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Abstract

Kink band formation is the most common failure mode found in �bre reinforced composites under axial compres-

sion. In this project, the phenomenon is studied at the microscale with the objective to develop an analytical

model able to describe the process and band's �nal con�guration.

An experimental program is carried out: a methodology for observation of loaded kink bands at the micro level

is developed and applied; several kink bands are observed and discussed, and relevant conclusions are compiled.

2D numerical simulations using the FE method for kink band initiation and propagation are run and analysed in

detail; models make use of initial imperfections, independent matrix and �bre representations and yielding and

softening constitutive laws for both constituents. Useful information to understand how and why kink bands

are formed is obtained from the analyses and their discussion; shear stresses and matrix yielding are found to

play a major role on kink band formation. In addition to the basic process, several other experimental features

are reproduced as well.

With the inputs from experiments and numerical analysis an analytical model is developed; this model is based

in the equilibrium of a single �bre, considering the e�ect of compression and bending induced by the external

load and also of shear stresses transferred by the matrix. Besides the explanation and justi�cation of kink band

formation, the model is able to predict the composite's axial compressive strength and the band's width.

The analytical model is validated qualitatively against experimental and numerical results, and quantitatively

against numerical ones; a good agreement is observed.
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Indexes
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f �bre

m matrix
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Event / Time

0 initial

yield at �rst yielding

f �nal

ff �bre failure

post after matrix yielding / with matrix in the plastic domain

pre before matrix yielding / with matrix in the elastic domain

Mode

I mode I (toughness)

II mode II (toughness)

C compression

T tension

Misc.

r reduced (area)

L load
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Chapter 1

Introduction

Composite materials are nowadays widely used in advanced structures with high performance and low weight

requirements. Among all, unidirectional �bre-reinforced polymers (FRP) are one of the most common choice.

However, and notwithstanding their high strength- and sti�ness-to-density ratios (which make them very at-

tractive to transport and defense applications), FRPs su�er from a severe drawback: the lack of consistent and

expedite design criteria.

Despite the recent developments in this �eld and due to the inherent complexity of this type of materials

(composites), the mechanical behaviour of FRPs is not totally understood yet, especially when it comes to the

physics and mechanisms involved in some failure and damage modes; this hinders the composite's mechanical

capability to be fully used and makes the design and validation of structures an arduous job. Actually, due to

the lack of con�dence and/or di�cult application of analytical models predicting the composite's response, much

in the development of composite structures relies on experimental testing, which represents a great part of the

project's cost; besides, in some industrial applications the strength of composite materials is still computed by

unsuitable criteria (e.g. the von Mises criterion), which implies the use of high safety factors and leads therefore

to an unnecessary overdimensioning of the components. For these reasons, it is easy to understand why the

research on composite's failure is a so active �eld nowadays.

Contrarily to what happens in other materials, it is well known that the longitudinal compressive strength of

FRPs is only a fraction of their tensile one; nevertheless, many structures in which composites are the desirable

option do work under compressive loads, which increases the interest in this speci�c failure mode. However,

under axial compression the FRPs present one of the most complex failures that can be found in composites:

the formation of kink bands.

Both the initiation and propagation of kink bands in composites have been widely studied, but the physics

and mechanics of the processes are not fully understood yet. Although it is generally accepted that this failure

mode is related to misaligned �bres and matrix shear behaviour, there is still much work to be done before the

composite's axial compressive strength and the �nal kink band's geometry can be predicted.

For this reason, the aim of the work presented in this report is the development of an analytical model on the

physical and mechanical process of kink band formation, capable of predicting the composite's response (both

in terms of load capability and deformation mode) under axial compressive loads. The �nal objective is to have

a closed formulation model with the material's properties and load conditions as inputs, giving as outputs the

composite's axial compressive strength and the geometry of the kink band formed.
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A physically-based model requires the development of a theory on the features and events leading to failure;

for that reason, an analytical model can not be developed without observing the phenomenon at a scale small

enough for the important features to be captured. Therefore, the analytical work already identi�ed as the �nal

aim of this project was preceded and accompanied by experimental and numerical programs, both to provide

information and to check hypothesis on kink band formation.

Considering this, and notwithstanding the fact that they are intimately related and carried out in parallel,

this report is organized in three di�erent - experimental, numerical and analytical - parts. The experimental

work, focused on kink band observation, is presented in Chapter 3, through a discussion with main emphasis

on the strategy followed and the quality of results obtained. In Chapter 4, the numerical (�nite elements, FE)

simulations are described and the results presented and discussed, as they proved to be the major source of

information for the achievement of the project's goal. Finally, an analytical model for kink band formation is

developed in Chapter 5, which includes a discussion on the main assumptions and their applicability, a detailed

explanation of the governing equations and the analysis of results obtained.

Preceding these main chapters, a literature review on the subject is done in Chapter 2. This report is then

closed by Chapters 6 and 7, with (respectively) the main conclusions and suggestion for further developments.
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Chapter 2

Literature review

Structures made of �bre-reinforced composites, when submitted to compressive loads applied along the �bre

direction, usually collapse due to material failure at the constituents level [1], being afterwards the damage

propagated to the whole structure. Generally, four di�erent failure modes for this case can be found: micro-

buckling (instability at the micro-level, characterized by in-phase �bre waviness, dependent on initial defects

and common in composites with strong matrix and �bres), �bre failure (simple failure of the �bres due to

pure compression, dependent on �bre's properties and common in composites with weak �bres e.g. kevlar),

longitudinal cracking or splitting (debonding between matrix and �bres or separation within the matrix, common

in composites with weak interface) and, �nally, �bre kinking (�gure 2.1).

The formation of kink bands is the most common failure mode in high-performance FRP systems such as carbon

�bres and epoxy polymer. When compressed, the material locally deforms within a band: inside this band,

oriented at an angle β with respect to the transverse (normal to the load) direction and with a width w, the

�bres are rotated from an angle α to the global longitudinal direction (�gure 2.2).

Among the four mentioned failure modes, �bre failure and longitudinal cracking are the easiest ones to identify

and understand, as they involve the failure of just one constituent (�bre, matrix or interface) and are therefore

a�ected by fewer parameters. On the opposite way, micro-buckling and �bre kinking have been widely studied

during the last 50 years, but despite all the e�orts there is so far no full understanding about the physics and

Figure 2.1: Kink band in a real com-
posite [2].

Figure 2.2: Kink band geometry.
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mechanics taking part in those phenomena; moreover, there is no agreement yet between researchers on what

di�erentiates them, as some authors consider kinking as a �nal result of micro-buckling while others argue that

they are two independent failure modes.

Schultheisz and Waas present, in their review on the compressive failure of composites [1], a comparison

between kinking and micro-buckling. The latter can be seen, as its name suggests, as a structural instability at

the micro-level, leading the �bres to bend over the typical buckling mode as a critical (instability) compressive

load is reached; according to some authors, this instability would lead to �bre breakage under bending and,

ultimately, to the formation of kink bands. On the other hand, kinking (as an independent failure mode) would

be the result of misaligned �bres under compression within a highly sheared matrix, being the process controlled

not by an instability or a critical load but by initial imperfections and matrix shear behaviour.

Being partially done in parallel with the experimental, numerical and analytical work, this review contemplates

for that reason a few generic papers on this topic and some more speci�c ones that were considered to raise

interesting ideas or relevant suggestions to this project. Following the overall organization of this report, this

literature review is organized in three parts - experimental, numerical and analytical -, being afterwards concluded

by a discussion and summary of all the ideas gathered.

2.1 Experimental

Either found within the lamina's plane [1, 4, 5, 6, 7, 8] or through-the-thickness [1, 2, 3, 4], in UD laminates

[1, 4, 5, 6, 7, 8] or in more complex stacking sequences [1, 3, 2, 4], developed spontaneously [1, 2, 3, 4] or

somehow induced [1, 4, 6, 7], kink bands are reported in the results found in several experiments with composites

under compression. Generally [1], a kink band can be described as a localized band found in the plies under

axial compression, sharply de�ned by an abrupt change in �bre direction from θ = 0o outside the band to

α ≈ 30o to 45o inside it, usually with �bre failure at its boundaries; the inclination of the band is found to be

β ≈ 0o to 45o, and its width (measured in the �bre direction) varies within the range w ≈ 70µm to 1200µm,

for generic FRP materials [1]; for CFRP, typical values are reported as β ≈ 20o and w ≈ 70µm = 10 · φf to

w ≈ 200µm = 30 · φf .

The formation and evolution of a kink band can be divided in three phases [6, 7, 8]: initiation - in which a few

�bres begin to kink within a band -, propagation - in which the band grows transversely, increasing its length

along the direction de�ned by β - and broadening - in which the band grows axially, increasing its width w along

the direction de�ned by α. Besides, the formation of a kink band can also be followed by the development of a

complementary kink band [1], formed to release the stresses generated by the global transverse displacement in

con�ned specimens.

In Waas and Schultheisz's review [4], a summary of the most important parameters a�ecting kink band

geometry is provided. The compressive strength of a composite was found to generally increase with the �bre

diameter (improvement on bending sti�ness), �bre volume fraction (higher �bre's sti�ness and strength than

matrix's) and �bre's sti�ness (improvement on bending sti�ness as well); however, for too high diameters and

�bre volume fraction, the composite's response starts to degrade as failure is dominated by �aws. When the

role of the matrix's properties is questioned the results are consistent, as both its strength and sti�ness have a

signi�cant in�uence on the overall composite's response. The importance of the interface between matrix and
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�bres is also stressed, as a weak interface leads usually to failure by splitting, while composites with a strong

interface fail by �bre kinking.

In [5], Kyriakides et al. present their experimental work with a AS4/PEEK composite, using two di�erent set-

ups, both with con�nement of the specimens. The �rst one, testing a cylindrical rod specimen only unsupported

in the central section, resulted in sudden and unstable �bre kinking failure; due to stress concentrations, damage

was initiated near the boundaries of the non-con�ned length; the deformation was reduced because of the

con�ning pressure, and several kink bands formed in each specimen (inside the specimen and at its surface,

single and complementary ones), with angles 12o ≤ β ≤ 16o and widths 75µm ≤ w ≤ 225µm. The authors also

veri�ed that the propagation load was lower than the initiation one, and for that reason the similarities between

kink band formation and structural instabilities were pointed out.

The specimen used in the second set-up was a thin composite ring. The experimental set-up consisted in three

rings (polymer, loading and specimen) arranged in an ingenious way: one polymer ring, externally con�ned by

a sti� retainer, was compressed axially by a loading ring; due to Poisson's e�ect, the polymer ring expanded

radially inwards, compressing the specimen ring that was tightly adjusted to its inner surface, in the radial

direction. These specimens presented a sudden and catastrophic failure due to �bre kinking for larger strains

than the ones veri�ed for the previous specimens (as no free-edge e�ect was possible along the load direction).

In addition, these researchers also quanti�ed the �bre imperfections found in the composite, as their connection

to �bre kinking was stressed. Bands of highly misaligned material were distinguished within the material and

justi�ed by manufacturing defects at the pre-preg level; the imperfections, developed in a three-dimensional

way, were found to have half wavelength of 150φf ≤ L ≤ 400φf and an amplitude of 3φf ≤ y0 ≤ 10φf , with no

correlation between them.

In [6],Moran presents and interpretates the results of his experimental work done with thick (6mm) rectangular

IM7/PEEK specimens, previously notched with a 4mm indentation and loaded in compression. According to his

interpretation and after an initially linear behaviour, the matrix starts yielding around the notch (phenomenon

named as �incipient kinking� by the author), just before the peak load is reached and a kink band is suddenly

propagated from the notch across the entire specimen's width (10mm). The kink band, at this initial state, is

characterized by w = 10 · φf and β = 10o to 15o, and the rotation of the �bres increases slowly to α = 15o to 20o

as the compression progresses. At this point, �bre rotation becomes unstable and it suddenly changes to

α = 40o to 45o, followed by an increase at the band's angle (β = 20o to25o), until the �bres are locked-up by the

shear response of the matrix (sti�er in the large-strain domain). After this �transient band broadening� phase,

corresponding to the increase of both α and β under a decreasing compressive load, the band starts to broaden

at a steady state (broadening) load; in this phase, the width of the kink band increases progressively, as the �bres

at the outside border of the band are bent until they fail and align themselves with the previously locked-up

�bres. After the tests the specimens were observed unloaded, and it was found that the elastic recovering was

small (a reduction on the �bre rotation of 4α = −5o), leading the author to conclude that the matrix was

deformed mainly in the plastic domain.

Vogler and Kyriakides' experimental work (1999 and 2001) on the propagation and broadening of kink bands

in AS4/PEEK composites is presented in two di�erent papers. In the �rst one [7], the broadening of kink bands

is analysed. Using thick (7.6mm) specimens with a semi-circular 2.4mm indentation under axial compression,

these researchers were able to initiate and fully propagate a kink band across the specimen's width in an unstable
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Figure 2.3: Kink band broadening and �bre failure (unloaded) [7].

way; afterwards, by reloading the pre-kinked specimen, the kink band broadened in a steady way (at a constant

load around 50% of the initiation load value). In this experiments, the out-of-plane kink band's component was

reduced by clamping the specimen between two rigid plates.

During the broadening, the kink band width was increased as the �bres were broken at segments around 10 · φf
long, as it can be seen in �gure 2.3. Also from this (unloaded) micrograph, it is possible to conclude that

broadening is dominated by �bre failure due to bending, followed by further rotation of broken segments; in

addition, as these broken segments are straigth but there are unbroken �bres with high curvature, one can

conclude that the �bres are kept in the elastic regime but the matrix does go into the plastic domain.

Within the band and during broadening, the �bre angle was kept around α = 41o and the kink band angle at

β = 16o; as the authors pointed out, this does not follow the usual relation α = 2 · β.

These authors did a successful work on the propagation of kink bands [8] as well. By loading UD composites

(AS4/PEEK) in axial compression combined with in-plane shear, these researchers managed to create and

propagate stable kink bands. The test, using square specimens 3.18mm thick, consisted in �ve quasi-static

steps: axial compression to a given load at �rst, followed by shear displacement (at constant compressive load)

until the initiation of the kink band (identi�ed by a reduction in the shear load), after which the specimens

were completely unloaded; then, a new step of axial compression was performed, so that by �nally applying

shear the propagation of the kink band could be observed. During this �nal step, several pictures were taken,

allowing the phenomenon to be followed; it was found that the inclination and width of the kink band remained

constant through propagation at β = 12o and w = 25 · φf , while the angle of the �bres (for a given location)

was increasing progressively with the propagation of the kink band to α = 26o.

Following the total propagation of the kink band through the width of the specimen, the band started broadening,

increasing its width but keeping both angles constant. After the test, the kink band was observed unloaded

under the microscope, and it was found that almost no �bre failure had occurred (�gure 2.4); this, according to

the authors, was due to the (comparatively) small �bre angle within the kink band (not requiring a curvature

as high as usually observed). Taking this into account, one can conclude that the shear stresses are crucial to

the formation of the kink band, being the failure of the �bres an eventual consequence.

An important remark from this work is the fact that, despite the e�ort to produce totally in-plane kink bands

(the out-of-plane movement was restrained by two anti-buckling plates), it is evident from the shadow shown in
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Figure 2.4: Kink band initiated by compression and shear, without �bre failure [8].

Figure 2.5: Kink band propagating [8].

�gure 2.5 that there is an out-of-plane component when the kink band is loaded.

2.2 Numerical

The development of numerical (FE) models able to simulate the composite's behaviour during the formation

of kink bands is also reported in the literature, although not at the same extent as for the experimental work.

Several researchers developed numerical models to predict composite's strength assuming �bre micro-buckling

(e.g., instability), while others modelled kinking using matrix yielding and initial imperfections.

Kyriakides is a researcher with a very detailed numerical study on kink bands. In his paper from 1995 [5], an

extended study about the in�uence of several physical and modelling parameters on the composite's response

and kink band's geometry is presented. The modelling strategy used a 2D layered approximation, assuming a

periodic array of a �nite number of �bres interposed with layers of matrix (�gure 2.6 a); the constitutive law

for the matrix considered a standard elastic-plastic (with initial hardening) isotropic behaviour, and the �bres

were assumed to be isotropic and either with linear or non linear response. All models assumed a sinusoidal

initial imperfection (�gure 2.6 a) and were solved using the Riks modi�ed method. The typical composite's

global response (�gure 2.7) is, initially, almost linear (points 0 to 2) , until a peak load (point 2) is reached;

after that, due to both geometric and matrix non-linearity, the model evolves through a softening domain with
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(a) Overview and imperfection. (b) Initial con�guration. (c) Deformed con�guration.

Figure 2.6: Numerical models developed by Kyriakides [5].

Figure 2.7: Typical maximum axial stress in �bres versus shortening during kink band formation [5].

a sudden reduction on the compressive load and a recover on the shortening (points 3 to 6), followed by further

compression and load stabilisation (points 7 to 9). During this softening domain, the model develops a kink band

with its boundaries de�ned by the points with maximum bending stresses in each �bre (�gure 2.6 c), increasing

its width w and angles α and β as the compression progresses. Considering this overall response, a parametric

study was performed. It was found that the addition of more �bres in the model would a�ect - increasing - the

peak remote stress (σ∞11); besides, the longer models (along the axial direction) presented a higher instability

after the peak load, due to the greater amount of strain energy available; �bre material non-linearity was found

to have reduced in�uence, both on the initial domain (increasing its non-linearity but without a�ecting the peak

load) and �nal strain.

In addition, a deep study on the e�ect of the imperfection parameters was carried out as well; it was con�rmed

that increasing the imperfection's amplitude (an therefore its angle as well) would decrease the composite's

sti�ness and strength, while the length itself had a smaller e�ect. Moreover, the role of the location and spatial

evolution of imperfections was also analysed, with kink bands formed in models with non-uniform imperfections
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as well.

Morais [9] used a �basic-cell� approach in a micro-buckling analysis both for two or three dimensions, assuming a

sinusoidal imperfection for the �bres and isotropic materials, being the matrix elastic-plastic and the �bres linear

elastic. His results show that micro-buckling is sensitive to the imperfection's misalignment angle (decreasing

composite's strength), to the matrix yield stress (increasing composite's strength) and to both �bre and matrix

Young's modulus (increasing slightly composite's strength). In addition, in his 3D models, this author found

that, if a hexagonal arrangement for the �bres is assumed, the micro-buckling would be isotropic.

In an attempt to simulate numerically their experimental work on kink band propagation, Vogler et al. [10]

developed 2D and 3D FE models of composites under compression and shear. The �bres were modelled with

global (constant) and local (for kink band initiation) imperfections; besides this fact and the addition of direct

shear, the models (both 2D and 3D, being the last just one slice of material) followed an approach very similar

the the one used by Kyriakides et al. in [5]. Two constitutive laws were chosen for the matrix's plastic domain:

the J2 type solid with isotropic hardening and the Drucker and Prager plasticity model (modi�ed by Hsu). In

the overall, the models were capable of reproducing the propagation of a kink band through the �bres, both

using the combined action of direct shear and compression as only by pure compression (being the response with

shear much more stable than the one obtained with simple compression); no major di�erence between the 2D

and 3D responses were found.

A parametric analysis was also performed in this study. It was found that increasing �bre volume fraction

improves the composite's strength and leads to wider kink bands with a smaller �bre angle α, as well as did

increasing the �bre diameter. Matrix's yield stress a�ected material's strength and the kink band geometry (a

stronger matrix gave a wider band with �bres more inclined). On the shape of the initial imperfection, it was

found that the most relevant parameter was the amplitude of the global imperfection, with a severe impact on

the composite's strength. Finally, it was found that the number of �bres included in the model had an e�ect

on the kink band's geometry, as for the models with less �bres both the band's and �bres' inclination (β, α)

increased.

In addition, the impact of some features was analysed as well. It was con�rmed that, in the 2D models, the type

of planar stress state imposed (plane strain or plane stress) had not a signi�cant repercussion on the composite's

strength or kink band's geometry. On the other hand, matrix dilatancy proved to a�ect kink band's angle,

con�rming that this parameter is controlled by volumetric constrains.

2.3 Analytical

The �rst researcher proposing a model for the failure of composites under axial compression was Rosen (1965)

[11]. By considering a 2D (layered) in�nite model with perfectly straight �bres evenly spaced by a linear elastic

matrix, Rosen assumed that the failure would take place at the buckling load in shear mode (characterized by

in-phase deformation of the layers). His models considers the bending of the �bres and the deformation of the

matrix to, by minimizing the total potential energy, calculate the critical remote stress (composite's compressive

strength) as

XC
C =

Gm
1− Vf

, (2.1)
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where Gm is the matrix shear modulus and Vf the �bre volume fraction of the composite. This approach, which

gives a similar result to consider simple shear of the matrix (without �bre bending), overpredicts composite's

strength obtained through experimental data by a factor (for CFRP) between 2 and 3 [1]. In an attempt to solve

this problem, several researchers proposed models based on Rosen's with additional modi�cations [1], trying to

take into account several factors as the plasticity and non-linearity of the matrix, combined buckling of matrix

and �bres, residual thermal stresses, interface between �bre and matrix and free edge e�ects, always with no

signi�cant improvements on the correlation between analytical and experimental results [1].

It was only when initial imperfections (waviness or misalignment) on the �bre's initial geometry were considered

that the results began to improve [1]. However, these models assume failure by micro-buckling, and experimental

data from composites under compression show that the most common type of failure on CFRP composites it

the formation of kink bands. Pure micro-buckling could result into the formation of a band similar to a kink

band, but it would be expected to lie aligned with the load (as a group of in-phase buckling segments), with

β = 0o; this is not the common kink band angle (β ≈ 20o to 30o), which reveals the di�erent nature of the two

processes, as pointed by Schultheisz and Waas [1].

Argon [12] proposed the �rst model for failure due to kinking as an independent mode; this researcher considered

an initial misalignment on �bres as the trigger for the formation of kink bands, as it would promote shear stresses

on the material that, by inducing moments, would force the �bres to rotate more, in a positive feedback process.

His 2D model for the initiation of kink bands considered the work done by shearing the matrix within the band

and by bending �bres in its boundaries, giving as a result

XC
C =

Syieldm

θi
, (2.2)

where Syieldm is the matrix yielding stress in shear and θi is the initial misalignment angle. This expression

de�nes the composite's compressive strength as the remote stress that leads to the shear failure of the matrix

in the misaligned referential; after this initiation, Argon suggests that the propagation of the kink band would

occur at β = 45o, emphasizing the relevance of shear in the process excessively, as this is not the common kink

band angle. Many other micromechanical models were developed to explain the formation of kink bands, as it

is well presented in Schutheisz and Waas' review [1].

A consistent relation between α and β was studied by Chaplin [13]: considering simply the geometry of an

inclined band in an incompressible material, this author concluded that α = 2 · β.

Budiansky found, in his analysis [14], that the plasticity of the matrix and an initial misalignment could be

included in Rosen's model with an e�ect on the predicted compressive strength, which was now given by

XC
C =

Gm
1− Vf

· γyieldm

γyieldm + θi
, (2.3)

where γyieldm is the matrix shear strain at yielding. Despite the improvement given in the strength (better

agreement with experimental results), this model did still predict the kink band's angle to be β = 0o; Budiansky

suggested another model to predict a di�erent angle (based on the wavelengths of the imperfections), and also

pointed that the width of the kink band (w) should be de�ned by �bre failure under combined bending and

compression.
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Figure 2.8: Equilibrium of a �bre as studied by Hahn and Williams. [15].

An approach equating the equilibrium of one �bre under buckling was followed by Hahn and Williams.

[15]. Assuming small de�ections, these researchers proposed several models for di�erent cases: in�nite matrix

(equivalent to low �bre content), perfect �bre under buckling (similar to Rosen's model), and a nonlinear model

including both the e�ects of initial imperfections and matrix non-linearity. This last one considered an initially

imperfect (sinusoidal) �bre, loaded through internal loads P , Q and M and stresses induced by the matrix q

and m (�gure 2.8).

The equilibrium equation was de�ned as balance of moments; the composite's strength was then given by the

buckling (instability) stress, in a closed formulation, as:

XC
C = Vf

GC +

√
4Emtm Ef

π

 γcritical

γcritical + π·y0
L

, (2.4)

where GC = Gm/1−Vf is the composite shear modulus, Em and Ef are (respectively) the Young's modulus

of matrix and �bres, γcritical is the composite average shear strain at the critical stress, and y0 and L are

(respectively) the initial imperfection's amplitude and length. As pointed out by the author, this approach

di�ers from the previous buckling analysis by considering the equilibrium of only the �bre (and not a �bre and

matrix), which leads to the inclusion of the �bre volume content and therefore decreases the strength that would,

otherwise, be overestimated. The correlation between this analytical model and the experimental data is good,

especially for composites with sti� matrix.

Reference [16] presents an analysis for �bre bending taking into account the external work done by the com-

pressive load and the internal energy due to bending of the �bres and shearing of the matrix; key features for

kink band formation are the �bre failure due to micro-buckling and the deformation of the material within the

band, by this order. Steif 's model considers an imperfect (sinusoidal) �bre under bending, with �nite de�ections

and large �bre rotations (θ); the equation governing the problem is deduced from the equilibrium of moments,

considering the action of the compressive load, the bending moments and the shear stresses transferred by the

matrix. Although it assumes an in-phase shear deformation during kink band formation, one of the novelties

found in this model is the way the shear stresses τm are computed as one continuous function of the �bre rotation,

providing an almost linear response for small θ and a nearly perfect plastic (strength Sm) response for large θ:

τm = Sm · tanh
Gm · θ
Sm

(2.5)

Fibre failure is considered to occur when the tensile strain (considering both axial strains due to bending and

compression) reaches the fracture tensile strain for �bres; the results are very sensitive to the initial imperfection

(kink band's width corresponds to half of its wavelength w = L/2) considered, but seem to cope with the range
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Figure 2.9: Morais and Marques model for matrix shear deformation [17].

of the experimental results.

Morais and Marques [17] developed a model similar to the previous one, including second-order terms for the

matrix shear strain, using curved (not straight) beam theory, imposing a sinusoidal shape both for initial and

deformed con�gurations of the �bre and assuming a constitutive law for the matrix that incorporates both non-

linearity and yielding; besides, it calculates the deformation of the matrix considering its deformed geometry at

in-phase mode (as show in �gure 2.9). The governing equation is then solved numerically through incrementation

of stress on �bres, until the system reaches a critical state, which is considered to correspond to the composite's

strength. The correlation between the results from this model and the ones from FE analysis is considered

excellent, being the compressive strength predicted with an accuracy up to 99%.

In the same paper, Morais and Marques present also an extension of the previous 2D model to 3D, by computing

a 3D equivalent of the matrix shear modulus given as

G3D
m = (1 + Vf ) ·G2D

m (2.6)

Also in this case, the agreement with FE results was very good. When it comes to experimental results, the

analytical model developed shows di�erences that can reach 34%, being the 3D version more accurate than the

2D one.

More recently, Dávila et al. [18] propose, in their LaRC03 criteria, a prediction for damage initiation under

axial compression based on the assumption of initially misaligned �bres and a shear dominated failure. These

authors were able to compute the �bre misalignment for any given (2D) load combination, and that angle would

then be used to calculate the stress components in the material's principal directions; having σ22 and τ12 for the

matrix in the misaligned material, these could be used as inputs for matrix failure criteria. By assuming that

once the matrix fails the �bres loose their support and break as a consequence, this model separates completely

the formation of kink bands from micro-buckling or �bre failure.

In this model, the initial �bre misalignment (θ0) is not a required parameter: it is deduced from failure by pure

compression, leaving θ0 as the unknown and imposing σfailure11 = XC
C .

In their review on the theories developed to explain compressive axial failure of composites [1], Schultheisz

and Waas emphasize the importance of taking into account �bre misalignments, matrix non-linear behaviour

and tridimensional stress states in further models on �bre kinking.
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2.4 Discussion and Conclusions

Taking into account the goal of this project - development of an analytical model predicting failure load and

kink band's geometry, supported by experimental and numerical results -, a discussion and summary of the

previously presented review is going to conclude this chapter.

Despite the several di�erent models that are already developed on �bre kinking, the physics of the process are

not fully understood yet. Some authors still consider kink bands as the result of an instability occurring in the

material, and for that reason the micromechanics are explained by buckling analysis; however, more recently

the idea of a separate failure mode - explained by a localized deformation due to non-linearities instead of an

instability - began to be more accepted among the researchers.

Most of the models consider, during kink band formation, a �bre under bending and (eventually) surrounded by

a continuum matrix with shear response. It seems reasonable to consider, for the �bres, only the axial stresses,

while for the matrix both compression and shear should be taken into account.

Several models predicting the formation of kink bands under compressive loading, bending moments and inter-

facial shear stresses have already been developed; di�erences between them are related to the complexity of the

mathematics used to formulate the problem, as the mechanics (equilibrium of moments) are considered to be the

same; in addition, di�erences are also found in the point when a kink band is de�ned, as the researchers �nish

their analysis either when instability, matrix yielding or �bre failure occur. Among the models with bending

analysis that do not end with a buckling solution, it should be noticed that none of them frees the deformed

shape for the �bres, always assuming it to be sinusoidal.

