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Abstract

The clustering coefficient of an unweighted network has been exten-
sively used to quantify how tightly connected is the neighbor around a
node and it has been widely adopted for assessing the quality of nodes
in a social network. The computation of the clustering coefficient is
challenging since it requires to count the number of triangles in the
graph. Several recent works proposed efficient sampling, streaming
and MapReduce algorithms that allow to overcome this computational
bottleneck.

As a matter of fact, the intensity of the interaction between nodes,
that is usually represented with weights on the edges of the graph, is
also an important measure of the statistical cohesiveness of a network.
Recently various notions of weighted clustering coefficient have been
proposed but all those techniques are hard to implement on large-scale
graphs.

In this work we show how standard sampling techniques can be used
to obtain efficient estimators for the most commonly used measures of
weighted clustering coefficient. Furthermore we also propose a novel
graph-theoretic notion of clustering coefficient in weighted networks.

1 Introduction

In recent years we observed a growing attention on the study of the structural
properties of social networks [16, 18] as result of the fast increase of the
amount of social network data available for research. A widely adopted
measure of the graph structure of a social network is the clustering coefficient
[34]. The local clustering coefficient of a node is defined as the probability
that any two neighbors of a node are themselves neighbors. The clustering
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coefficient of a graph is the average local clustering coefficient of the nodes
of the graph.

The clustering coefficient is used to measure how tightly interconnected
the community is around a node. The degree of closeness of any two neigh-
bors of a node is also interpreted as an index of trust of the node itself. The
local clustering coefficient of a node has been proved for example to be a
relevant feature for detecting spam nodes in the web [3] and high quality
users in social networks [3].

Computing the clustering coefficient of a network is a challenging compu-
tational task since it reduces to counting the number of triangles in a graph.
This task can be naively executed in O(n3) time or it can be reduced to
matrix multiplication. The problem of computing the local clustering coeffi-
cient for every node of the network is even more challenging. Several recent
works have proposed a variety of efficient methods for fast computation of
clustering coefficient in large scale networks based on random sampling [11],
streaming algorithms [7, 14], and MapReduce parallel computation [30].

However, most of the studies on the structural properties of social net-
works have focused on unweighted networks. In practice, many real world
networks exhibit a varying degree of intensity and heterogeneity in the
connections which is usually modeled with positive real weights on edges.
Weights on edges are used for instance to measure the number of messages
exchanged between friends or the number of links between hosts. Since the
statistical level of cohesiveness in a network should in principle depend also
on the weight of the edges, some recent interesting papers started to inves-
tigate weighted networks [22]. Several new notions of weighted clustering
coefficient have also been introduced ([2, 24] among others) but, unfortu-
nately, no efficient method for estimating the weighted clustering coefficient
has been presented so far.

Computing the exact values of the weighted clustering coefficient is at
least as hard as for the unweighted clustering coefficient. Sampling is the
key for an efficient and accurate approximation [7, 11]. In the unweighted
case, the key to the design of an unbiased estimator is the ability of drawing
uniformly at random a neighbor pair of a node and reporting 1 if and only
if the neighbor pair is connected. The problem of drawing a neighbor pair
can be efficiently solved in linear time if the two neighbors can be decided
independently. The sampling of the two edges of a neighbor pair cannot be
independent if the contribution to the clustering coefficient depends on the
weights of the edges [2, 24] thus leading to a superlinear sampling complexity.
Nevertheless in this paper we show that for several measures of weighted
clustering coefficient it is possible to obtain an efficient linear time estimator.

Our Contributions We summarize in the following the main contribu-
tions of our work:
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1. We show how to obtain efficient estimators for several standard defi-
nitions of weighted clustering coefficient.

2. Our sampling algorithm are easily parallelizable too. We also develop a
scalable MapReduce implementation of our estimators Our implemen-
tation uses two rounds of MapReduce, it sends a number of messages
across machines limited by the number of nodes times the number of
samples required. The load for each machine is limited by the number
of samples used by the algorithm times the maximum degree of a node
in a graph.

3. We introduce a novel notion of weighted clustering coefficient. We base
our proposal on the observation that edges with large weights are more
likely to play a role in the social network. Our model defines a family
of unweighted random graphs with edges existing with different proba-
bilities. The probability of an edge depends on its weight. The largest
the weight, the highest the probability. Each graph of the family of
random graphs is an unweighted graph. The local weighted clustering
coefficient of a node is defined as the expected local clustering coeffi-
cient in the family of random graphs. Our definition naturally extends
to the weighted clustering coefficient of the entire graph.1

4. We also design a polynomial time algorithm to compute the value of
the weighted clustering coefficient and a sampling technique to esti-
mate it efficiently. The computation of the weighted clustering coeffi-
cient in our model does not require the generation of all graphs of the
family. That would be computationally prohibitive. We show that a
dynamic program is able to compute the exact local weighted cluster-
ing coefficient in polynomial time. 2 The computationally complexity
of this exact computation is still prohibitive in practice. We are how-
ever able to design an efficient estimator also for this new definition of
clustering coefficient.

5. We perform experiments that show interesting properties of the weighted
clustering coefficient.

1We note that our definition of weighted random random graph is different from the
definition of [10] and it is more in line with the standard definition used in data mining
and biology [12].

