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Abstract 

The mechanical behaviour of dough, gluten and starch was studied in an effort to 

investigate whether bread dough can be treated as a two phase (starch and gluten) 

composite material. Mechanical loading tests revealed rate dependent behaviour for 

both the starch and gluten constituents of dough. There is evidence from Cryogenic 

Scanning Electron Microscopy (Cryo-SEM) that damage in the form of debonding 

between starch and gluten occurs when the sample is stretched. In addition, the Lodge 

material model was found to deviate from the tension and shear stress-strain test data 

by a considerably larger amount than from the compression test data. This could 

indicate that ‘damage’ is dominant along the gluten-starch interface, causing 

debonding; the latter occurs less under compression loading, but is more prevalent in 

tension and shear loading. A single-particle finite element model was developed 

using starch as a filler contained in a gluten matrix. The interface between starch and 

gluten was modelled using cohesive zone elements with damage/debonding occurring 

under opening/tension and sliding/shear modes. The numerical results are compared 

to experimental stress-strain data obtained at various loading conditions. A 

comparison of stress-strain curves obtained from 2D and 3D single-particle models 

and a multi-particle model led to good agreement, indicating that the single-particle 

model can be used to adequately represent the microstructure of the dough studied 

here. Finally, the simulation of extrusion was performed using the finite element 

method, where demonstration of the predictive capability of a continuum numerical 

model with small scale experimental results was performed.  
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Figure 6.29 (a) The von Mises contour plots; and (b) extrusion pressure 
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versus ram displacement. Both results are for die0 72  with maxτ  

of 3 kPa. The scale shown is in Pascal (Pa). 

Figure 6.30 Contour plot of maximum principal strain rate for die 0 26 b for 

simulation at 500 mm/min. The scale shown is in 1/s. The 

highlighted region is used to approximate the maximum 

principal strain rate. 

Figure 6.31 (a) Critical shear stress limit versus maximum principal strain 

rate; and (b) critical shear stress limit versus die. 
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Chapter 1. Introduction 

1.1 Overview of Bread-Making Process 

Bread-making is the process of producing bread using wheat flour and water. It is 

considered as one of the oldest food manufacturing techniques, dating back from the 

period of ancient Egypt, as shown in Figure 1.1(a). A systematic procedure of bread-

making by ancient Egyptians in Figure 1.1(a) shows the complexity of the procedure, 

starting from pounding the grain, mixing and kneading the dough, and baking (from 

top left to top right in Figure 1.1(a)). The middle left image in Figure 1.1(a) shows the 

workers making the bread into different shapes, and containers of water used for 

dough mixing are shown in the middle right image. The bottom images in Figure 

1.1(a) show the workers milling the grain into flour using a grindstone equipment 

before making the bread (from bottom right to bottom left in Figure 1.1(a)) An 

example of bread produced by ancient Egypt is shown in Figure 1.1(b), dating back to 

1500 BC. Meanwhile, the bread-making history in Europe started as early as the 

Pompeii era, as shown in the painting of “House of Baker” in Figure 1.1(c). 
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Figure 1.1. (a) Ancient Egypt bread-making process [Touregypt 2010]; (b) bread 

produced by ancient Egypt, dating back to 1500 BC [British Museum 2010]; and (c) 

the painting of “House of Baker” [BBC 2010]. 

In modern day bread-making, an automated bread-making process has been employed 

to cope with the increasing demands on bread production volume. An example of an 

automated dough-making manufacturing line which consists of mixer, extruder, 

sheeter and cutter is shown in Figure 1.2.  

(a) 

(b) (c) 
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Figure 1.2. Modern dough production line [Rondodoge 2010] from mixing to cutting 

processes. 

Even though the dough-making process has become automated, information about the 

mechanical/ rheological behaviour of wheat flour dough and its influence towards the 

process is less understood. Since a modern manufacturing line produces a large 

volume of dough at a time, a detailed understanding of the rheological behaviour of 

dough is important to produce a consistent dough quality. In addition, a non-uniform 

shape of bread causes difficulties in packaging and could be less appealing to 

consumers.  

In a large scale mixing process, food technologists need to spend a large amount of 

dough to find the optimum mixing parameters using trial and error methods. This is 
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because under-mixed or over-mixed dough has less elasticity than ‘optimum-mixed’ 

dough produced with ‘optimum’ mixing parameters. The under-mixed or over-mixed 

dough may not rise properly during proofing and baking [Dobraszczyk and 

Morgenstern 2003], which would produce bread that crumbles when consumed by 

humans or stales quickly.  

Bread-making is still being seen as an art or craft rather than a scientific approach 

[Hicks and See 2010], where most of the process relies on the experience of the 

bread-maker. Therefore research into dough rheology is needed to replace current 

empirical and ‘trial and error’ approaches. 

