtain
that

‖SLa,αf‖Lpw . ‖f‖Lpw .
To prove the reverse inequality, by functional calculus theory for g ∈ Lp′v with v = w1−p′ we haveˆ

Rd
f(x)g(x)dx = c(α)

ˆ
Rd

ˆ ∞
0

(tLa)2(1−α)e−2tLaf(x)g(x)
dt

t
dx,

where c(α) =
´∞

0
t2(1−α)e−2t dt

t . (Actually, this identity holds true in L2 first. However, due to
the weighted Lp boundeness of SLa,α we can extend the converegence to Lpw.)

By Hölder’s inequality, we can writeˆ
Rd
f(x)g(x)dx = c(α)

ˆ
Rd

ˆ ∞
0

(tLa)1−αe−tLaf(x)(tLa)1−αe−tLag(x)
dt

t
dx

.
ˆ
Rd
SLa,αf(x)SLa,αg(x)dx

. ‖SLa,αf‖Lpw‖SLa,αg‖Lp′v .

Note that from (vii) Lemma 2.1 we obtain v ∈ Ap′/dσ∩RH(d′σ/p
′)′

. Hence, from the weighted Lp

estimates of SLa,α we have proved we get that ‖SLa,αg‖Lp′v . ‖g‖Lp′v , we obtain
ˆ
Rd
f(x)g(x)dx . ‖SLa,αf‖Lpw‖g‖Lp′v .

As a consequence,

‖f‖Lpw . ‖SLa,αf‖Lpw .

To complete the proof, we need to prove the original assertion that SLa,α is bounded on Lr for
all r ∈ (2, dσ). According to Theorem 2.4, for any q0 ∈ (2, dσ) it suffices to prove that( 

B

|SLa,α(I −ArB )f |2 dx
)1/2

≤ CM2(f)(x),(23)

and ( 
B

∣∣SLa,αArBf ∣∣q0dx)1/q0
≤ CM2(|SLa,αf |)(x),(24)

all balls B with radius rB , all f ∈ C∞c (Rn) and all x ∈ B with ArB = I − (I − e−r
2
BLa)m,

m > 1 + d+ d/p2.
To prove (23), we write(  

B

|SLa,α(I −ArB )f |2 dx
)1/2

≤
∞∑
j=0

(  
B

|SLa,α(I −ArB )fj |2 dx
)1/2

:=

∞∑
j=0

Ij ,

where fj = fχSj(B).

For j = 0, 1, using the L2-boundedness of SLa,α and ArB we have

Ij .M2(f)(x).
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For j ≥ 2, the argument in the proof of (21) shows that

Ij . 2−j(2m−d/2)
( 

Sj(B)

|f |2
)1/2

.

Therefore,
∞∑
j=0

Ij .M2(f)(x)

which proves (23).
It remains to prove (24). Indeed, we have(ˆ

B

|SLa,α[I − (I − e−r
2
BLa)m]f(x)|q0dx

)1/q0

.
m∑
k=1

(ˆ
B

|SLa,αe−kr
2
BLaf(x)|q0dx

)1/q0

. sup
1≤k≤m

[ˆ
B

(ˆ ∞
0

|e−kr
2
BLa(tLa)1−αe−tLaf(x)|2 dt

t

)q0/2
dx

]1/q0

.
∑
j≥0

sup
1≤k≤m

[ˆ
B

(ˆ ∞
0

∣∣∣e−kr2BLa [(tLa)1−αe−tLafχSj(B)](x)
∣∣∣2 dt

t

)q0/2
dx

]1/q0

which along with Minkowski’s inequality, Theorem 3.5 and Theorem 3.1 gives(ˆ
B

|SLa,α[I − (I − e−r
2
BLa)m]f(x)|q0dx

)1/q0

.
∑
j≥0

sup
1≤k≤m

(ˆ ∞
0

∥∥∥e−kr2BLa [(tLa)1−αe−tLafχSj(B)]
∥∥∥2

Lq0 (B)

dt

t

)1/2

.
∑
j≥0

e−c4
j

|B|−( 1
2−

1
q0

)

(ˆ ∞
0

∥∥(tLa)1−αe−tLaf
∥∥2

L2(Sj(B))

dt

t

)1/2

.
∑
j≥0

e−c4
j

|B|−( 1
2−

1
q0

)
( ˆ

2jB

|SLa,αf(x)|2dx
)1/2

.

This implies (24). Hence the proof is complete. �

The following result regarding weighted estimates for the difference of square functions will play
an essential role in the proofs of the main results.

Theorem 4.3. We have the following estimate∥∥∥∥∥
(ˆ ∞

0

t−s
∣∣(tLae−tLa + t∆et∆

)
f
∣∣2 dt

t

)1/2
∥∥∥∥∥
Lpw

.

