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ABSTRACT 

 

As the Global Polio Eradication Initiative progresses towards its conclusion inactivated 

poliovirus vaccine (IPV) is increasingly being used on a routine basis to ensure that any re-

introduced viruses do not spread. However the current administration of conventional IPV 

(cIPV) includes a risk of wild seed viruses escaping from manufacturing facilities. To address 

this risk IPVs could instead be prepared from Sabin live attenuated strains. However Sabin 

IPV (sIPV) type 2 has been found to induce a lower level of antibodies than type 2 cIPV. The 

reason (s) for this difference is not clear as little is known about the molecular mechanisms 

that underpin the formaldehyde inactivation process. To investigate the process of 

inactivation and its consequences, this study has analysed the effect of inactivation on 

different aspects of poliovirus biology. As serotype 2 shows the greatest differences between 

sIPV and cIPV, a range of type 2 poliovirus strains with varied antigenic and biological 

properties have been inactivated using formaldehyde and alternative chemicals. The effect of 

inactivation on the viral antigenicity and immunogenicity of the poliovirus strains has been 

assessed using methods for the pre-release control of vaccine batches and various novel 

techniques including a biosensor-based technique and immunisation-challenge experiments in 

transgenic mice. Both the virus strain and inactivation chemical affected the potency of 

inactivated preparations. The effect of inactivation on the functionality of the viral RNA and 

the ability of inactivated virus to bind and undergo the conformational changes necessary to 

enter the target cell have been investigated using real-time RT-PCR and FACS flow 

cytometry. Inactivation modified the viral RNA and prevented poliovirus virions from 

undergoing necessary conformational changes. This research will contribute to better 

understanding the differences between sIPV and cIPV and will help to develop new/modified 

inactivation protocols to produce IPVs with improved immunogenicity. 
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Poliovirus (PV) is a non-enveloped positive strand RNA virus which can cause paralytic 

poliomyelitis by infecting the motor neurones of the central nervous system (CNS). The 

tropism of the virus to infect the anterior horn of the spinal cord (the grey matter of the spinal 

cord) give the disese its name, from polios and myelos, Greek for ‘grey’ and ‘matter’, 

respectively. The earliest documented case of poliomyelitis was the funerary stele of Rom 

from about 1300 BCE which showed the characteristic downflexed foot and withered limb 

associated with muscle atrophy following the loss of motor nerve innervations of the leg. 

Although reports of poliomyelitis were rare until the late 19
th

 and early 20
th

 centuries, it had 

become one of the most-feared diseases in developed countries by the mid-20
th

 century (262, 

338). In 1908 Landsteiner and Popper reported that a filterable agent (i.e., virus) was the 

cause of poliomyelitis on the basis of microscopic examination of spinal cords from two 

monkeys that had been injected intraperitoneally with a suspension of ground-up cord from a 

fatal human case (283). The virus which caused poliomyelitis was termed PV. Findings of 

cross-immunity and serologic tests by Burnet and Macnamara showed that more than one 

strain of PV could cause poliomyelitis and that immunity to one strain did not confer 

immunity to another strain (72). Following research to determine the number of distinct PV 

strains the Comittee on Typing of the National Foundation for Infantile Paralysis reported 

that there were three serotypes of PV, designated types I, II and III (110). Subsequently it was 

found that PV could be grown in nervous, human embryonic tissue (152). These finding, 

along with the later research which showed that circulating antibodies had a protective effect 

against poliomyelitis were essential requirements for the development of effective PV 

vaccines (62, 195, 219, 319, 363, 485, 486). Two vaccines were developed: inactivated PV 

vaccine (IPV) and live attenuated oral PV vaccine (OPV). Both of these vaccines have been 

used to control, eliminate and subsequently eradicate PV and paralytic poliomyelitis. 

 

 

 

 

 

 

 



19 

 

1.1 PROPERTIES OF POLIOVIRUSES 

 

1.1.1 Taxonomy 

 

 Poliovirus is a member of genus Enterovirus of family Picornaviridae. Currently the 

Picornaviridae family consists of 28 species grouped into 12 genera, including, Enterovirus, 

Cardiovirus, Aphthovirus, Hepatovirus, Parechovirus, Erbovirus, Kobuvirus, Teschovirus, 

Sapelovirus, Senecavirus, Tremovirus and Avihepatovirus. As table 1.1 shows, genus 

Enterovirus is made up of 10 species, including, Human enterovirus A, Human enterovirus B, 

Human enterovirus C, Human enterovirus D, Simian enterovirus A, Bovine enterovirus, 

Porcine enterovirus B, Human rhinovirus A, Human rhinovirus B, Human rhinovirus C and 

unassigned simian enteroviruses. Based on neutralisation reactions with immune sera, PVs 

are classified into three serotypes (1, 2 and 3) (46, 552). The inability of antisera raised 

against the other two serotypes to neutralise infectivity is used to define the serotype. 

Serologically distinct strains have been identified by specific antisera prepared by cross 

adsorption with heterologous strains or by monoclonal antibodies (MAbs) (161).Until 

recently the three PV serotypes existed as a separate PV species within genus Enterovirus. 

However to solve phylogenetic inconsistencies the PV species was abolished and the PV 

serotypes were moved to the Human enterovirus C species (263). 
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Table 1.1. Classification of genus Enterovirus.  

Classification of enteroviruses (EVs) based on biological and molecular properties (230, 473). 

Species No. of serotypes Examples

Human enterovirus A

(HEV-A)
22

Coxsackievirus A2 (CV-A2), CV-A3, CV-A4, CV-

A5, CV-A6, CV-A7, CV-A8, CV-A10, CV-A12, 

CV-A14, CV-A16, enterovirus A71 (EV-A71), EV-

A76, EV-A89, EV-A90, EV-A91, EV-114 and the 

simian enteroviruses EV-A92, SV19, SV43, SV46 

and A13

Human enterovirus B

(HEV-B)
60

coxsackievirus B1 (CV-B1), CV-B2, CV-B3, CV-

B4, CV-B5 (incl. swine vesicular disease virus 

[SVDV]), CV-B6, CV-A9, echovirus 1 (E-1; incl. E-

8), E-2, E-3, E-4, E-5, E-6, E-7, E-9 (incl. CV-A23), 

E-11, E-12, E-13, E-14, E-15, E-16, E-17, E-18, E-

19, E-20, E-21, E-24, E-25, E-26, E-27, E-29, E-30, 

E-31, E-32, E-33, enterovirus B69 (EV-B69), EV-

B73, EV-B74, EV-B75, EV-B77, EV-B78, EV-B79, 

EV-B80, EV-B81, EV-B82, EV-B83, EV-B84, EV-

B85, EV-B86, EV-B87, EV-B88, EV-B93, EV-B97, 

EV-B98, EV-B100, EV-B101, EV-B106, EV-B107, 

EV-B110 (from a chimpanzee) and the simian 

enterovirus SA5

Human enterovirus C

(HEV-C)
21

Poliovirus (PV) 1, PV-2, PV-3, coxsackievirus A1 

(CV-A1), CV-A11, CV-A13, CV-A17, CV-A19, 

CV-A20, CV-A21, CV-A22, CV-A24, EV-C95, EV-

C96, EV-C99, EV-C102, EV-C104, EV-C105, EV-

C109, EV-C113 and EV-C116

Human enterovirus D

(HEV-D)
4

EV-D68, EV-D70, EV-D94 & EV-D111 (from both 

humans & chimpanzees)

Simian enterovirus A 1 SV4, SV28 and SA4 and A-2 plaque virus

Bovine enterovirus (BEV) 2 BEV 1 and BEV-2

Porcine enterovirus B (PEV-B) 2 PEV-9 and PEV-10

Human rhinovirus A

(HRV-A)
77

HRV-A1, A2, A7, A8, A9, A10, A11, A12, A13, 

A15, A16, A18, A19, A20, A21, A22, A23, A24, 

A25, A28, A29, A30, A31, A32, A33, A34, A36, 

A38, A39, A40, A41, A43, A44, A45, A46, A47, 

A49, A50, A51, A53, A54, A55, A56, A57, A58, 

A59, A60, A61, A62, A63, A64, A65, A66, A67, 

A68, A71, A73, A74, A75, A76, A77, A78, A80, 

A81, A82, A85, A88, A89, A90, A94, A95, A96, 

A98, A100, A101, A102 and A103

Human rhinovirus B

(HRV-B)
25

HRV-B3, B4, B5, B6, B14, B17, B26, B27, B35, 

B37, B42, B48, B52, B69, B70, B72, B79, B83, B84, 

B86, B91, B92, B93, B97 and B99

Human rhinovirus C

(HRV-C)
49?

There are at present 49 types – a proposal for the 

designation of HRV-C types 1-33 has been published 

(440)
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1.1.2 Poliovirus genomic structure and function 

 

The PV genome is approximately 7441 nucleotides (nts) in length and composed of 

single-stranded RNA of positive-sense polarity. It consists of a 5’ non-coding region (NCR), 

a single open reading frame (ORF) encoding the viral polyprotein and a 3’NCR followed by a 

virus-encoded poly (A) tract (figure 1.1) (117, 134, 261, 415, 481, 571).  

 

 

Figure 1.1. Genomic structure of serotype 1 poliovirus (Mahoney strain) and proteolytic 

processing of its polypeptide.  

Poliovirus genome is composed of single-stranded RNA molecule of positive-sense polarity which encodes a 

single polyprotein. A cloverleaf and internal ribosome entry site domains make up the 5’NCR region. The 

3’NCR is poly-adenylated. Cleavage of the polyprotein by virally encoded proteinases 2A
pro

 and 3C
pro

 / 3CD
pro

 

releases the P1, P2 and P3 precursor polypeptides. Further proteolytic processing by these virally encoded 

proteinases releases eleven mature viral proteins (117). Non-translated region is abbreviated as NTR; internal 

ribosome entry site is abbreviated as IRES. 
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The 5’NCR is covalently linked to a virus-encoded VPg protein of 22 amino acids (290, 538). 

Important for viral RNA and protein synthesis, the 5’NCR is conserved in all three serotypes 

and comprises 10 % (742 nts) of the genome (117). The 5’NCR can be divided into the 

5’terminal cloverleaf and the internal ribosome entry site (IRES). The 5’ terminal cloverleaf 

is an essential cis-acting element in viral RNA replication and regulates the initiation of 

translation (15, 302, 388, 392). By facilitating initiation of translation independent of a 

capping group and a free 5’end the IRES mediates cap-independent translation of the viral 

RNA (96, 235, 236, 392, 398, 399). Computer analysis has predicated the 5’NCR to harbour 

a complex secondary structure divided into six domains (I-VI) (figure 1.2) (6, 405, 475). 

Many of these predicted domains have been validated by genetic and biochemical analyses 

and visualised by electron microscopy (32, 147). 

 

 

Figure 1.2. Secondary structure of 5’non-coding region of serotype 1 poliovirus 

(Mahoney strain)  

Six domains make up the 5’NCR. Domain 1 constitutes the cloverleaf, while the remaining domains comprise 

the IRES. Between the cloverleaf and the IRES and between the IRES and the initiation codon there are spacer 
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sequences which lack a complex secondary domain. Stars denote attenuation mutations of the Sabin PV 

serotype 1, 2, and 3 vaccine strains at nts 480 (A to G), 481 (A to G), and 472 (C to U) (respectively) (117). 

 

 

The polyprotein encoded by the single ORF can be divided into P1, P2 and P3 regions 

(figure1.1). The P1 region encodes the structural viral capsid proteins VP1, VP3 and VP0. 

VP0 is later cleaved to release VP2 and VP4. These capsid proteins are responsible for 

binding to the PV receptor (PVR) and harbour the antigenic sites. The P2 and P3 region 

encodes the non-structural proteins. The P2 region encodes the 2A proteinase (2A
pro

), the 

processing intermediate 2BC and subsequently the 2B and 2C ATPase (2C
ATPase

) proteins. 

The 2A
pro

 cleaves the nascent polyprotein in cis at the p1/2A junction to release the P1 

precursor polypeptide (385). During infection the 2A
pro

 cleaves several host factors to shut-

off the host translation and transcription (573). The 2B and the 2C
ATPase

 proteins and their 

precursor 2BC have been associated with the production of membraneous vesicular 

replication structures (98). The 2B protein is also involved with membrane permeabilisation, 

blockade of the cellular secretory system and disintegration of the Golgi apparatus (9, 130, 

454). The 2C
ATPase

 protein has ATPase and RNA-binding activities (346, 435). 

 

The P3 region encodes the 3A, 3B
VPg

, 3C
pro

, 3CD and 3D polymerase (3D
pol

) proteins, all 

of which are involved with RNA replication. The 3A protein and it’s precursor 3AB have 

multiple roles in RNA replication and stimulate the polymerase activity of 3D
pol

 (348, 385, 

393, 428). The 3C
pro

 and it’s precursor 3CD
pro

 carry put the majority of the secondary 

processing steps. The 3D
pol

 is a template and primer dependent RNA polymerase essential for 

the replication of RNA genome (385). The poly-adenylated 3’NCR comprises 1-3 % (70 nts) 

of the genome and is predicted to exhibit secondary structures consisting of two hairpins 

(234, 407). It has been indicated to have a functional role in RNA replication (58, 59, 143, 

234, 330, 404, 406, 407). 
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1.1.3 Poliovirus morphology and structure 

 

Poliovirus virions are spherical with a diameter of 27-30 nm and consist of a protein shell 

surrounding the naked RNA genome (414). X-ray diffraction studies and the molecular 

structure of PV have shown that the virus capsid consists of 60 protomers with each being 

made up of one molecule of each of the four capsid viral proteins. Protomers are arranged 

with icosahedral symmetry (figure 1.3) (209).  

 

 

Figure 1.3. Stereo space-filling representation of the three-dimensional structure of 

poliovirus particle (Mahoney strain).  

Virus particle consists of 60 protomers. Each protomer contains a single copy of VP1 (blue), VP2 (yellow) and 

VP3 (red) (209). 

 

 

Three protomers make up the 20 faces of the icosahedron and are orientated so the 12 apices 

of the icosahedron are composed of 5 copies of VP1. The centre of each face is made of 3 

copies each of VP2 and VP3 alternating around the 3-fold axis (333). Protomers are 

orientated so the VP4 lies on the inner surface of the capsid (414).  

 

The icosahedron’s apices at the 5-fold axis are elevated forming star-shaped peaks or 

mesas at the surface of the virion (figure 1.3). The face of the icosahedron at the 3-fold axis is 

elevated forming propeller-like protrusions (figure 1.3). These elevations are separated by 

deep depressions (“canyon”) which surround the peaks at the 5-fold axis of symmetry. 

Saddle-shaped depressions crossing the two-fold axis of symmetry link the canyons together 

(162, 208, 209). A hydrocarbon-binding pocket is located beneath the canyon (162, 208). The 

Star-shaped peaks / mesas

Propeller-like protrusions



25 

 

floor of the canyon has been mapped as the virus-receptor binding site by genetic, mutational 

and structural studies (34, 38, 108, 172, 200, 296). 

 

The largest virion proteins (VP1, VP2 and VP3) have a similar core structure in which the 

peptide backbone of the protein loops back on itself to form a barrel of eight strands held 

together by hydrogen bonds (the β-barrel). A wedge-like structure is formed by this core 

(figure 1.4).  

 

 

Figure 1.4. Simplified diagram showing the wedge-like structure of the core structure 

common to capsid proteins.  

Wedge-like structure is formed by folding pattern of eight β-strands (209). 

 

 

Amino acid sequences between the sequences making up the β-barrel and the sequences at 

the N- and C- terminal portions of the protein contain elaborations which include the main 

antigenic sites involved in the neutralisation of viral infectivity (344). 
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1.1.3.1 Antigenic structure of poliovirus 

 

Four neutralising antigenic sites have been identified by the isolation of antigenic variants 

resistant to MAbs which are able to neutralise the parental strain, and then characterised by 

sequencing the genomic RNA. Table 1.2 shows these antigenic sites for the three PV 

serotypes. A BC loop in VP1 forms the continuous antigenic site 1. The remaining antigenic 

sites are discontinuous and formed from loops contributed by different capsid proteins (291, 

382). The locations of the antigenic sites on the viral proteins that make up the viral capsid 

are shown in figure 1.5.  

 

Serotype 
Antigenic site 

Site 1 Site 2a Site 2b Site 3a Site 3b Site 4 

PV1 
VP1 

90-102, 144 

VP1 

221-226 

VP2 

164-173 
 

VP3 

58-60 

VP2 72, 

VP3 76 

PV2 
VP1 93-

101, 174 

VP1 

217-221, 

140 

VP2 

167-168 

VP2 

72-73, 158, 

239, 244 

VP2 158, 

VP3 56, 61, 

66 

 

PV3 

VP1 

89-101, 

166, 253 

VP1 

220-222 

VP2 

164-173 

VP1 

286-290 

VP3 

58-60 

VP3 

77, 79 

 

Table 1.2. Location of antigenic sites of poliovirus serotypes 1, 2, and 3.  

Four antigenic sites were identified using MAbs (342, 343, 357-359). Sites 2 and 3 are subdivided. 
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Figure 1.5. Antigenic sites depicted on a space-filling model of the poliovirus particle. 

Plates A, B and C contain isolated copies of VP1, VP2 and VP3 on the left and an intact particle on the right. 

VP1 is blue, VP2 is yellow, and VP3 is red. The sites of mutations which confer resistance to neutralising MAbs 

are highlighted in white. Using spatial considerations and cross neutralisation studies the mutations have been 

grouped into three sites: Site 1 (A), Site 2 (B) and Site 3 (C) (210). 

A

B

C
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Neutralising antigenic sites vary within each serotype. However, possibly due to steric 

requirements for interactions with the PVR, the range of this variation is limited (201). Two 

types of antigenicities (D and C) are shown by PV preparations, depending on their 

sedimentation coefficient in sucrose gradients. Intact infectious virions sediment at 155-160S 

in sucrose gradients and show D-antigenicity, while empty capsids or denatured PVs 

sediment at 70-80S in sucrose gradients and show C-antigenicity (344). D-Antigen (D-Ag) 

units are considered the protective antigens as they stimulate neutralising antibodies. 

Treatment of infectious PV virions with heat or ultraviolet radiation can denature the PVs and 

result in a conversion from D to C antigenicity (289). 

 

 

1.1.4 Replication and cellular life cycle of poliovirus 

 

The cellular life cycle of PV is initiated by the binding of a PV virion to the N-terminal 

V-type immunoglobulin-like domain of the human PVR or CD155 (266, 329, 461). The exact 

mechanism by which the PV virion releases its RNA genome into the cytoplasm of the cell is 

not clear. Current research indicates following binding to the PVR the PV virion undergoes a 

series of conformational changes releasing myristoylated capsid protein VP4 and the N-

terminal amphipathic helix of VP1 before the viral RNA. The myristoylated VP4 and 

amphipathic helix of VP1 are thought to insert into the cell membrane creating pores through 

which the virus RNA can enter into the cytoplasm (117, 511).  

 

Receptor-mediated endocytosis has been proposed as an alternative explanation for the 

entry of the virus (117). Two recent studies have explored this mechanism of entry for PV by 

using fluorescence microscopy to trace the movement of virions, and a combination of 

approaches to correlate the movement of virions with the pathway of productive infection 

(54, 112). Brandenburg et al. (54) used live cell microscopy of HeLa cells infected with virus 

labelled with separate fluorescence dyes bound to the capsid protein and the viral genome 

(511). This study found that a receptor-mediated conversion to 135S or A particle 

conformation (see Chapter 6) was required for internalisation. RNA release was rapid and 

occurred within 100-200 nm of the cell surface. Infection of HeLa cells by PV was found to 

be independent of clathrin, caveolin, flotillin, microtubules, and pinocytosis. The infection of 

these cells was dependent on actin, ATP, and an unidentified tyrosine (54, 511). The findings 



29 

 

of this study indicate that RNA release occurs within clathrin- and caveolin-independent 

vesicles in the cell periphery (35). In the second study Coyne et al. (112) examined the entry 

pathway of PV in Human Brain Microvascular Endothelial (HBME) cells, a highly polarised 

cultured cell line which serves as a model for the blood-brain barrier. In contrast to the 

findings of previous studies where infection of HeLa cells was fast and independent of both 

dynamin and caveolin (54, 128), Coyne et al. (112) showed that PV infection of HBME cells 

is very slow and utilizes dynamin-dependent caveolar endocytosis. The differences between 

the two studies indicate that PV has high flexibiility in that it is able to use multiple 

mechanisms to enter different cell types (511) 

 

After entry, an unknown cellular phosphodiesterase is believed to cleave the VPg viral 

protein from the RNA genome. Host ribosomes bind to the IRES (within the 5’NCR) and 

initiate translation of the RNA genome (117). The single translated polyprotein contains two 

sequences which serve as proteolytic enzymes, digesting the polyprotein at specific positions 

during translation (344). The first is the 2A
pro

 which catalyses the cleavage of the genomic 

polyprotein at a tyrosine-glycine dipeptide, resulting in the release of the P1 precursor 

polypeptide (507). The second is the 3C
pro

 / 3CD
pro

 which catalyse the cleavage of P2 and P3 

precursors at glutamine-glycine dipeptides into non-structural proteins, including, 2A
pro

, 2B, 

2BC, 2C, 3A, 3AB, 3B
VPg

, 3C
pro

 / 3CD
pro

 and 3D
pol

 (197). At the same time the 2A
pro

 

mediates the cleavage of the eukaryotic translation initiation factor (eIF)-4G subunit of the 

eIF-4F complex to shut off the cap-dependent host cell translation (275, 480, 523). This 

cleavage results in a modified eIF-4G which lacks the N-terminal domain required for 

interaction with the cap binding protein eIF-4E and poly (A)-binding protein (PABP). 

Therefore this cleavage inhibits cap-dependent translation initiation and PABP-mediated 

enhancement and reinitiation of translation on cellular mRNAs (114). Poly (A)-binding 

protein is also cleaved by PV proteinases and this is hypothesised to contribute to the shut 

down of cap-dependent translation (114, 240, 278). Host cell transcription is inhibited by 

3C
pro

 which inactivates transcription factor TFIIIC and cleaves the TATA box binding 

protein (107, 565). 

 

The 2B and 2C viral proteins and their precursor 2BC, induce the formation of viral 

replication complexes in the cytoplasm by stimulating the rearrangement of endoplasmic 

reticulum derived intracellular membranes into vesicular structures (41, 98, 344, 496). 

Replication of the RNA genome is complex involving the formation of intermediates, 
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including, a replicative intermediate consisting of a negative strand partially hybridised to 

multiple nascent positive-strands, and a replicative form that has a double stranded structure, 

composed of one full length copy of the positive and negative strands each (117).  

Replication of PV RNA begins with the synthesis of a negative-RNA strand. A closed loop 

model which involves both viral and host cellular proteins has been proposed and is shown in 

figure 1.6.  

 

 

Figure 1.6. Proposed closed loop model of poliovirus negative-strand RNA synthesis.  

The positive (+) strand is at the top, showing the 5’cloverleaf structure, the internal cis-acting replication 

element (cre) sequence, and 3’pseudoknot. The host poly r(C) binding protein (PCBP) and viral 3CD
pro

 bind the 

cloverleaf structure forming a ribonucloeprotein complex. This complex interacts with the host cell protein 

PABP, which is bound to the 3’-poly (A) sequence, producing a circular loop. Membrane bound 3AB is cleaved 

by 3CD
pro

 to release 3A and VPg. The VPg, 3D
pol

 and 3CD
pro

 bind to the cre sequence within the RNA genome. 
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The 3D
pol

 catalyses the uridylation of the VPg , using the sequence AAACA of cre as the template. The complex 

is transferred to the 3’end of the genome, and the VPG-pUpU is used by 3D
pol

 to prime synthesis of a negative 

RNA strand, thus resulting in the double stranded replicative form (414).  

 

 

In this model a ribonucleoprotein complex is formed when the host cell protein PCBP2 

and viral protein 3CD
pro

 bind to stem-loop I at the 5’NCR (443). This ternary complex 

interacts with the host cell protein PABP1, which is bound to the 3’-poly (A) sequence, 

producing a circular loop. Membrane bound 3AB is cleaved by 3CD
pro

 to release 3A and VPg 

(414). During replication of PV RNA the synthesis of both negative- and positive-sense  

strands is primed by a uridylated form of the genome linked viral protein VPg (VPg-pUpU) 

(395). The cre is a position-independent stem-loop RNA structure essential for picornavirus 

RNA replication which has variable location in the genome of different virus types. The cre 

is thought to act as the site for the uridylation of VPg by 3D
pol

 (114). The uridylation of VPg 

results in a covalent linkage between the single tyrosine in VPg and the PV negative- and 

positive- RNA strands (14, 168, 261, 290, 373, 374, 401, 438).The VPg, 3D
pol

 and 3CD
pro

 

bind to the cre sequence within the RNA genome. The 3D
pol

 catalyses the uridylation of the 

VPg , using the sequence AAACA of cre as the template. The complex is transferred to the 

3’end of the genome, and the VPG-pUpU is used by 3D
pol

 to prime synthesis of a negative 

RNA strand, thus resulting in the double stranded replicative form (344, 395, 414).This 

associates with the vesicular structures to form the replication intermediate complexes (344). 

The negative-strand of this complex acts as a template for synthesis of multiple positive-

strand RNAs.The increasing excess of VPg-pU-pU over VPg favours this and results in 

asymmetric levels of positive- versus negative-strand viral RNAs in the infected cell (344, 

395). The positive strand RNA molecules either serve as templates for additional rounds of 

translation or negative-strand RNA synthesis or are covalently linked to VPg triggering 

encapsidation in progeny PV virions (374, 443). It should be noted that due to the frequent 

single base misincorporations and lack of proofreading the replication of the PV genome is 

prone to errors.   

 

The cleavage of the P1 precursor polypeptide by 3CD
pro

 releases the VP0, VP1 and VP3 

proteins.After cleavage, considerable movment of the amino termini and carboxyl termini of 

these viral proteins occurs. In the mature capsid, the carboxyl termini of VP1, VP2, and VP3 

are on the outer surface of the capsid, whereas the amino termini are on the interior, where 
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they engage in an extensive network of interactions amongst protomers (414). This process 

allows one copy of VP0, VP1 and VP3 to assemble to form the 5S protomer (534). A 

pentamer which sediments at 14S is formed by the assembly of five protomers (figure 1.7) 

(117, 403, 414).  

 

 

Figure 1.7. Assembly of poliovirus particles. 

P1 precursor polypeptide is cleaved from P2 precursor polypeptide. P1 precursor polypeptide is further cleaved 

by 3CD
pro

 to release VP0, VP1 and VP3. One copy each of VP0, VP1 and VP3 assemble to form the protomer. 

Five protomers assemble to form a pentamer. Pentamers assemble into an empty capsid into which the RNA 

genome is threaded in to create a provirion. Alternatively the pentamers assemble around the RNA genome to 

form the provirion. Cleavage of VP0 to release VP2 and VP4 is the final morphogentic step that produces the 

infectious 160S virion (414). 

 

 

Subsequently 12 pentamers assemble about the viral RNA genome to form the provirion 

(233, 403).Alternatively the pentamers assemble into an empty capsid into which the viral 

RNA genome is incorporated, forming the provirion (233, 402, 414). The provirion is 

converted into a mature infectious virion by the cleavage of VP0 into VP2 and VP4, possibly 

by an autolytic mechanism (208, 212, 233). Mature infectious PV virions are then released by 

the lysis of the infected cell (117). 
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1.2 INFECTION AND DISEASE 

 

1.2.1 Epidemiology 

 

Polioviruses are transmitted from person to person by the faecal-oral route or oral-oral 

route following excretion in faeces and pharyngeal secretions (255, 364). There are no known 

extrahuman reservoirs as the PVR is only expressed on the cells of humans and a few 

subhuman primate species (355, 413). Although there is consensus that poliomyelitis has 

been occurring for millennia, few cases were reported until the late 19
th

 century. Epidemic 

poliomyelitis began around 1880 with a series of outbreaks in several Scandinavian countries 

and the United States (287). An increase in the age at which PV infection was occurring has 

been proposed as a possible hypothesis for these epidemics of poliomyelitis (369). Prior to 

these epidemics enteric infections were very common and many infants were infected within 

6-12 months. At this time they had circulating antibodies derived from their nursing mothers 

which prevented viremia, thus avoiding invasion of the CNS and paralysis. However as 

personal hygiene and public sanitation were improved the transmission of enteric infections 

was delayed so that some infants were first infected after 12 months of age, when the level of 

passive antibodies had fallen. This allowed for the infection of the CNS and the development 

of paralytic poliomyelitis in infants or as it was known then, “infantile paralysis” (364). 

 

As a result of this improvement in hygiene the age distribution of patients with 

poliomyelitis increased. Adults had a higher probability than infants of developing paralytic 

poliomyelitis than nonparalytic CNS infections, abortive illness or asymptomatic infection 

(218). Data regarding the distributions of the three PV serotypes in the USA during this 

epidemic era suggests that the virulence (paralytogenicity) varies between the serotypes. 

Serotype 1 was found to be more virulent than the other serotypes which showed similar 

virulence to one another (465). 

 

 

 

 

 

 

 



34 

 

Prior to the introduction of vaccines poliomyelitis was a seasonal disease in cooler 

temperate climates with the incidence of infection peaking in the summer and autumn months 

(figure 1.8).  

 

 

Figure 1.8. Seasonal variation in poliomyelitis incidence (striped bars) and relative 

humidity (dashed line) in New England during 1942-1951.  

The degree of seasonal variation in poliomyelitis incidence is shown by the ratio (370, 462). 

 

 

The degree of seasonality decreases towards the equator, with poliomyelitis being prevalent 

all year-round in tropical regions. It has been hypothesised that this seasonality is due to the 

humidity level which affect PV survival (figure 1.8) (364, 369, 445). 

 

The incidence of poliomyelitis fell significantly when IPV and live attenuated OPV were 

introduced in 1955 and 1960, respectively. The use of these vaccines in the seasonal trough 

allowed for PV to fade out of individual regions, particularly if it was not reintroduced (364). 

This fall has increased further worldwide since the Global Polio Eradication Initiative (GPEI) 

began in 1988. However the GPEI has changed the ecology of PV. For most of the world 

immunity to PV is now conferred solely by vaccination rather than through natural infection. 

 

Although the GPEI has been successful, there are still epidemiological barriers to the 

eradication of PV in the remaining areas of the world where wild-type PVs remain endemic, 
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which encompasses Nigeria, Afghanistan, Pakistan and northern India. These include a lack 

of seasonality and a higher incidence of enteric infections in tropical climates (390). The 

inability to vaccinate in conflict areas of Afghanistan and Pakistan represents a single 

epidemiologic block, with ongoing large population movements between the two countries 

accompanied by cross-border transmission. In addition the high population densities and poor 

sanitation, which occurs in Uttar Pradesh and Bihar in India, Nigeria and Pakistan, enhances 

the transmission of PV (364). 
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1.2.2 Clinical and pathological aspects 

 

Poliovirus can cause minor illness typical of a systemic infection or it can cause major 

illness such as poliomyelitis, the most serious disease caused by any of the EVs. As described 

above PV transmits via the faecal-oral route. Several models of PV pathogenesis have been 

described, one of which is the lymphatic model of Bodian (43) (figure 1.9).  

 

 

Figure 1.9. Lymphatic model of poliovirus pathogenesis.  

Model of PV pathogenesis, showing the progression from the alimentary to lymphatic sites, viremia, and 

neuronal infection (43, 340).  

 

 

The lymphatic tissue of the gastrointestinal tract, including the tonsils and the Peyer’s patches 

of the ileum, act as the primary sites of replication for PV. Poliovirus shed in the faeces is 

sourced from the Peyer’s patches. Before the viremic phase occurs the deep cervical and 

mesenteric lymph nodes become infected by drainage from the gastrointestinal lymphoid 

tissues. Blood-borne PV might originate from these local lymph nodes. Poliovirus then 

disseminates independently to brown fat, other lymphatic structures and the CNS (340).  
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An alternative mucosal model has been proposed by Sabin (446) (figure 1.10).  

 

 

Figure 1.10. Mucosal model of poliovirus pathogenesis.  

Model of PV pathogenesis, showing the interchange between oropharyngeal and intestinal mucosa, extraneural 

tissue, and regional nerve ganglia (338, 446).  

 

 

In this model PV becomes present in the throat or faeces as result of ingested virus replicating 

in the oropharyngeal or intestinal mucosa. Subsequently the local lymphatic tissue (tonsils 

and the Peyer’s patches) accumulates PV without necessarily being the replication site. As 

described above the deep cervical or mesenteric lymphoid nodes are infected by these 

lymphatic tissues. Small amounts of PV can leak from these nodes into the blood and 

disseminate to other susceptible extraneural replication sites. Through a number of routes 

regional nerve ganglia may be infected, and PV can then migrate to the CNS (340). The 

precise mechanism (s) by which PV invades the CNS is not well understood (117). However 

experimental evidence from research in non-human primates (43, 45) and CD155 transgenic 

(Tg) mice (378, 422) strongly suggest that PV invades the CNS by retrograde axonal 

transport (192, 377, 378). Replication of PV within the CNS triggers the major illness 

associated with PV. 
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For the great majority of PV infections (approximately 95 %) a minor viremia develops 

and they are asymptomatic. For some infected individuals (4-8 %) a major viremia develops 

that is associated with minor illness (117). Clinical symptoms of this minor illness include 

malaise, diarrhoea, fever and sore throat (117, 340). If the symptoms resolve then the infected 

individual is said to have suffered abortive paralysis (340). A small number of patients who 

experience major viremia develop non-paralytic aseptic meningitis or paralytic poliomyelitis, 

indicating that PV has invaded CNS (117). In 1-2 % of PV infections non-paralytic aseptic 

meningitis develops, characterised by rigidity of the neck, back and lower limbs (85). 

Depending on the serotype 0.1-1 % of PV infections develop into paralytic poliomyelitis 

(369). The severity of the paralytic poliomyelitis depends on the areas of the CNS affected 

and the extent of damage to the neuronal tissue. In spinal poliomyelitis the motor nerves are 

destroyed and associated skeletal musculature is dennervated (117). This results in 

hemilateral paralysis, more prominent in the lower limbs. Clinical signs of bulbar 

poliomyelitis include paralysis of the respiratory muscle, and it is characterised by paralysis 

of the cranial nerves associated with the control of breathing. Both the spinal cord and the 

brain stem are affected in bulbospinal poliomyelitis (44, 85). 

 

 

1.3 VACCINES AGAINST POLIOVIRUS 

 

In the late 19
th

 century the improvement of hygiene led to delayed transmission of PV 

until maternal antibodies had waned. This changed the pattern of poliomyelitis from 

uncommon and endemic to the occurrence of large epidemics. In response research focussed 

on developing vaccines. Several scientific discoveries allowed the development of PV 

vaccines. These included the isolation of PV by Landsteiner and Popper (284), which allowed 

research to begin. The definition of three serotypes allowed the conclusion to be made that no 

cross-protection was conferred (46). Viremia was found to precede paralysis and neutralising 

antibodies were confirmed to protect against poliomyelitis (196, 219). Finally it was 

demonstrated that PV could propagate in human cells (152). Subsequent studies found that 

PV could propagate in a range of cells from tissues of human and nonhuman primate origin. 

The monkey kidney became the source of tissue for vaccine production (430). Two vaccines 

have been developed; an injectable (killed) IPV; and a live attenuated OPV by Drs Salk et al. 

(451) and Dr Sabin (448), respectively. 
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1.3.1 Inactivated poliovirus vaccine            

 

Following several technical developments, such as the propagation of the monolayer form 

of monkey kidney and testicular cells, Salk and colleagues were able to grow large quantities 

of the three PV serotypes (178, 409). The kinetics of inactivation with formaldehyde (HCHO) 

were analysed and it was concluded that if filtration was able to remove aggregates of PV, the 

virus could be inactivated at a constant first-order rate, allowing complete elimination of 

infectivity if sufficient time was allowed (figure 1.11) (409).  

 

 

Figure 1.11. Formaldehyde inactivation curves of wild-type strains, Mahoney, MEF-1, 

and Saukett.  

Strains were inactivated at pH 7.0 with 1:4000 HCHO. Averaged data from four to five inactivation experiments 

was used to plot the curves for each strain (503).  

 

 

Several trivalent vaccine pools were prepared and found to be safe and immunogenic in 

monkeys and humans (430). Based on these laboratory findings large-scale field trials in 

humans were conducted by Thomas Francis and his associates in 1954. The vaccine was 

found to be safe and effective at 60-70 % for serotype 1 and 90 % for serotype 2 and 3 (170, 

178). Potency (antibody response in children) correlated with effectiveness of the vaccine 

(178). IPV was licenced shortly after (430).  

 

However paralytic cases began to appear shortly after IPV became available. Two 

vaccine pools from one manufacturer, Cutter Laboratories Inc., were traced to be the source 

of these cases by an epidemiological investigation. The Cutter vaccine was found to have 

caused 260 cases of poliomyelitis (366-368). Inactivated PV vaccine vaccination was 
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suspended, the Cutter vaccine was recalled and the US Public Health Service launched an 

intensive investigation. The Cutter incident was attributed to two problems with IPV 

production. The first was that there was a failure to remove viral clumps which could hide 

infectious particles. Secondly, virus inactivation was not linear as there was a “tailing-off” of 

viral inactivation at lower concentrations of infectious PV (409). A filtration step was added 

to the production process, midway during HCHO inactivation which removed the virus 

clumps. While this improved the safety of the preparation, it also diminished the antigenicity 

(326). The PV inactivation period was extended and the volume of vaccine doses was 

significantly increased in the test for residual infectivity in monkey kidney cultures after virus 

inactivation. Between the late 1950s and early 1960s this first generation IPV was widely 

used in the USA, Canada, Netherlands, Sweden, France and Finland. However in the early 

1960s many of the countries in the Americas and Europe switched to OPV when it was 

licenced (178). 

 

Following several technical advances in the late 1960s and 1970s, enhanced-potency IPV 

(eIPV) was developed. This second generation IPV differed from the first generation IPV as 

the virus harvest was concentrated and purified before inactivation by ultrafiltration and 

column chromatography. In addition to increase the density of cells they were grown on 

microbeads in large fermenters. In 1967 van Wezel developed a microcarrier system which 

could be applied to 100 L fermenters (521). Either secondary or tertiary subcultures of 

kidneys from pathogen-free monkeys or human diploid cell strains or the Vero African green 

monkey kidney cell line were used as the cell substrate. The use of well characterised cells 

ensures that the IPV is free of extraneous contaminating agents. This trivalent eIPV acts as 

the conventional IPV (cIPV) and is administered either alone or in combination with other 

vaccines, including diphtheria, tetanus and acellular pertussis, hepatitis B and / or 

Hemophilus influenzae b. Both preparations are highly immunogenic in infants following 

three doses at two, three and four months of age (178). 

 

The wild-type PV strains used by Salk et al. for the first generation IPV are still used by 

most modern manufacturers. These include Mahoney (serotype 1; Brunenders is used in 

Sweden and Denmark); MEF-1 (serotype 2) and Saukett (serotype 3) (409). Although HCHO 

inactivation has been noted to modify the antigenic site 1 of PV serotypes 2 and 3 (160), 

immunisation with IPV can induce high titres of neutralising antibodies protective against all 

PV strains. However local (intestinal) immunity is not induced, which allows the virus to still 
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multiply in the intestinal tract of the vaccinee and thus to be shed in faeces and become a 

source of infection to others (321). Other problems with the IPV include the cost for needle 

and syringe and the need for trained health workers to administer the vaccine (546). However 

IPV has been used exclusively in Sweden, Finland and the Netherlands and has virtually 

eliminated poliomyelitis (344). Finally as it is a killed vaccine it does not carry the risk of 

causing vaccine associated paralytic poliomyelitis (VAPP). 

 

 

1.3.2 Oral poliovirus vaccine 

 

In 1946 Theiler (500) developed the first attenuated variant of the serotype 2 strain 

Lansing by serial passage of the virus. This approach was adopted by others and in 1952 

Koprowski et al. (270) reported the first successful immunisation of volunteers with an 

attenuated rodent-adapted serotype 2 PV strain. The principle attenuated vaccine candidates 

were developed by three key research groups led by Sabin (448), Koprowski (270), and Cox 

(75). Between 1950 and 1960 these candidate vaccines were developed and tested in large 

field-trials held in a number of countries under various conditions. Many of these trials in 

humans involved the sequential administration of monovalent preparations of the three 

serotypes. The results of these trials were assessed in two conferences held by the Pan 

American Health Organisation (PAHO) in 1959 and 1960 (386, 387). In 1958, a detailed 

comparison of candidate strains was carried out at Baylor College of Medicine in Houston 

and at the Division of Biologics Standards of the National Institutes of Health (322-324, 327, 

362). 

 

Throughout all of these field trials and laboratory comparisons the candidate vaccines 

were evaluated for their immunogenicity, genetic stability on passage in humans, lack of 

paralytic properties in humans, restricted capacity to spread from man to man, and low 

neuropathogenicity in monkeys (255). Research at Baylor College of Medicine in Houston 

and at the Division of Biologics Standards of the National Institutes of Health concluded that 

the Koprowski and Cox candidate vaccine strains were more neurotropic for monkeys than 

the Sabin strains. As a result the Sabin vaccine strains were licenced and manufactured. The 

strains have been used almost universally since then (485).Oral PV vaccine was licenced as a 
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monovalent preparation sequentially between 1961 and 1963 (396). Following a successful 

field trial in Canada a trivalent formulation was licenced in 1963 (485). 

 

The Sabin OPV strains were developed from circulating strains that had been adapted to 

laboratory conditions (339). In 1941 Drs Francis and Mack isolated the serotype 1 Mahoney 

strain from which the Sabin 1 strain is derived. After Salk made 14 monkey kidney tissue 

culture (MKTC) and 2 monkey testicular passages Li and Schaeffer made 11 MKTC 

passages to yield the partially attenuated LS strain. The further attenuated LS-c strain was 

yielded by additional passages in monkey kidney and skin. The LS-c, 2ab was obtained when 

Sabin carried the LS-c strain through terminal dilutions and single plaque passages and 

selected subsequent strains by neurovirulence testing. Two further passages in cynomolgus 

MKTC yielded the Sabin original (SO) or the LS-c, 2ab/KP2 strain. A further passage of the 

SO at Merck Sharp and Dome in rhesus MKTC yielded the SO+1 (LS-c, 2ab/KP3) strain. The 

current vaccine is four passages from the SO and thus is termed SO+4. After five passages 

earlier (grandmother) seeds must be thawed and used to prepare new mother seeds (485). 

 

Sabin also developed attenuated Sabin strains for serotypes 2 and 3. A low neurovirulence 

PV strain (P712) isolated from a healthy child was used to derive the Sabin 2 (P712, Ch, 

2ab/KP3) strain. The Sabin 3 (Leon 12ab/KP4) strain was derived by passage of a highly 

neurovirulent PV strain (Leon) isolated from the spinal cord of a child who had died of 

bulbospinal poliomyelitis (255, 485). The passage history of these strains is summarised in 

tables 1.3A and B. 

 

 

 

 

 

 

 

 

 

 

 

 



43 

 

Year Manipulation Designation 

– 
Fox and Gelfand: 

Isolated P 712 strain 
P 712 

1954 

Sabin: 

4 passages in cynomolgus MKTC 

3 serial passages of plaque isolates 

Selection by neurovirulence testing 

- Fed to chimpanzees 

- 3 single-plaque passages 

P 712, Ch 

P 712, Ch, 2ab 

1956 
Sabin: 

2 passages in cynomolgus MKTC 
P 712, Ch, 2ab/KP2 = SO 

1956 
Merck, Sharp & Dohme: 

1 passage in rhesus MKTC 
P 712, Ch, 2ab/KP3 = SO+1 

 

Table 1.3A. Passage history of serotype 2 Sabin strain.  

Sabin 2 strain was derived by passage of low neurovirulent PV strain (P712). Adapted from (448, 485). 
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Year Manipulation Designation 

1951 

Kessel and Stimpart: 

Isolated Leon strain 

20 intracerebral passages in rhesus 

monkeys 

Leon 

1952 

Melnick: 

8 passages in rhesus testicular tissue 

culture  

 

1953 

Sabin: 

3 passages in cynomolgus MKTC 

30 rapid passages at low dilution in 

cynomolgus MKTC 

3 terminal dilution passages 

1 low-dilution passage 

9 plaques isolated, single-plaques 

passed 3 times 

Selection by neurovirulence testing  

Leon 12a,b 

1956 
Sabin: 

3 passages in cynomolgus MKTC 
Leon 12a,b/KP3 = SO 

1956 
Merck, Sharp & Dohme: 

1 passage in rhesus MKTC 
Leon 12a,b/KP4 = SO+1 

 

Table 1.3B. Passage history of serotype 3 Sabin strain.  

Sabin 3 strain was derived by passage of highly neurovirulent PV strain (Leon). Adapted from (448, 485).  

 

 

With greater understanding of the molecular biology of PV and the advent of recombinant 

DNA technology it was possible to identify the genetic determinants of attenuation. The 

publication of the complete nt sequences of PV genomes allowed the sequences of the Sabin 

strains and their neurovirulent wild-type parent (serotypes 1 and 3) or neurovirulent 

revertents (serotypes 2 and 3), from VAPP cases, to be compared. The development of 

infectious complementary DNA (cDNA) clones allowed the contribution of specific nt 

substitutions to attenuation to be assessed (485). 
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Sabin 1 has 57 nt substitutions throughout its genome which distinguish it from the 

Mahoney strain (375). Six are found in the 5’NCR, 49 map to the coding region (of which 21 

code for amino acid substitutions), and two are located in the 3’NCR (255). Infectious cDNA 

constructs identified that the A-G substitution at position 480 in the IRES of the 5’NCR was 

the most important attenuating mutation (figure 1.12) (250). The attenuated phenotype was 

also due to four other substitutions within the viral capsid proteins (one in VP4, one in VP3, 

two in VP1). These substitutions have also contributed to the temperature sensitive phenotype 

of the Sabin 1 strain. A substitution mapped to the 3D
pol

 region contributes to the temperature 

sensitive but not attenuated phenotype (52, 99, 318, 379, 394, 494). 

 

 

Figure 1.12. Location of principal attenuating nucleotide (lower bars) and amino acid 

(upper bar) substitutions in each of the three Sabin oral poliovirus vaccine strains.  

Nucleotide residue abbreviations: A, adenine; C, cytosine; G, guanine; U, uracil. Amino acid abbreviations: A, 

alanine; C, cysteine; F, phenylalanine; H, histidine; I, isoleucine; L, leucine; M, methionine; S, serine; T, 

threonine; Y, tyrosine. Substitutions are shown as nonattenuated parent-position-Sabin strain (255). From 

residue 1 of RNA genome, nts are numbered consecutively. Amino acids are numbered consecutively from 

residue 1 of each viral protein. Abbreviated name of viral protein (4, VP4; 2, VP2; 3, VP3; 1, VP1; 3D, 3D-

polymerase) indicates position of amino acids. Untranslated region is abbreviated as UTR (52, 250, 255, 305, 

424, 494, 533).   
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The attenuated and temperature sensitive phenotype of the Sabin 2 strain was found to be 

due to two nt substitutions. These included a G-A substitution at position 481 in the IRES, 

and the C2909U substitution which encodes a T-I substitution at position 143 of VP1 (figure 

1.12) (305, 424). Three substitutions determine the attenuated and temperature sensitive 

phenotype of the Sabin 3 strain. These include a C-U at position 472 in the IRES, C2034U 

encoding an S-F substitution at position 91 of VP3 and U2493C encoding an I-T substitution 

at position 6 of VP1 (figure 1.12) (255, 303, 336, 533). The attenuated phenotype of the 

Sabin strains is conferred by multiple substitutions, as described above (255). Substitutions 

within domain V of the IRES (figure 1.2) of the 5’NCR have been associated with 

deficiencies in viral replication in the CNS and neuroblastoma cells and a reduction in the 

efficiency of the initiation of translation of the PV RNA template (279-281, 487-489). 

 

A series of animal models and cell culture assays have been developed to analyse the 

biological properties of OPV strains. The neurovirulence of OPV strains has been tested in 

both monkeys and Tg mice which express human PVR (269, 543). Poliovirus sensitive Tg 

mice were developed by introducing the gene encoding the human PVR into the mouse 

genome. The expression of the receptor mRNAs in tissues of the Tg mice was analysed by 

RNA blot hybridisation and polymerase chain reaction (PCR). The Tg mice were found to be 

susceptible to all three serotypes of PV (269). The temperature sensitivity of an OPV strain is 

assessed by comparing plaque formation on HEp-2C cells at different temperatures (264, 

380). 

 

Another assay used in the quality control of OPV strains is the mutant analysis by PCR 

and restriction enzyme cleavage. This is a molecular biological assay for quantitation of the 

trace amount of revertant sequence (s) in monovalent Sabin bulks (105, 543). This assay 

involves the extraction of RNA from virions, reverse transcription and amplification of a 

target stretch of the cDNA by PCR. Restriction enzymes then digest the amplified products 

with enzymes which cut either attenuated or virulent sequence. Following polyacryclamide 

gel electrophoresis the cut and uncut bands are quantified (543). This assay allows the 

position of reversion to be quantified and has been used to estimate the ratio of 

neurovirulence in a virus population correlated to the revertants (104, 427). 