1.2 Project Aims and Objectives 

1.2.1 Previous Studies on Wheat Flour Dough at Imperial College 

Studies on wheat flour dough comprising of experimental, analytical and numerical 

analyses have been conducted at Imperial College for several years. The results from 

this work are summarised in the following publications: “The biaxial deformation of 

dough using bubble inflation technique” [Charalambides et al. 2002a; Charalambides 

et al. 2002b], “Effect of friction on uniaxial compression of bread dough” 

[Charalambides et al. 2005] and “Large deformation extensional rheology of bread 

dough” [Charalambides et al. 2006]. The information from the mechanical 

characterisation was used to predict the behaviour of wheat flour dough during 

sheeting [Xiao et al. 2007] and extrusion [Wanigasooriya 2006]. This thesis will 

investigate the mechanical behaviour of wheat flour dough using experimental work 

described in all these publications, followed by a suitable constitutive model which 

will be developed based on the microstructure theory of wheat flour dough [Amemiya 
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and Menjivar 1992; Dobraszczyk and Motgenstern 2003]. A continuum material 

model will then be developed for a processing study of dough, specifically the 

extrusion process.  

1.2.2 Problem Statements 

Wheat flour dough is a viscoelastic, i.e. a time dependent behaviour material which is 

subjected to large deformation during processing. To obtain an accurate material 

model for dough is complicated due to factors like the highly non-linear stress strain 

relationship at large deformations, time dependent behaviour and the possible change 

in microstructure at large deformation. These have caused difficulties in achieving a 

consistently high quality in the final baked product. Many rheological tests of dough 

reported in the literature are inappropriate in predicting the end use quality since the 

tests do not measure the system under appropriate deformation conditions (i.e. 

compression tests in laboratory at <10 mm/s [Kouassi-Koffi et al. 2010] compared to 

industrial dough sheeting rate at >500 mm/s [Rondo 2012]) and do not account for 

the microstructure of dough responsible for the baking quality [Dobraszczyk and 

Motgenstern 2003].  

In addition, the rheological properties of dough cannot be determined accurately with 

one of the simpler suggested constitutive models, namely the Lodge rubberlike model 

[Tanner et al. 2008] or the Phan-Thien-Tanner (PTT) model [Phan-Thien et al. 1997]. 

These models as well as others currently available, only focus on the dough 

behaviour in terms of time and deformation without taking into consideration the 

microstructure of dough. This in turn causes incomplete understanding of the 

behaviour of dough during the processing. It is suspected that the differences in the 



 

6 
 

stress-strain results at low and large deformation of dough [Uthayakumaran et al. 

2002] are due to the interaction among different components of dough microstructure, 

i.e. starch and gluten. 

1.2.3 Research Objectives 

The aim of this research project is to investigate the mechanical behaviour of wheat 

flour dough using mechanical loading tests. The effect of deformation on the 

microstructure of dough, i.e. starch and gluten, will be investigated. This includes the 

mechanical properties of dough, gluten and starch under various deformation modes, 

namely under uniaxial compression, uniaxial tension and simple shear. 

Microstructure studies using Cryogenic Scanning Electron Microscopy (Cryo-SEM) 

will be conducted to investigate the effect of deformation on the microstructure of 

wheat flour dough.  

The information from the mechanical tests and Cryo-SEM results are then used to 

establish constitutive laws which capture the non-linear response of the material. This 

includes rheological and micromechanical models, which can be employed in the 

finite element method. The micromechanics model will take into consideration the 

non-linear response of dough constituents, i.e. starch and gluten, and the interface 

between the constituents. Finally, the simulation of extrusion is performed using the 

finite element method, where demonstration of the predictive capability of a 

continuum numerical model with small scale experimental results is performed. 

 

 



 

7 
 

1.3 Project Outline 

The thesis is separated into seven chapters. Chapter 1 discusses an overview of the 

bread-making process and description of the project. Chapter 2 summarises 

microstructure and mechanical testing studies of dough from previous literature. This 

is followed by Chapter 3 which describes in detail various material models that have 

been suggested for dough and were also investigated in the current work. This 

includes the Lodge rubberlike, visco-hyperelastic, viscoplastic and micromechanics 

models. Chapter 4 then explains the sample preparation for dough, gluten and starch, 

and experimental methods under uniaxial compression, uniaxial tension and simple 

shear. Cryo-SEM test procedures are also explained in this chapter. The experimental 

results for gluten, starch, and dough are shown and discussed in the same chapter. 