2The problem of computing a core decomposition in an uncertain graph with different
probabilities on edges has been considered in [5]. The authors show how to compute the
expected degree of an uncertain graph in polynomial time. This method cannot however
be applied to speed up the computation of the the novel notion of weighted clustering
coefficient we propose.
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1.1 Related works

A survey of several approaches to clustering coefficient in weighted networks
can be found in [27]. In [25] the definition of clustering coefficient is based on
the average weight on the edges of a triangle. In [2] the definition of the local
clustering coefficient of a node only depends on the weights of the two edges
incident to the node but not on the weight of the third edge of the triangle.
In [21] it is adopted the standard unweighted definition with the exception
that triangles are weighted by the edge that closes the triangle. In [24] the
weight is only considered in the numerator of the definition of clustering
coefficient whereas the denominator is the one of the unweighted case. In
[37] the weight of a triangle is obtained by multiplying the weights of the
edges. Other proposals that are substantially different from our approach
can also be found in [15, 38]. The study of the clustering coefficient in several
classes of random unweighted graphs can be found in [4].

The problem of estimating the clustering coefficient is closely related to
the problem of counting the number of triangles in a graph. This is com-
putationally expensive even on graphs of moderate size because of the time
complexity needed to enumerate all the length-two paths of the graph. Sev-
eral works proposed efficient heuristics [17, 29] with computational results
reported for graphs of large size. More recently, there are algorithms de-
signed under the MapReduce [9] programming model. Using a MapReduce
infrastructure, [30] proposed algorithms for computing the exact number of
triangles and the clustering coefficient of graphs. Randomized algorithms for
counting triangles were also implemented under the MapReduce paradigm
[26]. Finally to estimate the total number of triangle in a graph is possible
to use also matrix sketches [20], unfortunately it is not clear how to extend
this approach to local clustering coefficient. A related measure is also the
transitivity coefficient of a graph [23]. Techniques adopted for estimating
the clustering coefficient usually extend to the transitivity coefficient.

A natural approach for problems in massive networks is also to provide
approximate solutions based on the application of data stream and random
sampling algorithms. These algorithms usually provide an (1 ± ε) approx-
imation of the number of triangles with probability 1 − δ. The number
of samples and amount of memory needed depends on the quality of the
approximation. Data stream algorithms for estimating the number of trian-
gles of a graph have been considered in [14, 33]. Semi-streaming algorithms
have been proposed in [3]. A sampling-based algorithm for estimating the
clustering coefficient of a graph is given in [28].

2 Preliminaries

Let G = (V,E) be an undirected graph with n = |V | and m = |E| edges.
For every vertex v ∈ V let N (v,G) denote its neighborhood, i.e. N (v,G) =
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{u ∈ V : ∃(u, v) ∈ E}. The clustering coefficient Cv(G) of a vertex v ∈ V is
defined as the probability that a random pair of its neighbors is connected

by an edge, i.e. Cv(G) :=

∣∣{(u,w)∈E:u,w∈N (v,G)
}∣∣

(|N (v,G)|
2 )

. In case of |N (v,G)| < 2

we define Cv(G) := 0. The clustering coefficient C(G) of G is the average
clustering coefficient of its vertices, i.e. C(G) = 1

n ·
∑

v∈V Cv(G) .
Let us denote by W (v,G) = {〈u,w〉 : u,w ∈ N (v,G)} the set of wedges

of vertex v in graph G, i.e., the set of distinct paths of length two centered
at v.

We denote by w : E → <+ the positive weight on the edges of the
graph. Let W = maxe∈Ew(e) be the maximum weight of an edge. We
normalize the edge weights in a way that their range varies in [0, 1]. Denote
by p : E → [0, 1] the normalized weights. We denote with 1C , the indicator
variable for the event C. In the experimental section we will use the following
classic normalization p(e) = 1

1+logW/w(e) .

Finally, we say that we have an (ε, δ) estimator for a measure M , if we
can estimate M within an ε multiplicative factor with probability at least
1− δ.

2.1 Generalizations of clustering coefficient in weighted net-
works

In this paper we consider three generalizations of the clustering coefficient
in weighted networks. In particular we focus our attention to two definitions
proposed in [2, 24] that well represent two general approaches to the problem:
in one case the weights of the edges are added, in the other case they are
multiplied. We additionally introduce a novel definition that is particularly
relevant when the weights on the edges can be interpreted as probabilities3.

Onnela et al. The first definition of clustering coefficient that we consider
has been introduced by Onnela et al. [24]:

WCOnnelav =

∑
〈u,w〉∈W (v,G) ŵ(e(v, u))ŵ(e(v, w))ŵ(e(u,w))

|N (v,G)| (|N (v,G)| − 1)
.

where with w(e(v, u)) we indicate the weight of the edge e(v, u) and ŵ(e(·, ·)) =
w(e(·,·))
W .

Barrat et al. The second definition of clustering coefficient that we con-
sider has been introduced by Barrat et al. [2]:

WCBarratv =

∑
〈u,w〉∈W (v,G)(w(e(v, u)) + w(e(v, w)))1e(u,w)

(|N (v,G)| − 1)
(∑

v∈ew(e)
) .

3This setting is particularly relevant when graphs are generated using inference mod-
els [13].
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where 1e(u,w) is equal 1 if the edge (u,w) exists and 0 otherwise.

Weighted clustering coefficient for probabilistic networks The last
measure that we analyze is novel. The basic idea is that the normal-
ized weights can be interpreted as probabilities of existence of the edges
in the graph. More formally, define the class of random graph Gn,p with
edge e appearing independently with probability p(e). Each graph G′ =
(V,E′) ∈ Gn,p is an edge subset E′ of E. The probability of G′ is p(G′) =∏
e∈E′ p(e)

∏
e/∈E′(1− p(e)).