Considering the great diversity of theories developed on �bre kinking, the need for a proper understanding of

its physics and mechanics before the development of another analytical model comes as evident; both numerical

simulations and experimental tests proved to be able to clarify some of the issues that �bre kinking raises. From

the overall results, it can be concluded that �bre axial stresses, matrix yielding and shear stresses do play an

important role in kink band formation; the typical response of a material when creating a kink band is initially

linear, presenting a drop in the load after the peak is reached and slowly tending to a steady state response.

Numerical models for kink bands initiation and propagation are usually 2D (or semi-3D) models, representing

layers of �bres and matrix. The �bres are well modelled as linear elastic and isotropic, while the matrix is usually

considered to be isotropic and following a linear elastic - plastic with hardening - perfect plastic constitutive law.

The e�ect of several parameters in the composite's strength and kink band's geometry was studied by several

authors with consistent results. There is, however, a lack of a qualitative information from numerical models

in the literature, namely when it comes to stress and strain �elds; these would make the several load versus

displacements curves more understandable from the physical point of view.

When kink bands are to be studied experimentally, the best approach is considered to be the development of

stable and in-plane kink bands; this type of formation and propagation can be reached (in an approximate way)

if thick composites are used and if a shear component is added to the load. Although much information obtained

from experimental results is already available, there is barely no information that allow the material's response

at the micro-level to be understood, as kink bands are often observed in post-mortem specimens or with a low

resolution, not revealing much about the behaviour of each constituent during the development of the band.

Finally, it should be noticed that even the de�nition of kink band is not perfectly clear: the �bre failure at band's

boundaries, one of the main characteristics of a typical kink band, is not mandatory, as perfectly well de�ned
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kink bands were found even without broken �bres at the edges; in addition, although the band's inclination

(β 6= 0o) is one of the main reasons for considering �bre kinking independent from �bre micro-buckling, a great

part of the analytical models developed considers the kink band as an in-phase (β = 0o) deformation of �bres.

This reveals somehow the long way to be crossed before �bre kinking can be considered a completely understood

failure mode.
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Chapter 3

Experimental work

3.1 Objective

The development of a phenomenological analytical model for kink band formation requires the physics and

mechanics of the process to be fully understood. Despite the considerable amount of data that can be found

in the literature on kink band's geometry and loading curves, there is a lack of qualitative information that is

needed to identify all the phenomena occurring and to establish the correct sequence of events leading to kink

band initiation.

The aim of the experiments done in the scope of this project was therefore to obtain detailed information on

how and why a kink band is formed; instead of quantitative results, the main goal was to study kink bands

during initiation and propagation in order to track exactly what happens in this failure mode; this requires the

composite to be observed at the micro-scale (so �bres, matrix and interface are distinguished) and fully loaded

(so both the elastic and plastic deformations are accounted for).

3.2 Strategy

Considering the previously de�ned objectives for the experimental work, it comes evident that the simple ini-

tiation and propagation of a random kink band is not su�cient. In fact, the most common type of kink band

observed in composite's research is found to initiate in an unstable way and though-the-thickness, leaving no

time or room for a smooth propagation; additionally, the easiest way to look at a kink band under the microscope

is in post-mortem specimens, which allows the material in the kink band and its neighbourhood to partially

recover deformation. Therefore a di�erent strategy, fully oriented to the obtainment of high ampli�cation and

high de�nition micrographs of loaded kink bands, was planned as described.

Material

The material used in the experiments is an industrial high-performance carbon-epoxy composite (T800/924),

provided by Renault F1 as unidirectional pre-preg CFRP with nominal ply thickness of 0.125mm and a �bre

volume fraction of 63%; as only a qualitative analysis was carried out, its characterization is not required in the

scope of this program. The material was manufactured using the standard methods for pre-preg laminates.
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Figure 3.1: Misalignment between �bres and load direction and resultant stress components.

Thick specimens

One of the main goals for the experiments is to look at kink bands propagating, which requires them to be

in-plane; in the literature (references [6, 7]), it is found that the specimens (or sub-laminates) developing in-

plane kink bands are usually thicker than the ones presenting though-the-thickness kink bands. Following this

suggestion (and with the additional advantage of hindering macro-buckling), thick specimens were intended to

be used.

Considering the range of thicknesses that had already resulted in in-plane kink bands (3.18 to 7.6mm) and the

ply thickness of the material used in this project (0.125mm), a thickness of 6.0mm was chosen for the plates, as

it is within the referred values and gives a reasonable number of plies (48) for manual lay-up.

Combined direct compression and induced shear

For any observation to be feasible, the propagation of kink bands needs to be stable. This was also previously

achieved by the combined action of both compressive and shear loads [8], applied independently to the specimens;

however, such a loading scheme requires linear bearings able to sustain a high compressive load and a loading cell

to control the shear displacement, being this equipment not available. Therefore, an alternative was searched,

and the solution proposed was the use o�-axis specimens (�gure 3.1): by applying the unidirectional compression

in a direction with a misalignment ϕ with respect to �bre direction, a combined compressive plus shear stress

state is induced in the material's principal axes, being the relation between compression and shear de�ned by

the o�-axis angle as τ12 = tan(ϕ) · σ11.

In order to achieve the same shear to compression ratio used by [8], a misalignment angle of ϕ = 8o is needed;

variations of ±34% in this ratio are produced when angles of ϕ = 12o or ϕ = 6o (respectively) are used.

This misalignment angle was introduced when manufacturing the specimens, by cutting them at angle with

respect to �bre direction.

Stress concentrations

It was stated previously that kink bands are usually triggered by defects in the material or structure, either at

the micro or macroscopic level; for this reason, their location is dependent on the randomness if no signi�cant

stress concentrations are introduced at one point, so notches or pre-cracks were manufactured in the specimens

to de�ne the position of kink band formation.
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Monitoring

The study of this phenomenon using micrographs is much more e�cient if the kink band is captured on early

stages and before other failure mechanisms (e.g. material crushing) can take place; as a consequence, it is

important to identify accurately the moment when a kink band is initiated and starts propagating in the

specimen, so a clean image can be obtained. Besides, being a compressive and usually unstable failure mechanism,

the formation of kink bands can easily damage the material in a catastrophic fashion, leading to �bre crushing

and out-of-plane movements. A proper monitoring, capable of identifying kink band formation, is then strongly

advisable, so both a load versus displacement recorder and acoustic emission equipment were used whenever

possible, to track the macro (peak load) and microscopic (�bre failure) responses.

Types of experiments

Notwithstanding these strategic guidelines, a complete test plan could not be de�ned completely a priory: the

main goal of this experimental program was to develop a method resulting into kink bands observable at the

microscopic level and loaded, and therefore iterations to the specimens and test procedures were likely to be

necessary (and actually took place). In the overall, three di�erent types of specimens were used, each one in a

di�erent kind of experiment.

UD test the unidirectional specimens have a tall and narrow rectangular geometry, weakened at one edge

with a semi-circular notch or short pre-crack, compressed in a load machine by edge displacement (�gure 3.2 a);

CC test the compact compression specimens are nearly square specimens, with a cross ply lay-up and a long

pre-crack, compressed in a load machine by point displacement applied at the holes (�gure 3.2 b);

r-UD test the reduced unidirectional specimens are a shorter version of the UD specimens, to be compressed

under the microscope using a clamp or especially-conceived rig (�gure 3.2 c).

Among these three experiments, the �rst two (UD and CC) were planned a priory, despite some details (dimen-

sions and loading scheme) that were adjusted after the �rst set of tests. However, the r-UD specimen and set-up

was fully developed afterwards, due to the lack of quality of the results provided by the two prede�ned methods.

3.3 Manufacturing

The manufacturing of the specimens followed the common procedures for pre-preg CFRP and is shortly sum-

marized hereafter; only those issues directly related to how the manufacturing was performed are approached in

this section, as the general design justi�cations were already given in the previous section and the speci�c one

will be provided separately for each specimen afterwards.

In addition, some problems occurred while the specimens were being produced; although not hindering the

testing plan already sketched, this had some implications on the manufacturing process and also in the specimens

themselves, so a discussion will be given as well.
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(a) Specimen UD. (b) Specimen CC (�bre direction
in the outer layers).

(c) Specimen r-UD.

Figure 3.2: Specimens used in the experimental program.

3.3.1 Lay-up

The material used in this work was provided in a continuous roll, so in order to lay-up the composites it was

necessary to cut a speci�c number of plies with the proper dimensions and to stack them with the right orientation

in plates. As it was already mentioned, two di�erent stacking sequences were needed for experimental program:

a unidirectional one - for UD/r-UD specimens - and a cross-ply one - for CC specimens; for this reason, two

plates were laid-up:

UD plate with a stacking sequence [0o
48];

Cross-ply plate with a stacking sequence [90o
6/0

o
6]2S .

The dimensions of the plates - 300mm× 300mm for both of them - were de�ned in order to optimize the use of

material, as the manufacturing of misaligned shapes would already result into a signi�cant amount of scrap.

After being cut, the plies were laid up manually in the previous stacking sequences, caring to keep the �bre

direction properly oriented; during the lay-up, a vacuum table was used in every set of 3 or 4 plies to improve

the bonding and remove the air kept enclosed between them.

Due to the adoption of an inappropriate laying-up strategy, the stacking sequence of the �rst cross-ply plate

(cross− ply plate 1 ) was not reliable; for this reason, a second plate was laid-up (cross− ply plate 2 ), this time

following a proper approach so with a reliable stacking sequence.

After curing, the three lay-ups were observed under the optical microscope; the stacking sequence seemed to be

correct for all of them, although it was not possible to be totally sure about that for the cross-ply laminates,

due to high �bre movement during curing.
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(a) (b)

Figure 3.3: Micrographs of cross− ply plate 1 .

3.3.2 Curing

After the lay-up, the plates went into the autoclave to be cured by the combined action of temperature and

pressure, in a standard cycle for the material and dimensions in use; unfortunately, all the three plates (cured

in the same run) came out of the autoclave considerably bent (�gure 3.3 a).

Although it is not possible to be sure about any justi�cation, the most likely reason for this is to have happened

is a problem during the curing cycle: the material had been used before without any problems, and as the UD

(con�rmed by micrographs) plate was bent as well then the hypothesis of any asymmetry through the thickness

was discarded.

Two details can reveal what went wrong during the autoclave run: at �rst, the panels were constrained by a

lateral frame before going into the autoclave (to avoid a high �ow of resin near panels' edges), which could had

hindered the panels' thermal expansion and induced bending. On the other hand, some of the thermocouple

monitoring the temperature during the curing cycle showed an odd response, which suggests that the temperature

inside the autoclave was either not uniform or not the correct one; if it was the case, then it is possible that the

thermal residual stresses were high enough to induce bending.

The panels' sections were checked by optical microscopy; micrographs (�gure 3.3) show a large waviness of the

�bres and blunt boundaries between layers (sub�gure a), which implies an unusual �bre movement and matrix

�ow through the thickness. In addition, a signi�cant variation in the thickness was found in the panels (sub�gure

b), but the micrographs do not evidence any variation in the �bre volume fraction though the thickness, which

excludes the possibility of a massive matrix �ow in that direction.

Concluding, the most likely cause for the bent laminates is an internal problem with the autoclave on the control

of temperature or pressure during the curing cycle; besides the hints previously discussed, other plates (laid-up

by di�erent people, with di�erent material and stacking sequences) also went through similar problems, which

supports the lack of reliability in the autoclave runs.

Notwithstanding the fact that the bent shape implies large residual stresses, being therefore no signi�cant

quantitative results obtainable, the experimental program was carried on, as the physics and mechanics involved

in the formation of kink bands should not be a�ected in a severe way. Moreover, the high waviness detected on

the �bres plays the role of �bre imperfection, and the curved shape of the plates implies their concave side to
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be under compression, being both aspects bene�c for kink band formation.

However, being the plates bent, it was likely that, under compression, they would fail by macro-buckling instead

of �bre kinking; for this reason, it was decided that all the specimens should be �attened by grinding (machining);

this caused their thickness to decrease (especially for the taller specimens), which could have an impact on the

type of kink band obtained (increase of the out-of-plane component).

Additionally, after polishing the specimens' surface, the initial waviness and curvature of the �bres would make

it impossible to follow one �bre along a long path.

3.3.3 Machining

After the cure, the specimens were machined. As it was mentioned before, the experimental program was �exible

enough to accommodate changes in the shape of the specimens, so a detailed description and justi�cation of

the specimens' shape will be provided in a further section; nevertheless, the processes and tools used to cut the

specimens are sequentially summarized hereafter.

UD specimens:

1. The reference edges were aligned using a guide protractor and cut with a dry saw with diamond blade;

2. The secondary edges were cut with a wet saw;

3. The specimens were �attened by grinding (machining);

4. A notch or crack was opened using a band saw;

5. For some specimens, the top and bottom edges were cut in an angle, using the procedure 1.

CC specimens:

1. The reference edges were aligned using a guide protractor and cut with a dry saw with diamond blade;

2. The secondary edges were cut with a wet saw;

3. The specimens were �attened by grinding (machining);

4. A crack was opened using the dry saw and a wooden guide block;

5. A V-shape was opened using a band saw;

6. Two holes were drilled between two pieces of scrap material with a high speed steel drill;

7. After testing, the specimens were grinding (machining) until the outer plies oriented at the transverse
direction were removed and a ply with longitudinal orientation was exposed.
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r-UD specimens:

1. The four edges were sketched on the plate's surface and cut using a band saw;

2. A pre-crack and V-shaped opening were sketched on the specimen and cut with a band saw;

3. The pre-crack was sharpened with a modelling blade;

4. Both main surfaces were �attened by grinding (#220) on a polishing machine;

5. Specimen's top and bottom surfaces were �attened and parallelized using polishing paper;

6. Specimen's edges and corners were smoothed using polishing paper;

7. The front surface of the specimen was polished with a diamond suspension.

3.3.4 Polishing

Being the qualitative observation the main goal of this experimental program, the quality of specimens' surface

was of the highest relevance. As it will be con�rmed in further sections, a proper observation of kink bands had

to be done using high magni�cations, requiring a very �ne polishing so matrix and �bres could be distinguished.

Additional di�culties were raised when polishing the specimens. The standard procedure is to cut a small

specimen sample and to immerse it in resin, being the block polished automatically on a polishing disk using a

rotative head afterwards; however, as in this project the kink bands were to be observed while loaded, it was

not reasonable to destroy the specimens by cutting small samples. Two problems raised at this point: �rst,

the surface to polish was much larger than usually, so any misalignment between the specimen's surface and

the polishing disk would imply a huge amount of material to be removed; second, polishing could not be done

automatically, as the specimens were too large to be �xed directly to the rotative head.

Taking this all into account, it is understandable that polishing had become an issue in the experiments. Among

all the strategies tried, the most successful one consisted in stopping the rotative head and �xing the specimen

to it through a small resin cylinder bonded to its surface; to avoid the e�ect of misalignments, all the steps -

from grinding at #220 to polishing with a 3µm diamond suspension - were done with the specimen oriented in

the very same way (being the polishing direction aligned with the �bres). Nevertheless, 20min was the minimum

duration of the last polishing step.

3.3.5 Manufacture control

As no quantitative results were expected from the experiments, the manufacture of the specimens was monitored

at the minimum extension.

C-scan

Some specimens from each plate were checked by C-scan after manufacturing, which con�rmed that no major

defects were present.

As it was assumed that small defects would not hinder the development of kink band, and as the existence

of large delamination areas or ine�ectiveness of curing were already discarded (by micrographs of the plates'

21



section), the majority of the specimens were tested without being scanned; none of the specimens was monitored

after testing. Although this is not a severe fault (for the reasons already mentioned), the C-scan could have

been useful to identify failure modes found in some specimens.

Micrographs

As it was previously referred, microscopic observation was used to con�rm the stacking sequence of the laminates

and to check the quality of the curing process. In addition, the quality of the pre-crack tip in the r-UD specimens

(sharpened with a modelling saw) was checked by optical microscopy.

3.4 Set-ups and specimens description

3.4.1 UD test

3.4.1.1 Specimen

Initial design

The initially planned UD specimen, cut from the UD plate at a misalignment ϕ, was based on several rectan-

gular and notched specimens already tested by other researchers [6, 8] in successful initiation, propagation and

broadening of in-plane kink bands, being the o�-axis orientation the principal innovation.

Specimen's width and thickness were de�ned a priory, keeping the specimen as wider as the one used in [6]

and su�ciently thick to promote an in-plane kink band; its length was adjusted in order to allow an already

manufactured anti-buckling plate with an window (�gure 3.5 a) to be used.

Stress concentrations were induced in the specimen using a semi-circular notch in one edge with a radius of

1.2mm, as used in [8]. From this geometry, the expected failure load was predicted by:

Pmax = knotch ·XC
C ·Ar , with


XC
C = 1300MPa as the composite's axial compressive strength

Ar = 112.8mm2 as the specimen's reduced cross section

knotch = 60% as the notch's stress concentration factor [7]

(3.1)

Pmax = 88kN was the load predicted, which is within the load cell's range (100kN) planned to be used.

Before testing, the compressed face of the specimens was polished.

Iterative design

Having the baseline design previously described, some modi�cations had to be introduced due to manufacturing

problems (curing) and to test results with undesirable failure modes (�rst specimens failed either by unstable

collapse of by �bre splitting, �gure 3.11).

As the UD plate came out of the autoclave bent along �bre direction, the UD specimens had to be ground (by

machining) until their surfaces were �at; the specimens were considerably long along the curved direction, so a
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(a) Initial design. (b) Iterative design.

Figure 3.4: Specimen UD: de�nition drawings.

great amount of material had to be removed. Therefore, specimens' �nal thickness was reduced to 4mm, with

the implications already discussed.

After the �rst set of tests carried out, it was found that the range of misalignment angles previously calculated

was not suitable for this geometry, as it led to failure by splitting instead of kink band formation (�gure 3.11

b); for that reason, smaller misalignment angles (from ϕ = 0o to ϕ = 4o) were used in further experiments.

However, as some specimens were already cut with too large angles, the solution was to cut the top and bottom

surfaces at a given angle, in order to reduce the misalignment between load and �bre direction; this had the

consequence of adding an in-plane moment to the loading scheme.

In addition, it was also noticed that, using the semi-circular 1.2mm indentation, the failure was unstable (�gure

3.11 a). For that reason, a J-integral FE analysis of a crack under tension was performed, predicting a stable

crack propagation for a minimum pre-crack length around 15mm; as, in the experimental case, the specimen

was under compression and kink bands could be formed, it was expected that a stable failure would develop for

smaller pre-cracks; for that reason, the initial small notch was extended to a pre-crack (3mm thick) 10 to 15mm

long.

Before testing, the specimen's face under compression was ground (#220) in the polishing disk, to improve the

quality of the images obtained.

3.4.1.2 Test set-up

The UD specimens were tested in a universal Zwick testing machine, using a 100kN load cell.

The aim of this test was to record the kink band that would be formed during compression with a DSP camera

plugged in a hand microscope; this required the kink band to be formed at the specimen's free surface, which

should not be obstructed. However, as it was foreseen that, without the proper support near the test rig, the

specimen would fail by macro-instability, an anti-buckling plate with a central window was used (�gure 3.5 a).
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(a) Anti-buckling device.
(b) UD test set-up.

Figure 3.5: UD test set-up.

To avoid friction between the anti-buckling device and the specimen (which would induce undesirable constrains

to the kink band formation), the surfaces in contact were covered by a Te�on �lm.

Two acoustic emission sensors were �xed at the back of specimen with tape; a proper calibration of the system

was performed before every test. The outputs from the acoustic emission were used to monitor the damage in

the specimen at the micro-scale, as �bre failure would be easily distinguished from the other failure modes and

damage localization was possible to be estimated using this method. In addition, the test machine's load versus

displacement curve would allow the peak load to be detected.

The image recording system was mounted in front of the specimen, carefully aligned and con�gured to optimized

the quality of the images, with additional lightening. During the test and as the specimen was moving, the DPS

and light were frequently adjusted in order to optimize its position and orientation.

The tests were performed at displacement control, with a testing velocity between 0.5mm/min and 2mm/min.

3.4.2 CC test

3.4.2.1 Specimen

The CC specimen, cut from the cross− ply plate 1 at a misalignment ϕ in relation to the 0o layers, was based

on the CC specimen used for fracture toughness measurements [2], as they were e�ective in compressive testing

and generating (through-the-thickness) kink bands. Besides the o�-axis orientation (from ϕ = 0o to ϕ = 12o),

the CC specimens used in this experimental program had a thicker inner layer (1.5mm, oriented at an angle ϕ

with respect to the load), which would hopefully be enough to generate an in-plane kink band.

Specimen's main geometry was de�ned as in the CC standard specimens; the crack length a0 was estimated
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Figure 3.6: CC specimen: de�nition drawing. Figure 3.7: CC test set-up.

using the expression (as in [3]):

GlamIC = f(a0) ·
(
P

t

)2

, being



P = 5kN the desirable load for propagation

t = 6mm the specimen's thickness

f(a0) the normalized energy release rate for the a0 crack length

GlamIC ≈ G
(90,0)8S
IC = 50kJ ·m−2 the laminate's fracture toughness at mode I

(3.2)

From that calculation, f(a0) = 7.20 × 10−5m2/kJ, which gives an estimation for the initial crack length of

a0 = 28mm.

Due to the loading scheme - displacement directly imposed to the specimen's holes -, this geometry required a

cross-ply stacking sequence, as otherwise there would be signi�cant damage and possibly even failure near the

holes; this and the fact that, under axial compression, buckling delamination was likely to occur, turned the

presence of transversely oriented outer plies unavoidable for the stage of kink band initiation. However, and as

the propagation load is much lower than the initiation one, after �rst testing the outer transverse layers of some

specimens were removed by grinding (machining) so to expose the kink bands previously initiated; this made

it possible to re-test and observe the kink band propagating while loaded, using the same apparatus (DPS and

hand microscope) that was already described for the UD specimens.

Due to the bending also found in the cross-ply plates, these specimens were ground (by machining) to a thickness

of 4mm as well.

3.4.2.2 Test set-up

The CC specimens were tested in a universal Instron testing machine, using a 10kN load cell.

The specimens were �xed to the testing rig through the holes and then compressed in displacement control at

a rate between 0.5mm/min and 2mm/min. Following the same strategy that was already described for the UD

test set-up, an acoustic emission system and the load versus displacement curve were used to monitor the test.

When re-testing after outer layers removal, the central thick (1.5mm) longitudinal (with a misalignment ϕ) layer

was visually accessible, so the previously described DSP plus hand microscope set-up was used to record kink

band propagation.
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Figure 3.8: r-UD specimen: de�nition drawing. Figure 3.9: Shear induced in r-
UD specimens.

3.4.3 r-UD test

As it was discussed before, none of the two initially planned testing set-ups was successful in achieving the goals

of this experimental program, as it was not possible to observe a kink band with a su�cient magni�cation using

the hand microscope plugged on the DSP (�gure 3.12); by this stage, it became evident that it was necessary

to compress the kink band in a test rig that could be placed directly for observation under a proper optical

microscope. For this reason, a reduced version of the UD specimen, for manual compression in a small clamp,

was designed.

3.4.3.1 Specimen

The r-UD specimen kept the same width as the UD specimens, being its length reduced to a value from 20mm

to 35mm. As the specimens were bent over a shorter length, the amount of material to remove by grinding was

much smaller, so thicker specimens were obtainable; however, some r-UD specimens were cut directly from UD

ones, so the thickness of the samples varied between 4mm and 6mm.

As the compression of these specimens would be manual (although making use of clamping tools), the initiation of

the kink band should not require high loads. For this reason, a long pre-crack (a0 = 10 to 15mm and b0 ≈ 3mm,

sharpened with a modelling blade in almost all specimens) was cut in the r-UD specimens, leaving a reduced

cross section 5mm long.

A shear component was added to the compressive load by cutting the specimens at a small misalignment ϕf

with the load direction and / or by cutting them in a parallelogram-like shape (at an angle ϕL, which o�sets

the two load vectors and induces an in-plane moment, �gure 3.9).

As a microscopic observation was planned, one surface of each specimens was polished (before or after kink band

initiation). In addition, it came out from the �rst tests that a proper alignment between the two loading surfaces

and the absence of stress concentrations near the specimen's edges were needed (to promote the desired failure

mode), so the following specimens had their top and bottom surfaces, edges and corners smoothed by polishing.

3.4.3.2 Test set-up

At a �rst stage, a kink band was initiated by compression in a vise (�gure 3.10 a): the specimen was carefully

placed between the two arms of the tool, so to properly align it in the out-of-plane direction (to avoid inducing
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(a) Set-up for kink band initiation. (b) Set-up for kink band observation.

Figure 3.10: r-UD test set-up.

bending moments) and to guarantee a smooth contact between the vise's and specimen's surfaces (to reduce

stress concentrations). The vise was then closed manually, using an extension arm for better control of the

displacement, until a kink band was formed.

After kink band initiation (con�rmed by microscopic observation), the propagation load would decrease, so the

specimen was further compressed in a small clamp (�gure 3.10 b); as the test progressed, the clamped specimen

was repeatedly placed under the optical microscope for micrographs to be taken. As it was noticed that out of

plane movement occurred both near the tip as in the fully-developed kink band, an additional lightening system

was used to improve the visualization of the inclined areas.

3.4.4 Evaluation and comparison of test set-ups

UD

The UD set-up was conceived to guarantee visual access to the kink band's path, so initiation and propagation

could be followed and recorded; however, the images obtained using the hand microscope plugged in the DSP

were far away from the required quality to make useful observations (�gure 3.12 a). In addition, this set-up

proved to be very sensitive to specimen's design, as undesirable failure modes (splitting and unstable cracking)

were observed (�gure 3.11); also, it is ine�cient from the material point of view, as the area of interest is very

small when compared to the specimen's size.

Besides the low magni�cation attainable by the hand microscope and DPS, this set-up proved not to be very

suitable for observation at the micro-level and under load, as the noise generated by the test machine was

signi�cant and the need for constant focus discouraging. It became obvious, at this point, that a testing rig

especially conceived for microscopic observation was needed.
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(a) Unstable failure.

(b) Splitting.

Figure 3.11: Failure modes for UD specimens.

(a) With extension tube (magni�cation 2×). (b) Without the extension tube.

Figure 3.12: Images recorded by the DSP plugged on the hand microscope.

CC

The CC test was chosen as an alternative to the UD one, providing a di�erent loading scheme (point load instead

of uniformly distributed load) and a di�erent lay-up; however, one great disadvantage of the CC specimens was

obvious from the beginning, as they do not allow direct access to the in-plane kink band expected to develop in

the central layer. Despite that, and comparatively to the UD specimen, the CC test proved to be more e�cient

in generating kink bands (almost all the specimens failed by �bre kinking) and propagating them in a stable

way, even after removing the outer layers.

However, the main problem mentioned for the UD specimens was not solved with this di�erent con�guration:

the combined use of the hand microscope and DSP camera did not provide images with su�cient quality for

the desired type of analysis (�gure 3.12 b). Nevertheless, the CC specimens provided a larger path for the kink

band to propagate, so a somehow good overview of the phenomenon was obtainable with this set-up.
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r-UD

Being conceived speci�cally to surpass the main limitations found in the other testing set-ups (lack of microscopic

observation of loaded kink bands), the r-UD specimen was able to improve signi�cantly the amount and quality

of information obtainable from a test: as it was possible to observe the specimen under the optical microscope

while compressed, pictures of loaded kink bands with high magni�cation and high resolution were attainable.

However, three signi�cant problems were found with this approach too: at �rst, as the kink bands were not

totally in-plane, it was not possible to focus properly the image, turning the interpretation of the micrographs

into a much less straight forward task that it would be without the interference of shadows and out-of-plane

movement. Secondly, as the compression was done using regular clamping tools, no proper support or alignment

was given to the specimen, which resulted sometimes in other failure modes than �bre kinking (helped also

by non-�at loading surfaces). Finally, the fact that initiation could only be triggered using the vise made it

impossible to follow the development of the kink band from the beginning and under the same load scheme.

Nevertheless, the r-UD set-up was the one that produced the most promising results, encouraging the develop-

ment of a proper test rig speci�cally conceived for kink band observation.

3.5 Results

A summary on the results is provided in tables 3.1 and 3.2.
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Key :

Failure modes - UC: unstable crack; S: splitting; KB - i: kink band initiation; KB - p: kink band propagation;
⋃
KB: several kink bands.

Outputs - 0: none; HM: micrographs from the hand microscope plugged on the DSP; OM: micrographs from the optical microscope; SEM:
micrographs from the SEM; L: outputs obtained under load; uL: outputs obtained after unloading; X*: specimen re-tested.

Cross section - [Φ∗]: layer partially removed by grinding.

Table 3.1: Results (UD and CC specimens).
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Key :

Failure mode - UC: unstable crack; S: splitting; KB - i: kink band initiation; KB - p: kink band propagation;
⋃
KB: several kink bands.

Outputs - 0: none; HM: micrographs from the hand microscope plugged on the DSP; OM: micrographs from the optical microscope; SEM:
micrographs from the SEM; L: outputs obtained under load; uL: outputs obtained after unloading; X*: specimen re-tested.

Pre-crack - a0 = a0
+: pre-crack extended with the modelling saw; Cross section - S: specimen smoothed with polishing paper.

Table 3.2: Results (r-UD specimens).
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Figure 3.13: Specimen r-UD_0d1 (pic-
ture): macroscopic kink band.

1: macro-kink band with broken �bres;
2: micro-kink band at the top edge;
3: micro-kink band at the bottom edge;
4: macro-kink band without broken �bres.