Information from the experimental results is used in Chapter 5 for constitutive 

modelling using different material models, namely the Lodge rubberlike and the 

micromechanics models. In particular, the micromechanics model will take into 

account the interface between starch and gluten. Chapter 6 focuses on the numerical 

study of ram extrusion of dough, where comparisons are performed between 

continuum models and experimental results by Wanigasooriya [2006] and Lim 

[2007]. Finally Chapter 7 concludes the thesis and describes possible future 

investigations. 
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Chapter 2. Mechanical Characterisation and 

Microstructure of Wheat Flour Dough 

2.1 Introduction 

The stress-strain relationship describes the amount of deformation in a material which 

is subjected to an external force or vice versa. Accurate stress-strain measurements 

are important to ensure the stress-strain results obtained represent the mechanical 

behaviour of a material. To obtain this, careful sample preparation and mechanical 

test procedures are needed, especially for soft solid materials like wheat flour dough 

[Dus and Kokini 1990]. 

An investigation on the mechanical behaviour of wheat flour dough is performed to 

understand the behaviour of dough during processing and baking. It is important to be 

able to measure the mechanical properties so that constitutive models can be 

developed that can predict dough behaviour under different loading conditions. The 

model can then be used to simulate processes of wheat dough, i.e. sheeting and 

extrusion. For example, a method of using rubber elasticity and viscoelasticity has 

been employed to represent the mechanical behaviour of dough [Charalambides et al. 

2006], which was then applied in a simulation of dough sheeting using the finite 

element method [Xiao et al. 2007].  

The mechanical behaviour of dough can be characterised using extensional and shear 

tests. Extensional tests are performed under uniaxial compression, uniaxial tension 

and bubble inflation modes. Shear tests on the other hand are performed using 

rheometers under strain sweep and frequency sweep modes at small deformation 
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[Phan-Thien and Safari Ardi 1998; Ng and McKinley 2008; Lefebvre 2009] and 

constant shear strain rate (CSSR) mode at large deformation. Shear tests at oscillatory 

large deformation, i.e. Large Amplitude Oscillatory Shear (LAOS) were performed 

by Phan Thien et al. [2000] and Ng et al. [2011]. The advantage of readily available 

equipment like the rheometers attracts researchers to include shear properties in 

dough studies. 

The stress-strain relationship of dough is studied under small and large deformations. 

Uthayakumaran et al. [2002] observed differences in the stress-strain results at low 

and large deformation, which are believed to be due to the interaction among different 

components of dough microstructure, i.e. starch and gluten. Amemiya and Menjivar 

[1992] on the other hand believe that the stress-strain relationship of dough can be 

described using a microstructure based theory. Therefore in this chapter, the 

microstructure of wheat flour dough is discussed first, with dough being a composite 

of two main constituents, namely starch and gluten. This is followed by a discussion 

on the water distribution between gluten and starch during mixing from literature. 

Mechanical tests on dough are described next, namely under uniaxial compression, 

uniaxial tension and shear rheometry modes. Finally Cryogenic Scanning Electron 

Microscopy (Cryo-SEM), a technique to observe the microstructure of dough is 

discussed.  

2.2 Microstructure of Wheat Flour Dough 

2.2.1 Wheat Flour  

Before discussing the microstructure of wheat flour dough, it is worth mentioning 

wheat, a cereal grain used to make wheat flour. The United States Department of 
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Agriculture (USDA) classifies six classes of wheat, namely Hard Red Spring, Hard 

Red Winter, Hard White, Soft White, Soft Red Winter and Durum [USDA 2011]. The 

classes of wheat in the USA depend on where the wheat is grown, i.e. Hard Red 

Winter is primarily grown in Texas, whereas Hard White and Soft White in 

Washington, Oregon, Idaho and Michigan.  

The National Association of British and Irish Millers (NABIM) on the other hand, 

classify wheat into four different groups consisting of thirty wheat varieties in total 

[NABIM 2011]. Examples of the wheat varieties include Solstice and Hereward in 

Group 1, and Cordiale and Einstein in Group 2. The wheat varieties are assessed 

based on the wheat growing conditions and feedback from milling companies in the 

UK. The classification is performed to guide the milling companies. There are thirty 

companies associated with NABIM in 2011 [NABIM 2011]. The milling companies 

select specific wheat varieties and process them for commercial markets. The most 

commonly available wheat flour types in the commercial market are, for example 

strong wheat, plain and self-raising flour. These types of flour are normally used for 

different products, i.e. the strong wheat flour is used to make bread, plain flour for 

biscuits and pastry, and self-raising flour for cakes.  

The main components in wheat flour are starch (68-76 % w/w), gluten (6-18 % w/w), 

and lipids, ash and gum (3-4 % w/w) [Figoni 2011]. The actual percentage of flour 

components depends on the type of the flour, i.e. Uthayakumaran [2002] measured 

the gluten content of Australian Strong and Bakers flour type as 13.9 % and 12 % 

respectively. Most of the rheological work on wheat flour dough has been focussed 

on starch and gluten, since these are the largest constituents of wheat flour 
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[Uthayakumaran 2002; Ng 2007]. A detailed explanation of the microstructure of 

gluten and starch will be provided in Sections 2.2.3 and 2.2.4 respectively. 