∥∥∥∥ f

|x|s

∥∥∥∥
Lpw

provided that

(a) a ≥ 0, 1 < p <∞ and w ∈ Ap; or

(b) −
(
d−2

2

)2 ≤ a < 0, 1 ∨ d
d+s−σ < p < dσ and w ∈ A p

1∨ d
d+s−σ

∩RH(dσ/p)′ .

Before proceeding with the proof of the theorem, we need the following technical results on
kernel estimates.

Let Dt(x, y) be a kernel of tLae−tLa + t∆et∆. We have the following estimates:
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Proposition 4.4. (a) If a ≥ 0 then

(25) |Dt(x, y)| . t−d/2
(

1 +
|x|+ |y|√

t

)−2

e−
|x−y|2
ct

for all x, y ∈ Rd and t > 0.

(b) If −
(
d−2

2

)2 ≤ a < 0 then

(26) |Dt(x, y)| . t−d/2
(

1 +
|x|+ |y|√

t

)−2

e−
|x−y|2
ct

for all t > 0 and |x|, |y| ≥
√
t/2.

We remark that in [23] the authors gave upper bounds for the kernels of e−tLa − et∆. However,
this estimate is not sufficient for us.

Proof. We first give the proof for the case a ≥ 0. Note that in this case since both kernels of
tLae−tLa and t∆et∆ satisfy Gaussian upper bounds, there exists C, c > 0 so that

|Dt(x, y)| ≤ Ct−d/2e−
|x−y|2
ct

for all x, y ∈ Rd and t > 0.
Hence, it suffices to prove (25) for x ∼ y and |x|, |y| ≥

√
t/2. From Duhamel’s formula, we

obtain that

(27)

Dt(x, y) =at

ˆ
Rd
p̃t/2(x, z)|z|−2pt/2(z, y)dz + at

ˆ t/2

0

ˆ
Rd
p̃t−s,1(x, z)|z|−2ps(z, y)dz

ds

t− s

+ at

ˆ t

t/2

ˆ
Rd
p̃t−s(x, z)|z|−2ps,1(z, y)dz

ds

s

= I1 + I2 + I3,

where p̃t,k(x, y) denotes the kernel of (−1)k(t∆)ket∆.
Using the fact that 0 ≤ pt(x, y) ≤ p̃t(x, y) to get that

I1 . t
ˆ
Rd

1

td/2
e−
|x−z|2

8t |z|−2e−
|z−y|2

8t dz

.
1

td/2
e−
|x−y|2

16t t

ˆ
Rd

1

td/2
e−
|x−z|2

16t |z|−2dz

which along with the fact that

(28)

ˆ
Rd

1

td/2
e−
|x−z|2
ct |z|−2dz .

1

|x|2

implies that

I1 .
1

td/2
e−
|x−y|2

16t
t

|x|2
.

Similarly, by using the Gaussian upper bounds of p̃t−s,1(x, z) and ps(z, y) and the fact that

|x− z|2

t− s
+
|z − y|2

s
≥ |x− y|

2

2t
for all s ∈ (0, t)
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we also obtain that

I2 . e
− |x−y|

2

ct t

ˆ t/2

0

ˆ
Rd

1

(t− s)d/2
1

sd/2
e−
|z−y|2
c′s |z|−2dz

ds

t− s

.
1

td/2
e−
|x−y|2
ct t

ˆ t/2

0

ˆ
Rd

1

sd/2
e−
|z−y|2
c′s |z|−2dz

ds

t

.
1

td/2
e−
|x−y|2

16t
t

|y|2

where in the last inequality we used (28).
Similarly, by a change of variable and arguing as in I2,

I3 .
1

td/2
e−
|x−y|2

16t
t

|x|2
.

This completes the proof for the case a ≥ 0.

We now consider the case when −
(
d−2

2

)2 ≤ a < 0. In this situation σ > 0 and thus it is easy
to observe that

|Dt(x, y)| . t−d/2e−
|x−y|2
ct ,

whenever |x|, |y| ≥
√
t/2. Hence, it suffices to prove (26) for |x|, |y| ≥

√
t and |x| ∼ |y|.

By expressing Dt(x, y) as in (27), we will need to estimate I1, I2, I3 for −
(
d−2

2

)2
< a < 0 and

|x|, |y| ≥
√
t and |x| ∼ |y|.

Arguing similarly to the case a ≥ 0, we have

I1 .
1

td/2
e−
|x−y|2

16t
t

|x|2
.