 

Oral poliovirus vaccine is administered orally and parallels the natural infection by 

replicating in the gastrointestinal tract. This stimulates both local secretory immunoglobulin 
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A (IgA) in the pharynx and gastrointestinal tract and circulating IgG. The virus is excreted in 

the faeces for several weeks and possibly in pharyngeal secretions for days (344). In areas 

with a high incidence of PV and low hygiene and sanitation, OPV immunisation can lead to 

the passive immunisation of close contacts through the spread of the vaccine shed in the 

faeces and pharyngeal secretions. Unlike IPV, which only elicit serum humoral immunity, 

OPV is able to induce gut immunity as well. This imitation of the natural infection results in 

OPV breaking the transmission of PV (338). In addition OPV is cheap to produce in the large 

quantities required for national immunisation days (NIDs). Finally as OPV is orally 

administered, no sterile injection equipment or specially trained health workers are required 

(255). For the reasons stated above OPV became the choice vaccine to be used in the GPEI. 

 

A major flaw with OPV is that it is genetically unstable (117). As discussed above, 

following immunisation OPV strains replicate in the gastrointestinal tract of 

immunocompetent individuals for a limited time before the vaccine is excreted for periods of 

up to 30-60 days (3, 311). During this period, the attenuating mutations of the vaccine can 

rapidly revert and the OPV can change through a range of mechanisms. These include 

recombination, site suppression mutations, back mutations and a steady drift in molecular 

sequence. The loss of the attenuation mutations is selected for during replication in the gut as 

it improves the growth characteristics of the OPV strains. VAPP is caused by this reversion 

of the attenuation mutations during OPV replication in humans. 

 

The World Health Organisation (WHO) defines VAPP as poliomyelitis which occurs in a 

vaccinee between 7 and 30 days after a dose or in a person in close contact with a vaccinee 

between 7 and 60 days after that dose was received (335). Viruses isolated from healthy OPV 

recipients / contacts often show biological and chemical properties which are 

indistinguishable from viruses isolated from patients with VAPP (255). Vaccine associated 

paralytic poliomyelitis occurs at a low rate, estimated at between 1 per 500,000 and 1 per 

750, 000 vaccinees following the first vaccination; and 1 in 12 million vaccinees after the 

second dose (440). People with primary B-cell immunodeficiency are at much higher risk of 

developing VAPP (~3000 fold) (255). The ability of OPV strains to revert to virulence and to 

spread to contacts has implications for the GPEI. 

 

 



48 

 

1.4 GLOBAL POLIOVIRUS ERADICATION INITIATIVE 

 

1.4.1 Disease eradication 

 

Less than 20 years since the introduction of OPV, the transmission of wild-type PV was 

halted in the United States of America (85). This success prompted the PAHO to use OPV as 

its weapon of choice against poliomyelitis. Successes in OPV vaccination programmes run 

throughout South America resulted in the PAHO meeting it’s goal of eradicating wild-type 

PV in the Western Hemisphere by 1990. The transmission of wild-type PV in the Americas 

was certified to be discontinued three years later by the International Commission for the 

Certification of Poliomyelitis Eradication. Two decades prior to this the WHO had committed 

itself to vaccinate the entire world’s population as a means to aid the eradication of variola 

virus which caused smallpox. This mass vaccination strategy eventually eliminated the virus 

and in 1980, the 33
rd

 World Health Assembly announced the first successful eradication of a 

major human disease – smallpox (117, 158). Both the success of the PAHO eradication 

campaigns in the Americas and the eradication of smallpox encouraged the WHO to commit 

itself to the eradication of poliomyelitis by the year 2000. 

 

There are three levels of interventions to prevent infectious disease (135). These include 

control, which means to reduce the morbidity of the disease to a socially acceptable level 

through various measures (including vaccination). If successful this leads to the next level, 

disease elimination, which is the reduction of morbidity to zero by applying measures used to 

control the disease. By creating universal immunity in the human population this can be 

achieved even if the agent is still present in the environment. Eradication is the final level 

which leads to the permanent elimination of the disease from circulation and the prevention 

of any reintroduction. The difference between elimination and eradication is that the former 

requires rigorous control measures to maintain zero morbidity, while eradication would mean 

that such measures could be discontinued, conserving public health resources for other needs. 

Therefore if it is possible, it is better to eradicate rather than eliminate a disease. It is 

biologically possible to eradicate poliomyelitis as humans are the only natural reservoir host 

of PV (103). Consequently the decision was made to eradicate rather than eliminate 

poliomyelitis. 
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The eradication of PV requires a number of biological principles to be met. These 

include, the spread of the virus by person-to-person transmission; the absence of a persistent 

carrier state; the interruption of virus transmission by immunisation; a finite virus survival 

time in the environment; and the absence of any nonhuman reservoir hosts for the virus (136). 

In addition there must be a political will to enforce the eradication campaign. The GPEI has 

been dependent on the strong alliance among national governments, international agencies 

(e.g. UNICEF) and private partners (including Rotary International, the Bill and Melinda 

Gates Foundation and the UN Foundation) (255). 

 

 

1.4.2 Strategies for poliovirus eradication 

 

A combination of routine immunisation and supplementary campaigns guided by 

surveillance has been used to stop PV transmission. The four key strategies have been 

employed include, a high routine immunisation coverage of infants with four doses of 

trivalent OPV (tOPV) in the first year of life; supplementary immunisation through mass 

OPV campaigns, such as NIDs and subnational immunisation days (SNIDs) which target 

children younger than five years of age; targeted door-to-door “mop-up” OPV immunisations 

in high-risk areas; and surveillance for cases of acute flaccid paralysis (AFP) in children 

under 15 years of age with virological investigations of clinical specimens from AFP patients 

(103, 228, 255). 

    

 

1.4.2.1 Immunisation 

 

One of the key strategies of PV eradication is the high routine immunisation coverage of 

infants of less than one year of age with tOPV. Although routine coverage specifically protect 

individuals, if used in high coverage it can be used to interrupt the circulation of OPV. 

However routine immunisation coverage is low in many parts of the developing world. In 

addition in tropical countries routine immunisation is not very effective in blocking PV 

transmission. This could be due to problems with the storage of the vaccine in hot climates, 

where it is likely to lose potency if not stored at low temperatures. In addition the level of 

coverage that can be consistently achieved over several years and the epidemiology of PV 
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circulation in tropical countries might affect the effectiveness of routine immunisation (339). 

As described above there is a lack of seasonality in PV circulating in tropical countries and 

this may contribute to difference in the effectiveness of routine immunisation in temperate 

and tropical countries. For example if individuals in tropical countries are routinely 

immunised in the winter, as they might be in temperate countries, it is more likely that they 

will be infected with wild-type PV before they are immunised (339). 

 

For the reasons described above routine immunisation is used in conjunction with 

supplementary immunisation and “mopping-up” strategies in developing and tropical 

countries. In developing countries supplementary immunisation is an essential part of the 

eradication strategy as it can, in combination with routine immunisation, raise population 

immunity rates above the thresholds required to block PV transmission (556). Supplementary 

immunisation often takes the form of NIDs and SNIDs. The aim of NIDs is to immunise all 

children under the age of five in a country or region in a short period of time (normally a few 

days) and then to repeat the process a few weeks later. Subnational immunisation days are 

similar, but only immunise all the children under five in areas smaller than a country or 

region. National immunisation days and SNIDs are designed to interrupt PV transmission in a 

population by abruptly reducing the number of susceptible individuals. By preventing all 

transmission, even the silent transmission which does not lead to disease, the virus dies out 

(339). 

 

For some regions a synchronous immunity barrier to all three PV serotypes has been 

achieved by coordinating NIDs of neighbouring countries (103). Surveillance is used to drive 

supplementary immunisation campaigns. For example surveillance can guide SNIDs and 

“mop-up” campaigns to reservoirs communities where chains of PV transmission continue to 

survive and propagate (255). 

 

 

1.4.2.2 Surveillance 

 

Poliovirus surveillance is an essential cornerstone to the GPEI. The WHO established a 

global network of laboratories (the Global Polio Laboratory Network, GPLN) in 97 countries 

to support PV surveillance for all countries. The 144 GPLN laboratories are divided into 

three tiers which include, 121 national laboratories; 16 regional reference laboratories; and 7 
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global specialised reference laboratories (84, 103). The GPLN isolates PV from clinical 

specimens and in some settings environmental samples, and identifies them using various 

laboratory techniques (103). 

 

Nucleotide sequence analysis is used to further characterise vaccine-derived PV (VDPV, 

see below) and wild-type PV isolates. This analysis can be used to generate phylogenetic 

trees of current wild-type PV and VDPV isolates, which along with spot maps of different 

genetic groups of PVs, are dispatched monthly from the GPLN to the WHO and reinfected 

countries and to those in endemic areas. High-risk endemic areas which require intensified 

immunisation activities are identified using this genetic data (103). 

 

Poliovirus surveillance can be based on two separate approaches, including, clinical case-

driven surveillance, and direct virus targeted surveillance. The WHO gold standard of the 

former approach is AFP surveillance which is based on the assumption that if wild-type PV is 

circulating in a population, it is likely to be found in patients with a disease typically caused 

by PV. The view that all PV infected individuals, whether symptomatic or not, excrete 

relatively large amounts of the virus into stools for several weeks forms the basis of the direct 

virus targeted surveillance (220). 

 

Acute flaccid paralysis surveillance encompasses a number of steps. These include an 

active search for acutely paralytic children in the community; virological examination of 

faeces from these children; and centralised data collection and analysis (220). To avoid 

extensive neurologic examinations, which are not feasible in many developing countries, 

AFP was chosen as a clinical measure of paralytic poliomyelitis. However AFP surveillance 

alone is not highly specific or sensitive for detecting wild-type PV infections (16). As AFP 

has multiple etiologies (including Guillian-Barré syndrome, transverse myelitis, and 

traumatic neuropathy) this surveillance reports many other diseases in addition to 

poliomyelitis. The background rate of AFP from etiologies other than wild-type PV infection 

is at least 1 case per 100,000 persons younger than 15 years of age (254, 383, 485). Thus, the 

detection of an AFP case does not necessarily indicate infection with wild-type PV (254). For 

this reason, clinical specimens of AFP cases should be analysed by virologic techniques to 

investigate the etiologic role of wild-type PVs (255). 
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While AFP surveillance can detect endemic PV circulation in a population, its sensitivity 

is judged to be low as approximately only 1 in 200 nonimmune children infected with wild-

type PV shows signs of AFP (16, 164, 255, 384). Acute flaccid paralysis may appear in fewer 

than 1 of 10,000 wild-type PV infections when the population shows high levels of immunity 

(255, 410). To increase the sensitivity for detecting wild-type PV circulation environmental 

surveillance (ES) of PV is being used as a supplementary surveillance. Environmental 

surveillance refers to monitoring PV transmission in human populations by examining 

environmental specimens supposedly contaminated by human faeces. It is based on the fact 

that PV-infected individuals, whether presenting with disease symptoms or not, shed large 

amounts of PV in the faeces for several weeks (223). Following successful examples in 

Europe (222) and Israel (308) ES has been introduced to in Egypt (221), India (127), and 

Pakistan (103). Environmental surveillance has been able to detect PV lineages which were 

undetected by AFP. In most cases, strains closely related to the environmental isolates were 

found in the same country by AFP surveillance. However in some cases imported wild-type 

PV (Israel, India, and Switzerland) and otherwise-undetected highly divergent VDPVs have 

been found by ES (90, 91, 103). 

 

 

1.4.2.3 Laboratory diagnosis 

 

The GPLN laboratories carry out a number of virologic assays and techniques to aid PV 

surveillance. The use of recombinant murine cells which express CD155 (L20B cells), has 

enhanced standard methods for PV isolation in cultured cells (224, 408, 552). As these cells 

express CD155 they are selectively susceptible to PV and will produce a characteristic EV 

cytopathic effect (CPE). Although some non-PVs might be able to infect L20B cells, their 

CPE is usually different from that of PV. A small number of non-PV EVs can infect and 

grow in L20B cells, producing EV characteristic CPE. RD cells are derived from a human 

rhabdomyosarcoma and are permissive to PV, many ECHO viruses and some other EVs, all 

of which produce a characteristic EV CPE (552). A combination of passages in these two cell 

lines is used to isolate PV (figure 1.13). 
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Figure 1.13. Flow chart of poliovirus isolation in RD and L20B cells.  

a
: Passaged two times for a minimum of 14 days in total; 

b
: If a nontypable solate is obtained in L20B cells from 

samples from a non-endemic or recently endemic country, a regional reference laboratory coordinator and the 

national programme should be informed; 
c
: Non-polio EVs are only typed at the request of the Expanded 

Programme on Immunisation (552). 

 

 

Standard typing assays or PCR using PV group-specific or serotype-specific primer sets 

can be used to distinguish PV from non-PV EVs (258, 259, 552). Poliovirus typing is 

performed on the L20B culture of a clinical sample, while non-PV EV typing is carried out 

on the RD culture of a clinical sample (552). Intratypic differentiation (ITD) of PV is carried 

out by regional reference laboratories of the GPLN to determine whether it is vaccine-related 

or a wild-type. Methods assessing the antigenic and molecular properties of PV are used to 
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perform the ITD of PV (83). The antigenic ITD method incorporates an ELISA system with 

preparations of highly specific cross-adsorbed antisera (517, 522). Alternatively this method 

is based on MAb neutralisation using Sabin-specific MAbs in a cell culture-based 

neutralisation (517). Either genotype-specific nucleic acid probes, genotype-specific PCR 

primers, or PCR-restriction fragment length polymorphism are used in the molecular ITD 

methods (24, 118, 119, 298, 568, 569). 

 

Oral poliovirus vaccine-like PVs which are unlikely to be of current epidemiologic 

importance are screened out by ITD, while VDPVs and wild-type PV are screened for. The 

complete VP1 region (~900 nts, ~15 % of total genome) of VDPV and wild-type PV has been 

sequenced by the GPLN since 2001. Different alignment algorithms, tree-building methods, 

estimation of genetic distances, and testing models of evolution can be used to compare nt 

sequences (309). This sequenced region is used to compare isolates as several serotype-

specific antigenic sites are encoded in this part of the genome and nt substitutions are 

successively fixed in this area as the PV strains evolve (255, 337). Comparative VP1 

sequence data can generally afford sufficient phylogenetic resolution for individual chains of 

transmission and identification of local endemic reservoirs to be reconstructed as the PV 

sequence evolves rapidly (1 to 2 nt substitutions per week over the entire genome) (467). If 

higher resolution is required the sequencing window can be widened to cover the entire PV 

genome (253, 299, 466, 567). Phylogenetic trees and lineage maps are used to summarise 

sequence relationships (33, 42, 149, 253-255, 314, 466, 467, 570). 

 

 

1.5 CURRENT STATUS OF POLIOVIRUS ERADICATION 

 

1.5.1 Progress between 1988 and 2011 

 

In 1988 the GPEI was launched with the intention of eradicating poliomyelitis by the year 

2000 (18). Global cases had decreased 99 % from an estimated 350, 000 cases in 124 

countries in 1988 to 719 cases in 23 nations by the year 2000 (18, 551). In addition the last 

case of serotype 2 wild-type PV was reported in Uttar Pradesh, India, in October 1999 (79). 

Between 1988 and 2002 three WHO regions were certified to be free of indigenous wild-type 

PV circulation. These included the Americas in 1994 (81); the Western Pacific Region in 
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2000 (82); and the European region in 2002 (80). In 2001 the fewest reports of PV were 

recorded, with 483 cases across 15 countries (551).  

 

However following difficulties in eradicating PV in Nigeria, India, Pakistan and 

Afghanistan, which still retain an endemic circulation of PV (figure 1.14), the number of 

wild-type PV cases rose, peaking at 1651 cases in 18 countries in 2008 (17, 551). Although 

most of the population in these countries are protected transmission still continues from some 

of the highest-risk areas (103). Indeed these persistent reservoir countries have served as the 

main source of infection for a series of imported PV outbreaks that have affected countries in 

Africa, Southeast and Central Asia, and Europe (figure 1.14) (89, 92, 483, 553). Innovations 

in the vaccination campaigns and the type of OPV used have since led to a decrease in the 

number of PV cases, at 650 cases in 2011 (551). 

 

 

Figure 1.14. Circulation of wild-type poliovirus, as of January 2012.  

Nigeria, India, Afghanistan and Pakistan retain endemic circulation of PV. These persistent reservoir countries 

have served as the main source of infection for a series of imported PV outbreaks that have affected countries in 

Southeast and Central Asia and Africa. Adapted from (499).  
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Poliovirus remains endemic in these four persistent reservoir countries for different 

reasons. In 2003 and 2004 unfounded concerns about OPV safety led to the suspension of 

mass immunisation campaigns in the northern states of Nigeria (103). Due to a shortage of 

funds at the same time there was a reduction in immunisation activities in the surrounding 

countries. The combination of these two events led to an increase in the number of cases in 

Nigeria and the spread of PV across Central Africa (338). In addition PV was introduced into 

Yemen and Indonesia from Nigeria as a result of the pilgrimage to Mecca (344). Following 

greatly improved vaccine coverage in door-to-door immunisation campaigns in the Northern 

states, where previously less than 40 % of young children had been immunised, the 798 wild-

type PV cases in 2008 decreased to 388 and 21 cases in 2009 and 2010, respectively (17). 

 

In India wild-type PV has been eliminated from all but the two most populous states of 

Uttar Pradesh and Bihar (combined population, ~275 million; combined monthly birth 

cohort, >600,000). There is extremely high potential for PV transmission in these areas, and 

despite a well-run program, focal serotype 1 and 3 wild-type PV circulation had continued in 

the highest-risk communities. The lower per-dose efficacy of tOPV in the settings of high 

population density, poor hygiene and sanitation, inadequate nutrition, competing enteric 

pathogens, and high rates of diarrhoeal diseases is one aspect of this eradication problem 

(103). It is not clear why the vaccine shows reduced efficacy in this region. Either 

interference from other circulating EVs (449) or environmental or nutritional factors could 

contribute to this reduced vaccine efficacy by compromising the immune competence of the 

population. Due to interference from the robust Sabin 2 strain the tOPV efficacy might be 

lower for the Sabin 1 and 3 strains (103). In response the GPEI has switched to using 

serotype 1 and 3 monovalent OPVs (mOPV). This decision was taken as modelling had 

shown improved-per-dose efficacy (103, 189). In addition following administration of 

serotype 1 mOPV, improved seroconversion rates in newborns have been found by serologic 

studies (148).  

 

Substantial progress towards PV eradication in India was made in 2010 and 2011. The 

last confirmed serotype 3 and 1 wild-type PV strains were detected in October 2010 and 

January 2011, respectively. Environmental surveillance of sewage last detected wild-type PV 

in Mumbai in November 2010. It is likely that wild-type PV transmission has been 

interrupted as there has been no detection of PV in any of the sewage sampling sites since 

November 2010. In addition no wild-type PV has been detected in the previously polio-
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endemic states of Uttar Pradesh and Bihar for >17 and >12 months, respectively (88). The 

simultaneous reduction in serotype 1 and 3 wild-type PV cases in India is likely to have 

largely been due to the introduction of bivalent OPV (bOPV) in supplementary immunisation 

activities from January 2010 onwards. The levels of immunity required to stop wild-type PV 

transmission could have been reached and sustained by the focussed vaccination coverage on 

children in high-risk endemic areas and migrant populations since 2010 (88). 

 

Access to some communities in Afghanistan and Pakistan, which were previously open to 

immunisation activities, has been restricted by conflicts since 2001. In the southern states of 

Afghanistan and the insecure Federally Administered Tribal Areas of Pakistan along the 

northern border with Afghanistan, serotype 1 and 3 wild-type PV persist. The spread of PV 

from these reservoir areas to communities which have immunity gaps has been facilitated by 

heightened mobility of the population in these areas. This has led to outbreaks and re-

established transmission (86, 103). During January to September 2011 increased numbers of 

wild-type PV cases were reported in Afghanistan and Pakistan, compared to a similar period 

in 2010. While serotype 1 wild-type PV transmission was widespread and uncontrolled 

throughout Pakistan, transmission in Afghanistan primarily occurred in conflict-affected 

areas in the south region. In both countries the transmission of serotype 3 wild-type PV was 

significantly reduced, with transmission only present in the Federally Administered Tribal 

Areas of Pakistan during 2011 (87). 

 

The success of eradicating indigenous wild-type PV from many countries raises the risk 

that imported wild-type PV will spread unless high rates of PV vaccine coverage are 

maintained. Following the successful eradication of the indigenous wild-type PV, the 

immunisation activities of many resource-poor and conflict-affected countries have 

deteriorated. This has led to growing immunity gaps in populations, increasing the risk of 

outbreaks. For example in northern Nigeria the suspension of immunisation campaigns led to 

outbreaks of serotype 1 wild-type PV which spread to 27 other countries in 2005 to 2007, 

from Guinea in West Africa to Indonesia in Southeast Asia (89, 103). 

 

Apart from its intrinsic biological limitations, global AFP surveillance has developed 

gaps in critical areas (103). Phylogenetic trees can be analysed to identify orphan lineages. 

Orphan lineages are isolates whose sequences appear at the tips of trees and do not appear 

closely related to other sequences. Orphan isolates are most often related to strains that were 
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previously isolated in the same region but that were believed to have been eliminated. The 

presence of wild-type PV orphan lineages, which in some cases have not been detected for up 

to five years, might indicate that some AFP cases are being missed. This problem is 

particularly prevalent in areas with conflict or under-resourced countries. In the African 

region an extension of the period of reporting “no wild-type PV-associated cases” beyond the 

three years requirement that was applied for the certification of eradication in the Americas, 

Western Pacific and European Regions, may be required as orphan lineages have been 

detected in sub-Saharan Africa (103). 

 

 

1.5.2 Vaccine-derived poliovirus 

 

Oral poliovirus vaccine is genetically unstable and as discussed above, the attenuation 

mutations can revert during replication within the gut (117). Following recombination, site 

suppression mutations, back mutations and a steady drift in molecular sequence the loss of 

attenuation mutations can result in the development of VAPP (335). Reversion of an OPV 

strain can progress further resulting in the development of VDPV. Vaccine-derived poliovirus 

isolates have a higher genetic divergence from OPV strains than do isolates from most VAPP 

cases (255). 

 

Two types of vaccine-related isolates are derived from OPV following replication in the 

host, OPV-like isolates and VDPVs. Most of the vaccine-related isolates are OPV-like and 

differ very little (<1 % of VP1 nts) from the respective parental Sabin strains. Vaccine-

derived polioviruses occur less frequently and differ from the parental Sabin strains at 1-15 % 

of VP1 nts (i.e. they have ≥ 10 nt substitutions) (255). Vaccine-derived polioviruses 

biologically resemble wild-type PV isolates and have genetic properties consistent with 

prolonged replication or transmission (560). Vaccine-derived polioviruses are further 

classified into circulating VDPVs (cVDPVs), immunodeficient VDPVs (iVDPVs), and 

ambiguous VDPVs (aVDPVs). Circulating VDPVs are associated with sustained person-to-

person transmission (255). Patients with primary B-cell immunodeficiencies who have 

prolonged VDPV infections following exposure to OPV can secrete iVDPVs (558). Clinical 

VDPV isolates from patients with no recognised immunodeficiency and not associated with a 
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PV outbreak, or environmental isolates whose ultimate source has not been identified are 

defined as aVDPVs (255). 

 

The >1 % VP1 divergence demarcation between OPV-like isolates and VDPVs indicates 

that replication of a OPV, either within an individual or during person-to-person transmission 

has occurred for approximately 1 year or more, in contrast to the normal 4 to 8 weeks 

excretion of PV (11, 255). The definition of VDPVs is based on the view that VDPVs have a 

history of prolonged replication since the administration of the OPV. However the definition 

does not infer on the biological properties of VDPVs, i.e. the definition does not mean that 

isolates with <1 % VP1 divergence would lack the capacity to spread from person-to-person 

or cause paralytic disease in humans (255). 

 

Circulating VDPVs were first identified in a PV outbreak of 21 reported cases on the 

islands of Hispaniola from 2000-2001 (253). The serotype 1 cVDPV isolates were found to 

be closely related to the Sabin 1 strain. Based on the degree of sequence drift they were 

judged to have been circulating for two years. Analysis of the cVDPV isolates determined 

that they were recombinants between the OPV strain and unidentified C type EVs (338). The 

strains were able to circulate on the islands as there was low OPV coverage and no NIDs had 

been conducted within the preceding five years (255). Under these conditions OPV can 

spread from person-to-person and recover the biological properties of wild-type PV through a 

series of mutational (and possibly recombination) events (103). These wild-type PV 

properties include the efficient transmission of the PV and the ability to cause paralytic 

disease in humans. In Egypt retrospective investigation found that serotype 2 cVDPV had re-

established serotype endemicity from 1983 to 1993 (103, 570).  
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Figure 1.15. Location of poliovirus outbreaks associated with circulating vaccine-

derived polioviruses  

Serotypes of the cVDPV isolates, the year (s) of cVDPV isolation, and the number of reported cases associated 

with cVDPVs are shown (103). 

 

 

Twelve cVDPV outbreaks, all in tropical and subtropical settings with gaps in OPV coverage, 

have been described (figure 1.15) (103). Although cVDPVs have been associated with all 

three serotypes, most cVDPV outbreaks have been due to serotype 2 strains (figure 1.15) (91, 

255). In isolated communities with gaps in OPV coverage small cVDPV outbreaks have 

occurred (295, 420). 

 

Insufficient population immunity is a critical risk factor for cVDPV outbreaks. Although 

PV excreted by OPV vaccinees can frequently recover the capacity to spread beyond 

immediate contacts, population immunity normally limits this spread. When the density of 

nonimmune susceptibles rises to the point at which the chains of cVDPV transmission can 

propagate outbreaks will occur (164, 255, 369). The size of the nonimmune population and 

the potential for transport of the outbreak PV to susceptible communities elsewhere 

determined the size of a cVDPV outbreak (255). The risk of a cVDPV outbreak is raised 

when indigenous wild-type PV circulation is eliminated as nonimmune susceptibles will 
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accumulate in the absence of high rates of PV vaccine coverage and naturally acquired 

immunity. Insensitive surveillance is an additional risk factor for the spread of cVDPV (255). 

 

Vaccine-derived polioviruses are of particular risk to people with primary B-cell 

deficiencies, including, hypogammaglobulinemia, agammaglobulinemia, severe combined 

immunodeficiency and most frequently common variable immunodeficiency (90, 91, 485, 

558). Approximately 50 people with B-cell immunodeficiencies have been found to be 

excreting iVDPVs since the introduction of OPV in 1961 (560). Most of the iVDPV 

infections (70 %) detected to date have spontaneously ceased within three years or the 

patients have died from complications of their immunodeficiency. A small number of patients 

(17 %) have excreted PV for three to eight years, and fewer still (10 %) have excreted the 

virus beyond nine years. Serotype 2 PV has been responsible for most iVDPV infections. 

Few iVDPV infections are associated with serotype 1 PV, and fewer still with serotype 3 PV 

(558).  

 

B-cell immunodeficient patients in upper- and middle-income countries are sustained by 

regular intravenous administrations of gamma globulin. Although this treatment protects the 

patient from poliomyelitis or other infections, it does not prevent them from shedding the PV. 

Therefore as chronic excretors can act as a source of pathogenic PV capable of restarting PV 

if the population immunity level falls, they can pose a significant risk to their contacts and to 

the communities they live in (103). At least two antiviral drugs are being developed to clear 

iVDPV infections (371). 

 

Ambiguous VDPVs are VDPVs that cannot be assigned as either a cVDPV or an iVDPV. 

Many aVDPVs are isolated from the environment during ES and have similar genetic 

properties to iVDPVs. In Israel, Estonia, Slovakia, and Finland some significantly divergent 

aVDPVs have been isolated (42, 91, 93, 468). Analysis of the sequence divergence of some 

of these isolates indicates that they have been replicating for more than 15 years since the 

initiating OPV dose (91, 103). Immunodeficient patients with asymptomatic symptoms could 

be the source of these isolates. Other aVDPVs may show similar properties to cVDPV, i.e. be 

able to transmit from person-to-person in communities with low vaccination coverage (103). 
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1.5.3 The End-game of poliovirus eradication 

 

When the GPEI was launched in 1988, it was assumed the eradication of PV would be 

similar to the successful smallpox model (158), and a few years after the eradication of wild-

type PV had been certified the OPV immunisations could cease. The identification of 

iVDPVs, from immunodeficient patients chronically infected with PV; and the finding that 

cVDPVs can, like wild-type PV, cause large outbreaks of paralytic disease, re-establishing 

endemic circulation have prompted a reassessment of WHO End-game and post-eradication 

strategy (145, 549). Continued use of OPV during the End-game and post-eradication phase 

would lead to more VAPP cases, more immunodeficient patients chronically infected with 

PV; potential outbreaks by cVDPVs and public health “fatigue” leading to reduced OPV 

coverage and its attendant dangers (364). Clearly the use of OPV must stop in a coordinated 

manner as soon as safely possible (137). 

 

A strategic plan for the cessation of all routine use of OPV has been outlined by the WHO 

(547, 555). This plan has several components, one of which is the globally coordinated 

cessation of routine OPV immunisation two to three years after the last detection of wild-type 

PV. Another is that not all countries will routinely immunise with IPV, although this might 

change as research is currently being carried out to assess whether a global switch from OPV 

to IPV would be feasible, see below. For at least three years after the detection of the last 

VDPV AFP and other forms of PV surveillance will be maintained. Following the 

discontinuation of OPV all laboratory stocks of PV will be contained. To forestall against any 

potential PV transmission that may occur after the cessation of OPV a global mOPV 

stockpile and response capacity will be established (255). 

 

A formal process for the certification of wild-type PV eradication has been established by 

the WHO (478). For the certification to be made there must be no wild-type PV isolation 

from patients with AFP, healthy individuals, or the environment for at least three years in the 

presence of high quality surveillance (255). At present, three of the six WHO regions have 

met this criteria and subsequently been certified PV-free. These include the Americas, the 

Western Pacific and European regions (80-82). Eradication is still progressing in the African, 

Eastern Mediterranean and Southeast Asia regions. After a series of Global Immunisation 

Days in countries using OPV, the use of OPV should cease in a coordinated fashion (255). 
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A Global Action Plan for PV containment in the pre-eradication, post-eradication and 

post-OPV phases has been developed by the WHO (561). Currently (pre-eradication) 

biomedical laboratories are being surveyed worldwide to identify those storing wild-type PV 

infectious or potentially infectious materials. Certification Commissions of each WHO region 

will receive national inventories of laboratories retaining such materials. In order to safely 

handle wild-type PV these laboratories now must work under biosafety level 2 (BSL-2) / 

polio measures (255). A year after the isolation of the last wild-type PV, all but the essential 

laboratories on the national inventories will be required to destroy stocks of wild-type PV 

(103). The essential laboratories will need to implement appropriate BSL-2 / polio or BSL-3 / 

polio measures (255). These laboratories will be involved in vaccine production, vaccine 

quality assurance, virus reference activities, and key research (103). After the use of OPV 

ceases, OPV Sabin strains will need to be contained with wild-type strains as any individual 

exposed to either could potentially transmit the virus to non-immune susceptible people in the 

post-OPV era (255). 

 

In order to be able to generate a serotype specific response to any potential PV outbreak 

in the post-eradication phase the WHO, in coordination with national governments, is 

establishing a global stockpile of mOPV. This stock pile is being produced prior to the 

cessation of OPV immunisation as OPV production is likely to cease at the same time (255). 

This mOPV stockpile could also be used as a counter measure against bioterrorism. Research 

has shown that it is possible to generate PV through chemical synthesis of the PV genome 

(78). As the complete genetic sequences of many PV strains are detailed in scientific records, 

such research could be used to intentionally release PV in the post-eradication phase. 

Disastrous PV outbreaks could be caused by the intentional release or introduction of PV into 

populations in the post-eradication phase who have little or no immunity (103). Poliovirus 

surveillance must be maintained for the foreseeable future as it is essential to detect any PV 

that has been re-introduced into a population (e.g. by an accidental breach of containment in a 

laboratory or vaccine manufacturer, or through intentional release by terrorists) before it is 

able to cause large outbreaks (255). 
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1.5.4 Inactivated poliovirus vaccine in the End-game and post-eradication phases 

 

There is a growing consensus that IPV must replace OPV for an indeterminate period of 

time until it can be reliably established that there is minimal risk of PV reintroduction and 

circulation during the End-game and post-eradication phase (103). Many high-income 

countries, including the USA, Japan and the UK, have already switched from using OPV to 

using IPV (146). However there are several barriers which inhibit a worldwide switch to IPV.  

One of these barriers is that IPV needs to be administered by injection. There are several 

problems with administering the IPV by injection. These include pain at the site of 

administration, logistical difficulties and safety and disposal concerns and the fact that 

injected administration requires trained medical staff (202, 546). An additional barrier is the 

cost of IPV. Currently the per-dose price and production costs of IPV are greater than OPV 

(562). To overcome these barriers a needle-free device for intradermal injection has been 

developed, which can be manually reset and used by volunteers. Intradermal injections of 

fractional doses of IPV have been trialled in Cuba and Oman (347, 425). The results of both 

studies indicated that when given at the correct interval, the fractional dose strategy with use 

of intradermal injection could reduce the cost and increase the ease of administration of IPV 

(347, 372, 425). 

 

Another barrier to the worldwide switch to IPV is concerns over the efficacy of IPV to 

induce sufficient intestinal immunity. The mucosal intestinal immunity is essential to stop the 

faecal-oral transmission of PV which predominates in developing countries which have low 

hygiene and sanitation standards (163, 202). The findings of a series of vaccination-challenge 

studies indicate that IPV induces less mucosal immunity than OPV (282, 381, 498, 536). 

Vaccination with IPV can reduce the prevalence, duration and titres of PV shedding as 

compared to no vaccination, but it is not clear whether such reduction would be sufficient to 

stop an outbreak of PV (202, 498). As the dermis is a mucosal surface and intradermal 

injection may stimulate IgA mucosal immunity it has been hypothesised that administering 

IPV by an intradermal injection could improve the protection against infection in the gut 

(202, 548). 

 

The final barrier to the worldwide switch to IPV is that the current cIPV is produced by 

inactivating large quantities of wild-type PV. As described above, faculties involved in IPV 

production will require higher containment during the End-game and post-eradication phase. 
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This is likely to raise the cost of IPV during these phases when the demand is likely to be 

high as populations will require protection from PV after the cessation of OPV. The supply of 

IPV could be significantly increased by shifting production to developing countries. This 

could also lower the production cost as a result of increasing competition among producers 

(27, 202). However there are concerns as to whether sufficient biosafety containment 

measures would be adhered to in developing countries. Manufacturing IPVs from wild-type 

PV strains has in the past resulted in the unintended re-introduction of wild-type PV from 

manufacturers into the community (356). Such an event in the post-eradication phase would 

have dire consequences, particularly in developing countries with high populations and poor 

hygiene and sanitation. A potential solution is to inactivate the attenuated Sabin strains, used 

in OPV, to develop Sabin-IPV (sIPV). 

 

The Sabin strains were primarily selected for the development of a new IPV as they have 

been studied in depth and have been used in the production of OPV for decades (142, 255, 

524). Previous research has also determined the molecular biology of the Sabin strains (255). 

The Sabin strains are considered safer to use than wild-type PV strains as the IPV seeds as 

the potential for the spread of the Sabin strains has been estimated to be two to ten times less 

than the wild-type PV strains (166, 495, 524). New vaccine producers have been urged by the 

WHO to develop sIPV as a safer alternative to introducing large-scale production of wild-

type PV (202, 276). Several manufacturers are involved in the development of sIPV, 

including, the Japanese Polio Research Institute, the Chinese Academy of Medical Sciences, 

and the Netherlands Vaccine Institute (524). 

 

In recent years much of the pharmaceutical development of sIPV has been completed, the 

clinical development will become the focus for the next 3-5 years (524, 557). In Japan and 

India clinical trials for sIPV are currently taking place (548). However there are concerns as 

preliminary research carried out during this development and by other laboratories has found 

discrepancies between the immunogenicity of cIPV and sIPV. The immunogenicity of sIPV 

and cIPV has been assessed in rat models and Tg mice expressing the PVR. Both the Tg mice 

and rat models showed that the serotype 2 sIPV 2 induced lower levels of antibodies than the 

serotype 2 cIPV (141, 276, 310, 532). However, the serotype 1 sIPV was found to raise at 

least the same, if not more antibodies than those induced by the serotype 1 cIPV (140, 276, 

310, 312, 472, 532). The immunogenicity of the serotype 3 sIPV in rats varied between 

studies, with some finding it two times lower than the serotype 3 cIPV (310, 472), while 
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others found equivalent immunogenic responses elicited by the serotype 3 sIPV and cIPV 

(276, 532). 

 

In comparison to the cIPVs the lower immunogenicity of the serotype 2 sIPV is 

particularly striking. This may have been due to the lower stability of the Sabin strains, which 

would have resulted in its D-Ag being destroyed during HCHO treatment (100, 160). A 

potential solution to this could be to use alternative inactivation agents which do not damage 

the viral antigens as much as HCHO (101). 

 

 

1.6 INTRODUCTION TO THIS THESIS 

 

Sabin-IPV offers a safer alternative to the large scale inactivation of wild-type PV strains. 

However, as discussed above, the immunogenicity of sIPV and cIPV differ, particularly for 

serotype 2 sIPV which is significantly less immunogenic than its cIPV counterpart. It is not 

clear why the two preparations differ so greatly in immunogenicity as very little is known 

about the molecular mechanisms which lead to the elimination of virus infectivity during the 

HCHO inactivation process. 

 

This thesis explored the process of PV inactivation and its consequences and contributes 

to better understanding of the differences between sIPV and cIPV. As the serotype 2 sIPV 

and cIPV showed particularly significant differences this thesis focused on serotype 2 PV 

strains. Following inactivation with HCHO, the molecular, antigenic and immunogenic 

properties of a wide range of serotype 2 strains of different origins was assessed to gain a 

greater understanding of why serotype 2 sIPV and cIPV differ. The effect of alternative 

inactivation chemicals to HCHO on the antigenic and immunogenic properties of a series of 

serotype 2 strains was determined with a view to generate an IPV with improved 

immunogenicity. The molecular mechanisms which underlie the loss of PV infectivity during 

inactivation were characterised by assessing the effect of inactivation on viral entry into a 

host cell and the viral RNA. 
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This thesis aims to improve understanding of the inactivation of PV and contribute to the 

development of improved IPVs for the End-game and post-eradication phase of the GPEI. 

This aim will be met by completing the following objectives: 

 Identify and characterise a range of serotype 2 PV strains based on their antigenic 

properties. 

 Assess the effect of conventional HCHO inactivation on the antigenic and 

immunogenic properties of a range of serotype 2 PV strains. 

 Examine the effect of alternative inactivation chemicals, to HCHO, on the viral 

infectivity, antigenicity and immunogenicity. 

 Assess the thermal stability of inactivated PV preparations generated with different 

inactivation chemicals. 

 Characterise the molecular mechanisms which underlie the loss of PV infectivity 

during inactivation by assessing the effect of inactivation on viral entry into the host 

cells and the viral RNA. 

   

 This thesis is based on the hypothesis that the inactivation process alters the antigenic 

epitopes of PV resulting in changes in their immunogenicity. The extent of these changes is 

different depending on the strain of PV and / or the inactivation chemical used. 

 

 

 

 

 

 

 

 



68 

 

 

 

 

 

 

CHAPTER 2 

 

MATERIALS AND METHODS 
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2.1 MATERIALS 

 

2.1.1 Primers 

 

Standard M-13-tagged primers with Sabin 2, MEF-1 and selected VDPV sequences from 

the collection at the National Institute for Biological Standards and Control (NIBSC), were 

used to sequence the viral capsid coding region of a series of serotype 2 PV strains. The 

primers, detailed in table 2.1, were of a similar length.  
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Table 2.1. M-13-tagged primers used to sequence serotype 2 poliovirus strains. 

M-13-tagged primers with Sabin 2, MEF-1 and selected VDPV sequences from the collection at the NIBSC 

were used to sequence the viral capsid coding region of a series of serotype 2 strains. 

 

Sense

Code

(Strain 

sequence)

Primer sequence Position

Antisense
M-056

Sabin 2
TCA TTG CAA GCT GAC ACA 2405-2424

Sense
M-057

Sabin 2
CAG AGG GTG GTG GTG GAA 1179-1196

Antisense
M-071

Sabin  2
TTA CAC TGC ACG TGC AC 1276-1292

Antisense
M-087

Sabin  2
GCG AGC TCC ATC ATG TT 1891-1907

Sense
M-088

Sabin  2
AAC ACT CCT GGT AGT AAC C 1783-1801

Sense
M-090

Sabin 2
AGC ATG TTC TAC CAA AC 2338-2354

Sense
M-115

Sabin 2
GCG TGT GGG TAT AGT G 970-985

Antisense
M-117

Sabin  2
TTA CCA CGC GAA CTG CCA 3200-3217

Sense
M-202

Sabin  2
GTT GTT GTC CCG TTG TCC 2359-2376

Antisense
M-204

Sabin  2
CTG GAT GAC ATG GCG CGT 2668-2685

Sense

M-213

Sabin 2  

VDPV

GGC GGA ACC GAC TAC TTT 530-547

Antisense

M-215

Sabin  2  

VDPV

GAT GAT GTA TTC AGG CCA 1066-1080

Sense
M-221

Sabin  2
GTT TGA TGT CAC TCC ACC 1848-1865

Antisense
M-223

Sabin  2
TAA TGT GTG TTG TRT CTC 2444-2461

Sense
M-249

MEF 1
ATG TGC TGC GAG TTC AA 1717-1733

Sense
M-256

Sabin  2
TTT GTR TCR GCN TGY AAY GA 2404-2423

Sense
M-257

Sabin  2

CAG GTN TAY CAR ATN ATG 

TA
2938-2952

Antisense
M-259

Sabin  2

GAN GTT TGC CAN GTG TAA 

TC
2995-3014

Antisense
M-261

Sabin  2
AGG TCT CTG NYC CAC ATA 3483-3500

Antisense
M-263

Sabin 2
GTT NGC TTC CAT GTA TTG 3625-3642

Sense
M-448

Sabin  2
ACT AGA AAT GCA TTG GTT CC 2521-2540
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Other primers were designed to yield different sized reverse transcription-PCR (RT-PCR) 

products at the region encoding VP1, and at the 5’ and 3’end of the genome of the MEF-1 PV 

strain. The primers, detailed in table 2.2, were designed to have a similar melting point and 

length. The complete genomic sequence of the MEF-1 strain was obtained from the National 

Centre for Biotechnology Information database and used in conjunction with the online 

program, “Primer3 Input version 0.4.0” (442) to design these primers. These oligonucleotide 

primers were synthesised by Eurofins MWG Operon, an international provider of genomic 

services. 

 

Region Sense Code Primer sequence Position 

5’end of 

the 

genomic 

region 

Sense 5NCR-44 GCG GCC AGT ACA CTG GTA TT 44-63 

Antisense 

5NCR-153 ACT GGT TTG TAC CCC CTC CT 134-153 

5NCR-252 TCT CGA AGT ACA TGA GCG GAT A 231-252 

5NCR-455 GCC GGA GGA CTC TCA GGT A 437-455 

5NCR-654 ATC AAA TTC TCA CCG GAT GG 635-654 

5NCR-861 GCT CGC AGA ATC CCT GTA ATA A 840-861 

VP1 

Sense VP1-2521 ACG AGA AAT GCC TTG ACA CC 2521-2540 

Antisense 

VP1-2737 AAG CTC CTC TTG CGA AGA AA 2718-2737 

VP1-2937 ATT TAG TGC GTG CCC ATT GT 2918-2937 

VP1-3125 ACT TTG GCA AAC CCA TCG TA 3106-3125 

VP1-3338 TAG TCA ACC CCT GGT CCG TA 3319-3338 

3’end of 

the 

genomic 

region 

Antisense 3NCR-7412 ACA ACA GTA TGA CCC AAT CCA A 7391-7412 

Sense 

3NCR-7288 AAG ATT AGA AGT GTG CCA ATC G 7288-7309 

3NCR-7201 AGA TCC CAG AAA CAC TCA GGA T 7201-7221 

3NCR-7011 CTA GCC CAA TCA GGA AAA GAC T 7011-7033 

3NCR-6782 ATT ATC TGA ATC ACT CGC ACC A 6782-6803 

3NCR-6583 AAG AAC CCA GGT GTA GTG ACA G 6583-6604 

 

Table 2.2. Sequences of oligonucleotide primers used in real-time reverse transcription-

polymerase chain reaction. 

Primers were designed using a complete sequence of the MEF-1 strain in conjunction with the online program, 

“Primer3 Input version 0.4.0” (442).  
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2.1.2 Cell lines 

 

Four cell lines were used throughout this research, HEp-2C, L20B, Ltk- and 293-CD155-AP. 

 

2.1.2.1 HEp-2C cells 

 

Human Caucasian larynx carcinoma epithelial (Hep-2C) cells were derived from 

neoplasms which were grown initially in an irradiated and cortisone-treated rat (351, 506). 

These cells are highly susceptible to PVs, many Coxsackie B viruses, and some other EVs, all 

resulting in characteristic EV CPE (309). These cells were available from the stock at the 

NIBSC. 

 

     Growth   Maintenance 

Eagle’s minimum essential  1x    1x 

medium (MEM) 

Foetal calf serum (FCS)  5 %    2 % 

L-glutamine (L-glu)   1 %    1 % 

Penicillin-Streptomycin (P-S)  1 %    1 % 

Amphotercin B (AmpB)  1 %    1 % 

 

 

2.1.2.2 L20B cells 

 

L20B cells originate from a cloned cell line that was derived by transforming murine Ltk 

–
 aprt 

–
 cells with HeLa cell (human) DNA (328, 329, 408). This cell line expresses the 

human PVR and consequently is highly selective for PVs. A small number of non-PV EVs 

(e.g. Coxsackie A) are able to infect L20B cells resulting in the characteristic EV CPE. A 

number of non-PVs (e.g. reoviruses and adenoviruses) which are able to infect Ltk cells, can 

infect L20B cells. However the resulting CPE is often different to that produced by a PV 

infection (309). These cells were available from the stock at the NIBSC. 
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Growth   Maintenance 

MEM     1x    1x 

FCS     10 %    2 % 

L-glu     1 %    1 % 

P-S     1 %    1 % 

AmpB     1 %    1 % 

 

 

2.1.2.3 Ltk- cells 

 

Ltk-
 
cells are a sub-line of a BUdR resistant strain of the L-M mouse line, which in turn 

was derived from the L929 cells. The Ltk- cells lack TK and cannot grow in HAT medium 

(144, 226, 537). As they do not express the PVR they are not susceptible to infection by PV. 

These cells were available from the stock at the NIBSC. 

 

     Growth   Maintenance 

MEM     1x    1x 

FCS     10 %    2 % 

L-glu     1 %    1 % 

P-S     1 %    1 % 

AmpB     1 %    1 % 
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2.1.2.4 293-CD155-AP cells 

 

293-CD155-AP cells express soluble PVR (sPVR, or CD155) tagged with alkaline 

phosphatase (AP). The plasmid pAPtag2 (167) has been used to fuse the coding region of the 

337 N-terminal codons of CD155 to the N-terminal coding region of human placental AP. 

The resulting plasmid (pCD155-AP) was used as a vector with 293 cells (human embryonic 

kidney cells transformed with adenovirus E1A, B genes). Subsequently the 293 cells 

expressed the CD155-AP fusion protein (201). These cells were kindly provided by Dr 

Mueller (Stony Brook University, New York, USA). 

 

Growth   Maintenance 

Dulbecco’s modified   1x    1x 

Eagle’s medium (DMEM) 

FCS     10 %    2 % 

L-glu     1 %    1 % 

P-S     1 %    1 % 

AmpB     1 %    1 % 
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2.1.3 Virus stocks 

 

As discussed in the Introduction, the work detailed in this thesis focussed on serotype 2 

PV strains. A number of serotype 2 PV strains were analysed including vaccine seeds; a 

cVDPV strain; a number of isolates from immunodeficient patients and wild-type strains 

from paralytic cases across the world isolated over many decades. These viruses were 

sourced from the large collection at the NIBSC. Many of these viruses, in particular the 

iVDPV strains, are unique to the NIBSC. The selected strains are shown in table 2.3. The 

characteristics of the strains are discussed in Chapter 3. 

 

Serotype 2 

poliovirus strain 
Origin 

Date / Place of 

isolation 

Sabin 2 Sabin vaccine seed (OPV) 1956, USA 

MAD029 cVDPV strain 2002, Madagascar 

04-44140261 iVDPV strain 06/10/2004, UK 

102050 iVDPV strain 16/01/1998, UK 

071108 iVDPV strain 07/11/2008, UK 

118/78 Wild-type strain 1978, Morocco 

II-215 Wild-type strain 1959, Venezuela 

II-316 Wild-type strain 1952, Egypt 

MEF-1 Wild-type strain (IPV seed) 1942, Egypt 

 

Table 2.3. Serotype 2 poliovirus strains analysed throughout this project. 