The weighted clustering coefficient WCv of a vertex v ∈ V is defined as
the expected clustering coefficient over the class of graphs Gn,p: WCrandomv =
EG′∈Gn,pCv(G

′).

3 Computing the weighted clustering coefficient
in probabilistic networks

In this section we give a polynomial algorithm to compute the new definition
of weighted clustering coefficient efficiently. Note that at first sight our prob-
lem seems computationally very challenging because there are exponentially
many possible realizations of the neighborhood of each node.4

Our first algorithmic contribution is to show that the problem is in P, we
give an algorithm with complexity O(|N (v,G)|4). Our algorithm is based
on a dynamic program that computes incrementally the contribution of each
neighbor pair to the clustering coefficient of each node.

Unfortunately our exact algorithm is too slow to run on real networks
where the maximum degree is typically very large(in the order of millions
for Twitter or Google+) fortunately in the next section we show that the
new measure has an efficient (ε, δ) estimator.

Recall that the unweighted clustering coefficient of a node v is defined as
the probability that a randomly selected pair of its neighbors is connected by
an edge, based on this we can give an alternative definition of weighted clus-
tering coefficient for probabilistic networks. Let χ(u,w) be a random vari-
able that has value 1 if the randomly selected pair is (u,w) and 0 otherwise.
We have: Cv(G) :=

∑
u,w∈N (v,G)∧(u,w)∈E Pr(χ(u,w) = 1). Where each pair

is counted only once. In the following we shorten N (v,G′) to N ′(v). Using
this definition we can rewrite the weighted clustering coefficient for v as:

WCrandomv = EG′∈Gn,p

[∑
u,w∈N ′(v)∧(u,w)∈E′ Pr(χ(u,w) = 1|G′)

]
.

Now by defining ξ(u,w) as a random variable that has value 1 if and
only if u,w ∈ N ′(v) ∧ (u,w) ∈ E′, and by denoting with 1ξ(u,w) its indicator

4Note that enumerating all the triangles in the graph would not work in this setting
because of the dependency induced by the number of wedges in the realization of the
random graph.
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function, we have:

WCrandomv

= EG′∈Gn,p

 ∑
u,w∈N ′(v)∧(u,w)∈E′

Pr(χ(u,w) = 1|G′)


= EG′∈Gn,p

[ ∑
u,w∈N (v)

(
1ξ(u,w)Pr(χ(u,w) = 1|G′)

)]

=
∑

u,w∈N (v)

EG′∈Gn,p

[
1ξ(u,w)Pr(χ(u,w) = 1|G′)

]

=
∑

u,w∈N (v)

(
Pr(ξ(u,w) = 1) ∗ EG′∈Gn,p

[
1ξ(u,w)Pr(χ(u,w) = 1|G′)

∣∣∣∣ξ(u,w) = 1)

])

=
∑

u,w∈N (v)

(
Pr(u,w ∈ N ′(v) ∧ (u,w) ∈ E′) ∗ Pr(χ(u,w) = 1|ξ(u,w) = 1)

)

Now the first term of the sum can be easily computed because Pr(u,w ∈
N ′(v) ∧ (u,w) ∈ E′) = p(eu,v)p(ew,v)p(ew,u). The second term is still prob-
lematic. In fact Pr(χ(u,w) = 1|ξ(u,w) = 1) depends on all the possible
instantiations of G′ and so it potentially involve the computation of expo-
nentially many terms.

In the following we show how to compute it efficiently using dynamic
programming5. Note that Pr(χ(u,w) = 1|ξ(u,w) = 1) = Pr(χ(u,w) =
1|u,w ∈ N ′(v)) because the existence of the edge (u,w) does not change the
probability of selecting u and w as random neighbors of v. And Pr(χ(u,w) =
1|u,w ∈ N ′(v)) is the probability that a pair u,w of neighbors of v are
selected conditioned on the fact that u,w ∈ N ′(v).

To compute this probability we use the equivalence between the follow-
ing two processes. The first one selects two elements uniformly at random
without replacement from a set S, and the second one computes a random
permutation of the elements in the set S and then returns the first two
elements of the permutation.

Using this equivalence we can rephrase the probability Pr(χ(u,w) =
1|u,w ∈ N ′(v)) as the probability that in a random permutation of the
nodes in N (v), u and w are the two nodes with the smallest positions in
N ′(v). Note that for this to happen either u and w are the first two nodes in
the permutation of the nodes in N (v), or all the nodes that are in positions
smaller than u and w do not appear in N ′(v).

5Unfortunately to the best of our knowledge, there is no analytic technique to estimate
this quantity correctly or with a close approximation without using a dynamic program-
ming.
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Now leveraging on this fact, we give a quadratic dynamic program to
compute Pr(χ(u,w) = 1|ξ(u,w) = 1). Consider an arbitrary order to the
nodes in N (v) \ {u,w}, z1, z2, ..., z|N (v)|−2. In our algorithm we implic-
itly construct all the possible permutations incrementally and at the same
time we estimate the probability that u,w are selected in each permutation.
More specifically, initially we analyze the permutations containing only the
elements {u,w} then the ones containing the elements {u,w, z1}, then the
ones containing the elements {u,w, z1, z2}, and so on so for until we get the
probability for each permutation containing all the elements in N (v).