Figure 3.14: Specimen r-UD_0d1 (SEM, unloaded):
overview.

3.5.1 Macroscopic kink band without broken �bres (specimen r-UD_0d1)

The kink band formation in the specimen r-UD_0d1 was sudden, with full propagation across the specimen's

width. As it can be seen in �gure 3.13, this kink band can be easily identi�ed by unaided eye, presenting a

width w ≈ 800µm and perfectly de�ned boundaries.

Analysing the micrographs obtained in the SEM1, it can be noticed that, at the microscopic level, four kink

bands were formed, all with a similar band orientation β ≈ 24o. In �gure 3.14, these are identi�ed by numbers

from 1 to 4 :

1. A large kink band, with broken �bres, is formed near the notch, with w ≈ 700µm (feature 1 and �gure

3.15 a);

2. A microscopic (very narrow, w ≈ 50µm) kink band is formed at the top edge of the macro-kink band,

where the �rst kink band ends (feature 2 and �gure 3.15 b);

3. Another microscopic kink band (w ≈ 150µm), at the bottom edge of the macro-kink band, where the �rst

kink band ends (feature 3 );

4. A large (w ≈ 800µm) kink band (as a continuation of the �rst one), without broken �bres (feature 4 and

�gures 3.15 c and d), crosses the specimen until reaching its edge.

All micrographs show, at the unloaded con�guration, several splittings along �bre direction (�gure 3.15 a), both

inside (B) the band and at its boundaries (A); the spacing between splittings is irregular. For the kink bands

with broken �bres, it is suggested by �gures 3.15 a and b that kinking occurs by blocks of few �bres, with

splittings between each block.

1Acknowledgments to Renaud Gutkin and William Francis for these micrographs.
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(a) A: macro-kink band 1 (with �bre failure and split-
tings).

(b) B: micro-kink band 2 de�ned at the macro-kink band's
top boundary.

(c) C: micro-kink band 3 at the macro-kink band's bottom
boundary and �bre curvature in the macro-kink band 4.

(d) D: Bottom boundary of the macro-kink band 4, with-
out �bre failure.

Figure 3.15: Specimen r-UD_0d1: zoom-in from �gure 3.14.
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(a) Zoom-out: propagation length (b) Zoom-in: sine-shape.

Figure 3.16: Specimen r-UD_2d2 (optical microscope): overview (load step 2).

3.5.2 Kink band formation - overview (specimen r-UD_2d2)

Specimen r-UD_2d2 presents a narrow kink band (w ≈ 40µm) developed during 4 load steps (the �rst one done

in the vise, and the other three in the small clamp). Micrographs obtained both in the optical (specimen loaded,

�gures 3.16 and 3.17) and scanning electron (specimen unloaded, �gure 3.182) microscopes are shown.

From �gure 3.16 a, it is possible to estimate the propagation length (from the tip of the fully-formed kink band

to nearly straight �bres) as Lprop ≈ 600µm. A zoom-in from this micrograph (3.16 b) highlights the �bres'

deformed shape as the kink band develops, a sine-shape with both in- and out-of-plane components that are

progressively reduced with the distance to the kink band's tip.

Figure 3.17 focuses on the three areas (B1 and B2 at the third load step, C at the forth load step) represented in

�gure 3.16 b: sub�gure a shows the transition between the kink band with completely broken and discontinuous

�bres (feature 1 ) and the kink band with broken �bres but without sharp edges (feature 2 ); sub�gures b and

c show a region further away in the tip, also with �bre failure (features 2 ) but with smooth and reduced �bre

rotation. The kink band's out-of-plane component is evident in the three pictures.

Figures 3.17 and 3.18 show several broken �bres; among all, three di�erent types of fracture can be found:

features 2a point �bre failure normal the �bre's axis, features 2b show �bre failure oriented at an angle in

relation to �bre's axis, and feature 2c combines the two previous cases. In addition, splittings at the �bre to

matrix interface are undoubtedly found in the unloaded specimen (feature 3 in �gure 3.18 c), but the optical

micrographs (features 3 in �gures 3.17 b and c) are not conclusive in this issue.

3.5.3 Kink band formation and propagation (specimen r-UD_aux)

The specimen r-UD_aux3 was loaded in a compression rig especially conceived4 to keep the specimen loaded

during microscopic observation; the SEM micrographs are shown in �gure 3.19.

In this specimen, a kink band w ≈ 120µm wide was formed at the notch (�gure 3.19 a), but quickly developed into

a narrower (w ≈ 40µm) one propagating across the specimen (propagation length Lprop ≈ 550µm, micrograph

2Acknowledgments to Renaud Gutkin and William Francis for these micrographs.
3Acknowledgments to William Francis for manufacturing this specimen.
4Acknowledgments to Renaud Gutkin for designing this rig.
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(a) Zone B1: fully-formed kink band (load step 3).

1: Kink band's edge, de�ned by broken �bres;
2a: Fibre failure with fracture surface normal to the axis;
2b: Fibre failure with fracture surface de�ned at an angle;
3: Possible matrix-to-�bre splitting.

(b) Zone B2: kink band's tip (load step 3). (c) Zone C: kink band's tip (load step 4).

Figure 3.17: Zoom-in at kink band's tip (optical microscope, specimen r-UD_2d2 loaded).
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(a) Kink band's tip (overview).

2: Several broken �bres;
2c: Fibre failure surface: normal (right) and inclined (left) in
relation to the axis;
3: Open crack at �bre-matrix interface.

(b) Zoom-in in area D. (c) Zoom-in in area E.

Figure 3.18: Specimen r-UD_2d2 seen at the SEM (unloaded).
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(a) Overview. (b) Zoom-in A.

(c) Zoom-in B. (d) Zoom-in C.

Key:

1: Common kink bands, with double �bre failure;
2: Band with single (unilateral) �bre failure;
3a: Broken �bres (aligned, fracture closed);
3b: Broken �bres (misaligned, fracture open);

4a: Split �bre;
4b: Splitting;
4c: Group of �bres rotated together;
5a: Misaligned �bre failure (open);
5b: Misaligned �bre failure (closed).

Figure 3.19: Specimen r-UD_aux seen at the SEM (loaded).
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3.19 c).

This kink band propagated partially in the common way (with double �bre failure, features 1 in �gure 3.19

d), but alternating in some areas with an unusual propagation with single �bre failure (feature 2 in �gure 3.19

d). Looking closer near the tip (�gure 3.19 b), one can see the kink band's edges de�ned by broken �bres (a

straight edge with closed �bre fracture on the left (feature 3a) and an irregular edge with open �bre failure on

the right (feature 3b)), several splittings (of one single �bre (feature 4a), partially open (feature 4b)), a group

of �bres rotated together (feature 4c), and a jump in the right edge (features 5a - complete failure - and 5b -

initial failure).

3.5.4 Kink band propagation - overview (specimen CC_6d)

Specimen CC_6d was compressed at �rst with its outer layers (at ϕ = 90 + 6o), and a kink band in the central

layer (1.5mm thick, at ϕ = 6o) initiated and started propagating; afterwards, the outer layers were removed

and that kink band observed under the optical microscope (�gure 3.20). There, one saw an in-plane kink band

propagated along a considerable length (sub�gure a), with the lower edge (feature 2 ) delayed in relation to the

top one (sub�gures a and b) and with uneven broadening in the full developed region (sub�gure c).

Having now the kink band in the central layer visually accessible, the specimen was re-compressed in the test

machine and propagation recorded with the hand microscope plugged on the DSP; a sequence of images is shown

in �gures 3.21 and 3.22. There, the previously initiated kink band (dark band on the left, 1 ) propagated along

the specimen followed by the formation of a second band (3 ); splittings were opening (2 ) and closing (4 ) outside

the bands as propagation developed.

3.5.5 Other results

Other kink bands besides the already presented ones were observed in other specimens; �gure 3.23 shows some

of those that, although not being further discussed, are also interesting:

a shows a ϕ = 0o CC specimen in which the kink band, after unloading, is completely in-plane in the central

band but out-of-plane in its boundaries;

b presents a ϕ = 2o CC specimen with several kink bands (di�erent widths (w) and angles (β), in- and out-of-

plane) interacting in the same central layer;

c shows a highly misaligned (ϕ = 12o) CC specimen, with the kink band ending in a splitting;

d highlights the agreement between the deformed �bres and a sine-shape in the r-UD_0d0 specimen;

e shows the out-of-plane remaining (plastic deformation) component of a kink band formed at specimen's r-

UD_0d2 post polished surface;

f presents a jump in a kink band's edge, preceded by a change in the �bre fracture surface.
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(a) Overview.

(b) Kink band's tip. (c) Kink band broadening.

Key:

1: Upper kink band edge

2: Lower kink band edge;

3: Rotated segments;

4: Aligned segments.

Figure 3.20: Specimen CC_6d: optical micrographs (unloaded, after outer layers removal, unpolished).
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(a) (b)

(c) (d)

(e) (f)

Key:

1: Kink band previously initiated;

2: Splitting opening;

3: Second kink band developing or uneven broadening;

4: Splitting closing.

Figure 3.21: Kink band propagation - sequence of images (1).
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(a) (b)

(c) (d)

(e) (f)

Key:

1: Kink band previously initiated;

2: Splitting opening;

3: Second kink band developing or uneven broadening;

4: Splitting closing.

Figure 3.22: Kink band propagation - sequence of images (2).
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(a) Specimen CC_0d2: in- and out-of-plane components
(central layer, unloaded, ground).

(b) Specimen CC_d2: several kink bands: in-plane, out-
of-plane, with crushed material (central layer, unloaded,
ground).

(c) Specimen CC_12d: kink band ending in a splitting
(central layer, unloaded, ground).

(d) Specimen r-UD_0d0: kink band and sine-shapes
(loaded).

(e) Specimen r-UD_0d2: kink band in a specimen pol-
ished after kink band initiation (unloaded).

(f) Specimen r-UD_0d3: kink band's edge changing posi-
tion, after change in �bre failure mode.

Figure 3.23: Other kink bands from the experiments.
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3.6 Discussion

3.6.1 Macroscopic kink band without �bre failure (specimen r-UD_0d1)

3.6.1.1 Fibre failure in kink band formation

As it was presented in section 3.5.1, it is undeniable that the specimen r-UD_0d1 failed by kink band formation;

however, when observed at the micro-scale, it is also evident that kinking occurred partially without �bre failure

(kink band 4, �gure 3.15 d).

This phenomenon - kink band formation without �bre failure - was already reported in [8]; there, it was considered

to be due to a smaller �bre rotation (α) and stabler propagation, formerly related by the authors to the loading

scheme with direct shear.

In the r-UD_0d1 specimen, the load was applied also with a shear (from specimen's shape, ϕL 6= 0) component,

but �bre rotation in the unloaded con�guration is not so smaller that it can justify the absence of �bre failure

(�gure 3.15 d). However, one feature distinguishes noticeably this kink band from the classic ones: its width

is much higher (w = 800µm) than usually (w ≈ 200µm). In addition, the same specimen shows narrower kink

bands with broken �bres, which reveals that �bre failure is a�ected by other parameters than material properties

and loading scheme.

Considering all this, it is suggested that �bre failure is a�ected by the kink band's width w at an extent that is

partially independently of �bre rotation α. To attempt an explanation for this fact, let one assume (as it was

widely found in the literature) that, during kink band formation, the �bre deforms in a sinusoidal shape y(x)

with half wavelength w,

y(x) = y0 · sin
( π
w
· x
)
,

and that matrix shear stresses are related to its slope, and �bre axial stresses to its curvature5:matrix shear stresses: τm ∝ y′(x) = π
w · y0 · cos

(
π
wx
)

�bre axial stresses: σf ∝ y′′(x) = π2

w2 · y0 · sin
(
π
wx
) . (3.3)

Assuming this, and for the same rotation (α ≈ π
w · y0) and de�ection y0, shear stresses in the matrix are

independent of kink band's width (τmaxm ∝ α), so if matrix yielding occurs due to shear it does not depend on

this parameter; however, the axial stresses in the �bres would vary with the width (σmaxf ∝ α · π/w), increasing
for small widths and decreasing for larger ones.

Accepting the previous analysis, matrix yielding would occur no matter the kink band's width, but �bre failure

(if controlled by axial stresses) would rather take place in narrower kink bands than in wider ones; this is precisely

what happened actually in this specimen.

3.6.1.2 Kink band's width

Considering the preliminary model (equations 3.3), and assuming that matrix shear yielding (τm = Sm, with

τm ∝ α) controls the initiation of a kink band6, one can conclude that its width w would be proportional to the

transverse displacement y0.

5A justi�cation for this is given in Chapter 5.
6This is supported by the results in Chapter 4.
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(a) Compression. (b) Shear.

Figure 3.24: Kink band width: under compression and under shear.

Usually (in research), kink bands are developed under pure compression, so �bre rotation is triggered only by

initial misalignments and the resultant in-plane moments (in a positive feedback process); the misalignments

a�ect a small length (in the axial direction), so the matrix starts yielding in a very narrow band (�gure 3.24 a).

If the specimen is loaded in shear, however, the opposite happens: the �bre is moved (transversely) within a

macroscopic (axial direction) length, so the band formed is much wider (�gure 3.24 b).

Summarizing, and according to this theory, the kink band's width would be related to the length, within the

�bre, in which shear is applied (directly or not), and not so much to the amount of �bre rotation.

3.6.1.3 Splitting

A splitting corresponds to a crack formed in the material, either through matrix or interface (between matrix

and �bres) failure in shear or tension, to release the strain energy in the material detached.

Figures 3.15 a and b evidence groups of few �bres broken and rotated together, suggesting that splitting (between

groups) had occurred prior to �bre failure and further rotation; observing 3.15 a, one can con�rm that the �bres

in the central band between splittings A and B are much straighter than the ones at their right. The number of

�bres within a split group depends on the deformed con�guration and matrix / interface toughness, in a relation

that could not be deduced from the micrographs.

Figure 3.14 also shows several splittings along the kink band's path, mainly near the boundaries (where the

curvature is higher). From the micrographs of this specimen (r-UD_0d1), it is not possible to know if failure

occurred in the matrix or in the interface, neither if it was due to shear only or also to tension (as the open cracks

can be closed when loaded, due to further �bre rotation and Poisson's e�ect). Nevertheless, it is undeniable that

either the matrix or the interface su�ered ultimate failure during kink band formation.

In addition, in �gure 3.14 it is also possible to see that the kink band was initiated not directly from the notch,

but from a split that seems to have been formed in shear; this suggests shear in the matrix or interface to play

an important role in kink band formation.

3.6.1.4 Di�erent kink bands within the specimen

Another peculiar feature in this specimen is the several kink bands superposed, all with the same orientation

(β).
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At �rst, two kink bands - kink band 1 with broken �bres and kink band 4 without - are shown in �gure 3.15 a;

however, given these bands' similar location and width, it is sensible to conclude that they are the same entity,

only in a di�erent state. If so, �bre failure in the neighbourhood of the notch can be easily explained either due

to stress concentrations (so �bre failure in this region is simply a local e�ect) and/or to over-compression (and

�bre failure would also occur in kink band 4 if the compression progressed).

The presence of the micro-kink bands (kink band 2 and kink band 3 ) found in the boundaries of the macro one

is less straight forward to discuss. Figures 3.17 a and b show that these narrow kink bands were both formed at

major splittings (�gure 3.17 a, features A and B respectively) in the transition between kink band 1 and kink

band 4 ; this implies that a signi�cant change in the stress state had occurred and triggered the process. Kink

band 2 is indubitably independent from the macro-kink band (�gure 3.17b); however, �gure 3.17c suggests that

kink band 3 can be simply the broadening of kink band 4, although the fact that the latter has no broken �bres

in its top edge at this region makes it a non-conventional broadening.

3.6.2 Kink band formation - overview (specimen r-UD_2d2)

3.6.2.1 Sequence of events

The optical micrographs shown in �gures 3.16 and 3.17 provide the information required to sketch the sequence

of events leading to kink band formation.

In �gure 3.16 b, the dark region (in the bottom, with constant width) corresponds to a large out-of-plane

movement inside the kink band, and ends suddenly; on the other hand, the slight out-of-focus found away

from that band's tip revels a much smaller displacement that is smoothly reduced in the transverse direction.

Considering this, the conclusion is that the initiation starts progressively with �bre rotation until a certain angle,

after which the movement is much more abrupt.

Besides, in micrograph 3.17 a, the in-plane component is not so discontinuous as the out-of-plane component is

(as one goes away from feature 1, the out-of-focus amount decreases signi�cantly, but the 2D (in the micrograph's

plane) �bre rotation does not), suggesting that this sudden movement has a stronger out-of-plane component

than initially; for this reason, the kink band would start developing almost in-plane, going more out-of-plane in

a latter stage.

Looking closer on �gure 3.17 a, one can con�rm that �bre failure is responsible for that abrupt increase in the

out-of-plane displacement, being the kink band's edges sharply de�ned by broken �bres (feature 1 ). However,

�rst �bre failure is not su�cient for full rotation to occur, as there are broken �bres with smoother curvature

(features 2a and 2b). This implies that either the matrix has to fail completely after �bre failure to allow the

movement, or that the �bres are not completely broken in two sections (in �gure 3.17 a, those �bres might be

broken only on the right side and not on the left one) and resist to rotation for that reason, or even that the overall

sti�ness in the neighbourhood is enough to prevent a sudden rotation as soon as �bres break. As the matrix

is weaker than the �bres, the latter two hypothesis appear to be more likely; besides, and taking into account

that the �bres at specimen's surface are unsupported on the exposed side (so under stress concentrations), it is

probable that, even when apparently complete �bre failure is seen on a micrograph (2D), the �bre is not fully

broken across its entire section (3D).

The propagation length, from fully broken and rotated �bres to straight ones, cannot be determined with a high

accuracy because, as it was just mentioned, the deformed shape starts being de�ned in a very smooth way; for

45



that reason, the length estimated for this kink band - Lprop ≈ 600µm - copes with an uncertainty of at least

±100µm.

3.6.2.2 Fibre fracture surfaces

Micrographs 3.17 show several occurrences of �bre failure. The fracture surface of broken �bres identi�ed with

2a is normal to the �bre's axis; typically, this occurs when failure happens in tension. Fibres marked with 2b

have a fracture surface inclined in relation to �bre's axis, which would correspond to failure in compression or

shear. A relation between the two types of failure (compression and tension) with the two types of fracture

(inclined and normal) can be seen from these micrographs, as (considering the out-of-plane movement from a

lower level on the left to higher level on the right) the features 2b appear to be predominant at the left (concave

deformed shape, in compression) and the features 2a appear to be predominant at the right (convex deformed

shape, in tension).

The unloaded micrograph 3.18 b from the SEM shows the typical �bre fracture in bending: on the right side

the �bre would be in tension, with a fracture surface normal to the axis, and at the left side the �bre would be

in compression, with a fracture surface at an angle to the axis.

Figure 3.18 c shows the kink band tip, with �bre failure at the upper boundary (feature 2 ); in this region, the

concavity formed by �bre deformed shape is open to the right. Looking onto the �bre fracture lines, it is possible

to conclude that they were formed in bending: for each broken �bre, the fracture surface is open and normal to

the axis on the left side - so failure occurred in tension -, and inclined and closed on the right one - where failure

occurred in compression.

3.6.2.3 Splitting

As happened with the previously one (r-UD_0d1), a discussion on splitting in this specimen cannot be conclusive,

as the micrographs from the optical microscope are distorted by the out-of-plane component and the SEM one

are unloaded.

Nevertheless, the SEM �gure 3.18 c shows clearly an open crack at the �bre-to-matrix interface (feature 3 ).

In addition, loaded micrographs 3.17 b and c also show dark and sharp lines in some interfaces (feature 3 ),

which can be interpreted either as shadows or splittings; however, one of these lines is present in both �gures

(at the bottom in �gure 3.18 c and at the centre in �gure 3.18 b), taken with di�erent focus, which suggests

that interface failure did actually occur during kink band formation.

On the contrary to what was reported from specimen r-UD_0d1 in the previous section, in this kink band the

�bres do not appear to be rotated as large groups but �bre by �bre (�gures 3.18 a and b), so splittings would

have occurred between each �bre (or pair of �bres). It is not possible, however, to �nd whether these interface

(�bre to matrix) splittings were open during kink band formation or during unloading.

Finally, it must be noted that no matrix splitting is found in the micrographs.
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Figure 3.25: Schematics of single failure in
unsupported �bres.

Figure 3.26: Schematics of the asymmetry in a kink
band with out-of-plane component.

3.6.3 Kink band formation and propagation (specimen r-UD_aux)

3.6.3.1 Propagation with single �bre failure

The kink band propagated in the specimen r-UD_aux in a unusual way; feature 2 in 3.19 d shows �bre failure

aligned with the kink band's (features 1 ) left edge, but instead of �bre failure along the right edge the material

moved noticeably out-of-plane. The most logical explanation for this is a stronger out-of-plane component in

this region, and due to the lack of material in the that direction the �bres were able to, after failure at the left

side, release the sinusoidal deformation as shown in �gure 3.25. One of the reasons for this to happen speci�cally

in this region is a weaker cohesion along the out-of-plane direction, as for instance due to local delamination.

The region where single �bre failure (feature 2 ) can be observed is surrounded by two kinked regions with the

typical double �bre failure (features 1 ); this means that �bre kinking is actually the most favourable state for the

material under compression, as it returns to that failure mode even after failing in an apparently less complex

way.

As previously discussed for specimen r-UD_2d2, the estimation of the propagation length ( Lprop ≈ 550µm) is

not accurate (tolerance around ±50µm).

3.6.3.2 Features at the �bre-scale

Figure 3.19 b shows the kink band's tip (in terms of �bre failure) with high magni�cation, which allows some

features at the scale of a �bre diameter to be discussed.

One of the most notable features in this kink band is the lack of symmetry in its edges; in fact, the left edge is

not only much more even than the right one, as it appears to have been formed at �rst (further �bres completely

failed). Besides, the fracture surfaces suggest an out-of-plane movement upwards from the left to the right, as

they are closed on the left side (compression on the concave side) and open on the right one (tension on the

convex side).

Theoretically, and disregarding any material randomness, a kink band would be anti-symmetrical in its propa-

gation plane; however, in this experimental program several kink bands were found to be unsymmetrical, both

when it comes to formation and broadening. When a kink band is found at the specimen's surface and with an

out-of-plane component, the material is not evenly supported on both band's sides: the �bres on the concave
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one (on the left in �gure 3.19 b) are unsupported in the compressed part, while the �bres on the convex side

(on the right) are unsupported under tension (as sketched in �gure 3.26). This could be the reason for the

unsymmetrical behaviour in kink band formation: if (as it is usually reported) the �bre's compressive strength

is lower than the tensile one, the e�ect of stress concentrations at the unsupported side would lead to �rst failure

in the concave side of the kink band, which agrees with micrograph 3.19 b.

Another interesting fact in this micrograph is the absence of splitting between the �bres in the top (4c) together

with a completely split �bre in the centre (4a) and a small intermediate split (4b); these splits appear precisely

where the kink band's right edge is moved outwards in relation to its original alignment (features 5 ). Actually,

this new failure location might have caused the splitting: the last broken �bres could not follow the rotation of

the former without either crushing them or breaking at the former edge location. Feature 5a shows �bre failure

under tension in bending with an out-of plane component; on the contrary, failure in features 5b appears to have

only an in-plane bending component. Looking onto �bre 4a, one can see its out-of-plane movement, which is

likely to have caused the closure shown in 5b. It is not possible to know, however, what led to these di�erent

behaviours; it can be suggested that di�erent imperfections in adjacent �bres would change the wavelength and

orientation of the deformed shape; nevertheless, it seems that the relation between in-plane and out-of-plane

components is more complex and less deterministic than it could be supposed.

3.6.4 Kink band propagation - overview (specimen CC_6d)

3.6.4.1 Parallel bands propagating

The most interesting feature found in this specimen is the appearance of a second dark band (�gures 3.21 e to

3.22 f) parallel to the �rst kink band, propagating through the specimen with a delay in relation to the �rst one.

As it can be seen on the unloaded (after outer layer removal) micrograph 3.20 b, the kink band's tip prior to

propagation presented broken �bres further in the band's upper edge than in the lower one, which could suggest

that each dark band in �gures 3.21 and 3.22 was one kink band's edge; however, the scale is not identical in

both �gures (3.20 and 3.21/3.22), so the two features - dark bands in the pictures from the DSP and kink band's

edges with broken �bres - cannot be the same.

Considering now micrographs 3.20 a and c, it is possible to see two di�erent bands in the area where the kink

band is fully developed and broadened: sub-band 3 has highly deformed broken �bres (α is considerable, even

in the unloaded con�guration), along a path nearly constant all across the propagation length, but sub-band

4 shows broken �bres almost aligned with the global axis (so the deformation would be mainly elastic) and

becomes narrower as one moves towards the tip. Taking these two features and their scale into account, it is

sensible to assume that they are in the origin of the two parallel bands propagating in �gures 3.21 and 3.22.

However, the dark regions in the image are related to a local change in the specimen's surface orientation and

to out-of-plane movement, which is not present in the micrographs of �gure 3.16; nevertheless, these reproduce

a kink band in a central layer of a laminate and in the unloaded con�guration, so it is perfectly possible that,

after removing the support given by the outer layers and compressing the specimen further more, an out-of-plane

component had developed.

The presence of a bright band between the two dark ones, with �bre rotation (micrographs in �gure 3.22),

suggests that region to be an in-plane kink band (band 2 in �gure 3.27). Now the two dark bands can be either

in the con�guration a - with the third band developing to release the deformation in the �bres outside the kinked
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(a) V-shape or complementary kink band. (b) Zig-zag-shape.

Figure 3.27: Schematics of kink band's out-of-plane component in specimen CC_d6.

Figure 3.28: Schematics of in-plane transverse tension and compression during propagation.

region - or in the con�guration b - with the third band increasing the amount of out-of-plane movement. The

�rst option would be preferred as it restores the overall equilibrium of the specimen, but the second one would

agree better with a relation between the development of the second band and the macro-splittings (as explained

in the next section).

After re-testing the specimen, it was con�rmed by microscopic observation that the two kink bands shown in

�gures 3.21 and 3.22 were formed with considerable out-of-plane movement that remained in the specimen after

unloading; unfortunately, this fact together with the lack of polishing resulted into micrographs with barely no

useful information, so the actual kink band con�guration is still open to discussion between hypothesis a and b

in �gure 3.27.

3.6.4.2 Macroscopic splittings

Two macroscopic splittings along the �bre direction are open (features 2 ) in �gures 3.21 e and 3.22 d, in the

upper part of the specimen; an explanation is provided as it follows.

The sequence of images captured by the DSP shows that �bre rotation within the kink band leads the upper part

of the specimen to move to the left and the lower part to the right; as those movements are partially constrained

by the �bres ahead of the kink band tip, the material is under transverse tension above the kink band, and under

transverse compression bellow it (as sketched in �gure 3.28); for this reason, cracks open at the tensile side to

release the transverse stresses in the matrix, allowing the split material to move signi�cantly. As the kink band

propagates, more splittings develop due to the same principle, being the last one closed (feature 4 in �gure 3.22

d) as soon as a new is formed (feature 2 in �gure 3.22 d). The macroscopic splittings found in this specimen are

therefore caused not by transverse tension within the kink band or shear, but simply by the propagation process

and the global displacement that a kink band tends to create.

An interesting fact about these macroscopic splittings is highlighted in �gures 3.21 e and 3.22 d: the two
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splittings did open at the same distance from the second band's tip. If not a coincidence, this would mean that

the development of this second band enlarged signi�cantly the deformation in the regions away from the band;

recalling the discussion on the orientation of band's out-of-plane component (as represented in �gure 3.27),

hypothesis b would agree better with this fact, as a complementary kink band (hypothesis a) usually forms to

release the stresses in the unkinked material, avoiding the formation of a splitting. Nevertheless, this analysis

is not conclusive, as the splitting could have released mainly the in-plane component and would not, for that

reason, hinder the formation of a V-shape to release the out-of-plane one.

3.6.4.3 Out-of-plane component

The specimen CC_6d was initially compressed with the central (ϕ = 6o) layer supported by the surrounding

(ϕ = 90o + 6o) ones; the kink band formed here was observed under the optical microscope, unloaded and

after the outer layers were removed, with no evidence of any out-of-plane component (�gure 3.20). The same

specimen, now with the central layer exposed and unsupported on one side, was then re-compressed and the

kink band propagated; while loaded, the out-of-plane movement was identi�ed by the shadows in the images

recorded, and even after unloading the plastic deformation had actually a considerable out-of-plane component

that was seen in the optical microscope.

A similar behaviour was found in several other specimens: the ones with a kink band developed at a free surface

(specimens UD and r-UD) shown a strong out-of-plane component in the deformed shape, both during and after

loading, while some of the CC ones (with the kink band formed in the central layer) present micrographs with a

totally in-plane apparence. In relation to these latter ones, it is not possible to know whether �bre kinking had

developed actually in-plane when loaded, or if an out-of-plane movement had occurred and was released when

the specimen was unloaded; nevertheless, the di�erence between the out-of-plane component in kink bands from

CC and from UD / r-UD specimens is notorious anyway.