2.2.2 Dough Mixing 

Wheat flour dough produced in industry normally consists of wheat flour, water, salt, 

yeast, emulsifier and sweetener. To provide a simpler mechanical/rheological study, 

only a simple mixture of wheat flour, salt (sodium chloride) and water are considered 

in this study. Mixing is often performed in laboratories using a mixer which has the 

capability to record the torque response over mixing time in order to determine the 

optimum mixing time. The mixing time and hence energy provided during mixing of 

dough is important because undermixed or overmixed dough will influence the 

mechanical behaviour of dough. This is because the main dough components, i.e. 

starch and gluten get hydrated and develop interactions [Amemiya and Menjivar 

1992; Goesart et al. 2005] during the mixing process. An example of mixing torque 

versus time plot for a sample of dough is shown in Figure 2.1(a) [Wanigasooriya 

2006]. The dough was mixed at a constant speed of 118 rpm using a planetary pin 

mixer. The mixer consists of four planetary pins on the head revolving around two 

stationary pins at the bottom of the mixing bowl, as shown in Figure 2.1(b). 
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Figure 2.1. (a) Mixograph output of flour dough by Wanigasooriya [2006] at a 

constant speed of 118 rpm; and (b) the planetary pin mixer used by Wanigasooriya 

[2006]. A mixture of 62 % w/w, 37.5 % w/w and 0.5 % w/w of wheat flour, water 

and salt respectively was used to make the dough for graph in (a). 

The graph in Figure 2.1(a) can be separated into three regions: undermixed, optimum 

mixed and overmixed. At the beginning of the mixing stage, the resistance towards 

deformation of dough is low, as indicated by the low torque values in the undermixed 

region. In this stage, hydration of starch and gluten occurs, followed by a mechanical 

development of the gluten network and starch [Zheng et al. 2000; Dobraszczyk and 

Mortgenstern 2003]. The mechanical development results in an increase in dough 

resistance to deformation, as shown by the increasing torque at increasing mixing 

time (>100 seconds mixing time) in Figure 2.1(a). The torque then peaks at the 

optimum mixed region, a region also known as peak dough development [Zheng et 

al. 2000]. This occurs at a mixing time range of 150-170 seconds in Figure 2.1(a). 

Further mixing causes a reduction in the torque value, which is believed to be caused 

by the large gluten network being broken into smaller networks due to mechanical 

force [Zheng et al. 2000], and possibly damage of the starch and gluten interface.  
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2.2.3 Gluten 

Gluten is a major protein in wheat flour dough, which consists of two major 

subcomponents, glutenin and gliadin. Glutenin is a protein consisting of 20 % high 

molecular weight (HMW) subunits and 80 % low molecular weight (LMW) subunits 

[Edwards et al. 2003]. Glutenin is responsible for the firmness of dough in bread 

making because it increases the stability of dough through a three dimensional 

network that forms between the protein molecules during the kneading process 

[Pfluger 2009]. Gliadin is a glycoprotein present in wheat and it is around 60 % 

soluble in ethanol. These proteins are essential in giving breads the ability to rise 

properly and fix their shapes on cooking [Pfluger 2009]. Schematic images of 

glutenin and gliadin structures are shown in Figure 2.2. Glutenin consists of long 

fibers (Figure 2.2(a)), whereas gliadin is the short twisted fibers located between the 

long glutenin fibers (Figure 2.2(b)). 

 

Figure 2.2. Images of: (a) glutenin; and (b) glutenin and gliadin (reproduced from 

Edwards et al. [2003]). 

The mechanical behaviour of wheat gluten has been investigated by previous 

researchers [Singh and MacRitchie 2001; Ng and McKinley 2008; Uthayakumaran et 

al. 2002]. Singh and MacRitchie [2001] described the extension of large glutenin 

molecules in terms of rubber elasticity by describing the entanglement of glutenin 

Linear Glutenin Glutenin plus Gliadin

(a) (b) 
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chains. Dobraszczyk and Mortgenstern [2003] on the other hand described how the 

presence of chain branches gives rise to strain hardening, which is a necessary 

property for the stability of polymers that undergo large deformation. These studies 

suggest that gluten can be treated as a rubber-like material. However it should be 

noted that gluten is different than some conventional rubbers (i.e. natural or synthetic 

rubber) since gluten absorbs water for hydration during mixing of dough, as well as 

having glutenin and gliadin structures.  