A range of serotype 2 PV strains of different origins (vaccine seed, VDPV, wild-type) were sourced from the 

collection at the NIBSC. 
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2.2 METHODS 

 

2.2.1 Virus characterisation 

 

2.2.1.1 Growth, concentration and titration 

 

The selected serotype 2 PV strains were propagated in HEp-2C cells as described 

previously (309). The Sabin 2, MAD029, 04-44140261, 102050, and MEF-1 strains were 

propagated on a larger scale as a greater quantity of these strains was required for additional 

study beyond the initial characterisation. This involved propagating the strains in 850 cm
2
 

roller bottles (Corning Incorporated) instead of 75 cm
2
 tissue culture flasks (BD Biosciences). 

At later date the selected serotype 2 PV strains were inactivated with HCHO. To improve the 

yield of inactivated PV each strain was concentrated by ultracentrifugation on a 30 % sucrose 

cushion as described previously (309). Virus concentrates were resuspended in M199 

medium (kindly provided by Dr Tano, Japan Poliomyelitis Research Institute, Tokyo, Japan). 

The increase in the yield of PV was assessed by determining the infectious titre both before 

and after concentrating the strains. The infectious titre was determined by assessing the tissue 

culture 50 % infectious dose (TCID50) as described previously (309) with the alteration that 

strains were diluted either 10
-6

 to 10
-10

 or 10
-7

 to 10
-11

 (before or after being concentrated, 

respectively) with maintenance medium (MEM with 2 % FCS and 1 % L-glu, P-S, AmpB). 

An additional alteration was that plates were incubated for five days and then stained with 

naphthalene black solution. 

 

 

2.2.1.2 Characterisation of the molecular properties of poliovirus strains  

 

To characterise the molecular properties of the PV strains the viral RNA was extracted 

and RT-PCR was used to isolate the capsid coding region of the genome, which was later 

sequenced. The MagNA Pure LC Total Nucleic Acid Isolation Kit (Roche) was used in 

conjunction with the Kingfisher ml particle processor (Thermo Electron Corporation) to 

extract the viral RNA from the propagated strains. The viral RNA was extracted according to 

the manufacturer’s instructions. Briefly, using a strip of 5-tubes for the KingFisher ml 

particle processor, 600 µl of the propagated PV was added to 150 µl Proteinase K, while the 

remaining tubes were filled with wash buffers I-III and elution buffer. Lysis buffer and well 
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mixed magnetic glass beads were added to tube 1 containing the PV and Proteinase K. 

Following extraction the contents of tube 5 were transferred to a labelled microtube 

(Sarstedt). The Proteinase K and lysis buffer digest and denature the proteins, releasing the 

viral RNA. The chaotropic salt conditions and the high ionic strength of the lysis buffer 

encourage the PV RNA to bind to the silica surface of the magnetic glass particles. Wash 

buffers I-III remove unbound salts, proteins, cellular membranes and other impurities before 

the RNA is extracted (434). 

 

Complementary viral DNA was synthesised by RT-PCR to analyse the capsid coding 

region of the PV genome using the Qiagen One-Step RT-PCR kit (309, 411). An alteration 

was that the annealing step of the PCR was carried out at 40 °C rather than 50 °C. Standard 

M-13 tagged primers with Sabin 2, MEF-1 and selected VDPV sequences from the collection 

at the NIBSC were used (section 2.1.1). Reverse transcription-polymerase chain reaction 

products were analysed by gel electrophoresis on a 1% agarose gel. The Qiagen QIAquick 

PCR Purification Kit was used to purify the RT-PCR products (412). Sequencing was 

performed in both directions by Eurofins MWG Operon (Germany). Sequence data were 

stored as standard chromatogram format (*.scf) files, analysed, and edited using the AlignIR 

Version 2.0 software (LI-COR). 

 

Phylogenetic relationships between strains were established by comparing the sequences 

determined and aligning them using the alignment program CLUSTAL W (286, 501). Default 

scoring matrices were used to determine the degree of nt sequence identity and of protein 

similarity. The phylogenetic relationships between sequences were determined using a 

variety of phylogenetic based programs as described previously (376). 

 

 

2.2.2 Inactivation 

 

2.2.2.1 Inactivation with formaldehyde 

 

Sucrose cushion-purified virus preparations were inactivated with HCHO (Sigma-

Aldrich)  as previously described (312). Briefly, the virus preparations were resuspended in 

HCHO inactivation medium (10.60 g M199 medium, 5.0 g glycine, 1.86 g EDTA.2H20, 0.35 
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g sodium hydrogen carbonate, 0.93 ml Tween 80 [5 %], made up to 1000 ml with sterile 

distilled water) to a final concentration of 1 x 10
9
 TCID50 / ml. To remove viral aggregates 

and facilitate HCHO access to all virus particles PV preparations were filtered through a 0.2 

µm filter (PALL) prior to inactivation. Formaldehyde was added to the purified virus 

solutions to give a final dilution of 1:4000 of the concentrated stock. Inactivation was carried 

out for 12 days at 37 °C in a constant-temperature water bath. At day 6 viruses were again 

filtered through a 0.2 µm filter. At day 12 a 1:8 dilution of sodium bisulphite (35 % w/v) 

(Sigma-Aldrich) was added to the inactivated PV preparations at a 1:100 ratio to neutralise 

any remaining HCHO.  

 

To monitor for the presence of infectious virus, aliquots of 200 - 500 µl were taken at 

days 6 and 12 of inactivation. Aliquots were added to HEp-2C cells and passaged three 

successive times over three weeks. The effect of HCHO inactivation on the antigenicity was 

assessed by determining the D-Ag/ml of the inactivated serotype 2 strains. In addition the 

antigenic structure of the serotype 2 strains was characterised both before and after 

inactivation with HCHO. Both of these measures of the effect of inactivation on the 

antigenicity of PV are described in section 2.2.3. The effect of HCHO inactivation on the 

immunogenicity of PV was assessed by a rat potency assay, as described in section 2.2.4.1.   

 

 

2.2.2.2 Inactivation with alternative chemicals: Iodoacetamide 

 

To determine whether the immunogenic properties of IPV could be improved, the effect 

of alternative inactivation chemicals to HCHO on PV was assessed. One of the chemicals 

assessed was iodoacetamide (IAN) (Sigma-Aldrich). To assess the efficacy of IAN as an 

inactivant of PV, the MEF-1 strain was inactivated with a broad range of concentrations of 

IAN. The infectivity of the inactivated preparations was assessed by determining the TCID50. 

Briefly, the IAN inactivation medium (containing 0.05 g EDTA.2H20, 0.81 g Tris-base, 15.6 

g sodium chloride, 16.0 g urea, made up to 100 ml with sterile distilled water) was made up 

24 hours (h) before the inactivation assay. Preparations of the MEF-1 strain were resuspended 

in MEM to a final concentration of 1 x 10
9
 TCID50 / ml before being filtered through a 0.2 

µm filter. The relevant amount of IAN was added to 10 ml aliquots of the IAN inactivation 

medium to create a range of buffers of different IAN concentrations, including, 2, 20, 100, 
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200 and 400 mM. The MEF-1 preparations were added to the different IAN buffers at a 3:1 

ratio. The inactivation was carried out in darkness for 24 h at 37 °C.  

 

As IAN is cytotoxic and no neutralising chemical could be identified it was necessary to 

remove the IAN from the samples after the inactivation by dialysis. This involved 

transferring the inactivated virus samples into Slide-A-Lyzer® G2 dialysis cassettes (10, 000 

K, 0.5-3 ml, Thermo Scientific) using a 5 ml monoject syringe and needle. The inactivated 

samples were dialysed for four cycles by immersing the dialysis cassette (with an appropriate 

size buoy) in MEM using 500 ml beakers, magnetic stirrers and a multiple stirrer tray. All 

four cycles (each lasting 1 h) were carried out room temperature (18-20 °C). The dialysis 

buffer was changed at each cycle. The presence of infectious virus in the inactivated samples 

was assessed by determining the TCID50 (section 2.2.1.1) and by addition to HEp-2C cells for 

three successive passages over three weeks. 

 

To determine the kinetics of inactivation with IAN the MEF-1 strain was inactivated with 

100 mM IAN over a 24 h time-course with aliquots (1 ml) being taken at 1, 4, 8 and 24 h. 

The method was as described above with alterations that only the 100 mM concentration of 

IAN was used to inactivate the PV, and that aliquots were taken at set times. As described 

above, the infectivity of these aliquots was assessed by titration and passaging onto HEp-2C 

cells for up to three weeks. To assess the effect of IAN on the antigenic structure of PV the 

D-Ag/ml of each aliquot was determined by an ELISA using antigenic site 2a, 2b and 3b 

specific MAbs as described in section 2.2.3.1. 

 

 

2.2.2.3 Initial inactivation with alternative chemicals 

 

In addition to IAN the effect of inactivation of PV with beta-propiolactone (BPL) (Ferak 

Berlin) and binary ethyleneimine (BEI) (Sigma-Aldrich) was determined alongside HCHO. 

However as a number of factors can affect the potency of the inactivated PV preparation it 

was necessary to carry out an initial series of inactivation assays with variable conditions. 

The range of concentrations of the inactivation chemicals, duration of inactivation, and the 

temperature at which it was carried out were set for each chemical on the basis of previous 

experience with influenza virus at the NIBSC and / or an extensive literature search. For all 



80 

 

the chemicals the pH during inactivation was maintained at 7.5 by adding HEPES (pH 7.5) 

(Sigma-Aldrich) to buffer the MEM inactivation media. These initial inactivation assays were 

carried out with the MEF-1 strain. As described above, preparations of the MEF-1 strain were 

filtered before being inactivated. An equivalent amount of the MEF-1 strain (1 x 10
9
 TCID50 / 

ml) was inactivated with each chemical over a time-course. On the basis of previous research, 

time-points were set during these time-courses. At each time-point an aliquot of MEF-1 (1 

ml) was taken for each concentration of the inactivation chemical. The time-points and 

inactivation conditions for each chemical are detailed in table 2.4. 

 

Variable 
Inactivation chemical 

BPL BEI HCHO 

Concentration of 

inactivation chemical 
1:500, 1:1000, 1:2000 

0.4 mM, 0.8 mM, 1.6 

mM 
1:2000, 1:4000, 1:8000 

Temperature of 

inactivation (°C) 
+4 37 37 

Duration of 

inactivation time-

course (h) 

24 24 288 

Time-points of 

aliquots (h) 
2, 4, 8, 18, 24 2, 4, 6, 8, 18, 24 2, 12, 24, 36, 60, 288 

Neutralisation of 

inactivation chemical 

Sodium sulphite 

(Sigma-Aldrich) - 

equal volume of the 

aliquot 

Sodium thiosulphate 

(Sigma-Aldrich) - 10 

% the volume of the 

aliquot 

1:8 dilution of 35 % 

(w/v) sodium 

bisulphite (Sigma-

Aldrich) -  

1 v : 100 v aliquot) 

 

Table 2.4. Inactivation conditions of each chemical. 

The MEF-1 strain was inactivated with a range of concentrations of each chemical at specific temperatures for 

set durations. Aliquots of MEF-1 were taken at time-points during each inactivation. Any remaining chemical 

was neutralised by the addition of a neutralising agent. 

 

 

The infectivity of each aliquot was assessed by titration (section 2.2.1.1) and by addition 

to HEp-2C cells for three successive passages over three weeks. In addition the antigenic 

content of the aliquots was assessed by an ELISA with a MAb (MAb 1050) used for batch 
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releases at the NIBSC (section 2.2.3.1). As all the inactivation chemicals are cytotoxic and 

can cause vaccine-cell mutations it was necessary to remove any remaining chemical before 

the infectivity of the aliquots could be assessed (21). A literature search identified a series of 

sulphite solutions which could neutralise the inactivation chemicals, as detailed in table 2.4. 

Two live MEF-1 time 0 h controls (0i and 0ii) were included for each inactivation time-

course. The 0i control was immediately stored at -20 °C following the initiation of the 

inactivation time-course. The 0ii control was incubated in the same conditions as the other 

samples during inactivation, but in the absence of the inactivating chemicals. Similar to the 

sample aliquots, the relevant neutralisation chemical was applied to it. To assess whether the 

inactivation conditions alone had an effect on the infectious titre and D-Ag of MEF-1 the two 

controls were compared. 
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2.2.2.4 Optimised inactivation with alternative chemicals 

 

The findings of the initial inactivation experiments were used to select the concentration 

of each chemical for further inactivations of MEF-1 and other PV strains (table 2.5). As table 

2.5 shows, the duration of inactivation and the time-point aliquots were also optimised as a 

result of the initial inactivation findings. 

 

Variable 
Inactivation chemical 

BPL BEI HCHO 

Concentration of 

inactivation chemical 
1:500 1.6 mM 1:4000, 1:8000 

Duration of 

inactivation time-

course (h) 

16 24 288 

Time-points of 

aliquots (h) 
2, 4, 8, 16 4, 8, 18, 24 

12, 36, 72, 120, 180, 

288 

 

Table 2.5. Optimised inactivation conditions of each chemical. 

Poliovirus was inactivated with optimised concentrations of the inactivation chemicals for set durations. 

Aliquots of PV were taken at time-points during inactivation. 

 

 

Two dilutions were selected for HCHO inactivations to allow comparison to the 1:4000 

HCHO inactivation currently used to generate cIPVs. In addition to the MEF-1 strain, the 

Sabin 2 strain and an iVDPV strain (04-44140261) were inactivated. An equivalent amount 

(5 x 10
9
 TCID50 / ml) of each PV strain was inactivated with the three chemicals. As with the 

initial inactivation experiments, aliquots (2-5 ml) were taken at set time-points in the 

inactivation time-courses (table 2.5). The temperature and pH for inactivation with each 

chemical remained identical to that described previously for the initial inactivation 

experiments (section 2.2.2.3). As with the initial inactivation experiments the viral infectivity 

of the aliquots was assessed by determining the infectious titre (section 2.2.1.1) and by 

addition to HEp-2C cells for three successive passages over three weeks. The antigenic 

content of the aliquots was assessed by an ELISA with MAb 1050 (section 2.2.3.1). In 

addition the antigenic structure of the inactivated PV strains was characterised (section 
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2.2.3.3). As with the initial inactivation experiments the 0i and 0ii controls were included for 

each inactivation time-course with each PV strain. 

 

 

2.2.3 Effect of inactivation on the viral antigenicity 

 

The effect of inactivation on the viral antigenic content was primarily assessed by ELISA. 

However a surface plasmon resonance (SPR) based biosensor protocol was also developed to 

assess the antigenic content of IPV preparations. 

 

 

2.2.3.1 Enzyme-linked immunosorbent assay 

 

The enzyme-linked immunosorbent assay (ELISA) was performed as previously 

described (474) with some modifications. Microlon high-binding flat-bottomed plates 

(Greiner-Bio-one) were coated with 50 µl per well of serotype 2-specific sheep capture anti-

PV antibody diluted in carbonate coating buffer (6.36 g sodium carbonate and 11.72 g 

sodium hydrogen carbonate made up to 4 l). Plates were incubated with the capture antibody 

overnight at 2-8 °C, and then washed four times using a Multidrop Combi (Thermo 

Scientific) with wash buffer (Phosphate buffered saline, [PBS], containing 2.0 % dried milk 

and 0.5 % Tween 20). The inactivated PV preparations were diluted two-fold in assay diluent 

(PBS containing 2.0 % dried milk) and added to the plate. Each dilution was tested in 

duplicate. Following 2 h incubation at 37 °C, plates were washed three times with wash 

buffer. An appropriate dilution of a serotype 2-specific MAb was added to each well and 

plates were incubated for 1 h at 37 °C. Plates were washed three times with wash buffer and 

peroxidase conjugated anti-mouse IgG whole molecule (Sigma-Aldrich) diluted with assay 

diluent was added to all wells. Following 1 h incubation at 37 °C, plates were washed three 

times with PBS before the o-Phenylenediamine dihydrochloride substrate (Sigma-Aldrich) 

was added to all wells. Plates were incubated in darkness at room temperature for 30 minutes 

(min) before the reaction was stopped by the addition of the 1 M sulphuric acid. The 

absorbance (Optical density, OD, at 492 nm) was read using a Multiskan Ascent 

spectrophotometer (Thermo labsystems). The Combistats program was used to carry out a 

sigmoid curves (In dose) analysis on the assay data to calculate the potency of the inactivated 
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PV preparations relative to a concurrently tested reference IPV (BRP batch 2, (176)). The 

dilutions and corresponding OD values were used to calculate the D-Ag content of each 

inactivated virus sample relative to the reference IPV. 

 

 

2.2.3.2 Surface plasmon resonance based biosensor protocol 

 

A SPR based biosensor protocol to determine the D-Ag/ml content of a range of IPV 

preparations was designed and carried out using the Biacore 2000 and T100 (GE Healthcare) 

biosensor instruments. This biosensor protocol involved initially immobilising rabbit anti-

mouse Ig to a CM3 sensor chip (GE Healthcare). The immobilisation wizard program of the 

Biacore 2000 / T100 control software (GE Healthcare) was used to set the immobilisation for 

this protocol at a flow rate of 2 µl / min for 3600 s. The rabbit anti-mouse Ig was immobilised 

to a CM3 sensor chip using an amine coupling kit with sodium acetate (pH 5.0) (GE 

Healthcare).  

 

After the rabbit anti-mouse Ig was successfully immobilised the concentration analysis 

wizard program of the Biacore 2000 / T100 control software was used to set up the remaining 

steps of the biosensor protocol. This involved injecting an appropriately diluted ‘capture’ 

MAb 1050 over the surface of the sensor chip at a flow rate of 2 µl / min for 600 s with a 150 

s stabilization period. A two-fold dilution of an IPV preparation was subsequently injected 

over the surface of the sensor chip at a flow rate of 2 µl / min for 600 s. Binding was 

monitored at each of these steps by the Biacore instrument using SPR. The surface of the 

sensor chip was then regenerated in two steps. For each step, glycine-HCl (pH 1.5) (GE 

Healthcare) was injected over the surface of the chip at a flow rate of 30 µl / min for 120 s. A 

240 s stabilisation period followed the second step. After regeneration the biosensor protocol 

could begin again with the injection of the ‘capture’ MAb 1050.  

 

Immobilisation and regeneration conditions were optimised using the immobilisation and 

regeneration scouting programs of the Biacore 2000 / T100 control software. A variety of 

reagents and buffers at varying pH were used in these scoutings (including sodium acetate 

between pH 4.0-5.5, and glycine-HCl between pH 1.5-pH 3.0). The biosensor protocol was 

used to estimate the D-Ag of a reference IPV preparation; a range of commercial IPVs of 
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varying origins (including Sabin and wild-type monovalent or trivalent preparations); and a 

range of BPL-, BEI- and HCHO-inactivated MEF-1 preparations which were prepared “in-

house” at the NIBSC (section 2.2.2.4). 

 

 

2.2.3.3 Characterisation of antigenic structure 

 

The antigenic structure of live and inactivated PV preparations was characterised by a 

series of ELISAs which incorporated a range of antigenic site-specific MAbs, shown in table 

2.6. 

  

Antigenic site specificity of MAb 

Antigenic site 1 Antigenic site 2a Antigenic site 2b Antigenic site 3b 

969 1231 1037 1050 

433 1247  1102 

434 1269  1103 

435   1121 

436   1051 

 

Table 2.6. Antigenic site-specific serotype 2 poliovirus monoclonal antibodies. 

A range of antigenic site-specific serotype 2 MAbs were used to characterise the antigenic structure of live and 

inactivated PV preparations. 

 

 

The ELISAs determined whether the live and inactivated PV could bind to antigenic site-

specific MAbs. The resulting OD readings of the ELISAs were used as a measure of the 

interaction between a PV preparation and an antigenic site-specific MAb. When the antigenic 

structure of BPL-, BEI- and HCHO-inactivated preparations of the Sabin 2, MEF-1 and 04-

44140261 strains was characterised, the D-Ag of the inactivated preparation was calculated 

relative to live preparations. The result was related to that determined using the MAb 1050. 

The ELISAs used to characterise the antigenic structure were carried out in an identical 

manner to that described above (section 2.2.3.1). 
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2.2.4 Effect of inactivation on viral immunogenicity 

 

2.2.4.1 Rat potency test 

 

Used for batch releases at the NIBSC the rat potency test assessed the immunogenicity of 

live and HCHO-inactivated serotype 2 PV strains. In addition the potency test was also used 

to assess the immunogenicity of PV preparations inactivated with different chemicals. Female 

Wistar (exCRL) rats are used in this test. Equal sized groups of these rats were immunised 

once intramuscularly in each hind leg with 0.25 ml of PV preparations at set doses (ranging 

from 0.0125-32 D-Ag). D-Antigen/ml doses were calculated from the D-Ag content of each 

of the PV preparations which was estimated by ELISA (section 2.2.3.1). Rats were 

exsanguinated 20 – 22 days post inoculation. 
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The harvested sera were challenged with three PV strains, (Sabin 2, MEF-1 and 04-

44140261), in a cell culture neutralisation assay. In this assay the neutralising antibody titre 

for the sera was determined by a micro-method using HEp-2C cells as previously described 

(550) with modifications. Assay diluent (MEM with 4 % FCS and 1 % L-glu, P-S, AmpB) 

was added to all wells of the serum test plates, “in-house” control plates (50 µl) and the cell 

control plate (100 µl). Neat serum was added to row A with two wells per sample (50 µl) 

(figure 2.1). Serial two-fold dilutions of the test sera were made by using multichannel 

pipettes with disposable tips to mix and transfer 50µl from row A to row B. This was 

continued through to row H where the last 50 µl was discarded.  

 

 

Figure 2.1. Layout of serum test plates for neutralisation assay. 

Serial two-fold dilutions of each test serum were made on the test plates. 

 

 

At the end of the test sera or on a separate control plate an “in-house” negative sera was 

added to two wells (50 µl). The “in-house” positive sera (1000 µl aliquot) was diluted 1:1 

with assay diluent before being added to wells A1-H1 (50 µl). Serial two-fold dilutions in an 

8-12 orientation of the “in-house” positive sera were made in a similar manner to the test 

sera.  
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Each challenge virus strain was diluted to 100 TCID50 before being added to a sufficient 

volume of assay diluent for the number of sera to be tested. The virus challenge was added to 

the wells of all the plates before the plates were sealed and incubated at +4 °C overnight. A 

1:1 dilution of the virus challenge with assay diluent was also stored overnight. This virus 

challenge was then serially diluted ten-fold a further three times to create the back titration 

which was transferred to a plate. HEp-2C cells were added to the plates (1-2 x 10
5
 / ml) 

before the plates were sealed. The plates were incubated at 37 °C for five days and 

subsequently stained with naphthalene black. In some cases it was necessary to raise the 

initial dilution of the test sera from 1:2 to either 1:8 or 1:16. 

 

 

2.2.4.2 Immunisation-challenge experiments 

 

Immunisation-challenge experiments were used to assess the level of protection conferred 

by inactivated PV preparations to Tg mice which express the human PVR (TgPVR mice). 

The immunisation-challenge experiments were set up with the Tg21-Bx mouse line at the 

NIBSC as this mouse line had already been used to develop an immunisation-challenge 

model at the institute (312). The experiments were as described previously (312) with 

modifications. Groups of eight Tg21-Bx mice of equivalent age and gender were immunised 

by the intra-peritoneal route at 6-8 weeks with 0.2 ml 2x2 D-Ag/ml doses of inactivated PV 

preparations. Following 14 days the mice received a booster of the same dose. After a further 

21 days the mice were inoculated by the intramuscular route with a paralysing dose (50 PD50) 

of  either the MEF-1 or 04-44140261 strain, at day 35 (50 µl). Mice were monitored for signs 

of paralysis for 14 days.  

 

Blood samples were obtained before the first and booster inoculations of the inactivated 

preparation, before the challenge PV inoculation and at the end of the test. For each group of 

mice the blood samples obtained before the challenge PV inoculation were pooled. The 

neutralising antibody titre of these sera was determined as described previously (section 

2.2.4.1). 
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2.2.5 Thermostability of inactivated preparations 

 

The thermostability of BPL-, BEI- and HCHO-inactivated preparations of the MEF-1 

serotype 2 strain was assessed by determining the degradation of the viral antigenicity and 

immunogenicity following heat-treatment at 45 °C for 24 h. The D-Ag of the heat-treated 

inactivated MEF-1 preparations was determined alongside untreated inactivated MEF-1 

preparations by an ELISA as described previously (section 2.2.3.1). The viral 

immunogenicity of the heat-treated and untreated MEF-1 preparations was determined by a 

rat potency test. Briefly, Wistar rats were immunised with a 2 D-Ag/ml dose of the untreated 

inactivated MEF-1 preparations or an equivalent volume of the heat-treated MEF-1 

preparations. After 22 days the rats were exsanguinated and their harvested blood sera were 

challenged with 100 TCID50 of the Sabin 2, MEF-1 and 04-44140261 strains in a cell culture 

neutralisation assay as described previously (section 2.2.4.1). The viral immunogenicity of 

heat-treated and untreated HCHO-inactivated PV preparation was also assessed in a series of 

immunisation-challenge experiments with Tg21-Bx mice as described previously (section 

2.2.4.2) with the alteration that an equivalent volume of the heat-treated preparations to the 

2x2 D-Ag/ml dose of the untreated preparations was administered to the Tg21-Bx mice. 

 

 

2.2.6 Effect of inactivation on interaction between poliovirus and the poliovirus receptor 

 

2.2.6.1 Assessment of poliovirus – poliovirus receptor interaction using CD155-AP 

 

The soluble CD155-AP fusion protein, expressed by 293-CD155-AP cells, was used to assess 

the effect of inactivation on the interaction between PV and the PVR. 

 

 

Optimisation and quantification of CD155-AP expression by 293-CD155-AP cells 

 

Three 75 cm
2
 flasks of 293-CD155-AP cells were grown to 90-100% confluence using 

the growth medium described above (section 2.1.2.4). Growth medium was removed and 30 

ml of either Optimem (Gibco), DMEM or DMEM (with 5 % FCS) was added to the cells. A 

one ml aliquot of the supernatant of the cells was immediately taken. Cells were incubated at 
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35 °C for six days with one ml aliquots being taken each day. Aliquots were stored at +4 °C. 

The amount of CD155-AP in each supernatant aliquot was quantified by an AP assay as 

described previously (354) with the modification that only the colorimetric AP determination 

steps were adopted for this research. 

 

 

Neutralisation of poliovirus by secreted CD155-AP 

 

Ten-fold serial dilutions from 10
2
 - 10

9
 of the Sabin 2 and MEF-1 serotype 2 PV strains 

were prepared with maintenance medium (MEM with 2 % FCS and 1 % L-glu, P-S, AmpB). 

For each of the two PV strains these dilutions were applied to six 96-well tissue culture plates 

(BD Biosciences). Expressed CD155-AP (50 µg / 50 µl) was diluted 1:5, 1:25, 1:125, 1:625 

and 1:3125 with maintenance medium, each of which was transferred to one of the six plates. 

Maintenance medium was added to the sixth plate. Plates were incubated for one h at room 

temperature and then 37 °C for another hour. HEp-2C cells were added and the plates were 

incubated at 35 °C for three days. Cells were observed daily for signs of CPE and were 

stained with naphthalene black following three days. The virus TCID50 was determined. 

 

A plaque assay was also used to assess the neutralisation of PV by secreted CD155-AP. 

The Sabin 2 and MEF-1 strains were diluted with maintenance medium to make a PV 

challenge containing 100 plaque forming units (PFU) / well. Five-fold serial dilutions from 

1:5 to 1:3125 of the CD155-AP (50 µg / 50 µl) were prepared with maintenance medium. The 

100 PFU virus challenge was mixed in microtubes with the five-fold dilutions of CD155-AP 

at a 1:1 ratio and incubated for one h at room temperature and then 37 °C for another hour. 

Receptor negative PV controls were also included. All samples were transferred to 6-well 

plates (BD Biosciences) confluent with HEp-2C cells. A 2X complete solution overlay (1:1 

2x MEM and bactoagar) was applied before the plates were incubated at 35 °C for three days. 

The overlay was removed, plates were stained and the plaques were counted. 
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Use of CD155-AP to assess the interaction between poliovirus and the poliovirus 

receptor 

 

An AP assay which incorporated a sucrose cushion was devised to quantitatively 

determine the effect of inactivation on the interaction between PV and the PVR. The 

conditions for this assay were established using live preparations of the Sabin 2 serotype 2 

strain. A live preparation of the Sabin 2 strain (4 x 10
8
 TCID50 / 100 µl) was incubated with 

increasing concentrations of CD155-AP (100, 500, 1000, 2000, and 4000 µg / 50 µl) for 120 

m at +4 °C. Poliovirus-CD155-AP samples were made up to 5 ml with DMEM before being 

ultracentrifuged through a 30 % sucrose cushion (SW 50 Beckman rotor, 40 000 rpm, 4 h, +4 

°C). The resulting pellets were resuspended in Tris-HCl (0.01 M) and the amount of bound 

CD155-AP was quantified by a colorimetric AP determination assay as described above. This 

assay was repeated with a similar infectious titre of the MEF-1 strain. However this 

preparation was only incubated with two dilutions of CD155-AP (1000 and 2000 µg / 50 µl). 

 

The interaction between live or HCHO-inactivated PV preparations and CD155-AP was 

analysed using this AP assay. Live and inactivated Sabin 2 and MEF-1 (17 D-Ag / 50 µl) 

were incubated with CD155-AP for 120 m at +4 °C. Sabin 2 preparations were incubated 

with 1000 µg / 50 µl CD155-AP, while MEF-1 preparations were incubated with 2000 µg / 

50 µl CD155-AP. Poliovirus-CD155-AP samples were pelleted through a 30 % sucrose 

cushion and analysed as described above. 

 

 

Determination of poliovirus-poliovirus receptor interaction by surface plasmon 

resonance 

 

The Biacore 2000 biosensor instrument was used to determine whether SPR could detect 

the interaction between PV and the PVR. The immobilisation wizard program of the Biacore 

2000 control software was used to set the immobilisation for this protocol at a flow rate of 1 

µl / min for 126.33 min. A wild-type trivalent IPV was immobilised to a CM3 sensor chip 

using an amine coupling kit with sodium acetate (pH 5.0). The binding analysis program of 

the Biacore 2000 control software was used to set up the remaining steps of this protocol. A 

series of two-fold serial dilutions of CD155-AP, ranging from 1:4 to 1:32, were prepared with 
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HBS-EP running buffer. The diluted CD155-AP samples were injected over the surface of the 

sensor chip at a flow rate of 2 µl / min for 10 min. Binding was monitored in real-time by 

SPR. Regeneration was performed between the CD155-AP dilutions and involved the 

injection of 10 mM glycine-HCl (pH 2.0) over the surface of the chip at a flow rate of 10 µl / 

min for 90 s. As described above (section 2.2.3.2), immobilisation and regeneration scouting 

programs of the Biacore 2000 control software were used to optimise the immobilisation and 

regeneration conditions. 

 

 

2.2.6.2 Assessment of poliovirus-poliovirus receptor interaction using fluorescence-activated 

cell sorting flow cytometry 

 

Fluorescence-activated cell sorting (FACS) flow cytometry was used to assess the 

interaction between live or inactivated PV preparations and susceptible L20B cells or non-

susceptible Ltk- cells. L20B and Ltk- cells (1 x 10
6
 cells / ml) were incubated with increasing 

concentrations of live and HCHO-inactivated preparations of the Sabin 2 strain (1, 10, and 

100 D-Ag / 100 µl) for 120 min at room temperature. Cells were pelleted (2000 rpm, 5 min, 

room temperature) and washed twice with PBS flow buffer (PBS with 5 % FCS and 1 % 

sodium azide) (PFB) before being transferred to a 96-well plate (Corning incorporated). Cells 

were pelleted and resuspended with a serotype 2-specific MAb (MAb 267, (345)). For 30 min 

cells were incubated at room temperature on a shaker. Then cells were pelleted and washed 

twice with PFB before being resuspended with anti-mouse IgG antibodies conjugated to 

fluorescein isothiocyanate (FITC) (Sigma-Aldrich). After 20 min incubation in the dark at 

room temperature cells were pelleted and washed twice more with PFB before FACS FIX 

(150 ml PBS, 325 ml sterile distilled water and 25 ml HCHO) was added. Cells were 

analysed using a BD FACSCanto II flow cytometer (BD Sciences). Both the mean 

fluorescence intensity and percentage of cells with PV bound could be estimated. 

 

Another assay was carried out, in which live and HCHO-inactivated preparations of the 

Sabin 2 strain (1, 10, and 100 D-Ag / 50 µl) were incubated with CD155-AP (2 µg / 50 µl) or 

MEM at a 1:1 ratio for 60 min at room temperature before being incubated with L20B cells 

(1 x 10
6
 cells / ml) for 120 min at room temperature. Binding was detected by FACS flow 

cytometry as described above. 



93 

 

The binding of BPL-, BEI- and 1:8000 HCHO-inactivated PV was assessed. Live and 

inactivated preparations of the Sabin 2 strain (1, 10, 100 D-Ag / 50 µl) were incubated with 

L20B cells (1 x 10
6
 cells / ml) for 120 min at room temperature. Binding was detected by 

FACS flow cytometry as described above.   

 

 

2.2.6.3 Assessment of poliovirus-poliovirus receptor interaction using real-time reverse 

transcription-polymerase chain reaction 

 

An assay which incorporated real-time RT-PCR was used to assess the effect of 

inactivation on the interaction between PV and the PVR. This real-time RT-PCR binding 

assay was as previously described (243) with the some modifications. L20B and Ltk- cells 

were detached with trypsin, pelleted and washed twice in binding buffer (MEM with 2 % 

FCS and 1 % L-glu, P-S, AmpB). The cells (2.5 x 10
5
 cells / ml) were then incubated with 

live preparations of the MEF-1 serotype 2 strain (0.004, 0.04, 0.4 D-Ag / 100 µl) at either +4 

°C or room temperature for 120 min. Cells were pelleted (2000 rpm, 10 min) and washed 

twice with binding buffer before resuspension in MEM. Between each wash the supernatant 

was harvested and pooled. The viral RNA was extracted from both the pelleted cells and the 

pooled supernatant using the MagNA Pure LC Total Nucleic Acid Isolation Kit with the 

Kingfisher ml particle processor (section 2.2.1.2). Assay conditions for quantification of the 

extracted viral RNA were optimised using the QuantiTect SYBR Green RT-PCR kit (Qiagen) 

with the Rotor-Gene 3000 thermal cycler (Qiagen) (section 2.2.8.2). 

 

In a second real-time RT-PCR binding assay live MEF-1 (0.04 D-Ag / 25 µl) was 

incubated with equal concentrations of CD155-AP, AP, a serotype 2-specific MAb (MAb 

1050), a serotype 1-specifc MAb (MAb 234) or MEM at a 1:1 ratio for 60 min at 37 °C. 

L20B and Ltk- cells (2.5 x 10
5
 cells / 500 µl) were then incubated with the pre-treated MEF-1 

at room temperature for 120 min. The amount of live MEF-1 bound to the cell lines was 

determined as described above. 

 

For another real-time RT-PCR binding assay live and HCHO-inactivated preparations of 

the MEF-1 strain (0.02, 0.2, and 2 D-Ag / 50 µl) were incubated with L20B and Ltk- cells 
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(2.5 x 10
5
 cells / 500 µl) for 120 min at room temperature. The amount of PV bound to the 

murine cells was determined as described above. 

 

In an additional assay live and HCHO-inactivated preparations of the MEF-1 strain (0.2 

D-Ag / 25 µl) were incubated with either CD155-AP (1 µg / 25 µl), a serotype 3-specifc MAb 

(MAb 520), MEM or a range of antigenic site specific serotype 2 MAbs at a 1:1 ratio for 60 

min at room temperature. The serotype 2 MAbs included MAbs 433 and 436 which bind to 

antigenic site 1; MAb 1269 which binds to antigenic site 2a; MAb 1037 which binds to 

antigenic site 2b; and MAbs 1050 and 1102 which bind to antigenic site 3b. The pre-treated 

MEF-1 preparations were then incubated with L20B cells (2.5 x 10
5
 cells / 500 µl) at room 

temperature for 120 min. The amount of PV bound to the L20B cells was determined as 

described above. 

 

For another real-time RT-PCR binding assay live and HCHO-, BPL- and BEI-inactivated 

MEF-1 preparations (0.2 D-Ag / 25 µl) were incubated with either CD155-AP (1 µg / 25 µl), 

a serotype 2-specific MAb (MAb 1050), a serotype 3-specific MAb (MAb 520) or MEM at a 

1:1 ratio for 60 min at room temperature. The pre-treated MEF-1 preparations were incubated 

with L20B cells (2.5 x 10
5
 cells / 500 µl) at room temperature for 120 min. The amount of PV 

bound to the L20B cells was determined as described above. 

 

 

2.2.7 Effect of inactivation on poliovirus entry 

 

2.2.7.1 Effect of inactivation on conversion of poliovirus virions to 135S and 80S particles 

 

To enter a host cell and release the viral RNA PV virions must undergo a series of 

conformational changes to form 135S and 80S particles. It is possible to triggers these 

conformational changes in vitro in the absence of the PVR by incubating PV at super-

physiological temperatures in a hypotonic medium (50, 113). This approach was adopted to 

determine whether inactivated PV particles can form 135S and 80S particles. Live and BPL-, 

BEI- and HCHO-inactivated preparations of equivalent concentrations (0.2 D-Ag / 50 µl) of 

the MEF-1 serotype 2 strain were incubated in hypotonic medium (1.21 g Tris, 0.147 g 

CaCl2.2H20, 0.50 ml Tween 20, made up to 500 ml with sterile distilled water) at 50 and 60 
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°C for 3 and 20 min to induce a conformational change to form 135S and 80S particles 

(respectively). Live and inactivated MEF-1 preparations were also incubated at room 

temperature as a control. As 135S and 80S particles differ in a number of characteristics to 

mature PV virions a range of assays were carried out to assess whether the inactivated 

samples had undergone the conformational changes. 

 

The degree of conversion of the treated live and inactivated MEF-1 preparations to 135S 

and 80S particles was measured by characterising their antigenic properties in ELISAs (as 

described in section 2.2.3.1), assessing their ability to bind to L20B cells in real-time RT-

PCR assays (as described in section 2.2.6.3), and by determining the presence of viral RNA 

by sensitivity to RNAse A. A real-time RT-PCR was carried out to assess the sensitivity of 

the preparations to RNAse A. In this assay live and inactivated MEF-1 preparations were 

incubated with RNAse A (0.001 µg / µl) (Sigma-Aldrich) before being incubated at room 

temperature, 60 °C and 50 °C for 20 and 3 min, respectively. Poliovirus preparations were 

placed on ice and RNAse inhibitor (Roche) was added. The viral RNA was extracted using 

the MagNA Pure LC Total Nucleic Acid Isolation Kit with the Kingfisher ml particle 

processor and a real-time RT-PCR was used to detect the presence of RNA (section 2.2.8.2). 

 

 

2.2.7.2 Use of fluorescence-activated cell sorting flow cytometry to assess the effect of 

inactivation on poliovirus viral entry 

 

To assess whether inactivated PV could undergo the necessary conformational changes 

FACS flow cytometry was used to track viral entry process of live and HCHO-inactivated PV 

preparations. L20B cells were detached with trypsin, pelleted and washed twice in binding 

buffer (MEM with 2 % FCS and 1 % L-glu, P-S, AmpB). The cells (1 x 10
6
 cells / ml) were 

mixed with live and 1:4000 HCHO-inactivated preparations of the Sabin 2 strain (10 D-Ag / 

100 µl). Preparations were incubated at either 20 or 37 °C for 11 h. During this time identical 

preparations were mixed and incubated with L20B cells for 1, 2, 4, 6 and 8 h. Incubations 

were arranged so that they would all finish at 11 h. In addition a 0 h control was set up for 

both the live and inactivated preparations. For each of the incubations a cell control was 

included to assess background fluorescence. Two temperatures were used as it was known 

that at 20 °C PV can only bind to cells, while at 37 °C the virus can bind and enter the cells.  
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Following 11 h incubation the binding (20 °C) and internalisation (37 °C) preparations 

were pelleted and washed twice with PFB before being transferred to 96-well plates (Corning 

incorporated). Binding preparations were pelleted and resuspended with the serotype 2-

specific MAb 267. Internalisation preparations were pelleted and resuspended with a fixation 

medium (Invitrogen). Binding and internalisation preparations were incubated on a shaker at 

room temperature for 30 min. Both the binding and internalisation preparations were pelleted 

and washed twice with PFB. Pelleted binding preparations were resuspended with anti-mouse 

IgG (whole molecule)-FITC. The pelleted internalisation preparations were resuspended in a 

1:1 mixture of a permeabilization medium (Invitrogen) and the serotype 2-specific MAb 267. 

Binding preparations were incubated on a shaker at room temperature for 20 min in the dark. 

Internalisation preparations were incubated on a shaker at room temperature for 30 min. 

Both sets of preparations were pelleted and washed twice with PFB. Pelleted binding 

preparations were resuspended in FACS FIX before being stored on a shaker at +4 °C. The 

pelleted internalisation preparations were resuspended in a 1:1 mixture of a permeabilization 

medium and the anti-mouse IgG (whole molecule)-FITC. Internalisation preparations were 

incubated on a shaker at room temperature for 20 min in the dark before being pelleted and 

washed twice with PFB. Pelleted internalisation preparations were resuspended in FACS 

FIX. Both sets of preparations were analysed using a BD FACSCanto II flow cytometer. In 

order to estimate the amount of PV that was internalised the fluorescence readings of the 20 

°C incubated preparations were subtracted from those of the 37 °C incubated preparations. 

 

 

2.2.8 Effect of inactivation on viral RNA 

 

The effect of inactivation on the viral RNA was determined by assessing the biological 

activity and functionality of the RNA extracted from PV during inactivation time-courses. 

The MagNA Pure LC Total Nucleic Acid Isolation Kit was used with the Kingfisher ml 

particle processor to extract the viral RNA from aliquots taken during the BPL-, BEI- and 

HCHO-inactivation time-courses (section 2.2.2.4). 
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2.2.8.1 Effect of inactivation on biological activity of viral RNA 

 

The biological activity of the extracted viral RNA was determined by its ability to 

produce infectious virus after transfection into HEp-2C cells. Both DEAE-dextran and 

electroporation were used to transfect the viral RNA. The DEAE-dextran-mediated 

transfection protocol was as previously described (453) with modifications. One day prior to 

the transfection HEp-2C cells were trypsinised and replated to 25 cm
2
 flasks (BD 

Biosciences) (1 x 10
5
 cells / flask) or 35 mm dishes (BD Biosciences) (5 x 10

4
 cells / dish). 

Cells were incubated at 37 °C until they were 80 % confluent. A 1 x HBSS/glucose/DEAE-

dextran solution was mixed and incubated with the extracted RNA on ice for 20-30 min (245 

µl to 5 µl RNA). Medium was removed by aspiration and cell sheets were washed three times 

with PBS. RNA-1x HBSS/glucose/DEAE-dextran solutions were added to cells. Cells were 

incubated at room temperature for 20-30 min before the RNA-1x HBSS/glucose/DEAE-

dextran solutions were removed by aspiration. Pre-warmed maintenance medium (MEM with 

2 % FCS and 1 % L-glu, P-S, AmpB) was added and cells were incubated at 35 °C in a CO2 

incubator for seven days. Cells were observed daily for signs of CPE. 

 

The electroporation protocol was as previously described (188) with modifications. One 

day prior to the transfection HEp-2C cells were trypsinised and replated to 25 cm2 flasks (1 x 

10
5
 cells / flask). Cells were incubated at 37 °C until they were 80 - 90 % confluent. Cells 

were trypsinised and resuspended in growth medium (MEM with 5 % FCS and 1 % L-glu, P-

S, AmpB) before being pooled. Pooled cells were pelleted and washed twice with HeBS 

solution (HBSS [x1] and glucose [0.1 %]) before being transferred to 0.4 cm electroporation 

cuvettes (Invitrogen). Viral RNA (between 0.105 – 0.180 µg) was added to cuvettes and 

electroporated once at 250 V, 360 Ω, and 250 µF using an Electro Cell Manipulator 600 

(BTX Harvard Apparatus). After being allowed to recover at room temperature for 5-10 min, 

cells were resuspended in growth medium and plated in 25 cm
2
 flasks. Cells were incubated 

at 35 °C for seven days and observed for CPE. 

 

 

2.2.8.2 Effect of inactivation on functionality of viral RNA 

 

A series of RT-PCRs were carried out to determine whether inactivation affected the 

ability of the viral RNA to replicate. Viral RNA was extracted from live MEF-1 in addition to 



98 

 

that extracted from the inactivation time-course aliquots (section 2.2.2.4). A series of primers 

of equal length and melting point which yielded 200, 400, 600 and 800 bp RT-PCR products 

of the region encoding the VP1 were designed (section 2.1.1). The extracted viral RNA 

preparations were run in four RT-PCRs using the Qiagen One-Step RT-PCR kit (309, 411) 

with the respective primers. The resulting RT-PCR products were examined by gel 

electrophoresis on a 1 % agarose gel. 

 

The results of these RT-PCRs were quantified by a real-time RT-PCR which incorporated 

the same primers described above. The relevant primers and viral RNA extracted from live 

MEF-1 were used to generate an 800 bp RT-PCR product of the VP1 coding region. The 

concentration of the extracted viral RNA samples and this RT-PCR product was determined 

using a nanodrop spectrophotometer at 230 nm (NanoDrop® ND-1000 spectrophotometer, 

NanoDrop Technologies). The RT-PCR product was diluted with RNAse-free water to ensure 

that the gene copy number / 5 µl was approximately 10
9
 log 10s. The diluted RT-PCR 

product was further diluted ten-fold from 10
-1

 to 10
-7

. This serial dilution series was used to 

establish a calibration curve to calculate the genome copy of extracted RNA. Results were 

expressed relative to the D-Ag concentration of the PV preparations from which the RNA 

was extracted. A QuantiTect® SYBR® Green RT-PCR kit (Qiagen) was used for the real-

time RT-PCR. This reaction was carried out using the Rotor-Gene 3000 thermal cycler 

(Qiagen). The conditions used are detailed in figure 2.2.  

 

 

Figure 2.2. Real-time reverse transcription-polymerase chain reaction assay conditions. 

Real-time RT-PCR was used to: quantify the effect of inactivation on the viral RNA; determine how much PV 

was bound to cells; detect viral RNA following RNAse A treatment of heated PV preparations. 

50  C 30 min

90  C 10 min

94  C 1 min

55  C 1 min

72  C 2 min (acquiring)

72  C 10 min

Hold

30 cycles

Melt
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 In addition to the region encoding the VP1 this real-time RT-PCR was also carried out at the 

5’ and the 3’ends (figure 2.3) of the genomic region with respective primers (section 2.1.1) 

and a diluted RT-PCR product. 

 

 

Figure 2.3. Regions of poliovirus genome analysed by real-time reverse transcription-

polymerase chain reactions. 

Real-time RT-PCRs quantified the effect of inactivation on three regions of the viral RNA genome of PV. 

 

 

A bioanalyser was used to analyse the quality and size of the extracted viral RNA. Viral 

RNA extracted from a series of commercial IPVs was analysed using the Agilent 2100 Expert 

Bioanalyser (Agilent technologies). 
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3.1 INTRODUCTION 

 

As the GPEI approaches its End-game there is a growing consensus that in order to avoid 

further cases of VAPP and VDPVs, OPV vaccination must cease alongside a transition to 

worldwide IPV vaccination (102, 145, 165, 166, 502). However as noted in the Introduction 

(section 1.5.4) there are several issues concerning this transition, in particular the biosecurity 

of manufacturing plants post eradication. This has led to the WHO promoting the 

development of sIPV (276). Several studies have found differences in the antigenic and 

immunogenic properties of sIPV and cIPV preparations (133, 140, 141, 252, 276, 312, 426, 

472, 493). Studies using Tg mice expressing PVR and rat models have shown that the 

serotype 2 sIPV induces lower levels of antibodies than serotype 2 cIPV (141, 276, 310, 472).  

 

Inactivation with HCHO has previously been found to modify some antigenic sites of PV 

(160, 426). It could be argued that due to genomic differences between sIPV and cIPV seeds 

the antigenic epitopes presented differ and that the sensitivity of these epitopes to HCHO also 

varies. This variable sensitivity might result in the antigenic epitopes of sIPV and cIPV being 

modified to different extents which would have a direct effect on the immunogenicity. The 

research detailed here aims to confirm whether this hypothesis could account for the 

difference in immunogenicity to serotype 2 sIPV and cIPV. 

 

The serotype 2 cIPV was first developed by Salk et al. (451) by treating the MEF-1 strain 

with HCHO. The MEF-1 strain was isolated in 1942 from the CNS of poliomyelitis cases 

occurring among the Middle East Forces of the British Army, Cairo, Egypt (456, 519). 

Although a number of antigenically related strains were isolated from the same location and 

time (194) MEF-1 has remained the chosen strain for serotype 2 cIPV (409). A naturally 

occurring serotype 2 strain, P712, was isolated from the faeces of healthy children by Sabin. 