For the second term I2, from the kernel bounds estimates of p̃t,1(x, y) and pt(x, y), and arguing
similarly to the case 1, we obtain

I2 . e
− |x−y|

2

ct t

ˆ t/2

0

ˆ
Rd

1

(t− s)d/2
1

sd/2
e−
|z−y|2
c′s |z|−2

(
1 +

√
s

|z|

)σ
dzds

.
1

td/2
e−
|x−y|2
ct t

ˆ t/2

0

ˆ
Rd

1

sd/2
e−
|z−y|2

c′s |z|−2

(
1 +

√
s

|z|

)σ
dzds

.
1

td/2
e−
|x−y|2
ct t

ˆ t/2

0

ˆ
|z|≥
√
s

1

sd/2
e−
|z−y|2

c′s |z|−2

(
1 +

√
s

|z|

)σ
dzds

+
1

td/2
e−
|x−y|2
ct t

ˆ t/2

0

ˆ
|z|<
√
s

1

sd/2
e−
|z−y|2
c′s |z|−2

(
1 +

√
s

|z|

)σ
dzds.

Similarly to the case a ≥ 0, we have

1

td/2
e−
|x−y|2
ct t

ˆ t/2

0

ˆ
|z|≥
√
s

1

sd/2
e−
|z−y|2
c′s |z|−2

(
1 +

√
s

|z|

)σ
dzds

.
1

td/2
e−
|x−y|2
ct t

ˆ t/2

0

ˆ
|z|≥
√
s

1

sd/2
e−
|z−y|2
c′s |z|−2dzds

.
1

td/2
e−
|x−y|2

16t
t

|x|2
.

From the fact that σ + 2 < d we haveˆ
Rd

1

td/2
e−
|x−z|2
ct |z|−2

(
1 +

√
s

|z|

)σ
dz .

1

|x|2
.
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This implies that

1

td/2
e−
|x−y|2
ct t

ˆ t/2

0

ˆ
|z|<
√
s

1

sd/2
e−
|z−y|2
c′s |z|−2

(
1 +

√
s

|z|

)σ
dzds .

1

td/2
e−
|x−y|2

16t
t

|x|2
.

Likewise, we get that

I3 .
1

td/2
e−
|x−y|2

16t
t

|x|2
.

This completes our proof. �

Proof of Theorem 4.3: We consider two cases.
Case 1: a ≥ 0

Fix 1 < p <∞ and w ∈ Ap. Observe that by Proposition 4.4( ˆ ∞
0

t−s
∣∣(tLae−tLa + t∆et∆

)
f(x)

∣∣2 dt
t

)1/2

≤

∑
j∈Z

ˆ 22(j+1)

22j

t−s
∣∣(tLae−tLa + t∆et∆

)
f(x)

∣∣2 dt
t

1/2

≤

∑
j∈Z

ˆ 22(j+1)

22j

t−s
(ˆ

Rd
|Dt(x, y)| |f(y)|dy

)2
dt

t

1/2

≤

∑
j∈Z

ˆ 22(j+1)

22j

2−2js

(ˆ
Rd

2−jd
(

1 +
|x|+ |y|

2j

)−2

e−
|x−y|2

c22j |f(y)|dy

)2
dt

t

1/2

≤
∑
j∈Z

2−js
ˆ
Rd

2−jd
(

1 +
|x|+ |y|

2j

)−2

e−
|x−y|2

c22j |f(y)|dy

where in the last inequality we used the fact that `1 ↪→ `2.
As in [23] we split the right hand side term above into two terms with respect to low-energy

and high-energy cases.(ˆ ∞
0

t−s
∣∣(tLae−tLa + t∆et∆

)
f(x)

∣∣2 dt
t

)1/2

≤
ˆ
Rd

∑
j∈Z:2j>|x|+|y|

2−j(d+s)

(
1 +
|x|+ |y|

2j

)−2

e−
|x−y|2

c22j |f(y)|dy

+

ˆ
Rd

∑
j∈Z:2j≤|x|+|y|

2−j(d+s)

(
1 +
|x|+ |y|

2j

)−2

e−
|x−y|2

c22j |f(y)|dy

:= I1(x) + I2(x).

For the first term, we have

I1(x) ≤
ˆ
Rd

∑
j∈Z:2j>|x|+|y|

2−j(d+s)|f(y)|dy .
ˆ
Rd

1

(|x|+ |y|)d+s
|f(y)|dy

.
ˆ
|y|≤|x|

1

(|x|+ |y|)d+s
|f(y)|dy +

ˆ
|y|>|x|

1

(|x|+ |y|)d+s
|f(y)|dy

. I11(x) + I12(x),
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which implies

‖I1(·)‖Lpw . ‖I11(·)‖Lpw + ‖I12(·)‖Lpw .
It is easy to see that

I11(x) ≤
ˆ
|y|≤|x|

|y|s

|x|d+s

|f(y)|
|y|s

dy ≤M
(

f

| · |s

)
(x)

which yields that

‖I11(·)‖Lpw .
∥∥∥∥ f

|x|s

∥∥∥∥
Lpw

.