Gluten can be prepared in either wet (also called “native”) or dry (also called “vital”) 

form. The extraction of gluten from wheat flour dough was first performed almost 

300 years ago by an Italian named Beccari. His water-washing technique is still 

employed in the commercial process today. An example of the preparation of gluten 

in wet form is provided by Abang Zaidel et al. [2008], following the Standard AACC 

[1976] procedure. They obtained gluten from dough by washing and massaging the 

dough under running tap water to remove the starch. They assumed the starch was 

absent when cloudiness did not appear in a container of clear water after the gluten 

was squeezed into it. The sample obtained using this method is known as wet/native 

gluten. Alternatively, the wet gluten can be cut into small pieces and allowed to dry 

for ~24 hours at room temperature. The dried gluten can then be crushed with mortar 

and pestle to become powdered gluten. The powder is later mixed again with water to 

produce reconstituted wet gluten, also known as vital gluten. 

Ng and McKinley [2008] for example mixed dry gluten with water for 12 minutes to 

produce vital gluten. They have found that the moisture weight content of gluten is 

between 60-65 % based on the observation of excess water in the mixing bowl during 

the gluten mixing process. When the moisture content is too low (i.e. < 60 %), the 



15 

 

gluten appears to be too dry, whereas when the content is too high (i.e. > 65 %), the 

gluten appears wet, with unincorporated water pooled at the bottom of the bowl. The 

mixograph output of the gluten-water mixture performed by Ng and McKinley [2008] 

is shown in Figure 2.3. It shows that once the mixture is fully developed, the peak to 

peak fluctuations remain approximately constant with no noticeable change after 

approximately 800 seconds. In comparison, the mixograph of flour dough in Figure 

2.1(a) [Wanigasooriya 2006] shows that the peak torque drops after 200 seconds once 

optimum mixing is achieved. This suggests that no damage occurs in gluten 

compared to dough during the mixing process. 

 

Figure 2.3. Mixograph output of the gluten-water mixture by Ng and McKinley 

[2008]. 

Native and vital gluten each have distinctive advantages and disadvantages. As a 

result, there is considerable debate about which is the best to represent the gluten in 

mixed dough. Table 2.1 provides a list of pros and cons of the wet and dry gluten 

sample preparation [Ng 2007]: 
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Table 2.1. Pros and cons of vital and native glutens. 

 Vital Gluten Native Gluten 

Pros Dry gluten can be mixed with 

sufficient amount of water and 

the mechanical work input can be 

recorded during the mixing 

process. 

The network formed during mixing of 

dough is still retained, which enables the 

measurement of the properties of the 

gluten constituent of dough. These can 

be used in a composite model of dough. 

Cons Production involves drying and 

milling, which may irreversibly 

damage or alter the network of 

gluten that is formed upon 

hydration. 

Difficult to maintain consistent 

mechanical work input and ultimate 

water content during manual washing 

and massaging the dough under running 

water. 

Vital gluten can be prepared with a prescribed amount of water and the mechanical 

work input can be recorded during the mixing process. However, the disadvantage of 

vital gluten is that the production of dry gluten involves drying and crushing, which 

may irreversibly damage or alter the network of gluten that is formed upon hydration. 

Native gluten on the other hand still retains the gluten network formed during mixing 

of dough, which makes it possible to determine the properties of the gluten as it 

appears in the actual dough material, as indicated in Table 2.1. Therefore, in order to 

obtain gluten which represents the dough constituent in a real system, native gluten is 

preferred over vital gluten. 
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2.2.4 Wheat Starch 

Wheat starch consists of two types [Tanner et al. 2011b], type A and type B. Type A 

is oblate in shape, while type B is circular in shape. A good review on starch is 

provided by Goesaert et al. [2005]. Starch represents the largest portion of flour 

[Stauffer 2007], where it comprises of amylose and amylopectin. Dry starch granules 

absorb water for hydration during dough mixing. The phases of starch-water at 

different temperatures are shown in Figure 2.4.  

 

Figure 2.4. The phases of starch-water at different temperature (reproduced from 

Goesaert et al. [2005]). 

Below a characteristic temperature, also known as gelatinisation temperature, the 

hydration process of starch is reversible, as shown in Figure 2.4(a). Gelatinisation 

first occurs when the starch swells, as shown in Figure 2.4(b). The gelatinisation 

temperature is determined using Differential Scanning Calorimetry (DSC). In Figure 

2.5, the starch swelling factor investigated by Tester and Morrison [1990] is defined 

as: swelling factor = (swollen volume)/(initial volume of air-dried starch). The 
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procedure to measure the starch swelling factor is described by Tester and Morrison 

[1990]. 

 

Figure 2.5. Gelatinisation in terms of swelling factor versus temperature of wheat 

starch (reproduced from Tester and Morrison [1990]). 