This strain possessed low neurovirulence for cynomolgus monkeys by the intraspinal route 

and was selected to generate the serotype 2 OPV seed. The strain was passaged four times 

(three terminal dilutions) in cynomolgus MKTC before being purified by three serial 

passages of plaque isolates.  The least neurovirulent plaque progeny was fed to chimpanzees 

and the stool with the least residual neurotropism (P712, Ch) was further purified by three 

single-plaque passages in cynomolgus MKTC. The resulting strain (P712, Ch, 2ab) was used 

to prepare the Sabin 2 strain by passaging twice in cynomolgus MKTC (P712, Ch, 2ab/KP2). 

At Merck, Sharp and Dohme Research Laboratories this SO was passaged once in rhesus 
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MKTC to create the current vaccine strain (P712, Ch, 2ab/KP3 or SO+1) (448). Two nt 

substitutions (G481A in the 5’NCR and C2909U encoding a threonine to isoleucine 

substitution at position 143 of VP1) are responsible for the attenuated phenotype of Sabin 2 

(305, 424). As described previously (Introduction, section 1.3.2) the substitution at G481A in 

the stem-loop region V of the 5’NCR is the principal determinant of attenuation however its 

precise contribution is not clear (305, 424, 427). The capsid mutation (C2909U at 143 VP1) 

can influence the attenuated phenotype in various ways (52, 162, 304). In addition an alanine 

to serine substitution at position 41 of VP4 may contribute to the attenuated phenotype (305, 

336). 

 

The OPV serotype 2 monovalent lot can be mixed with the serotype 1 and 3 lots to form a 

trivalent preparation. However tOPV preparations with similar potency for each serotype 

have shown predominance for serotype 2 excretion and higher serotype 2 antibody titres than 

for serotypes 1 and 3 (151, 260, 277, 397, 505, 528, 575). The Sabin 2 strain has been argued 

to be more robust than the other OPV serotypes as it was a primary isolate rather than a 

product of laboratory selection from “wild” strains (164, 447). This might allow it to interfere 

with the Sabin 1 and 3 immunogenic responses. Initially the administration of three or more 

doses of the tOPV was sufficient to overcome this interference effect (485). However a later 

study (433) found that a single dose of a ‘balanced’ formulation of tOPV could induce 

sufficient seroconversion. This has been adopted and used for worldwide trivalent 

formulations. The WHO requires the following minimum TCID50 values for each vaccine PV 

serotype: 10
6.0

± 0.5 TCID50 for serotype 1, 10
5.0

± 0.5 TCID50 for serotype 2 and 10
5.8

± 0.5 

TCID50 for serotype 3 (111, 485).   

 

Before the use of PV vaccines four major wild-type PV serotype 2 genotypes had 

worldwide distribution and caused a number of outbreaks (for example (231, 257)). However 

little is known of these wild-type isolates and only a selection have been partially sequenced 

(570). Following the introduction of PV vaccines the transmission of these strains fell sharply 

(79). This disappearance of infectious serotype 2 strains occurred at a faster rate than for 

other serotypes, possibly due to the high immunogenicity and more efficient seroconversion 

of the Sabin 2 component of the tOPV and the tendency of this strain to spread from 

vaccinated persons to close contacts (390, 485). Between 1989 and 1999 all four known wild-

type PV serotype 2 genotypes had disappeared.  
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Several serotype 2 isolates were obtained from the last known reservoirs: Bihar, Uttar 

Pradesh, and West Bengal in northern India. These isolates represented the final phase of 

wild-type PV serotype 2 transmission as their genetic diversity had rapidly declined. In 

October 1999 in West Bihar the last wild-type PV serotype 2 was isolated from a child 

reported as an AFP case (79). Only vaccine derived serotype 2 strains have been isolated 

since this date, which along with the declining genetic diversity of the last wild isolates 

indicated that wild-type PV serotype 2 had been eliminated (79). However in 2000 wild-type 

PV serotype 2 was isolated from three AFP cases in eastern Uttar Pradesh and Bihar. While 

sequencing found no relation of these isolates to the wild-type PV serotype strains previously 

circulating in India in 1999, a virtual identity to the laboratory reference serotype 2 reference 

strain MEF-1 was found (554). Between 2002 and 2003 wild-type PV serotype 2 was isolated 

from seven AFP cases, a healthy contact child and an environmental sewage sample (126). 

Sequencing determined that all isolates belong to one of two closely related strains of MEF-1. 

However no mutational evidence of circulation was detected. A later investigation found the 

source of these isolates to be batches of tOPV which had been contaminated with MEF-1 

(554). 

 

While tOPV remains in use vaccine derived serotype 2 strains are still emerging and 

causing cases of VAPP and VDPVs. As noted in the Introduction (section 1.3.2) due to the 

intense selection against attenuating mutations during replication within the intestinal tract 

OPV strains can undergo reversion to a neurovirulent state and cause VAPP. As attenuation 

of the Sabin 2 strain is primarily determined by only two highly unstable mutations, reversion 

can be very rapid (305, 341, 424, 572). The reverted phenotype of serotype 2 VAPP strains 

can be attributed to a reversion of the attenuation mutations G481A in the 5’NCR and 

C2909U at 143 VP1(336).  Individuals with immunodeficiency disorders are at most risk to 

developing VAPP (485). The serotype 2 strains are the most common PV isolated from 

immunodeficient cases with VAPP (484).  

 

OPV strains can circulate and evolve over a period of time by undergoing recombinations 

and other mechanisms of reversion and this can contribute to the development of VDPVs. 

There have been a large number of poliomyelitis outbreaks associated with serotype 2 

cVDPV strains in Madagascar (420, 439); Nigeria (238, 531, 560); Niger ; Afghanistan; 

Chad; Democratic Republic of the Congo; India and Somalia (560).  Also serotype 2 

cVDPVs have been retrospectively identified in Egypt between 1983 and 1993 (570). Since 
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2010 the GPLN has redefined serotype 2 VDPVs to include isolates with >0.6% (rather than 

1%) divergence to allow the detection of numerous pre-VDPV2 (0.5-1.0 % divergence) 

isolates from Nigeria. In Nigeria between 2005 and 2010 21 cases of pre-VDPV2 were 

detected alongside the 315 cases of serotype 2 cVDPV. The pre-VDPV2s were identified as 

outbreak intermediates as large numbers (16/21 cases) of them were ancestral to subsequently 

observed cVDPV2 lineages (531). This recognition of the early role of pre-VDPVs in the 

outbreaks has prompted the redefinition of serotype 2 VDPVs. This redefinition has partly led 

to the recent increase in frequency of detected VDPVs. It is thought that the increasing gaps 

in serotype specific immunity have contributed to the increase in serotype 2 cVDPV. The 

intensive use of mOPV1 and bOPV in supplementary immunisation activities and the 

inadequate coverage with routine immunisation of tOPV has resulted in conditions favouring 

multiple independent emergences of serotype 2 cVDPVs (560). Other factors contributing to 

these emergences include the rapid spread of Sabin 2 amongst unimmunised people, as seen 

in contact cases of VAPP (175), and the higher seroprevalence to PV serotype 2 in 

unvaccinated individuals in the USA and Europe (164, 485). Due to the low paralytic rate of 

serotype 2 PV infections (364), serotype 2 cVDPVs are difficult to detect by AFP 

surveillance and, thus, they are able to spread and cause further outbreaks.  

 

Serotype 2 strains are prevalent in immunodeficient cases and have been associated with 

a large number of the 50 iVDPV reported infections (558, 560). In addition, the longest 

known excreted iVDPV is a serotype 2 strain (311, 558). Long-term excreted iVDPVs can 

show high divergence from the parental Sabin strain (311) and accumulate a number of 

mutations in various viral regions, including the viral capsid. Capsid mutations have been 

shown to involve amino acids in the canyon, the drug/lipid binding pocket, monomeric and 

pentameric interfaces and antigenic sites (33, 256, 313, 567).  

 

In addition to cVDPVs and iVDPVs, a number of serotype 2 aVDPVs have been isolated, 

in particular from sampling of sewage. Highly divergent serotype 2 strains have been isolated 

from sewage in Estonia (559, 560), Finland (437) and Israel (468). These isolates had 

multiple lineages, many amino acid substitutions in antigenic sites and minimal 

recombinations which suggests they were probably iVDPVs (437, 468, 469, 560). Following 

a challenge with OPV, serotype 2 PV has replicated and been excreted by highly immune 

children, for up to three weeks. There is concern that highly divergent aVDPV strains could 
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be transmitted between immune individuals, in particular older individuals with less humoral 

protection (469). 

 

The research described within this chapter aims to characterise the Sabin 2 and MEF-1 

strains of serotype 2 sIPV and cIPV, respectively, to determine why the two strains differ in 

viral immunogenicity following inactivation with HCHO. In addition in order to gain a full 

understanding of the differences, the effect of HCHO inactivation on a number of other 

serotype 2 strains including VDPVs and wild-types was also investigated. The molecular 

characteristics of a range of serotype 2 strains are described within this chapter. Whether the 

genomic differences between them resulted in antigenic structures with different 

immunogenicity following inactivation with HCHO was determined. The results shown here 

represent the first study to explore the relationship between the sequence of a PV strain and 

the immunogenicity of inactivated PVs. Antigenic sites modified by inactivation with HCHO 

were identified and the effect of this inactivation on viral immunogenicity was explored  
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3.2 RESULTS 

 

3.2.1 Molecular characterisation of serotype 2 poliovirus strains 

 

In order to gain a better understanding of the difference in viral immunogenicity between 

serotype 2 sIPV and cIPV, the molecular and antigenic characteristics of a wide range of 

serotype 2 strains from different origins was determined. These strains included  VDPV 

isolates from immunodeficient individuals (cases 4 and 5 described in (311)), a cVDPV strain 

from a PV outbreak (419) and wild-type strains from paralytic cases from various regions of 

the world, isolated over a large period of time (table 3.1). 

 

Poliovirus 

serotype 2 strain 
Origin 

Date / Place of 

isolation 

Sabin 2 Sabin vaccine seed (OPV) 1956, USA 

MAD029 cVDPV strain 2002, Madagascar 

04-44140261 iVDPV strain 06/10/2004, UK 

102050 iVDPV strain 16/01/1998, UK 

071108 iVDPV strain 07/11/2008, UK 

118/78 Wild-type strain 1978, Morocco 

II-215 Wild-type strain 1959, Venezuela 

II-316 Wild-type strain 1952, Egypt 

MEF-1 Wild-type strain (IPV seed) 1942, Egypt 

 

Table 3.1. A representative collection of serotype 2 poliovirus strains. 

A range of serotype 2 PV strains of different origins (vaccine seed, VDPV, wild-type) were sourced from the 

collection at the NIBSC. 
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Virus stocks of the selected serotype 2 PV strains were prepared in tissue culture and 

purified by ultracentrifugation through a 30 % sucrose cushion, as described in Materials and 

Methods (section 2.2.1.1). Purified PV preparations were titrated using a microtitre plate 

system and expressed as log10 TCID50/100 µl (Materials and Methods, section 2.2.1.1). Virus 

titre varied between 8.5 to 10.2 log10 TCID50/100 µl. The Sabin 2, MAD029, 04-44140261, 

102050 and MEF-1 strains were grown to larger volumes using roller bottles (850 cm
2
) and, 

thus, showed a greater log10 TCID50 than other strains. The viral RNA of each strain was 

extracted, as described in Materials and Methods (section 2.2.1.2). Complementary viral 

DNA was synthesised by RT-PCR to analyse the region of the genome encoding the viral 

capsid. Standard M-13-tagged primers with Sabin 2, MEF-1 and selected VDPV sequences 

from the collection of the NIBSC were used (Materials and Methods, section 2.1.1). The RT-

PCR products were analysed by gel electrophoresis and purified using a commercial kit 

(Materials and Methods, section 2.2.1.2). Sequencing was performed, as described in 

Materials and Methods (section 2.2.1.2).  

 

The phylogenetic relationship between strains was established using the alignment 

program CLUSTAL W (286, 501). The degree of nt sequence identity and of protein 

similarity was determined using the default scoring matrices. The phylogenetic relationship 

between sequences was determined using the maximum likelihood method, with 

DNADIST/NEIGHBOR of PHYLIP (Phylogeny Inference Package) to analyse the respective 

sequences of the relevant strains (157).The robustness of the phylogenies was estimated by 

bootstrap analysis with 1000 pseudoreplicate data sets. In addition to the selected serotype 2 

strains, the sequence of a serotype 1 strain (Mahoney) was introduced to allow correct rooting 

of the tree. The results of sequence comparisons are shown in table 3.2 and figure 3.1.  
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Strain 
% difference from strain* 

SAB 2 MAD 04-44 102050 071108 118/78 II-215 II-316 MEF-1 

SAB 2  1.0 5.3 13.6 17.3 21.2 21.8 20.0 20.3 

MAD 0.3  6.1 13.8 17.7 21.4 22.1 20.2 20.8 

04-44 2.5 2.4  15.5 18.8 22.4 22.3 20.7 20.5 

102050 5.5 5.4 6.0  14.5 24.2 24.3 23.0 23.8 

071108 5.7 5.6 6.2 2.9  24.6 25.2 23.5 24.5 

118/78 2.8 2.9 4.5 5.9 6.0  18.7 13.8 15.9 

II-215 3.0 3.1 4.7 6.8 6.2 2.3  13.9 13.0 

II-316 2.7 2.8 4.3 6.2 5.8 1.3 1.7  9.8 

MEF-1 3.0 3.1 4.5 6.6 6.2 1.7 2.1 1.5  

 

Table 3.2. Nucleotide and amino acid differences between serotype 2 strains.  

Following extraction, the region of the RNA encoding the viral capsid of the strains was sequenced using the 

relevant primers. The sequenced capsid of the strains was analysed using the AlignIR V2.0 and Pairwise 

deletion. * The lower left and upper right portions of the table show amino acid and nt differences (shown as 

%), respectively. Serotype 2 PV strains are abbreviated as follows: SAB 2, Sabin 2; MAD, MAD029; 04-44, 04-

44140261. 

 

 

Figure 3.1. Neighbour-joining tree showing phylogenetic relationships between the 

serotype 2 strains and Mahoney of poliovirus serotype 1.  

Following extraction, the region of the RNA encoding the viral capsid of the strains was sequenced using a 

variety of primers. The sequenced capsid region was analysed using the bootstrap analysis.  The numbers at the 

Sabin 2

MAD029 [1.0 % VP1]

04-44149261 [5.7 % VP1]

102050 [12.9 % VP1]

071108 [16.5 % VP1]

118/78 (Morocco, 1978) [18.9 % VP1]

II-215 (Venezuela, 1959) [19.9 % VP1]

II-316 (Egypt, 1952) [19.0 % VP1]

MEF-1 (Egypt, 1952) [19.3 % VP1]

Poliovirus serotype 1: Mahoney (USA, 1941)

100

100
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100

100

69

84
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nodes indicate the percentages of 1,000 bootstrap pseudoreplicate data sets supporting the cluster. Percentage 

VP1 sequence divergence from Sabin 2 is bracketed. 

 

 

As shown in figure 3.1, the phylogenetic tree confirmed the expected differences between 

strains. The cVDPV strain MAD029 showed less nt and amino acid differences to Sabin 2 

than the iVDPV strains (table 3.2). This was confirmed by the closer relationship of MAD029 

to Sabin 2 (figure 3.1). The iVDPV strains 102050 and 071108 showed a high percentage of 

VP1 sequence divergence from the parental Sabin 2. Previous research has found a PV capsid 

evolution of 1 % nt substitutions per year (544). Consequently, it is possible to establish a 

molecular clock of PV evolution which can be used to determine the age of these iVDPV 

isolates (544). Based on this molecular clock, one can conclude from the percentage VP1 

sequence divergence of these strains that the individual who shed these two isolates has been 

excreting PV continuously since he was last immunised, approximately 12 and 22 years, 

respectively.  As shown in figure 3.1, the wild-type strains (118/78, II-215, II-316 and MEF-

1) were genetically distant to Sabin 2 and showed the greatest divergence in nt sequence to 

other strains (table 3.2).Although the nt sequence varied between the strains, the amino acid 

sequence was conserved to a greater extent. As table 3.2 shows, the iVDPV strains 071108 

and 102050 had the greatest divergence in amino acid sequence in comparison to other 

strains. The proportion of non-synonymous nt changes was determined for some of strains 

described above and others for which sequences are available in public databases, as shown 

in figure 3.2. 
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Figure 3.2. Proportion of non-synonymous nucleotide changes in serotype 2 poliovirus 

strains.  

The proportion of non-synonymous nt changes of a range of serotype 2 strains was calculated determining the 

ratio of nt change and amino acid changes. 1= MEF-1; 2 = II-215; 3 = II-316; 4 = 118/78; 5 = 04-44140261; 6 = 

102050; 7 = 071108; 8 = strain USA0911201 (GenBank: GU390707.1); 9 = strain USA9810768 (GenBank: 

DQ890387.1, (4)); 10 = strain USA9211202 (GenBank: GU390704.1); 11 = strain EGY88-074 (GenBank: 

AF448782.1, (94)); 12 = strain EGY93-034 (GenBank: AF448783.1, (94)); 13 = strain NIE0811204 (GenBank: 

GU390705.1); 14 = strain NIE0811203 (GenBank: GU390706.1) 

 

 

As figure 3.2 shows, the iVDPV strains had a greater proportion of non-synonymous nt 

changes than the wild-type and cVDPV strains.  

 

The amino acid sequence within the antigenic sites was analysed (table 3.3).
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Virus 

Strain 

Antigenic Site 

Site 1 Site 2a Site 2b Site 3a Site 3b 

VP1 98-105, 175, 252 VP1 217-224 

VP2 164, 

168, 170, 

172 

VP2 72, 157, 158, 

239, 240, 244 

VP3 56, 58, 59, 61, 62, 

66 

Sabin 2 T K R A S R L F A R L A G Q A S T E T N A N R K G Y T K N T S R K D 

MAD. - - - - - - - - - - - T - - - - - - - - - - - - - - - - - - - - - - 

04-44. - R - T - K - - - - - - - - - - - - - S S - - - - - - - - - - - - - 

102050 - N - T - K - - - - - - S H - A - D - - - E N E R - - - - - - H R - 

071108 - N - - - K - - S - - - - H - A A D N - - K N - - - A - - - - H R - 

118/78 - - - - - K - - - K - - - - - - - - - - - - - - - - - - - - - - - E 

II-215 A - - - - K - - - K - - - - T - - - - - - - - - - - - - - S - - - - 

II-316 - - - - - K - - - K - - - - - - S - - S - - - - - - - - - S - - - - 

MEF-1 - - - - - K - - - K - - - - - - - - - - - - - - - - - - - - N - - - 

 

Table 3.3. Amino acid difference between the serotype 2 poliovirus strains at antigenic sites 1, 2a, 2b, 3a and 3b.  

Following extraction, the region of the RNA genome encoding the viral capsid of the strains was sequenced using a variety of primers. The sequenced capsid region was 

analysed using the Clustal W alignment program. - indicates that there was no change in sequence in comparison to Sabin 2 sequence. Serotype 2 PV strains are abbreviated 

as follows: MAD., MAD029; 04-44., 04-44140261. 
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As shown in table 3.3, the expected difference of only one substitution was found between 

the amino acid sequences of Sabin 2 and MAD029. While the cVDPV MAD029 strain only 

showed a single substitution (VP2 A218-T) the iVDPV strains (in particular strains 102050 

and 071108) showed the largest range of substitutions (table 3.3). The wild-type strains 

showed a range of substitutions across the antigenic sites, with some common amongst the 

strains (VP1 R252-K) and others common with iVDPV strains (VP1 R103-K).  

 

 

3.2.2 Inactivation of serotype 2 poliovirus strains 

 

3.2.2.1 Effect of inactivation on viral antigenicity 

 

The effect of inactivation on the antigenic structure of the selected serotype 2 strains was 

assessed by a panel of site-specific MAbs after the strains had been inactivated with HCHO. 

Viral solutions containing 1 x 10
9
 TCID50 / 100 µl of each of the purified virus strains were 

inactivated by incubation with HCHO, as detailed in Materials and Methods (section 2.2.2.1). 

The destruction of viral infectivity during the inactivation process was monitored by infecting 

HEp-2C cell cultures at days +6 and +12 of inactivation in three successive passages for three 

weeks. No infectivity was detected in any of the strains at days +6 or +12. 

To determine the effect of inactivation on viral antigenicity, the antigenic structure of live 

and HCHO-inactivated serotype 2 PV strains was characterised by ELISA (Materials and 

Methods, section 2.2.3.3). This assay determined whether live and inactivated serotype 2 

strains were able to bind to antigenic site-specific MAbs (389). The antigenic structure of live 

serotype 2 PV strains is shown in figure 3.3. 
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Figure 3.3. Antigenic structure of live serotype 2 poliovirus strains.  

Antigenic structure of live serotype 2 PV strains was characterised by ELISA. Optical density readings were 

used to assess the binding of MAbs to live serotype 2 strains over four dilutions of virus. Average OD readings 

from two ELISAs are shown. Green, MAb reacts with live serotype 2 strain (≥0.4 OD above background); red, 

MAb does not react with live serotype 2 strain. Serotype 2 PV strains are abbreviated as follows: Sabin, Sabin 2; 

MAD., MAD029; 04-44., 04-44140261; 10205., 102050; 07110., 071108. 

 

 

The previously determined variations in the amino acid sequence within the antigenic 

sites (table 3.3) largely correlated with the antigenic structure of live serotype 2 strains. The 

single substitution VP1 A218-T
 
of the MAD029 strain accounted for the lack of reaction 

between this strain and the site 2a-specific MAb 1231. Sabin 2 strains with point mutations at 

VP1 97, 98, or 99 have been noted to have resistance to reacting with site 1-specific MAbs 433, 

434, 435 and 969 (389). As the 04-44140261, 102050 and 071108 strains all possess the 

substitution VP1 K99-R, N, it is possible that this could account for the lack of reactivity 

between these strains and the previously noted site 1-specific MAbs. The strain II-215 

possesses the substitution VP1 T98-A which could account for its lack of reaction with the site 

1-specific MAb 969. Previous research with Sabin 2 point mutants has found that resistance 

to reacting with the antigenic site 1-specific MAb 436 might be due to the substitution VP1 

K174-E (389). A comparison of the sequenced antigenic sites and the mapped antigenic 

structure found that the strain 071108 has a similar substitution (VP1 A175-S) and did not 

Strain

Antigenic site (MAb)

1 2a 2b 3b

433 434 435 436 437 969 1231 1247 1269 1037 1050 1051 1102 1103 1121

Sabin 

MAD.

04-44.

10205.

07110.

118/78

II-215

II-316

MEF-1
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react with MAb 436. However, the strains 04-44140261 and 102050 also failed to react with 

MAb 436, but they do not have an amino acid substitution at VP1 174 , indicating that another 

substitution might confer resistance to this MAb. The effect of an amino acid substitution at 

VP1 101 on the antigenic structure has not been determined. Both the 04-44140261 and 

102050 strains have the substitution VP1 A101-T which could confer the resistance to MAb 

436. With the exception of Sabin 2 and MAD029, all of the serotype 2 strains failed to 

interact with MAb 437. These serotype 2 strains share an amino acid substitution, VP1 R103-

K, which may confer resistance to this MAb.  

 

The strains II-215 and II-316 did not react with the antigenic site 2a-specific MAbs 1231 

and 1247. This might have been due to the amino acid substitutions VP1 A221-T and VP1 

T223-S of II-215 and II-316, respectively. The iVDPV strains 04-44140261, 102050 and 

071108 did not react with MAbs 1269 and 1121 which specifically bind to antigenic sites 2a 

and 3b, respectively. While the strains 102050 and 071108 showed a number of substitutions 

in the amino acid sequence which could account for the absence of reaction with these MAbs 

(table 3.3), the 04-44140261 strain lacked any such substitution within the amino acid 

sequence coding for these sites. The reason for this inconsistency is not clear.  

 

Both the 04-44140261 and II-316 strains had substitutions within the region of the amino 

acid sequence coding for antigenic site 2b (VP2 N168-S). However, both strains reacted with 

MAb 1037 which specifically binds to this antigenic site. This was also apparent with the 

strains II-316 and MEF-1 strains which reacted with the 3b-specific MAbs, despite 

possessing substitutions in the region of the amino acid sequence which encodes this 

antigenic site (VP3 T58-S and VP3 S59-N, respectively). It is possible that these substitutions 

were neutral and had no effect on this specific antigenic site. Although the VDPV strains did 

interact with some MAbs, these interactions were judged to be weaker than those of Sabin 2 

and wild-type strains as the OD readings were lower.  
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Following inactivation with HCHO, almost all of the serotype 2 strains showed 

modifications to their antigenic structure. As figure 3.4 shows, the site 1-specific MAbs 436, 

437 and 969 were unable to bind to the inactivated serotype 2 strains.  

 

 

 

Figure 3.4. Antigenic structure of formaldehyde-inactivated serotype 2 poliovirus 

strains. Serotype 2 PV strains were concentrated to 1 x 10
9
 TCID50/ 100 µl and inactivated with 1:4000 

HCHO for 12 days at 37 °C. Antigenic structure of HCHO-inactivated serotype 2 strains was characterised by 

ELISA. The OD readings were used to assess the binding of MAbs to HCHO-inactivated serotype 2 strains over 

four dilutions of virus. Average OD readings from two ELISAs are shown. Green indicates that the MAb reacts 

with HCHO-inactivated serotype 2 strain (≥0.4 OD above background); red indicates that the MAb does not 

react with HCHO-inactivated serotype 2 strain. Serotype 2 PV strains are abbreviated as follows: Sabin, Sabin 

2; MAD., MAD029; 04-44., 04-44140261; 10205., 102050; 07110., 071108. 

 

 

This suggests that inactivation modified at least some of the epitopes of antigenic site 1 to the 

point that they were no longer recognised by these MAbs. This result confirmed previous 

observations (160). For some serotype 2 strains inactivation modified other antigenic sites in 

addition to site 1. The site 2a-specific MAb 1247 was unable to bind to inactivated MAD029, 

while the inactivated II-215 preparation was unable to interact with the site 3b-specific MAb 

1051. Interestingly, MAb 1269 was able to bind to inactivated 04-44140261 despite being 

unable to bind to the live preparation of this strain. The modification to the antigenic structure 

Strain

Antigenic site (MAb)

1 2a 2b 3b

433 434 435 436 437 969 1231 1247 1269 1037 1050 1051 1102 1103 1121

Sabin 

MAD.

04-44.

10205.

07110.

118/78

II-215

II-316

MEF-1
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of this strain following inactivation appeared to allow this MAb to bind. Due to the weak or 

lack of reactivity between MAb 437 and live or inactivated serotype 2 PV, this MAb was not 

used beyond Chapter 3.   

 

To determine the D-Ag content of inactivated serotype 2 PV strains and to assess whether 

inactivation with HCHO had caused a loss of antigenicity, a series of ELISAs were carried 

out (Materials and Methods, section 2.2.3.1). The D-Ag / ml of the serotype 2 strains was 

determined using an international reference standard (176) and a number of site-specific 

MAbs, as shown in table 3.4.  

 

Sample 
Live / 

Inactivated 

MAb (antigenic site specificity) 

433 (1) 1247 (2a) 1037 (2b) 1050 (3b) 1102 (3b) 

Sabin 2 
Live 45 ± 2.1 52 ± 1.3 52 ± 2.9 59 ± 1.7 64 ± 1.6 

Inactivated 43 ± 1.7 53 ± 4.7 60 ± 0.8 65 ± 0.1 60 ± 4.4 

MAD029 
Live 25 ± 1.8 5 ± 0.0 38 ± 1.2 40 ± 1.0 45 ± 0.4 

Inactivated 25 ± 2.1 1 ± 0.7 32 ± 0.0 34 ± 0.0 27 ± 0.0 

04-44140261 
Live 0 ± 0.0 40 ± 0.2 42 ± 7.9 31 ± 4.5 35 ± 5.6 

Inactivated 0 ± 0.0 29 ± 0.3 43 ± 0.0 31 ± 0.8 30 ± 0.0 

102050 
Live 0 ± 0.0 0 ± 0.0 0 ± 0.0 0 ± 0.0 66 ± 7.3 

Inactivated 0 ± 0.0 0 ± 0.0 0 ± 0.0 0 ± 0.0 22 ± 0.0 

071108 
Live 0 ± 0.0 0 ± 0.0 0 ± 0.0 1 ± 0.6 1 ± 0.6 

Inactivated 0 ± 0.0 0 ± 0.0 0 ± 0.0 3 ± 1.0 3 ± 0.2 

118/78 
Live 16 ± 0.0 20 ± 0.5 20 ± 0.3 22 ± 0.4 22 ± 0.9 

Inactivated 14 ± 1.0 17 ± 0.5 17 ± 0.0 22 ± 0.0 15 ± 0.0 

II-215 
Live 15 ± 0.9 22 ± 0.0 20 ± 1.9 18 ± 0.8 25 ±2.0 

Inactivated 16 ± 5.8 12 ± 4.0 25 ± 0.0 20 ± 2.2 26 ± 0.0 

II-316 
Live 29 ± 3.6 0 ± 0.0 48 ± 2.9 40 ± 0.1 39 ± 2.2 

Inactivated 26 ± 1.8 1 ± 0.5 41 ± 0.0 34 ± 0.0 34 ± 0.0 

MEF-1 
Live 47 ± 12.1 53 ± 13.8 51 ± 3.4 53 ± 3.4 58 ± 1.9 

Inactivated 40 ± 7.8 38 ± 0.3 45 ± 0.0 47 ± 1.2 45 ± 0.0 

 

Table 3.4. The D-Antigen content of live and inactivated poliovirus.  

Serotype 2 PV strains were concentrated to 1 x 10
9
 TCID50 / 100 µl and inactivated with 1:4000 HCHO for 12 

days at 37 °C. D-Antigen / ml was determined by an ELISA. The potency of the live and inactivated serotype 2 
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strains was calculated relative to a concurrently tested standard. The average of two ELISAs is shown with the 

standard error. 

 

 

Measurement of all strains by ELISA with site 1 (MAb 433), 2a (MAb 1247), 2b (MAb 

1037), and 3b (MAbs 1050 and 1102)-specific detection MAbs showed that there was little 

reduction in antigenic content following inactivation, indicating that inactivation did not 

result in a significant loss of these antigenic epitopes. D-Antigen / ml estimates of inactivated 

PVs obtained with the site 1-specific MAb 433 were slightly inconsistent with those obtained 

with the other MAbs. This may have been due to the modifications to antigenic site 1 

following inactivation. Comparable D-Ag / ml estimates were found using site 2a, 2b and 3b-

specific MAbs, indicating that the antigenic site did not influence the D-Ag / ml estimate 

obtained. 

 

The D-Ag / ml of the strain 102050 could only be determined by the MAb 1102 due to 

the large number of mutations throughout its antigenic sites. In comparison to the other 

strains, the inactivated preparation of the strain 071108 showed a lower D-Ag content, 

despite the fact that the same amount of infectious virus was inactivated (Materials and 

Methods, section 2.2.2.1). This is likely to be due to the poor reactivity between this VDPV 

strain and the MAbs. Due to this low D-Ag content, the strain 071108 was not studied any 

further. 
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The potency of an IPV is expressed in D-Ag units as these are considered the protective 

immunogens as they induce neutralising antibodies following immunisation (289). The total 

number of infectious particles is represented by the infectious titre (TCID50) of a PV strain. 

The ratio of infectious titre and D-Ag amongst viral strains gives an estimate of the 

proportion of infectious particles amongst total virions. This ratio was determined for the 

serotype 2 PV strains (table 3.5). 

 

Strain 

Log10 TCID50 / D-Ag / ml (antigenic site specificity of MAb) 

MAb 

433 (1) 

MAb 

434 (1) 

MAb 

1231 (2a) 

MAb 

1269 (2a) 

MAb 

1050 (3b) 

MAb 

1102 (3b) 

Sabin 2 7.5 7.2 7.3 7.1 7.2 7.2 

MAD029 7.7 7.5 - 7.3 7.4 7.3 

04-44. - - 7.4 - 7.5 7.5 

102050 - - - - - 7.2 

118/78 7.7 7.6 7.7 7.6 7.7 7.7 

II-215 7.8 7.5 7.7 7.8 7.7 7.6 

II-316 7.5 7.3 - 7.4 7.4 7.4 

MEF-1 7.1 7.1 7.4 7.3 7.4 7.3 

 

Table 3.5. Infectious titre / D-Antigen ratio of serotype 2 poliovirus strains.  

Infectious titre (TCID50) and D-Ag/ml of the serotype 2 PV strains was determined and the TCID50 / D-Ag ratio 

was calculated. The infectious titre was determined by incubating susceptible HEp-2C cells with ten-fold 

dilutions of each strain. After five days incubation at 35 °C, the cells were stained. The D-Ag /ml was 

determined by ELISA with a series of MAbs. - indicates that there was no interaction between the MAb and the 

serotype 2 strain during ELISA. 04-44140261 is abbreviated as 04-44. 

 

 

As shown in table 3.5, the serotype 2 strains showed a similar infectious titre / D-Ag ratio. 

The use of different MAbs in the ELISA did not affect this ratio.   

  

 

3.2.2.2 Effect of inactivation on viral immunogenicity  

 

The viral immunogenicity of the HCHO-inactivated serotype 2 PV strains was assessed 

by a rat potency test in which equal sized groups of Wistar rats were immunised with set 
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doses (8 and 2 D-Ag/ml) of each of the inactivated serotype 2 strains. After 22 days, the rats 

were exsanguinated and their blood serum harvested. The sera were challenged with three 

serotype 2 PV strains, Sabin 2, MEF-1 and 04-44140261, in a cell culture neutralisation assay 

(Materials and Methods, section 2.2.4.1). These strains were selected as they were not closely 

genetically related (table 3.2 and figure 3.1) and their antigenic structure differed (figure 3.3) 

which enabled the specificity of the immune response to be assessed. As figure 3.5 shows, the 

log 2 neutralisation titre of the sera from rats immunised with different inactivated serotype 2 

PVs varied between the strains and across the doses.  

 

 

Figure 3.5. Immunogenicity of inactivated serotype 2 polioviruses against challenge 

virus strains.  

Rats were immunised with 8 (A) and 2 (B) D-Ag/ml doses of the HCHO-inactivated serotype 2 PV 

preparations. After 22 days rats were exsanguinated and the sera were assayed to measure neutralising antibody 

to 100 TCID50 of the relevant challenge virus using a fixed virus varying serum 50% end-point technique in a 

microtitre system. Sera were challenged with Sabin 2, MEF-1 and 04-44140261 strains. The average of two sets 

of rats per dose is shown with error bars. 04-44140261 is abbreviated as 04-44. 
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Analysis by balanced ANOVA (Minitab v.16, http://www.minitab.com/en-GB/) found 

that this variation was significant between the strains (P<0.001) across both doses (P<0.001) 

for all three challenges (P<0.005). The sera of rats immunised with the Sabin 2 strain and the 

related VDPV strains showed low log 2 neutralisation titres against all three challenges 

(figure 3.5). The sera from rats immunised with the iVDPV strains showed the lowest log 2 

neutralisation titres, while sera from rats immunised with the wild-type strains showed high 

log 2 neutralisation titres against all three challenge viruses, with an increasing neutralisation 

titre with II-215, 118/78, II-316 and MEF-1. This was confirmed by multiple comparison 

using the Tukey method (Minitab v.16, http://www.minitab.com/en-GB/). This analysis 

found that the mean immune responses of rats immunised with Sabin 2 and related VDPV 

strains were significantly different from those immunised with MEF-1 and other wild-type 

strains (P<0.05).  
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Some degree of specificity in the rats’ immune response to the challenge virus was noted 

(figure 3.5) and was examined further by determining the log 2 neutralisation titre of sera 

from rats immunised with HCHO-inactivated Sabin 2 and MEF-1 preparations against 

challenge viruses of different antigenic structures. The specificity of the immune response 

was determined across two doses of inactivated Sabin 2 and MEF-1 preparations, as shown in 

figure 3.6. 

 

 

Figure 3.6. Specificity of immune response of rats immunised with inactivated 

poliovirus.  

Rats were immunised with 8 and 2 D-Ag/ml doses of HCHO-inactivated Sabin 2 (A) and MEF-1 (B) 

preparations. After 22 days rats were exsanguinated and the sera were assayed to measure neutralising antibody 

to 100 TCID50 of the relevant challenge virus using a fixed virus varying serum 50% end-point technique in a 

microtitre system. Sera were challenged with Sabin 2, MEF-1, 04-44140261, 071108 and 102050 strains. The 

average of two sets of rats per dose is shown with error bars. 04-44140261 is abbreviated as 04-44. 

 

 

Similar log 2 neutralisation titres were found when rat sera were challenged with Sabin 2 and 

MEF-1. The iVDPV challenges (04-44140261, 071108, 102050) resulted in lower log 2 

0

1

2

3

4

5

6

7

Sabin 2 MEF-1 04-44. 071108 102050

L
o

g
2

 n
e
u

tr
a

li
sa

ti
o

n
ti

tr
e

Challenge virus strain

A

0

2

4

6

8

10

12

Sabin 2 MEF-1 04-44. 071108 102050

L
o

g
2

 n
eu

tr
a

li
sa

ti
o

n
ti

tr
e

Challenge virus strain

8 D-Ag 2 D-Ag

B



122 

 

neutralisation titres, compared to those of sera from rats challenged with the Sabin 2 and 

MEF-1 strains. Analysis by balanced ANOVA (Minitab v.16, http://www.minitab.com/en-

GB/) found that this variation in immune response to the different challenge virus strains was 

significant for rats immunised with HCHO-inactivated Sabin 2 (P<0.005) or MEF-1 

(P<0.001). The Tukey method (Minitab v.16, http://www.minitab.com/en-GB/) found a 

significant difference between the immune responses to the iVDPV challenges to the 

responses to Sabin 2 and MEF-1 challenges (P<0.05). This difference was particularly 

apparent when the sera were challenged with the iVDPV strain 102050, which showed 

extensive antigenic changes (figure 3.3). The scale of this fall in log 2 neutralisation titre 

differed between VDPV challenge strains and between the strains of the HCHO-inactivated 

PV preparations. 

 

The effect of inactivation on viral immunogenicity was further characterised by 

immunising Wistar rats with set doses of live and HCHO-inactivated Sabin 2 and MEF-1 

preparations (varying from 0.125-32 D-Ag/ml). The resulting sera were harvested and 

challenged with three serotype 2 PV strains, Sabin 2, MEF-1 and 04-44140261 in a cell 

culture neutralisation assay. As figure 3.7 shows, the log 2 neutralisation titre of sera from 

rats immunised with live and inactivated Sabin 2/MEF-1 preparations differed between the 

nature (live or HCHO-inactivated) and strain (Sabin 2 or MEF-1) of the preparation.  
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Figure 3.7. Immunogenicity of live and inactivated poliovirus strains against challenge 

viruses.  

Rats were immunised with doses varying from 0.125-32 D-Ag/ml of each of the live and HCHO-inactivated 

Sabin 2 and MEF-1 preparations. After 22 days rats were exsanguinated and the sera were assayed to measure 

neutralising antibody to 100 TCID50 of the relevant challenge virus, using a fixed virus varying serum 50% end-

point technique in a microtitre system. The rat sera were challenged with Sabin 2 (A), MEF-1 (B) and 04-

44140261 (C) strains. The average of two sets of rats/dose is shown with error bars. 

 

 

The log 2 neutralisation titres of sera from rats immunised with HCHO-inactivated Sabin 
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immunogenicity. Potencies calculated relative to a standard curve using a parallel line 

sigmoid curve model in EDQM Combistats (v.4, http://combistats.edqm.eu/) confirmed this. 

Potencies were calculated relative to that obtained with inactivated MEF-1 or Sabin 2.This 

analysis found that the potency of live MEF-1 was 21-24 times higher than that of inactivated 

MEF-1 with a confidence interval between 12 and 54 for the three challenge strains, while the 

potency of live Sabin 2 was 3-4 times greater than that of its inactivated counterpart with a 

confidence interval between 2 and 8. The scale of the reduction in immunogenicity following 

inactivation seemed to vary between the two PV strains.   

 

As previously determined (figure 3.5), the immunogenicity of the PV preparations varied 

between strains. Inactivated MEF-1 showed a higher immunogenicity than inactivated Sabin 

2. Calculated potencies confirmed this, finding that the potency of inactivated MEF-1 was 5-

10 times greater than that of inactivated Sabin 2 with a confidence interval between 3 and 11. 

Interestingly the sera from rats immunised with live Sabin 2 also showed a lower log 2 

neutralisation titre against all challenge strains than sera from rats immunised with MEF-1 

indicating that HCHO inactivation was not responsible for the poor immunogenicity of the 

serotype 2 sIPV on its own. This was confirmed by calculated potencies which found that live 

MEF-1 generated potencies 41-52 times higher than that of live Sabin 2 with confidence 

intervals between 22 and 114 for the three challenge strains. The MEF-1 preparations were 

far more immunogenic the Sabin 2 preparations.    

 

 

3.3 DISCUSSION 

 

The current drive to develop sIPV as a safer alternative to cIPV is hindered by the 

differences between the two, in particular the difference in the immunogenicity of sIPV2 and 

cIPV2. The molecular / biological reasons for the differences between sIPV and cIPV are not 

well understood. To understand these differences a range of serotype 2 strains, including 

VDPV and wild-type strains were characterised and inactivated alongside Sabin 2 and MEF-1 

in this chapter. The effect of both inactivation and the genetic properties of each strain on the 

viral antigenicity and immunogenicity of inactivated PV preparations were determined. 

Nucleotide sequence analysis through the capsid coding region confirmed the expected 

differences between the selected PV strains (table 3.2 and figure 3.1). The iVDPV strains 
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showed a greater number of non-synonymous mutations in the sequenced capsid region with 

respect to the Sabin 2 strain than those shown by the other strains (table 3.2 and figure 3.2). 

Many of these changes were found within antigenic sites (table 3.3) and this in turn resulted 

in extensive changes to the antigenic structure of the strains (figure 3.3) when analysed by 

assessing reactivity with site-specific MAbs. Such changes to the antigenic epitopes of long 

term excreted iVDPVs have been seen previously (199, 256, 313).  

 

Remarkably, the wild-type strains showed a lower proportion of non-synonymous 

mutations than the iVDPV strains (figure 3.2) despite being genetically distant from Sabin 2 

(figure 3.1) as they were isolated in different parts of the world over a 36-year period. This 

may be due to differences in the evolution of wild-type and iVDPV strains. Circulation of 

wild-type strains is associated with permanent changes in the nt sequence of their genomes. 

These changes occur at a constant rate of ~3 x 10
-2

 substitutions per synonymous site per year 

and are characterised by the predominant accumulation of synonymous, mostly neutral 

mutations (183, 564). Evolution of wild-type strains is based on stochastic drift caused by 

bottlenecking events during person-to-person transmission of small sets of variants picked 

from intrinsically heterogeneous PV populations (7, 8, 564).  

 

The evolution of OPV strains to VDPVs occurs in the gastrointestinal tract of the 

vaccinee and their contact (either single person or person-to-person transmission) and is 

driven by replication with the error prone RNA-dependent RNA polymerase and a selective 

pressure to improve the strain’s fitness. This typically results in the reversion of attenuation 

point mutations and the appearance of non-synonymous mutations in the coding and non-

coding regions of the genome. These adaptive mutations reduce the adverse effect of the 

fitness-decreasing mutations accumulated during the development of OPV strains (338). 

Previous research has suggested that mutations within antigenic site regions of OPV strains 

are also the result of the selective pressure to eliminate fitness-decreasing attenuation point 

mutations (564). This may account for the large number of mutations across the antigenic site 

regions of the iVDPV strains. It is not clear why wild-type strains do not accumulate as many 

non-synonymous mutations as iVDPV strains during replication in the host. It may be that, as 

wild-type strains are biologically fit and able to replicate and transmit from one individual to 

another, they do not have the drive to accumulate such mutations.   
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Interestingly, the cVDPV strain from Madagascar showed a lower proportion of non-

synonymous mutations with respect to the Sabin 2 strain than those shown by the iVDPV 

strains (figure 3.2). This suggests that the Sabin 2 OPV strain accumulates non-synonymous 

changes more rapidly during evolution in a single patient than when it is transmitted from 

person-to-person. As described above OPV strains accumulate a number of fitness-increasing 

mutations during their evolution. The selection of these mutations is likely to be due to a 

combination of factors, including the ability to bind to the PVR, evasion of immune pressure 

and improvement of fitness to replicate in the gut. These factors might differ between 

immunocompetent and immunodeficient patients, leading to differences in mutation profiles 

of viruses.  

 

The variation in the number of mutations and their location within the viral capsid (table 

3.3) largely correlated to the different antigenic structure (figure 3.3) of the serotype 2 strains. 

Characterisation of the antigenic structure of live and inactivated PV found that following 

inactivation, all strains showed partial modification to antigenic site 1 (figure 3.4). This 

confirmed published findings which examined the antigenic structure of the MEF-1 and 

Sabin 2 strains (160, 426). To assess what effect this partial modification has on the 

immunogenicity of PV, a rat potency test was carried out. Analysis of the sera from rats 

immunised with live or inactivated PV strains found that inactivation resulted in a reduction 

in the immunogenicity of PV (figure 3.7). Given the scale of this reduction in 

immunogenicity, it is unlikely that partial modification of antigenic epitopes by crosslinks or 

other reactions alone account for this.  

 

In addition to the inactivation process reducing the immunogenicity of inactivated PV 

preparation, the large disparity in immunogenicity of live and inactivated PV preparations 

could also be due to the live preparations replicating in the rat. Although PV in theory only 

replicates in humans and some subhuman primate species (as they possess cells which 

express the PVR) (355, 413), previous research using photosensitised PV has found some 

multiplication in non-primate species, including newborn and adult cotton rats (271-273). 

The pattern of infection in these rats resembled the one-cycle infection produced by PV RNA 

in that the newly formed virus had a low titre, which failed to increase after first 24 hoursand 

there was a lack of clinical signs in the rats (211, 215, 216). From this research one could 

infer that PV maybe replicating on a small scale in the rats which could be increasing the 

yield and consequently the immune response elicited. As inactivated PV preparations cannot 
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replicate, their yield would not increase resulting in a lower immune response than the live 

preparations. This potential explanation for the disparity in immunogenicity between live and 

inactivated PV could be assessed by monitoring the rat immune reponse to PV non-structural 

viral proteins which are involved in PV multiplication. As a negative control to this analysis, 

rats could be infected with temperature sensitive PV strains. 

 

A comparison of the sera from rats immunised with inactivated preparations of different 

serotype 2 strains found that Sabin 2 and related VDPV strains had low immunogenicity 

against challenge viruses. MEF-1 and other wild-type strains were more immunogenic 

against the challenge viruses. These results show that the effect of inactivation on the viral 

immunogenicity differs between strains. Strain-specific differences in the antigenic epitopes 

which trigger the immune response, may contribute to this.    

 

There was some degree of specificity in the immune responses induced by all inactivated 

serotype 2 PV strains against the different challenge viruses. Inactivated PVs had a lower 

immunogenicity against the iVDPV strain 04-44140261 compared to challenges with the 

Sabin 2 and MEF-1 strains. The scale of this fall in immunogenicity differed between the 

inactivated serotype 2 strains. Whether these differences would lead to differences in 

protection against disease will be investigated using an immunisation-challenge model in Tg 

mice that express the human PVR (Chapter 5).  

 

A comparison of the immunogenicity of live preparations of the Sabin 2 and MEF-1 

strains found that the wild-type strain to be significantly more immunogenic (figure 3.7). This 

suggests that inactivation was not the only factor responsible for the disparity in 

immunogenicity between the serotype 2 sIPV and cIPV. Analysis of the sequenced viral 

capsid proteins of Sabin 2 and MEF-1 found a total of 26 amino acid differences between the 

two strains. Of these, only three were within the known antigenic sites: VP1 R, K103; R, K252; 

and VP3 S, N59. Moreover, as both showed similar antigenic structures (figures 3.3 and 3.4), 

it is not clear why they differ in immunogenicity both as live and inactivated preparations. It 

may be that the manner in which the antigen of each strain is processed by the immune 

system differs resulting in a different response, but further work will be required to explore 

this. 
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4.1 INTRODUCTION 

 

The previous chapter described how inactivation of PV with HCHO resulted in a 

significant loss of immunogenicity, possibly due to modification of the antigenic sites. The 

main objective of inactivation is to irreversibly eliminate the infectivity of the original live 

virus-containing material to an extent that ensures the safety of the vaccine and, at the same 

time, retains maximum immunogenicity of the virion (68). Since the development of the IPV 

by Salk et al. in the 1950s (451), HCHO has been used to inactivate PV. Preparation of IPV 

has been fine-tuned with the introduction of a filtration step and the development of improved 

high-density cell culture systems (142, 349, 350). However, inactivation with HCHO has 

been found to result in a loss of immunogenicity of PV. 