The key ingredient of our algorithm is the following observation. Once
we have computed the probability for all the permutations containing the
nodes {u,w, z1, z2, ..., zi−1}, to extend our computation to the permutations
containing also the node zi, we have to consider only two scenarios: in the
first one zi appears after u,w in the permutation in this case the probability
that u and w are the nodes in N ′(v) with the two smallest positions is the
same. In the second one zi appears before either of u or of w, conditioned
on this event the probability that u and w are the nodes in N ′(v) with the
two smallest positions decreases by a multiplicative factor 1− p(ev,zi).

We are now ready to state our dynamic program more formally. Let M
be a square matrix of dimension |N (v)|−1 such that Mi,j , for j ≤ i, contains
the probability that in a random permutation of nodes {u,w, z1, z2, ..., zi} u
and w are preceded by exactly j elements in the permutation but they are
in the first and second position when we consider the ordering induced only
to nodes in N ′(v). Note that M0,0 is equal to 1, because in this case we
consider permutations containing only {u,w}. Similarly, we can compute
M1,0 and M1,1. In particular, for M1,0 we require that z1 is in a position
after u and w so we have M1,0 = 1

3M0,0. Instead, M1,1 = 2
3(1−p(ev,zi))M0,0.

More generally, we have that for j ≤ i:

Mi,j =


i−1
i+1Mi−1,0 if j = 0
i−j−1
i+1 Mi−1,j + j+1

i+1 p(ev,zi)Mi−1,j−1 if j<i

and j>0
i
i+1p(ev,zi)Mi−1,j−1 if j = i

Where p(∗) = 1− p(∗).
Once we have computed the matrix M we can compute Pr(χ(u,w) =

1|u,w ∈ N ′(v)), in fact we have that: Pr(χ(u,w) = 1|u,w ∈ N ′(v)) =∑|N ′(v)|−2
i=0 M|N ′(v)|−2,i So we have:

WCrandomv =
∑

u,w∈N (v)

(
1

2
p(eu,v)p(ew,v)p(ew,u) ∗

( |N ′(v)|−2∑
i=0

M|N ′(v)|−2,i

))

We summarize our algorithm to compute WCrandomv here:
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Algorithm(exact WCrandomv )

Input: The weighted subgraph induced by v ∪N (v).
Output: WCrandomv .
WCrandomv = 0.
for all u,w ∈ N (v) do

Compute the matrix M for u,w
Using M , compute the probability p that (u, v, w) is a triangle and is
selected
WCrandomv + = p

Output WCrandomv .

Note that the above algorithm has complexity O(|N (v)|4), so it is too
slow to run on large networks. For this reason, we study in the next section
efficient estimators of the weighted clustering coefficient.

4 Efficient Estimators for the Weighted Clustering
Coefficient

We propose efficient (ε, δ) estimators for the various definition of weighted
clustering coefficient. Our estimators that use basic concentration theory are
similar to the one presented in [6, 32]. They are the first linear estimators
for the weighted clustering coefficient to the best of our knowledge.

Onnela et al. Recall the definition of Onnela et al. [24] given in Section
2.

In this definition the weighted clustering coefficient is equal to the total
normalized weight of the triangles containing v averaged by the number of
wedges centered on v. Thus if we sample the wedges uniformly at random,
using the Hoeffding bound and the fact that the normalized weights6 are in
[0, 1], we get an efficient (ε, δ) estimator for WCOnnelav .

More formally, let X1, . . . , Xs identical random variables that with prob-
ability 1

|N (v,G)|(|N (v,G)|−1) have value ŵ(e(v, u)) ŵ(e(v, w))ŵ(e(u,w)) for ev-

ery wedge < u,w >. Then, E [
∑s

i=1Xi] = sWCOnnelav . Furthermore, by

Hoeffding bound we have that: P

(∣∣∣∣∣X − E [
∑s

i=1Xi]

∣∣∣∣∣ ≤ εE [
∑s

i=1Xi]

)
≤

e
ε2E[

∑s
i=1Xi]
3 = e

εsWCOnnelav
3 So if we want δ > e

εsWCOnnelav
3 , it suffices to have

s ∈ O(log 1
δ ·

1
ε2·WCOnnelav

) samples.

Lemma 4.1 There is a sampling-based algorithm which with probability 1−
δ returns a (1± ε)-approximation of the local weighted clustering coefficient

6Note that for this to work it is fundamental that the weight on the edges have been
normalized and so are in [0, 1].
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WCOnnelav of a vertex v of a weighted graph G. It needs O(log 1
δ ·

1
ε2·WCOnnelav

)

samples.

In the following we present the pseudocode to compute this estimator:

Algorithm(sampling WCOnnelav )

Input: The weighted subgraph induced by v ∪N (v).
Output: Approximate WCOnnelav .
for all i = 1 to s do

sample a random wedge < u,w > uniformly from N (v)
If (u,w) ∈ E then set Xi ← w(u, v)1/3w(u,w)1/3w(v, w)1/3

else set Xi ← 0
Output X := 1

s ·
∑s

i=1Xi.

Furthermore note that for the sampler we only need to be able to sample
random wedges and this can be easily done in linear time.

Barrat et al. Recall the definition of Barrat et al. [2] given in Section
2. In this case the weighted clustering coefficient is not an explicit average
so we cannot use the Hoeffding bound directly as before. Nevertheless note
that we can define WCBarratv as the average value of the random variable

X where X has value 1e(u,w) with probability w(e(v,u))+w(e(v,w))

(|N (v,G)|−1)(
∑
v∈e w(e))

for all

〈u,w〉 ∈W (v,G).
Using this alternative definition combined with the Chernoff bound we

get that by using k samples of the wedges weighted with the correct proba-
bility we can get good estimation of WCBarratv .