In Figure 2.5, oT  , pT  and cT  represent the onset (initiation of gelatinisation), peak 

(mid point gelatinisation) and conclusion (complete gelatinisation) temperatures at 

approximately 45 0 C , 60 0 C  and 70 0 C  respectively. It is observed in Figure 2.5 

that starch continues to swell after the conclusion temperature. However, once starch 

is heated higher than 85-90 0 C , it undergoes a series of changes which leads to 

irreversible destruction of the starch granule. This irreversible destruction is observed 

in amylose, a component of starch which is in crystalline form at low temperatures 

[Stauffer 2007]. When starch is heated, the crystalline amylose solubilises, or starts to 
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flow out of the starch granules [Hermansson and Svegmark 1996], as shown in 

Figures 2.4(c) and 2.6.  

 

Figure 2.6. Transmission Electron Microscope (TEM) image of wheat starch granule 

heated at 075 C [Hermansson and Svegmark 1996]. Amylose is shown to start 

leaching out of through the opening of the starch granule. 

If the heated starch is cooled back to room temperature, i.e. 22 0 C , it will form an 

amylose network in crystalline state known as retrogradation, as shown in Figure 

2.4(d). Retrogradation is also believed to cause the staling process of bread during 

storage [Hermansson and Svegmark 1996]. Staling is a phenomenon of bread which 

leads to tough crusts, with a firm and a less elastic crumb. This causes the bread to 

lose its moisture, flavour and texture when consumed.  

2.2.5 Water Distribution between Wheat Flour Components 

The water distribution between flour components, i.e. starch and gluten, needs to be 

known to ensure the amount of water added to flour constituents (e.g. for vital gluten) 

represents those in the mixed dough. A few methods are available to measure this, 

namely the simple liquid addition method and the water vapour absorption method 
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[Roman-Gutierrez et al. 2002a; 2002b]. To select between these methods requires 

information on the hydration properties of the flour components, where Roman-

Gutierrez et al. [2002b] discussed that this depends on two factors:  

1. ability of the flour components to interact with water molecules; 

2. their ability to trap a large amount of water inside macromolecular complexes 

formed by the swollen flour components.  

These factors are difficult to quantify due to the flour components (i.e. starch and 

gluten) competing for water during the hydration process [Ng 2007]. This in turn 

makes it almost impossible to determine directly the water distribution for each flour 

component when water is added during mixing.  

Therefore assumptions are made in the methods to determine the water distribution 

between flour components. In the simple liquid addition method, the gluten is 

assumed to take the water first for hydration before the remaining water is then taken 

by starch. In the water vapour absorption method on the other hand, Roman-Gutierrez 

et al. [2002b] measure only the ability of the individual flour components to trap 

water molecules without considering any competing effects for water between the 

flour components.   

Roman-Gutierrez et al. [2002b] measured the ability of the individual flour 

components to trap water molecules by measuring the mass of an initially dry sample 

(i.e. starch) placed on an atmospheric microbalance in a continuous flow of air at 

controlled relative humidity. The mass of water absorbed at different humidities, 

which is known as the water activity, wa , was then used to determine the theoretical 
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distribution of water in dough through the Guggenheim-Anderson-de-Boer (GAB) 

model. The GAB model is described as: 

( )
( )( )1 1

o w

w w w

M Cka
M

ka ka Cka
=

− − +
 (2.1) 

where M  is the equilibrium water content (% dry basis), and oM , C and k  are 

model parameters used to fit the experimental data. The theoretical water distribution 

among flour components for a strong wheat flour type was found to be approximately 

88 % for starch and 12 % for gluten/others at 60 % relative humidity and 25 0 C .  

2.2.6 Effect of Microstructure on Stress-Strain Behaviour of Wheat Flour Dough 

Two major components of wheat flour dough that are believed to influence the 

mechanical properties of dough are starch and gluten. On applying mechanical action 

during mixing, hydrated gluten aggregates partially dissociate, unfold, and stretch to 

form a gluten phase throughout the dough [Amemiya and Menjivar 1992]. The starch 

granules and gluten phase then interact by forming starch-starch, starch-gluten and 

gluten-gluten interactions, as shown in Figure 2.7. Starch-starch and starch-gluten 

interactions are an important source of elasticity in the dough based on the starch 

concentration present. The interactions store potential energy upon deformation and 

thus contribute to the elastic behaviour of dough.  
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Figure 2.7. Microstructure interactions in wheat flour dough (reproduced from 

Amemiya and Menjivar [1992]). 

The stress-strain relationship for dough can be interpreted using these interactions, as 

illustrated in Figure 2.8 for the simplest mode of deformation, uniaxial tension. The 

curve shown is one that was measured in the current work at a strain rate of 5/min. 

The influence of starch and gluten interactions (1, 2 and 3 in Figure 2.8(b)) on the 

stress-strain behaviour is discussed below. The stress-strain curve is divided into four 

regions; pre-yield, plateau, strain-hardening and post fracture corresponding to 

regions i to iv in Figure 2.8(a) respectively. 
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Figure 2.8. (a) Different regions of the stress-strain curve of wheat flour dough under 

uniaxial tension; and (b) starch and gluten interactions in the different regions ((b)i is 

reproduced from Amemiya and Menjivar [1992] and (b)iii from Dobraszczyk and 

Morgenstern [2003]). Stress and strain in Figure 2.8(a) are calculated through 

Equations (2.2) and (2.3) in Section 2.3. 