Taking g ∈ Lp′(v), v = w1−p′ ∈ Ap′ we then have

〈I12(·), g〉 ≤
ˆ
Rd

ˆ
|y|>|x|

1

(|x|+ |y|)d+s
|f(y)| |g(x)|dydx

≤
ˆ
Rd

ˆ
|y|>|x|

1

|y|d
|f(y)|
|y|s

|g(x)|dydx

≤
ˆ
Rd

ˆ
|x|<|y|

1

|y|d
|f(y)|
|y|s

|g(x)|dxdy .
ˆ
Rd
|Mg(y)|

∣∣∣∣f(y)

|y|s

∣∣∣∣ dy
.

∥∥∥∥ f

| · |s

∥∥∥∥
Lpw

‖Mg‖
Lp
′
v
.

∥∥∥∥ f

|x|s

∥∥∥∥
Lpw

‖g‖
Lp
′
v
.

As a consequence,

‖I12(·)‖Lpw .
∥∥∥∥ f

|x|s

∥∥∥∥
Lpw

.

We turn to the second term I2(x). For 0 < ε < 2−s
2 , we have

I2(x) .
ˆ
Rd

∑
j∈Z:2j≤|x|+|y|

1

|x− y|d−ε
1

(|x|+ |y|)s+ε

(
|x|+ |y|

2j

)−2+s+ε

|f(y)|dy

.
ˆ
Rd

1

|x− y|d−ε
1

(|x|+ |y|)s+ε
|f(y)|dy .

ˆ
Rd

1

|x− y|d−ε
1

(|x|+ |y|)ε
|f(y)|
|y|s

dy

:=

ˆ
Γ1(x)

. . .+

ˆ
Γ2(x)

. . .+

ˆ
Γ3(x)

. . .+

ˆ
Γ4(x)

. . .

:= I21(x) + I22(x) + I23(x) + I24(x),

where Γ1(x) = {y : |y| < |x/2|}, Γ2(x) = {y : |y| ≥ 2|x|}, Γ3(x) = {y : |x|/2 ≤ |y| < 2|x|} ∩
B(x, |x|/2) and Γ4(x) = {y : |x|/2 ≤ |y| < 2|x|} ∩B(x, |x|/2)c.

It is easy to dominate I21(x) as follows

I21(x) .
ˆ
|y|<|x|/2

1

|x|d
|f(y)|
|y|s

dy .M
(

f

| · |s

)
(x),

which implies that

‖I21(·)‖Lpw .
∥∥∥∥ f

|x|s

∥∥∥∥
Lpw

.

For the term I22(x), we have

I22(x) .
ˆ
|y|≥2|x|

1

|y|d
|f(y)|
|y|s

dy.



SMOOTHING ESTIMATES FOR SCHRÖDINGER OPERATORS WITH INVERSE-SQUARE POTENTIALS 19

At this stage, by using the argument in the estimate I12(·) we also get that

‖I22(·)‖Lpw .
∥∥∥∥ f

|x|s

∥∥∥∥
Lpw

.

In addition, we have

I23(x) .
ˆ
B(x,2|x|)

1

|x|d
|f(y)|
|y|s

dy .M
(

f

| · |s

)
(x),

which implies that

‖I23(·)‖Lpw .
∥∥∥∥ f

|x|s

∥∥∥∥
Lpw

.

The last term I24 can be dealt with as follows.

I24(x) .
ˆ
B(x,|x|/2)

1

|x− y|d−ε|x|ε
|f(y)|
|y|s

dy

.
∞∑
j=0

ˆ
2−j−1|x|≤|x−y|<2−j |x|

1

|x− y|d−ε|x|ε
|f(y)|
|y|s

dy

.
∞∑
j=0

2−jεM
(

f

| · |s

)
(x) .M

(
f

| · |s

)
(x)

which implies that

‖I24(·)‖Lpw .
∥∥∥∥ f

|x|s

∥∥∥∥
Lpw

.