More formally, let X1, . . . , Xs identical random variable that with prob-
ability

∑
<u,w>:1e(u,w)=1

(w(e(v,u))+w(e(v,w)))

(|N (v,G)|−1)(
∑
v∈e w(e))

have value 1 or 0 otherwise.

Then, E [
∑s

i=1Xi] = sWCBarratv . Furthermore by Chernoff bound we have
that:

P

(∣∣∣∣∣X − E
[

s∑
i=1

Xi

] ∣∣∣∣∣ ≤ εE
[

s∑
i=1

Xi

])
≤ e

ε2E[
∑s
i=1Xi]
3

= e
εsWCBarratv

3

So if we want δ > e
εsWCBarratv

3 , it suffuse to have s ∈ O(log 1
δ ·

1
ε2·WCBarratv

)

samples.

Lemma 4.2 There is a sampling-based algorithm which with probability 1−
δ returns a (1± ε)-approximation of the local weighted clustering coefficient
WCBarratv of a vertex v of a weighted graph G. It needs O(log 1

δ ·
1

ε2·WCBarratv
)

samples.

10



At first sight it may look that we need quadratic time to sample a
wedge with the correct probability, but also in this case it is possible to
get a sample in linear time. In fact to sample an edge with the cor-
rect probability it is enough to sample the first edge e1 with probability

p1(e1) =
(|N (v,G)|−2)w(e1)+(

∑
v∈e w(e))

2(|N (v,G)|−1)(
∑
v∈e w(e))

and the second one e2 with probabil-

ity p2(e2|e1) = w(e1)+w(e2)
(|N (v,G)|−2)w(e1)+(

∑
v∈e w(e))

. The probability to sample pair

e1, e2 is exactly p1(e1)p2(e2|e1) + p1(e2)p2(e1|e2) = w(e1)+w(e2)
(|N (v,G)|−1)

∑
v∈e w(e)

. On

the other hand, it is also easy to verify that
∑

e p1(e) = 1 and
∑

e6=e1 p2(e|e1) =
1. We present the pseudocode also for this estimator:

Algorithm(sampling WCBarratv )

Input: The weighted subgraph induced by v ∪N (v).
Output: Approximate WCOnnelav .
for all i = 1 to s do

sample the first edge e1 = (u, v) of the wedge with probability

equal to p1(e1) =
(|N (v,G)|−2)w(e1)+(

∑
v∈e w(e))

2(|N (v,G)|−1)(
∑
v∈e w(e))

sample the second edge e2 = (u,w) of the wedge with probabil-

ity equal to p2(e2|e1) = w(e1)+w(e2)
(|N (v,G)|−2)w(e1)+(

∑
v∈e w(e))

If (u,w) ∈ Ei then set Xi ← w(u,v)+w(v,w)
(|N (v,G)|−1)

∑
v∈e w(e)

else set Xi ← 0
Output X := 1

s ·
∑s

i=1Xi.

Weighted clustering coefficient for probabilistic networks. The al-
gorithm is based on sampling a random wedge 〈u,w〉 ∈W (v,G′) from a ran-
dom graph G′ ∈ Gn,p and checking whether (u,w) ∈ G′. The core idea of our
sampler is to generate for a node v s neighbor realizations N (v)1, . . . ,N (v)s
uniformly at random from Gn,p. Then for each realization sample a random
wedge < u,w > uniformly from N (v)i and check if the wedge is part of
a triangle in the realization. The estimation of the clustering coefficient is
equal to the number of wedge that are part of a triangle divided by s.

Algorithm(sampling WCrandomv )

Input: The weighted subgraph induced by v ∪N (v).
Output: Approximate WCrandomv .
Sample s neighbor realizationN (v)1, . . . ,N (v)s uniformly at random from
Gn,p
for all i = 1 to s do

sample a random wedge < u,w > uniformly from N (v)i
If (u,w) ∈ Ei then set Xi ← 1
else set Xi ← 0

Output X := 1
s ·
∑s

i=1Xi.
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For the sake of completeness we give a simple analysis of the algorithm
below. We first show that the expected value of Xi is exactly WCrandomv .

We have for each i ∈ {1, . . . , s}: E [Xi] = EG′∈Gn,p

[∣∣{(u,w)∈E′:u,w∈N (v,G′)
}∣∣

(|N (v,G′)|
2 )

]
=

EG′∈Gn,p [Cv(G
′)] = WCrandomv .

Then we use the fact that for 0−1 random variables we have Var [Xi] ≤
E[X2

i ] = E[Xi] = WCrandomv .
Now we analyze the variance of X. Since the Xi are mutually indepen-

dent we get Var [X] = Var
[
1
s ·
∑s

i=1Xi

]
= 1

s2
·
∑s

i=1 Var [Xi] ≤ WCrandomv
s .

Finally, we can apply Chebyshev inequality. This gives us Pr
[∣∣X−E[X]

∣∣ ≥
ε ·E[X]

]
≤ Var[X]

(ε·E[X])2
≤ WCrandomv

s·ε2·(WCrandomv )2
= 1

s·ε2·WCrandomv
.