In the pre-yield region (region i in Figure 2.8(a)), short range starch-starch and starch-

gluten interactions are likely to dominate the response measured (1 and 2 in Figure 

2.8(b)) whilst gluten-gluten interactions (3) have a minor effect. In the plateau region 

(region ii in Figure 2.8(a)), the starch-starch and starch-gluten interactions start to 

break down due to deformation (4 and 5 in Figure 2.8(b)). It is likely [Dobraszczyk 

and Morgenstern 2003], based on the theory of polymer melts, that disentanglement 

in gluten-gluten interactions at some point may permit the gluten chain to move about 
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freely and act as a viscous liquid. When the dough enters the strain hardening region 

(region iii in Figure 2.8(a)), the microstructure is determined by two processes: 

further break down of short-range interactions which cause flow, and resistance by 

longer-range gluten-gluten interactions (6 in Figure 2.8(b)) [Amemiya and Menjivar 

1992]. When a continuous gluten phase is present, gluten-gluten interactions 

dominate the region and the continuous network gives rise to the strain hardening 

effect. This phenomenon is also known as elastomeric behaviour [Ferry 1980].  

In the strain hardening region (6 in Figure 2.8(b)), the presence of chain branches is 

important in giving rise to strain hardening, which is a necessary property for the 

stability of polymers that undergo large deformation [Dobraszczyk and Morgenstern 

2003]. Strain hardening in dough is thought to arise mainly from entanglement 

coupling of the larger gluten molecules which gives rise to the high stress observed 

under high strain [Singh and MacRithie 2001]. Entanglement can be viewed as one of 

the physical constraints between segments of the polymer chain, rather like knots, 

where the polymer chains lock and are not free to move past each other. This is 

shown in Figure 2.9. 

 

Figure 2.9. Strain hardening which is believed to be caused by entanglement of 

gluten-gluten interaction (reproduced from Dobraszczyk and Mortgenstern [2003]). 

Entanglement of gluten-gluten

Interaction

stretch

retract

Strain hardening



25 

 

Strain hardening is different under extensional and shear deformation. During 

extensional flow, strain hardening is attributed to entanglement of long-chain 

molecules, whereas in simple shear the chains remain coiled and can slip past each 

other, giving rise to shear thinning at higher strains. Dobraszczyk and Morgenstern 

[2003] showed that shear and extensional viscosities are quite comparable at low 

deformation. However, as the deformation increases, shear and extensional viscosities 

deviate from each other, as shown in Figure 2.10 for biaxial extension and shear 

rheometry test results of wheat flour dough performed at a constant strain rate (0.1/s). 

In short, shear tests show shear thinning while tensile tests show work hardening. 

Finally, in the post fracture region (region iv in Figure 2.8(a)), the stress reaches a 

peak and the gluten chain and gluten-gluten interaction begin to break down (7 and 8 

in Figure 2.8(b)).  

 

Figure 2.10. Large deformation biaxial extension and shear rheometry tests results of 

wheat flour dough performed at constant strain rate (0.1/s) [Dobraszczyk 2004]. 
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2.3 Mechanical Loading Tests  

2.3.1 Uniaxial Tension  

The uniaxial tension tests are performed by clamping both ends of a sample and 

pulling them in opposite directions at a fixed rate using a testing machine. The load 

direction in a tensile test is opposite to the load direction in a compression test. 

Various methods have been employed to measure the tensile properties of dough. The 

challenge in uniaxial tension tests is to properly clamp the ends of a sample, 

especially for soft solid samples. A non-properly clamped sample causes flow at the 

ends, causing inconsistent strain-strain results. For example, in the “Hook design” 

tensile test by Toh [2000], both ends of the dough strip were clamped and extended 

upwards at the centre by a hook to form a V-shape, as shown in Figure 2.11(a). This 

technique is not accurate due to the effect of material flow at the clamped region 

when the strip is extended, which in turn caused inconsistent results. Ng and 

McKinley [2008] on the other hand used the Filament Stretching Rheometer (FiSER) 

for the transient tensile tests of dough. FiSER is designed to monitor in real-time the 

evolution of the mid-plane diameter during the experiment, as shown in Figure 

2.11(b). An example of the sample deformation observed with FiSER is shown in 

Figure 2.11(c). 
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Figure 2.11. (a) “Hook design" tensile test; (b) FiSER test; and (c) observation of 

tensile test using FiSER [Ng 2007]. 