Case 2: −
(
d−2

2

)2 ≤ a < 0

Fix p ∈
(

1 ∨ d
d+s−σ , dσ

)
and w ∈ A p

1∨ d
d+s−σ

∩ RH( dσp )
′ . Hence, there exist p1, q1 so that

1 ∨ d
d+s−σ < p1 < p < q1 < dσ, and w ∈ A p

p1
∩ RH( q1p )

′ . Similarly to Case 1, by Proposition 4.4

we obtain that( ˆ ∞
0

t−s
∣∣(tLae−tLa + t∆et∆

)
f(x)

∣∣2 dt
t

)1/2

≤
ˆ
Rd

∑
j∈Z:2j≥(|x|∧|y|)/2

2−j(d+s)

(
1 +

2j

|x|

)σ (
1 +

2j

|y|

)σ
e−
|x−y|2

c22j |f(y)|dy

+

ˆ
Rd

∑
j∈Z:2j<(|x|∧|y|)/2

2−j(d+s)

(
1 +
|x|+ |y|

2j

)−2

e−
|x−y|2

c22j |f(y)|dy

:= J1(x) + J2(x).

The argument used to estimate I2(x) in Case 1 also shows that

‖J2(·)‖Lpw .
∥∥∥∥ f

|x|s

∥∥∥∥
Lpw

.

It remains to show that

‖J1(·)‖Lpw .
∥∥∥∥ f

|x|s

∥∥∥∥
Lpw

.
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Indeed, we have

J1(x) ≤
ˆ
Rn

∑
j∈Z:2j≥(|x|∨|y|)/2

2−j(d+s)

(
1 +

2j

|x|

)σ (
1 +

2j

|y|

)σ
e−
|x−y|2

c22j |f(y)|dy

+

ˆ
Rn

∑
j∈Z:|y|/2>2j≥|x|/2

2−j(d+s)

(
1 +

2j

|x|

)σ (
1 +

2j

|y|

)σ
e−
|x−y|2

c22j |f(y)|dy

+

ˆ
Rn

∑
j∈Z:|x|/2>2j≥|y|/2

2−j(d+s)

(
1 +

2j

|x|

)σ (
1 +

2j

|y|

)σ
e−
|x−y|2

c22j |f(y)|dy

:= J11(x) + J12(x) + J13(x).

For the term J11, one has

J11(x) ≤
ˆ
Rn

1

(|x|+ |y|)d+s−2σ|x|σ|y|σ
|f(y)|dy

.
ˆ
|y|≤|x|

. . .+

ˆ
|y|≥|x|

. . .

:= J1
11(x) + J2

11(x).

We now consider the contribution of J1
11(x). In this case, we have

J1
11(x) ≤

ˆ
|y|≤|x|

|y|s−σ

|x|d+s−σ
|f(y)|
|y|s

dy

If s− σ ≥ 0 then

J1
11(x) ≤

ˆ
|y|≤|x|

1

|x|d
|f(y)|
|y|s

dy .M
(
f

| · |

)
(x),

and hence,

‖J1
11(·)‖Lpw .

∥∥∥∥ f

|x|s

∥∥∥∥
Lpw

.

Otherwise, if s− σ < 0 then by Hölder’s inequality

J1
11(x) .

(ˆ
|y|≤|x|

|y|(s−σ)p′1

|x|(d+s−σ)p′1
dy

)1/p′1
(ˆ
|y|≤|x|

|f(y)|p1
|y|sp1

dy

)1/p1

.

Since 0 < (σ − s)p′1 < d, by Lemma 3.2, we have

J1
11(x) .

(
1

|x|d

ˆ
|y|≤|x|

|f(y)|p1
|y|sp1

dy

)1/p1

.Mp1

(
f

| · |s

)
(x)

which implies that

‖J1
11(·)‖Lpw .

∥∥∥∥ f

|x|s

∥∥∥∥
Lpw

.
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To estimate the term J2
11 we employ the duality argument. Set v = w1−p′ , and hence by (vii)

Lemma 2.1, v ∈ Ap/d′σ . For g ∈ Lp′v we have

〈J2
11, g〉 .

ˆ
Rn

ˆ
|y|≥|x|

1

(|y|)d−σ|x|σ
|f(y)|
|y|s

dy|g(x)|dx

.
ˆ
Rd

ˆ
|x|≤|y|

|g(x)|
|x|σ

dx
|f(y)|
|y|d+s−σ dy

.
ˆ
Rd

(ˆ
|x|≤|y|

|g(x)|p
′
1dx

)1/p′1
(ˆ
|x|≤|y|

1

|x|σp1
dx

)1/p1
|f(y)|
|y|d+s−σ dy

which together with Lemma 3.2 gives

〈J2
11, g〉 .

ˆ
Rd

(
1

|y|d

ˆ
|x|≤|y|

|g(x)|p
′
1dx

)1/p′1 |f(y)|
|y|s

dy

.

〈
Mp′1

g,
f

| · |s

〉
. ‖Mp′1

g‖
Lp
′
v

∥∥∥∥ f

| · |s

∥∥∥∥
Lpw

. ‖g‖
Lp
′
v

∥∥∥∥ f

| · |s

∥∥∥∥
Lpw

.