If s ≥ 3
ε2·WCrandomv

then with probability 2
3 the algorithm sampling WCrandomv

approximates the weighted clustering coefficient of vertex v in G within a
relative error of (1 ± ε). In order to amplify the probability of success we
run the algorithm Θ(log 1

δ ) times and return the median of all results. This
leads to the following corollary:

Lemma 4.3 There is a sampling-based algorithm which with probability 1−
δ returns a (1± ε)-approximation on the local weighted clustering coefficient

WCrandomv of a vertex v of a weighted graph G. It needs O
(

log 1
δ ·

1
ε2·WCrandomv

)
samples.

5 Parallel implementation

In this section we first give a brief introduction to the MapReduce [9] frame-
work and then we describe a highly optimized and scalable MapReduce im-
plementation of our sampling algorithms. In particular, here we focus on
parallelize the algorithm to estimate WCrandomv , the other sampling strate-
gies can be parallelized in a very similar way. In the experimental section we
report experimental results showing that this implementation is extremely
fast in practice.

The MapReduce framework is designed to simplify the implementation
of parallel algorithms at very large scale. In the MapReduce framework
the data is processed in tuples composed by 〈key, value〉. The computation
proceeds in rounds. In the Map phase, each machine receives all the values
associated with a specific key k, then it executes some computation and
output 〈key, value〉 tuples with potentially different key k′. A Shuffle phase
aggregates all tuples with same key k′ that are sent to the same physical
machine. Finally, in the the Reduce phase, each machine performs a compu-
tation that only depends from the tuples with same key k′ outputted from
the Mapper, and output 〈key, value〉 tuples with key equal to the input k′.

12



To write a MapReduce program it is typically important to design an
algorithm that: i) minimizes the number of MapReduce rounds that are
involved; ii) minimizes the amount of communication between machines;
and iii) balances the working load across different machines. In the following
we show how these requirements are achieved in the implementation of our
sampling algorithm in MapReduce.

We assume that the input graph is stored in 〈key, value〉 tuples, repre-
senting the adjacency list of each node. In the first Map phase each machine
reads the adjacency list of a node u. For sample i = 1, . . . , s, the machine
constructs a realization of the neighborhood of a node u, Ni(u), according
to Gn,p and samples a pair of random neighbors (vi, wi) ∈ Ni(u). Then it
sends a message with key wi and value i, (u, vi) to the machine that controls
node wi

7 . The informal meaning of these messages is that node u asks
node wi whether edge (wi, vi) exists in the i-th realization so that we can
infer that triangle u, vi, wi exists in realization i. Finally, node u sends also
its adjacency list to itself in order to be able to answer the requests of other
nodes.

In the first Reduce phase node u receives its own adjacency list and
various requests i, (w, vi) to check the existence of edge (u, vi) in realization
Ni(u). If the test is positive, it writes a value 〈u,w〉 with its own key
indicating that it is incident to a triangle with node w in one of the samples.

In the second Map phase each node v reads the values written in the
previous Reduce phase and for each detected triangle 〈v, u〉 sends a message
〈u, 1〉 to the other node u certifying the existence of the triangle. Finally,
in the last Reduce step each node receives the number of sampled triangles
and simply computes its clustering coefficient by dividing it by the number
of samples.

The implementation presented above uses two rounds of MapReduce, it
sends a number of messages across machines upper bounded by the number
of nodes times the number of samples required. The load for each machine
is upper bounded by the number of samples used by the algorithm times the
maximum degree of a node in a graph.

6 Experiments

The main goal of this section is to show experimentally some properties of
the weighted clustering coefficient and to show the speed-up obtained by our
simple estimators.

7Note that a naive implementation of the sampling procedure would have running time
quadratic in the size of the adjacency list. Fortunately this is not necessary in fact it is
possible to select a random pair of neighbors in linear time. In particular, it is enough
to assign to each neighbor a random number and then select the two neighbors with the
smallest assigned values. In this way each pair of nodes has the same probability of being
selected and so we can obtain a random sample.
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We start by describing a classical application of the clustering coefficient
and the dataset that we will use in our experiment.

Then we analyze experimentally different techniques to map integer
weights to weights between [0, 1]. In particular we compare two mapping
techniques and we analyze the trade-off between them. Note that this map-
ping is needed for two of our three clustering coefficient measures8.

We then compare the performance of the three weighted clustering co-
efficient measures with the classic unweighted clustering. Our findings are
quite encouraging, in fact we observe that the weighted clustering perfor-
mance is always at least as good as the unweighted clustering coefficient and
our new notion of weighted clustering coefficient “outperforms” the classic
unweighted notion.

Finally we analyze the scalability of our approach. In particular we run
our algorithm using different number of machines on networks of increasing
sizes. We observe that our algorithm is highly scalable and it can fully
leverage on parallelization to improve its performances.

Dataset and experiment settings. The clustering coefficient is a fun-
damental topological property of networks and also one of the most used
topological features in machine learning on graphs. Indeed, it has been used
to detect spam on the web [3] and malicious users in social networks [36].

For this reason we study the effectiveness of weighted clustering coef-
ficient by studying its power as a machine learning feature. In particular,
we focus on the specific case where we are interested in detecting spam in
the Web. Toward this end, we use a public available dataset [8] composed
by a collection of hosts manually labelled (spam/non spam) by a group of
volunteers and by the weighted host graph network. The graph is composed
by 114,529 hosts in the .UK domain and there are 5709 hosts marked as
“non spam” and 344 hosts marked as “spam”. Even if the web graph is
directed in this section we ignore the directionality of the edges for simplic-
ity9. Finally we note that there are 2058 hosts marked as “non spam” and
93 hosts marked as “spam” with clustering coefficient bigger than 0 (for any,
weighted or unweighted, definition of clustering coefficient).