 

One approach to avoid this loss of immunogenicity following inactivation is to use 

alternative inactivation agents which selectively inactivate the viral genome. Two such 

inactivation chemicals have been identified: BPL and BEI. Beta-propiolactone is a four 

membered ring (figure 4.1A) which can undergo ring opening at the alkyl and acyl bonds, 

making it a highly reactive alkylating agent (400). Due to its highly electrophilic alkylating 

moiety, BPL readily reacts with many nucleophilic agents (including proteins and nucleic 

acids). Beta-propiolactone interacts in a pH-dependent manner with SH and SS groups and 

the amino acids methionine, cysteine and cysteine (63). In addition, BPL alkylates the N7 and 

N1 atoms of guanine bases and the N3 atom of adenine bases (57, 97, 432, 458, 459). These 

interactions can result in modified guanine being misread as adenine by polymerases, leading 

to transition mutations (400). When a high concentration of BPL is present, alkylation of 

purine bases can cause depurination following the break of the glycoside bond between the 

base and the deoxyribose/ribose moieties without disrupting the structural integrity of the 

phosphodiester backbone (297, 464). Neighbouring alkylated guanine bases are able to 

crosslink each other and protein to form complexes (400). While BPL does interact with viral 

capsid proteins (56), the preferential carboxyethylation of guanine and adenine (leading to 

extensive mispairing) is the basis of BPL inactivation (53, 57, 182). Beta-propiolactone has 

been extensively used to inactivate viruses for both human and veterinary vaccine production. 

Beta-propiolactone-inactivated whole influenza and rabies human vaccines have been 

developed and safely administered (69, 171, 244). Experimental inactivated vaccine 

candidates for severe acute respiratory syndrome, human immunodeficiency virus and 

infectious bovine rhinotracheitis are being developed using BPL (77, 245, 417, 431).  
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Figure 4.1. Chemical structure of beta-propiolactone (A), binary ethyleneimine (B), and 

iodoacetamide (C).  

Both BPL and BEI have a ring structure. Adapted from (131, 169).  

 

 

Binary ethyleneimine is an aziridine produced by cyclisation of haloethylamines under 

alkaline conditions (417). Binary ethyleneimine was developed as a safer and more stable 

alternative to N-acetylethyleneimine (AEI) for inactivating Foot-and-Mouth-Disease (FMD) 

virus (23). Aziridines possess a ring structure (figure 4.1B) which, similar to BPL, undergo 

ring opening reactions with nucleophiles, in particular adenine and guanine (56). Binary 

ethyleneimine alkylates nucleophilic positions N7, N3 and N1 in purine bases, and to a lesser 

extent N3 in pyrimidine bases (205, 206, 525). It is not clear whether BEI impairs the 

antigenicity and biological activity of viral capsid proteins. Some research has found that 

aziridines react with α and ε amino, imidazole, carboxyl, sulphydryl and phenolic groups of 

proteins (124, 186), while other studies show that aziridines do not alter the viral capsid 

proteins (60, 61, 132, 190, 512). Binary ethyleneimine has been used to generate commercial 

vaccines, in particular for livestock. Due to concerns about the risk of live virus 

contamination with HCHO, the aziridine AEI was used to generate FMD vaccines. As a less 

carcinogenic and more stable aziridine, BEI has now become the inactivation reagent of 

choice to generate inactivated FMD vaccine (440). In addition, BEI has been used to generate 

bluetongue vaccines (40). 

 

 Previous research (73, 239, 512) has highlighted the possibility of using BPL or BEI to 

inactivate PV. This research found that inactivation with either chemical resulted in a greater 

retention of viral antigenicity than that achieved with HCHO inactivation. Such greater 

retention of antigenicity may result in inactivated PV preparations with improved 

immunogenicity. An alternative means of reducing the loss of immunogenicity following 

CA B
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inactivation is to reduce the concentration of HCHO used. This approach was adopted 

alongside the inactivation of PV with BPL and BEI. 

 

Iodoacetamide is a novel inactivation chemical (figure 4.1C), which covalently modifies 

cysteine residues (to form s-carboxymethycysteine), so that disulphide bonds can no longer 

form. It has recently been used to successfully inactivate toxins (botulinum) as a non-cross-

linking chemical (203, 242). As IAN represented a novel non-cross-linking chemical which 

may result in less modification of the antigenic sites and potentially a lower loss of 

immunogenicity, it was selected to inactivate PV in addition to BPL, BEI and HCHO.   

 

As detailed in the previous chapter the potency of inactivated PV preparations and IPV is 

expressed in D-Ag units (31). Currently, the D-Ag content is determined by ELISA using an 

international reference standard (176). The ELISA is variable, in particular with the use of 

specific reagents and antibodies; which leads to inconsistency when results are compared 

both within and between laboratories (22, 541). A recent collaborative study, organised by 

the NIBSC and involving many national control laboratories and manufacturers, underlined 

this problem. The study found that measuring the D-Ag of sIPV preparations by ELISA was 

problematic with high variation between laboratories and reagents (310). An alternative 

approach to the current ELISA is the biosensor-based analytical system.  
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The biosensor-based analytical system is based on the SPR technique. This an optical 

method which measures the refractive index of very thin layers of material adsorbed on a 

metal (such as gold). The Kretschmann configuration is the most common geometrical setup 

of SPR (figure 4.2).  

 

 

Figure 4.2. Schematic of the Kretschmann configuration of surface plasmon resonance. 

Light is shone onto the gold film forming an evanescent wave.  At a certain angle of incident light, this 

evanescent wave field excites electrons triggering the formation of surface plasmons on the adsorbate side of the 

metallic film (237). As surface plasmons form, photons of light disappear, resulting in a dip in reflected light at 

that angle (SPR angle) (391). For the pictured Biacore biosensor the principle determinant of this angle is the 

refractive index of the adsorbate located on the backside of the gold film. Binding to this region leads to a shift 

in the local refractive index which leads to a change in the SPR angle. A charged couple device chip measures 

this angle. Charged couple device is abbreviated as CCD (76). 

 

 

The incoming light is positioned on opposite side of the metallic film than the adsorbate 

(391). When light is shone onto the metallic film it leaks an electromagnetic component, the 

evanescent wave, across the film. At a certain angle of incident light, this evanescent wave 

field excites electrons triggering the formation of surface plasmons (electron charge density 

waves) on the adsorbate side of the metallic film (237). As surface plasmons form, photons of 

light disappear, resulting in a dip in reflected light at that angle (SPR angle) (391). A charged 

couple device chip measures the angle. 

 

CCD camera
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For the Biacore biosensor instrument described in this chapter, the principle determinant 

of this angle is the refractive index of the adsorbate. This angle is located close to the 

backside of the metal film, to which ligands are immobilised and addressed by analytes 

injected alongside the flow cell. Binding leads to a shift in the local refractive index which 

leads to a change in the SPR angle. This is monitored in real-time by the detection of changes 

in the intensity of the reflected light and is used to produce a sensorgram (391). Responses 

are measured in resonance units (RU), where one RU corresponds to 0.0001° shift in the SPR 

angle (237). The rate constants for the association and disassociation phases of the interaction 

can be determined by analysing the rate of change of the SPR signal. The affinity 

(equilibrium constant) can be determined by calculating the ratio of the association and 

disassociation phases. The stoichiometry of the interaction can be determined as the size of 

the change in the SPR signal is directly proportional to the mass being immobilised (391). 

 

SPR-based biosensors are able to analyse biomolecular interactions, such as antibody-

antigen and ligand-receptor. This property has several qualitative and quantitative 

applications. Qualitative applications include epitope mapping and orphan ligand fishing. 

Quantitative applications include determining the reaction kinetics and affinity constants for 

molecular interactions (391). The biosensor described in this chapter is the Biacore (GE 

Healthcare). The Biacore instrument consists of an optical detector system, exchangeable 

sensor chips, a processing unit and a personal computer for control and evaluation (518). The 

exchangeable sensor chips are glass slides with a gold film coated on one side which is 

coated with a nonderivatized or derivatized dextran matrix (518). One of the interacting 

molecules (ligand) is either covalently immobilised to the surface of the chip or captured 

(237). The other interacting molecule (analyte) is passed over the surface of the sensor chip 

via an integrated microfluidic system (360). The biomolecular interaction occurs across the 

surface of the chip and the optical detector system monitors changes in the SPR signal in real-

time (237). The processing unit carries both the optical detector system and an integrated 

microfluidic cartridge in addition to an autosampler for dispensing samples automatically 

(518). Preliminary work by Kersten et al. (252) indicates that the biosensor approach could 

be used to determine the D-Ag content of IPV. This biosensor-based approach was explored 

further in this chapter. 
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This chapter describes the first study to explore in detail the use of alternative chemicals 

to inactivate PV. The efficacy of IAN to inactivate PV was determined. The data presented 

here identified the optimal concentration of BPL, BEI and HCHO needed to inactivate PV 

and determined the effect of each on the viral infectivity and antigenic content. A biosensor-

based approach was used to determine the D-Ag/ml of inactivated PV preparations. These 

estimates were compared to those obtained by the conventional ELISA and the implications 

on the assessment of the potency of IPV were discussed. 

 

 

4.2 RESULTS 

 

4.2.1 Inactivation of poliovirus with Iodoacetamide  

 

Iodoacetamide is a sulfhydryl reactive reagent which inactivates via a non-cross-linking 

mechanism. Previous research found that IAN can reduce or abolish the infectivity of a range 

of viruses, however PV was not among these (13).To assess the efficacy of IAN as an 

inactivation chemical for PV, a broad range of concentrations of IAN (2, 20, 100, 200, 400 

mM) were selected to inactivate the MEF-1 PV strain (Materials and Methods, section 

2.2.2.2). The infectivity of the inactivated MEF-1 preparations was assessed by determining 

the infectious titre (Materials and Methods, section 2.2.1.1), shown in figure 4.3, and by 

addition onto susceptible HEp-2C cells. Cultures which showed no CPE were passaged twice 

more for periods of up to three weeks to ensure that infectivity had been eliminated. 
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Figure 4.3. Inactivation of viral infectivity with iodoacetamide.  

The MEF-1 strain was incubated with the relevant concentration of IAN for 24 h at 37 °C. Effect of inactivation 

on viral infectivity was determined by incubating susceptible cells with a range of ten-fold dilutions of each 

inactivated MEF-1 preparation. After five days, incubation cells were stained and the infectious titre was 

determined. One determination is shown as bars. 

 

 

Both assays found that viral infectivity was eliminated following treatment with 100, 200 

and 400 mM IAN. To establish the kinetics of inactivation with IAN the MEF-1 strain was 

inactivated with 100 mM IAN over a 24 h time-course, with aliquots (1 ml) taken at 1, 4, 8 

and 24 h (Materials and Methods, section 2.2.2.2). The infectivity of the virus within these 

aliquots was assessed by titration and by adding onto HEp 2C cells, as described above. As 

figure 4.4 shows, viral infectivity was eliminated by 8 h. 

 

 

Figure 4.4. Loss of viral infectivity during inactivation with iodoacetamide.  

The MEF-1 strain was incubated with 100 mM IAN for 24 h at 37 °C. At 1, 4, 8 and 24 h aliquots were taken. 

The infectious titre of the virus within each aliquot was determined by incubating susceptible cells with a range 
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of ten-fold dilutions of each aliquot. After five days, incubation cells were stained and the infectious titre was 

determined. One determination is shown as bars. 

 

 

While the elimination of viral infectivity was confirmed, it was not clear whether 

inactivation with IAN modified the antigenic structure of PV. To assess this and to determine 

whether inactivation with IAN resulted in a loss of antigenicity, the D-Ag/ml of each aliquot 

from the 24 h time-course inactivation of MEF-1 was determined by ELISA. A range of site-

specific MAbs were used to ensure that any modification to specific antigenic sites was 

detected. As figure 4.5 shows, following 4 h incubation with IAN, the D-Ag of the MEF-1 

preparation was much reduced and by 8 h was no longer detectable by any of the MAbs. 

 

 

Figure 4.5. Effect of inactivation with iodoacetamide on viral antigenicity.  

The MEF-1 strain was incubated with 100 mM IAN for 24 h at 37 °C. At 1, 4, 8 and 24 h aliquots were taken. 

The effect of inactivation on viral antigenicity was determined by ELISA to assay the D-Ag/ml of each virus 

aliquot. One determination is shown as bars. 

 

 

The decline in D-Ag suggests that IAN may have modified or destroyed the antigenic 

epitopes on the surface of the virus. Unlike HCHO (Chapter 3, section 3.2.2.1), this decline 

was detected by a range of antigenic site-specific MAbs, indicating that this modification 

affected more than one antigenic site. The inactivation of MEF-1 with 100 mM IAN over 24 

h was repeated at +4 ºC to determine whether a lower temperature would slow down or 

reduce these modifications. However, the resulting inactivated MEF-1 preparations remained 
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infectious (full CPE within a day), indicating that IAN cannot inactivate PV within such a 

period of time at this low temperature. 

 

It has been postulated that the regular surface subunits of PV are held together by 

disulfide bonds formed between cysteine residues. Each subunit has approximately five 

cysteine residues which may be involved with binding subunits together (12). Iodoacetamide 

is argued to covalently modify cysteine residues so that disulfide bonds cannot form. This 

reaction may prevent capsid subunits separating, a key step in the emergence of viral RNA 

during viral replication (12). This mechanism of action may have resulted in extensive 

modifications, causing a reduction in the physical stability of the virion and eventually its 

spontaneous destruction (68). 

  

Another difficulty encountered when inactivating PV with IAN was the inability to 

neutralise the chemical. Unlike for HCHO, BPL and BEI, previous research did not identify a 

chemical which could neutralise IAN. Due to the cytotoxic nature of IAN, it was necessary to 

remove it before determining the infectivity of the IAN-inactivated MEF-1. A series of 

methods were used to remove the IAN, including dialysis and passage through a 30 % 

sucrose cushion. However, each method also resulted in a large loss of virus. Consequently, 

this loss of virus may have contributed to the reduction in D-Ag of the aliquots as inactivation 

progressed. It is possible that both this loss of virus and the modification / destruction of viral 

epitopes by IAN contributed to the loss of D-Ag as the time-course progressed. This loss of 

D-Ag meant that IAN was an unsuitable chemical for inactivation. 
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4.2.2 Optimisation of inactivation with beta-propiolactone, binary ethyleneimine and 

formaldehyde 

 

An excessive duration of inactivation and / or concentration of the inactivation chemical 

can result in a fall in the stability and immunogenic properties of virions (68). Therefore, the 

optimal concentration of the chemical and the minimum and maximum duration of 

inactivation must be determined for each inactivating agent. Additional factors to be 

considered include the temperature and pH during the inactivation process. During the 

development of IPV, research was carried out to determine the optimal conditions for the 

inactivation of PV with HCHO (301, 450, 503). This led to the adoption of the current 

inactivation conditions: 1:4000 HCHO, 37 °C, neutral pH, for 12 days (409). 

 

Little is known about the optimal inactivation conditions required to inactivate PV or 

similar viruses with BPL and BEI (1, 239). The research presented within this chapter 

represents the first optimisation of conditions for inactivation of PV with these chemicals 

(Materials and Methods, section 2.2.2.3).  The duration of inactivation and a range of 

concentrations of each chemical were selected from previous experience at the NIBSC with 

influenza virus and / or an extensive literature search.  While a neutral pH was maintained for 

all inactivations, the temperature was dependent on the chemical. Due to its instability at 

higher than ambient temperatures (288), BPL-based inactivations were carried out at +4 °C, 

instead of 37 °C as with BEI and HCHO.  

 

To determine the optimal inactivation conditions which eliminated infectivity with the 

least impact on antigenicity, the effect of inactivation on the viral infectivity and antigenicity 

of the MEF-1 strain was determined for each concentration of the inactivation chemicals. An 

equivalent amount of MEF-1 (1 x 10
9
 TCID50 / ml) was inactivated with each chemical over a 

time-course with aliquots (1 ml) being taken at pre-determined points throughout. These 

points were determined for each chemical by the findings of previous studies (1, 239, 245). 

The MEF-1 strain was inactivated with BPL and BEI for 24 h. Aliquots were taken at 2, 4, 8, 

18 and 24 h for both chemicals. During inactivation with BEI an additional aliquot was taken 

at 6 h. The WHO recommends that the inactivation period with HCHO should exceed the 

time required to reduce the titre of live virus to undetectable amounts by a factor of at least 

two (545). Therefore, MEF-1 was inactivated for 288h with aliquots being taken at 2, 12, 24, 

36, 60 and 288 h.  
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All three inactivation chemicals are cytotoxic and can cause vaccine-cell mutations (21). 

In order to assess the infectivity of MEF-1 preparations inactivated with each chemical it is 

necessary to neutralise the chemicals. Beta-propiolactone was neutralised with sodium 

sulphite; BEI with sodium thiosulphite; and HCHO with sodium bisulfite (23, 239, 312). Two 

live MEF-1 time 0 h controls (0i and 0ii) were included for each inactivation. The 0i control 

was immediately stored at -20 °C following the initiation of the inactivation time-course. The 

0ii control was incubated in the same conditions as the other samples during inactivation, but 

in the absence of the inactivating chemicals. Similar to the sample aliquots, the relevant 

neutralising chemical was applied to it. To assess whether the inactivation conditions alone 

had an effect on the infectious titre and D-Ag of MEF-1, the two controls were compared. 

 

 

4.2.2.1 Effect of inactivation on viral infectivity of MEF-1 

 

As described above (section 4.2.2), to determine the optimal concentration of each of the 

chemicals which would eliminate viral infectivity, inactivation time-courses were carried out. 

During each time-course, a series of aliquots were taken at pre-determined times (section 

4.2.2). The point at which viral infectivity was eliminated by each concentration of the 

relevant chemical was determined by adding the virus aliquots onto HEp-2C cells. Cultures 

not showing CPE were passaged two further times for up to three weeks to ensure infectivity 

had been eliminated. With the exception of 0.4 mM BEI and 1:2000 BPL, viral infectivity 

was destroyed by the final time-point for all of the concentrations of BPL, BEI and HCHO. 

The loss of infectivity during the course of inactivation was assessed by determining the 

infectious titre at each time point. As figure 4.6 shows, with the exception of 0.4 mM BEI 

and 1:2000 BPL, all other concentrations of each of the chemicals eliminated viral infectivity 

by the final time-point. 
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Figure 4.6. Effect of inactivation with beta-propiolactone, binary ethyleneimine, and 

formaldehyde on viral infectivity of MEF-1 strain.  

The MEF-1 strain was incubated with the relevant concentration of BPL (A), BEI (B) or HCHO (C) for specific 

time-courses. Aliquots were taken at pre-determined times, denoted on the log scale X axis. The live 0ii control 

is included at 0 h for the LIVE MEF-1 samples. Effect of inactivation on viral infectivity was determined by 

incubating susceptible cells with a range of ten-fold dilutions of each virus aliquot. Following five days 

incubation cells were stained and the infectious titre was determined. One determination is shown as a line 

graph. 
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As figure 4.6 shows, the rate of elimination of viral infectivity differed between the 

inactivation chemicals. Beta-propiolactone and BEI eliminated viral infectivity by 18 h, while 

HCHO required 288 h. As with the LIVE MEF-1 samples, the infectious titre of the live 0ii 

control remained consistent for the BPL and BEI inactivation time-courses (data not shown). 

This indicated that the inactivation conditions during these time-courses did not have a 

significant effect on the titre of the MEF-1 samples. However, the infectious titre of LIVE 

MEF-1 samples dropped by almost three logs during the HCHO inactivation. This fall in titre 

was found for the 0ii control but not the 0i control (data not shown), indicating that it was 

caused by the inactivation conditions. While the pH remained neutral (pH 6.5-7.0) throughout 

each inactivation with HCHO the prolonged incubation at 37 °C for 288 h may have caused 

this reduction as previous research has found that PV is thermolabile and can lose infectious 

titre when dissociated by heat-treatment (95, 325). The amount of MEF-1 used for 

inactivation by each chemical was determined against the infectious titre of the strain. 

Although an effort was made to ensure the same amount of MEF-1 was inactivated with each 

chemical, the actual amount inactivated may have varied slightly as inactivations were 

carried out separately and consequently repeated freeze-thawing of the live MEF-1 stock was 

required. 

 

 

4.2.2.2 Effect of inactivation on viral antigenicity of MEF-1 

 

It has been shown that inactivation with HCHO did not result in a significant reduction in 

antigenic content (Chapter 3, section 3.2.2.1). To confirm this and to assess whether the 

antigenic content was reduced following inactivation with BPL and BEI, the antigenicity of 

the virus aliquots from previously described inactivation time-courses (section 4.2.2) were 

determined by ELISAs using the detection MAb 1050. As tables 4.1A, B and C show, each 

inactivation chemical reduced the antigenic content of the MEF-1 preparation. The extent of 

this reduction varied between the chemicals.  
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Time-point 

of aliquot 

(h) 

D-Ag / ml 

1:500 BPL 1:1000 BPL 1:2000 BPL 

0 18 18 18 

2 10 12 11 

4 10 9 9 

8 9 9 7 

18 9 9 6 

24 10 12 7 

 

Table 4.1A. Effect of inactivation with beta-propiolactone on viral antigenicity of MEF-

1 strain. 

 

 

Time-point 

of aliquot 

(h) 

D-Ag / ml 

0.4 mM BEI 0.8 mM BEI 1.6 mM BEI 

0 25 25 25 

2 15 16 22 

4 17 15 19 

6 14 20 12 

8 16 18 19 

18 19 24 19 

24 19 20 20 

 

Table 4.1B. Effect of inactivation with binary ethyleneimine on viral antigenicity of 

MEF-1 strain. 
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Time-point 

of aliquot 

(h) 

D-Ag / ml 

1:2000 HCHO 1:4000 HCHO 1:8000 HCHO 

0 51 51 51 

2 35 46 36 

12 34 43 30 

24 39 34 35 

36 35 46 34 

60 24 34 36 

288 45 45 39 

 

Table 4.1C. Effect of inactivation with formaldehyde on viral antigenicity of MEF-1 

strain. 

 

Table 4.1. Effect of inactivation with beta-propiolactone, binary ethyleneimine, and 

formaldehyde on viral antigenicity of MEF-1 strain.  

The MEF-1 strain was incubated with the relevant concentration of BPL (A), BEI (B) or HCHO (C) for specific 

time-courses. Aliquots were taken at pre-determined times. Effect of inactivation on viral antigenicity was 

determined by ELISAs using the detection MAb 1050. One determination is shown. 

 

 

As tables 4.1B and C show, inactivation with BEI or HCHO only resulted in a minor 

reduction of the antigenic content of the MEF-1 strain, confirming the finding in Chapter 3 

that inactivation with HCHO did not result in a significant loss of antigenic content. 

However, as table 4.1A shows, inactivation with BPL appears to have resulted in a greater 

loss of the antigenic content of the MEF-1 strain than that shown following inactivation with 

BEI or HCHO. Inactivation with all three chemicals resulted in an initial drop in the antigenic 

content of MEF-1 within the first two hours. The scale of this drop seemed to vary randomly 

between the different concentrations of each chemical. The D-Ag remained the same for both 

live controls. While the titre of the live 0ii control fell during inactivation with HCHO, the D-

Ag remained the same throughout. The antigenic content did not differ significantly between 

the different concentrations of each chemical.  
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4.2.3 Inactivation of poliovirus with beta-propiolactone, binary ethyleneimine and 

formaldehyde 

 

The data derived from the initial optimisation inactivation experiments described in 

section 4.2.2 were used to select the concentration of each chemical for further inactivations 

of MEF-1 and other PV strains (Materials and Methods, section 2.2.2.4). The concentration 

which gave the most efficient loss of infectivity with minimal loss of D-Ag / ml was selected. 

Therefore, 1:500 and 1.6 mM were selected for BPL and BEI inactivations, respectively. Two 

dilutions (1:4000 and 1:8000) were selected for HCHO inactivation to allow comparison to 

the 1:4000 HCHO inactivation currently used to generate cIPVs. In addition to the MEF-1 

strain, the Sabin 2 strain and an iVDPV strain (04-44140261) were inactivated. These strains 

were selected because they differ in their antigenic structure and immunogenicity (Chapter 

3). Inactivation time-courses were set up for each chemical and the three virus strains. 

Aliquots (2-5 ml) were taken during each time-course to assess the effect of each chemical on 

viral properties. The length of the time-courses and the choice of time-points at which 

aliquots were taken were chosen on the basis of the initial experiments (section 4.2.2). Strains 

were inactivated with BPL for 16 h with aliquots being taken at 2, 4, 8 and 16 h. Binary 

ethyleneimine was used to inactivate strains over a 24 h period, with aliquots being taken at 

4, 8, 18 and 24 h. Strains were inactivated with two concentrations of HCHO for 288 h with 

aliquots being taken at 12, 36, 72, 120, 180 and 288 h.  

 

An equivalent amount (5 x 10
9
 TCID50 / ml) of each PV strain was inactivated with the 

three chemicals. The amount of PV inactivated was greater than that previously used for the 

optimisation of each chemical to ensure the D-Ag of the resulting inactivated PV preparation 

was sufficiently large (between 100 – 200 D-Ag/ml) to be used for in vivo immunogenicity 

assays. The temperature and pH for inactivation with each chemical remained identical to that 

described previously for the initial experiments (section 4.2.2).  The resulting inactivated PV 

preparations were used to determine the effect of inactivation with each chemical on the viral 

infectivity and antigenicity. As before, two live time 0 h controls (0i and 0ii) were included 

for each strain with each chemical. These controls were treated as described above (section 

4.2.2). 
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4.2.3.1 Effect of inactivation with beta-propiolactone, binary ethyleneimine and 

formaldehyde on viral infectivity 

 

All three chemicals previously fully eliminated the infectivity of the MEF-1 strain 

(section 4.2.2.1). To assess whether the rate of loss of infectivity differed between strains, the 

infectivity of different PV strains inactivated with BPL, BEI or HCHO over a range of time-

courses was determined. Aliquots of the treated viruses were taken during these time-courses, 

as detailed above (section 4.2.3). The point during the time-courses at which viral infectivity 

was eliminated was determined by adding each virus aliquot onto HEp-2C cells. Cultures not 

showing CPE were passaged two further times for up to three weeks to ensure infectivity had 

been eliminated. All inactivation chemicals destroyed viral infectivity by the last two time-

points (section 4.2.3), irrespective of PV strain.  

The effect of inactivation on the viral infectivity was assessed further by determining the 

infectious titre of each virus aliquot. As figure 4.7 shows, the kinetics of inactivation with 

each chemical was similar for all three strains.  
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Figure 4.7. Effect of inactivation with beta-propiolactone, binary ethyleneimine, and 

formaldehyde on viral infectivity.  

Sabin 2 (A), MEF-1 (B) and 04-44140261 (C) PV strains were incubated with BPL, BEI and 1:4000 or 1:8000 

HCHO for set time-courses.  Aliquots of the treated viruses were taken at pre-determined times (noted in the 

legend). Effect of inactivation on viral infectivity was determined by incubating susceptible cells with a range of 

ten-fold dilutions of each virus aliquot. Following five days incubation cells were stained and the infectious titre 
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was determined. One determination is shown as a line graph. 1:4000 HCHO is abbreviated as HCHOa; 1:8000 

HCHO is abbreviated as HCHOb. 

 

 

All inactivation chemicals fully eliminated infectivity of the three PV strains. The rate of 

this loss of infectivity differed between the chemicals. Beta-propiolactone and BEI 

completely eliminated infectivity within 24 h, while the two concentrations of HCHO 

required 72-288 h, confirming the findings obtained with the MEF-1 strain (section 4.2.2.1). 

Although the kinetics of inactivation with each chemical was similar for all three strains, 

some minor differences were apparent. The infectivity of the MEF-1 strain took a further 10 h 

than the other strains to be eliminated by BEI inactivation, while Sabin 2 and 04-44140261 

required between 72-120 h incubation with 1:4000 HCHO before their infectivity was 

destroyed. As previously described for the initial inactivations (section 4.2.2.1) the infectious 

titre of the 0ii control for the HCHO inactivations fell by three logs (data not shown). Again 

no significant fall in infectious titre was noted for the 0i control indicating that the 

inactivation temperature is likely to have caused this fall. As described above, the actual 

amount of the serotype 2 strains inactivated may have varied slightly as inactivations were 

carried out separately and consequently repeated freeze-thawing of the live PV stocks was 

required. 

 

  

4.2.3.2 Effect of inactivation with beta-propiolactone, binary ethyleneimine and 

formaldehyde on viral antigenicity 

 

To confirm the previous findings obtained with the initial inactivations of the MEF-1 

strain and to assess whether the other serotype 2 strains showed similar results, the 

antigenicity of different PV strains inactivated with BPL, BEI and HCHO over a time-course 

was assessed. Aliquots of the treated viruses were taken during these time-courses as detailed 

above (section 4.2.3). The antigenicity of each virus aliquot was determined by ELISAs. As 

figure 4.8 shows, the retention of D-Ag following inactivation varied between serotype 2 

strains and inactivation chemicals.  
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Figure 4.8. Effect of inactivation with beta-propiolactone, binary ethyleneimine and 

formaldehyde on viral antigenicity.  

Sabin 2 (A), MEF-1 (B) and 04-44140261 (C) PV strains were incubated with BPL, BEI or HCHO for set time-

courses. Aliquots of the treated viruses were taken at pre-determined times. For BPL at: 0, 2, 4, 8, 16 h; for BEI 

at: 0, 4, 8, 18, 24 h; for both 1:4000 and 1:8000 dilutions of HCHO at: 0, 12, 36, 72, 120, 180, 288 h. The effect 

of inactivation on viral antigenicity was determined by ELISA using the batch release detection MAb 1050. The 

percentage of live PV D-Ag retained following inactivation was calculated. The average of two determinations 

is shown as bar with standard error. 1:4000 HCHO is abbreviated as HCHOa; 1:8000 HCHO is abbreviated as 

HCHOb. 
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For the Sabin 2 and MEF-1 strains, inactivation with BEI and HCHO resulted in a 

minimal loss of D-Ag, confirming the findings obtained with the MEF-1 strain (section 

4.2.2.2). With the exception of the MEF-1 strain, inactivation with BPL resulted in a greater 

loss of D-Ag than that seen following inactivation with BEI and HCHO. This result 

conflicted the previous finding obtained with the MEF-1 strain in section 4.2.2.2. For all of 

the chemicals, the 04-44140261 strain showed a greater loss of D-Ag than the Sabin 2 and 

MEF-1 strains, particularly when BPL was used. The D-Ag remained the same for both 0i 

and 0ii live controls for all three strains.  

 

To further assess the effect of inactivation on the viral antigenicity, the antigenic structure 

of the three selected PV strains was characterised following inactivation with BPL, BEI and 

HCHO by ELISAs which determined whether antigenic site-specific MAbs would bind 

following inactivation (Materials and Methods, section 2.2.3.3). The binding of MAbs to the 

inactivated PV preparations was compared and related to the binding to live PV. As figure 

4.9 shows, the structure of antigenic site 1 was modified following inactivation with all three 

chemicals.  
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Figure 4.9. Antigenic structure of beta-propiolactone-, binary ethyleneimine- and 

formaldehyde-inactivated poliovirus strains.  

Sabin 2 (A), MEF-1(B) and 04-44140261 (C) PV strains were inactivated by incubation with BPL, BEI and 

1:4000 HCHO (HCHOa). Antigenic structure was characterised by an ELISA with site-specific MAbs in which 

the D-Ag of inactivated PV preparations was calculated relative to live PV. The result obtained was related to 

that determined using the batch release detection MAb 1050. Antigenic site-specificty of MAbs is bracketed. 

The average of two determinations is shown with standard error bars. 
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The results shown in figure 4.9 confirm those of Chapter 3, that inactivation with HCHO 

modifies antigenic site 1. Inactivation with BPL or BEI was also found to affect antigenic site 

1 as shown by MAbs 436 and 969. Using these two MAbs showed that the extent to which 

each chemical modified this site seemed to vary between the chemicals and the PV strains. 

For example, analysis of inactivated Sabin 2 and MEF-1 preparations with MAb 436 found 

that while BPL had little effect, both BEI and HCHO reduced the antigenic content relative to 

live PV preparations. This reduction appeared to be more significant for the MEF-1 strain. 

Modification to antigenic site 1 of the 04-44140261 strain cannot be assessed, as site 1-

specific MAbs do not react with its live form due to its inherent antigenic characteristics 

(Chapter 3). The remaining antigenic sites of the strains showed little modification following 

inactivation with the three chemicals. The lack of modification to antigenic sites 2a, 2b and 

3b of HCHO-inactivated PV preparations confirms previous findings (Chapter 3).   

 

 

4.2.4 Determination of D-Antigen/ml by surface plasmon resonance 

 

Currently, the viral antigenic content (D-Ag) or potency of IPVs is determined by ELISA 

using an international reference standard (176). However, this test is variable both within and 

between laboratories, depending on the specific reagents and antibodies used (22, 541). It has 

been previously noted that the biosensor-based analytical system can determine the antigenic 

activity of a vaccine component by assessing its capacity to bind to a panel of MAbs (518). 

Preliminary work by Kersten et al. (252) has shown that this could be applied to assess the D-

Ag content of IPVs.  

 

To explore the use of this biosensor approach as an alternative method to determine the 

D-Ag / ml, a protocol was devised (Materials and Methods, section 2.2.3.2). This protocol 

used the Biacore 2000 and T100 (GE Healthcare) biosensor instruments to assess the D-Ag / 

ml content of IPV preparations. Both instruments have a fluidic system which creates four 

serially linked flow cell areas on one sensor chip, allowing a number of simultaneous 

measurements (237). The biosensor protocol began with the immobilisation of rabbit anti-

mouse Ig (GE Healthcare) to the dextran layer of a sensor chip. This anti-mouse Ig was 

covalently immobilised to a single flow cell by primary amine coupling. Subsequently, a 

serotype-2 specific MAb and an IPV were injected separately over the surface of the sensor 
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chip for pre-determined periods and at set flow rates. The binding of this MAb and IPV 

caused differences in the refractive index which is, between limits, proportional to the 

concentration of the MAb-IPV complex (252). The surface of the sensor chip was 

regenerated with 10 mM glycine-HCl (pH 1.5) for a pre-determined period and flow rate. In 

comparison to ELISA, the catching antibodies are monoclonal rather than polyclonal. As 

detection is mass-dependent, no detecting antibodies or conjugates are required (252).  

 

Several parameters of this protocol had to be optimised before it could be carried out. A 

ligand can be immobilised to the surface of a range of sensor chips which can be divided into 

non-derivatized and derivatized dextran-containing chips. Non-derivatized dextran-

containing chips are coated with a hydrogel matrix of flexible, unbranched 

carboxymethylated dextran. The derivatized dextran-containing chips are coated with a 

dextran matrix to which either streptavidin or nitrilotriacetic acid has been immobilised. 

These are designed to capture biotinylated ligands and poly-histidine tagged ligands. In 

addition, a number of sensor chips have modifications to the surface which allows the capture 

of liposomes and lipid monolayers (237). As this protocol required the immobilisation of 

rabbit anti-mouse Ig rather than a tagged ligand, the non-derivatized dextran-containing chips 

were selected for immobilisation. 

 

Three non-derivatized dextran-containing chips are available from Biacore; CM5, CM4 

and CM3. The length of dextran and the level of carboxymethylation varied between the 

chips. A comparison of immobilisation of rabbit anti-mouse Ig to CM5 and CM3 sensor chips 

was carried out. The CM3 chip showed a larger amount of bound ligand than the CM5 chip 

following immobilisation (4189.2 RU and 2999.8 RU, respectively). This may have been due 

to the shorter dextran chains of the CM3 chip which would reduce the steric effects during 

immobilisation. An immobilisation wizard program was used to set up the immobilisation for 

this protocol. This software allows immobilisation to be set either to an RU target or for a set 

period of time at a set flow rate. A comparison of both methods found greater immobilisation 

when a set time period at a set flow rate, rather than a set RU target was applied (38939.3 and 

2110.5, respectively). This may have been due to the slower rate of the set time/flow rate 

method, as this would allow more time for binding to the chip.  
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The biosensor protocol relies on the use of a MAb to catch the IPV. In order to determine 

the optimal MAb (s) to do this, a range of serotype 2 MAbs specific to different antigenic 

sites were screened in a binding assay. As table 4.2 shows, this binding assay determined the 

amount of MAb bound to the immobilised anti-mouse Ig and the subsequent amount of a 

trivalent IPV bound to the MAb at two dilutions of IPV. 

 

Monoclonal 

antibody 

Amount of analyte bound (RU) 

1:4 IPV dilution 1:2 IPV dilution 

MAb to AM Ig IPV to MAb MAb to AM Ig IPV to MAb 

433 483 388 701 617 

1247 574 585 758 954 

1037 293 193 301 364 

1050 275 427 298 759 

267 441 80 672 147 

268 503 40 648 80 

1118 474 54 685 98 

1255 323 16 359 22 

 

Table 4.2. Binding of serotype 2-specific monoclonal antibodies to immobilised rabbit 

anti-mouse immunoglobulins.  

Rabbit anti-mouse Ig was immobilised to a CM3 sensor chip. Serotype 2-specific MAbs were injected over the 

surface of the chip, followed by injections of a 1:4 diluted trivalent IPV (23.8 D-Ag). Following a regeneration 

cycle, the process was repeated with a 1:2 diluted IPV (47.5 D-Ag). Binding of MAbs and IPV dilutions was 

monitored in real-time by SPR using the Biacore 2000. MAb indicates monoclonal antibody; rabbit anti-mouse 

Ig is abbreviated as AM Ig; inactivated poliovirus vaccine is referred to as IPV. 

 

 

The optimal MAb selected for the biosensor D-Ag protocol was required to show a reliable 

binding to the anti-mouse Ig and to catch a consistent amount of IPV between regeneration 

cycles. The results of the binding assay, shown in table 4.2, found two MAbs to have 

consistent binding to the anti-mouse Ig between regeneration cycles, MAbs 1037 and 1050. 

The MAb 1050 was selected for the biosensor protocol, as it bound more of the IPV at the 

two dilutions. In addition, both MAbs 1050 and 1037 are currently used in batch release 

ELISA potency testing of IPVs at the NIBSC and, therefore, the use of MAb 1050 in the 

biosensor protocol would allow direct comparison to the ELISA method.  
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In the biosensor protocol a regeneration step is required at the end of each MAb-IPV 

cycle. A regeneration scouting software was used to optimise the regeneration buffer. Both 

glycine-HCl and NaOH were assessed using this program. Glycine-HCl was found to give a 

better regeneration with an optimal pH of 1.5. Different durations and flow rates of 

regeneration were assessed before an optimal regeneration of 10 mM glycine-HCl (pH1.5) 

for 120 s at a flow rate of 30µl/m was reached. As this regeneration removed the bound 

MAb-IPV without causing significant loss of immobilised anti-mouse Ig, two runs in 

succession were included in the biosensor protocol.  
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The biosensor protocol was carried out using the Biacore 2000 and T100 instruments to 

estimate the D-Ag of a reference IPV preparation and a range of commercial IPVs of varying 

origins (including Sabin and wild-type monovalent or trivalent preparations). In addition, the 

biosensor protocol was used to estimate the D-Ag of a range of BPL-, BEI- and HCHO-

inactivated MEF-1 preparations which were prepared “in-house” at the NIBSC (as described 

in section 4.2.3). As figure 4.10 shows, for both commercial IPVs and “in-house” inactivated 

MEF-1 preparations, the D-Ag estimates determined by the biosensor protocol and ELISA 

were comparable. 

 

Figure 4.10. Correlation of D-Antigen estimates of inactivated poliovirus vaccines 

determined by biosensor and ELISA protocols.  

For the biosensor protocol rabbit anti-mouse Ig was immobilised to a sensor chip. MAb 1050, followed by the 

relevant IPV / inactivated MEF-1 preparation were injected over the surface of the chip. The binding of each 

injection was monitored by SPR. For ELISA a serotype specific capture antiserum antibody was bound to a 

plate, followed by the relevant IPV / inactivated MEF-1 preparation. The IPV was detected by MAb 1050 and 

peroxidise conjugated anti-mouse IgG whole molecule. Plates were washed between the additions of reagents. 

  

 

The linear relationship between the two methods, (figure 4.10), was confirmed by the Pearson 

product moment correlation coefficient (Minitab v.16, http://www.minitab.com/en-GB/) 

which found a correlation coefficient of 0.989 (R
2
 = 0.978121). These findings indicate that 
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biosensor approach offers an alternative means to assess the antigenic content of an IPV 

preparation. 

 

 

4.3 DISCUSSION 

 

Inactivation with HCHO is known to lower the immunogenicity of PV and research 

within the previous chapter has found that the partial modification of the antigenic structure 

of PV may, at least in part, contribute to this. One approach to prepare IPVs with improved 

immunogenicity has been to use chemicals which inactivate by different mechanisms to that 

of HCHO. Beta-propiolactone and BEI were selected as they primarily inactivate by 

introducing nucleic acid adducts, principally 7-(2-carboxyethyl) guanine (97, 205, 206, 432, 

459, 525). The optimal concentration of these chemicals to inactivate PV was determined 

alongside the conventional HCHO.  

 

While both chemicals eliminated viral infectivity, the rate at which they did so differed 

from HCHO. Within 24 h (l6-18 h), both fully inactivated PV strains while HCHO took at 

least 120 h. This rapid loss of viral infectivity was indicative of BPL and BEI inactivation 

involving the viral nucleic acids (169) and confirmed previous studies in which both BPL- 

and BEI-inactivated a range of viruses at a much faster rate than HCHO (73, 77, 229, 239, 

245).  

 

The antigenic content of the PV strains was assessed during the optimisation and final 

inactivations by ELISA. For the Sabin 2 and 04-44140261 strains, treatment with BPL 

resulted in a greater loss of antigenic content than when inactivated with BEI or HCHO. This 

loss of antigenic content was not expected, as previous research (57, 97, 432, 459) had 

indicated that the main mechanism of inactivation of BPL was the preferential 

carboxyethylation of guanine and adenine. However, it should be noted that BPL has been 

found to interact with viral capsid proteins (56) and at least part of this effect on the antigenic 

content of PV preparations could have been due to variables which can influence the activity 

of BPL during inactivation, for example the temperature at which the inactivation was carried 

out. While BEI and HCHO inactivations were carried out at 37 ⁰C, BPL inactivations were 

carried out at +4 °C, due to its instability at higher than ambient temperatures (288). 
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Budowsky and Zalesskaya (70) argue that incubation at a lower temperature decelerates the 

hydrolysis of BPL to a greater extent than the reaction between BPL and the virion 

components. Therefore, incubating the BPL inactivation at +4 °C may have led to a 

prolonged interaction of BPL with the virion antigenic epitopes, as well as RNA resulting in a 

reduced D-Ag content.  

 

The pH of the inactivation medium during inactivation influences the nature of the viral 

proteins which interact with BPL (169). During inactivation BPL is completely hydrolysed 

into a non-toxic degradation product, beta-hydroxypropionic acid. The accumulation of this 

product can decrease the pH which, in turn, can affect the BPL consumption (70).  In 

addition, the nature of the proteins which BPL interacts with also shifts when the pH becomes 

more acidic (169). Although HEPES was added to buffer the inactivation medium, the pH fell 

from 7.5 to 6.5 following 16 h incubation with 1:500 BPL. This fall in pH may have resulted 

in a shift in the proteins which interacted with BPL and this, in turn, may have resulted in a 

greater interaction between BPL and the viral proteins.  

 

The antigenic content of the MEF-1 strain fell during the optimisation inactivation with 

BPL. However, this was not apparent during the final inactivation. The less stable nature of 

BPL may account for this discrepancy between the two inactivations. Due to the less stable 

nature of BPL, variations in the temperature and pH of the inactivation medium may have led 

to the minor difference between the inactivated MEF-1 preparations from the optimisation 

and final inactivations. In addition, the concentration of serotype 2 strains also differed 

between the optimisation and final inactivations with BPL (1 x 10
9
 and 5 x 10

9
 TCID50 / 100 

µl, respectively). This difference in the amount of the PV being inactivated may have also 

contributed to the discrepancy between the BPL-inactivated MEF-1 preparations from the 

optimisation and final inactivations. Inactivated Sabin 2 and MEF-1 preparations showed 

little or no loss of antigenic content following inactivation with BEI or HCHO. The high 

retention of PV D-Ag (relative to that of live PV) following inactivation with BEI confirmed 

findings from a related study (529) examining the effect of BEI on Sabin 2 .  

 

The PV strain of the inactivated preparations was indicated to contribute to the observed 

differences in the retention of live PV D-Ag. In comparison to Sabin 2 and MEF-1, the 04-

44140261 strain showed a greater loss of D-Ag following inactivation, irrespective of the 
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chemical used. This may indicate that the 04-44140261 strain was less stable than the other 

strains during the inactivation process, resulting in a greater loss of D-Ag. Alternatively, due 

to difference between PV strains, the viral capsid of the 04-44140261 had a larger quantity of 

amino acid residues which interacted with the inactivation chemicals than the other strains. 

Recently, various amino acid derivatives and synthetic peptides were analysed using nuclear 

magnetic resonance spectroscopy and tandem reversed-phase liquid chromatography mass 

spectrometry to determine the reaction of BPL with proteins (514). This study has identified 

nine amino acid residues with which BPL interacts. The most reactive include cysteine, 

methionine and histidine. Beta-propiolactone reacts to a lesser degree with aspartic acid, 

glutamic acid, tyrosine, lysine, serine and threonine (514). An analysis of the previously 

sequenced antigenic sites of the Sabin 2, MEF-1 and 04-44140261 strains (Chapter 3, table 

3.3) found that there were a larger number of amino acid residues which potentially reacted 

with BPL within the iVDPV strain than the other strains. This may have led to BPL reacting 

to a greater extent with the 04-44140261 strain than the other strains, possibly resulting in a 

greater loss of D-Ag. 

 

The antigenic structure of inactivated PV preparations was characterised by a series of 

ELISAs which determined whether antigenic site-specific MAbs were able to bind following 

inactivation. The binding of MAbs to the inactivated PV preparations was compared and 

related to the binding to live strains. Inactivation with BEI and HCHO resulted in 

modification to the structure of antigenic site 1 of the Sabin 2 and MEF-1 strains. The extent 

of these modifications appeared to vary between PV strains. The remaining antigenic sites 

were not modified by inactivation with BEI or HCHO. Inactivation with BPL did not result in 

any significant modification to any of the antigenic sites.  

 

The modification of antigenic site 1 by BEI conflicts with the findings of previous 

research that BEI does not alkylate the viral capsid proteins (56, 123, 131). However, there is 

evidence that BEI can modify proteins. An analysis of albumin samples by isoelectric 

focusing found that inactivation with BEI modified the albumin, altering its charge (66, 67). 

Previous research has found the reactivity of BEI with polynucleotides and viral proteins to 

be similar (71). This similar reactivity may have led to the inactivation of the viral proteins as 

well as the genome resulting in a modification to the antigenic structure. One way to increase 

the selective inactivation of the viral genome would be to inactivate with ethyleneimine 

oligomers, rather than the monomeric BEI (66, 67, 71, 509).The difference in the 
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modification of antigenic site 1 between BEI, HCHO and BPL may, at least in part, affect the 

immunogenicity of the inactivated PV preparations. This will be explored in Chapter 5 using 

a batch-release rat potency assay and an immunisation-challenge model. In addition to the 

approach described within this chapter there are alternative ELISA approaches which may 

give more detailed findings of epitope modification (426). 

 

A biosensor-based protocol established comparable D-Ag/ml estimates to those obtained 

by the current ELISA, indicating that it could offer an alternative means to assess the potency 

of IPVs. Variation within assays and laboratories could be lessened by the automated nature 

of biosensors. The variability in polyclonal and monoclonal antibodies could be eliminated 

with the use of a biosensor system, as this would allow the rapid characterisation (within 

days) of antibodies, which would enable laboratories to rapidly screen and select the optimal 

antibodies. In addition to providing a less variable means to determine the D-Ag content, the 

biosensor approach offers additional tools for research that the ELISA cannot offer. As a 

biosensor system measures direct binding between a ligand and an analyte and it can analyse 

the kinetics of an interaction, it could be used to provide a more detailed analysis of the 

nature of the interaction between MAbs and antigens. In addition, the affinity-dissociation 

and competition of MAbs to bind to certain antigen could be determined. 

 

The expression of the viral antigenicity of IPV as D-Ag unit/ml can be problematic, as D-

Ag is a poorly defined measurement. The use of “in-house” antibodies and reagents by 

manufacturers and official medicines control laboratories can affect the obtained D-Ag and 

result in variation between laboratories (532). Recent research (532) has shown that 

biosensors can determine the antigenic (or active) content of IPVs by a calibration-free 

concentration assay. This assay determines the active concentration of IPVs without the use 

of a reference strain. The assay measures the observed binding rate of the IPV to a specific 

MAb during sample injection under partially or complete mass transport limited conditions 

(471, 532). Preliminary investigations have found that active concentration of a range of IPVs 

(Sabin and wild-type) was independent of MAbs used. For cIPVs the active particle 

concentration correlated with the virus concentration calculated from the absorbance at 260 

nm of the purified monovalent bulk intermediate after ion exchange chromatography 

purification (532). This assay could be used instead of ELISA to assess the antigenic content 

of inactivated PV preparations. The assessment of the active content of IPVs offers the 
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advantages of not requiring a calibration curve and of being independent of variation between 

different MAbs (532). 
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CHAPTER 5 
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5.1 INTRODUCTION 

 

The previous chapter detailed how an indirect ELISA was used to quantify the potency of 

IPV preparations. However, when the IPV was developed by Salk in the 1950s, the potency 

of IPVs was not assessed. Each dose of IPV was designed to be the equivalent of a specific 

volume of harvest fluid from PV-infected primary MKTC (170, 452). Inactivated poliovirus 

vaccines developed by this method showed variable immunogenicity in humans (170). In 

response to the Cutter incident (365) in which vaccine recipients were paralysed by the use of 

incompletely inactivated IPV, filtration steps were introduced to remove aggregates. While 

these steps led to increased safety, the antigenicity of the IPVs fell as a result (326) and this, 

in turn, lowered the immunogenicity of the vaccine (361). Consequently, potency assays for 

the final products were required.  