Hence,

‖J2
11(·)‖Lpw .

∥∥∥∥ f

|x|s

∥∥∥∥
Lpw

.

Let us move on the term J12. We split this term as follows.

J12(x) .
ˆ
|y|≥2|x|

∑
j∈Z:|y|/2>2j≥|x|/2

2−j(d+s)

(
1 +

2j

|x|

)σ (
1 +

2j

|y|

)σ
e−
|x−y|2

c22j |f(y)|dy

+

ˆ
|y|<2|x|

∑
j∈Z:|y|/2>2j≥|x|/2

2−j(d+s)

(
1 +

2j

|x|

)σ (
1 +

2j

|y|

)σ
e−
|x−y|2

c22j |f(y)|dy

= J1
12(x) + J2

12(x).

It is easy to see that

J2
12(x) .

ˆ
|y|<2|x|

∑
j∈Z:|y|/2>2j≥|x|/2

2−j(d+s)

(
1 +

2j

|x|

)σ (
1 +

2j

|y|

)σ
e−
|x−y|2

c22j |f(y)|dy

.
ˆ
|y|<2|x|

1

|x|d+s
|f(y)|dy .M

(
f

| · |s

)
(x)

which yields that

‖J2
12(·)‖Lpw .

∥∥∥∥ f

|x|s

∥∥∥∥
Lpw

.
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To consider the contribution of J1
12, we write

J1
12(x) .

ˆ
|y|≥2|x|

∑
j∈Z:|y|/2>2j≥|x|/2

2−j(d+s)

(
1 +

2j

|x|

)σ (
1 +

2j

|y|

)σ
e−
|x−y|2

c22j |f(y)|dy

.
ˆ
|y|≥2|x|

1

|x− y|d+s−σ|y|σ
|f(y)|dy

.
ˆ
|y|≥2|x|

1

|y|d+s
|f(y)|dy

Arguing similarly to I12 in the case 1, we also obtain that

‖J1
12(·)‖Lpw .

∥∥∥∥ f

|x|s

∥∥∥∥
Lpw

.

Hence,

‖J12(·)‖Lpw .
∥∥∥∥ f

|x|s

∥∥∥∥
Lpw

.

It remains to show that

‖J13(·)‖Lpw .
∥∥∥∥ f

|x|s

∥∥∥∥
Lpw

.

The proof of this estimate can be done in the same manner as that of J12. We leave it to the
interested reader.

This completes our proof. �

4.3. Proof of Theorems 1.1 and Theorem 1.2.

Proof of Theorem 1.1: Fix 0 < s < 2, d′σ < p < ds+σ and w ∈ Ap/d′σ ∩ RH(ds+σ/p)′ . Then by
Theorem 4.2, Theorem 4.3 and Theorem 4.1 we have

‖(−∆)s/2f‖Lpw .

∥∥∥∥∥
(ˆ ∞

0

t−s|t(−∆)et∆f |2 dt
t

)1/2
∥∥∥∥∥
Lpw

.

∥∥∥∥∥
(ˆ ∞

0

t−s
∣∣(tLae−tLa + t∆et∆)f

∣∣2 dt
t

)1/2
∥∥∥∥∥
Lpw

+

∥∥∥∥∥
(ˆ ∞

0

t−s|tLae−tLaf |2
dt

t

)1/2
∥∥∥∥∥
Lpw

.

∥∥∥∥ f

|x|s

∥∥∥∥
Lpw

+ ‖Ls/2a f‖Lpw

. ‖Ls/2a f‖Lpw .

Conversely, for 1 < p <∞ with p1 := 1∨ d
d−σ < p < d

s∨σ := p2 and w ∈ Ap/p1 ∩RH(p2/p)′ we have

‖Ls/2a f‖Lpw .

∥∥∥∥∥
(ˆ ∞

0

t−s|tLae−tLaf |2
dt

t

)1/2
∥∥∥∥∥
Lpw

.

∥∥∥∥∥
(ˆ ∞

0

t−s
∣∣(tLae−tLa + t∆et∆)f

∣∣2 dt
t

)1/2
∥∥∥∥∥
Lpw

+

∥∥∥∥∥
(ˆ ∞

0

t−s|t(−∆)et∆f |2 dt
t

)1/2
∥∥∥∥∥
Lpw

.

∥∥∥∥ f

|x|s

∥∥∥∥
Lpw

+ ‖(−∆)s/2f‖Lpw

. ‖(−∆)s/2f‖Lpw ,
where in the last inequality we used Theorem 4.1.