In our experiments we are only interested in analyze the correlation
between various definitions of clustering coefficient and the integrity of an
host. To do it, for each definition we first compute the corresponding score
for each labelled node, then we rank all the labelled nodes with score bigger
than 0 according to their scores and compute the precision of each position i
of the ranking as the percentage of “non spam” hosts before position i. This

8Experimentally we observed that a nonlinear mapping perform better than the linear
mapping proposed by Onnela et al.

9Note that all the discussed notion of clustering coefficient can be extended to capture
the directionality of the edges.
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measure, even if simplistic, gives a good intuition of the correlation between
the clustering coefficient and the goodness of a page.

Finally to analyze the scalability of our algorithm we consider five graphs
from the SNAP repository: Friendster, Orkut, LiveJournal, Pokec and Patents.
Those graphs are unweighted so we assign a random weight between [0, 1]
to every edge independently. In Table ?? we report some basic statistic on
the graphs.

Dataset Nodes Edges

Patents[19] 3,774,768 16,518,948
Pokec[31] 1,632,803 30,622,564
LiveJournal[1] 4,847,571 68,993,773
Orkut[35] 3,072,441 117,185,083
Friendster[35] 65,608,366 1,806,067,135

Table 1: Network statistics.

6.1 Building the probabilistic graph

Two of the analyzed definitions of weighted clustering coefficient cannot be
applied if the edges’ weights are not in [0, 1]. In this subsection we analyze
different techniques to build a probabilistic graph from the input graph by
mapping the weights to probability in [0, 1]. As a case of study we analyze
the effect of different mappings on the .UK domain graph.

Let us define eW and ew, respectively the maximum and the minimum
weight of an edge in the input graph. A first natural technique to construct
our probabilistic graph is to use a linear mapping between [ew, eW ] and
[0, 1]. This mapping although has a serious drawback for our probabilistic
definition: in practice the weights on the edges are distributed as a power
law and so ew/eW is very small (for example in our case of study is 1/2579857).
So if we use this mapping we would end up to have very small weights on
the edges of the graph and this this would in turn imply an extremely small
realization probability for every triangle in the graph.

To solve this issue in our experiment we consider two non-linear mapping
functions M1,M2. Both functions are mapping between [ew, eW ] and [0, 1],
more formally we have that both M1,M2 : [ew, eW ] → [0, 1]. In particular

we define M1(w) = log(w−ew+1)
log(eW−ew+1) and M2(w) = 1

1+log
(
eW−ew+1

w−ew+1

) . To compare

those two mappings we run our approximation algorithm for estimating
WCrandomv for all the nodes in the graph and we compare the precision
of rankings that we obtain by using the two different rankings. In this
experiment to compute the weighted clustering coefficient we execute 3200
samples per node and to compute the average precision and the standard
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deviation we rerun the algorithm 4 times with different random seeds. In
Figure 1 and in the rest of this section we plot the average precisions using
lines and the standard deviations using shadows around the lines.
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Figure 1: Comparison between the two mapping strategies M1 and M2.

From the experiments it is possible to conclude that the two mapping
strategies have similar performances although M1 seems to perform slightly
better. For this reason for the rest of this section we then focus only on
results obtained using the mapping M1.

6.2 Performances of the sampling algorithm.

Now that we have defined our mapping strategy and built our probabilistic
graph we can focus on the performance of our sampling algorithm. Here
we first analyze the running time of the sampling algorithm presented in
Section 4 when we vary the number of samples used in the algorithm and
we compare its running time with the running time of the algorithms that
consider all the triangles to compute the unweighted clustering coefficient
or the weighted clustering coefficient defined by Barrat et al. [2].

Then we analyze how the precision of the ranking varies as a function
of the number of samples performed by the algorithm. In Figure 2 we show
the average running time of the sampling algorithm when we vary the num-
ber of samples relative to the running time of the optimal algorithm. It
is interesting to note that the running time increase almost linearly with
the number of seeds showing that the algorithm efficiently use all the par-
allelization offered by the MapReduce framework. Furthermore it is quite
interesting to note the huge difference in running time between the sampling
algorithm and the quadratic algorithm that considers all the triangles. In
fact when we used 50, 100, 200 and 400 samples the sampling algorithm is
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900 times faster than the quadratic algorithm, and even when we use 2000
samples the sampling algorithm is still 120 times faster!
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Figure 2: Running time vs Number of seeds and precision when we vary the
number of samples between 50, 100, 200 and 3200.

Now we turn our attention to the effects of varying the number of samples
on the precision of the algorithm. In Figure 3 we show how the precision
curve of the new notion of weighted clustering coefficient changes when we
use 50, 100, 200 or 3200 samples(we notice a similar trends also with 400,
800, 1600 samples and for other clustering coefficient definition, we do not
show them in the figure for clarity). Also in this case we plot the average
precisions with lines and the standard deviations with the shadows around
the lines. From the plots it seems that few samples are enough to obtain a
good estimation of the weighted clustering coefficient.

There are several interesting observations to make here.
First, as predicted from Theorem 4.3, for all the measures the stan-

dard deviation decreases very quickly as the number of samples used by our
algorithm increase.

Second, for WCrandomv the length of the ranking computed by our algo-
rithm decrease when we use a smaller number of samples. This is probably
due to the fact that several nodes are incident to a small number of triangles
and so by executing a small number of samples we do not discover them.