This change in the out-of-plane behaviour can be only justi�ed by the support from the other layers that is

given in the CC specimens and lacks in the other (UD / r-UD) ones. It is not likely that this e�ect is related

to the orientation of those adjacent layers as, in the CC specimens, they are oriented at a 90o + ϕ angle (easier

to deform out-of-plane). In addition, the previously formed kink band in the specimen CC_d6* developed an

out-of-plane component when re-tested (�gure 3.21 a), so this tendency is not avoidable by initiating the kink

band and removing the outer layers afterwards, as as soon as that is done and the specimen is compressed again,

the out-of-plane component appears.

One of the derived objectives of this experimental program was the development of fully in-plane kink bands;

considering all this discussion, this appears to be much more di�cult to achieve than it could be expected.

3.7 Conclusions

Kink band's geometry

The kink bands found in the specimens (all of the same material) are within a wide range of geometries: widths

were found from w ≈ 7 · φf to w ≈ 115 · φf , and band's angle varied from β = 0o to β ≈ 30o.

The propagation length in the loaded con�guration was estimated as Lprop ≈ 500µm to 700µm ≈ 12·w to 17·w ≈
71 · φf to 100φf .
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Sequence of events

The overall observation of the micrographs allows the sketching of the following sequence of events for typical

kink band kink formation: at �rst, the �bres deform in a sine-shaped wave, in a smooth way along each �bre

and along the kink band's propagation path; as compression progresses, the �bres rotate further more and start

failing by bending (eventually �rst in the compressive side), keeping a smooth deformed shape; �nally, �bre by

�bre, the failure is complete across its both critical cross sections, and the �bre rotates suddenly more (eventually

only after failure of adjacent �bres), assuming a sharp kinked shape.

During these three �bre-dominated steps, matrix yielding must occur; it is not possible, however, to precise

when, as there is no visible sign of matrix yielding (not even when the specimen is unloaded, as if �bres were not

broken then their elastic recovering would surpass the e�ect of any matrix yielding). From the specimen that

kinked partially without �bre failure (r-UD_0d1) it is suggested that, generally, matrix yielding occurs prior to

�bre failure, but that sequence might not be the same for all kink band's geometries. Nevertheless, although

being present in the common process of kink band formation, �bre failure is not mandatory.

De�nition of kink band formation

Kink band formation is usually de�ned by �bre failure in the literature; however, it was proved that it is possible

to obtain a kink band in a CFRP composite with no �bre failure occurring (specimen r-UD_0d1). Taking this

into account, the formation of a kink band must be de�ned by matrix yielding, matrix failure or interface failure,

being �bre failure simply a consequence (not the cause) of kinking.

The micrographs obtained in the SEM show interface failure (debonding between �bres and matrix) in the

unloaded con�gurations; however, and despite some micrographs with features that might be splittings at the

interface (specimen r-UD_2d2), there is no evidence of matrix or interface �nal failure in a kink band's tip under

development (loaded). For these reasons, matrix yielding is the best candidate to the primary failure mode in

the process of kink band formation.

Fibre failure in bending

Although a proper conclusion about �bre failure mode would require a much deeper study than the one done in

the scope of this project, the type of failure surface found in the �bres broken by kinking does suggest a failure

due to bending, with one part of the �bre failing under compression and the other under tension, in a consistent

way.

Unsymmetric edge de�nition

Almost all the kink bands with �bre failure observed in this experimental program presented edges de�ned

unevenly, with �bre breakage further developed in one edge than in the other.

The lack of symmetry is too consistent to be justi�ed by material randomness; therefore, it has to be so by

some unsymmetry in the stress state found when the the kink band is being formed, at the �bre level. One

possible explanation to this fact is the di�erent e�ect of stress concentrations due to the free surface (or change

in layer's orientation, for CC specimens) in tensile and compressive failures (�gure 3.26); however, this was not

a conclusive analysis and the issue is still open to discussion.
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Deformed shape

It was con�rmed that the sinusoid is a reasonable approximation for �bre's deformed shape during kink band

formation; the curve's amplitude decreases as one moves away from the kink band's tip, and the wavelength

follows the opposite tendency.

In all loaded micrographs, the deformed shape presented both in-plane and out-of-plane components; while the

former is reduced in a smooth way across propagation's length, the latter disappears �rst and in a more sudden

fashion, around the area where �bre failure stops.

Besides, �bre failure (when actually occurring) was con�rmed to have a strong e�ect in the deformed shape,

de�ning the kink band's edges sharply; however, the kink band's �nal con�guration is not completely de�ned by

initiation of �bre failure, being so by �nal �bre failure instead.

Out-of-plane tendency

All the kink bands observed under compression showed an out-of-plane component that cannot be neglected.

So far, it was proved that this movement is favored by the lack of support at the specimen's free surface, but it

is still open to discussion whether the kink band formed in the middle of the cross-section is totally in-plane or

not.

The presence of an out-of-plane deformation component reveals that out-of-plane stresses exist as well; for this

reason, and even if individual �bre kinking is a 2D phenomenon, it is necessary to consider the overall 3D stress

state in the composite, if an accurate analytical model is to be developed.

Loaded and unloaded con�gurations

By comparison between the micrographs of specimens under compression and unloading, one can conclude that

both elastic and plastic deformation occur during kink band formation, and that none of them can be neglected;

therefore, if the objective is to understand how a kink band is formed, then it is mandatory to observe it while

loaded.

Splittings within the kink band

Several open splittings were found in the specimens; this is an important issue for the development of analytical

models, as if they are actually found at the kink band's tip it means that �bres are unsupported while kinking

occurs and the e�ect of the matrix can be neglected in some extent. However, not every splitting does imply a

material discontinuity between �bres and matrix in the region of interest: it can also be found outside the kink

band (specimen CC_6d*), in unloaded con�gurations (specimen r-UD_0d1) or due the propagation process or

imperfections (specimens CC_6d* and r-UD_aux), which decreases its relevance for the referred purpose.

The splittings identi�ed in the specimen r-UD_2d2 can be representative of the stress state found during normal

kink band formation; the �bre is unsupported in some segments, but not in its whole kinked extension, at this

phase. Considering now the fully-formed kink bands in specimens r-UD_0d1 and r-UD_2d2, it is evident that

splitting occurred between groups of �bres, although it is not possible to know whether it took place during the

compression or after unloading.
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This subject is left, for the reasons presented, open to discussion by the experimental results; nevertheless, it

is suggested that the support that each �bre receives from the matrix is not even, neither in terms of a single

�bre's extension nor among a group of �bres.

Role of shear

Tables 3.1 and 3.2 evidence that splitting was a very common failure mode, taking place together with �bre

kinking or alone. As it was previously discussed, splitting can occur in tension as a consequence of kink band

propagation; however, when happening without kink band formation, splitting is usually attributed to an in-

plane shear stress state instead. Considering that very similar specimens failed randomly by kinking and by

splitting, one can conclude that some similarities between the stress states found in the two cases must exist; for

this reason, in-plane shear stresses cannot be neglected in the analysis of kink band formation and propagation.

Complex features in kink band formation

The formation and propagation of a kink band proved to be a very complex process: the micrographs report

the development of double kink bands (either in V or zig-zag shape), uneven �bre failure and failure surface,

jumps in the kink band's path, initiation at a splitting instead of at the notch, unilateral broadening and sudden

changes in the out-of-plane component.

Material randomness might be an explanation for these features, but the subject is left open to further research

and discussion.

Set-ups

Three di�erent set-ups were used in this experimental program; among them, only the r-UD one was e�ective

regarding the goals previously de�ned.

It was found to be impossible to obtain micrographs with high magni�cation with a specimen under compression

in an universal test machine (UD and CC specimens) as, even if a portable microscope could be used, the focus

would be very di�cult to achieve; besides, it was proved that a reduced specimen can be compressed and

kink bands formed using simple tools, so there is no bene�t on using such complex apparatus for this type of

observation.

Compressing the specimen in a device which allows the observation under the microscope7 was achieved (r-UD

specimens and set-up). Optical microscopy gives a better distinction between �bres and matrix, but the reduced

depth of �eld limits the information obtainable; the SEM surpasses this problem and has higher magni�cation

capabilities, being for that reason the most promising method for kink band observation.

Although it was one of the derived objectives for the experiments, a set-up producing a totally in-plane kink

band was not achieved.

7The rig used for SEM observation of loaded specimens was developed by Renaud Gutkin, out of the scope of this project.
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Chapter 4

Numerical analysis

4.1 Objective

An analytical model, able to explain and reproduce the formation of kink bands, requires the perfect under-

standing of the mechanics involved in the process, at the micro scale. As it is supported by the previous chapter,

it is very di�cult to get such knowledge from experimental data, so the numerical simulation presents itself as

the best tool to provide useful inputs for the development of analytical models, as it allows the free manipulation

of every parameter and avoids the randomness that is always present in experimental results.

The main goal of performing a full numerical analysis (�nite elements (FE) method) on the formation of kink

bands was therefore to get the picture of the components at the micro level, in order to identify the important

features and to establish the sequence of events leading to kink band formation in real composites. Furthermore,

the numerical simulations were used to validate the analytical model for kink band initiation developed in

Chapter 5.

4.2 Modelling strategy

One of the main problems on using numerical simulations as an auxiliary tool to the development of analytical

theories is that the phenomenon to be modelled is not well understood a priory; for this reason, the modelling

strategy in this case must be discussed.

4.2.1 2D equivalent model

To be able to study the micromechanics of kink bands requires a high level of detail when modelling the composite,

so bending and shear behaviour of its constituents can be properly captured; this means that �bre and matrix

have to be modelled separately with a �ne mesh. Considering this and the fact that there is experimental

evidence that kinking can be planar (when it is constrained in one direction), it seems sensible to use a 2D

equivalent model of the real 3D composite; however, to de�ne a 2D model of a real 3D arrangement of �bres

within the matrix requires several levels of idealisation. At �rst, the actual disposition of the components within

the composite is not perfect, and needs therefore to be approximate by a reasonable 3D pattern; afterwards, this

3D idealisation has to be adapted to a 2D shape.
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Figure 4.1: Hexagonal �bre arrangement and 2D equivalent model.

Let one assume a 3D hexagonal arrangement of perfectly cylindrical �bres (diameter φf ) within a composite

with volume fraction Vf . From �gure 4.1, it is possible to deduce the distance between �bres (tm) as:

Vf =
1
2π ·

φ2
f

4

(tm + φf )
2 ·
√

3
4

and therefore tm = φf

(√
π

2 ·
√

3 · Vf
− 1

)
(4.1)

So, if one considers that the kink band is developed along one of the unit cell's symmetry planes (represented

as a dash-dot line in �gure 4.1), then a 2D equivalent can be a layered material with the �bres represented by

layers φf thick interposed with matrix layers tm thick (�gure 4.2).

4.2.2 Critical features

It is well known that the formation of a kink band is a complex phenomenon a�ected by defects on the shape

and arrangement of the �bres within the composite and geometric and material non-linearities; due to these

aspects, it is obvious that a numerical model actually producing a kink band may be not trivial to �nd. In fact,

several models tried at the beginning of this numerical work did not result into kink bands due to the misuse

of at least one of the features that proved to be critical; these can be grouped into three categories: related to

initial defects, related to the interface between �bres, and related to numerical issues.

Defects

The introduction of an initial defect is fundamental for the initiation of a kink band; without it, the model

tends simply to pure compression or pure buckling. Di�erent types of defect (�bre misalignment or waviness,

matrix rich zone, weak elements, micro-notches, material misorientation, load misalignment) were tried, being

�bre waviness the most e�ective one. The extension of the defect also proved to play a role, as all the small

local defects (with an extension of the same order of magnitude as φf ) led to failure by micro-buckling instead

of kinking.

Interface between �bres

As it was already expected, the interface between the �bres has a major in�uence on the formation of kink

bands. From the several modelling approaches carried out, it was shown that a bounded strength for the

interface is mandatory, being all the other interface's parameters somehow irrelevant for the qualitative response.

Kink bands were obtained both considering material (matrix) and discontinuous (frictional) interfaces; when a

material interface was used, yielding and failing constitutive laws proved to work as well.
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Numerical features

Besides the modelling issues directly related to the physics of the process, also some numerical features were found

to be critical for the formation of kink bands in the models as well. The most important one is the geometric

non-linearity, which proved to be mandatory; without it (assuming a geometrically linear problem), the initial

waviness of the �bre was simply magni�ed proportionally during the compression. Another sensitive aspect was

the use of numerical damping to stabilize the model: although it improved signi�cantly the convergence to a

correct solution when a proper value was used, too high damping led to failure by crushing instead of kinking.

4.2.3 Overall description of the models

Although several di�erent models were analysed in this work, the modelling strategy was quite similar for all

of them. Generally, the standard model for kink band formation is a geometrically non-linear model ran in a

static analysis in ABAQUS Standard; besides the use of (low) numerical damping and some adjustments to the

convergence control parameters, no other especial analysis features were used.

A general overview of the standard model used in the numerical simulations is provided next. For the variations

to this model, a short description will be given when the results are to be presented (section 4.3).

Geometry and initial imperfection

A sine-shaped waviness was adopted as non stressed initial imperfection (equation 4.2); this is not totally realistic,

as this waviness is usually induced by the manufacturing process and results therefore in residual stresses applied

to the �bre, which is neglected here. However, the alternative would be to model the �bres as geometrically

perfect and then produce a stressed imperfection by loading them transversely; this would shear signi�cantly

the matrix before the real load step, which is not realistic at all as, during the curing, the matrix �ows and a

signi�cant amount of strain is released.

y0(x) = y0 ·
(
1− cos

( x
L
· π
))

(4.2)

The model (�gure 4.2 a) is (along the global x-axis) L = 0.750mm (imperfection's half wavelength) long; its

peak-to-peak amplitude is 2 · y0 = 30µm, giving a maximum misalignment of θmax0 = 3.6o; these values are

slightly over the real misalignments found in the literature, but proved to be much more e�cient when it comes

to convergence issues. In its transverse direction, nf = 100 �bres were modelled and a constant width was kept

along the global y-direction, being therefore the thickness slightly reduced for the central region (where the slope

is higher, �gures 4.2 b and c).

As it was previously explained in section 4.2.1, the �bres are represented by layers with a thickness equal to

their nominal diameter φf = 7µm; the �bre volume fraction for the composite is Vf = 60%, giving a layer of

matrix tm = 1.6µm thick.

Constitutive laws

The constituents' mechanical properties follows those of a standard carbon �bre (IM7) + epoxy system (8551-7):
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(a) Geometry and boundary conditions.

(b) Mesh detail: at the left boundary.

(c) Mesh detail: at model's centre.

Figure 4.2: Numerical model: geometry, mesh and boundary conditions.

Fibres are considered to be isotropic and linear elastic, with Ef = 276GPa and νf = 0.20. In some models,

a continuous damage formulation was used to predict the post-failure behaviour both under compression and

tension, with given strengths of Xf
C = 3200MPa and Xf

T = 5180MPa, and fracture toughnesses of GfC =

100kJ/m2 and GfT = 100kJ/m2, for (respectively) compression and tension.

Matrix was modelled either by elastic-plastic formulated elements or by interface / decohesive elements.

Although the experimental results from compressive, tensile and shear tests do present signi�cant di�erences,

the matrix is always considered to be isotropic; because shearing is expected to be the main load component and

also as it is the most complete test (includes pure shear, pure compression and pure tension), the constitutive

law is deduced from the von Mises equivalent of experimental data (shear stresses versus shear strain) provided

by a shear test, using the following expressions:σMises =
√

3 · τ

εMises =
√

3
2(1+ν) · γ

(4.3)

The linear elastic properties (from the tangent to response at ε = 0) are given as Em = 4.050GPa, νm = 0.38

and Gm = 1.478GPa. For the non-linear domain, two di�erent constitutive laws can be de�ned, according to

the type of material formulation:

Elastic-plastic formulation (�gure 4.3 a) considered the (transformed) experimental data and assumed a

perfect plastic (Xm = 98MPa) behaviour for larger deformations;

Decohesive formulation (�gure 4.3 b) assumed an initial linear-elastic response until the strength is reached

(by a quadratic criterion with Xm = 98MPa and Sm = 56MPa1), following then a linear degradation process

1Experimental data for the matrix. An alternative would be to consider, for the cohesive elements, a strength equal to the lowest
value within matrix strength and composite strength
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(a) Elastic-plastic formulation. (b) Decohesive formulation.

Figure 4.3: Constitutive laws used for the matrix in numerical models.

(with GmIc = 0.21kJ/m2 and GmIIc = 0.80kJ/m2 as mode I and mode II toughnesses), and a mixed mode behaviour

governed by the Benzeggagh-Kenane fracture criterion with exponent η = 1.5.

Mesh and boundary conditions

A �ne mesh of 4-noded reduced integration elements with a general aspect ratio of 1:2 was used (�gures 4.2 b

and c); the elements in the initial con�guration were distorted (and not rotated) so to de�ne the correct slope,

with the impact on the constituents' thickness already mentioned. The �bres were modelled with three elements

through their thickness (giving the minimum number of integration points to capture bending properly) and the

matrix (thinner and considered to respond mainly in shear) just with one (so each matrix element was under

constant stresses).

During the analysis, the model was compressed under displacement control applied to the right edge's nodes,

being the left edge �xed in the horizontal direction (�gure 4.2 a); no boundary conditions were applied along

the vertical direction, as it was found that �xing one node to avoid rigid body movements could result in stress

concentrations (mainly due to the use of stabilization and its inertial-like e�ect).

4.3 Results

4.3.1 Generic results

Although a deep study on the e�ect of all the parameters and features involved in the numerical modelling of

kink bands is out of the scope of this project, it is helpful for the development of the analytical model to have

a general overview on the impact induced by simpli�cations and di�erent features on the global response. The

most relevant results are summarized next.

Properties of the �bres

Models with isotropic and orthotropic �bres were analysed; it was shown that �bre anisotropy is not a relevant

feature for the formation of kink bands, as the behaviour of these two models was very similar (both when it

comes to kink band's geometry and to load versus displacement curves).
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(a) Anti-
symmetric
sine-shape.

(b) Symmetric
sine-shape.

(c) Inclined
shape.

Figure 4.4: Types of imperfection with successful kink band formation.

Fibres were also modelled with di�erent constitutive laws after a common linear elastic domain (limited by the

�bre's strength Xf ): one model was fully linear-elastic, other perfect-plastic and another used linear softening.

The results show that �bre failure is not critical for the formation of kink bands, having no in�uence on the

composite's strength; it has, however, a small impact on kink band's parameters α , β and w, and on the

sharpness of its edges (which increases as one goes from the elastic law to the perfect plastic one and, even more

evidently, to the softened behaviour).

Type of imperfection

Besides the anti-symmetric sine-shape, other two global imperfections - symmetric sine-shape and inclined shape

with respect to load direction - also led to kink band formation.

The standard (anti-symmetric sine-shape, �gure 4.4 a) imperfection resulted consistently in a kink band in the

centre of the model, where the shear stresses in the matrix and the slope of the deformed �bres are higher. The

symmetric sine shape (�gure 4.4 b), without an in�ection point within the model (in�ections are located exactly

at the boundaries), kinked not in the centre by any instability, but at one of the edges of the model where shear

and slope are maxima as well. On the other hand, the model with straight inclined shape (�gure 4.4 c, with no

in�ection point at all) failed by kinking at the edge, where stress concentrations due to the boundary conditions

appear.

Models with no imperfection failed to produce kink bands and resulted in global buckling2 instead. In these

cases, the maxima bending stresses in �bres were always found at the boundaries, and the deformation went to

the higher order buckling modes in latter compression stages.

Consistently, the imperfections resulting in kink bands had induced shear in the constituents, being the band

initiated where these stresses on the matrix were higher; pure elastic instability proved to be a di�erent failure

mode from kink band formation.
2First order buckling and kinking di�er in the location of maxima bending stresses on the �bres: in pure buckling, they are

exactly at the boundaries and de�ne an angle of β = 0o with the loading direction, while in kinking they are moved inwards and
oriented at β > 0o.
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Type of interface between �bres

Three di�erent interfaces between the �bres (with bounded shear strength) were numerically tested: yielding

interface, failing interface and frictional interface.

The �rst two - yielding (elastic-plastic constitutive law) interface and failing (decohesive constitutive law) inter-

face - are part of the models that will be analysed in detail and represent a material (matrix) interface between

�bres; the mechanical behaviour obtained with both is very similar.

The other type of interface - frictional - is formally di�erent from the previous ones. In the simulations using

this feature3, the �bres were modelled as usually, but no material interface was de�ned between them; instead,

the analysis was run with a contact interaction for each pair of �bres. The contact between �bres, apart from

avoiding interpenetration, also induces frictional stresses τµ at their contacting surfaces, which act in a similar

way to the shear stresses induced by the matrix in the other models. The frictional stress is assumed to vary

linearly with the relative shear displacement between the two �bres (using a penalty factor to keep the relative

displacements small) until a limit point is reached, above which the frictional stress remains constant (directly

proportional to the contact pressure, τmaxµ = µ · p). From this behaviour, the condition of having the shear

stresses between �bres bounded by a �nite value is also ful�lled; considering all the similarities between these

two types of interface, it is not surprising that the simple interaction between �bre layers by contact with friction

resulted into kink bands as well. However, this only happened when a su�cient overburden pressure was applied

transversely to the �bres; was it not the case, and the �bres separated in the central region of the model (where

the kink band was likely to form), and due to the lack of contact no friction arose and a kink band was not

initiated.

4.3.2 Response curves for models on kink band initiation

The formation of kink bands was simulated by several FE models, being each one a variation of the standard

one described in section 4.2.3. Among all, four models were deeper studied to understand the phenomenon:

• cohesive model with failing interface, implemented through a decohesive constitutive law for the matrix;

• matrix model with yielding interface, implemented through a elastic-plastic constitutive law for the matrix;

• CDM model with failing �bres (short con�guration), using a bi-linear constitutive law for the �bres (both

in compression and tension) implemented through a CDM (Continuous Damage Mechanics) model;

• CDM_extended model with failing �bres and extended (twice as long) con�guration, with straight ends

added to the initial imperfection (with standard wavelength and amplitude).

The response curves for the previously referred four models are provided in the next graphics (�gures 4.5 and

4.6). These curves report, for the cohesive and matrix models, the composite's overall response from the initial

con�guration till �rst failure had occurred in model's central �bre (0 ≤ u(L) ≤ 100µm); for the CDM and

CDM_extended models, the analyses were run further (0 ≤ u(L) ≤ 250µm).

The load versus shortening curve (�gure 4.5) shows the expected behaviour for �bre kinking: the response is sti�

and nearly linear at the beginning (here named as the elastic domain), with a sudden reduction in the sti�ness

3Acknowledgments to Renaud Gutkin for the models with frictional interface.
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Figure 4.5: Load (P ) versus shortening (u(L)) curves for the four models on kink band initiation.

after the peak load is reached; afterwards, the material continues to be compressed under a progressively reducing

load (here named as softening domain).

The initial sti�ness is approximately the same in the four models; the major di�erence is found in the CDM_extended

model, slightly softer than the other three. The peak load is also similar in all of them, being slightly higher in

the model with failing interface (cohesive).

Right after the peak load, all the models converge to the same solution; as compression continues, the model

with failing interface (cohesive) shows a slightly more severe softening than the other three. Near central �bre

failure, both models without failing �bres (cohesive and matrix ) do sti�en, so the load increases for further

compression; that behaviour is delayed in the short model with failing interface (CDM ), and visibly reduced in

the extended con�guration (CDM_extended ).

The transverse displacement (averaged from the model's right edge, v(L)) also agrees with the typical response

found for kink band initiation (�gure 4.6).

Initially, the de�ection is small and very similar in all models, being the only di�erence found in the extended

one with failing �bres (CDM_extended, with lower v(u) slope). This domain ends with an instability (being the

tangent to the graphic almost vertical), which is quickly surpassed as the slope decreases progressively, with the

four models showing coincident curves.

Afterwards, the models without failing �bres (cohesive and matrix ) continue to exhibit the same sti�ening (v

tends to stabilize) behaviour; the model with failing �bres (cohesive) is compressed at slightly smaller de�ections.

The models with failing interface (CDM and CDM_extended ) are further compressed at an approximately con-

stant de�ection sti�ness (constant slope); the short version (CDM ) becomes slightly sti�er at latter compression

stages, but shows a convergent tendency to the extended version at the end.

4.3.3 Model with failing interface for kink band initiation (cohesive)

In this simulation, the interface between �bres was modelled with cohesive elements, assuming a bi-linear con-

stitutive law for the matrix. The main results, from the beginning of compression to the moment when all the
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Figure 4.6: Maximum de�ection (v(L)) versus shortening (u(L)) curves for the four models on kink band
initiation.

�bres are overloaded, are presented next.

Load versus displacement curves

The load and de�ection curves were already presented in the previous section for global analysis; here, the goal

is to look at both together to identify corresponding features, and also to specify moments in the compression

at which detailed information on stress and displacement �elds will be given.

Having the P (u) and v(u) curves plotted together (�gure 4.7), one can see that the peak load and the instability

in the de�ection e�ectively match; for this reason, not only the load response changes from the elastic to the

softening domain, but also does the de�ection shape.

Figure 4.8 shows the load versus de�ection curve; its shape is similar to the P (u) curve, being the main di�erence

found for the less sharp sti�ness reduction after the peak load. In addition, it can be seen that matrix yielding

takes place just before the peak load is reached, and that both �rst and central �bre failure occur in the softening

domain; besides, there is a considerable gap between the moment when the �rst �bre (at the boundaries) in

the model starts failing (�rst �bre failure) and the one when all the �bres are partially overloaded (central �bre

failure).

The main stress and displacement �elds will be shown and analysed in detail for the seven points highlighted

in the previous graphic. These main stress �elds were chosen by comparing the von Mises stress to the several

stress components in �bres and matrix; it was concluded that, for �bres, the axial stress σf11 was the main stress

component, while for matrix the dominant stress was the in-plane shear one (τm12).

Axial stresses in �bres

The axial stresses in the �bres present two di�erent (qualitatively) con�gurations: one in the elastic domain,

and another in the softening one.
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Figure 4.7: Load (P ) and maximum de�ection (v(L)) versus shortening (u(L)) curves for the cohesive model.

Figure 4.8: Load (P ) versus maximum de�ection (v(L)) curve for the model with failing interface, highlighting
seven particular points.
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Figures 4.9 and 4.10 show σf11 in the elastic domain and at peak load; as it can be seen, the stress �eld initially

corresponds to the almost constant compression along �bre's length, with a low-amplitude sinusoidal component

superposed; at the longitudinal (top and bottom) boundaries, the free-edge e�ect induces considerable stress

concentrations.

At matrix yielding, the overall �eld is qualitatively similar (quantitatively, σf11 has increased); however, a careful

look at the central �bres show already the development of a di�erent response within a short �bre length (here

called as yield band ).

When the peak load is reached, two parallel bands (here called as maximum bending bands) with high σf11 stresses

start being de�ned at the centre; these bands, oriented at a small angle with the transverse direction, do not

cross the entire model's section yet, and the model's critical points are still found at corners. Nevertheless, the

previously mentioned feature (in the yield band ) in the σf11(x) curve for the central �bre is now more de�ned,

with a central shape similar to a sinusoid and almost �at ends. At this stage, all the stresses are compressive

yet.

After the peak load is reached and in the softening domain, the axial stresses follow the evolution shown in �gure

4.11 and 4.12. The de�nition of maximum bending bands improves, and the critical (maximum σf11) points move

from the corners inwards to the bands, along the �bres at the transverse boundaries; at the same time, tensile

stresses start appearing. The overall compressive stresses, away from the two bands, start decreasing, and the

sine-like shape for the axial stresses in the central �bre (in the yield band ) is magni�ed.

As the compression proceeds, these two maximum bending bands move apart from each other and become more

inclined (but still straight and parallel); the stresses outside the central yield band continue to decrease, but the

compression and tension components in the central sine-shape increase furthermore. For a single �bre, these

sine-shaped stresses are symmetrical when one considers the points at the top and bottom of the �bre (�gure

4.13).

At a given point, the compressive stress at the two boundary (top and bottom) �bres reaches the compressive

strength in the bands; at this moment, the model stops being representative, as �bres (in the simulation) continue

to follow a linear elastic law. Nevertheless, would the compression continue and all the �bres in the model would

be overloaded, with the two bands considerably inclined and almost reaching the transverse model's edges; the

maximum compressive stress in the central �bre would be equal to the �bre's strength under compression, and

the tensile one would almost present the symmetrical value, being the regions outside the central band nearly

unloaded.

Shear stresses in the matrix

The shear stresses in the matrix in the elastic domain are shown in �gures 4.14 and 4.15.

At the beginning, the shear stresses in the central �bres follow an approximately cosinusoidal law, being the

maximum found exactly in the centre of the model; the free longitudinal edges a�ect this distribution by

decreasing the shear stress progressively to zero along the last 10 �bres on each side, but the remaining �bres

show a very similar and in-phase stress distribution.

As compression proceeds, the shear stress in matrix layers continues increasing, and at a given point it actually

reaches the matrix's shear strength; at that moment, the stresses are bounded and a yield band - with constant

shear stresses - is formed in the centre of the model.
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(a) Elastic domain (P = 2.5N/mm). (b) First matrix yield.

(c) Peak load.

Figure 4.9: Axial stresses in the �bres (σf11) in the elastic domain (cohesive).
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Figure 4.10: Axial stresses in the bottom of the central �bre (σf11) in the elastic domain (cohesive).