This completes our proof.
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�

Proof of Theorem 1.2. Before starting the proof, we note that the flow eitLa satisfies for all s the
conservation laws

‖Ls/2a eitLau0‖L2 = ‖Ls/2a u0‖L2 ∀t ∈ R
by self-adjointness. By an elementary application of Theorem 1.1 in the unweighted case, this
implies the almost conservation of Hs norms

(29) ‖(−∆)s/2eitLau0‖L2 ' ‖(−∆)s/2u0‖L2 for 0 < s < 2.

Consider not a generic Schrödinger equation with potential

iut + ∆u− c(x)u = 0, c(x) =
a

|x|2
.

If u(t, x) solves this equation, then the following identity holds for any sufficiently smooth ψ :
Rd → R:

(30) <∇ ·QS + =∂t{ū∇ψ · ∇u} = − 1
2∆2ψ|u|2 + 2

∑d
j,k=1 ∂ju∂j∂kψ∂kū−∇ψ · ∇c|u|2

where

QS = ∇u Tu− 1
2∇∆ψ|u|2 −∇ψ

[
c|u|2 − iutu+∇u · ∇ū

]
.

Formula (30) is usually called a virial (or Morawetz ) identity, and it is easy to check directly by
expanding the derivative ∇ ·QS , and using the equation for u(t, x) (see e.g. [2], [8], [10]).

Consider the case when the weight ψ is a radial function; by abuse of notation we use the same
symbol ψ(x) = ψ(|x|). Then we can write

∇ψ · ∇c = ψ′∂rc

where ∂r = x
|x| · ∇ is the radial derivative. If we denote by ∇Tu = ∇u − x

|x|∂ru the tangential

component of ∇u, we have also the identities

|∇u|2 = |∂ru|2 + |∇Tu|2 and

d∑
j,k=1

∂ju∂j∂kψ∂kū = ψ′′|∂ru|2 +
ψ′

|x|
|∇Tu|2.

Then formula (30) reduces to

(31) <∇ ·QS + =∂t{ūψ′∂ru} = 2ψ′′|∂ru|2 + 2 ψ
′

|x| |∇
Tu|2 − 1

2∆2ψ|u|2 − ψ′∂rc|u|2.

We now pick an explicit radial weight

ψ(r) =

ˆ r

0

sε

1 + sε
ds, 0 < ε < 1

where the parameter ε will be chosen later. A straightforward computation gives, writing for
brevity r = |x|,

2ψ′′|∂ru|2 + 2
ψ′

|x|
|∇Tu|2 =

2εrε

(1 + rε)2

1

r
|∂ru|2 +

2rε

1 + rε
1

r
|∇Tu|2 ≥ 2εrε

(1 + rε)2

1

r
|∇u|2,

−ψ′∂rc|u|2 =
rε

1 + rε
2a

r3
|u|2

and

−1

2
∆2ψ|u|2 =

1

r3

rε

1 + rε

[µd
2

+ ε · β(rε)
]
|u|2, µd = (d− 1)(d− 3),

where

2β(r) = −d
2 − 6d+ 7

1 + r
+ ε(2d− 5)

r2 − 1

(1 + r)3
− ε2 r

2 − 4r + 1

(1 + r)3
=⇒ |β(r)| ≤ 3d2
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since d ≥ 3. We substitute these expressions into (31) and integrate over Rd; if u is a H1 solution
the term in divergence form ∇QS vanishes, and we obtain

=
ˆ
∂t{ūψ′∂ru}dx ≥

ˆ
2εrε

(1 + rε)2

|∇u|2

r
dx+

ˆ [
2a+

µd
2
− 3d2ε

] rε

1 + rε
|u|2

r3
dx.

Recall that by assumption we have

δ := a+

(
d− 2

2

)2

− 1

4
= a+

µd
4
> 0,

thus if we choose ε = min{1, d−2δ/3} and note that ε < δ we have proved the inequality

(32) =
ˆ
∂t{ūψ′∂ru}dx ≥

ˆ
εrε

(1 + rε)2

|∇u|2

r
dx+

ˆ
εrε

1 + rε
|u|2

r3
dx.

We next integrate (32) with respect to time on the interval t ∈ [0, T ]; we obtain

(33) =
ˆ
ūψ′∂rudx

∣∣∣∣t=T
t=0

≥
ˆ T

0

ˆ [
εrε

(1 + rε)2

|∇u|2

r
d+

εrε

1 + rε
|u|2

r3

]
dxdt.

We note that the bilinear form

B(v, w) =

ˆ
v(x)ψ′(|x|)∂rw(x)dx

satisfies the estimate

(34) |B(u, v)| ≤ 3‖v‖Ḣ1/2‖w‖Ḣ1/2 ,

where we used the notation

‖v‖Ḣs := ‖(−∆)s/2v‖L2 .