The third observation is probably the most striking: the precision of
ranking provided by WCrandomv decreases when we use larger numbers of
samples. We hypothesize that this phenomena can be explained using the
same explanation that we used for our second observation. In fact, also in
this case nodes that have small degrees are not likely to appear in the ranking
when we consider few samples. But for nodes of small degrees the clustering
coefficient is probably not a meaningful indicator of their trustfulness. To
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Figure 3: Precision vs Ranking position of the sample algorithm when we
vary the number of samples between 50, 100, 200 and 3200.

verify this hypothesis in the next subsection we analyze how the precision
of the rankings changes when we consider only nodes with degrees above a
specified threshold.

Motivated from last observation, here we analyze the relationship be-
tween the degree of a node and the correlation between its clustering coeffi-
cient and its trustfulness for WCrandomv . To do this, we analyze the precision
of the rankings of nodes when we restrict only to nodes with weighted or
unweighted degree above a specific threshold.

In Figure 4 we analyze the precision of the rankings computed by our
sampling algorithm by using 3200 samples when we restrict to nodes with
unweighted degree at least 0, 5, 10 and 20.

We observe a trend similar to the one observed in Figure 3, suggesting
that there is an interesting relationship between the degree of a node and
the correlation of its weighted clustering coefficient with its trustfulness.

6.3 Comparison between different definitions

In this subsection we compare the three definitions of weighted clustering
coefficient with the classic definition of unweighted clustering coefficient. We
show that the new definition is always comparable with the other two and
in various point of the ranking it perform significantly better.

In Figure 5 we show the ranking obtained using the four definitions. For
the classic unweighted definition we compute the clustering coefficient of
each node exactly. For the three weighted clustering coefficient definition
we approximate the clustering coefficient using 3200 samples per nodes.

It is possible to note that the two previous definitions of clustering co-
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Figure 4: Precision of the sample algorithm when we restrict only to nodes
with unweighted degree bigger than 0, 5, 10 and 20 for WCrandomv .
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Figure 5: Comparison between the precision rankings obtained by classic
definition of clustering coefficient(CC), the definition by Barrat et al.(B.
et al), the definition of Onnela et al. (O. et al), and our new defini-
tion(Random).

efficient have very similar performances and performances very similar to
the classic unweighted definition while the ranking obtained by our new def-
inition has higher precision for the first positions in the ranking and then
has performances comparable with the rankings obtained using the other
definitions.

Finally, we compare the performances of our new definition with the
performances of the definition given by Barrat et al. when we restrict to
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nodes with unweighted degree above a specific threshold. We think that this
case is of particular interest because we showed in the previous subsection
there is an interesting relationship between the degree of a node and the
correlation between its weighted clustering coefficient and its trustfulness.

In Figure 6 we present the comparison between the two definition when
we restrict our attention to nodes of degree larger than 0, 5 and 20.
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Figure 6: Comparison between the precision rankings obtained by the defini-
tion by Barrat et al.(B. et al) and our new definition(WC) when we restrict
to node of degree larger than 0, 5 and 20.

Also in this case we observe that the two definitions have very similar
performances.

6.4 Scalability of our algorithm

In this final subsection we analyze the scalability of our new algorithm. In
order to do it, we analyze consider five public datasets available in the SNAP
repository: Orkut, Patents, Pokec, LiveJournal and Friendster. The five
graphs have an increasing number of edges(each dataset has roughly twice
as many edges as the previous one). The input dataset are unweighted, so
before run our algorithm we assign a random weight between 0 and 1 to
every edge.

In this experiment we are interested in analyzing the running time of the
algorithm when we increase the number of machines available and when we
increase the size of the network analyzed.

In Figure 7 we present the running time of the algorithm on different
networks with different resources. Note that all the number show in the plots
are relative. In particular on the y axis we present the running times as the
relative running time in comparison with the fastest run of algorithm on the
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smallest graph and on the x axis we present the number as multiplicative
factor of the minimum number of machines used.
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Figure 7: Running time of the algorithm on different networks with different
resources. Note that all the number show in the plots are relative. In
particular on the y axis we present the running times as the relative running
time in comparison with the fastest run of algorithm on the smallest graph
and on the x axis we present the number as multiplicative factor of the
minimum number of machines used x2, x5, x10 and x20

It is interesting to note that our algorithm is able to leverage on paral-
lelization to speed-up computation on very large graphs. Note, for example,
that by increasing the number of machines by a factor of 10 it is possible
to reduce the running time on the Friendster graph of roughly a factor of
10. It is also worth noticing that we do not obtain much gains by increasing
the number of machines by a factor of 20, this is probably due to a trade-off
between computational power and cost of communication within machines.

7 Conclusions

In this work we present sampling techniques to obtain efficient estimators
for several measures of weighted clustering coefficient together with their
Map Rreduce implementation. We also propose a novel graph-theoretic no-
tion of clustering coefficient in weighted networks defined as the expected
unweighted clustering coefficient on a family of random graphs. Moreover,
we show on an application related to web spam detection that the notions
of weighted clustering coefficient compare with the standard notion of un-
weighted clustering coefficient as a machine learning feature to assess the
quality of nodes in a social network. Given the importane of weighted net-
works to model the strength of the interaction between nodes in a graph,
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we hope that our work will prompt more study on the relevance of weighted
graph mining features to characterize the inner structure of social networks.
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