  

Both in vitro and in vivo potency assays have been developed to assess the 

immunogenicity of IPV. Previously the in vivo assays were used as the official batch release 

tests carried out on the final IPV product, while the in vitro assays were principally used for 

in-process monitoring (150). This situation has since changed and due to the requirements of 

the European convention on the protection of vertebrate animals used for experimental and 

other scientific purposes, it is possible to waive the in vivo assay and assess the potency 

solely by in vitro assays, should certain conditions be met (153). In vitro assays measure the 

potency of IPV preparations by determining the D-Ag units. As noted previously (Chapter 4), 

the D-Ag unit is used as a measure of potency as it is largely expressed on native infectious 

virions and is the protective immunogen (31, 289). The most commonly used in vitro test is 

the indirect ELISA. This assay is used to assess the D-Ag content of IPVs and ensure 

consistency throughout production. 

 

A range of in vivo assays have been developed in monkeys, chicks, guinea pigs, mice and 

rats. All have an advantage over in vitro assays in that they can measure the ability of the IPV 

to induce protective, neutralising antibodies (474). Initially the monkey potency test was the 

standard in vivo assay to determine the potency of IPV preparations (515). In this test at least 

10 simians are inoculated, using a three dose schedule comparable to that used for human 

recipients (540). The geometric mean titre of neutralising antibodies for each of the three 

serotypes is compared with a reference trivalent antiserum (150). An IPV is deemed 

acceptable if the mean titre is above that of the reference antiserum (540).  
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While the monkey potency test can distinguish qualitatively between good and poor IPVs, 

it is not sufficient for obtaining quantitative data about vaccine potency, as it uses a reference 

serum rather than a reference vaccine. In addition, this test requires many expensive primates 

(39, 520). These concerns led to a search for another animal model to assess the potency of 

IPVs. Animals which are non-susceptible to PV are known to be capable of forming specific 

neutralising antibodies following parenteral administration of live or inactivated PV (181). 

Consequently, a range of non-susceptible animal models have been developed, one of which 

is the guinea pig model (181). Initially, this test involved single and booster inoculations of 

groups of guinea pigs with ten-fold dilutions of live and inactivated PV preparations (115). 

Following 6-7 weeks, the guinea pigs were bled and the antibody levels were determined at a 

low dilution by a neutralisation test, described previously (181). From this, the extinction 

end-point of the median effective dose (ED50) after a single dose was calculated (150). The 

end-point of the ED50 is the logarithm of the reciprocal of the dilution which evokes 

neutralising antibodies in 50 % of the animals (320). The chick potency test follows a similar 

protocol and after a single dose calculates the ED50 (504).  

 

Both the guinea pig and chick potency test have been adopted as a single test within the 

European Pharmacopeia (153). In this test, three or more dilutions of an IPV are used to 

immunise either guinea pigs or 3-week-old chicks (10 animals / dilution). After 5-6 days, 

animals are bled and sera are diluted to 1 in 4. Poliovirus (100 TCID50) is mixed with the 

diluted serum and incubated at 37 °C for 4.5-6 h and then 5 ± 3 °C for 12-18 h. Mixtures are 

added to cell cultures for up to seven days, to detect unneutralised PV. For each group of 

animals, the number of sera which have neutralising antibodies is noted and the dilution of 

the IPV which gives an antibody response in 50 % of the animals (the end-point of the ED50) 

is calculated.   An IPV is acceptable if a dilution of 1 in 100 or more produces an antibody 

response for each of the three serotypes of PV in 50 % of the animals (153).  

  

Although an accepted technique of the European Pharmacopoeia, the guinea pig / chick 

potency test is limited in that the calculated single dose ED50 can only provide a qualitative 

measure of the immunogenicity of an IPV. This test lacks the sensitivity and reproducibility 

to distinguish between IPVs which differ in antigenic content as much as four-fold to eight-

fold (150). In addition, this test is a poor predictor of human immune response.  In particular, 

this test can only measure IgM instead of IgG which is typically measured following 

vaccination in humans (334, 520). In response to these limitations the Rijks Instituut voor de 
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Volksgezondheid developed an alternative potency test in which the titre of the antibody 

response was measured rather than the extinction titre (end-point). The antibody response of 

guinea pigs and various strains of rats and mice were assessed to identify the animal which 

would produce a good dose-related titre response after a single injection, preferably in the 

IgG class. Rats were found to give the highest titres, a good dose-related titre response in the 

IgG class and were consistent across different strains. Consequently, a rat potency test was 

developed to assess the immunogenicity of a range of IPVs in relation to a reference IPV of 

proven efficacy in humans. Comparable distribution of antibody titres for reference and 

sample IPVs was found, allowing accurate assessment of potency. These quantitatively 

determined potencies were comparable to those obtained using an in vitro D-Ag test. 

Antibody patterns of rats and humans were similar, indicating that the rat maybe a suitable 

model to assess the immunogenicity of IPV in humans (520).  

 

An international collaborative study compared the use of the chick / guinea pig and the rat 

potency tests to determine the immunogenicity of six trivalent IPVs. Wide variation was 

found between laboratories using the chick /guinea pig potency test. The rat potency test was 

found to be far less variable between laboratories (540). The results of this study led to the 

validation of the rat potency test by manufacturers (39) and national control laboratories (e.g. 

the NIBSC, (111)) as an alternative means of determining the immunogenicity of IPVs. The 

rat potency test is now included within the European Pharmacopeia (153). In this test, three 

or more dilutions of an IPV and a reference IPV are administered to groups of pathogen-free 

rats (10 / dilution). After 20-22 days, rats are bled and neutralising titres against the three PV 

serotypes are measured separately using 100 TCID50 of the Sabin strains as challenge viruses. 

Neutralisation is carried out at 35-37 °C for 3 h followed by 18 h at 2-8 °C before Vero or 

HEp 2C cells are added. After seven days incubation at 35 °C the cells are fixed, stained and 

read by eye. For the assay to be valid the titre of each challenge virus must be between 10 – 

1000 TCID50 and the neutralising antibody titre of a control serum must be within 2 two-fold 

dilutions of the geometric mean titre of the test serum. The potency is calculated by 

comparing the proportion of responders (defined by a cut-off neutralising antibody titre) for 

the IPV sample and the reference IPV by the probit method (153). This is a statistical method 

for estimating the dilution which will give a 50 % neutralisation titre. Currently the European 

Pharmacopeia guidelines require that the potency of an IPV is assessed either in vivo by the 

chick / guinea pig or rat tests or by an in vitro method (following a waiving of in vivo tests) 
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(153). Due to its benefits, the rat potency test is considered the in vivo method of choice 

(153). 

 

An immunisation-challenge test using Tg mice to further evaluate the immunogenicity 

and protective properties of IPVs has been developed independently by the US Food and 

Drug Administration (FDA) and the NIBSC (312, 491). The identification and isolation of 

genes which encode human and primate PVRs (265, 267, 329) has allowed Tg mice lines 

which express the human PVR (TgPVR mice) to be established (269, 423). Transgenic mice 

expressing the human PVR can be infected with PV serotypes by various routes and develop 

clinical signs of paralysis and morphological lesions in the CNS. Due to these properties 

TgPVR mice have been used to investigate the pathogenesis of poliomyelitis (416), and the 

neurovirulence of OPV preparations (2, 138, 139, 217). As the TgPVR mice can clinically 

manifest paralysis, it is possible to determine the 50 % end-points for paralysis (PD50) or 

lethality (LD50), if a suitable dose range of a PV is used (539). A number of TgPVR mouse 

lines have been developed which differ in genetic background, copy number, insertion site 

and expression of the transgene in the CNS. These factors influence the sensitivity of TgPVR 

mice to PV (268). 

 

Previous research by the FDA and the NIBSC (140, 141, 312, 491) has identified suitable 

immunisation-challenge regimes with TgPVR mice for assessing the immunogenicity of IPV 

preparations. A single or booster vaccination (one week apart) followed by a challenge was 

sufficient to model protection (312, 490, 491). In Tg21PVR mice both protection and the 

level of neutralising antibody elicited by vaccination with IPV have been found to be dose-

dependent (491). The strain of the immunogen used to immunise the Tg21PVR mice affected 

the protection conferred. A good correlation has been found between the neutralising 

antibody titres in blood samples from Tg21PVR mice and the immune protection conferred 

(312). Immunisation-challenge regimes with TgPVR mice allow a more direct analysis of the 

protection conferred by IPV preparations than other potency test which assess the 

immunogenicity on the basis of seroconversion. The immunisation-challenge test with 

TgPVR mice assesses the protection conferred by other aspects of the immune response (e.g. 

cellular immunity) in addition to the neutralising antibody response. Discrepancies between 

antibody response and protection conferred indicate that other aspects of the immune 

response contribute to protection against the PV challenge (490). As a consequence, the 

research detailed in this chapter will assess the immunogenicity of a range of inactivated PV 
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preparations using both the rat potency assay and a series of immunisation-challenge 

experiments with TgPVR mice.  

 

In addition to immunogenicity, thermostability is one of the key measures to assess the 

quality of an IPV. The thermostability of an IPV is a measure of the stability of the vaccine 

for long-term storage. It is known that serotype 2 cIPV can be stored at +4 °C for 20 years 

and remain potent (353). It is not clear what effect inactivation with other chemicals may 

have on this thermostability. As a consequence, the thermostability of BPL- and BEI-

inactivated PV preparations will be determined alongside HCHO-inactivated PV 

preparations. A small study detailed in this chapter will assess the thermostability of 

inactivated preparations of three serotype 2 strains prepared with different inactivation 

chemicals. 

 

 

5.2 RESULTS 

 

5.2.1 Immunogenicity of inactivated poliovirus preparations 

 

5.2.1.1 Assessment of immunogenicity by rat potency test 

 

It was described in Chapter 3 that inactivation with HCHO resulted in a reduction in the 

immunogenicity of a range of serotype 2 PV strains. To improve the immunogenicity 

(potency) of inactivated PV preparations, BPL and BEI were used to inactivate three strains. 

To assess the effect of these chemicals along with HCHO on the immunogenicity of serotype 

2 PV strains, an in vivo rat potency test was carried out. Wistar rats were immunised with 2 

D-Ag/ml doses of inactivated MEF-1 preparations. After 22 days, the rats were 

exsanguinated and their blood serum was harvested. The sera were challenged with 100 

TCID50 of three serotype 2 PV strains: Sabin 2, MEF-1 and 04-44140261 in a cell culture 

neutralisation assay.  
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As figure 5.1 shows, the immunogenicity of the inactivated MEF-1 preparations varied 

with the inactivation chemicals. Analysis by balanced ANOVA (Minitab v.16, 

http://www.minitab.com/en-GB/) found that this variation in the log 2 neutralisation titre of 

sera from rats immunised with the different inactivated MEF-1 preparations was significant 

between the three inactivation chemicals (P<0.005). As there were concerns about the 

reliability of this finding with respect to the data obtained from this potency assay, a binary 

logistic regression analysis and a non-parametric Kruskal-Wallis test were carried out. After 

scoring the log 2 neutralisation titres, the binary logistic regression analysis (Minitab v.16, 

http://www.minitab.com/en-GB/) found that the chemical of the inactivated MEF-1 

preparations had a significant effect on the neutralisation titre of the rat sera (P<0.01). The 

Kruskal-Wallis test (Minitab v.16, http://www.minitab.com/en-GB/) confirmed this 

(P<0.005). 

 

 

Figure 5.1. Immunogenicity of beta-propiolactone-, binary ethyleneimine- and 

formaldehyde-inactivated MEF-1 against challenge viruses.  

Rats were immunised with a 2 D-Ag/ml dose of either BPL-, BEI- or HCHO-inactivated MEF-1. After 22 days, 

rats were exsanguinated and the sera were assayed to measure neutralising antibody to 100 TCID50 of the 

relevant challenge virus using a fixed virus varying serum 50% end-point technique in a microtitre system. The 

average of five determinations is shown as a bar with the standard error. 1:4000 HCHO is abbreviated as 

HCHOa; 1:8000 HCHO is abbreviated as HCHOb. 

 

 

Both the BEI- and HCHO-inactivated MEF-1 induced higher titres of neutralising 

antibodies than BPL-inactivated MEF-1, indicating that they were more immunogenic. Beta-
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propiolactone-inactivated MEF-1 was found to be the least immunogenic. This grouping of 

the immune response was confirmed by multiple comparison, using the Tukey method 

(Minitab v.16, http://www.minitab.com/en-GB/) which found that the mean immune 

responses of rats immunised with BEI-inactivated MEF-1 were significantly higher than 

those immunised with BPL-inactivated MEF-1 (P<0.05). The immune responses of rats 

immunised with HCHOa- and HCHOb-inactivated MEF-1 did not significantly differ from 

those of rats immunised with BPL- or BEI-inactivated MEF-1. There was some degree of 

specificity in the immune responses induced by each inactivated MEF-1 preparation against 

the different challenge viruses, with all preparations showing higher immunogenicity against 

Sabin 2 and MEF-1 strains than the iVDPV strain 04-44140261. However, analysis by 

balanced ANOVA (Minitab v.16, http://www.minitab.com/en-GB/) determined that this 

specificity was not significant. 

 

 

5.2.1.2 Assessment of protection by transgenic mice immunisation-challenge experiments 

 

The effect of inactivation with different chemicals on the viral immunogenicity of 

serotype 2 strains was further explored by assessing the level of protection conferred to 

TgPVR mice in a series of immunisation-challenge experiments (Materials and Methods, 

section 2.2.4.2). Following the development of an immunisation-challenge model with the 

Tg21-Bx mouse line at the NIBSC (312), a series of immunisation-challenge experiments 

were set up with this mouse line. This inbred strain of mice was derived at the NIBSC from a 

cross between normal BALB/c mice and ICR PVR Tg-1 mice (307). For these immunisation-

challenge experiments, groups of eight Tg21-Bx mice were immunised at 6-8 weeks with 2x2 

D-Ag/ml doses of an inactivated PV preparation and received a booster at day 14. After a 

further 21 days, the Tg21-Bx mice were challenged with a 50 PD50 of either the MEF-1 strain 

or an iVDPV strain, 04-44140261, at day 35. Mice were then monitored for 14 days for any 

signs of paralysis. Blood samples were obtained before the challenge and the sera were then 

assayed to measure neutralising antibody against 100 TCID50 of the relevant challenge virus 

using a fixed virus varying serum 50 % end-point technique in a microtitre system. Sera were 

challenged with Sabin 2, MEF-1 and 04-44140261 strains (Materials and Methods, section 

2.2.4.1). 
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As figure 5.2 shows, the number of mice protected by an inactivated PV preparation 

varied between both the inactivation chemical used and the strain of the preparation. After 

scoring the number of mice on the basis of protection, the findings were analysed by binary 

logistic regression (Minitab v.16, http://www.minitab.com/en-GB/). It was found that both 

the strain and the inactivation chemical of the inactivated PV preparation had a significant 

effect on the protection conferred to the Tg21-Bx mice (P<0.001). While the strain of the 

challenge PV had a significant effect on the protection conferred to the Tg21-Bx mice 

(P<0.01), the gender of the mice did not. 

 

 

Figure 5.2. Protection conferred by inactivated poliovirus to transgenic mice.  

Transgenic (Tg21-Bx) mice were immunised at 6-8 weeks with 2x2 D-Ag/ml doses of either BPL-, BEI-, or 

HCHO-inactivated preparations of three serotype 2 PV strains and were boosted at day 14. After a further 21 
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days, mice were challenged with a paralysing dose of either the MEF-1 strain or an iVDPV strain, 04-44140261. 

Mice were then monitored for any signs of paralysis for 14 days. Eagle’s minimum essential medium was 

administered to mice as a placebo. For the HCHOa-inactivated Sabin 2 preparation one of the eight Tg21-Bx 

mice died before the test began. 1:4000 HCHO is abbreviated as HCHOa; 1:8000 HCHO is abbreviated as 

HCHOb. 

 

 

Irrespective of the strain, the BPL-inactivated PV preparations conferred less protection 

against the challenge viruses than the HCHO- or BEI-inactivated preparations. The HCHO- 

and BEI-inactivated PV preparations conferred similar levels of protection to each other. 

Using the HCHOa-inactivated PV preparations as a reference, this was confirmed by a binary 

logistic regression analysis which found only the protection conferred by BPL-inactivated 

preparations to differ significantly from that conferred by the HCHOa-inactivated 

preparations (P<0.001). The BPL-inactivated PV preparations were found to have low odds 

(5 %) of achieving a similar level of protection to the HCHOa-inactivated preparations. The 

BEI- and HCHOb-inactivated PV preparations had similar odds to the HCHOa-inactivated 

preparations of conferring protection (odds ratio of 0.58 and 0.67, respectively).  

 

The MEF-1 preparations conferred the most protection to the mice against both 

challenges, while the number of mice protected following immunisation with the Sabin 2 

preparations fell when challenged with the 04-44140261 strain. While the 04-44140261 

preparations conferred protection to the mice when challenged with the 04-44140261 strain, 

no mice were protected when challenged with the MEF-1 strain. Using the MEF-1 

preparations as a reference, this variation in protection conferred was confirmed by a binary 

logistic regression analysis which found that the protection conferred by Sabin 2 and 04-

44140261 preparations was significantly different to the protection conferred by the MEF-1 

preparations (P<0.001). Both the Sabin 2 and the 04-44140261 preparations had low odds of 

achieving the level of protection conferred by the MEF-1 preparations (odds ratio of 0.06 and 

0.02, respectively). This was most likely due to the specificity of protection conferred by the 

Sabin 2 and 04-44140261 preparations. As table 5.1 shows, the log 2 neutralisation titre of 

the sera from the immunised mice also showed specificity to the relevant challenge serotype 

2 strain. 
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Inactivated 

preparation 

Log 2 neutralisation titre 

Sabin 2 

challenge 

MEF-1 

challenge 

04-44. 

challenge 

HCHOa Sabin 2 11.0 9.5 5.0 

HCHOb Sabin 2 10.5 9.2 <4.0 

BEI Sabin 2 >11.5 10.0 4.5 

BPL Sabin 2 9.2 6.5 <4.0 

HCHOa MEF-1 10.7 10.7 6.7 

HCHOb MEF-1 10.7 10.2 7.7 

BEI MEF-1 11.0 11.2 5.2 

BPL MEF-1 11.2 11.2 6.2 

HCHOa 04-44. 4.7 <4.0 7.7 

HCHOb 04-44. 5.2 5.0 8.5 

BEI 04-44. 5.0 4.2 7.5 

BPL 04-44. <4.0 <4.0 <4.0 

 

Table 5.1. Neutralisation titre of the sera from immunised transgenic mice against 

challenge viruses.  

Transgenic (Tg21-Bx) mice were immunised at 6-8 weeks with 2x2 D-Ag/ml doses of either BPL-, BEI-, or 

HCHO-inactivated preparations of three serotype 2 PV strains and were boosted at day 14. After a further 21 

days tail bleeds were obtained. The sera were challenged with 100 TCID50 of three serotype 2 PV strains: Sabin 

2, MEF-1 and 04-44140261 (04-44.) in a cell culture neutralisation assay. 1:4000 HCHO is abbreviated as 

HCHOa; 1:8000 HCHO is abbreviated as HCHOb. 

 

 

The sera from mice immunised with MEF-1 and Sabin 2 preparations showed a lower log 

2 neutralisation titre when challenged with the 04-44140261 strain, in comparison to when 

challenged with the Sabin 2 and MEF-1 strains. Conversely, sera from mice immunised with 

04-44140261 preparations showed a higher log 2 neutralisation titre when challenged with 

the 04-44140261 strain, in comparison to when challenged with the Sabin 2 and MEF-1 

strains. Analysis by balanced ANOVA (Minitab v.16, http://www.minitab.com/en-GB/) 

found that the log 2 neutralisation titre of sera from mice immunised with inactivated 

preparations of different PV strains and inactivation chemicals was significant between the 

strains for challenge viruses Sabin 2 and MEF-1 (P<0.001) and 04-44140261 (P<0.05). The 

specificity in protection conferred by the inactivated PV preparations (figure 5.2) suggested 
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that in both Wistar rats and Tg21-Bx mice, the low immune response induced by the 

inactivated preparations to the iVDPV strain (noted in section 3.2.2.2 of Chapter 3 and above 

in figure 5.1 and table 5.1) appeared to lead to less protection against disease.  

 

For the BEI- and HCHO-inactivated PV preparations there was a good correlation 

between immune protection conferred on the Tg21-Bx mice and the neutralising antibody 

titres in the blood samples of the same mice. This confirms the previously documented 

significant contribution of the neutralising antibody response to the protection against 

paralytic poliomyelitis (486). However, for the BPL-inactivated PV preparations, there was a 

lack of correlation between the number of Tg21-Bx mice protected and the neutralising 

antibody titre in the blood samples taken from the same mice. For example, a high 

neutralising response did not correlate with full protection. Conversely, a low neutralising 

antibody titre was found in the sera of mice with near full protection. This result has been 

found previously in research with FMD vaccines (530)      

 

 

5.2.2 Thermostability of inactivated poliovirus preparations 

 

The thermostability of an IPV is a measure of its stability during long-term storage. 

Although the thermostability of the HCHO-inactivated serotype 2 cIPV has been determined, 

it is not clear whether inactivated PV preparations developed with BPL or BEI would have a 

similar thermostability. The thermostability of BPL-, BEI- and HCHO-inactivated 

preparations of the MEF-1 serotype 2 strain was assessed by determining the degradation of 

the viral antigenicity and immunogenicity of the preparations following treatment at 45 °C 

(Materials and Methods, section 2.2.5).  

 

The thermostability of BPL-, BEI- and HCHO-inactivated MEF-1 preparations was 

assessed by heating the preparations at 45 °C for 24 h. The D-Ag of the heat-treated 

inactivated MEF-1 preparations was determined by an ELISA along with untreated 

inactivated MEF-1 preparations. All inactivated MEF-1 preparations showed a large 

reduction in D-Ag/ml following heat treatment. This reduction was most significant for the 

BPL-inactivated MEF-1 preparation (99 %), while the BEI-inactivated preparation showed 

the least reduction (81 %).The viral immunogenicity of the heat-treated and untreated MEF-1 
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preparations was determined by a rat potency test. This involved immunising Wistar rats with 

a 2 D-Ag/ml dose of untreated inactivated MEF-1 preparations and an equivalent volume of 

the heat-treated MEF-1 preparations. After 22 days, the rats were exsanguinated and their 

sera harvested. The sera were challenged with 100 TCID50 of the serotype 2 PV strains; Sabin 

2, MEF-1 and 04-44140261, in a cell culture neutralisation assay (Materials and Methods, 

section 2.2.4.1).  

 

As table 5.2 shows, all inactivated MEF-1 preparations showed a reduction in 

immunogenicity following heat-treatment. 

 

Inactivated 

MEF-1 

preparation 

(chemical) 

Log 2 neutralisation titre against challenge virus 

Sabin 2 MEF-1 04-44140261 

NT HT NT HT NT HT 

BPL 6.1 1.7 6.0 1.6 5.4 0.3 

BEI 7.9 7.2 8.3 6.4 6.7 6.1 

HCHOa 8.4 5.7 8.5 5.2 7.5 4.2 

   

Table 5.2. Reduction of viral immunogenicity of inactivated poliovirus following heat-

treatment.  

Beta-propiolactone-, BEI- and HCHO-inactivated MEF-1 preparations were incubated at 45 °C for 24 h. Viral 

immunogenicity of heated MEF-1 preparations was assessed along with untreated inactivated MEF-1 

preparations by a rat potency test. Rats were immunised with 2 D-Ag/ml of untreated inactivated MEF-1 

preparations and an equivalent volume of the heat-treated inactivated preparations. After 22 days, rats were 

exsanguinated and the sera were assayed for neutralising antibody to 100 TCID50 of the relevant challenge virus 

using a fixed virus varying serum 50% end-point technique in a microtitre system.  Challenge virus strains 

included: Sabin 2, MEF-1, and 04-44140261. NT indicates not heat-treated; HT indicates heat-treated; 1:4000 

HCHO is abbreviated as HCHOa. 

 

 

Analysis by balanced ANOVA (Minitab v.16, http://www.minitab.com/en-GB/) found that 

the heat-treatment of inactivated MEF-1 preparations led to a significant difference in the 

immunogenicity of the MEF-1 preparations (P<0.001).  This analysis also found that the 

variation in the immunogenicity of the heat-treated and untreated inactivated MEF-1 

preparations was significant between the three inactivation chemicals (P<0.001). However, 
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grouping of these results by multiple comparison using the Tukey method  (Minitab v.16, 

http://www.minitab.com/en-GB/) found that only the immune response of rats immunised 

with heat-treated and untreated BPL-inactivated MEF-1 preparations significantly differed to 

the immune responses elicited by the other inactivated preparations (P<0.05). A comparison 

of the serum log 2 neutralisation titre of rats immunised with the untreated and heat-treated 

inactivated MEF-1 preparations found that BPL-inactivated preparations had the largest 

reduction in titre following heat-treatment. In comparison, the sera of rats immunised with 

BEI-inactivated MEF-1 preparations had the least loss in log 2 neutralisation titre following 

heat-treatment. Following heat-treatment, the reduction in the log 2 neutralisation titre of the 

sera of rats immunised with HCHO-inactivated MEF-1 preparations fell between that of the 

sera of rats immunised with BPL- and BEI-inactivated preparations. These findings suggest 

that the BEI-inactivated MEF-1 preparation had a greater thermostability than HCHO- and 

BPL-inactivated preparations. 

 

To further assess the thermostability of inactivated PV preparations, the reduction of the 

viral immunogenicity following treatment at 45 °C was determined using Tg21-Bx mice. 

Formaldehyde-inactivated preparations (1:4000 HCHO) of the Sabin 2, MEF-1 and 04-

44140261 strains were incubated at 45 °C for 24 h. Groups of eight Tg21-Bx mice were 

immunised at 6-8 weeks with 2x2 D-Ag/ml untreated HCHO-inactivated PV preparations and 

an equivalent volume of the heat-treated preparations and received a booster at day 14. After 

a further 21 days, the Tg21-Bx mice were challenged with 50 PD50 of either the MEF-1 strain 

or an iVDPV strain, 04-44140261, at day 35. Mice were then monitored for any signs of 

paralysis for 14 days. Blood samples were obtained before the challenge and the sera were 

assayed to measure neutralising antibody to 100 TCID50 of the relevant challenge virus using 

a fixed virus varying serum 50 % end-point technique in a microtitre system. Sera were 

challenged with Sabin 2, MEF-1 and 04-44140261 strains. 
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As table 5.3 shows, both the serum log 2 neutralisation titre of the mice and the protective 

properties of the inactivated PV preparations fell following heat-treatment. 

 

HCHO 

preparation 
Treatment 

Challenge poliovirus strain (100 TCID50 ) 

Sabin 2 MEF-1 04-44140261 

Log 2 

Neut. titre 

Log 2 

Neut. 

titre 

Protect. 

(/8) 

Log 2 

Neut. titre 

Protect. 

(/8) 

Sabin 2 
NT 11.0 9.5 7 5.0 6* 

HT 9.5 8.0 0 <4.0 0 

MEF-1 
NT 10.7 10.7 8 6.7 8 

HT 9.0 8.0 6 <4.0 5 

04-44140. 
NT 4.7 <4.0 0 7.7 7 

HT <4.0 <4.0 0 <4.0 2 

 

Table 5.3. Immunogenicity of untreated and heat-treated formaldehyde-inactivated 

poliovirus in transgenic mice.  

Formaldehyde-inactivated preparations (1:4000 HCHO) of the Sabin 2, MEF-1 and 04-44140261 (04-44140.) 

strains were incubated at 45 °C for 24 h. Viral immunogenicity of heat-treated and untreated HCHO-inactivated 

PV preparations was assessed by a series of immunisation-challenge experiments and a neutralisation assay. 

Transgenic (Tg21-Bx) mice were immunised at 6-8 weeks with 2x2 D-Ag/ml doses of the untreated HCHO-

inactivated PV preparations and an equivalent volume of heat-treated preparations. Mice were boosted at day 

14. After a further 21 days mice were challenged with paralysing doses of either the MEF-1 strain or an iVDPV 

strain, 04-44140261. Mice were then monitored for 14 days for any signs of paralysis. Tail bleeds were obtained 

from the mice before they were challenged. The sera were challenged with 100 TCID50 of three serotype 2 PV 

strains, Sabin 2, MEF-1 and 04-44140261, in a cell culture neutralisation assay. NT indicates not heat-treated; 

HT indicates heat-treated. *, One of the eight Tg21-Bx mice died before the test began. 

     

 

The sera of mice immunised with the three HCHO-inactivated serotype 2 PV preparations 

showed a similar reduction in the log 2 neutralisation titre following heat-treatment. A 

grouping analysis of these results by multiple comparison using the Tukey method (Minitab 

v.16, http://www.minitab.com/en-GB/) found that only the immune response of mice 

immunised with 04-44140261 preparations was significantly lower than the immune response 

elicited by the other strains (P<0.05). For many of the HCHO-inactivated PV preparations, 

there was a good correlation between the drop in the protection conferred to the Tg21-Bx 



176 

 

mice and the drop in the neutralising antibody titres in the blood samples following heat-

treatment, confirming the previous finding that the neutralisation antibody response 

contributes significantly to the protection against poliomyelitis (486). However there was not 

complete correlation between the levels of antibodies in the mice sera and the protection 

conferred against some challenge strains. For example mice immunised with the heat-treated 

HCHO-inactivated Sabin 2 preparation showed a good serum neutralisation titre when 

challenged with the MEF-1 strain, but none were protected against a direct challenge with 

this strain. 

 

 

5.3 DISCUSSION 

 

Research in Chapter 3 described how inactivation with HCHO resulted in a significant 

loss of immunogenicity, possibly due to a partial modification of antigenic site 1. To improve 

the immunogenicity of the IPVs, BPL and BEI were selected to inactivate PV, as they 

inactivate by alternative mechanisms to that of HCHO. Research in the previous chapter 

detailed that these two chemicals resulted in different modifications to the antigenic structure 

of PV from those inactivated with HCHO. The effect of the different modifications to the 

antigenic structure conferred by these three chemicals on the immunogenicity of PV was 

determined. 

 

The immunogenicity of MEF-1 preparations inactivated with the three chemicals was 

assessed by a rat potency assay. Both the BEI- and HCHO-inactivated MEF-1 induced 

similar titres of neutralising antibodies which were higher than that induced by the BPL-

inactivated MEF-1, indicating that they were more immunogenic. The BPL-inactivated MEF-

1 showed the lowest immunogenicity of the inactivated MEF-1 preparations. This low 

immunogenicity, despite the lack of any significant modification to the antigenic sites 

(Chapter 4), indicates that changes to the antigenic structure of PV do not alone account for 

the immunogenicity of inactivated PV. 

 

The immunogenicity of the inactivated serotype 2 PV preparations generated with 

different inactivation chemicals was further assessed by a series of immunisation-challenge 

experiments using Tg21-Bx mice. For all serotype 2 strains, BPL-inactivated PV preparations 
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conferred less protection than HCHO- and BEI-inactivated preparations which conferred 

similar levels of protection. This finding confirmed that of the rat potency assay, further 

indicating that modifications to the antigenic structure are not solely responsible for the 

immunogenicity of inactivated PV.  

 

The findings of a series of immunisation-challenge experiments and neutralisation assays 

with Tg21-Bx mice indicated that for the BEI- and HCHO-inactivated PV preparations, there 

was a good correlation between number of mice protected and the titre of serum neutralising 

antibodies in the same mice. This indicated that the immune protection against PV is 

significantly mediated by neutralising antibodies. However, for the BPL-inactivated PV 

preparations, there was a lack of correlation between the number of mice protected and the 

neutralising antibody titre.  In some cases, all mice were protected against challenge viruses, 

despite having low serum neutralising antibody titres. It is possible that the full protection 

conferred to the mice, in spite of the low neutralising antibodies in the sera was a result of 

other aspects of the immune response, such as the innate immune system and the T-cell 

response. The innate immune system acts as the earliest response to immunised IPV or PV 

and regulates the adaptive immune response. For example, following IPV or PV 

immunisation, the nuclear factor kappa B is activated which, in turn, activates interferon-β 

(IFN-β). This leads to the expression of a number of proinflammatory cytokines (383).  In 

humans and in mouse models, CD4+ T cells responses are triggered following immunisation 

with IPV. These cells can recognise distinct T-cell epitopes in all four capsid proteins, in 

particular a T-cell epitope in VP1 which is located near a neutralising B-cell epitope (249, 

306). It has been demonstrated that Th1 cells can mediate a protective immune response 

against PV infection in vivo through helper activity for humoral (antibody) immunity (307). 

As both the innate immune system and the T cells contribute to the immune response to IPV 

and PV immunisation, it may be necessary to introduce means to assess these aspects of the 

immune response. Both flow cytometry and the enzyme-linked immunosorbent spot assay 

could be used to characterise the cellular T-cell responses and the contributions of innate 

immunity, in addition to the antibody B-cell response (20, 47, 477). 

  

The thermostability of inactivated MEF-1 preparations generated with BPL, BEI and 

HCHO was determined to vary significantly (P<0.001). These findings indicated that 

inactivation with BEI resulted in a preparation with greater thermostability, a finding that 

could be further explored by carrying out a full-scale accelerated degradation study. 
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Inactivated PV preparations generated with different chemicals would be subjected to a range 

of elevated temperatures at which significant and detectable degradation is induced in a short 

time. The rate at which it occurs would be measured and extrapolations would be made to the 

lower temperature (i.e. +4 °C) at which the preparations are stored, in accordance with the 

Arrhenius equation (513).  

 

The thermostability of HCHO-inactivated PV preparations was further assessed by 

determining the loss of immunogenicity of different inactivated serotype 2 strains following 

heat-treatment. A series of immunisation-challenge experiments and a neutralisation assay of 

Tg21-Bx mice found that loss in neutralising antibody titre and protective properties of the 

PV preparations was similar for the different strains. Against some challenge PV strains, the 

HCHO-inactivated Sabin 2 and MEF-1 preparations lacked correlation between the drop in 

the immune protection conferred to the Tg21-Bx mice and the drop in the serum neutralising 

antibody titres following heat-treatment. For some inactivated PV preparations, there was a 

lack of protection, despite high neutralising antibody titres remaining after heat-treatment. 

Although there is not a large drop in neutralising antibodies following heat-treatment, other 

aspects of the immune response in the mice are likely to have been affected by the heat-

treatment. The heat-treatment may have resulted in an alteration or reduction in the innate 

and cell immune responses which would have a knock-on effect on the protection conferred 

to the mice. For some inactivated PV preparations, nearly full protection was conferred, 

despite the sera of immunised mice showing a large reduction in neutralising antibodies 

following heat-treatment. As discussed above this is likely to be due to other aspects of the 

immune response (innate and cell mediated immunity) contributing to the overall protective 

immune response. 
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6.1 INTRODUCTION 

 

Research detailed within the previous chapters has shown that treatment of infectious PV 

containing material with inactivation chemicals irreversibly eliminates the infectivity and 

causes a reduction in the immunogenicity. However, it is not clear how treatment with 

inactivation chemicals achieves this. Although some hypotheses have been discussed (180), 

the molecular mechanisms that underlie the inactivation of PV have not been explored. Such 

research could help to explain the differences that have been found between serotype 2 cIPV 

and sIPV and, eventually, lead to the development of improved IPVs for the post-eradication 

era. In order to gain greater understanding of the molecular mechanisms that underlie the 

inactivation of PV, this chapter will focus on the effect of inactivation on essential biological 

properties of PV. The interaction between PV and its cellular receptor; the subsequent 

conformational changes which accompany or precede viral entry; and the functionality of the 

viral RNA are all essential properties which are integral to the cellular life cycle of PV 

(Introduction, section 1.1.4). The effect of inactivation on these properties of PV was 

analysed using a series of novel assays. 

 

 

6.1.1 Interaction between poliovirus and the poliovirus receptor 

 

Early PV research indicated that susceptible cells possess a receptor entity which allows 

PV attachment and mediates infection (213, 214). For example, it was shown that human 

tissue homogenates or cell lines infectable by PV harbour binding activity, while non-

susceptible murine cells are unable to bind PV (479). Biochemical analyses determined that 

the receptor entity was protein in nature, as proteinases (e.g. trypsin) and denaturing agents 

could destroy its binding activity (213). Subsequent transformation-based research 

determined that sensitivity to PV was a genetic trait which could be transmitted to non-

susceptible cells and was, therefore, an autosomal trait encoded by the human genome (328). 

The human PVR gene was isolated by transfer of human DNA into murine L cells, isolation 

of transfectants which bind an anti-receptor MAb and are infectable with PV, and subsequent 

rescue of human sequences linked to Alu repeats (329). All three PV serotypes bound to the 

receptor encoded by this gene (535). Analysis of this gene and human genomic DNA 

characterised PVR as CD155 (479) which is a glycosylated single-span cell surface molecule 
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belonging to the Ig super family (429). The CD155 protein is made up of three successive Ig-

like domains (D1, D2 and D3), a transmembrane domain and a C-terminal cytoplasmic 

domain (37, 574) (figure 6.1). 

 

 

Figure 6.1. Schematic diagram of human CD155α.  

The CD155 protein is made up of three Ig-like domains (D1, D2 and D3), a transmembrane domain (TM) and a 

C-terminal cytoplasmic domain (Cyt) (37, 574). Adapted from Zhang et al. (574).  

 

 

The expression of the human CD155 gene yields four splice variants (α, β, γ, and δ). All 

variants have identical extracellular domains, but isotypes β and γ lack a transmembrane 

domain and are secreted. Isotypes α and δ only differ in their cytoplasmic domain and can 

function as PVRs (265, 429). It is not clear what the cellular functions of CD155 are, but it is 

closely related to nectin, a component of intracellular junctions, and has been implicated in a 

range of cellular interactions and functions (36). These include cell-cell interactions (51, 

463); interactions with extracellular matrix proteins (285); cell migration (177, 476) and 

natural killer cell function (36, 51). Mutational analysis of the cDNA of CD155 in murine 

cell lines has determined that the amino terminal domain, D1, is responsible for virus 

recognition (38, 266, 352, 460, 461). 

 

Knowledge of the three-dimensional structure of the PV capsid (162, 209) and the 

availability of the cDNA of CD155 (or PVR) (329) has allowed the interaction of the PVR 

with PV to be studied in depth. A range of genetic approaches have been used to analyse this 

interaction. Poliovirus mutants which showed resistance to neutralisation with a sPVR or the 

ability to utilise mutant PVR were selected for (108, 109, 296). Other PV mutants were 

generated by site-directed mutagenesis (200). Analysis of these mutants indicated that the 

main contact site of the PVR on the PV capsid is the floor of the canyon, above the 

hydrocarbon-binding pocket, and on the outer (“south”) rim of the canyon (34) (Introduction, 

Figure 1.3). Cryo-electron microscopy (cryo-EM) and three dimensional image-
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reconstruction techniques of the complex between PV and the ectodomain of its receptor at ~ 

22-Ǻ resolution confirmed this (34, 201, 563). As did the fitting of the crystal structure of an 

unglycosylated form of a two-domain construct of the PVR into ≈ 8.5-Ǻ resolution cryo-EM 

reconstructions of the PV-PVR complexes for the three PV serotypes (574). The 

complementarity between PV and PVR in the contact regions, indicated that the initial 

binding occurs without significant structural changes in the PV (292). 

 

The interaction between PV and PVR is biphasic with two classes of binding sites (KD1 

and KD2) for the PVR on PV. At low temperatures the KD1 site dominates with a dissociation 

constant (Kd) of approximately 10
-6

 M. The fraction of KD2 sites, with a Kd of approximately 

10
-7 

M, increases with temperature and constitutes 50 % of the sites at 20 °C (292, 317). 

Given that the KD2 binding sites require a higher temperature, it is possible that reversible 

conformational changes in the virus and / or receptor precede the formation of the higher-

affinity PV-PVR complex (292). A receptor-decorated liposome model system was used with 

cryo-EM and cryo-electron tomography (cryo-ET) methods at ~ 30 Ǻ resolution to solve the 

structure of a PV-PVR-membrane complex at room temperature (49, 65). The structure 

shows that five copies of membrane-bound receptor are bound by a PV, bringing one of the 

five-fold mesas in close proximity to the membrane (292).  

 

With the advent of the cloning of cDNA of human PVR, it has become possible to 

express sPVR in cell systems. For example, Kaplan et al. (246) developed a recombinant 

Autographa californica nuclear polyhedrosis virus containing the PVR cDNA. This was used 

to infect Spodoptera frugiperda IPLB-SF-21 cells which were then solubilised to release the 

sPVR (246). A number of expression vectors have been designed to express PVR in 

mammalian cells (201, 317), one of which was designed by He et al. (201) who expressed 

CD155 in 293 cells. Briefly, the coding region of the 337 N-terminal codons of CD155 was 

fused to the N-terminal coding region of human placental AP and a recombinant plasmid, 

pCD155-AP, was generated. This recombinant plasmid was used to generate 293 cells 

expressing CD155-AP as a soluble fusion protein (201). As CD155-AP binds to infectious 

PV virions, it can be used to quantitatively study receptor binding (354). The CD155-AP 

fusion protein expressed using 293-CD155-AP cells was used in this chapter. 

 

As noted above it is possible to render cell lines susceptible to PV by transfecting relevant 

regions of the DNA of cells sensitive to PV to non-susceptible cells. Non-susceptible mouse 
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Ltk 
–
 aprt 

–
 cells have been transformed with HeLa cell (human) DNA to generate a cloned 

cell line which was susceptible to infection with all three PV serotypes (328). This cloned 

line has been used to establish several cell lines (265, 408). Pipkin et al. (408) established and 

characterised one of these derived cell lines, L20B cells. The expression of the PVR on the 

cell surface renders L20B cells susceptible to infection by PV, with the development of 

typical CPEs. Being cells of murine origin, very few other human enteric viruses are able to 

produce a productive infection (408, 542). The use of L20B cells as a means to simplify the 

primary diagnosis of PV from clinical samples has been assessed and, as a result, L20B cells 

have been introduced for routine use by the WHO global PV network laboratories (542). 

Given the high sensitivity of this cell line to recognise and bind PV, L20B cells can be used 

to explore the interaction between PV and the PVR. 

 

 

6.1.2 Entry of poliovirus into host cell 

 

After binding to PVRs, PV virions must undergo a series of conformational changes 

(summarised in figure 6.2) to enter a host cell.  

 

 

Figure 6.2. Schematic of poliovirus entry into a host cell.  

On binding to the PVR at physiological temperature, PV virions (150/160S) undergo a conformational transition 

to 135S particles. Some or all of the normally internal VP4 and amino-terminal extension of VP1 are 

externalised in 135S particles. A second conformational change results in ejection of the viral RNA and in the 

production of an empty particle which sediments at 75/80S. Adapted from Hogle (208).  

 

 

The binding of PV to the PVR at physiological temperature catalyses conformational changes 

which result in the formation of altered (or A) particles. These particles sediment in sucrose 

gradients more slowly (135S) than native PV virions (160S) and, thus, are sometimes called 
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135S particles (511). The 135S particles have externalised some or all of the normally 

internal VP4 and amino-terminal extension of VP1, but retain the full complement of 

genomic RNA (121, 173, 191). In contrast to mature virions, 135S particles are antigenically 

distinct and are susceptible to proteases (154, 174, 510). Although 135S particles lack the 

ability to bind to the PVR, they are still capable of infecting cells in a receptor-independent 

fashion (113). As they cannot bind to the PVR, 135S particles cannot concentrate at the 

surface of cells and, consequently, have a low infection efficiency. This efficiency can be 

brought within an order magnitude of that of PV virions by binding the 135S particles to non-

neutralising antibodies and initiating infection in Fc expressing cells (227). This indicates that 

the 135S particles act as intermediates in the cell entry process (113, 227).  

 

Even in the absence of a receptor, mature PV virions have been found to transiently and 

reversibly externalise VP4 and the N-terminus of VP1, when incubated at physiological 

temperatures by a “breathing” process (294). Kinetic studies which analysed the rate of virus 

to 135S particle conversion in PV as a function of temperature in the presence and absence of 

the PVR have found that a large energy barrier (enthalpy of activation) traps PV particles in 

their native state, and that receptor binding lowers this barrier (508). These studies indicate 

that it is a combination of both physiological temperature and receptor binding which releases 

the virus particle from its metastable state and catalyses irreversible conformational changes 

(511). Mature PV particles can be induced to form 135S particles by incubating them with 

membrane extracts (120), solubilised PVR (187, 246) and soluble ectodomains of the PVR 

(19).  

 

Following the formation of the 135S particle, the PV undergoes a second conformational 

change where the viral RNA is ejected, resulting in the production of an empty particle which 

sediments at 80S (173, 510). This particle is antigenically distinct from the PV virion and the 

135S particles (173, 510). High resolution cryo-EM reconstructions (~9.5 Å) have been 

produced for the 80S particles of PV (293). Two structures made up the 80S preparations, 

one of which contained more density, corresponding to RNA inside, than the other. In both 

preparations the inter-pentamer and inter-protomer interfaces had disruptions (293). A small 

number of the 80S particles were caught in the act of releasing RNA (50, 293). A contiguous 

RNA-like density on the inside and outside surfaces of the 80S particles was confirmed by 

asymmetric three-dimensional reconstructions using cryo-EM and cryo-ET. This analysis 



185 

 

found that the RNA exits from openings approximately 20 Å away from the two-fold axis 

(50).  

 

While it is not clear how PV is able to breach the cell membrane, structural analyses of 

PV virions, 135S and 80S particles have highlighted several capsid structures that may be 

involved in membrane interaction and permeabilisation, including VP4 and the N-terminus of 

VP1. The hydrophobic N-terminus of VP1 that is externalised in 135S particles may be able 

to induce membrane permeability, as it can interact with membranes (173, 510). Both cellular 

and liposome membranes have been found to interact with PV VP4 released during the 

conversion to 135S particles (116, 510). Electrophysiology experiments with PV particles 

containing VP4 mutants have suggested that a proposed VP4 membrane channel may be 

critical for PV entry and infection. These mutations which alter or prevent channel formation 

in model membranes, delay or prevent the delivery of viral RNA into the cytoplasm of cells 

(116). Such research has led to the development of a membrane penetration model which is 

described in detail elsewhere (64, 511). Briefly, receptor binding results in conformational 

conversion to 135S particles with the externalisation of VP4 and the N-terminus of VP1. The 

135S particles dissociate from the receptor and directly interact with the membrane via the 

externalised N-terminus of VP1. Released VP4 also interacts with the membrane at this time. 

A membrane pore is formed by VP1 and/or VP4, through which the genomic RNA is 

transported into the cytoplasm (511). 

 

 

6.1.3 Viral RNA of poliovirus 

 

After the PV particles have undergone conformational changes to enter a cell, the viral 

genome is essential for subsequent steps in the replication cycle (Introduction, section 1.1.4). 

As a positive-stranded RNA virus, the genome of PV is infectious as naked RNA (10, 385). 

Although HCHO, BPL and ethyleneimines have all been found to interact with RNA, it has 

not been determined whether these chemicals can even reach the viral RNA during 

inactivation, although some hypotheses have been discussed (61, 156, 180, 204). While 

previous research has found that treatment of tissue samples with HCHO reduces the amount 

of detectable RNA, there has been little research concerning the effect of inactivation on viral 

RNA (106, 122). The biological activity of viral RNA of inactivated PV was assessed in this 
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chapter. The functionality of the viral RNA following inactivation was analysed by RT-

PCRs. 

 

While a considerable amount of research has been carried out to explore the interaction 

between PV and the PVR and the entry of PV into cells, as of yet it is not known whether PV 

is still able to bind to the PVR and undergo the necessary conformational changes following 

inactivation. The minor modification to the antigenic structure of PV following inactivation 

(Chapters 3 and 4) suggests that inactivated PV may still be able to bind to the PVR. Even if 

this is the case, it is likely that inactivation will modify this interaction, particularly if capsid 

proteins are cross-linked or modified during the process. Such modification could also affect 

the subsequent conformational changes that virions undergo. This chapter describes the use 

of the soluble CD155-AP fusion protein to directly assess whether inactivated PV was able to 

bind to the PVR. The ability of inactivated PV to recognise and bind to susceptible L20B 

cells was determined by a novel FACS flow cytometry assay and a real-time RT-PCR 

binding assay. Previous research has shown that by incubating PV virions at high 

temperatures in hypotonic medium, it is possible to trigger conformational changes to 135S 

and 80S particles (50, 113). Assays which assess the presence of viral RNA and the antigenic 

and binding properties can be used to assess whether virions have undergone conformational 

changes. This approach was adopted to determine whether inactivated PV could undergo the 

conformational changes to form 135S and 80S particles. A series of RT-PCRs which were 

used to explore what effect the chemicals had on the functionality of the viral RNA are 

detailed. 