After matrix �rst yielding, the yield band expands both in the axial (along each �bre) and transverse direction;

at the peak load, all the matrix layers are yielded in a small segment, with maximum width (wyield ≈ 200µm) at

the centre of the model. Outside this band, the shear stresses are quickly reduced near the band's boundaries,

decreasing then smoothly to zero towards the model's transverse boundaries.

After the peak load (�gures 4.16 and 4.17), the yield band quickly crosses the entire model with a nearly constant

width; this band is inclined in relation to the transverse boundaries, but outside the band the shear stresses

appear to be in-phase. Within the central matrix layer (�gure 4.17) one can see that, inside the yield band, the

shear stresses are slightly reduced from its boundaries to the centre; outside, there is an abrupt reduction in the

shear stresses near band's boundaries, followed by a smooth reduction to zero at the model's transverse edges.

As the compression proceeds, the yield band grows along the axial direction and becomes more inclined; within

the band, the reduction in the shear stresses from band's boundaries to its centre gets slightly more pronounced,

and the stresses decrease even more suddenly at the outer neighbourhood of band's boundaries.

When all the �bres are overloaded, the yield band has already reached the model's transverse boundaries at the

upper right and lower left corners; at this moment, the shear stress reduction within the band is more drastic,

and outside the band the tendency of releasing the stresses is inverted.

Transverse displacements

The transverse displacement measures the de�ection that �bres undergo during kink band formation; di�erent

�elds are found in the elastic and softening domains.

In the elastic domain, the displacement �eld is smooth (�gure 4.18), with the left part of the model moving

upwards and the right one downwards. A closer look at the de�ection of the central �bre (modi�ed so the left

section is �xed, �gure 4.19) shows a sinusoidal deformed shape until matrix yielding occurs; at the peak load,

however, the presence of a kinked (highly de�ected) region in the centre can be already noticed.

It must be noticed that, contrarily to what was suggested by the stress �elds, the �bres do not deform entirely

in-phase even in the elastic domain.
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(a) Band formation (P = 5.5N/mm). (b) Softening domain (P = 3.5N/mm).

(c) First �bre failure (edges). (d) Central �bre failure.

Figure 4.11: Axial stresses in the �bres (σf11) in the softening domain (cohesive).

68



Figure 4.12: Axial stresses in the bottom of the central �bre (σf11) in the softening domain (cohesive).

Figure 4.13: Axial stresses in the central �bre (σf11), at its top and bottom boundaries, at P = 3.5N/mm
(cohesive).
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(a) Elastic domain (P = 2.5N/mm). (b) First matrix yield.

(c) Peak load.

Figure 4.14: Shear stresses in the matrix (τm12) in the elastic domain (cohesive).
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Figure 4.15: Shear stresses in the central layer of matrix (τm12) in the elastic domain (cohesive).

After the peak load, the displacement �eld changes drastically: a perfectly de�ned band crosses the entire model

from the lower to the upper boundary, at an angle with the global transverse direction (�gure 4.20); inside this

band the displacements change quickly from positive (left) to negative (right), but in the outside regions the

de�ection is near zero.

The deformed shape loses then completely its sinusoidal apparence (�gure 4.21); two almost �at regions surround

the central kinked area, which is itself straight in the centre. As the composite is compressed furthermore, the

kinked band is rotated further more and extended towards model's edges; within each �bre, the three regions

already identi�ed as almost �at (left region outside the band, central region within the kinked band, right region

outside the band) become �atter, and the segments linking them become more curved.

At the �nal stage of the simulation (at central �bre �rst failure), a boundary e�ect appears and the kinked band

becomes curved near the top and bottom free edges.

Transverse stresses in the matrix

Although not as relevant as the shear stresses, the transverse stresses in the matrix can also play an important

role in �bre kinking. Figure 4.22 shows the transverse stresses (local coordinates) in the matrix, at the moment

of �rst matrix yielding (just before the peak load) and at �rst �bre failure (in the softening domain).

As it can be seen, as soon as the matrix starts yielding a thin band under transverse compression is formed; four

other areas under high transverse stresses (compression and tension) are shown near the horizontal boundaries,

outside the central compressed band.

As the compression continues, the thin band under compression is loaded further more, reaching σfirst fibre failure22 =

−51MPa; in addition, two larger bands under tension are formed right next to the central one, with tensile stresses

around σfirst fibre failure22 = 13MPa.
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(a) Band formation (P = 5.5N/mm). (b) Softening domain (P = 3.5N/mm).

(c) First �bre failure (edges). (d) Central �bre failure.

Figure 4.16: Shear stresses in the matrix (τm12) in the softening domain (cohesive).
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Figure 4.17: Shear stresses in the central layer of matrix (τm12) in the softening domain (cohesive).

Splitting

This model stops being representative after central �bre failure; however, continuing the simulation (not repre-

sented in the load and displacement curves), 60 �bres split from the model by matrix failure (�gure 4.23); after

this, the axial stresses are signi�cantly reduced in the central group of �bres.

Numerical variations

The model previously presented considered 100 �bres and made use of numerical stabilization; for comparison

purposes, a short overview on the results of two similar models - cohesive_0stab (with no damping applied) and

cohesive_20�bres (with only 20 �bres) - is given.

From the graphics in �gure 4.24, one can con�rm that material's response is approximately the same in these

three models. However, a signi�cant di�erence can be found in the initial sti�ness of the model with reduced

number of �bres; the peak load also decreases from the standard model (cohesive) to both the cohesive_0stab and

cohesive_20�bres models; in addition, the model with no stabilization (cohesive_0stab) shows a more sudden

softening right after the peak load.

Notwithstanding the previously pointed di�erences, the overall behaviour in latter stages within the softening

domain converges for the three models here analysed.

When it comes to stress �elds, the model with no damping (cohesive_0stab) gives the same qualitative response

as the standard model with stabilization (cohesive). Figure 4.25 shows the axial and shear stresses in �bres and

matrix respectively, for a load P = 3.5N/mm in the softening domain; in relation to the corresponding results

for the standard (cohesive) model, the only di�erence noticed is the slightly higher axial stresses in the damped

model.

The model with reduced number of �bres (cohesive_20�bres) presents a di�erent free-edge e�ect from the

standard one (cohesive): a yield circle is seen instead of a band, extended almost all across model's height and

at �rst matrix yielding (�gure 4.26).
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(a) Elastic domain (P = 2.5N/mm). (b) First matrix yield.

(c) Peak load.

Figure 4.18: De�ection (v, global referential) in the elastic domain (cohesive).
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Figure 4.19: De�ection of the central �bre (v, global referential) in the elastic domain (cohesive).

4.3.4 Model with elastic-plastic matrix (matrix )

In this simulation, the interface between �bres was modelled with common plane strain elements, assuming a

linear elastic - plastic with hardening - perfect plastic constitutive law for the matrix.

This model's behaviour is very similar to the one with cohesive elements, both qualitatively and quantitatively.

The only signi�cant di�erence is found in latter stages in the softening domain: in the matrix model, the two

maximum bending bands de�ned after the peak load (�gure 4.27 a) disappear as the yield band reaches the

model's transverse boundaries, and deformation is con�ned to the upper right and lower left corners (�gure 4.27

b).

Following this change in the global deformed shape, the axial stresses in the model's central �bres decrease in

latter stages; for the central �bre, the maximum compressive stress found during the analysis is σf11,C = 2228MPa,

so failure never initiates (σf11,C < Xf
C).

4.3.5 Extended model with elastic-plastic matrix and failing �bres (CDM_extended )

The CDM_extended model was analysed with the goal of studying the composite's response after �rst �bre

failure; the model's geometry was extended with two straight ends (�gure 4.29 a), and a CDM was implemented

to allow �bre failure both under axial compression and tension. The �bres follow therefore a bi-linear material

response, and the matrix a linear elastic - plastic with hardening - perfect plastic constitutive law.

The damage model used for the �bres is available in ABAQUS Standard library; it was speci�cally conceived for

meso-scale modelling of composite materials, but by adjusting its several parameters it is possible to transform

it into a maximum axial stress criterium; a plane stress state is required for the CDM to be used, and therefore

both �bres and matrix were modelled with plane stress elements.

Figure 4.28 a shows the evolution of this model after �rst �bre failure, with the kink band (between the two

maximum bending bands) becoming wider and more inclined as the compression continues; inside the band, �bre

rotation increases too.
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(a) Band formation (P = 5.5N/mm). (b) Softening domain (P = 3.5N/mm).

(c) First �bre failure (edges). (d) Central �bre failure.

Figure 4.20: De�ection (v, global referential) in the softening domain (cohesive).
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Figure 4.21: De�ection of the central �bre (v, global referential) in the softening domain (cohesive).

(a) At yield band's formation. (b) At �rst �bre failure.

Figure 4.22: Transverse stresses in the matrix (σm22, local referential) (cohesive).
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(a) First splitting appears. (b) Splitting fully developed.

Figure 4.23: Split group of �bres, at the end of cohesive simulation.

(a) Overview. (b) Detail on the elastic domain and peak load.

Figure 4.24: Load (P ) versus de�ection (v(L)) curves for the numerical variations of the cohesive model.

(a) Axial stresses in the �bres. (b) Shear stresses in the matrix.

Figure 4.25: Stress �elds for the model with no stabilization (softening domain, P = 3.5N/mm).
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Figure 4.26: Shear stresses in the matrix for the model with cohesive_20�bres (at �rst matrix yielding).

(a) At P = 3.5N/mm. (b) At shortening of cohesive's central �bre failure.

Figure 4.27: Axial stresses in �bres (σf11) for the matrix model, in the softening domain, with overstressed areas
highlighted.
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(a) Axial stresses in the �bres. (b) Fibre damage under compression.

Figure 4.28: CDM_extended model: con�guration during �bre failure process.

At the simulation's last step, none of the �bres is completely broken yet; damage under compression (�gure 4.28

b) is seen not only along the maximum bending bands (feature 1 ) but also between them, near the upper and

lower longitudinal edges (feature 2 ).

Figures 4.29 b to d show the axial stress �elds for each con�guration given in �gure 4.28 a; it can be seen that

failure starts under compression (b), and that tensile breakage begins only after the central �bre is already

damaged.

A comparison between this model (CDM_extended ) and the corresponding ones - without extended geometry

(CDM ) and without extended geometry and damage (matrix ) - is also given in �gures 4.29 b to d: at �bre

failure (b), the three models are almost coincident; as the compression continues (c), the matrix model evolves

into a more rounded deformed shape, with the areas of higher curvature con�ned at the model's corners; from

the moment when the yield band reaches the transverse boundaries in the CDM model on, this model (CDM )

starts diverging from the extended one (CDM_extended ) too (d).

4.3.6 Results from model with kink band propagation (propagation)

All models previously presented assumed an initial imperfection, which is reasonable when kink band initiation

(triggered by some kind of defect) is studied; however, a composite does not present a global imperfection,

so after initiation the kink band has to propagate through (almost) perfectly aligned �bres. For this reason,

another numerical model - with 50 initially imperfect �bres (sinusoidal shape as previously used, with amplitude

of misalignment constant along the �rst 25 �bres and decreasing linearly to straight �bres along the other 25

ones) and 150 straight �bres - was used to simulate kink band propagation (�gure 4.30).

In the propagation model, the �bres are linear elastic. The matrix follows a bi-linear law (linear elastic +

softening) in shear (decohesive constitutive law); however, the transverse stresses are governed by a simple

linear elastic law.
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(a) Initial geometry. (b) At �rst �bre failure.

(c) At central �bre failure. (d) At the last step.

Figure 4.29: CDM_extended model: geometry, axial stresses and comparison with matrix and CDM deformed
shapes.
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(a) Initial geometry. (b) Kink band propagation.

Figure 4.30: Model for kink band propagation.
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Kink band propagation

Figure 4.31 presents the sequence of events in the model for kink band propagation:

1. A wide yield band is formed in the matrix surrounding the imperfect �bres;

2. A narrow kink band starts forming in the imperfect �bres; the yield band narrows and propagates towards

the initially straight �bres;

3. The kink band crosses the entire imperfect region towards the perfect �bres, and �bre failure starts at the

model's upper �bres; the yield band is propagating across the perfect �bres;

4. The kink band propagates across the straight �bres, which become su�ciently stressed to start failing in

compression; the tip of the yield band reaches the model's bottom boundary;

5. The kink band is fully propagated, both in terms of �bres and matrix; its inclination is still reduced from

the top to the model's bottom;

6. The band broadens and rotates, so its geometry - w, β and α - is constant across the entire model at the

end; stresses are considerably released.

Figure 4.32 shows the stress �elds σf11 and τm12 for kink band propagation in straight �bres; the band is almost

vertical (β = 2o) and narrow (w = 75µm ≈ 10 ·φf ), and the propagation length (estimated by the distance from

the tip of the yield band (matrix yielding) to the tip of the overstressed �bres (�bre failure) is Lprop ≈ 550µm ≈
78 · φf ≈ 7.3 · w. In addition, it is unquestionable that matrix yielding precedes �bre failure.

Transverse stresses in the matrix

Figure 4.33 presents the �eld of transverse stresses in the matrix (σm22) in the propagation model, during propa-

gation across straight �bres (sub�gure a, corresponding to �gure 4.32) and after full band propagation (sub�gure

c, corresponding to �gure 4.31 e).

As one can see, when the kink band is propagating (between the tip of the yield band and the last overstressed

�bre), the material outside the band is under transverse compression on the right and transverse tension on the

left, and inside the band almost no transverse stresses are found (�gures 4.33 a and b). After the kink band

is fully propagated across the model's transverse direction (�gures 4.33 c and d), the band's centre is under

compression and its boundaries under tension.

Variations of the model

As it was stated, the previous propagation model has an interface (matrix) able to fail in shear but not in tension;

two variations - propagation_failure and propagation_constrained - of this model, with tensile failure allowed,

were analysed as well.

The di�erence between propagation_failure and propagation models is just matrix's constitutive law in the

transverse direction (changing from linear elastic in propagation to bi-linear in propagation_constrained ). These

two models' responses are the same until matrix tensile stresses reach its tensile strength; however, afterwards,

the propagation_failure model starts opening splits between �bres: the �rst splitting (feature 1 in �gure 4.34)
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(a) Step 1, σf
11. (b) Step 1, τm

12. (c) Step 2, σf
11. (d) Step 2, τm

12.

(e) Step 3, σf
11. (f) Step 3, τm

12. (g) Step 4, σf
11. (h) Step 4, τm

12.

(i) Step 5, σf
11. (j) Step 5, τm

12. (k) Step 6, σf
11. (l) Step 6, τm

12.

Figure 4.31: Kink band propagation (full model): sequence of events.
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(a) Axial stresses in �bres. (b) Shear stresses in matrix.

Figure 4.32: Kink band propagation in straight �bres.

occurs for a group of three �bres, where the imperfection ends, and the second splitting (feature 2 ) opens 40

�bres below the �rst one, leading to the formation of a V-shape (feature 3 ) within the �bres between splittings.

Propagation_constrained model di�ers from the original (propagation) one also in the transverse constitutive

law for matrix (which is now bi-linear); in addition, the kink band is propagated with the upper �bre �xed, after

its �rst failure.

As the �bres are further compressed, they split from the top (�xed) �bre as seen in �gure 4.35a (feature 1 ); the

split �bres deform in a V-shape (as highlighted by features a and b), leading to the formation of a complementary

yield band (�gure 4.35 b, feature 2 ). At the same time, transverse stresses (�gure 4.35c) show compression in

the matrix on the left side and tension on the right one, triggering the formation of a splitting in the initially

straight �bres (feature 3 ).

Compression continues (�gure 4.35 d to f), and the splitting bellow the constrained �bre (feature 1 ) propagates

to the right until it opens completely; at that moment, all the �bres in the model progressively deform to the

typical kink shape (feature c), and one fully developed kink band crosses �nally the entire model.

4.3.7 Results from model with complementary kink band (CDM_complementary )

The model presenting a complementary kink band (CDM_complementary ) is very similar to the extended model

with failing �bres (CDM_extended ); the only di�erence is that, in the present case, the top left node was clamped

(restraining rigid body movement) and higher damping was used.

The composite's con�guration at the simulation's last step is shown in �gure 4.36; the �rst kink band was

developed at the centre, followed by the complementary one on its left. Fibre failure (sub�gure a) started

from the boundaries under global compression (concave sides) and progressed transversely towards the opposite

(convex) edges, with each �bre failing both in compression and tension. Inside the bands de�ned by �bre

overstressing (damage model active), the matrix yielded completely (sub�gure b).
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(a) Stress �eld for kink band propagation. (b) Tension (red) vs compression (blue) for kink band
propagation.

(c) Stress �eld after kink band propagation. (d) Tension (red) vs compression (blue) after kink
band propagation.

Figure 4.33: Transverse stresses in the matrix (σm22) during kink band propagation, in initially perfect �bres.
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(a) σf
11, before splitting. (b) σf

22, before splitting.

(c) σf
22, after �rst splitting. (d) τf

12, after �rst splitting.

(e) τf
12, after second splitting. (f) σf

11,after second splitting.

Key 1: �rst splitting; 2: second splitting; 3: V-shape.

Figure 4.34: Propagation with transverse failure: splittings.
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(a) σf
11, before full splitting. (b) σf

12, before full splitting. (c) σf
22, before full splitting.

(d) σf
11, after full splitting. (e) σf

12, after full splitting. (f) σf
11,after full splitting.

Key:

1: �rst splitting - upper �bre (�xed after �rst failure);
2: complementary yield band;

3: second splitting - between perfect �bres.

a) V-shape between splittings;
b) V-shape after second splitting;

c) kinked shape after full splitting.

Figure 4.35: Propagation with top �bre constrained.
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(a) Axial stresses in �bres. (b) Shear stresses in matrix.

Figure 4.36: Complementary kink band in the CDM_complementary model.

Figure 4.37 shows the stages in the development of the complementary kink band. The �rst band was formed

like in the other models, but a small curvature on the left side (near the clamped node) could be already noticed

at that stage (a, b); right after this, the complementary band started developing (all across model's height), both

in terms of matrix yielding and �bre overstressing (c, d). The two yield bands broadened then symmetrically

until they met each other (e, f), and afterwards broadening continued unilaterally.

Looking onto shear stresses in the matrix (�gure 4.38) when the �rst band (in blue) was initiated, two almost

symmetric bands with high shear are also shown (in red). These bands were formed at the location where the

initial misalignment ended, and the asymmetry between them is found near the clamped node.

4.4 Discussion

4.4.1 Model representativeness

As it was discussed when the modelling strategy was presented, using numerical models to assess the mechanical

behaviour of a complex material can result into non physical models; for this reason, the modelling features most

likely to induce qualitative errors or inaccuracies in the models - use of numerical damping, shape of constitutive

laws for matrix and �bres (especially for yielding / softening domains), initial imperfection - were applied in a

controlled way.

Besides, the decision on what can be considered a numerical kink band depends on the idealisation of what a

kink band actually is, which was a question with no clear answer a priory; nevertheless, all the models here

discussed do present a kinked shape (�bres rotated in a sharper way than in a sinusoidal de�ection), localized

deformation in a band (with the models' boundaries almost in a stress-free state) inclined in relation to the

transverse direction (β 6= 0), and a load history and stress / displacement �elds in agreement with experimental

results.

Finally, in addition to kink band initiation, other reported features - propagation, complementary bands, split-

tings - were actually reproduced in the numerical simulations; although this was sometimes achieved through

non physical mechanisms, a correspondence between numerical and experimental results was always observed.

89



(a) Axial stresses in �bres, at �rst band formation. (b) Plastic deformation in matrix, at �rst band formation.

(c) Axial stresses in �bres, at complementary band forma-
tion.

(d) Plastic deformation in matrix, at complementary band
formation.

(e) Axial stresses in �bres, with two bands developed. (f) Plastic deformation in matrix, with two bands de-
veloped.

Figure 4.37: Formation of a complementary kink band (CDM_complementary ).

Figure 4.38: Shear stresses in the matrix (τf12) in model with complementary kink band, after �rst band formation
(CDM_complementary ).
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The current modelling strategy is not only capable of capturing the basic phenomena involved in kink band

formation, but it is also representative of some of its detailed physics.

4.4.2 Load versus displacement curves for kink band initiation

The four P (u) and v(u) curves presented for the initiation models - cohesive, matrix, CDM and CDM_extended

- evidence the same mechanical response; one can therefore conclude that the di�erent features experimented

- di�erent matrix constitutive laws, di�erent �bre response after failure, di�erent types of geometry - do not

represent critical features for kink band initiation. Kinking is then possible regardless initial matrix non-linearity,

matrix softening for large strains, �bre failure and damage propagation.

In the elastic domain (before the peak load is reached), both matrix and �bres follow (almost) linear elastic

constitutive laws; the e�ect of the initial imperfection in the compression is negligible, resulting into the almost

linear behaviour found in P (u) and in a small de�ection v(u). The peak load is reached when the matrix yields

by shear, so the stresses cannot increase in the matrix within a band at the model's centre; this promotes a

sudden change in the deformed shape, with a kinked area that corresponds approximately to the yield band,

and consequently to an abrupt sti�ness reduction and unstable de�ection. Afterwards the material continues

softening, as the yield band is extended towards model's boundaries.

The small di�erences found between the four models are easily justi�ed. The di�erent slope found for the

extended model (CDM_extended ) is due to its di�erent geometry, as the shortening for �rst matrix yielding

needs to be larger (the lateral extensions have to be compressed as well); no signi�cant change is seen in the

peak load, as the required stress for matrix yielding does remain the same. Continuing with the peak load, the

higher value found for the model with a failing constitutive law for the matrix (cohesive) can be explained by

the higher stabilization used (to help model's convergence in further steps), which is also a likely reason for

the de�ection v to be slightly smaller than in the other models, in the softening domain; when it comes to the

evolution found for the load P , this model di�ers from the others by the lack of axial sti�ness of the cohesive

elements, resulting into slightly lower loads P for a similar compression u.

Just before the end of the analysis, both the models without �bre failure (cohesive and matrix ) show a bizarre

behaviour, with the load P increasing for further compression u. This phenomenon is justi�ed by the boundary

e�ect: as compression increases, the yield band is further extended towards the model's vertical edges, which

cannot rotate due to the boundary conditions; for this reason, the response sti�ens. The e�ect is delayed in

the model with the same geometry but failing �bres (CDM ), because as soon as �rst �bre failure takes place

the �bres start softening and the yield band 's expansion towards the boundaries is hindered. Finally, the model

with extended geometry (CDM_extended ) is almost not sensitive to the boundary e�ect, as the kink band is

kept within a con�ned region far away from the transverse edges.

It is also worth to be noticed that, despite the di�erent geometry with extended straight ends, the transverse

displacement v(L) in the CDM_extended model is not much larger than in the CDM one, in the softening

domain; this suggests that the de�ection, when a kink band is formed, is kept mainly within the length of the

initial imperfection, with no signi�cant e�ect in the straight extensions (which correspond to perfect segments

of �bre).

4.4.3 Numerical features

Two numerical parameters were analysed: the use of stabilization and the number of �bres represented.
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Stabilization is a numerical form of damping, so it delays and smooths sudden changes in the model by adding

a residual viscous force (acting like an inertial force). Consequently, the model ran without any stabilization

(cohesive_0stab) presents a lower peak load, being that e�ect spread to the early stage of the softening domain;

away from the peak load, the two (with - cohesive - and without - cohesive_0stab - stabilization) responses

are coincident. Looking now into the stress �elds, one must notice at �rst that, although the same load (P =

3.5N/mm) is given for the two sets of plots (�gures 4.16 b and 4.25 b), in the load versus displacement graphic

(�gure 4.24) the model with stabilization (cohesive) is more de�ected; for that reason, slightly higher stresses

are found in that model, but qualitatively the �elds are exactly the same. The use of stabilization was always

controlled by the ratio damping-to-strain energy (kept under 5%, except in the model CDM_complementary ),

so the models' response is not over a�ected.

The number of �bres included in the models can in�uence the results both by the overall model's sti�ness and

the extension of free-edges e�ect. Comparing the load versus de�ection P (v) curves from the models with 20

(cohesive_20�bres) and 100 (cohesive) �bres, the lower initial modulus in the model with less �bres suggests

that, in this domain, the response is global, so the smaller number of �bres allows the model to de�ect in a much

easier way; in the softening domain, however, the de�ection occurs �bre by �bre, so the e�ect of their number

is vanished (this agrees with the σf11stress �elds in both the elastic and softening domains). In addition, having

fewer �bres makes the yield circle (�gure 4.26) to cross the cohesive_0stab model quicker; this, together with

the lower sti�ness in the elastic domain, lowers the peak load when compared to the models with 100 �bres.

4.4.4 Role of the matrix in kink band initiation

The results provided by the model for kink band initiation with failing interface (cohesive) evidence the important

role played by the matrix in the initiation of �bre kinking.

It had already been pointed by some researchers (Chapter 2) that matrix yielding was a critical feature for kink

band formation; considering the numerical simulations and also some experimental results, one can reasonably

assume that matrix yielding is actually what de�nes the process of kink band formation.

Matrix acts as an interface between �bres; the dominant stresses in the matrix are the shear τm12 ones (�gure

4.39), especially in early kinking stages; matrix's direct contribution to the axial sti�ness is negligible due to its

small Young's modulus (when compared to the �bre's modulus), and the transverse stresses have a zero-resultant

force in the �bres and do not a�ect yielding signi�cantly (for kink band initiation). The role of the matrix is

therefore to provide support to the �bres by transferring shear stresses to their surface.

Matrix yielding in shear de�nes (apart from model's free-edges e�ect) the peak load and, for that reason,

the composite's strength XC ; in addition, �rst matrix yielding coincides with the development of the kinked

deformed shape that is found in the softening domain and, consequently, with the change in the distribution of

axial stresses in �bres. The formation of a yield band is the only feature that can justify the di�erences in the

composite's mechanical response between the elastic - when no kinking occurs - and softening - when a kink

band is formed - domains.

Considering all this, and recalling the experimental conclusion about �bre failure being a simple consequence of

kinking, it can be stated that matrix yielding is actually the event that triggers kink band initiation, being the

development of a yield band the most important feature in its formation.
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Figure 4.39: Detail of deformed shape (over initial shape) in cohesive model (softening domain): two �bres
(blue) and one layer of matrix (red).

4.4.5 Shear stresses and deformation in the matrix

As it was just discussed, shear stresses govern matrix's response during kinking, so their evolution both in terms

of load history and axial position is of the highest relevance.

Before the peak load and for the cohesive model, matrix's behaviour in shear is linear-elastic; the evolution of

shear stresses in a layer of matrix (�gure 4.15) suggests a cosinusoidal law. In the softening domain, shear in

the matrix inside the yield band is approximately constant along the �bre (�gure 4.17); although the last curve

shows a signi�cant decrease in the shear stress (due to element degradation), this is considered to be a free-edge

e�ect (the yield band reaches model's transverse boundaries when degradation starts to be more relevant). The

damage in the cohesive elements within the yield band is high, but the high value of shear toughness allows the

stresses to remain almost constant; this behaviour was veri�ed to be independent from numerical damping. At

the same time, outside the yield band the matrix is still in the elastic domain; however, shear stresses do not

follow a cosinusoidal law anymore.

Shear stresses are in�uenced at �rst by the matrix's constitutive law; in the simulations run, two laws - linear

elastic - plastic with hardening - perfect plastic and linear elastic - linear softening - were used; qualitatively,

the only di�erence is found at latter stages of formation, making it di�cult to subtract boundary e�ects in

the comparison. The model with failing interface (cohesive) shows, at the end of the simulation, the band's

boundaries well de�ned, which leads to a similar curvature for all �bres (�gure 4.40 a); the model with yielding

interface (matrix ), on the other hand, presents at the last increment a non uniform deformed shape across

the transverse direction, with �bres' curvature increasing along the model (�gure 4.40 b). Looking onto shear

stresses in the matrix on both models, it is found that the two models start diverging when shear stresses in

the cohesive model start decreasing (due to damage propagation); in the matrix model, shear stresses inside the

yield band are constant. At the last increments, the yield bands are extended along the entire models; for this

reason, the matrix model has constant shear stresses across both its axial and transverse directions, so a central

band cannot be de�ned and de�ection becomes global.

4.4.6 Role of �bres in kink band initiation

The previous discussion about the importance of the matrix in kinking leaves the �bres with a simpler role in

the process, as their failure may not contribute actively to the composite's failure in this speci�c mode.

All the numerical models (and particularly the cohesive one, analysed in detail) show that the major stress

component in the �bres during kink band formation is the axial one, which agrees with the common response of
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(a) Cohesive model. (b) Matrix model.

Figure 4.40: Comparison between �nal de�ection in cohesive and matrix models (other model's de�ection in
dashed line).

a FRP. The σf11 �elds, during both the elastic and softening domains, suggest loading due to compression and

bending, as there is an almost constant component along the �bre's cross section (compression) superimposed

with a symmetrical one (bending), having the latter the maxima located at the areas of highest curvature.

At the beginning of analysis (�gure 4.10), the constant component (along the �bre's length) of the axial stresses

is considerable, so the response is dominated by compression; as the matrix yields, that component is still the

most important one, but bending starts being perceived at the central region. After full formation of a yield

band (�gure 4.12), the overall compressive strain in the model (due to compression) is progressively reduced,

followed by a signi�cant increase in the bending component; this suggests that, in this domain, the shortening is

caused mainly by �bre de�ection and less by pure compression, which agrees with the experimental conclusions

suggested by the type of �bre failure seen in some micrographs (Chapter 3).