Indeed, by Cauchy-Schwartz and the inequality |ψ′| ≤ 1 we have

|B(v, w)| ≤ ‖v‖L2‖w‖Ḣ1

On the other hand, integrating by parts we have

B(v, w) =

ˆ
v(x)∇ψ(x)∇w(x)dx =

ˆ
[w∇v∇ψ + wv∆ψ]dx.

Note that |∇ψ| ≤ 1 while

|∆ψ| = εrε−1

(1 + rε)2
+

(d− 1)rε−1

1 + rε
≤ d

r

so that, by Hardy’s inequality,∣∣∣∣ˆ wv∆ψdx

∣∣∣∣ ≤ d‖w‖L2

∥∥∥∥ v|x|
∥∥∥∥
L2

≤ 2d

d− 2
‖w‖L2‖v‖Ḣ1 .

Thus we obtain, for d ≥ 3,

|B(v, w)| ≤
(

1 +
2d

d− 2

)
‖w‖L2‖v‖Ḣ1 ≤ 7‖w‖L2‖v‖Ḣ1 .

Summing up we have proved that B : Ḣ1×L2 → C with norm 1 and B : L2× Ḣ1 → C with norm
≤ 7. By complex bilinear interpolation this implies

B : Ḣ1/2 × Ḣ1/2 → C

with norm
√

7 ≤ 3 as claimed. Using (34) we can write

=
ˆ
ūψ′∂rudx

∣∣∣∣t=T
t=0

≤ 4‖u(T )‖2
Ḣ1/2 + 4‖u(0)‖2

Ḣ1/2 ≤ C0‖u(0)‖2
Ḣ1/2
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where in the last inequality we used the almost conservation law (29), and the constant C0 is
independen to of T . Using the last inequality in (33) we obtain

ˆ T

0

ˆ [
εrε

(1 + rε)2

|∇u|2

r
d+

εrε

1 + rε
|u|2

r3

]
dxdt ≤ C0‖u(0)‖2

Ḣ1/2

and letting T → +∞ we arrive at (4).
In order to prove (5), we isolate the first term in (4) and we use again Theorem 1.1 in the

unweighted case:ˆ ˆ
rε−1

(1 + rε)2
|∇eitLaf |2dxdt ≤ Cε−1‖(−∆)1/4f‖2L2 ' ε−1‖L1/4

a f‖2L2 .

We note that the weight w(x) = rε−1

(1+rε)2 = |x|ε−1

(1+|x|ε)2 satisfies the conditions of Theorem 1.1, so that

we can writeˆ
rε−1

(1 + rε)2
|L1/2
a eitLaf |2dx .

ˆ
rε−1

(1 + rε)2
|∇eitLaf |2dx . ε−1‖L1/4

a f‖2L2 .

Since L1/4
a commutes with the flow, this impliesˆ

rε−1

(1 + rε)2
|L1/4
a eitLaf |2dx . ε−1‖f‖2L2 .

Finally, again by Theorem 1.1, we haveˆ
rε−1

(1 + rε)2
|L1/4
a eitLaf |2dx &

ˆ
rε−1

(1 + rε)2
|(−∆)1/4eitLaf |2dx

and this gives (5).
Denote now by R(z) the resolvent operator of La and by =R(z) its imaginary part:

R(z) = (La − z)−1, =R(z) = (2i)−1(R(z)−R(z̄)).

Moreover, let A be the operator

A = w(x)1/2(−∆)1/4, w(x) =
|x|ε−1

(1 + |x|ε)2
.

Estimate (5) can be written

‖AeitLaf‖L2(Rd+1) . ε
−1/2‖f‖L2 .

By Kato smoothing theory, applying e.g. Theorem 2.2 in [7], we obtain that this estimate is
equivalent to the resolvent estimate

(35) ‖A=R(z)A∗f‖L2(Rd) . ε
−1‖f‖L2 , z 6∈ R,

uniformly in z 6∈ R. (In the terminology of Kato’s theory, the closed operator A is La-smoothing).
Then we are in position to apply Theorem 2.4 from [7] (with ν = 0) and we obtain that the

operator AL−1/4
a is L1/2

a -smoothing, i.e., the following estimate holds:

‖AeitL
1/2
a f‖L2(Rd+1) . ε

−1/2‖L1/4
a f‖L2

that is to say, we have proved that

‖w(x)1/2(−∆)1/4eitL
1/2
a f‖L2(Rd+1) . ε

−1/2‖L1/4
a f‖L2 .

Finally, using Theorem 1.1 exactly as in the proof of (5), we can cancel the operators (−∆)1/4 and

L1/4
a , and we obtain estimate (6). �
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