 

 

6.2 RESULTS 

 

6.2.1 Effect of inactivation on the interaction between poliovirus and soluble poliovirus 

receptor 

 

6.2.1.1 Optimisation and quantification of CD155-AP secretion by 293-CD155-AP cells  

 

As previous research has shown that soluble derivatives of CD155 are able to recognise 

and bind PV (201, 246, 317), a number of novel assays were carried out to assess whether PV 
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could still bind to expressed sPVR post-inactivation. These studies were done with 293-

CD155-AP cells expressing a CD155-AP fusion protein. In order to ensure that sufficient 

quantities of CD155-AP were available, the secretion of this fusion protein by 293-CD155-

AP cells was optimised by culturing 293-CD155-AP cells of 90 % confluence in different 

media over a six-day period, with aliquots being taken on a daily basis (Materials and 

Methods, section 2.2.6.1). As a control, 293-T cells which do not express CD155-AP, were 

cultured under the same conditions. The amount of CD155-AP secreted was quantified by a 

colorimetric AP determination assay (Materials and Methods, section 2.2.6.1)  

 

As figure 6.3 shows, the secretion of the CD155-AP fusion protein varied with different 

culture media.  

 

 

Figure 6.3. Optimisation of CD155-AP secretion by confluent 293-CD155-AP cells.  

The 293-CD155-AP cells were grown to 90-100 % confluence on DMEM (with   5 % FCS, 1 % L-glu, 1 % P-

S). Medium was replaced with either Optimem, DMEM or DMEM (with 5 % FCS) and cells were incubated at 

35 °C for six days. Aliquots were taken on a daily basis and were analysed by a colorimetric AP determination 

assay. 

 

 

The incubation of confluent 293-CD155-AP cells in DMEM supplemented with 5 % FCS 

resulted in a greater quantity of CD155-AP being expressed than when 293-CD155-AP cells 

were incubated in OPTIMEM or DMEM. Day six of the time-course was the optimal time to 
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harvest the supernatant containing the CD155-AP, when secretion of CD155-AP peaked. The 

lack of any increase in secreted CD155-AP for 293-T cells confirmed these results. 

 

6.2.1.2 Neutralisation of poliovirus by secreted CD155-AP 

 

To determine whether the expressed CD155-AP was biologically active, the ability of the 

secreted receptor to bind and neutralise PV was assessed by TCID50 and plaque assays 

(Materials and Methods, section 2.2.6.1). Ten-fold serial dilutions (TCID50) or 100 PFU 

(plaque assay) of the Sabin 2 and MEF-1 serotype 2 strains were incubated with increasing 

concentrations of CD155-AP in maintenance medium for 60 min at room temperature (18-20 

°C), followed by 60 min at 37 °C. The virus titre was then determined on HEp-2C cell 

monolayers. The supernatant of 293-T cells was used as a negative control. The results of 

both assays are shown in table 6.1 and figure 6.4. 

 

CD155-AP (µg / 50 µl) 
Log10 titre reduction of virus (TCID50 / 50 µl Log10) 

Sabin 2 MEF-1 

No CD155-AP 0.0 ± 0.0 0.0 ± 0.0 

0.02 0.6 ± 0.2 0.0 ± 0.0 

0.08 1.1 ± 0.0 1.0 ± 0.3 

0.40 3.3 ± 0.2 2.0 ± 0.1 

2.00 3.8 ± 0.1 3.5 ± 0.1 

10.00 5.1 ± 0.3 4.5 ± 0.1 

 

Table 6.1. Neutralisation of infectious poliovirus by expressed CD155-AP.  

Serial dilutions of live Sabin 2 and MEF-1 strains were incubated with increasing concentrations of CD155-AP 

at room temperature for 60 min and then at 37°C for 60 min. Virus titre was determined by a TCID
50

 assay on a 

HEp-2C cell monolayer. The supernatant of 293-T cells, which lack the ability to express CD155-AP, were used 

as a negative control. The average of two assays is shown with the standard error. 
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Figure 6.4. Reduction of plaque forming units by neutralisation with CD155-AP.  

One hundred PFU of live Sabin 2 and MEF-1 strains were incubated with increasing concentrations of CD155-

AP at room temperature for 60 min and then at 37°C for 60 min. Virus titre was determined by a plaque assay 

on a HEp-2C cell monolayer. The average of two assays is shown with the standard error. 

 

 

As table 6.1 and figure 6.4 show, both PV strains were neutralised by CD155-AP. The Sabin 

2 strain was more readily neutralised than the MEF-1 strain. For example, the TCID50 assay 

found that the Sabin 2 strain showed up to five log10s of neutralisation, while the MEF-1 

showed 4.5 log10s. This might indicate that the Sabin 2 and MEF-1 strains differed in their 

affinity to bind to CD155-AP. Alternatively, the ability of CD155-AP to neutralise a PV 

strain might have been related to an effect on the virus-cell entry.  

 

 

6.2.1.3 Use of CD155-AP to assess the interaction between poliovirus and the poliovirus 

receptor 

 

An AP assay which incorporated a sucrose cushion was devised to quantitatively 

determine the interaction of the Sabin 2 and MEF-1serotype 2 strains with CD155-AP 

(Materials and Methods, section 2.2.6.1). The conditions for this assay were established using 

a live preparation of the Sabin 2 serotype 2 strain. Increasing concentrations of CD155-AP 

were incubated with the live Sabin 2 strain (4 x 10
8 

TCID50 / 100 µl) for 120 min at +4 °C. 

The PV-CD155-AP preparation was then ultracentrifuged through a 30 % sucrose cushion in 

conditions that are known to allow PV virions to pass through the cushion, while other 
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proteins do not. The resulting pellets were resuspended in Tris-HCl (0.01 M) and the amount 

of bound CD155-AP quantified by a colorimetric AP determination assay (Materials and 

Methods, section 2.2.6.1). 

 

As figure 6.5 shows, using this assay it was possible to measure the interaction between 

the Sabin 2 strain and CD155-AP. This interaction increased as the concentration of CD155-

AP rose. Control preparations of either Sabin 2 or CD155-AP alone were also 

ultracentrifuged. These preparations showed no absorbance (data not shown), confirming the 

interaction between the PV strain and the CD155-AP.  

 

 

Figure 6.5. Analysis of the interaction between poliovirus and poliovirus receptor by an 

alkaline phosphatase assay.  

Increasing concentrations of CD155-AP were incubated with live preparations of the Sabin 2 and MEF-1 strains 

for 120 min at +4 °C, before being ultracentrifuged through a 30 % sucrose cushion. The resulting pellets were 

resuspended in Tris-HCl and the amount of bound CD155-AP was quantified by an AP colorimetric assay. Only 

two concentrations of CD155-AP were incubated with the MEF-1 strain. Average of two preparations is shown 

with error bars. 

 

 

The conditions for this assay were further optimised using the MEF-1 serotype 2 strain 

(Materials and Methods, section 2.2.6.1). As figure 6.5 shows, the AP assay measured a 

positive interaction between MEF-1 and CD155-AP. As with the findings of the 
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neutralisation assays described above, the MEF-1 strain was found to have a lower affinity 

than the Sabin 2 strain to bind to CD155-AP. 

 

The interaction between HCHO-inactivated Sabin 2 or MEF-1 and CD155-AP was 

analysed in the same manner (Materials and Methods, section 2.2.6.1). A single concentration 

of live and HCHO-inactivated Sabin 2 and MEF-1 was incubated with different 

concentrations of CD155-AP (1000 and 2000
 µg / 50 µl, respectively) for 120 min at +4 °C. 

A greater concentration of CD155-AP was incubated with the MEF-1 preparations to 

compensate for the lower binding affinity of this strain (figure 6.4). The PV-CD155-AP 

preparations were then ultracentrifuged through a 30 % sucrose cushion. The resulting pellets 

were resuspended in Tris-HCl (0.01 M) before the amount of bound CD155-AP was 

quantified by a colorimetric AP determination assay (Materials and Methods, section 2.2.6.1).  

 

As figure 6.6 shows, both live and HCHO-inactivated Sabin 2 and MEF-1 bound to the 

secreted CD155-AP.  

 

 

Figure 6.6. Analysis of the interaction between live or inactivated poliovirus and 

poliovirus receptor.   

Either 1000 or 2000
 
µg / 50 µl of CD155-AP were incubated with live or HCHO-inactivated Sabin 2 or MEF-1 

preparations (respectively), for 120 min at +4 °C, before being ultracentrifuged through a 30 % sucrose cushion. 

The resulting pellets were resuspended in Tris-HCl and the amount of bound CD155-AP was quantified by a 

colorimetric AP assay. The average of three determinations is shown as bar with the standard error. 1:4000 

HCHO is abbreviated as HCHOa. 
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Compared to the live preparations of each strain, a lower quantity of the inactivated 

preparations was bound to the CD155-AP. Analysis by balanced ANOVA (Minitab v.16, 

http://www.minitab.com/en-GB/) found that this reduction in the amount of bound PV 

following inactivation was significant (P<0.001). The reduction in the amount of PV bound 

to CD155-AP following inactivation differed between the two strains. The MEF-1 strain 

showed a 14 % reduction in bound PV, while the Sabin 2 strain showed a 66 % reduction. 

 

 

6.2.1.4 Determination of poliovirus-poliovirus receptor interaction by surface plasmon 

resonance 

 

A biosensor-based analytical system could be used to examine the effect of inactivation 

on the interaction between PV and its cellular receptor. This technique directly analyses an 

interaction between a ligand and an analyte in real-time. A protocol was devised to determine 

whether the biosensor system could be used to detect the binding between HCHO-inactivated 

PV and its cellular receptor (Materials and Methods, section 2.2.6.1). This protocol used the 

Biacore 2000 biosensor instrument (GE Healthcare). Similar to the biosensor protocol 

developed to assess the potency of commercial IPVs (Chapter 4, section 4.2.4), the 

immobilisation and regenerations steps of this protocol were optimised using the relevant 

scouting programs. A wild-type trivalent IPV was immobilised to a CM3 sensor chip by 

amine coupling, before two-fold serial dilutions of CD155-AP were injected over the surface 

of the chip. The interaction between these dilutions and the immobilised IPV was monitored 

in real-time by SPR. As figure 6.7 A and B shows, the biosensor system detected the 

interaction between the trivalent IPV and the diluted CD155-AP in a dose-dependent manner, 

confirming that inactivated PV was still able to bind to the PVR. 
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Figure 6.7. Determination of virus-receptor binding by surface plasmon resonance.  

A wild-type trivalent IPV was immobilised to a Biacore sensor chip. CD155-AP diluted to various serial 

dilutions in running buffer was injected over the surface of the chip. Binding was monitored in real-time using 

SPR. The key stages of the biosensor approach are denoted on the sensorgram (A). Dose-dependent binding 

interaction of CD155-AP to immobilised IPV is also shown as a bar chart (B). 

 

 

 A biosensor approach to analyse the kinetics of this interaction between PV and CD155-AP 

was devised. This assay would involve immobilising CD155-AP to a sensor chip before 

assessing binding during injections of PV under partially or complete mass transport limited 

conditions. However despite several attempts, it was not possible to immobilise the CD155-

AP to a sensor chip. 
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6.2.2 Effect of inactivation on the interaction between poliovirus and L20B cells 

 

As described in previous sections, inactivated PV can still bind to sPVR although at an 

apparent reduced rate with respect to live PV. The next step was to assess whether inactivated 

PV is able to bind to cells susceptible to PV infection. L20B cells, transformed mouse Ltk 

cells that express the human PVR (329), were used for this purpose. Expression of the 

receptor at the cell surface, otherwise only present in primate cells, renders L20B cells 

susceptible to infection with PV. As the cells are of murine origin, very few other human 

enteric viruses produce cytopathic infection which means L20B cells are commonly used in 

PV diagnostic laboratories (408, 542). Ltk- cells were used as control for this research. The 

ability of inactivated PV to bind to L20B cells was analysed using FACS flow cytometry 

analysis and real-time RT-PCR. 

 

 

6.2.2.1 Fluorescence-activated cell sorting flow cytometry 

 

Flow cytometry is a technology which simultaneously measures and analyses multiple 

physical characteristics of single particles (usually cells), as they flow in a fluid stream 

through a beam of light (30). Fluorescence-activated cell sorting flow cytometry is a 

specialised type of flow cytometry which is able to sort single particles based on the specific 

light scattering and fluorescent characteristics of each particle. During FACS flow cytometry 

particles are carried in a rapidly flowing fluid stream to a laser intercept. As the particles pass 

through the laser intercept they scatter the laser light. Any fluorescent molecules present on 

the particle fluoresce. The scattered and fluorescent light is steered to detectors by beam 

splitters and filters. Electronic signals proportional to the optical signals are produced by the 

detectors. Fluorescence-activated cell sorting flow cytometry is based on the use of 

fluorochromes which are fluorescent compounds that absorb light over a range of 

wavelengths characteristic of the compounds. When the electrons of a fluorochrome absorb 

light they become excited and release the excess energy as a photon of light (i.e. they 

fluoresce). The amount of fluorescent signal detected is proportional to the number of 

fluorochrome molecules on a particle (30). It is possible to detect specific antigens on either 

the surface or the inside of a cell by conjugating fluorochromes to relevant antibodies.  
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This approach was adopted to measure the interaction between PV and L20B cells 

(Materials and Methods, section 2.2.6.2). The serotype 2 PV strain Sabin 2 was used for these 

experiments due to biosafety requirements. Briefly, L20B and Ltk- cells (1 x 10
6
 cells / ml) 

were incubated with increasing concentrations of live and HCHO-inactivated Sabin 2 at room 

temperature for 120 min.  Cells were then transferred to 96-well plates (Corning 

incorporated) and incubated with MAb 267 (specific for serotype 2 PV, (345)) at room 

temperature for 30 min. Cells were pelleted and washed with PFB before being incubated 

with anti-mouse IgG antibodies conjugated to FITC (Sigma-Aldrich). After this, cells were 

fixed with a FACS FIX solution and then analysed using a BD FACS Canto II flow 

cytometer (BD Sciences).  
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As presented in figure 6.8, L20B cells incubated with PV showed increased fluorescence 

in a virus dose-dependent manner which demonstrates that both live and HCHO-inactivated 

Sabin 2 were able to bind to these cells.  

 

 

Figure 6.8. Binding of poliovirus to L20B cells analysed by fluorescence-activated cell 

sorting flow cytometry.  

Live and HCHO-inactivated Sabin 2 was incubated with L20B cells, followed by incubation with anti-PV 

serotype 2-specific MAb 267 and FITC-labelled anti-mouse IgG. Histograms show mean fluorescence intensity 

on the surface of 10,000 L20B cells. 1:4000 HCHO is abbreviated as HCHOa. 

 

 

No PV binding to Ltk- cells was observed at any virus concentration in the same conditions 

(data not shown). Ltk- cells in any combination with live or HCHO-inactivated Sabin 2 

preparations showed fluorescence levels similar to those shown by Ltk- or L20B cells alone 

(≤ 70 mean fluorescence intensity).  
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The results were quantified and expressed both as the mean fluorescence intensity, shown 

by cells after incubation with PV, and the percentage of cells showing fluorescence above 

background levels (figure 6.9). Formaldehyde-inactivated Sabin 2 preparations showed less 

interaction to L20B cells with respect to live Sabin 2 preparations. For example, when L20B 

cells were incubated with 10 D-Ag of either virus preparation, the cells treated with HCHO-

inactivated PV preparations showed reduced mean fluorescence intensity (31 %) and 

percentage of fluorescent cells (29 %) than those incubated with live PV preparations.  

 

 

Figure 6.9. Quantification of the binding of poliovirus to L20B cells analysed by 

fluorescence-activated cell sorting flow cytometry. 

Cells were analysed as described in figure 6.8. The mean fluorescence intensity (A) and the proportion of cells 

showing fluorescence levels above background (B) after incubation with PV, MAb 267 and FITC-labelled anti-

mouse IgG are shown. The data are representative of three independent experiments. For each sample a total of 

10,000 cells were analysed. The average values are shown as columns. Standard deviations are indicated as error 

bars. 1:4000 HCHO is abbreviated as HCHOa. 

 

 

The interaction between inactivated PV and L20B cells was confirmed by second FACS 

flow cytometry assay (Materials and Methods, section 2.2.6.2). In this assay, increasing 

concentrations of live and HCHO-inactivated Sabin 2 were incubated with either CD155-AP 

or MEM for 60 min at room temperature. Following this, the incubated Sabin 2 preparations 

were mixed and incubated with L20B cells (1 x 10
6
 cells / ml) for 120 min at room 

temperature. Binding was detected by FACS flow cytometry as described above. As shown in 

figure 6.10, pre-incubation of PV with CD155-AP prevented the virus binding to L20B cells, 

0

100

200

300

400

500

600

700

800

900

1000

1
0
0

 D
-A

g

1
0
 D

-A
g

1
 D

-A
g

1
0
0

 D
-A

g

1
0
 D

-A
g

1
 D

-A
g

N
o

 v
ir

u
s

M
ea

n
 f

lu
o
re

sc
en

ce
 i

n
te

n
si

ty
 (

4
8

8
 n

m
)

0

20

40

60

80

100

1
0
0

 D
-A

g

1
0
 D

-A
g

1
 D

-A
g

1
0
0

 D
-A

g

1
0
 D

-A
g

1
 D

-A
g

N
o

 v
ir

u
s

P
er

ce
n

ta
g

e 
o

f 
p

o
si

ti
v

e 
ce

ll
s 

(%
)

Live Sabin 2 HCHOa-

inactivated 

Sabin 2

HCHOa-

inactivated 

Sabin 2

Live Sabin 2

A B



198 

 

as a reduction of 84 % and 93 % in fluorescence levels was observed for cells incubated with 

HCHO-inactivated and live PV, respectively. The reduction in the binding of live Sabin 2 

was higher than that of the inactivated preparations, confirming previous results (figures 6.6 

and 6.9) that the inactivated PV bound to CD155-AP at a lower affinity than the live PV. 

 

 

Figure 6.10. Inhibition of poliovirus binding to L20B cells by pre-incubation with 

soluble poliovirus receptor analysed by fluorescence-activated cell sorting flow 

cytometry.  

Live and HCHO-inactivated Sabin 2 (10 D-Ag) were incubated with L20B cells after pre-incubation with 

CD155-AP (+PVR) or MEM (-PVR), followed by incubation with anti-PV serotype 2-specific MAb 267 and 

FITC-labelled anti-mouse IgG. Histograms show fluorescence intensity on the surface of 10,000 L20B cells. 

1:4000 HCHO is abbreviated as HCHOa. 

 

 

From these assays, it can be concluded that both live and HCHO-inactivated PV were 

able to bind to L20B cells by interacting with human PVR expressed on the cell surface.  
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The ability of PV inactivated with BPL, BEI and 1:8000 HCHO to bind to L20B cells was 

also assessed (Materials and Methods, section 2.2.6.2). As shown in figure 6.11, 1:8000 

HCHO-, BEI- and BPL-inactivated PV preparations were also able to bind to L20B cells at 

an apparent reduced rate with respect to live PV preparations. 

 

 

Figure 6.11. Binding of live and inactivated poliovirus to L20B cells analysed by 

fluorescence-activated cell sorting flow cytometry.  

Live, BPL-, BEI-, and HCHO-inactivated Sabin 2 preparations were incubated with L20B cells followed by 

incubation with anti-PV serotype 2-specific MAb 267 and FITC-labelled anti-mouse IgG. The mean 

fluorescence intensity after incubation with PV, MAb-267 and FITC-labelled anti-mouse IgG are shown. For 

each sample, a total of 2,500 cells were analysed. Average values are shown. 1:4000 HCHO is abbreviated as 

HCHOa; 1:8000 HCHO is abbreviated as HCHOb.  

 

 

6.2.2.2 Real-time reverse transcription polymerase chain reaction 

 

The real-time RT-PCR binding assay to assess the interaction between inactivated PV and 

L20B cells was as previously described with some modifications (243) (Materials and 

Methods, section 2.2.6.3). Briefly, L20B and Ltk- cells were detached, pelleted and washed 

twice in binding buffer before being incubated with live preparations of the MEF-1 serotype 

2 PV strain at either +4 °C or room temperature for 120 min. Cells were pelleted and washed 

twice with binding buffer before resuspension in MEM. Between each wash the supernatant 
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was harvested and pooled. The RNA was extracted from the pelleted cells using the MagNA 

Pure LC Total Nucleic Acid Isolation Kit (Roche) and the Kingfisher ml particle processor 

(Thermo Electron Corporation). Assay conditions for quantification of the extracted viral 

RNA were optimised using the QuantiTect SYBR Green RT-PCR kit (Qiagen) with the 

Rotor-Gene 3000 thermal cycler (Qiagen) (Materials and Methods, section 2.2.8.2). Briefly, a 

200 bp fragment was amplified using a series of MEF-1 specific primers with the QuantiTect 

SYBR Green RT-PCR kit. To determine the optimal virus concentration, this initial assay 

assessed the interaction between the two murine cell lines and a range of different 

concentrations of a live preparation of the MEF-1 serotype 2 strain.    

 

As figure 6.12 shows, the real-time RT-PCR binding assay detected an interaction 

between the live MEF-1 and the L20B cells.  

 

 

Figure 6.12. Real-time reverse transcription-polymerase chain reaction analysis of 

interaction between live poliovirus and murine cell lines.  

Live MEF-1 was incubated with L20B and Ltk- cells for 120 min at either +4 °C or room temperature. Bound 

cells were pelleted and RNA was extracted. The amount of viral RNA associated with the cell pellet was 

quantified by a real-time RT-PCR. 

 

 

The genome copy number of viral RNA extracted from pelleted cells increased in a dose-

dependent manner, indicating that there was an interaction between the MEF-1 strain and the 
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L20B cells. The temperature at which the PV and the cells were incubated influenced the 

interaction between the two. A greater quantity of live MEF-1 was found to interact with the 

L20B cells when the two were incubated at room temperature, than when they were 

incubated at +4 °C. The detected binding of MEF-1 to L20B cells was supported by the lack 

of any significant interaction between the PV strain and the non-permissive Ltk- cells.   

 

To confirm this interaction between PV and L20B cells, a second real-time RT-PCR 

binding assay was carried out (Materials and Methods, section 2.2.6.3). In this assay, live 

MEF-1 (0.04 D-Ag) was incubated with equal concentrations of CD155-AP, AP, a serotype 

2-specific MAb (MAb 1050), a serotype 1-specific MAb (MAb 234) or MEM for 60 min at 

37 °C. Subsequently, L20B and Ltk- cells (2.5 x 10
5
 cells / 500 µl) were incubated with this 

pre-treated MEF-1 for 120 min at room temperature. The amount of live MEF-1 bound to the 

cell lines was determined, as described above.  

 

As table 6.2 shows, pre-incubation with CD155-AP and MAb 1050 prevented any 

significant interaction between live MEF-1 and L20B cells.  

 

Pre-incubation agent Reduction of poliovirus binding (%) 

CD155-AP 98 ± 0.2 

MAb 1050 96 ± 0.8 

AP 2 ± 0.3 

MAb 234 2 ± 0.3 

MEM 2 ± 0.3 

 

Table 6.2. Reduction in poliovirus binding to L20B cells following pre-incubation with 

different agents.  

Live MEF-1 was incubated with either CD155-AP, a serotype 2-specific MAb (MAb 1050), a serotype 1-

specific MAb (MAb 234), AP or MEM for 60 min at 37 °C. Pre-treated MEF-1 was incubated with permissive 

L20B and non-permissive Ltk- cells for 120 min at room temperature. Bound cells were pelleted and RNA was 

extracted. The amount of viral RNA associated with the cell pellet was quantified by a real-time RT-PCR. 

Average of three determinations is shown with the standard error. 

 

 

Neither AP (part of the CD155-AP fusion protein) or the serotype 1-specific MAb 234 

prevented live MEF-1 from interacting with L20B cells. This was expected, as both agents 
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lacked the ability to bind to serotype 2 PV strains. The interaction between MEF-1 and L20B 

cells was confirmed by this assay.  

 

A real-time RT-PCR binding assay was carried out to characterise the interaction between 

live or inactivated PV and L20B or Ltk- cells (Materials and Methods, section 2.2.6.3). In this 

assay, a range of concentrations of live and HCHO-inactivated MEF-1 were incubated with 

L20B and Ltk- cells (2.5 x 10
5
 cells / 500 µl) for 120 min at room temperature. The amount 

of PV bound to the murine cells was determined, as described above.  

 

As figure 6.13 shows, both live and HCHO-inactivated MEF-1 bound to the permissive 

L20B cells over a range of concentrations. 

 

 

Figure 6.13. Real-time reverse transcription-polymerase chain reaction analysis of the 

interaction between live / inactivated poliovirus and L20B / Ltk- cells.  

Live and HCHO-inactivated MEF-1 were incubated with permissive L20B and non-permissive Ltk- cells for 

120 min at room temperature. Bound cells were pelleted and RNA was extracted. The amount of viral RNA 

associated with the cell pellet was quantified by a real-time RT-PCR. An average of two determinations is 

shown with the standard error. 1:4000 HCHO is abbreviated as HCHOa.  
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The lack of any significant interaction between live or inactivated MEF-1 and the non-

permissive Ltk- cells supported this observation. The results of this analysis confirmed 

findings obtained with CD155-AP and FACS flow cytometry that inactivated PV was still 

able to bind to the PVR. In comparison to the live MEF-1, the inactivated preparations bound 

at a reduced affinity. In this assay, the inactivated MEF-1 showed a 78 % reduction in 

binding to L20B cells.  

 

To further characterise the interaction between inactivated PV and L20B cells, another 

real-time RT-PCR binding assay was carried out (Materials and Methods, section 2.2.6.3). In 

this assay, live and HCHO-inactivated MEF-1 (0.2 D-Ag / 25 µl) were incubated with either 

CD155-AP, a serotype 3-specific MAb (MAb 520), MEM or a range of serotype 2-specific 

MAbs for 60 min at room temperature. Following this, the pre-treated MEF-1 was incubated 

with L20B cells (2.5 x 10
5
 cells / 500 µl) for 120 min at room temperature. The amount of PV 

bound to the L20B cells was determined, as described above. 
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As figure 6.14 shows, the interaction between MEF-1 and the L20B cells was 

significantly reduced following pre-incubation with either CD155-AP or a range of serotype 

2-specific MAbs. 

 

 

Figure 6.14. Reduction of poliovirus binding to L20B cells following incubation with 

monoclonal antibodies and CD155-AP.  

Live and HCHO-inactivated MEF-1 were incubated with either CD155-AP, a serotype 3-specific MAb (MAb 

520), MEM or a range of serotype 2-specific MAbs for 60 min at room temperature. Pre-treated MEF-1 was 

incubated with L20B cells for 120 min at room temperature. Bound cells were pelleted and RNA was extracted. 

The amount of viral RNA associated with the cell pellet was quantified by a real-time RT-PCR. The results are 

expressed as a percentage of reduction of PV binding to L20B cells with respect to the amount of untreated 

(incubated with MEM) PV bound. Antigenic sites to which serotype 2-specific MAbs bind to are bracketed. An 

average of two determinations is shown with the standard error. 1:4000 HCHO is abbreviated as HCHOa. 

 

 

The level of inhibition of the interaction between MEF-1 and L20B cells varied slightly 

between the serotype 2-specific MAbs indicating that the location of the antigenic site to 

which the MAbs bound to (denoted in figure 6.14) could have influenced how much of the 

receptor binding site was blocked. Pre-incubation with MAb 436 resulted in an inhibition of 

binding between the live but not the HCHO-inactivated MEF-1 and the L20B cells. This was 

because the antigenic site 1 of the MEF-1 strain, which MAb 436 binds to, is modified by 

HCHO inactivation (Chapter 4, figure 4.9). This modification prevented MAb 436 from 

binding. This result alongside the lack of any significant reduction in the interaction between 

MEF-1 pre-incubated with the serotype 3-specific MAb 520 and L20B cells (figure 6.14) 

supports the previous findings that inactivated PV is still able to bind to L20B cells. 
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The effect of inactivation with BPL or BEI on the binding of PV to L20B cells was 

assessed in a further real-time RT-PCR binding assay (Materials and Methods, section 

2.2.6.3). In this assay live and HCHO-, BPL- or BEI-inactivated MEF-1 (0.2 D-Ag / 25 µl) 

were incubated with either CD155-AP, a serotype 2-specific MAb (MAb 1050), a serotype 3-

specific MAb (MAb 520) or MEM for 60 min at room temperature. Following this, the pre-

treated MEF-1 was incubated with L20B cells (2.5 x 10
5
 cells / 500 µl) for 120 min at room 

temperature. The amount of PV bound to the L20B cells was determined as described above.   

 

As table 6.3 shows, pre-incubation with CD155-AP and MAb 1050 prevented any significant 

interaction between MEF-1 and L20B cells. Analysis by balanced ANOVA (Minitab v.16, 

http://www.minitab.com/en-GB/) found that this inhibition of the interaction between MEF-1 

and the L20B cells was significant (P<0.001). Pre-incubation with MAb 520 or Eagle’s MEM 

did not reduce the interaction between the MEF-1 preparations and the L20B cells. 

 

Pre-incubation 

agent 

Reduction of poliovirus binding (%) 

Live MEF-1 

HCHOa-

inactivated 

MEF-1 

BPL-inactivated 

MEF-1 

BEI-inactivated 

MEF-1 

CD155-AP 98 ± 0.2 87 ± 2.5 92 ±0.2 88 ± 2.8 

MAb 1050 95 ± 0.1 93 ± 0.7 97 ± 1.6 92 ± 0.7 

MAb 520 2 ± 0.4 2 ± 0.4 2 ± 0.4 2 ± 0.4 

MEM 2 ± 0.4 2 ± 0.4 2 ± 0.4 2 ± 0.4 

 

Table 6.3. Effect of pre-incubation with CD155-AP and monoclonal antibodies on the 

interaction between poliovirus and L20B cells.  

Live and inactivated MEF-1 were incubated with either CD155-AP, a serotype 2-specific MAb (MAb 1050), a 

serotype 3-specific MAb (MAb 520) or MEM for 60 min at room temperature. Pre-treated MEF-1 was 

incubated with L20B cells for 120 min at room temperature. Bound cells were pelleted and RNA was extracted. 

The amount of viral RNA associated with the cell pellet was quantified by a real-time RT-PCR. An average of 

two determinations is shown with the standard error. 1:4000 HCHO is abbreviated as HCHOa. 
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6.2.3 Effect of inactivation on poliovirus entry 

 

6.2.3.1 Effect of inactivation on conversion of poliovirus virions to 135S and 80S particles 

 

As mentioned in the introduction to this chapter, the ability of PV particles to undergo 

conformational changes to form 135S and 80S particles is essential for PV to enter cells and 

to release the viral genome. Previous research has shown that it is possible to induce PV 

virions to form 135S and 80S particles by heating PV particles to super-physiological 

temperatures (50 and 56 °C, respectively) in hypotonic medium (50, 113). The 135S and 80S 

particles obtained in vitro by this approach have been found to be indistinguishable to those 

obtained at physiological temperature in the presence of receptor (55, 113). This approach 

was adopted to determine whether inactivated PV particles can form 135S and 80S particles 

(Materials and Methods, section 2.2.7.1). Live and BPL-, BEI- and HCHO-inactivated 

preparations of equivalent concentrations of the MEF-1 serotype 2 PV strain were incubated 

at 50 and 60 °C for 3 and 20 min to induce a conformational change to form 135S and 80S 

particles, respectively. Live and inactivated MEF-1 were also incubated at 18-20 °C (room 

temperature) as a control.  

 

As described above, 135S and 80S particles differ in a number of characteristics from 

mature PV virions. Both are antigenically distinct from virus particles, are more sensitive to 

proteases (173) and are unable to bind to cells (55, 159, 241). The 135S and 80S particles 

differ in sensitivity to RNAse (55, 113). The viral RNA is still present and protected within 

135S particles, while 80S particles either lack RNA or it is exiting from them, which exposes 

it to RNAse. To determine whether live and inactivated PV showed similar characteristics to 

135S and 80S particles following heating, three of these characteristics were analysed. These 

included, antigenicity, ability to bind to the PVR and sensitivity to RNAse A which was used 

as a measure of the presence of viral RNA. 

 

The antigenicity of the heated MEF-1 preparations was assessed by an ELISA using the 

serotype 2-specific MAb 1050 as the detection antibody. The ability of the heated MEF-1 

preparations to bind to L20B cells was assessed by a real-time RT-PCR binding assay as 

described above (section 6.2.2.2). A real-time RT-PCR was carried out to assess the 

sensitivity of the MEF-1 preparations to RNAse A. Sensitivity to RNAse A was used as an 
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indirect measure for the presence of viral RNA in the MEF-1 preparations. MEF-1 

preparations were incubated with RNAse A (0.001 µg / µl) at the relevant temperature. The 

presence of RNA was detected by a real-time RT-PCR (Materials and Methods, section 

2.2.8.2). Table 6.4 shows the results of these three assays. The results of MEF-1 preparations 

heated to super-physiological temperature were expressed relative to those obtained with 

native viral samples (which were incubated at 18-20 °C). 

 

Poliovirus 

preparation 

Relative activity to that of 20 °C control (%) 

Antigenic Binding Presence of RNA 

50 °C 60 °C 50 °C 60 °C 50 °C 60 °C 

Live 0 0 0 0 71 0 

HCHO 87 0 67 0 85 6 

BPL 0 0 3 1 75 0 

BEI 80 0 57 0 69 0 

 

Table 6.4. Antigenic and binding ability and presence of viral RNA of heated poliovirus.  

Live and HCHO-, BPL- and BEI-inactivated preparations of the MEF-1 strain were heated at 50 °C and 60 °C 

and at room temperature as a control. Antigenic activity of heated MEF-1 preparations was assessed by an 

ELISA. Real-time RT-PCRs were carried out to assess binding to L20B cells and sensitivity to RNAse A. 

Sensitivity to RNAse A was used as a measure for the presence of viral RNA in the MEF-1 preparations. 

 

 

Following incubation at 50 °C, live MEF-1 did not to interact with MAb 1050 and 

showed no antigenic activity. Live MEF-1 was also unable to bind to L20B cells following 

incubation at 50 °C. Viral RNA was detected in live MEF-1 incubated at 50 °C. Beta-

propiolactone-inactivated MEF-1 showed similar results to live MEF-1 following incubation 

at 50 °C. Post-incubation at 50 °C, the properties of HCHO- and BEI-inactivated MEF-1 

differed from those of live MEF-1. Unlike live MEF-1, HCHO- and BEI-inactivated MEF-1 

incubated at 50 °C were still able to interact with MAb 1050 and bind to L20B cells. Viral 

RNA could be detected in HCHO- and BEI-inactivated MEF-1 following incubation at 50 °C. 

Following incubation at 60 °C none of the MEF-1 preparations recognised the MAb, showing 

no antigenic activity. A similar result was found with the binding activity of the MEF-1 

preparations incubated at 60 °C. No viral RNA could be detected in any of the MEF-1 

preparations following incubation at 60 °C. 
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The findings described above were used to assess whether live and inactivated 

preparations of the MEF-1 strain showed similar properties to those of 135S and 80S 

particles. The lack of antigenic activity and ability to bind to L20B cells of live and BPL-

inactivated MEF-1 following incubation at 50 °C was compatible with the properties of 135S 

particles, indicating that these MEF-1 preparations had undergone the conformational change. 

The presence of viral RNA in these MEF-1 preparations following incubation with RNAse A 

supported this, as it is known that 135S particles are resistant to RNAse A. The HCHO- and 

BEI-inactivated MEF-1 still showed antigenic activity and the ability to bind to L20B cells 

following incubation at 50 °C. These properties are not compatible with those of 135S or 80S 

particles, indicating that these MEF-1 preparations had remained in the mature virion 

conformation. Viral RNA could be detected from these MEF-1 preparations following 

RNAse A treatment. Although this is a property of 135S particles, it is also one of mature 

virions. Following incubation at 60 °C, none of the MEF-1 preparations showed antigenic or 

binding activity and no viral RNA could be detected. These properties are similar to those of 

80S particles, suggesting that the MEF-1 preparations had undergone the conformational 

changes to reach this state.  

 

 

6.2.3.2 Use of fluorescence-activated cell sorting flow cytometry to assess the effect of 

inactivation on poliovirus viral entry 

 

The aforementioned results suggest that inactivation with BEI and HCHO prevents the 

conformational change of mature virions to 135S particles. This would be assumed to prevent 

the entry of the inactivated PV into a susceptible cell, as the 135S particle is an essential 

intermediate structure of the entry process (511). To investigate this further, FACS flow 

cytometry was used to track viral entry process of live and HCHO-inactivated PV (Materials 

and Methods, section 2.2.7.2). L20B cells (1 x 10
6
 cells / ml) were incubated with live and 

HCHO-inactivated Sabin 2 preparations of equivalent concentrations at either 20 or 37 °C for 

1, 2, 4, 6, 8, 11 h. In addition a 0 h control was set up for both the live and inactivated Sabin 2 

preparations. For each of these incubations a cell control was included to assess background 

fluorescence. Two temperatures were used as it was known that at 20 °C PV can only bind to 

cells, while at 37 °C the virus can bind and enter the cells.  The amount of PV inside and 

outside of cells was assessed by FACS flow cytometry using permeabilisation agents as 
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described in Materials and Methods (section 2.2.7.2). To obtain an accurate measure of the 

amount of PV within the cells the fluorescence readings of the 20 °C incubated Sabin 2 

preparations were subtracted from those of the 37 °C incubated preparations.  

 

As figure 6.15 shows, the amount of live Sabin 2 increased after 4 h incubation, 

indicating that it had entered the cells and was replicating resulting in an increased virus 

yield. 

 

 

Figure 6.15. Amount of live and formaldehyde-inactivated poliovirus within cells post 

incubation.  

Live and HCHO-inactivated Sabin 2 preparations were incubated with L20B cells at either 20 or 37 °C for 0, 1, 

2, 4, 6, 8 and 11 h. The amount of PV inside and outside of cells was assessed by FACS flow cytometry using 

permeabilisation agents. The amount of PV detected within the L20B cells was adjusted to factor in the amount 

of PV bound to PVR on the surface of L20B cells. 1:4000 HCHO is abbreviated as HCHOa. 

 

 

The increase in the amount of live PV within the L20B cells after 4 h incubation confirmed 

the results of previous studies which found that following a 3-4 h eclipse period the 

intracellular PV progeny increased exponentially (179, 225). Following 6 h incubation the 

increased PV yield fell and by 8 h the amount of PV within the cell was similar to the 

background levels determined at 0 h. This could be due to the release of PV from the cells. 

For HCHO-inactivated Sabin 2 no virus was detected within the L20B cells. This may have 

been because either the inactivated PV could not enter the cells and / or its viral RNA was 

defective and could not replicate. This finding was expected as it is known that inactivated 
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PV is not infectious. The findings of this assay did not determine whether inactivated PV 

could or could enter L20B cells, only that the yield of the inactivated virus did not increase. 

An alternative assay was set up in which L20B cells (1.5 x 10
4
 L20B cells/400 µl) were 

incubated with live or 1:4000 HCHO-inactivated PV (0.5 D-Ag multiplicity of infection) in 

8-well glass slides (NUNC Lab-Tek 8 well chamber slide system) at 35 °C for between 1, 2, 

6 and 16 h. Cells were washed with PBS before being fixed with either methanol or acetone 

(internalised PV) or HCHO (3.5 %) and NH4Cl (50 mM) (externally bound PV). Following 

washing with PBS, cells were incubated with the serotype 2-specific MAb 267 and 

subsequently anti-mouse IgG (whole molecule)-FITC. After further washing with PBS, slides 

were viewed using an immunofluorescence microscope (Olympus IX71). Unfortunately the 

presence of live or 1:4000 HCHO-inactivated PV within L20B cells could not be visualised 

by this technique.   
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6.2.4 Effect of inactivation on viral RNA 

 

The replication of the viral RNA of PV is an essential step in the virus replication cycle. 

Following HCHO treatment the viral infectivity of PV is eliminated. However it is not clear 

whether the viral RNA in the inactivated virus particle maintains its integrity and ability to 

replicate and produce virus. Previous research has found that following 60 h inactivation with 

HCHO PV RNA cannot be detected from phenol/SDS extracts, implying that during 

inactivation HCHO is able to interact with the viral RNA (312). However it is not clear what 

effect it has on the viral RNA. No biological activity was detected for these phenol/SDS 

extract following transfection into HEp-2C cells (312). The effect of inactivation on the viral 

RNA was explored further by assessing the biological activity and RNA functionality of 

aliquots taken during inactivation time-courses. 

 

The biological activity of viral RNA isolated during inactivation was determined by its 

ability to produce infectious virus after transfection into HEp-2C cells. Viral RNA of the 

MEF-1 strain was extracted from aliquots taken during inactivation time-courses with BPL, 

BEI and HCHO (detailed in Chapter 4, section 4.2.3) using the MagNA Pure LC Total 

Nucleic Acid Isolation Kit and the Kingfisher ml particle processor. The extracted RNA was 

transfected into susceptible HEp-2C cells by DEAE-dextran-mediated transfection or 

electroporation. To assess the sensitivity of the transfection techniques, viral RNA extracted 

from a serial dilution series of live MEF-1 was also transfected into HEp-2C cells. DEAE-

dextran was originally used as a facilitator to introduce PV RNA into cells (516). The DEAE-

dextran-mediated transfection protocol was as previously described with modifications as 

described in the Materials and Methods (section 2.2.8.1) (453).  

 

As table 6.5 shows, DEAE-dextran transfected viral RNA from live MEF-1 PV was able 

to infect HEp-2C cells. However the DEAE-dextran transfection protocol was found to have 

low sensitivity. Viral RNA equivalent to PV of an infectious titre of 6.2 x 10
4
 TCID50 (0.1 ng 

viral RNA) or lower failed to generate any CPE in transfected cells. 
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Prep. 
Inac. 

aliquot 

Equivalent 

titre 

(TCID50/5 

µl) 

Cytopathic effect (day post transfection) 

1 2 3 4 5 6 7 

Live 

MEF-1 

Neat 6.2 x 10
7 O CPE CPE CPE CPE CPE CPE 

1:10 6.2 x 10
6 O CPE CPE CPE CPE CPE CPE 

1:100 6.2 x 10
5 O O CPE CPE CPE CPE CPE 

1:1000 6.2 x 10
4 O O O O O O O 

1:10000 6.2 x 10
3 O O O O O O O 

BPL 

(1:500) 

2 7.4 x 10 O O O O O O O 

4 <1.0 O O O O O O O 

8 <1.0 O O O O O O O 

12 <1.0 O O O O O O O 

16 <1.0 O O O O O O O 

BEI 

(1.6 

mM) 

4 3.2 x 10
2 O O O O O O O 

8 <1.0 O O O O O O O 

18 <1.0 O O O O O O O 

24 <1.0 O O O O O O O 

HCHO 

(1:4000) 

12 5.6 x 10
5 O O CPE CPE CPE CPE CPE 

36 5.6 x 10
2 O O O O O O O 

71 <1.0 O O O O O O O 

120 <1.0 O O O O O O O 

180 <1.0 O O O O O O O 

288 <1.0 O O O O O O O 

HCHO 

(1:8000) 

12 4.2 x 10
6 O CPE CPE CPE CPE CPE CPE 

36 5.6 x 10
4 O O O O O O O 

71 2.4 x 10
2 O O O O O O O 

120 <1.0 O O O O O O O 

180 <1.0 O O O O O O O 

288 <1.0 O O O O O O O 

 

Table 6.5. Biological activity of poliovirus RNA transfected using DEAE-dextran.  

RNA was extracted from serial dilutions of live PV and virus aliquots taken during inactivation time-courses 

with BPL, BEI and two concentration of HCHO. Extracted viral RNA preparations were transfected into HEp-

2C cells by a DEAE-dextran transfection protocol. Cells were incubated at 35 °C for seven days and observed 

for signs of CPE. CPE indicates cytopathic effect present; O indicates no cytopathic effect present. 
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With the exception of viral RNA extracted before 36 h of inactivation with HCHO, RNA 

extracted from virus aliquots taken during inactivation time-courses with BPL, BEI and two 

concentrations of HCHO did not show any biological activity. 

 

The electroporation protocol was as previously described with modifications as described 

in the Materials and Methods (section 2.2.8.1) (188). As table 6.6 shows, the electroporation 

protocol showed greater sensitivity than the DEAE-dextran protocol.  Viral RNA equivalent 

to live PV of an infectious titre lower than 6.2 x 10
2
 TCID50 failed to generate any CPE in 

electroporated cells. It is not clear why viral RNA equivalent to PV of an infectious titre of 

6.2 x 10
4
 TCID50 failed to generate any CPE in electroporated cells. However, as viral RNA 

equivalent to PV of a lower infectious titre generated CPE when electroporated into cells it is 

possible this was due to limitations inherent to the electroporation technique. For example 

electroporation can result in significant cell death resulting in a lower yield of cells in the 

electroporated samples (188). This would reduce the number of cells viable for the 

transfection of the viral RNA.  
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Prep. 
Inac. 

aliquot 

Equivalent 

titre 

(TCID50/5 

µl) 

Cytopathic effect (day post transfection) 

1 2 3 4 5 6 7 

Live 

MEF-1 

1:10 6.2 x 10
6 O CPE CPE CPE CPE CPE CPE 

1:100 6.2 x 10
5 O CPE CPE CPE CPE CPE CPE 

1:1000 6.2 x 10
4 O O O O O O O 

1:10000 6.2 x 10
3 O O CPE CPE CPE CPE CPE 

1:100000 6.2 x 10
2 O O O O O O O 

1:1000000 6.2 x 10 O O O O O O O 

HCHO 

(1:4000) 

12 5.6 x 10
5 O CPE CPE CPE CPE CPE CPE 

36 5.6 x 10
2 O O O O O O O 

71 <1.0 O O O O O O O 

120 <1.0 O O O O O O O 

180 <1.0 O O O O O O O 

288 <1.0 O O O O O O O 

BEI 

(1.6 

mM) 

4 3.2 x 10
2 O O O O O O O 

8 <1.0 O O O O O O O 

18 <1.0 O O O O O O O 

24 <1.0 O O O O O O O 

 

Table 6.6. Biological activity of poliovirus RNA transfected using electroporation.  

RNA was extracted from serial dilutions of live PV and virus aliquots taken during inactivation time-courses 

with HCHO and BEI. Extracted viral RNA preparations were transfected into HEp-2C cells by electroporation. 

Cells were incubated at 35 °C for seven days and observed for signs of CPE. CPE indicates cytopathic effect 

present; O indicates no cytopathic effect present. 

 

 

As with the DEAE-dextran transfection technique, only the viral RNA extracted before 36 h 

of inactivation with HCHO showed biological activity during the inactivation time-courses. 
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To determine whether inactivation affected the functionality of the viral RNA a series of 

RT-PCRs were carried out (Materials and Methods, section 2.2.8.2). The viral RNA of the 

MEF-1 strain was extracted from aliquots taken during inactivation time-courses with BPL, 

BEI and HCHO, as described in Chapter 4, section 4.2.3. Viral RNA was also extracted from 

live MEF-1 as a control. A series of primers of equal length and melting point which yielded 

200, 400, 600 and 800 bp RT-PCR products of the region encoding the VP1 protein were 

designed (Materials and Methods, section 2.1.1). The extracted viral RNA preparations were 

run in four RT-PCRs with the respective primer. The resulting RT-PCR products were 

examined by gel electrophoresis on a 1 % agarose gel. 

 

As figure 6.16 A and B show, for RNA extracted from the final aliquots of each time-

course, RT-PCR products of low size (200 and 400 bp) were successfully amplified. 

However, as figure 6.16 C and D show, RT-PCR products of 600 and 800 bp of the final two 

aliquots of the time-course of BPL, HCHO and to a lesser extent BEI inactivations either 

produced narrower fainter bands or failed to produce any bands indicating that either less or 

no RT-PCR product was amplified. Reverse transcription-polymerase chain reaction products 

of 600 and 800 bp of aliquots taken earlier in the inactivation time-courses were successfully 

amplified. This suggests that the inactivation chemicals affected the functionality of the viral 

RNA, with an increasing effect as the time-courses proceeded. Inactivation with BPL 

prevented the successful amplification of the 800 bp RT-PCR products from the final two 

aliquots of the time-course. The viral RNA extracted from the final aliquots of inactivation 

time-courses with the other chemicals were all able to generate 800 bp RT-PCR products, 

although the bands were small and less clear. This suggests that inactivation with BPL results 

in greater damage to the viral RNA than the other inactivation chemicals.  
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Figure 6.16. See next page for legend.
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Figure 6.16. Reverse transcription-polymerase chain reaction products of viral RNA 

extracted from live and inactivated poliovirus.  