As the compression continues, bending moments increase and the �bre's axial strength (in compression, in the

present case) is reached; �bre failure starts at this point. The material's behaviour after this event was not fully

tracked, and a discussion is given in section 4.4.7; nevertheless, it can be suggested that kink band's �nal width

(w) and angle (β) are roughly de�ned at �rst �bre failure, without the in�uence of free-edge e�ects.

4.4.7 Response after �rst �bre failure

The CDM_extended model provides information on �bre behaviour after �rst failure (of the �bres at the edges).

Figure 4.28 a shows that the kink band's geometry cannot be de�ned by �rst �bre failure in the model, as in

the last step the band is considerably wider and more inclined; this is con�rmed by �gure 4.28 b, in which one

can see that damage occurs �rst nearer �bre's centre, moving then outwards along the axis of the �bres at the
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horizontal edges (feature 2 ). However, it is also suggested by the same image that that is a free-edge e�ect,

as after crossing the outer �bres the damage starts propagating transversely within a band (feature 1 ); looking

back onto �gure 4.28 a, it is con�rmed that the band's width and inclination stabilizes after central �bre �rst

failure, which agrees with the previous hypothesis.

Figure 4.29 can be used to assess the relevance of modelling damage propagation during �bre failure. The

two shorter models (CDM and matrix ) diverge from the extended one (CDM_extended ) for latter stages in

compression, but that e�ect is mainly due to the transverse boundaries: in sub�gure c, one can see that the two

maximum bending bands are reaching the free transverse edges of the shorter models, and in sub�gure d they

are signi�cantly over them, even for the central �bres. Also in sub�gure c, the model without CDM (matrix )

shows a di�erent curvature at the horizontal boundaries; although the overall de�ection (v) is very similar to

the de�ection in the models with the CDM implemented, the central �bre does not present a similar shape in

the three models, as it never reaches �bre's compressive strength in the matrix model.

Fibre failure plays a role in the de�nition of kink band's geometry; however, for the analysed models it is not

clear how to distinguish between the e�ects of model's boundaries and damage propagation, so this issue is still

open to discussion.

4.4.8 Transverse stresses in the matrix

As it was mentioned, damage propagation and �nal failure in the matrix are not modelled accurately (both due

to the linear shape of the softening law and the values of toughness); for this reason, once under in-plane shear or

transverse tension, it is possible that the matrix in the real composite presents a faster or slower degradation, so

splittings can actually appear after or before they are predicted in the numerical models. Unfortunately, having

a splitting open under transverse tension is not qualitatively similar from having a partially damaged matrix, as

the former will not be able to transfer shear stresses and the latter will; taking this into account, it is important

to know if the models predict transverse tension or transverse compression between the �bres inside the kink

band, as completely di�erent behaviours (in terms of shear stresses transferred to the �bres) will occur in each

case.

Looking onto σm22 in the cohesive model for kink band initiation in misaligned �bres (�gure 4.22), a central band

under considerable transverse compression is found; there, and even if full splittings develop in shear, the matrix

will always be able to support the �bres, as any crack will be closed and shear stresses can be transferred as

friction. When the kink band is at a latter stage of formation, however, in its boundaries the stress state is a

tensile one, so if the matrix fails completely then no stresses can be transmitted and the �bres will be totally

unsupported in those regions.

When it comes to kink band formation in initially perfect �bres (propagation model and its variations), a

di�erent behaviour is found: during propagation, the model is under transverse compression in one side, and

under transverse tension in the other, being that behaviour noticed inside the kink band as well (�gure 4.33);

these global transverse stresses are discussed in section 4.4.12. After full propagation across all �bres in the

model, the transverse stress state changes to a similar one as found in the models for initiation: a band under

compression forms inside the kink band, and two bands under tension at its boundaries (�gures 4.33 c and d,

4.34 c and f, 4.35 c), both for the areas with initially misaligned and perfect �bres. This reveals that, once the

kink band is fully formed and the e�ects of propagation are reduced, the �bres are compressed transversely in

kink band's centre and tensioned at its edges; therefore, stresses from matrix to �bre are e�ectively transferred

inside the band, but at its boundaries cracks can be open so continuity is not guaranteed.
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Figure 4.41: Bands formed during kinking (softening domain, P = 3.5N/mm ).

Notwithstanding this conclusion, it should be noticed that �bre failure is not modelled in the simulations

with failing interface (cohesive and propagation models); it is then possible that, when �bres start breaking,

the deformed shape changes in a way that promotes transverse tensile stresses, with the already discussed

implications.

4.4.9 Bands formed in kinking

During �bre kinking, three di�erent bands - each one taking into account a stress or displacement �eld - are

developed (�gure 4.41).

The �rst and wider one is the yield band, de�ned by matrix yielding in shear (τm12); it is the only band in which

the material's constitutive law changes from the elastic domain to the softening one, so it is suggested that this

is the primary band in �bre kinking, being all the others its consequences.

The second band is actually de�ned by two parallel bands itself, where the axial stresses in the �bres (σf11) are

maxima (maximum bending bands); outside these band the �bres are almost straight, so bending is reduced and

axial stresses are almost uniform (and mainly due to the pure compression component).

In the yield band 's centre is the band de�ned in terms of de�ection (v), with the �bres actually rotated from

their initial con�guration; the location of the maximum bending bands suggests that they were formed because

of this band.

Summarizing, the dominant band formed in �bre kinking is the matrix yield band, leading to the formation of

a secondary band with �bres strongly kinked inside it; the centre of maximum bending bands (if �bre failure

occurs) will dictate the kink band's �nal width.

4.4.10 Sequence of events for kink band initiation

Considering the results already presented from the model with failing interface (cohesive), it is possible to de�ne

the sequence of events leading to kink band formation.
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At �rst, the composite deforms in a nearly linear mode, merely magnifying its initial imperfection, with both

constituents - �bres and matrix - following linear (in this case) constitutive laws; the �bres are mostly under

compression (superimposed with a very low bending component) and the matrix responds mainly in shear and

approximately in-phase.

As the material is compressed further more, the shear stresses in the matrix continue to increase, until the matrix

shear strength is reached and the material starts yielding. A yield band is then de�ned across the �bres, and

the peak load is reached when it crosses completely the material in the transverse direction. The composite's

strength under axial compression is reached and failure is imminent under load control.

After matrix yields and the peak load is reached, the yield band broadens along the axial direction; as it happens,

the �bres start deforming in a kinked shape instead of a sinusoidal one; the axial stress �eld changes consequently,

with a response that is due to pure compression only in a small amount and has the major component due to

bending, both with tensile and compressive stresses.

As the compression continues, the yield band enlarges and so does the kinked area; �bre rotation increases inside

it, and near the band's boundaries the �bres bend more and more. The bending stresses increase to a level that

cannot be supported, and �bres �nally start breaking under compression where stress concentrations exist (at

free-edges).

After this point, the model with failing �bres (CDM_extended ) has to be used; the behaviour after �rst �bre

failure is not as well studied as the previous stages, but some hypothesis can be raised. The boundary �bres

are slowly damaged but the yield band widens quickly, changing continuously their deformed shape; due to

this and for the values of �bre toughness used, damage propagates diagonally (towards model's centre along the

transverse direction and towards model's boundaries along the longitudinal direction), so the �bres at boundaries

are partially damaged in a large pathway. As compression continues, the inner �bres starts being damaged too,

in areas free of edge-e�ects; from this moment on, damage propagation occurs transversely, and the kink band's

width w and angle β are de�ned.

As �bre curvature increases, the tensile strength is reached as well; damage propagates across the composite

both in compression and tension, along the path previously de�ned by β and w; the �bres continue to rotate (α

increases), until the point when �nal failure occurs in all of them.

4.4.11 Kink band propagation

Kink bands were propagated through �bres with no initial imperfection in models propagation, propagation_failure

and propagation_constrained. It is shown that the already discussed mechanisms found for kink band initiation

- formation of a yield band with bounded shear stresses and consequent reduction on support provided to the

�bres, followed by �bre bending and further failure - participate in propagation as well. These mechanisms are

put in evidence in �gure 4.32, where it is unquestionable that matrix yielding in shear occurs for very small

de�ection and, therefore, much before �bre failure.

Kinking starts at the misaligned �bres (�gure 4.31); their de�ection induces (through matrix deformation) the

initially perfect �bres to rotate as well, and the band's angle (β) is reduced signi�cantly as the band moves into

the straight area (�gure 4.30 b). If no matrix transverse �nal failure occurs, the band continues to propagate

across the composite - �rst in terms of matrix yielding and then in �bre failure -, until it reaches the last �bre

in the model; at this moment, the band is very narrow and still presents a change in its orientation where the
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(a) Experimental result (specimen r-UD_2d2,
loaded).

(b) Numerical result (propagation).

Figure 4.42: Kink band propagation: comparison between experimental and numerical results (same scale).

imperfection ends. However, after full propagation across all the �bres, the band starts widening, and it quickly

becomes into a single oriented wider band, with no geometric di�erence between the imperfect and perfect areas.

Comparing these results with the sequence commonly described in the literature for �bre kinking (Chapter 2),

the agreement is notorious: the band initiates at an imperfection (or near stress concentrations), it propagates

transversely across all the �bres until it reaches a free edge, and then it broadens axially.

When the band broadens to its �nal con�guration, it does so asymmetrically (in �gure 4.31 from i to k, the

band broadens towards right near the top and towards left at the bottom); this behaviour (uneven broadening)

was actually noticed in the experiments (Chapter 3), although it is not known if it had occurred there for the

same reason.

Between the already kinked �bres and the aligned ones, the material is tensioned in the transverse direction in

one side and compressed in the other; for this reason, splittings open in the tensile side and can be followed by

�bre de�ection in a V-shape (�gures 4.34 and 4.35); this behaviour is further analysed in section 4.4.12.

Figure 4.42 shows a kink band propagating both in a real micrograph (specimen r-UD_2d2, loaded con�guration)

and in a numerical model (propagation), using the same scale; the similarity between them is notable. The

propagation length is very di�cult to de�ne accurately both numerically (as the �bres cannot fail completely)

and experimentally (as the de�ection is progressively reduced), but with the methods used the agreement is very

good as well (L
r−UD_2d2
prop ≈ 600µm, L

r−UD_aux
prop ≈ 550µm, L

r−UD_2d2
prop ≈ 550µm).

4.4.12 Splittings in kink band formation and propagation

Splittings were found both in models for kink band formation and propagation when a failing matrix was used.

The standard model for kink band formation (cohesive) does not present matrix failure for the steps in which

it is representative (i.e. controlled boundary e�ects and before central �bre �rst failure); nevertheless, after

kinking begins, the matrix soon starts developing tensile transverse stresses at band's boundaries (�gure 4.22).

As it was already discussed in section 4.4.8, failure is not accurately represented in the numerical models, so the

fact that failure is not seen may not be representative.

In the experimental results (Chapter 3), splitting was also analysed; despite being inconclusive (when loaded),

98



some micrographs did suggest open splittings at band's boundaries. This supports qualitatively the numerical

results, as the transverse tensile stress states are found precisely at that location. Besides, the last increments

in the cohesive model show a central group of �bres splitting; this results is not fully representative (as it is

mainly due to the �nite model's length), but it is interesting that matrix failure had occurred at the right place

and not in the �rst layers of matrix.

Models for propagation with failing matrix in the transverse direction - propagation_failure and propaga-

tion_constrained - do present splitting as well. As it was also discussed for the experimental results (Chapter 3),

kink band propagation promotes transverse tension in the material on one side of the kink band and compression

on the other, which is con�rmed in all models for propagation (�gure 4.33); splittings are then naturally open

in the tensile side, if matrix failure is allowed (�gure 4.34).

In addition, in these numerical models splitting is always followed by the formation of a V-shape (�gures 4.34

and 4.35); this might be similar to the formation of the second band in the specimen CC_6d (Chapter 3), which

would then support the hypothesis of V-shaped deformed con�guration there discussed. Besides, splittings were

formed in groups with di�erent numbers of �bres, which agrees with the experimental results as well.

Finally, no splittings were found at the kink band's centre.

4.4.13 Formation of a complementary kink band

The complementary kink band was created in a model with no rigid body movement allowed and high damping

applied; although not being physically representative, these features constrain the movement of the model along

the transverse direction, in similar way as when a con�ning pressure is applied experimentally; at this situation,

the composite cannot move freely to accommodate the rotation of the �bres within the band, so a complementary

band with the �bres rotated in the opposite direction is formed.

The damping energy was not monitored in this model; the stabilization factor was considerably higher than in

the corresponding CDM_extended model, which suggests that model's response is likely to be overa�ected by

numerical damping; nevertheless, the e�ect of this non-physical feature has a physical meaning, so it is considered

that the model here presented is representative of complementary kink band formation.

Real complementary kink bands usually form as shown in 4.43 a; in the numerical models, the formation of a

single kink band starts (in terms of matrix yielding) from the centre of the model (sub�gure b), and so does the

complementary one.

The formation of the complementary kink band follows the same process as the single one: shear stresses in the

matrix increase within a band (�gure 4.38), yielding occurs (�gure 4.37 d) and is followed by �bre rotation inside

the yield band ; �bres become highly curved at band's boundaries (�gure 4.37 c), and eventually start failing

�rst under compression at the horizontal boundaries (triggered by free-edge e�ect), and then damage propagates

�bre by �bre, both in compression and tension.

4.5 Conclusions

Load domains in kink band formation

Two load domains - elastic and softening - are found in the global load versus displacement curves for composites

under axial compression.
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(a) Experimental complementary kink band.

(b) Numerical complementary kink band.

Figure 4.43: Formation of a complementary kink band.

In the elastic domain, the load response P (v) is sti�, nearly linear and �bre de�ection is small. In the softening

domain, the material softens and the load is reduced for further compression, with a tendency to stabilize for

large deformations; the de�ection v follows the same tendency, but it stabilizes in a slower way than the load P .

Between the two domains, an instability occurs due to a change in the deformed shape of each �bre; the

compressive load drops abruptly and the de�ection increases suddenly as well, with the overall strain energy

being reduced instantaneously too. Matrix yielding is the event setting these two domains apart.

Fields in the elastic and softening domains

The three most important �elds during �bre kinking are the shear stresses in the matrix τm12, axial stresses in

the �bres σf11 and transverse displacement / de�ection v; their con�guration changes considerably when moving

from the elastic to the softening domain.

In the elastic domain, those three �elds follow, for each �bre, an evolution that is sinusoidal (or its derivative),

with a law that �ts the entire �bre length.

In the softening domain, however, a central band - yield band - is de�ned for each �eld, with well distinguished

evolutions inside and outside it. Inside the yield band, shear stresses in matrix are bounded by matrix shear

strength, axial stresses in �bres increase quickly to a maximum value, and the de�ection assumes a kinked shape;

outside the bands, however, both �bres and matrix are less stressed than when in the elastic domain.

Mechanical response of the constituents

During kink band formation, �bres respond in compression (compressive load P ) and bending (due to the o�set

between the two �bre's boundaries v).

Matrix acts as an interface between �bres, being its deformed shape imposed by �bre rotation due to bending;

matrix's behaviour is governed by shear, which has a non-zero resultant force acting at its interface with the

�bres. Along each �bre's length, the shear stresses transferred by the matrix τm12(x) induce an in-plane torque
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in the opposite direction to the bending moment P · v; as continuity is guaranteed by a compressive transverse

state stress, the matrix does support the �bres by shear.

Sequence of events for kink band formation

The formation of a kink band under axial compression starts with an elastic phase, in which all the components

respond elastically and in a global way. The initial �bre misalignment promotes bending moments, which result

into further de�ection and therefore increase bending moments in a positive feedback process.

Fibres' de�ection shears signi�cantly the matrix between them, so considerable shear stresses are developed in

the matrix. A peak load is reached when matrix shear yielding occurs; at this point, the support in shear given

by the matrix to the �bres cannot increase furthermore, so �bres suddenly kink and the load drops abruptly; an

incipient kink band (de�ned in terms of matrix yielding) is formed.

As compression proceeds, the material continues to soften but now in a stabler fashion; the yield band widens

and �bre rotation inside it increases. Bending is controlled �bre by �bre now, and the maxima axial stresses

are found inside the yield band (near its boundaries); outside it, the �bres do straight and relax as compression

increases.

For further compression, �bre bending increases near the yield band 's boundaries, and eventually failure begins

under compression in a �bre with stress concentrations (as at a free-edge); failure propagates �bre by �bre in

the composite, and reaches an area free of stress concentration e�ects. At this point, the bands stop broadening

(β and w stabilize) but �bre rotation (α) continues to increase; failure in �bres continues to propagate, until

they break one by one.

Relevant features in kink band initiation and propagation

The most important feature for the development of a kink band is matrix yielding in shear, as it is the event

that de�nes kink band formation in terms of the constitutive laws, de�ected shape and formation of maximum

bending bands.

Apart from matrix response in shear with bounded stresses and �bre's axial sti�ness, no other feature plays a

crutial role in �bre kinking. Speci�cally, �bre orthotropy, matrix plastic hardening for small strains and matrix

softening are not relevant; in addition, �bre breakage is e�ectively not required for kink band formation, although

�bre failure (if actually taking place) does a�ect kink band's �nal geometry.

Transverse stresses and splittings

The transverse stresses in the matrix σm22 during kink band formation were found to be compressive inside the

kink band and tensile at its boundaries at latter stages of compression; only the e�ect of kink band propagation

lead to the development of considerable tensile stresses and representative splittings (outside the band) in the

numerical models.

As transverse stresses inside the band are compressive, one can conclude that shear stresses are e�ectively

transferred, no matter the real toughness values; at the band's boundaries, this is true only if matrix toughness

in mode I is considerable high (of the same order as it usually is), as otherwise cracks are likely to open.
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Kink band as �nal deformed shape

A kink band proved to be the most favourable �nal deformed shape for a composite under axial compression;

some models (for propagation) show intermediate buckled (or V) shapes of some �bres, but once the material is

further compressed the �bres deform in such a way that a kink band is found at the end.

Kink band propagation

Kink band propagation through perfect �bres was modelled as well, both allowing and preventing splittings in

the transverse direction.

The incipient kink band starts forming in a misaligned area, following the same sequence of events as previously

de�ned; as compression proceeds, it propagates across model's transverse direction until it reaches the �bres

with no initial imperfection.

Propagation in initially perfect �bres is triggered by the de�ection of the �bres above band's tip, both by

transverse compression in one side and transverse tension in the other; due to this transverse tensile stress state,

cracks can open during propagation. Apart from this detail, propagation in perfect �bres occurs by similar

mechanisms to the ones seen for initiation, with a yield band propagating and leading to the formation of a

kinked shape and, afterwards, to �bre failure in the two maximum bending bands.

During propagation, the tip of the yield band is ahead of failing �bres: in initially straight �bres and during

propagation, matrix yielding precedes �bre further de�ection and failure as well.

Role of the initial imperfection

An initial imperfection was found necessary to initiate a kink band, but propagation is possible without it;

imperfections are required to trigger �bre kinking, but once initiated the process is self-sustaining.

It was also found that, when a partially imperfect �bre (so with straight extensions) is considered, no signi�cant

di�erences are seen in its response to kinking.

Complementary kink bands

The simulation of a complementary kink band was also achieved by constraining the model in the transverse

direction. The formation of a complementary kink band follows the same principles - matrix yielding, �bre

kinking and �bre failure - as a single one, and reduces considerably the gap between �bre's ends.

Representativeness

The strategy developed to model composites under �bre kinking proved to be e�cient and representative of

reality. Besides kink band initiation, propagation, broadening, formation of complementary bands and splittings

were also reproduced in the numerical models, and similarities to experimental results were always found.
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Chapter 5

Analytical model

The development of a physically based analytical model on kink band formation, tracking and explaining the

micromechanics of the process and capable of predicting the composite's axial compressive strength and the kink

band's geometry, was the main goal of the work presented in this report.

5.1 Strategy

5.1.1 Inputs from experimental and numerical work

The experiments (Chapter 3) and numerical simulations (Chapter 4) already discussed had the aim to provide

guidelines for an analytical model. For this reason, before developing the model into deep detail, it is convenient

to summarize all the inputs potentially useful to formulate hypotheses and outline theories.

Both experimental and numerical results show two distinct domains in the overall behaviour of the composite

while in compression: at the beginning, the response is sti� and close to linear (elastic domain), until a peak

load is reached; at that point, the composite softens suddenly and a kink band starts to be formed ( softening

domain).

From the stress �elds obtained from numerical simulations, it was concluded that the relevant stresses on the

�bres during kinking are the axial ones (σf11), due to bending and compression; transverse and shear stresses

within the �bres are not relevant. On the other hand, the matrix undergoes mainly shear (τm12) as the �bres

deform, being its contribution to the composite's axial sti�ness negligible. When it comes to constitutive laws

and material anisotropy, it was found that both constituents can be considered linear elastic - perfect plastic

and isotropic.

The role of shear stresses and matrix yielding was enforced experimentally, as very similar specimens failed

either by kinking or by splitting, which con�rms that similar stress states are found in both. In addition, in the

numerical models it was found that, around the peak load, the matrix yields within a band - yield band - that

progressively extends along the axial direction; inside this yield band, the shear stresses in the matrix are kept

approximately constant at matrix's shear strength, even for large deformations and for a failing interface.

The existence of �bre imperfections was con�rmed in experiments, as well as the sinusoidal shape as its reasonable

approximation. Besides, from micrographs of loaded material, it was concluded that kink band formation
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begins with the �bres deforming in a sine-like shape near the kinking zone, but remaining nearly straight

after a relatively short distance (transversely). The deformation of the �bres was also tracked numerically and

considering both perfect and imperfect initial geometries; it was found that, during the elastic domain, the �bres

deform approximately in-phase by amplifying the sine-shaped waviness. However, at the peak load, that shape

suddenly changes to a di�erent one, with the points of maximum bending moving into the incipient kink band;

a clear angle β 6= 0 is de�ned by the yield band 's boundaries and by the maximum bending bands in �bres, being

the yield band 's boundaries and the maximum bending bands close. Outside that band, the deformation seems

to be kept in-phase.

Experimental and numerical results also give a consistent sequence of events leading to �bre kinking: at �rst, a

misaligned shape is developed in the material, inducing in-plane shear stresses that magnify the misalignment

in a positive feedback process; then, the bounded matrix strength is responsible for localization and �bres are

progressively bent, until �nal failure.

5.1.2 Model outline

Although a quantitative validation (against experimental data) of the numerical results was not performed, the

overall behaviour of the FE models captured accurately the physics and micromechanics of kink band formation.

For this reason, and notwithstanding the fact that numerical models are approximations of reality, the model

hereafter described aims to be an analytical version of the FE models for kink band formation that were previously

discussed (Chapter 4).

In global terms, the model considers the formation of a kink band as a process developed in two time domains:

1. Elastic domain : at the beginning, both constituents follow linear elastic material laws; the deformation of

�bres is perfectly in-phase and dominates the solution, de�ning the deformation (in shear) that the matrix

- perfectly bonded to the �bres - undergoes. This stage ends when the shear stresses in the matrix equal

its shear strength, being the peak load de�ned at this moment too;

2. Softening domain : after the peak load is reached, a central area (incipient kink band or yield band ) where

the matrix yields and the shear stresses are bounded coexists with two lateral areas (elastic regions) where

the deformation develops under the laws veri�ed in the elastic domain. As the compression progresses, the

yield band grows axially, followed by an increase on �bre bending that leads to failure.

Due to the major di�erences on their elastic and strength properties, the two constituents have di�erent responses

to the compression: �bre's behaviour is dominated by bending, while the matrix deforms mainly in shear. It is

considered that, although the matrix's shear strength is reached, there is no �nal failure of the interface, being

therefore the �bres always supported by the matrix.

An initial (unloaded) geometric imperfection is considered in the model, in order to avoid failure by pure buckling.

Finally, the model predicts the kink band's geometry based on the �bre's deformed con�guration when �rst �bre

failure occurs as a result of the bending moments and compressive load applied.

5.1.3 Assumptions and applicability

The main and non-trivial hypotheses and the applicability of this analytical model are now discussed.
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Fibres deform in bending and compression, matrix deforms in shear with limited strength.

According to this, the analytical model can be used not only with composites, but it is applicable to every pair

of material + interface, given that the interface (matrix in FRPs) is thin and much softer than the material

(�bres in FRPs).

With the required modi�cations, the model can also be applied for layered materials with frictional interface;

a typical application would be the formation of a kink band in rocks. Rocks have usually a layered structure

and are under multidirectional compression; between layers, and due to the transverse compression, there is

a frictional stress τµ that is bounded by the frictional coe�cient µ and the con�ning pressure p, as τmaxµ ≤
µ · p. Considering this, the frictional interface between layered rocks and the matrix in composites have similar

mechanical behaviours (although the physics are di�erent), so it is possible to adjust this analytical model to

represent properly that case too.

Fibres are fully supported in shear by the matrix.

The model considers that, during all the stages of kink band formation, the matrix is able to transfer shear

stresses to the �bre's surface, being its value limited by matrix's shear strength; actually, the entire process of

kink band formation is governed by the action of these shear stresses.

For this to be possible, the continuity between �bres and matrix has to be ensured, which can happen by three

ways. One option is that, after yielding, the matrix behaves as a perfect plastic material, without softening

mechanisms to degrade its response; in this case, continuity is ensured by the constitutive law itself. Another

possibility is that, after failure initiation, a change in the deformed shape occurs and stresses are redistributed

in such a way that strains in the matrix are nearly constant; the continuity is now guaranteed by the global

mechanical response. Finally, if degradation is considered and �nal failure of the matrix occurs, shear stresses

can still be transmitted as friction to the �bres if the cracks are closed by a compressive state.

Considering that the matrix undergoes signi�cant deformation before the kink band is completely formed, the

�rst hypothesis is not likely to happen: in fact, and even if it is sensible to approximate its shear behaviour for

large deformations by a perfect plastic law, the fracture toughness for matrix tension is relatively low, so in the

presence of completely yielded material cracks would open even for small tensile stresses. However, in Chapter

4 it was proved that, for a large range of deformation, if an imperfection is considered then the second option

is found to happen. In another hypothetical situation where interface failing actually occurs, if the material is

su�ciently constrained in the transverse direction (e.g. when hydrostatic pressure is applied) then the contact

between previously formed cracks is ensured, so friction exists (third possibility). These are common situations,

so this hypothesis is acceptable for a wide range of applications.

The rotation of the �bres is small.

Considering small rotations avoids the use of high order relations between trigonometric functions and the

rotation angle itself, simplifying the problem considerably. However, such approximations are valid for angles up

to 20o; as �bre angles in kink band are reported to reach α = 40o in the literature (Chapter 2), this hypothesis

has to be reviewed for those cases when such high values appear in the solution.

An equivalent and systematic 2D model of the real 3D composite is meaningful.

The real composite is a tridimensional structure in which �bres and matrix are arranged in a non-systematic

pattern; besides that, �bres are not perfectly straight (or sine-shaped) neither have a perfectly circular section.
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However, modelling the mechanical behaviour of a structure cannot take into account physical randomness unless

statistical parameters are included; as that is far beyond the scope of this project, assuming a 3D regular pattern

for the �bres within the composite is mandatory. Among the possibilities, the hexagonal arrangement provides

the best distribution of matrix between �bres, being for this reason the assumption for the model; having this

3D pattern de�ned, a 2D approximation considering one of its principal planes is reasonable.

Moreover, there is experimental evidence that the formation of a kink band is a tridimensional phenomenon

(a�ected by a 3D stress state); for this reason, the applicability of a fully 2D model (considering in-plane initial

imperfection, in-plane loading and in-plane displacement) is not guaranteed a priory. Nevertheless, a 2D model

must be seen as an approximate formulation of the micromechanics governing kink band formation, as if it

captures correctly the physics of the process then a 3D extension is attainable.

The �bre has an unloaded initial imperfection with the anti-symmetric shape of half a sine wave.

This hypothesis is partially supported by experimental evidence: kink band initiation is found to be linked to

�bre waviness, either by the nearness to stress concentrations (as notches and splittings) or by imperfections

developed during lay-up or curing. However, the assumption of a totally stress-free imperfection is not completely

true, being that state more likely to be found when the �bres are straight; nevertheless, during the curing the

matrix releases much of the stresses added during manufacturing, so the �bres would be allowed to recover to

an �almost� stress-free imperfect con�guration.

Above all the possible justi�cations, the assumption of an initial imperfection is mandatory (unless a pure

buckling failure is considered) and was used by several other researchers, so if the imperfection is kept within

small limits it should be seen as a reasonable hypothesis.

In addition, the model considers the bending theory for thin and straight �bres; despite being trivial not to

consider shear stresses on �bre's cross section, the �bres do have an initial curvature, so the accuracy of the

results provided by this model decreases for large imperfection amplitudes.

The �bre, outside the imperfect length, is always straight and aligned with the loading direction.

This assumption is required to de�ne simple boundary conditions for the model, but is not supported by exper-

imental evidence: in micrographs of kink bands under development (Chapter 2), the �bres are rotated or even

bent within a considerable distance (axial direction) from the actual kink band.

In this topic, every assumption will be an approximation, so the best compromise between accuracy and simplicity

should be aimed; one can consider that the imperfection is long enough to accommodate the length of �bre that

is a�ected by the formation of the kink band. As each �bre is highly constrained by the surrounded composite

and the failure process requires localization, then it is reasonable to assume that kink band formation is con�ned

to an area not one order of magnitude larger than the actual kink band width (200µm), which is within the

common values for imperfection length (2mm).