The serotype 2 PV strain MEF-1, was inactivated with BPL, BEI and two concentrations of HCHO (1:4000 and 

1:8000). During the inactivation time-courses, aliquots were taken at predetermined time- points. Viral RNA 

was extracted from these aliquots along with an aliquot of live MEF-1. A series of primers which yielded 200, 

400, 600 and 800 bp RT-PCR products of the region encoding the VP1 protein were designed. The extracted 

viral RNA was run in four RT-PCRs with the respective primers. The resulting RT-PCR products of 200 (A), 

400 (B), 600 (C) and 800 (D) bp were run on 1% agarose gels. Position of samples is as follows for gels A, B, C 

and D: 

BPL inactivation (i): Ladder (A, I), Live (B), 2 h (C), 4 h (D), 8 h (E), 12 h (F), 16 h (G), RNAse-free water (H). 

BEI inactivation (ii): Ladder (A,H), Live (B),  4 h (C), 8 h (D), 18 h (E), 24 h (F), RNAse-free water (G). 

1:4000 HCHO (iii): Ladder (A, J), Live  (B), 12 h (C), 36 h (D), 72 h (E), 120 h (F) 180 h (G), 288 h (H) 

RNAse-free water (I). 

1:8000 HCHO (iv): Ladder (A,J), Live (B), 12h (C), 36h (D),  72h (E), 120h (F), 180h (G), 288h (H) RNAse-

free water (I). 

 

 

A real-time RT-PCR was developed to quantify the results of previous assay. This 

calculated the genome copy number / D-Ag by real-time RT-PCR using primers which 

amplified RT-PCR products of increasing size, as described in Materials and Methods, 

section 2.2.8.2. For this assay, a QuantiTect
®
 SYBR

®
 Green RT-PCR kit (Qiagen) was used 

with the primers and extracted viral RNA from the previous RT-PCR. A serial dilution series 

to establish a calibration curve (figure 6.17) was created as described in the Materials and 

Methods (section 2.2.8.2). This calibration curve was used to calculate the genome copy 

number of 5 µl of the extracted RNA. The results were expressed as log 10 genome copy 

number / D-Ag of the original inactivation time-point aliquots. In addition, to the region 

encoding the VP1 this real-time RT-PCR was also carried out with respective primers at the 

5’and 3’ends of the genomic region. 
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Figure 6.17. Calibration curve used to assess the genome copy number of extracted viral 

RNA.  

The relevant primers and viral RNA extracted from live MEF-1 were used to generate an 800 bp RT-PCR 

product of the VP1 coding region. The concentration of this RT-PCR product was determined using a nanodrop 

spectrophotometer at 230 nm. The RT-PCR product was diluted with RNAse-free water to ensure that the gene 

copy number/ 5 µl was approximately 10
9
. The diluted RT-PCR product was further diluted ten-fold from 10

-1
 

to 10
-7

. This serial dilution series was used to establish a calibration curve to calculate the genome copy of 

extracted RNA. 

 

 

The results for all three regions in the PV genome supported the previous finding (figure 

6.16) that inactivation reduced the functionality of the viral RNA. As the RT-PCR product 

increased in size, the genome copy number fell significantly for RNA extracted from MEF-1 

treated with an inactivation chemical. For RNA extracted from live MEF-1 there was very 

little decrease in the genome copy number as the RT-PCR product increased in size. These 

results are represented in figure 6.18 which shows the log 10 genome copy number of RNA 

extracted from live and inactivated MEF-1 as the RT-PCR products increased in size. 

Analysis by General Linear Model ANOVA (Minitab v.16, http://www.minitab.com/en-GB/) 

found that the difference in log 10 genome copy number, as the RT-PCR products increased 

in size was significant between RNA extracted from live and inactivated PV (P<0.001). The 

limits of detection for this assay corresponded to between 2-3 log 10s of genome copy 

number. 
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Figure 6.18. Effect of inactivation on functionality of viral RNA extracted from live 

MEF-1 and beta-propiolactone-, binary ethyleneimine- and formaldehyde-inactivated 

MEF-1.  

Viral RNA was extracted from live MEF-1 and the final aliquot of the BPL, BEI and HCHO inactivation time-

courses. A range of primers which yielded RT-PCR products of 100, 200, 400, 600 and 800 bp of the VP1 

coding region (B) and the 5’ (A) and 3’ (C) ends of the genomic region were designed. A series of real-time RT-

PCRs, which incorporated these primers, were carried out with a calibration curve. The results of these assays 

were expressed as log 10 genome copy number / D-Ag of the original inactivation time-point aliquots. The real-

time RT-PCR of the VP1 coding region with primers which yielded a 100 bp RT-PCR product was not included 

due to discrepancies with the data. 1:4000 HCHO is abbreviated as HCHOa; 1:8000 HCHO is abbreviated as 

HCHOb. 
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The concentration of the extracted RNA samples was determined using a nanodrop 

spectrophotometer at 230 nm (NanoDrop
®
 ND-1000 spectrophotometer, NanoDrop 

Technologies). As table 6.7 shows, the total amount of viral RNA did not show any 

significant reduction during the inactivation time-courses indicating that there was no 

degradation of the viral RNA. 
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Sam. 

Aliqt. RNA 

conc. 

(ng / 

µl) 

Log10 genome copy number / D-Ag (RT-PCR, bp) 

(h) 5’end of genomic region 

  

VP1 

  

3’end of genomic region 

  100 200 400 600 800 200 400 600 800 100 200 400 600 800 

Live Live 36 9.4 9 9.2 8.9 8.5 8.6 8.8 8.2 8.1 9 9.1 8.9 8.8 8.2 

  

BPL 

2 30 8.7 8.4 7.9 6.9 5.8 

  

8.8 8.9 7.8 7.3 

  

9.1 8.8 8.5 7.6 6.9 

4 30 8.8 8.5 8 7.1 5.9 8.8 8.8 7.5 6.8 9 8.7 8.3 7.2 6.3 

8 30 8.8 8.4 7.8 6.3 5.1 8.6 8.5 6.9 5.9 9 8.6 8 6.6 5.3 

16 25 8.6 7.9 6.9 5 3.3 7.8 7.5 5.3 4.4 8.7 8.2 6.9 5 4.3 

  

BEI 

4 28 8.4 8.1 7.6 7 6.2 

  

8.8 8.8 8.0 7.7 

  

8.9 8.7 8.6 8.2 7.6 

8 27 9 8.6 8.2 7.5 7.5 8.8 8.9 8.0 7.3 9 8.8 8.3 7.8 7.2 

18 29 8.9 8.3 7.7 6.7 6.2 8.5 8.5 7.0 6.3 8.9 8.7 8 7 6 

24 34 8.8 8.5 7.8 6.6 5.8 8.3 8.4 6.6 5.8 8.9 8.5 7.9 6.7 5.6 

  

HCHOa 

12 21 9 8.8 8.6 8.2 7.6 

  

9.0 9.0 8.4 8.2 

  

9.1 9.1 8.6 8.4 8 

36 25 9.1 8.8 8.4 7.8 7.3 8.6 8.8 7.9 7.5 9.1 8.9 8.5 8 7 

72 21 8.8 8.6 8 7.4 6.6 8.5 8.5 7.4 7.4 9 8.8 8.1 7.6 6.6 

120 25 9.1 8.8 8.1 6.8 5.5 8.8 8.4 7.1 6.3 9 8.5 7.9 6.8 5.8 

180 28 8.7 8.4 7.5 6.1 4.7 8.2 7.9 6.3 5.3 8.9 8.6 7.4 6.1 4.8 

288 26 8.8 8.2 7.1 5.7 4 7.9 7.4 5.4 4.4 8.7 8.2 6.9 5.5 4 

  

HCHOb 

12 25 8.9 8.8 8.7 8.2 7.8 

  

8.8 8.9 8.4 8.3 

  

8.6 8.9 8.6 8.3 7.8 

36 25 9.1 8.9 8.7 8.1 7.8 8.8 8.9 8.2 7.9 9 8.8 8.5 8.1 7.7 

72 22 9 8.8 8.6 8.1 7.4 8.7 8.7 8.0 7.7 9.1 8.8 8.5 8 7.3 

120 17 9.2 8.9 8.6 7.7 6.8 8.6 8.6 7.5 6.9 8.9 8.7 8.2 7.3 6.6 

180 19 9.1 8.8 8.2 7.4 6.4 8.8 8.5 7.3 6.8 9.1 8.7 8.1 7.1 6.2 

288 25 9.1 8.7 8.2 6.9 5.9 8.5 8.1 6.7 6.0 8.8 8.4 7.7 6.5 5.3 

 

Table 6.7. Effect of inactivation on concentration and functionality of viral RNA 

extracted from live and inactivated MEF-1.  

Viral RNA was extracted from live MEF-1 and virus aliquots from BPL, BEI and HCHO inactivation time-

courses. The concentration of the extracted viral RNA samples was determined using a nanodrop 

spectrophotometer at 230 nm. Primers which yielded RT-PCR products of 100, 200, 400, 600 and 800 bp of the 

VP1 coding region and the 5’ and the 3’ ends of the genomic region were designed. A series of real-time RT-

PCRs, which incorporated these primers, were carried out with a calibration curve. The results of these assays 
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were expressed as log 10 genome copy number / D-Ag of the original inactivation time-point aliquots. The real-

time RT-PCR of the VP1 coding region with primers which yielded a 100 bp RT-PCR product was not included 

due to discrepancies with the data. Log10 genome copy number / D-Ag values are coloured from high (green) to 

mid (yellow) to low (red). 1:4000 HCHO is abbreviated as HCHOa; 1:8000 HCHO is abbreviated as HCHOb. 

Sam. indicates sample; Aliqt. indicates aliquot. 

 

 

The reduction in the functionality of the viral genome during inactivation was confirmed 

by the fall in the genome copy number, but not concentration of the viral RNA. The 

inactivation chemicals could be reducing the functionality of the viral RNA by fragmenting it 

or by inducing chemical modifications. As table 6.7 shows, this effect is seen throughout the 

three regions tested, indicating that inactivation reduces the functionality of the whole 

genome rather than a specific area. Analysis by General Linear Model ANOVA (Minitab 

v.16, http://www.minitab.com/en-GB/) of the log 10 genome copy number of the regions 

found that they did not differ significantly. A comparison of the fall in log 10 genome copy 

number of the RNA extracted from inactivation time-courses found that inactivation with 

BPL produced a larger reduction in log 10 genome copy number than inactivation with BEI 

or HCHO. Analysis by General Linear Model ANOVA (Minitab v.16, 

http://www.minitab.com/en-GB/) found that this difference in the reduction of log 10 genome 

copy number was significant (P<0.001). For all inactivation chemicals the reduction in the 

genome copy number of the extracted RNA became progressively greater as the inactivation 

time-courses progressed. As table 6.7 shows, this effect was particularly prominent when the 

600 and 800 bp RT-PCR products were amplified.  

 

In order to discard nonspecific damage to the viral RNA caused by the inactivation 

conditions, RNA extracted from the A0i and A0ii live MEF-1 controls (Chapter 4) was 

analysed in a series of real-time RT-PCRs of the three genomic regions which amplified 800 

bp RT-PCR products. The viral RNA extracted from the A0i and A0ii controls of the BPL 

and BEI inactivation time-courses showed a similar genome copy number to RNA extracted 

from live MEF-1 (data not shown). This was also apparent for the A0i control of the HCHO 

inactivation time-courses. However, viral RNA extracted from the A0ii HCHO control 

showed a reduction in genome copy number in comparison to the A0i control. The scale of 

this reduction varied for the VP1 coding region and the 5’ and 3’ ends of the genomic region 
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(1.0, 0.7 and 1.2 log 10s, respectively). This finding correlates with the reduction in the 

infectious titre of the A0ii control of the HCHO inactivation time-courses (Chapter 4). 

 

As discussed above the viral RNA used in these RT-PCRs was extracted using the 

MagNA Pure LC Total Nucleic Acid Isolation Kit and the Kingfisher ml particle processor. 

In order to verify that the amount of RNA detected did not significantly differ between 

extraction kits a real-time RT-PCR was used. The genome copy number of viral RNA 

extracted from a commercial IPV by the QIAamp viral RNA mini (Qiagen) and the MagNA 

Pure LC Total Nucleic Acid Isolation extraction kits was assessed by a real-time RT-PCR. 

This assay incorporated the primers described above which yielded RT-PCR products of 200, 

600 and 800 bp of the VP1 encoding region. The log 10 genome copy number of the 

extracted RNA was calculated relative to a calibration curve as described above. 

 

As table 6.8 shows, there was little difference between the two extraction kits as the 

resulting RNA showed similar log 10 genome copy number across three RT-PCR products. 

In addition the MagNA Pure LC Total Nucleic Acid Isolation kit had an advantage of being 

largely automated and therefore it could be practical when a large number of samples need to 

be processed. 

 

Extraction technique 
Log 10 genome copy number (RT-PCR product) 

200 600 800 

Qiagen 5.4 3.6 3.4 

MagNA Pure 5.4 3.4 3.5 

 

Table 6.8. Genome copy number of RNA extracted using different techniques.  

Viral RNA of a commercial IPV was extracted using the QIAamp viral RNA mini kit and the MagNA Pure LC 

Total Nucleic Acid Isolation Kit. The genome copy number of the resulting viral RNA was determined by a 

real-time RT-PCR which incorporated primers which yielded RT-PCR products of 200, 600 and 800 bp of the 

VP1 coding region. The genome copy number of the extracted RNA was calculated relative to a calibration 

curve. Values were logged.  
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The effect of inactivation on the viral RNA was explored further using a bioanalyser which 

could analyse the quality and size of the extracted viral RNA using an electrophoresis system. 

Viral RNA extracted from a series of commercial IPVs was analysed using the Agilent 2100 

Expert Bioanalyser (Agilent technologies). As figure 6.19 shows, the viral RNA from the 

IPVs were all of approximately 7400 nts in size. This is equivalent to the size of the whole 

PV genome which suggests that inactivation with HCHO does not fragment the viral RNA. 

 

 

Figure 6.19. Visualisation of RNA extracted from inactivated poliovirus vaccine 

preparations using an electrophoresis system.  

Viral RNA was extracted from six commercial IPV preparations and analysed using the Agilent 2100 Expert 

Bioanalyser. 
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6.3 DISCUSSION 

 

A range of assays have been carried out to analyse the effect of inactivation on three 

properties of PV: the ability to bind to the PVR; the ability to undergo conformational 

changes necessary to enter a cell; and the functionality of the viral RNA. Alkaline 

phosphatase, FACS flow cytometry and real-time RT-PCR assays found that inactivated PV 

was able to bind to the PVR expressed as a soluble fusion protein or on the surface of L20B 

cells, although at an apparent reduced rate. The scale of this reduction varied slightly between 

the PV strain and the type of assay used to assess the PV:PVR interaction. For example, 

analysis of the binding of live and inactivated PV to CD155-AP by the AP assay found that 

the Sabin 2 strain showed a 66 % reduction, while the MEF-1 strain showed a 14 % 

reduction. In comparison to the AP assay the real-time RT-PCR binding assay found that 

inactivated MEF-1 showed a 78 % reduction in binding. This difference could be due to the 

amount and accessibility of binding surface of the soluble CD155-AP and the PVR expressed 

on L20B cells. The reduction in binding between inactivated PV and the PVR could have 

been due to the inactivation chemicals altering the capsid protein coat of the PV virions in 

such a manner that their receptor binding site (canyon) was chemically changed resulting in 

the virus being less able to bind to the receptor (180, 450). For example, previous research 

has suggested that inactivation of PV with HCHO results in capsid proteins being cross-

linked (512). This cross-linking may result in the canyon being partially blocked which 

would lead to a reduction in the probability of effective contact between the PV and its 

cellular receptor.  

 

In addition to HCHO both BPL and BEI were found to reduce but not prevent the 

interaction between PV and the PVR. Recently published research has used ellipsometry to 

analyse the effect of BPL treatment on the adsorption of two H1N1 influenza strains on a 

mixed phospholipids DMPC/GM3 monolayer at the air-water interface. This research found 

that BPL reduced the viral affinity for the mixed monolayer, possibly through a modification 

of the hemagglutinin (125). The results detailed in this chapter indicate that BPL has a similar 

effect on the interaction between PV and its cellular receptor. This was not unexpected as it 

has been previously noted that BPL interacts with viral capsid proteins (56). In addition it 

was described in Chapter 4 how inactivation with BPL resulted in a loss of antigenic material, 

indicating that the viral capsid was affected by BPL treatment. Finally it should be noted that 

despite previous literature indicating that main mechanism of inactivation of BPL was the 
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preferential carboxyethylation of guanine and adenine (57, 97, 432, 459) a recent study has 

determined that proteins are more extensively modified than nucleic acids during inactivation 

with BPL (514). Thus BPL could have modified the viral capsid proteins resulting in the 

observed reduction in affinity for the PVR.  

Binary ethyleneimine-inactivated PV also showed a reduced affinity to interact with the PVR, 

indicating that viral capsid proteins were modified by BEI treatment. This was expected as 

findings detailed in Chapter 4 showed that inactivation with BEI resulted in minor 

modifications to the antigenic structure of PV virions. Previous research has also confirmed 

that BEI can modify viral proteins as well as viral nucleic acid (66, 67, 71, 247). 

 

The effect of inactivation on the entry of PV into target cells has been determined by a 

number of assays which assessed whether inactivated PV particles could undergo the 

necessary conformational changes to enter the cells. These assays suggested that PV 

inactivated with either BEI or HCHO was unable to undergo the conformational change to 

form 135S particles, an essential intermediate structure of the entry process (511). An 

explanation for this is that both chemicals induce modifications to the PV virions which 

prevent the conformational change. Inactivation with HCHO is known to result in the 

formation of cross-links which have been previously indicated to improve the stability of 

FMD virus preparations (28, 441). Such cross-links could have prevented the inactivated PV 

virions from undergoing the conformational change to 135S particles when heated to 50 °C. 

In addition, as a tanning agent HCHO may harden viral proteins (156, 316). This tanning of 

the surface of the inactivated PV virions could further prevent them from undergoing a 

conformational change.  

 

As an aziridine, BEI has been previously noted to lack the cross-linking and fixation 

activity of HCHO (28). However, BEI has been shown to interact with capsid proteins 

(Chapters 4 and 6) and has been previously noted to modify viral proteins (66, 67, 71, 247). 

The findings of this chapter suggest that HCHO and BEI mediated modifications to the viral 

proteins of the inactivated PV virions prevent them from shifting conformation to 135S 

particles when heated to 50 °C.  

 

Like live (untreated) PV, BPL-inactivated PV virions appeared to undergo the 

conformational change to 135S particles when heated to 50 °C. The results detailed in this 

chapter show that if BPL modifies the viral proteins, such modifications do not appear to 
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prevent a conformational change to 135S particles. A possible explanation for this is that 

BPL induced chemical modifications are of a different nature to those of HCHO and BEI and 

do not increase the stability of PV virions allowing them to undergo the conformational 

change at the relevant temperature. 

 

Both live and inactivated PV were indicated to have undergone a conformational change 

to 80S particles following heat-treatment at 60 °C. Modification conferred to PV virions by 

HCHO and BEI inactivation, which seemed to prevent the conformational change to 135S 

particles, did not prevent the conformational change at 60 °C. An explanation for this could 

be that the inactivation modifications formed by these chemicals were not stable at 60 °C and 

broke down allowing the virus to undergo the conformational change to 80S particles. It has 

been previously found that HCHO cross-links are reversed when heated to 65 °C (418). Thus 

it is possible that heating the PV preparations to 60 °C was sufficient to break down the 

inactivation modifications to PV virions. While the results of this chapter suggest that 

inactivation with HCHO and BEI prevents PV from undergoing the conformational changes, 

it will be necessary to verify this using a sucrose gradient following a similar approach to 

Arita et al. (19). The sucrose gradient would allow the structural properties of inactivated PV 

bound to the PVR to be assessed. 

 

Analysis of the biological activity of viral RNA extracted from inactivated PV using two 

transfection techniques found that inactivation with the three chemicals eliminated the 

biological activity of the RNA. Only the viral RNA extracted before 36 h of inactivation with 

HCHO showed biological activity during the inactivation time-courses. This supports Martin 

et al. (312) who found that viral RNA was no longer infectious following partial inactivation 

with HCHO. This suggests that inactivation with the three chemicals rapidly alters the viral 

RNA molecules. However the sensitivity of the DEAE-dextran transfection technique was 

limited.  

 

Previous research using phenol / SDS could only detect viral RNA extracted from PV 

partially inactivated with HCHO (312). However research described in this chapter has 

shown that is possible to extract viral RNA from fully inactivated PV using the magnetic 

bead-based MagNA Pure LC Total Nucleic Acid Isolation kit. When the extracted viral RNA 

was analysed by RT-PCRs with PV-specific primers it was found that for RNA extracted 

from the final aliquots of each inactivation time-course only RT-PCR products of low size 
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(200 and 400 bp) were successfully amplified. Reverse transcription-polymerase chain 

reaction products of high size (600 and 800 bp) either produced narrower fainter bands or 

failed to produce any bands indicating that either less or no RT-PCR product was amplified. 

Similar results have been obtained following the analysis of DNA extracted from formalin-

fixed paraffin-embedded tissues (122). The successful amplification of RT-PCR products of 

600 and 800 bp of aliquots taken earlier in the inactivation time-courses indicates that the 

inactivation chemicals affected the functionality of the viral RNA, with an increasing effect 

as the time-courses proceeded.  

 

The findings of the RT-PCRs were confirmed following quantification. Viral RNA 

extracted from each inactivation time-course showed lower genome copy number / D-Ag as 

the time-courses progressed and larger RT-PCR products were amplified. This was found for 

all of the three sequenced regions of the PV genome, with no significant difference in the 

genome copy number / D-Ag between the three regions. The RT-PCRs suggest that as the 

inactivation time-courses progress that the functionality of the viral RNA is reduced. This 

could be due to the inactivation chemicals either fragmenting the viral genome or modifying 

the nt bases which make up the viral genome. Analysis of the viral RNA extracted from 

commercial IPV found that inactivation with HCHO did not appear to fragment the RNA. So 

modifications to nt bases may be responsible for the reduction in the functionality of the viral 

RNA of HCHO-inactivated PV. Formaldehyde interacts with nt bases in two steps. The first 

reaction involves the addition of the HCHO group to NH-group of bases resulting in the 

formation of labile methylol-derivatives. The secondary electrophilic reaction with N-

methylol on an amino base forms a methylene bridge between two amino groups (21, 156). 

Beta-propiolactone and BEI can modify the viral RNA by alkylation which can result in the 

formation of covalent adducts on adenosine (N-1), cytidine (N-3) and guanosine (N-7) (204, 

205). These modifications could have a negative effect on RT-PCR and other enzymatic 

procedures (527). For example following HCHO inactivation, the addition of monomethylol 

groups to nt bases which modify the poly A tail could inhibit oligo primer annealing to the 

poly A tail and consequently the reverse transcription reaction (74). In addition these 

chemical modifications can reduce or block the base pairing necessary for molecular analysis 

by hybridization techniques (155, 156, 193). Thus the amplification of reverse transcriptase 

products during the RT-PCR assays might have been restricted if the nt bases were modified 

during inactivation.  
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It is not clear how BPL or BEI reduced the functionality of the viral RNA during 

inactivation. While both can modify the viral RNA, BPL has been previously found to 

fragment nucleic acids (48, 122, 417) by inducing cross-linking reactions between nucleic 

acid bases and proteins. This can restrict the extraction of nucleic acids and can inhibit 

polymerase during PCR-based molecular assays (106, 155). Therefore if BPL or BEI did 

fragment the viral genome they could have reduced the efficiency of the RT-PCR resulting in 

a reduced amplification of the template. Fragmentation of the viral RNA or modification of 

the nt bases could have had a negative effect on the biological activity of the RNA. This 

could explain why RNA extracted from fully inactivated PV did not cause CPE in transfected 

cells. 

 

Poliovirus inactivated with BPL showed a larger reduction in genome copy number than 

PV inactivated with BEI or HCHO. A grouping analysis using the Tukey method (Minitab 

v.16, http://www.minitab.com/en-GB/) confirmed that this difference was significant 

(P<0.05). The experimental conditions (in particular the pH) could have contributed to the 

large reduction in genome copy number of the viral RNA extracted from the BPL-inactivated 

aliquots. It has been previously found that the reaction between BPL and DNA was of greater 

efficacy when carried out at weakly basic pH (7.4-8.0) (193). As described in Chapter 4 the 

pH of the BPL inactivation was around 7.5, which might have led a more efficacious reaction 

between the viral RNA and BPL, resulting in more modifications to the RNA. Despite both 

BPL and BEI inactivating viruses by interacting with similar nucleophilic positions in nucleic 

bases (205, 206, 400, 526) the BEI induced modification seemed to have less effect than BPL 

modifications on the viral RNA functionality. This may be due to differences between how 

each chemical interacts with the nucleic acid targets. One difference is that BPL is capable of 

cross-linking to RNA to other macromolecules, while BEI has not shown this property. 

 

The results detailed here indicate that PV inactivated with HCHO or BEI is unable to 

undergo the necessary conformational changes to enter a target cell and initiate an infection. 

All three chemicals were able to modify the viral RNA during inactivation, eliminating its 

infectivity and reducing its functionality. The real-time RT-PCR successfully assessed the 

effect of inactivation on the functionality of the viral RNA. This assay could be used as a 

quality control test for IPV production. As this assay involves the extraction and 

amplification of viral RNA using strain specific primers, it could be used as an identity test to 

monitor for any contaminating strains in the IPV. In addition if the fall in genome copy 
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number of viral RNA following inactivation is reproducible then this assay could be used as a 

measure of consistency of IPV production. The effect of inactivation with BPL or BEI on the 

viral RNA could be further explored using a Bioanalyser or mass spectrometry (106, 315). 
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As explained in the introduction, the use of safer improved IPV products will be required 

for the End-game of the GPEI. One of the main objectives of this PhD thesis was to 

characterise and understand the differences between current IPV preparations made from 

wild-type PV strains and those produced from live-attenuated Sabin virus seeds currently 

used for OPV production. Analyses of inactivated PV preparations developed with the use of 

alternative chemicals for virus inactivation, such as BEI and BPL, were also carried out. In 

addition the molecular mechanisms underlying virus inactivation with HCHO, BEI and BPL 

were investigated. 

 

To gain full understanding of why Sabin 2 and MEF-1 differ in immunogenicity 

following inactivation with HCHO, the molecular, antigenic and immunogenic properties of 

inactivated PV preparations made from a wide range of serotype 2 strains were determined. 

They included four wild-type strains from different years and regions, three iVDPV strains 

from two different patients and one cVDPV strain from an outbreak in Madagascar. The nt 

sequence covering the entire capsid coding region (2637 nts) was first determined for all 

serotype 2 strains in the study. Remarkably, the iVDPV strains showed a much higher 

proportion of non-synonymous changes with respect to the Sabin 2 strain than those shown 

by the wild-type serotype 2 strains, despite the latter being genetically distant from Sabin 2 as 

they span 40 years and were isolated in very distant geographical areas.  

 

Interestingly, the cVDPV strain from Madagascar and other cVDPV strains for which 

sequences are available in public databases, showed a low proportion of non-synonymous nt 

changes compared to the Sabin 2 virus, like wild-type viruses. The conclusion is that Sabin 2 

vaccine virus appears to accumulate amino acid changes more rapidly during evolution in a 

single patient than when it is transmitted from person to person. It is likely that the 

combination of a number of factors, such as evasion to immune pressure, ability to bind the 

cell receptor and improvement of fitness to grow in the gut contribute to the selection of 

mutations during the evolution of Sabin vaccine strains in humans. These factors might be 

different in individuals with immunodeficiency, resulting in viruses with different mutation 

profiles. This observation could be useful when identifying VDPV strains found in 

environmental samples, as analysis of their mutation profile could help to determine whether 

any particular strain is likely to be a cVDPV or an iVDPV, which would help deciding public 

health interventions. Many of these mutations affected capsid regions corresponding to 

known antigenic sites or their flanking amino acid residues. Analysis by ELISA confirmed 
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that these specific amino acid alterations correlated with changes in reactivity with MAbs 

directed against different antigenic sites.  

 

The serotype 2 PV strains were then inactivated with HCHO following the conventional 

technique used to generate commercial IPV. The D-Ag content of HCHO-inactivated 

serotype 2 PV preparations was determined by ELISA using various anti-serotype 2 PV 

MAbs. All serotype 2 strains showed similar ratios of D-Ag content and infectious titre 

(TCID50), suggesting the presence of similar proportions of infectious virus in the original 

preparations. A new technique, based on the use of SPR mediated technology (Biacore), was 

developed and validated. This method could result in more accurate and consistent 

measurement of the potency of IPV products, which would benefit the process of quality 

control of such vaccines. Analysis of the antigenic properties of the inactivated serotype 2 

strains found that while inactivation with HCHO did not result in a significant loss of 

antigenicity, it did modify the structure of antigenic site 1. It is not clear what impact the 

modifications to antigenic site 1 has on the immunogenicity of inactivated PV, but as this 

site, with site 3, has been found for serotype 3 PV strains to be immunogenic in humans, it is 

likely to have some effect (207).  

 

Analysis of sera from rats immunised with the inactivated serotype 2 PV strains found 

that wild-type strains showed high neutralisation titres against challenge viruses, with the 

highest neutralisation shown with inactivated MEF-1. The inactivated Sabin 2 strain showed 

significantly lower immunogenicity than MEF-1 and other wild-type strains, and inactivated 

iVDPV strains showed the lowest levels of immunogenicity of all the inactivated serotype 2 

strains. Research with model peptides has determined the structures of HCHO-induced 

modifications in proteins and the intrinsic reactivity of each amino acid residue (331, 332). 

The initial reaction of HCHO with a peptide or protein results in the formation of methylol 

adducts on the amino and thiol groups of arginine, cysteine, histidine, lysine and tryptophan 

residues. On the lysine and tryptophan residues the methylol groups partially dehydrate 

resulting in the formation of Schiff bases (Scheme 1) which can form stable crosslinks 

(methylene bridges) with a range of amino acid residues, including arginine, asparagine, 

glutamine, histidine, tryptophan and tyrosine (331, 332).  Sequence analysis of the viral 

capsid confirmed the presence of some of these amino acids within the antigenic sites. The 

variation in the presence and location of these HCHO “targets” within the antigenic sites may 
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at least in part, explain why the immunogenicity differed between strains, although the extent 

of this is not easy to predict.  

 

Sera from rats immunised with the inactivated serotype 2 PV strains showed lower 

neutralisation titres when challenged with an iVDPV strain that had extensive amino acid 

changes in antigenic sites. These extensive amino acid changes may have contributed to the 

reduced capacity of these strains to be neutralised by sera from immunised rats. This finding 

could have ramifications for communities with low PV immunity if the reduced capacity of 

these strains to be neutralised leads to less protection against PV.  

 

A comparison of live and inactivated serotype 2 PV preparations showed that inactivation 

with HCHO resulted in a significant reduction in the overall immunogenicity. Given the scale 

of this reduction in immunogenicity it is unlikely that the modification of antigenic site 1 

alone accounts for such difference. It cannot be dismissed that changes in epitopes undetected 

by the panel of MAbs occur as a consequence of inactivation. However, as the MAb panel 

covers all known antigenic sites, the explanation is likely to be of a more general 

phenomenon, such as inactivation affecting processing and presentation of viral peptides by 

the immune system. 

 

Inactivated poliovirus vaccine induces a neutralising antibody response which controls 

infection (251). This immune response is initiated following recognition of peptides 

displayed by major histocompatibility complex (MHC) class II molecules at the surfaces of 

antigen-presenting cells (APCs) (497). Antigen-presenting cells (including dendritic cells, 

macrophages and B cells) take up the IPV antigen by endocytosis (29). As the early 

endosomes mature into lysosomes and undergo progressive acidification, the antigen is 

processed into peptide fragments by endosomal proteases (e.g. asparaginyl endopeptidase) 

(436). Nascent MHC class II αβ hetrodimers assemble with the invariant chain (Ii) and enter 

the endocytic pathway (497) where vacuoles containing this complex fuse with late 

endosomes carrying the antigen peptides (436). Within the late endosomes the Ii is digested 

by proteases to leave the class II-associated invariant chain peptide (CLIP) within the peptide 

binding groove of the MHC class II. The protein chaperone HLA-DM catalyses the exchange 

of CLIP for endosomal antigen peptides (198, 482). The MHC-peptide complexes then traffic 

to the cell surface where they can bind to receptors of TH1 or TH2 T-helper cells and B cells 

(TCR and BCR, respectively) within the draining lymph node. Binding of specific antigenic 
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peptides to these receptors and additional binding between co-stimulatory molecules on 

APCs and T-helper cells activates the T-helper and B cells. Activated TH1 cells enhance IFN-

γ production, while TH2 release interleukin 2, 4, 5 and 6 which induce further B-cell 

activation, differentiation and proliferation with isotype switch (IgM to IgG) and memory cell 

formation (29, 444).  

 

Given that it has been shown previously that HCHO can interact with amino acid 

residues, it is possible that it could alter antigen processing; peptide-MHC association or; 

TCR recognition of the peptide-MHC complex (331, 332). For example HCHO could induce 

cross-linking or tanning reactions to viral proteins which would confer resistance to 

proteolytic processing. This would, in turn, reduce the presentation of viral peptides to TCR 

and BCR and, consequently, the immune response. Indeed, previous research has found that 

HCHO treatment can constrain antigen presentation to T cells by altering proteolytic 

processing of the treated proteins (129). 

 

In order to investigate the development of inactivated PV with higher immunogenicity, 

BPL and BEI were used to inactivate selected serotype 2 strains. These chemicals were 

chosen as previous research indicated that they selectively inactivate the viral genome. They 

primarily inactivate by introducing nucleic acid adducts, principally 7-(2-carboxyethyl) 

guanine (97, 205, 206, 432, 459, 525). Iodoacetamide was also chosen as an alternative 

inactivation chemical as it inactivates in a non-cross-linking manner which might result in 

less modification to the antigenic structure of PV. However, IAN was found to be an 

unsuitable alternative chemical as it modified or destroyed antigenic epitopes and there was 

difficulty in removing it following inactivation. Optimal conditions for inactivation were 

established using different concentrations of the chemicals in time-course experiments. Both 

BPL and BEI eliminated viral infectivity at a much faster rate than HCHO. Like HCHO, 

inactivation with BPL or BEI resulted in modification to antigenic site 1, although the extent 

varied between the chemicals and the PV strains. Inactivation of the MEF-1 strain with BEI 

or HCHO modified antigenic site 1. Beta-propiolactone-inactivated MEF-1 showed no 

evidence of modification to any of the antigenic sites. 

 

The immunogenicity of PV strains inactivated with HCHO, BEI or BPL was assessed 

with a rat potency assay, commonly used for the batch release of IPV (153), and a series of  

immunisation-challenge experiments with TgPVR mice, developed at the NIBSC (312). The 
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results of the rat potency assay showed that BEI- and HCHO-inactivated MEF-1 generated 

similar immune responses. Beta-propiolactone-inactivated MEF-1 was less immunogenic 

than BEI- and HCHO-inactivated MEF-1. The low immunogenicity of BPL-inactivated 

MEF-1, despite lacking any detectable modification to the antigenic sites indicates that 

changes to the antigenic structure do not alone account for the immunogenicity of inactivated 

PV. As discussed above it is more likely that inactivation affected the processing and 

presentation of viral peptides. A potential explanation for the low immunogenicity of BPL-

inactivated MEF-1 could be that the acylation and alkylation reactions that BPL induces in 

viral proteins could result in viral peptides of low stability (514). Previous research has 

indicated that MHC class II complexes with unstable peptides can lead to aberrant pathways 

of T cell differentiation and potentially a poor immune response (455).  

 

The results of the rat potency assay showed that the sera from rats immunised with BPL-, 

BEI- or HCHO-inactivated MEF-1 had lower neutralisation titres against an iVDPV strain in 

comparison to when challenged with the Sabin 2 and MEF-1 strains. A series of 

immunisation-challenge experiments using TgPVR mice showed that this selective 

immunogenicity resulted in selective protection against different challenge strains.  The low 

protection conferred by inactivated Sabin 2 and MEF-1 preparations against the iVDPV strain 

could mean that such strains may pose a greater risk of spread in populations with low herd 

immunity to PV and a real threat for the re-introduction of PV into the community in the 

post-eradication era. However it is not clear how transmissible these strains are and there are 

no current techniques to measure this. A potential solution would be to use adjuvants to 

improve the immunogenicity of IPV preparations. The addition of adjuvants may also allow 

antigen sparing of IPV (25, 524). Adjuvants could also boost the immunogenicity of 

inactivated Sabin 2 which, as described above, was found to have a lower immunogenicity 

than inactivated MEF-1. One such adjuvant under development is aluminium hydroxide, Al 

(OH)3. This has been found to increase the immunogenicity two-fold for all three sIPV strains 

in rats (524). In mice, the humoral and cellular immune response to sIPV is enhanced by Al 

(OH)3 with or without CpG (566). Sabin-IPV preparations admixed with either chitosan 

glutamate or chitosan sulfate micro/nanoparticles showed improved immunogenicity when 

administered to mice (185). The 1,25-Dihydroxyvitamin D3 could also be used as an 

adjuvant for sIPV preparations (232).   
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While the rat potency assay measured the antibody response induced by the inactivated 

PV preparations, the immunisation-challenge experiments with TgPVR mice assessed the 

protection conferred by such PV preparations. This encompasses the innate immune response 

in addition to the antibody response. Modifications to PV virions following inactivation may 

affect both immune responses. Innate immune recognition is mediated by germ line-encoded 

pattern recognition receptors (PRRs) which bind to conserved molecular patterns 

characteristic of microorganisms termed pathogen associated molecular patterns (PAMPs) 

(274, 457). The binding of PAMPs by PRRs (including toll-like receptors, TLRs) triggers the 

release of cytokines and chemokines which activate APCs and initiate the adaptive immune 

response (457, 470). Previous research has determined that the viral genomic RNA acts as a 

PAMP and that a number of TLRs (including TLR7 and TLR3) are able to recognise and 

bind to it and trigger an immune response (184, 274). Research within this thesis has shown 

that during inactivation with BPL, BEI or HCHO, the viral RNA is fragmented or modified. 

This could affect the ability of the TLRs to recognise, bind and trigger an immune response. 

Picornavirus RNA is also detected by the cytoplasmic melanoma differentiation-associated 

gene 5 (MDA5) which is a retinoic acid-inducible gene I-like receptor (26, 248, 300). After 

detecting double stranded RNA, MDA5 associates with mitochondrial IFN-β promoter 

stimulator-1 which triggers a signalling pathway to activate type 1 IFN genes (26, 492). 

Fragmentation or modification of the viral RNA by inactivation may affect the ability of 

MDA5 to recognise and trigger the signalling pathway that results in a type 1 IFN response.   

 

In addition to the immunogenicity, thermostability is a critical property of a vaccine. The 

thermostability of BPL, BEI or HCHO-inactivated MEF-1 preparations was assessed by 

determining the degradation of the viral antigenicity and immunogenicity of these 

preparations following treatment at 45 °C. This analysis found that the BEI-inactivated MEF-

1 had a greater thermostability than HCHO- and BPL-inactivated MEF-1. The BPL-

inactivated MEF-1 was found to have the lowest thermostability of all the MEF-1 

preparations. Poliovirus inactivated with BEI showed similar antigenic and immunogenic 

characteristics to HCHO-inactivated PV. Both HCHO- and BEI-inactivated vaccines are well 

tolerated and considered safe (409, 421, 440). Binary ethyleneimine is considered to be less 

carcinogenic and toxic than HCHO (5, 440). In addition, elimination of infectivity is far more 

rapid with BEI and the resulting inactivated PV preparations show slightly better 

thermostability than HCHO-inactivated PV preparations. Such results indicate that BEI may 
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be a suitable alternative to HCHO for vaccine manufacturers. In particular, it may be of value 

to manufacturers looking to develop vaccines against other EVs, such as EV71. 

 

Although it is known that inactivation of PV eliminates viral infectivity and causes a 

reduction in immunogenicity, the molecular mechanisms which underlie this process are not 

known. Knowledge of such mechanisms could help understanding the results above and fine-

tuning the process of inactivation during vaccine production. It could also contribute to the 

development of alternative methods for the quality control of IPV products. To gain a better 

understanding of the effect of chemical inactivation on the biology of PV, some properties of 

inactivated viral particles and viral RNA were analysed. The ability of inactivated PV to bind 

to PVR was analysed in a series of binding assays using a sPVR (expressed as a PVR-AP 

recombinant fusion protein) and L20B cells susceptible for PV infection.  Analysis of the PV-

PVR interaction, using ultracentrifugation and SPR techniques (Biacore), showed that 

inactivated PV retained the ability to bind to sPVR.  

 

As expected, inactivated PV was able to bind to L20B cells, as shown by a FACS flow 

cytometry method that detected virus particles on the cell surface, and a real-time RT-PCR 

binding assay that measured the amount of viral RNA associated with cells. In both cases, 

binding of PV to cells was inhibited by pre-incubation of the virus with sPVR and/or anti-

serotype 2 PV MAbs which indicates that binding of PV to L20B cells was mediated by its 

interaction with the PVR on the cell surface. The alteration of antigenic site 1 in inactivated 

MEF-1 was further confirmed by these assays as the PV-cell interaction was not inhibited by 

pre-incubation with MAb 436 which had shown an inability to bind to inactivated MEF-1 in 

ELISAs and did block binding of live virus to cells.  The binding experiments showed that 

although retaining the ability to bind to PVR, inactivated PV bound at a 60-80 % reduced rate 

in comparison to live PV. It has been previously noted that the interaction between PV and 

the PVR is biphasic with two classes of binding sites for the PVR on PV virions. The binding 

affinities of the two sites differ and current research suggests that reversible conformational 

changes in the virus / receptor precede the formation of the higher-affinity PV-PVR complex 

(292). The findings in this thesis indicate that inactivation may result in modifications to the 

viral capsid proteins which prevent these conformational changes and, therefore, the 

progression from low affinity to high affinity PV-PVR complexes. 
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The effect of inactivation on the ability of PV to enter permissive cells was assessed by 

establishing whether inactivated PV could still undergo the necessary conformational changes 

that follow virus-receptor binding and lead to virus-cell entry. These conformational changes 

result in sequential 160S, 135S and 80S virus particles that represent native virus, 

antigenically altered virus and empty viral capsids that lack viral RNA or show viral RNA in 

the process of release. Following incubation in hypotonic medium at 50 °C in conditions 

known to generate 135S particles in vitro (50, 113), both live and BPL-inactivated MEF-1 

showed similar properties to 135S particles in that they had lost their antigenic activity and 

their ability to bind to L20B cells, but retained viral RNA inside the particle as shown by 

resistance to RNAse A treatment.  By contrast, the HCHO- and BEI-inactivated MEF-1 still 

showed antigenic activity and the ability to bind to L20B cells following incubation in 

hypotonic medium at 50 °C, indicating that these PV preparations had remained in the native 

virion conformation. Chemical modifications induced by HCHO and BEI during inactivation 

may have stabilized the viral particles, preventing the PV virions from shifting to the 135S 

particle conformation. This correlates with previous research showing covalent linking 

protein interaction (28, 441). However, inactivation with BPL does not appear to stabilize PV 

particles in the same manner, which agrees with the fact that heated BPL-inactivated PV 

showed the lowest immunogenicity in animal assays. It is not clear whether these results can 

explain what happens in vivo in that the HCHO- and BEI-inactivated PV particles lose their 

infectivity due, at least in part, to their inability to undergo conformational changes that 

precede virus cell-entry. Clarifying these issues would require further studies.  

 

A series of transfection and RT-PCR assays were used to study changes in the biological 

activity and functionality of viral RNA during chemical inactivation. Infectious virus was not 

recovered from transfection of viral RNA extracted from samples taken at early stages of 

chemical inactivation indicating a rapid alteration of RNA molecules with all three chemicals 

employed. Similarly, reduced RT-PCR yields were obtained as inactivation progressed from 

viral RNA extracted from inactivated MEF-1 preparations as compared to RT-PCR products 

obtained from RNA of live PV, suggesting that all three chemicals interacted directly with 

viral RNA molecules, somehow modifying them and preventing amplification by PCR 

polymerases (527). This was true for all three genomic regions analysed and was more 

dramatic for the BPL-inactivated samples. These alterations might also be responsible, at 

least in part, for the destruction of virus infectivity as inactivation advanced.  
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These findings and those regarding the effect of inactivation on the ability of PV to bind 

and enter cells, allow a model for the mechanism of chemical inactivation to be proposed. 

When the inactivation chemical is added to the infectious PV virions it undergoes chemical 

reactions (including cross-linking and tanning) with the capsid proteins affecting both the 

antigenic structure and ability of PV to bind and enter permissive cells. During inactivation, 

the chemical somehow penetrates through the viral capsid proteins and interacts with viral 

RNA. Due to their small size, the chemical molecules may be able to diffuse through the 

hydrated protein (56, 180). Alternatively, the chemical molecules may penetrate in a step-

wise fashion, from one reaction to another (180). 

 

The hypothesis that inactivation alters the antigenic epitopes of PV resulting in changes in 

their immunogenicity can be accepted. However, research detailed in this thesis has shown 

that the effect of inactivation on PV is more complex. It is likely that other factors beyond 

modifications to the antigenic structure influence the immunogenicity of IPVs. A range of 

novel assays have been described in this thesis which could be used in the quality control of 

IPVs; including the use of a real-time RT-PCR to assess the loss of viral RNA functionality 

during inactivation. Research in this thesis has emphasised the importance of both the PV 

strain and the inactivation chemical used in the development of an improved IPV for the End-

game of PV eradication and beyond. 
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The research detailed in this thesis has met its aim in improving understanding of the 

inactivation of PV which will contribute to the development of improved IPVs for the End-

game and post-eradication phase of the GPEI. The objectives under this aim have been 

achieved and a series of conclusions can be found. To explore why the immunogenicity of 

serotype 2 sIPV and cIPV differed one of the objectives of this research was to assess the 

molecular, antigenic and immunogenic properties of a range of serotype 2 strains following 

conventional HCHO inactivation. The molecular, antigenic and immunogenic characteristics 

of the inactivated preparations varied between the PV strains suggesting that differences in 

genomic sequence may be responsible. This finding suggests that if the vaccine seed for IPV 

is to be changed for the End-game it is important to characterise the inactivated product in 

terms of its potency and immunogenicity. The immunogenicity of all inactivated serotype 2 

PV preparations was lower when challenged with iVDPV strains. A recommendation from 

this finding would be that during the End-game all PV vaccines will need to be assessed as to 

whether they confer protection against iVDPVs in the same manner that they should be 

assessed against currently circulating wild-type strains (i.e. via vaccine potency assays or 

seroprevalence studies). 

 

Inactivation with HCHO did not cause a significant loss of antigenicity, but it did cause a 

partial modification of antigenic site 1 in serotype 2 PV strains. The degree to which this 

partial modification contributed to the large reduction in viral immunogenicity following 

inactivation is not clear. In an effort to improve the immunogenicity of inactivated PV 

alternative inactivation chemicals, BPL and BEI, were used to inactivate selected serotype 2 

strains. Neither of these chemicals generated inactivated PV preparations of higher 

immunogenicity than those generated with HCHO. However BEI inactivated PV preparations 

showed higher thermostability. Future research could be concentrated on generating an IPV 

of a higher immunogenicity than the cIPV by optimising the inactivation of PV with BEI, 

possibly through the use of the more selective ethyleneimine oligomers or by optimising the 

inactivation conditions. Optimisation of inactivation conditions, including pH and 

temperature, would also be beneficial in the potential use of BPL as an inactivation chemical 

for PV. The antigenic and immunogenic properties of inactivated PV preparations generated 

with BPL and BEI would need to be assessed.  A biosensor based protocol established 

comparable D-Ag / ml estimates to those obtained by the current ELISA indicating that it 

could offer an alternative means to assess the potency of IPV. Further research will be 

required to validate this protocol, possibly through an international collaboration. 
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The molecular mechanisms which underlie the loss of viral infectivity during inactivation 

were characterised by assessing the effect of inactivation on the viral entry into the host cell 

and the viral RNA. Inactivation was found to affect both the viral protein and RNA. 

Inactivation was shown to affect the viral protein as it reduced the binding between PV and 

the PVR by 60-80% and appeared to prevent PV from undergoing the necessary 

conformational changes to enter the host cell. The biological activity and functionality of the 

viral RNA was reduced by inactivation. It is likely that inactivation causes a loss of viral 

infectivity through a combined effect on the protein and RNA of PV virions. The effect of 

inactivation on the viral protein and RNA could be used to optimise the inactivation of PV. 

As discussed previously (Chapter 6) the real-time RT-PCR assay used to assess the 

functionality of RNA from inactivated PV could be used as a quality control test for IPV. 

Future research could also determine whether inactivation disrupts additional stages in PV 

replication. For example research could assess whether the binding of PV to the PVR triggers 

a cellular signalling pathway and if so whether this action is disrupted or altered following 

inactivation. There should be further study of the structural changes (if any) induced to 

inactivated PV following receptor binding in comparison to live PV. It should be investigated 

as to whether the indicated prevention of PV conformation changes by inactivation actually 

results in the blockage of viral RNA release.  

 

Finally research will need to be directed to assessing how inactivated PV preparations are 

processed and presented during the immune response as this may be affecting the overall 

immunogenicity of IPVs. 
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