5.2 Development of the model

This model considers one portion (with length L along the longitudinal global axis) of a single �bre, embedded

in a composite with a �bre volume fraction Vf . The �bre's diameter is φf (area Af , second order moment of

inertia If ), its Young's modulus is Ef and its compressive and tensile strengths are respectively Xf
C and Xf

T ,

being Sm the shear strength of the matrix and Gm its initial shear modulus.
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Figure 5.1: Schematics of the �bre considered in the model: geometry and loads.

5.2.1 2D equivalent model

Although a great part of this model is applicable in more general terms, the de�nition of a 2D equivalent

geometry (with unit thickness in the normal direction, Af = φf and If = 1/12 · φ3
f per unit thickness) is helpful

to some developments related to the shear stresses acting on the �bres; for this reason, let one consider a layered

material as already de�ned in the numerical models (Chapter 4). Assuming that, in the 3D composite, the

cylindrical �bres are in a hexagonal arrangement, then along this pattern's principal plane there is a 2D layered

material in which the �bre's thickness corresponds to its diameter φf , and matrix's thickness tm is such as the

overall �bre volume fraction corresponds to the speci�ed value:

tm = φf

(√
π

2 ·
√

3 · Vf
− 1

)
(5.1)

At this point, it must be stressed that this 2D equivalent is adopted just for the sake of simplicity; other 2D

simpli�ed models could be used as well, and a 3D geometry would be computable, but the bene�t on the

accuracy at this early stage would not balance the additional complexity. In addition, it should be referred that

the 3D pattern is not relevant for the results, as the thickness of the matrix layer would always be computed as

proportional (by a factor de�ned by the 3D pattern's geometry) to the �bre diameter.

5.2.2 Equilibrium of the �bre

Let one consider that the �bre has an initial waviness (y0, slope θ0) represented by the sine shape

y0(x) = y0

(
1− cos

( x
L
π
))

(5.2)

The �bre deforms along the transverse axis, with a displacement v(x), as it is loaded by the compressive load P ,

by two bending moments M at its extremities (with the same magnitude, as the de�ection is anti-symmetric)

and by the distributed shear force τ(x) at its interface with the matrix. The �bre's �nal position is given by

y(x) = y0(x)+v(x), being θf (x) and θ(x) the slopes of the �nal position y(x) and displacement v(x), respectively

(�gure 5.1).

The equilibrium of the �bre is deduced considering an in�nitesimal part of its length (all the load components

P , τ and M de�ned per unit length in the normal direction, �gure 5.2). Imposing the equilibrium of moments,

then it comes:

δM + P · δy − τ · φf · δs = 0 (5.3)
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Figure 5.2: Equilibrium of an in�nitesimal part of the �bre.

The development of each one of these three terms, considering P and v(x) as the unknowns of the problem, is

presented next.

5.2.3 Loads applied to the �bre

Bending moment This term is given by the bending theory for thin and straight �bres under small de�ections:

M = Ef · If ·
δ2v

δx2
(5.4)

considering both Ef and If constant along x.

Compressive load The moment due to this term has to include both the initial imperfection and the de�ec-

tion, and therefore it comes as:

P · δy = P · δy0(x) + P · δv(x) (5.5)

Shear stress As it was mentioned, the shear stresses at the �bre's surface τf are due to its interface with the

matrix, and therefore not possible to be computed considering just one �bre.

However, by assuming a very thin matrix layer, the shear stresses τm12(x) are only dependent on the axial position,

and the approximation τf (x) = τm12(x) is valid, so this term can be de�ned by the geometry of the matrix under

deformation and its constitutive law.

For small deformations and considering a linear behaviour of the matrix, the shear stress τm12(x) is related to

the shear deformation γm12(x) by τ
m
12(x) = Gm · γm12(x); yet for small deformations, the �bres deform in-phase,

being the matrix perfectly bonded to them. Then, considering the 2D equivalent model and for a given in-phase

rotation θ(x) of the �bres, the shear deformation of the matrix can be deduced from �gure 5.3.

γm12 =
δvm

δx
+
δum

δy
, where

δvm = δx · tan θ

δum = φf · tan θ
so γm12 =

δx · tan θ
δx

+
φf · tan θ

δy
(5.6)

Then, for small and in-phase rotation of the �bres, and considering τm12(x) to be constant through the thickness

tm and also the shear deformation γm12 small enough for the material's response to be linear, the shear stresses

on the matrix are given by
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(a) Undeformed con�guration. (b) Deformed con�guration.

Figure 5.3: Matrix in-phase deformation.

τm12(x) = Gm

(
1 +

φf
tm

)
tan (θ(x)) (5.7)

However, the formation of a kink band requires large rotations of the �bres and therefore large deformation of

the matrix, so a full constitutive law (and not only its linear elastic domain) has to be used. In this case, and

taking into account the outputs from the numerical analyses, a simple linear elastic - perfect plastic law will be

adopted, and therefore:

τm12(x) =

Gm · γm12(x) , if γm12(x) ≤ Sm
Gm

Sm , if γm12(x) >
Sm
Gm

(5.8)

Finally, the shear distributed force τf (x) = τm12(x) acting on the �bre is given by:

τf (x) =


Gm

(
1 + φf

tm

)
tan (θ(x)) , if tan (θ(x)) ≤ Sm

Gm·
(

1+
φf
tm

)
Sm , if tan (θ(x)) > Sm

Gm·
(

1+
φf
tm

) (5.9)

One comment shall be made on the law just de�ned: considering that, for any 3D arrangement of the constituents

within the composite, the 2D equivalent matrix layer has a thickness tm = 1/k · φf (k constant), then for the

elastic domain it comes τf (x) = Gm(1 + k) · tan (θ(x)). Considering a 2D �bre volume fraction de�ned as

V 2D
f =

φf
φf + tm

,

then a 2D equivalent shear modulus for this model is given as

G2D
m = Gm · (1 + k) =

Gm
1− Vf

(5.10)

which is exactly the simpli�ed formula for (general) composite's shear modulus.

The shear stresses acting in �bre's surface can be directly related to their rotation by

τf (x) =

G2D
m · tan (θ(x)) , if tan (θ(x)) ≤ Sm

G2D
m

Sm , if tan (θ(x)) > Sm
G2D
m

. (5.11)
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5.2.4 Governing di�erential equations

According to the previous two sections, the formation of a kink band is governed by the following di�erential

equations:

δM + P · δy − τ · φf · δs = 0⇔

⇔


[
Ef · If · δ

3v(x)
δx3

]
+ [P · δy0(x) + P · δv(x)]−

[
G2D
m · tan (θ(x)) · φf · δs

]
= 0 , if tan (θ(x)) ≤ Sm

G2D
m[

Ef · If · δ
3v(x)
δx3

]
+ [P · δy0(x) + P · δv(x)]− [Sm · φf · δs] = 0 , if tan (θ(x)) > Sm

G2D
m

(5.12)

Considering (again) that, for small rotation angles (θ < 20o), the trigonometric functions can be approximate

as

sin θ ≈ tan θ ≈ θ , so θ ≈ dv
dx

cos θ ≈ 1 , so δx ≈ δs

and being

tan (θ(x)) = ω(x) =
dv(x)
dx

(5.13)

then the equations become:

• Without matrix yielding (pre-yielding)

Ef · If ·
d2ωpre(x)

dx2
−
[
G2D
m · φf − P

]
· ωpre(x) = −P · dy0(x)

dx
, if ωpre(x) = ω(x) ≤ Sm

G2D
m

(5.14)

• With matrix yielding (post-yielding)

Ef · If ·
d2ωpost(x)

dx2
+ P · ωpost(x) = −P · dy0(x)

dx
+ φf · Sm , if ωpost(x) = ω(x) >

Sm
G2D
m

(5.15)

5.2.5 Continuity and Boundary Conditions

Equations 5.14 and 5.15, together with equation 5.13, de�ne the �bre's deformed shape at a given compressive

load P . Initially, for a very low compression, the material deforms in the linear elastic domain, and therefore

equation 5.14 applies for the whole �bre; however, as the shear stresses in the matrix reach its shear strength,

the deformed shape of the �bre has to be computed using both equations 5.14 and 5.15 (�gure 5.4).

The boundary conditions and the continuity of the deformed shape through its length and loading history are

discussed next. Before that, it is convenient to notice that the deformed shape of one �bre within the kink

band (in formation or developed) is anti-symmetric with respect to x = L/2, as this will simplify signi�cantly

the de�nition of continuity and boundary conditions.

5.2.5.1 Deformed shape before matrix yielding

Prior to any matrix yielding, only equation 5.14 is required to compute �bre's deformed shape. Therefore, in

the elastic domain, only the rotation of the boundaries and any rigid body movement have to be restrained,

resulting into the following boundary conditions:
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(a) Elastic domain. (b) Softening domain.

Figure 5.4: Continuity and boundary conditions.

• ωpre(0) = ωpre(L) = 0, to avoid rotation at the boundaries;

• vpre(0) = 0, to avoid rigid body movement.

Within this domain, only one di�erential function is required to establish the equilibrium of the �bre; for this

reason, and as all the functions in 5.14 have C∞ continuity, the given deformed shape and its derivatives are

also continuous.

5.2.5.2 Deformed shape after matrix yielding

After the beginning of matrix yielding (in the softening domain), two di�erential equations are required: equation

5.14 applies to the �bre's boundaries (elastic regions), and equation 5.15 applies to the central part of the �bre

(yield band ). For this reason, besides avoiding the rotation of �bre's edges and rigid body movements, it is also

necessary to impose continuity between the three domains (left elastic region, yield band, right elastic region) of

the �bre.

Considering the anti-symmetry previously mentioned for the deformed shape of one single �bre during kink band

formation, the following boundary conditions apply:

• ωpre(0) = 0, to avoid rotation at the left boundary;

• vpre(0) = 0, to avoid rigid body movement;

• ωpost
′

(L/2) = 0, to impose the anti-symmetric shape on the de�ection.

In order to ensure the continuity of �bre's deformed shape, it is necessary to de�ne the location where equation

5.14 stops being applicable and equation 5.15 becomes the governing one; if one de�nes that point in the �bre

by x = a (with a < L/2), then the following conditions arise:

• vpre(a) = vpost(a), to ensure continuity on the de�ection;

• ωpre(a) = ωpost(a) = Sm
G2D
m
, for continuity on the slope and on shear stresses in the matrix;

• ωpre
′

(a) = ωpost
′

(a), for continuity on the bending moment (equation 5.4) along the �bre.
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Equations 5.14 and 5.15 are di�erential equations in the third order on the displacement v(x), so six boundary

conditions are enough to de�ne the de�ection. However, seven conditions were just de�ned, being the �rst six

absolutely necessary to ensure a sensible deformed con�guration; the remaining condition (continuity on the

bending moments) is used to de�ne the beginning x = a of the yield band.

5.2.6 De�nition of composite's compressive strength

As it was suggested by the numerical analyses, the moment when the matrix starts yielding de�nes the peak

load for compression under displacement control.

Before matrix yielding, the equation 5.14 for the elastic domain gives as slope

ωpre(x) =
y0·P ·π
L

G2D
m · φf + π2

L2 · Ef · If − P
· sin

( x
L
π
)

(5.16)

being therefore the maximum rotation found in the middle of the �bre:

ωpre,max = ω (L/2) =
y0·P ·π
L

G2D
m · φf + π2

L2 · Ef · If − P
(5.17)

Fibre rotation is related to the shear stresses found in the matrix by equation 5.7; combining these two equations,

then the peak load P peak can be de�ned by the condition

P peak : τm12 (L/2) = Sm ⇔ ωpre,max
(
@P peak

)
=

Sm
G2D
m

which gives the composite's compressive strength as being:

P peak = Sm ·
G2D
m · φf + π2

L2 · Ef · If
Sm + y0

L · π ·G2D
m

(5.18)

5.2.7 First �bre failure

In this model, it is considered that the �bre starts breaking (�bre failure, ff) at a certain location x =

b (with b < L/2) when the axial stress at a point in the �bre's cross section, resultant from the combined

action of the compressive load (P, σP11) and bending moment (M, σM11 ), reaches the �bre's strength:σ
f
11(b

ff ) = σf,P11 (bff ) + σf,M11 (bff ) = Xf
C , failure under compression

σf11(b
ff ) = −σf,P11 (bff ) + σf,M11 (bff ) = Xf

T , failure under tension
(5.19)

Let one assume that the composite's strength under compression is not much higher than under tension; as the

axial stresses due to bending are symmetric and the compressive load is superposed, then the failure is likely to

happen in compression �rst1. Considering this hypothesis, the stresses due to each load component are deduced

(in the local axes) below.

1For this reason and from now on, by default σf
11 will be taken under compression (σf

11 > 0 corresponds to compression) and on
the �bre's top surface.
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The axial stresses due to the compressive load are computed assuming an uniform stress distribution on the

cross section Af ; then, remembering the assumption of small slopes on the deformed shape, it comes:

σf,P11 (x) =
Pn

Af
, (5.20)

where

Pn is the compressive load projected along �bre's axis, Pn = P · cos(θ0 + θ) ≈ P ;

Af is the �bre's cross sectional area, assumed to be constant.

For the compressive stresses induced by the bending moments, according to beam theory (being e the distance

of the considered point to the neutral axis within the cross section) they come as:

σf,M11 (x, y) =
M(x)
If

· e

So, as emax = φf/2 and considering equation 5.4, the maximum compressive stress due to bending within a cross

section is given by:

σf,M11 (x) =
φf · Ef

2
· d

2v

dx2
(x) (5.21)

Finally, the equation for �rst �bre failure is de�ned at (P ff , bff ) as:

P ff

Af
+
φf · Ef

2
· d

2v

dx2
(bff ) = Xf

C , and as ω =
dv

dx
,

dω

dx
(bff ) = 2 ·

Xf
C −

P ff

Af

φf · Ef
(5.22)

In this equation, the compressive failure load P ff and the maximizer bff of the �rst derivative of the slope must

be either known a priory or explicit functions of ω. Whenever this is not feasible (due to too complex expression

for the slope ω), the problem has to be solved numerically, so a closed formulation may not be possible.

5.3 Results

A numerical application of the model previously presented is now provided. The parameters were chosen in

order to reproduce the FE model with failing interface (cohesive):

L = 750µm, y0 = 15µm

φf = 7µm, Ef = 276GPa, Xf
C = 3200MPa

tm = 1.6mm, Gm = 1478MPa, Sm = 56MPa

For better evaluation of the results provided by the analytical model, results from the numerical simulations

(Chapter 4) will be provided as well; as this analytical model considers a �bre embedded in the composite, all

the numerical results to be presented will be taken from the model's central �bre and matrix layer.
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Figure 5.5: Fibre's de�ection in the elastic domain.

5.3.1 Response in the elastic domain

Prior to �rst matrix yielding, the model predicts the composite's behaviour as quasi-linear with respect to the

load P , as the only source of non-linearity is the continuous update of its application point.

During this phase, �bre's de�ection can be de�ned for any position and for a compressive load P by:

vpre(x, P ) =
y0 · P

G2D
m · φf + π2

L2 · Ef · If − P
·
(
1− cos

( x
L
π
))

(5.23)

This gives a sinusoidal shape for the de�ection, which means that the �bre will, while in the elastic domain,

simply amplify its original shape given by y0 (�gure 5.5).

Considering the maximum de�ection of a �bre (at x = L), the load versus displacement curve (P (v)) is shown in

�gure 5.6; as it can be seen, until the peak load is reached, load and de�ection increase in a quasi proportional

way.

Having such a simple expression for the transverse displacement, it is possible to compute analytically the stress

�elds σf11 (at the top of the �bre, under compression) and τm12 (shear, on the interface with the matrix). As it

can be con�rmed by expressions 5.24 and 5.25, this �elds are sinusoidal as well; the maximum shear stress is

located at the middle of the �bre (x = L/2), while the maximum compressive stress is found at the boundaries

(x = 0 and x = L).

τm12(x, P ) = G2D
m ·

y0 · P · πL
G2D
m · φf + π2

L2 · Ef · If − P
· sin

( x
L
π
)

(5.24)

σf11(x, P ) =
P

Af
+G2D

m ·
φf · Ef

2
·

y0 · P ·
(
π
L

)2
G2D
m · φf + π2

L2 · Ef · If − P
· cos

( x
L
π
)

(5.25)

For two given loads within the elastic domain - P = 2.5N/mm and P peak -, these two stress �elds are plotted in

�gures 5.7 and 5.8; as it can be noticed in the last one, the compressive component in equation 5.19 dominates
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Figure 5.6: Load versus maximum displacement curve for the elastic domain and peak load.

Figure 5.7: Shear stresses along x in the elastic domain.

the response, as the axial stress is almost constant along the �bre and increases with the load.

The elastic domain ends when the maximum shear stress on the matrix reaches its yield strength (τm12(L/2) = Sm),

after which the material's response begins to soften; the peak load here de�ned can be equationed in terms of

Sm as in equation 5.18, and its quasi-linear dependence for this application is shown in �gure 5.9. At this very

same moment, the deformed shape is also fully de�ned from material's properties and can be computed by the

combination of the expressions 5.23 and 5.18:

v(x, P peak) =
L · Sm
π ·G2D

m

·
(
1− cos

( x
L
π
))

(5.26)

As one realizes, the maximum de�ection at the peak load v(L,P peak) is totally dominated by the geometry and

by the matrix, following a perfectly linear relation with shear strength Sm.

For this speci�c numerical application, peak load and its correspondent maximum de�ection are P peak =

5.62N/mm and vpeak(L) = 3.37µm; as these values correspond to the moment when the material starts to
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Figure 5.8: Axial stresses on the top of the �bre, along x and in the elastic domain.

Figure 5.9: Peak load and maximum de�ection for di�erent interface's strength.
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soften (begin for that reason unable to support any further loading action), then they can be used to compute

the composite's strength. Considering the already mentioned input values for �bre compressive strength and

initial imperfection, then the composite's compressive strength and �bre's yielding angle are given as:

XC
C = 803MPa = 25% ·Xf

C

yC,peak = 33.37µm⇒ θcompositef = 2.51o

5.3.2 Response in the softening domain

After the peak load, model's behaviour is governed by two di�erent di�erential equations (5.14 and 5.15); solving

these with the boundary conditions described in section 5.2.5, the slope ω(x) comes as:

Elastic region :

ωpre(x) = Cpre ·

(
e

√
G2D
m ·φf−P
Ef ·If

·x − e−
√
G2D
m ·φf−P
Ef ·If

·x
)

+
P

G2D
m · φf + π2

L2 · Ef · If − P
· y0 · π

L
· sin

( x
L
π
)
, x ≤ a

(5.27)

being Cpre =
1

e

√
G2D
m ·φf−P
Ef ·If

·a − e−
√
G2D
m ·φf−P
Ef ·If

·a
·

(
Sm
G2D
m

− P(
G2D
m · φf + π2

L2 · Ef · If − P
) · y0 · π

L
· sin

( a
L
π
))

Yield band :

ωpost(x) = Cpost·sin

(√
P

Ef · If
· x

)
+Cpost2 ·cos

(√
P

Ef · If
· x

)
+
Sm · φf
P

− P

P − π2

L2 · Ef · If
·y0 · π
L
·sin

( x
L
π
)
, a < x ≤ L

2
(5.28)

being


Cpost1 = 1

cot

(√
P

Ef ·If
·L2

)
·cos

(√
P

Ef ·If
·a
)

+sin

(√
P

Ef ·If
·a
) ·
(
P · y0·πL ·sin( aLπ)
P− π2

L2 ·Ef ·If
− Sm ·

(
φf
P + 1

Gm

))
Cpost2 = 1

cos

(√
P

Ef ·If
·a
)

+tan

(√
P

Ef ·If
·L2

)
·sin
(√

P
Ef ·If

·a
) ·
(
P · y0·πL ·sin( aLπ)
P− π2

L2 ·Ef ·If
− Sm ·

(
φf
P + 1

Gm

))

The de�nition of the transition point between the two regions (x = a) is done imposing continuity on the

de�ection's curvature, ωpre
′
(a) = ωpost

′
(a); as one can deduce from the expressions for ω(x) just presented, an

analytical solution for this last equation is not possible to be computed, being an iterative process used instead.

Once a and both ωpre(x) and ωpost(x) are found, the expressions for the de�ection v(x), bending moments

M(x), shear stresses on the matrix τm12(x) and axial compressive stresses on the �bres σf11(x) can be computed

using equations 5.4, 5.9, 5.13 and 5.19. As the algebraic expressions are not possible to be written, numerical

applications for three loads within the softening domain - P = 5.5N/mm, P = 3.5N/mm and P = P ff =

1.35N/mm - are shown in the graphics 5.10, 5.11 and 5.12.

In the softening domain, �bre's transverse displacement does not follow a sinusoidal function anymore, being

replaced by a shape with almost �at ends and a nearly straight central region, linked by two highly curved

branches (�gure 5.10). As the load decreases the maximum de�ection increases, but not in an uniform way:

while the central part becomes more and more inclined (therefore magnifying the displacement), the ends of

the �bre become �atter (and the relative displacement is reduced). The central misoriented region progressively
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Figure 5.10: Fibre's de�ection in the softening domain.

extends in direction to �bre's boundaries and rotates further and further, increasing the o�set between the

two ends and consequently the moment generated by P ; the global sti�ness of the �bre decreases, and the

compression continues with a decaying load, as the central rotation (ω(L/2)) and distance between straigth ends

(v(L)) increase.

A change on global shape a�ects the shear stresses on the matrix as well (�gure 5.11). Once the peak load is

reached (P peak = 5.62N/mm), a yield band (de�ned between x = a and x = L−a) forms almost instantaneously

(for a load close to that value (P = 5.5N/mm), the band's width is already considerable), with constant shear

stresses within it; as the overall sti�ness decreases - and therefore the compressive load does so as well -, this

band extends towards �bre's boundaries. Outside the band, τm12 still follows �bre rotation (equation 5.7), going

from τm12 = 0 to τm12 = Sm between x = 0 and x = a in a way that varies with the load: when near the peak load,

the shear stresses increase smoothly (with increasing x) along the elastic domain, but as the load comes down

the transition is sharpened and the stresses change abruptly within a very short distance.

The axial stresses found on the �bres (σf11) also undergo a dramatic change when the yield band starts being

de�ned, going from a sinusoidal shape with maximum value at the �bre's boundary (where the boundary condi-

tions are applied) to a completely di�erent shape (�gure 5.12). Apparently, this new stress distribution is divided

in two regions: in the elastic regions, the axial stresses are nearly constant, so the response is dominated by the

compressive component in equation 5.19; inside the yield band, the stresses follow an approximately sinusoidal

law with wavelength equals to the band's width. As the load decreases, the compressive component obviously

follow that tendency, being the axial stresses reduced near the �bre's boundaries; however, the amplitude of the

sine-like distribution inside the yield band increases signi�cantly, dominating the response on that region and

reaching quickly the �bre strength at the compressive side.

During the formation of the kink band, the load versus maximum transverse displacement is given in �gure

5.13. In the overall, and after the already discussed initial elastic domain, the existence of a yield band induces

softening in the composite's response, being therefore the load reduced as de�ection increases; the lost of sti�ness

is somehow abrupt just after the peak load, as the curve seems to have the tendency to stabilize for very large

displacements.
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Figure 5.11: Shear stresses along x in the softening domain.

Figure 5.12: Axial stresses at the top of the �bre, along x and in the softening domain.
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Figure 5.13: Load versus maximum displacement global curve.

During this stage, the limits of the yield band (x = a) and the location of the maximal bending moments (x = b)

vary with the load. Figure 5.14 shows the evolution of the these two points with the maximum axial stress; as

it can be noticed, as soon as the peak load is surpassed, the formation of the yield band is almost instantaneous

(the matrix yields at a practically constant load), being afterwards smoothly extended as the bending increases.

The two points of maximum axial stress are located, during the softening domain, inside the yield band, following

the same tendency of moving apart towards the �bre's boundaries as the compression progresses.

At �bre failure, the compressive axial stress on the top of the critical section is σf11(b
ff , P ff ) = Xf

C ; as the

curve σf11(x) can be determined for each value of P , it is possible to de�ne iteratively the location of the critical

section bff and the load P ff for which �rst �bre failure occurs. For the case here, considered, it comes:

bff = 260µm

P ff = 1.35N/mm

vff (L) = 112.8µm

Considering the kink band's width to be de�ned at this moment as being equal to �bre's length between the

two points of maximum axial stress
(
bff , y(bff )

)
and

(
L− bff , y(L− bff )

)
, then:

w = 249µm.

The angle de�ned by the �bre
(
θfff = θ0 + θff

)
, at this moment and at the central cross section , is

θfff (L/2) = 16.3o.
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Figure 5.14: Boundaries of the yield band and location of maximum bending moments.

5.4 Discussion

5.4.1 Load versus displacement response

From a load versus displacement point of view, the analytical model predicts an evolution that is, qualitatively,

the one shown in experiments: the composite follows an almost linear-elastic law at the beginning, going through

an abrupt reduction of sti�ness after the peak load and continuing with a softened response.

Quantitatively, and comparing with the FE results, one can see that the initial modulus in the elastic domain

is accurately predicted, as it can be seen in �gure 5.6. The only exception comes from the FE model with 20

�bres (cohesive_20�bres), which is much more sensitive to the geometric non-linearity; this is due to its smaller

transverse dimension: as 10% of the �bres (2 out of 20, against 2 out of 100 - 2% - in the other models) are

not supported from one side, the edge e�ect easily propagates through the entire model and a�ects its general

behaviour.

The accuracy of peak load estimation is more complex to evaluate: in the analytical model, �rst yielding and

peak load are seen as the same event, but in the numerical simulations more �bres are considered and a gap is

found between the moment when the central layer of matrix yields and the moment when a yield band actually

crosses the whole model. The issue here is the propagation of the yield band along the transverse direction, which

depends obviously on the number of �bres (and matrix layers) present in the model; as it can be deduced from

�gure 5.6 (cohesive model with 100 �bres and cohesive_20�bres model with 20 �bres), the gap between yielding

and peak load is smaller when less �bres are taken into account. Another parameter that has an in�uence on the

peak load determination in the numerical models is the use of stabilization; this numerical form of damping adds

a resistance to the deformation in the model, leading for that reason to a more stable solution but increasing the

load applied as well. Therefore, the FE model using stabilization (cohesive) gives a peak load above the load

given by the model without stabilization (cohesive_0stab / no stab.), which is closer to the analytical solution.
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5.4.2 Stress and displacement �elds

Besides a good agreement in the general response, the stress and displacement �elds are also well captured by

the analytical model, especially qualitatively. Although no conditions were imposed to the functions and �elds

in the model, all the features found in the numerical simulations - a di�erent de�ection shape in the elastic and

softening domains, the points of maximum axial stresses moving inwards the yield band, the abrupt reduction

in the shear stresses at the yield band 's boundaries - are well captured by the analytical model.

Quantitatively, the model here presented is not far away from the numerical one; the major di�erence is found

in the de�ection, especially for later stages of kink band formation. Two features can justify this fact: the linear

relations for the mathematical treatment of trigonometric functions and the law for the interface As for the �rst,

the accuracy of the approximations sin θ ≈ tan θ ≈ θ and cos θ ≈ 1 is also highly degraded for large angles; as

the kink band is developed, the angles used in the equations reach θ = 16.3o, which can lead to a signi�cant

di�erence when several approximations are used in chain. When it comes to the shear stresses in the matrix, the

constitutive law is assumed to be linear elastic - perfectly plastic in the analytical model, so the shear stresses

inside the yield band are constant; that is not exactly true when one looks on the shear stress �eld from the

numerical (cohesive) model, especially at latter stages in the softening domain, when there is a reduction in the

shear stresses due to material softening inside the yield band.

In addition, the use of stabilization in numerical simulations can also lead to a small di�erence in the stress �elds

obtained; however, that di�erence was found not to be much relevant when the numerical results were discussed

(Chapter 4), so it is not likely that stabilization is in the root of this problem.

If an iterative process is used to solve the governing equations of the analytical model, better approximations

for both the trigonometric functions and the shear stresses within the matrix yield band can be used; however,

increasing the accuracy will increase the complexity as well, which is not desirable at all when a closed formulation

is aimed.

5.4.3 First �bre failure

The analytical model here presented ends at the moment when �rst �bre failure occurs; in this version of the

model, �bre failure is initiated in compression, but it can easily be changed for initial failure in tension.

Fibre failure does not take into account the e�ect of the surrounding material or stress concentrations; this is

not accurate, as both the e�ect of free-surfaces or already broken �bres will surely a�ect the stresses acting in

the �bre and, therefore, the moment when it will start breaking.

As it was seen both in experimental and numerical results, in a composite with several �bres failure will occur

�rst at the ones on a free-surface (notch in experiments or top/bottom boundaries in numerics); in this situation,

the �bre is supported only on one side, which reduces material's sti�ness locally. The analytical model considers

that the �bre fails embedded within the composite, totally surrounded by matrix and under the e�ect of shear

stresses transmitted across their interface and which, as it is discussed in the following section, improve the

composite's performance. One option to include free-edge e�ect in the analytical model would be to consider

only half of the shear contribution to the equations; this would, however, a�ect the �bre's deformed shape as well,

which is not desirable as the de�ection is dominated by the overall response (the e�ect of the free-boundaries is

almost negligible in the overall deformed shape, due to continuity among �bres).
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On the other hand, it was also shown (both in experiments and numerical simulations) that a kink band

propagates through a chain e�ect, being each �bre deformed to follow the de�ection of the previous one. When

kink band initiation is analysed, the �bres near the free-surface will start breaking �rst, reducing the overall

sti�ness of the composite; transverse stresses, induced by the new broken shape, will probably increase to a

relevant level and then transmitted from �bre to �bre by the matrix, a�ecting the de�ection su�ered even by

intact �bres. Considering this, it is excluded any hypothesis to use the analytical model as it is here described

to predict kink band propagation.

Taking all this into account, it is understandable that the analytical model could not predict accurately (in

relation to the numerical models) the moment when �bre failure occurs, as shown in �gure 5.13. Nevertheless,

the analytical load for �rst failure is actually very close to the numerical load for �rst failure in the central

�bre, being the di�erence found in the de�ection due to other problems that not related directly to �bre failure.

Concluding, and notwithstanding the already discussed limitations of the analytical model in this �eld, the

agreement on �rst �bre failure is promising as well.

5.4.4 Terms in the slope equations

The expressions found for the slope ω(x) (and, consequently, displacement and stress �elds) have some terms

that are physically representative of the phenomena involved in kink band formation; a short analysis is given

hereafter.

Elastic domain

All the expressions for the slope for elastic regions - both in the elastic and softening domains - share a common

term:

ωelastic(x) =

[
P

G2D
m · φf + π2

L2 · Ef · If − P

]
·
[
y0 · π
L

sin
( x
L
π
)]
. (5.29)

This term leads to the magni�cation of the initial misalignment, as the initial slope is precisely the second term

(function of x) in the equation. It corresponds to the elastic domain in the load versus displacement curve, as

it increases as the compressive load P increases too, and the slope follows a sinusoidal shape with the initial

imperfection's wavelength.

The denominator in the previous expression is G2D
m ·φf + π2

L2 ·Ef · If −P ; the term G2D
m ·φf re�ects the support

given by the matrix, and π2

L2 ·Ef · If the �bre's sti�ness. If the term G2D
m ·φf could be neglected, the expression

ωelastic(x) would correspond precisely to the slope obtained in the typical buckling analysis of a beam; however,

computing each term with the values used for the numerical application of the model, it comes

G2D
m · φf = 55.6N/mm and

π2

L2
· Ef · If = 0.14N/mm;

these values make it evident that the contribution of G2D
m · φf is dominant for the sti�ness in ωelastic(x) and,

therefore, for the response in the elastic domain. If one term is to be neglected, then it should be the one

corresponding to �bre's sti�ness. This result is not surprising, as for the elastic domain/region an in-phase

�bre deformation was imposed; physically, this constrain is given by the shear sti�ness of the matrix, and it is

precisely what avoids the instability of a thin and unsupported long �bre.
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(a) Elastic region. (b) Yield band.

Figure 5.15: Slope components, in the softening domain.

In addition, it should be noticed that the load P inst = 55.7N/mm for which buckling instability (corresponding to

zero in the denominator) occurs is much higher than the peak load P peak = 5.62N/mm found for the composite;

this is the �nal proof (according to this model) that �bre kinking is not an instability problem, as it occurs

much before any instability load can be reached. On the contrary, was the �bre considered unsupported and an

instability would occur for a very low load (0.14N/mm).

Elastic region

In the softening domain, the slope in the elastic region is governed by the expression:

ωpre(x) = ωexponential(x)+ωelastic(x) , with ωexponential(x) = Cpre ·

(
e

√
G2D
m ·φf−P
Ef ·If

·x − e−
√
G2D
m ·φf−P
Ef ·If

·x
)

, x ≤ a.

(5.30)

The second component in the expression, ωelastic(x), is dominant at the boundaries (�gure 5.15 a); near the

elastic region limit (x→ a), the �rst component - ωexponential(x) - increases signi�cantly, promoting an abrupt

change in the slope evolution; this is the direct responsible for the correct behaviour captured in shear, as in

this region τm12(x) ∝ ω(x).

As it can be concluded by observing the �gure 5.15 a, none of the two terms is negligible.

Yield band

Inside the yield band, the slope is given by:

ωpost(x) = ωsin(x) + ωcos(x) + ωelastic,yield(x), a < x ≤ L

2
,with
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ω(x) = Cpost · sin

(√
P

Ef · If
· x

)
, ωcos(x) = Cpost2 · cos

(√
P

Ef · If
· x

)
, (5.31)

and ωelastic,yield(x) =
Sm · φf
P

+
P

π2

L2 · Ef · If − P
· y0 · π

L
· sin

( x
L
π
)
. (5.32)

Analysing the previous equation, all the three components are sinusoidal functions; the last one - ωelastic,yield(x) -

corresponds to the magni�cation of the initial imperfection, keeping its wavelength. Contrarily to what happened

for the elastic region, this term is not exactly the same as in the elastic domain, as the shear contribution for

the sti�ness has changed; in the present case, it is found as an independent (in relation to x) term, because it

is no more implied with the deformed shape.

The other two components - ωsin(x) and ωcos(x) - correspond to sinusoidal functions with variable half wave-

length Lyield = π/2 ·
√
Ef ·If/P : as the load decreases (in the softening domain, so due to further compression)

the wavelength increases, leading to the yield band 's expansion towards �bre's boundaries.

It should be noted that the �nal response ωpost(x) has (almost) exactly half wavelength within the region

xε [a, L/2] (�gure 5.15 b); this justi�es the location of maximum bending stresses at x = b ≈ L/4 + a/2 (which is

therefore maximizer of the curvature).

All the three terms are important for the overall response, so none can be neglected.

5.4.5 Attempt of a simpli�ed model

As it was mentioned in the previous section, this model may not lead to a closed solution if the expressions

found for the displacement are not simple ones; for this reason, a simpli�ed version of the model was aimed, and

one attempt tried is now presented.

From the numerical models, one did conclude that the boundaries of the yield band (here de�ned by x = a) are

located close to the critical cross section of the �bre (here de�ned by x = b). At �bre failure, it comes:


Ef · If · d

2ωpost(bff )
dx2 + P ff · ω(bff ) = −P ff · dy0(bff )

dx + φf · Sm

dω
dx (bff ) = 2 ·

XfC−
Pff

Af

φf ·Ef

(5.33)

So, considering aff ≡ bff , and remembering the de�nition of a and bff , it comes:
d2ωpost(bff )

dx2 = max⇒ d2ωpost(bff )
dx2 = 0

ω(bff ) = ω(aff ) = Sm

Gm·
(

1+
φf
tm

) (5.34)

which, together with the previous equation, would lead to:


P ff · Sm

Gm·
(

1+
φf
tm

) = −P ff · dy0(aff )
dx + φf · Sm

dω
dx (aff ) = 2 ·

XfC−
Pff

Af

φf ·Ef

(5.35)

This simpli�cation removes one unknown, bff , and turns the �rst equation in 5.35 into a algebraic (instead of

di�erential) one; from that equation, the failure load P ff is related to the location of �rst of �bre failure and
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Figure 5.16: Fibre failure load versus failure position, in a simpli�ed model.

�rst matrix yielding (aff = bff ) by

P ff =
φf · Sm

Sm

Gm·
(

1+
φf
tm

) + y0 · πL · sin
(
bff πL

) , (5.36)

plotted in �gure 5.16.

From this graphic, P ff decreases by positive values as the yield band and the segment between broken cross-

sections are reduced (bff increases); the minimum failure load obtainable (for a zero-width kink band) is P ff =

5.6N/mm, much higher than the load found in the non-simpli�ed model. Analysing expression 5.35, the term

corresponding to the slope at x = bff is approximated by the slope at the boundary of matrix yielding ω(a), an

underestimation of its real value (ω continuously increases for x ∈ [0, L/2]), which makes the result P to increase

signi�cantly and to unacceptable values.

Besides, and analysing the axial stresses in the �bre (�gure 5.12), one can realize that the point of maximum

bending (bff ) is approximately at the same distance from the yield band 's boundary (a) as from the �bre's centre

(L/2), being the evolution of the axial stresses between this two points almost symmetrical with respect to bff .

For this reason, approximating aff ≡ bff would change completely the shape de�ned by this �eld, leading to

erroneous results.

5.4.6 Model outputs

The main purpose de�ned for this work was to develop an analytical model capable of predicting the geometry

- α, β and w - of a kink band formed under a compression.

The model developed uses, as inputs, standard properties of the composite (volume fraction), �bres (diameter,

Young's modulus, compressive strength) and matrix (shear strength, shear modulus); in addition, two parameters

to characterize the initial imperfection - wavelength and amplitude - are required as well. No fracture toughness

values are needed; this is an advantage as these properties are sometimes not available a priory and usually less

straight forward to obtain, but a disadvantage as the matrix shear strength is required on the other hand.
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As it was previously mentioned, this model reproduces accurately the composite's overall response during kink

band formation, with a load versus displacement curve that is computable until �bre �rst failure. It is able

to predict, in a closed form, the peak load supported by each �bre during this failure mode, which can be

converted into the composite's strength under compression XC
C . In addition, the model predicts the �bre's load

and de�ection for �rst �bre failure; if one considers that �bre breakage is catastrophic, then �nal �bre failure will

follow immediately, being the ultimate compressive strain computable (by the combined e�ect of the compressive

global stress outside the kink band and the shortening in bending inside the band).

As for the �nal kink band's geometry, this model predicts only its width w, using an iterative process and

assuming �bre failure to be sudden (so �rst failure de�nes the cross sections at which �nal failure will occur) as

well. When it comes to the band's angle, the model leaves that parameter partially free, as inside the yield band

there is no assumption of an in-phase deformed shape.

The angle of �bre rotation at �rst �bre failure (θfff ) can be related to the angles β and α. Assuming the

orientation of the kink band β to be de�ned analytically at �rst �bre failure (between �rst �bre failure and

central �bre failure in the numerical simulations), and imposing both rigid rotation of �bre's cross section and a

very thin matrix, then it would come β = θfff (L/2). For α, the common assumption of volumetric conservation

within the band (α = 2 · β) would result into α = 2 · θfff (L/2). Using the previous numerical application of the

analytical model, then α ≈ 33o and β ≈ 17o, which are reasonable values for real kink bands; however, when

looking into the FE simulations it is found that β > θfff (L/2) (at �rst �bre failure β ≈ 11o and θfff (L/2) ≈ 15o,

and at central �bre failure β ≈ 23o and θfff (L/2) ≈ 40o), so a more accurate approach should be developed.
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Chapter 6

Conclusions

6.1 Experimental

An experimental program was carried in this project (Chapter 3), with the goal to provide useful inputs for the

development of the analytical model.

In this scope, several testing set-ups for FRP axial compression were tried; it was found that, using reduced

and thick UD specimens, with in-plane shear induced by a �bre global misalignment and / or by the loading

scheme, and compressing them under a small clamp or rig, it is possible to generate kink bands observable at

the microscale, loaded and with a high magni�cation, under the optical microscope or SEM.

Some conclusions arose from the experimental results. A sequence of events for kink band initiation (with main

emphasis in the relation between �bre failure and deformation within the band) was de�ned. The observation

of a kink band without �bre failure lead to the hypothesis of being matrix yielding the main feature for its

formation. Fibre breakage, when occurring, was found to agree with a failure by bending and to be consistently

asymmetric. The deformed shape was con�rmed to follow approximately a sinusoidal shape, both with in-

and out-of-plane components and also including elastic and plastic deformation. Splittings were found locally

at band's boundaries and inside fully-developed (with broken �bres) kink bands (in post-mortem specimens);

besides, several specimens failed also by development of macro splittings.

Notwithstanding all these conclusions (some of them open to discussion, as it can be read in Chapter 3), the

experimental program rose more questions than it answered; several complex features were observed and are still

somehow unexplained, even considering the developments achieved in terms of numerical and analytical models.

Nevertheless, there are now solid bases for further analysis using the speci�cally conceived rig for observation of

loaded kink bands under the SEM.

6.2 Numerical

An extended analysis of kink band formation was done using FE simulations (Chapter 4).

Several 2D numerical models for initiation and propagation of kink bands were developed; the models include

initial �bre waviness, a re�ned representation of �bres and matrix and di�erent types of constitutive laws for

both constituents (with plastic and damage formulations) and were run in static analysis.
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For kink band initiation, the main result is the de�nition of its sequence of events, which emphasizes the role of

matrix yielding in shear; in fact, this is the feature that leads to composite's softening after its compressive shear

strength XC
C is reached. During kink band formation, the �bres were con�rmed to de�ect due to the combined

action of bending moments and compression, being supported by the matrix through shear stresses transferred at

their (�bre-to-matrix) interface. Matrix's response was found to take place mainly in shear, developing stresses

proportional to the rotation of the adjacent �bres until the shear strength was reached; from that moment on,

a yield band developed in the composite, followed by a reduction in the support provided to the �bres. The

support given by the matrix as shear is e�ective, as no cracks are predicted to open; this would be veri�ed even

if a very low value for mode I toughness was used, as the material is under transverse compression in the band's

centre.

This yield band presents some interesting particularities: it is crosses the material (along the transverse direction)

following a misaligned orientation, with an approximately constant width between �bres (for each analysis

increment), and with increasing inclination and width as the compression proceeds (for each matrix layer); this

features make it actually very similar to a kink band in a real composite. Outside this band, the composite

relaxes, but inside it the stresses increase furthermore until the moment when the �bres under the free-edge

e�ect get overstressed in compression by the action of bending moments; after �rst �bre failure (at the model's

longitudinal boundaries), damage propagates towards the other �bres.

Besides this global behaviour, the numerical models predict as well reasonable stress �elds for both matrix and

�bres during �bre kinking; it was found that the �elds' shape changes abruptly (in time) as one moves from the

initial elastic domain to the softening one, and also (within the �bre) when one moves from the elastic regions

(matrix in the elastic domain) to the yield band. The two maximum bending bands move from the model's

transverse boundaries inwards the yield band, adopting its orientation as well; the shear stresses in the matrix

are kept almost constant within the yield band. This change in material's behaviour is considered to be a direct

result of matrix constitutive law.

In addition to these developments for kink band initiation, other experimental features were also reproduced

numerically: kink bands were propagated in straight �bres, through the same mechanisms found for initially

misaligned ones; complementary kink bands were developed in models with transverse displacement constrained;

splittings occurred under representative conditions in models for propagation.

In the overall, the numerical analyses proved to be representative of the real phenomenon of kink band formation,

and provided valuable inputs for the development of the analytical model.

6.3 Analytical

Model overview

An analytical model for kink band formation was developed in Chapter 5.

The model is based on a 2D layered media equivalent of the 3D composite, and considers both the contributions

of �bres and matrix.

Equations are derived from the bending equilibrium of a single imperfect �bre under the action of a compressive

load (applied to its ends), of two bending moments (applied at its left and right boundaries as well) and

distributed shear stresses (representing matrix's action on �bres, applied on its upper and lower surfaces). The
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�bre is considered to develop internal bending moments and internal compressive stresses only, so only its axial

stresses and sti�ness are computed in the analysis.

Matrix respond in shear, with a linear elastic - perfect plastic behaviour; shear stresses in the elastic domain are

related to shear strains, and these are governed by �bre rotation considering in-phase deformation. After the

shear strength is reached, matrix presents a length (yield band ) with constant shear stresses, and no in-phase

constrain is imposed there. Due to the existence of two di�erent domains for matrix's constitutive law, two

governing equations are deduced for the �bre.

The �bre's equilibrium equation (whatever the domain is) is solved in order to the slope, using boundary

conditions that constrain end rotation and impose C1 (bending moments) continuity; all the relevant �elds -

axial stresses in �bres, shear stresses in matrix, transverse de�ection - can be derived afterwards, depending

on the position within the �bre and on the compressive load. The model intends to represent accurately the

composite's behaviour from the beginning of compression until �rst �bre failure.

For the resolution of the governing di�erential equations, an iterative process has to be used in the softening

domain; in the overall, small de�ections, small rotations and small strains are assumed.

Applicability

The model is applicable to the pure compression of a strong and sti� material interposed with a soft interface,

under the condition of continuity between both constituents in terms of shear stresses. For this reason, the

model is applicable to FRP composites and also to layered materials; it can be adapted to consider a frictional

interface instead of a material (matrix) one. This model is not useful, however, if open splittings are found in

the middle of the kink band, as in this case no shear stresses can be transmitted to the �bres.

The model assumes an initial imperfection; for this reason, it should not be used for kink band propagation

across straight �bres. In addition, as it considers shear stresses acting on �bre's surface, it cannot be used when

splittings are open during �bre kinking; however, that feature makes the model suitable (after performing the

required changes) for composites under hydrostatic pressure, as in that situation shear is always transferred to

�bres (no matter how degraded the matrix is, as continuity is ensured either by the matrix itself or by friction).

Model's capabilities

The analytical model is able to compute, in a closed formulation, the composite's strength XC
C ; besides, if an

iterative process is used, it calculates the kink band width w as well.

In addition, the main �elds and the load versus displacement curve can be determined too, analytically for the

elastic domain and iteratively for the softening one.

Agreement with experimental results

The qualitative agreement between the analytical and the experimental results was not deeply studied; however,

the general shape of the load versus de�ection curves, the �bre's deformed shape and the �bre's axial stresses

given by the analytical model are supported experimentally in an e�ective way.
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Agreement with numerical models

The analytical results were validated against numerical results, both when it comes to load versus de�ection

curves and to stress and displacement �elds. Qualitatively, the results are very good, as all the features found

in the numerical model are reproduced by the analytical one. Quantitatively, the results are good, especially

when it comes to stress �elds; however, for large rotations the de�ection computed analytically is considerably

smaller than the numerical one.

Fields' shape

The displacement and stress �elds computed with the analytical model do reproduce (qualitatively) the numerical

ones.

In the elastic domain, all the �elds - axial stresses, shear stresses, de�ection - do follow sinusoidal expressions;

for each �eld, an unique expression is able to describe the response of the entire �bre length; the de�ection is

an anti-symmetric sinusoid, the shear stresses follow a symmetric sinusoid, and the axial stresses are practically

constant along �bre length, with a very small sinusoidal component superimposed (due to bending).

In the softening domain, however, the shape of these three �elds changes completely. The shear stresses are

bounded by the matrix shear strength inside the yield band, and as one moves to the elastic regions τm12 decays

quickly near the band's boundaries. When it comes to the axial stresses σf11, the compressive component is

reduced and the bending one becomes dominant, and signi�cant stresses are found only inside the yield band,

where two peaks are de�ned. The de�ection v presents a kinked shape, with almost no de�ection outside the

yield band but with considerable �bre rotation within it. It has to be noted that the di�erent shapes, in this

domain, obtained for the elastic region and yield band result from nothing else than the change in the matrix's

constitutive law.

Closed and iterative formulations

While in the elastic domain, the model can be dealt with analytically; however, as soon as the �bre goes into the

softening domain, an iterative solution is required if any output is aimed. For this reason, no closed formulation

is available for the moment when �bre failure is predicted.

No constrains in �bre's �nal shape

On the contrary to what happens in many analytical models, the one just developed does not impose any type

of shape for the de�ection; the only features constraining �bre's deformed shape are material's properties and

constitutive laws, the equilibrium equations and an in-phase condition for small (elastic domain and regions)

strains.

In addition, no in-phase constrains are imposed to �bres' deformed shape for large strains, so the kink band

angle β is free to vary.

Limitations of the model

The model cannot calculate the �bre angle inside the kink band (α) neither the band angle (β) when the kink

band is formed; besides, it is not suitable for use after �rst �bre failure as well.
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In addition, after �rst matrix yield occurs and the peak load is reached, the composite's response has to be

predicted through an iterative process.

The model is also limited to the response under pure compression as well, and no 3D extension is available at

the moment.

Possibilities for further developments

The analytical model can be easily developed with the goal of simplifying its �elds for the softening domain,

by imposing known and simple functions as model's outputs and solving therefore the governing equations in a

simpli�ed way; a closed formulation is likely to be possible.

In addition, simply by adding those components to the equilibrium equations, it is possible to include in the

model the e�ect of global in-plane shear and / or transverse loading; the model would, in that case, be able to

deal with any in-plane load case. Besides, if shear or transverse stresses are considered, the requirement for an

initial imperfection vanishes.

Developing a full 3D version requires deeper changes to the present model, as the relation between shear stresses

and �bre rotation would be much more di�cult to de�ne; in addition, this 2D version considers kinking to occur

in a speci�c (symmetry) plane, so it has to be used carefully (tm recalculated) in any semi-3D approach.
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Chapter 7

Future work

7.1 Experiments

Experimentation under the SEM

The SEM proved to be the most e�cient equipment to use for kink band observation. Using a rig especially-

conceived for loading r-UD specimens inside the SEM allows the composite to be observed loaded, with high

magni�cation and resolution and with no in�uence of out-of-plane movements, which will hopefully help answer-

ing the question still open to discussion.

Kink band formation and propagation

The formation and propagation of a kink band was not observed with a su�cient detail to provide e�ective

inputs for analytical models, so there is still much work to be done. Propagation would be followed under the

same load scheme, with the compression increasing in a systematic way (constant shortening increments), and

the same areas of the composite should be observed at each load step; this would allow the e�ects of material

randomness to be identi�ed and discarded from the general behaviour during kink band formation.

Analysis of splitting

The presence of splitting and open cracks is an important issue which can only be closed by e�ective experimental

observation. Splittings should be looked for inside the kink band and at its boundaries, both before and after

�bre failure; important parameters (if splittings actually appear) would be their position (in relation to the kink

band), location (matrix / interface between matrix and �bres), the stage in which they are formed and the

number of �bres between splittings.

Fibre failure

Fibre failure mechanisms are still unknown, as it is both numerically and experimentally a process di�cult

to track and simulate accurately. It is suggested that �bres fail mainly in bending and that that fact can be

observed experimentally by looking into the �bres' surface after �nal failure; however, a systematic analysis was
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not done, and it could provide an important support to the analytical model. In addition, following the failure

process and damage propagation would reveal if it is reasonable or not to approximate the kink band's �nal

width to the �bre's length between the two sections where �rst failure occurs.

In-plane kinking

A considerable out-of-plane component was report in the experimental results; this is not a problem when the

kink band at the specimen's surface is representative of the one developed in its inner layers, but it must be

avoided when a�ecting material's behaviour so much that single �bre failure or local V-shapes are found. To

do so, a support should be added to the specimen's surface during the experiments; this, however, needs to be

transparent so it can be kept during observation, tough enough to withstand the composite's deformation during

loading, and well lubricated so it has a minimal e�ect in in-plane kinking.

Kink band formation without �bre failure

The formation of kink bands is usually followed by �bre failure at its boundaries; however, when �bre failure

occurs, the composite's response is usually unstable, so some features (as formation of splittings) are more

di�cult to analyse when �bre breakage occurs. For this reason, it would be interesting to observe loaded kink

bands fully developed without �bre failure. This was achieved in this experimental program by coincidence, but

it is suggested that inducing large initial misalignments can result into kink bands with no �bre failure; another

hypothesis to trigger this is to use materials with di�erent matrix-to-�bre strengths.

7.2 Numerical

Investigation on the latter stages in the softening domain

In the analysis run, the composite's response for latter stages in the softening domain was not studied as deeply

as the response around the peak load. A new model with failing matrix and extended geometry (so boundary

e�ects are avoided) should be run and analysed, to con�rm whether the same matrix behaviour assumed for the

analytical model (τm12 = constant inside the yield band ) is reasonable or not when �bre rotation increases further

more.

Behaviour after �rst �bre failure

The material's behaviour as �rst �bre failure occurs needs a deeper study as well. Ideally, the best would be to

run a model until �nal failure of all �bres takes place and further rotation is locked-up, so to analyse properly

the band's �nal geometry; however, if this is not possible to achieve (convergence problems are likely to appear

for such late stages), there is still work to do until the band's width w and angle β for which �bres start failing

can be accurately de�ned; for this, the model with extended geometry and damage propagation in the �bres can

be run further. New models, with more �bres and a longer geometry, could be analysed as well to check whether

propagation of �bre failure really stabilizes along parallel lines as soon as the free-edge e�ect disappears.

In addition, the e�ect of �bre's fracture toughness should be analysed as well, as it is likely that, if it is reduced,

�bre propagation will occur much quicker; it should be checked, within its reasonable range of values, how the

composite's response does vary due to this parameter.
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Combined matrix and �bre failure / damage propagation

The overall composite's behaviour for latter stages in kink band propagation should also be studied when damage

propagation and failure are possible both for �bres and matrix (so by using cohesive elements to model the matrix

and using a CDM implemented to the �bres); a numerical model like this would probably be di�cult to make

converge, but its representativeness would make it worthwhile even if only the initial stage after �rst �bre failure

was reached. An extended geometry is likely to be necessary for such a model.

E�ect of shear constitutive law

The matrix behaviour in shear is the most relevant feature for kink band initiation; unfortunately, this consti-

tutive law is not fully understood yet, so an accurate modelling is (by now) not possible at all. The standard

analyses here presented should, for that reason, be re-run (using an extended geometry) with representative

qualitative variations of matrix response in shear; a more pronounced plastic behaviour for small strains, a con-

tinuous plastic hardening (with no perfectly-plastic region), a plastic hardening with sti�ening for large strains

and a bi-linear law (failing) with reduced toughness could be tried.

Shear loading

Besides pure compression, loading the composite in shear will a�ect the composite's behaviour when kinking;

for this reason, numerical models with direct in-plane shear loading could be run as well.

The modelling strategy used for pure compression could be used with shear, but the initial imperfection would

not be required anymore for initiation. Besides, following the conclusions from the analytical model, pure in-

plane shear will lead to kink band formation as well; therefore, applying a transverse displacement to one model's

vertical edge should be a suitable approach to start.

Propagation

In kink band propagation, the e�ect of �bre failure should be checked as well; adding a CDM to an already

problematic model might make convergence impossible using the implicit solver, so the hypothesis of using an

explicit code should be revisited.

In addition, it should be checked whether a kink band is actually propagated along the model's entire transverse

direction model when splittings are allowed; the model for propagation with transverse failure could be used for

this purpose.

Modelling �bre-to-matrix interface

In the models presented in Chapter 4, the interface was considered to be the matrix (�bre-to-�bre interface).

Although, at the beginning of the numerical work, models with �bres, matrix and �bre-to-matrix interface were

developed, they were soon abandoned as no additional information as obtained.

Nevertheless, now that modelling with decohesive elements is controlled, it could be interesting to model �bre-to-

matrix interface, with variable interface parameters (namely Sinterface and GC, interface), to predict numerically

for which range of material properties interface failure starts before matrix failure.
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Role of boundary conditions and model's dimensions

The e�ects of model's transverse and horizontal edges are reported in all the analysis; to be able to subtract

them to the results asks for similar models (with di�erent extended lengths, di�erent imperfection parameters

and di�erent numbers of �bres) to be analysed, so a parametric study could be done.

7.3 Analytical

Simpli�ed models from known curves

An analytical model was proposed, but no closed formulation can be found for the softening domain without

imposing a priory simpler laws for the de�ection, both in the elastic region and yield band. Now that the �elds

from the original model are known, simpli�ed functions for de�ection, shear and axial stresses could be tried, to

de�ne the location of �rst �bre failure - and, therefore, band's width - in a closed form.

A suggestion is to impose a sinusoidal law for the axial stresses in the �bres inside the yield band, and constant

stresses outside it, deriving the de�ection and slope from the curvature. Another option is to use a sigmoid

(S-shape or logistic) function to represent the de�ection within the whole softening domain, and to derive the

axial stresses through the curvature of such geometry.

Continuous shear constitutive law

Another option that might simplify considerably the model is to use a continuous constitutive law for the matrix,

as the use of two di�erent governing equations for the yield band and elastic region is actually one of the causes

for the impossibility to �nd a pure analytical solution. Suggestions given are to adopt the sigmoid function or

the hyperbolic tangent, as they approximate well the elastic-perfect plastic behaviour.

Kink band geometry

The only parameter that can be estimated from the analytical model developed is the band's width w; the

objective of this project was to develop a model able to de�ne the three geometric parameters (band's width,

band's angle and �bres' angle), so the model needs to be developed to achieve those results.

From the model, �bre's angle at �bre failure can be de�ned as well; some relations between �bre (α) and band

(β) angles were already proposed by other researchers, but the numerical models might be able to provide

information as well.

Model extension

The analytical model considers, at the moment, planar (2D) �bre kinking under axial compression ( [σ∞]has only

one non-zero component, σ∞11). Further developments must include at least the e�ect of in-plane shear (τ∞12 ),

as if existing it results into a torque that a�ects the governing equations for �bres in both domains; transverse

stresses (σ∞22) are not likely to play a major role in the �bre's equilibrium equation, but they might a�ect matrix

yielding signi�cantly so they should also be accounted for.

In addition, a extended formulation suitable for 3D composites should be aimed as well.
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Inclusion of matrix damage

In the analytical model, matrix behaviour is linear elastic - perfectly plastic; however, the role of matrix softening

for large strains is still open to discussion. If it is proved to be important, then the analytical model should be

changed to accommodate non-constant shear stresses; this can be done by replacing, in the governing equation

for the yield band, the constant term in shear by a term depending on the strain and with the proper constitutive

law. It should be noticed, however, that the relation de�ned between shear strain and �bre's slope inside the

yield band should not add any in-phase restriction.
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