To obtain uniform deformation in dough tensile tests, Charalambides et al. [2006] 

and Wanigasooriya [2006] performed uniaxial tension tests using samples made from 

a dumbbell shaped mould, a cylindrical flared end (CFE) mould and an “I” shaped 

mould, as shown in Figure 2.12.  
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(a) Cylindrical Flared End 

(CFE) 

(b) Dumbbell Shaped (c) “I” Shaped 

   

Figure 2.12. (a) Cylindrical Flared End (CFE); (b) dumbbell; and (c) “I” shaped 

moulds [Wanigasooriya 2006]. 

The tensile tests procedure is as follows. A sample of dough is placed into a mould 

(dumbbell, CFE or “I” shaped moulds) before the excess dough is cut off according to 

the shape of the mould. The sample ends are then heated (CFE and dumbbell shaped 

mould) or air dried (“I” shaped mould), so that the end sections harden and can be 

glued to the test platens. This will also ensure no flow from the sample’s end during 

the tests. Consistent results were obtained using dumbbell shaped, CFE and “I” 

shaped moulds, indicating the importance of drying the ends of the sample. However, 

it was found that “I” shaped mould sample preparation is the fastest from the rest of 

the other designs and the results of the tests obtained using this geometry are 

comparable to the other two designs. This is because the end sections of the “I” 

shaped mould is thinner and quickly air dries, whereas the end sections of the other 

moulds require a longer time to harden from heating. An example of experimental 

results using “I” shaped mould is shown in Figure 2.13. A uniform deformation is 
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observed across the sample, as indicated by the lines marked on the sample in Figure 

2.13. 

 

Figure 2.13. Observation of tensile test using “I” shape mould [Wanigasooriya 2006]. 

As shown in Figure 2.12(c), the strain, ε  during uniaxial tension test for the “I” 

shaped geometry is described as:  

0

ln .ε = l

l
 (2.2) 

0l  is the original gauge length, and l  is the current length ( )0 δ= +l l , with δ  being 

the displacement. The true stress, σ  is calculated as: 

2
0

4σ
π

= F l

D l
 (2.3) 

where D  is the original specimen diameter and F  is the applied load.  

2.3.2 Uniaxial Compression  

The main objective of compression tests is to provide a true uniaxial stress without 

any shear deformation taking place. It is a popular uniaxial test because it is relatively 

easy and simple to prepare appropriate samples for the test. There is no need to clamp 
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the end of the sample as in uniaxial tension tests, and only a PTFE 

(Polytetrafluoroethylene) ring shape mould is needed to produce a cylindrical shaped 

sample, as well as PTFE platens for the tests. However, the main challenge in 

compression tests is friction between the sample and the loading platen interface, 

which causes inhomogeneous uniaxial stress. This effect is also known as the 

“friction hill” that causes barelling of the tested specimen. For a cylindrical sample in 

compression, barelling is a phemonenon where the diameter half way through the 

length of the compressed sample being larger than the diameter at the top and bottom 

edges [Charalambides and Dean 1997], as shown in Figure 2.14(b). Charalambides et 

al. [2006] showed that the severity of the frictional locking (localised deformation 

within the specimen which causes barelling) will become less pronounced when the 

height of the sample is increased. For a taller sample, the frictional locking is 

negligible as the overall sample volume is larger than a shorter sample of the same 

diameter. Lubricant is used to eliminate the friction effect between the sample and the 

platen surface. Charalambides et al. [2005] for instance used 500 centistokes silicone 

lubricant to achieve a near frictionless compression test. They found out that no 

barelling is observed on the sample when the lubricant is used, as shown in the 

comparison of images between lubricated and non-lubricated compression tests on 

dough samples in Figures 2.14(a) and 2.14(b) respectively. 
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Figure 2.14. Compression tests on dough samples [Charalambides et al. 2005] for: (a) 

lubricated compression; and (b) non-lubricated compression.  

However, it should be noted that due to the frictional effect, compression tests can 

only be used to obtain stress results up to a true strain of -0.85 to -1 [Macosko 1994; 

Charalambides et al. 2006]. 

In a uniaxial compression test, the nominal stress, σ , can be described as: 

F

A
σ =  (2.4) 

where A  is the instantaneous cross-sectional area corresponding to F , the 

instantaneous load. The true strain ε  is given by: 

ln
h

H
ε  =  

 
 (2.5) 

where h  and H  are the instantaneous and initial sample height respectively, related 

by ( )δ= −h H , with δ  being the displacement. By assuming incompressibility and a 

homogeneous deformation of the material, the volume of a cylindrical sample 

remains constant during the deformation with 2 2π π=r h R H , where r  and R  are 

(a) (b) 
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instantaneous radius and initial radius of the sample respectively. The true stress can 

then be calculated as: 

2
σ

π
 =  
 

F h

R H
 (2.6) 

Charalambides et al. [2005] and Wanigasooriya [2006] performed lubricated 

compression tests on dough samples with heights ranging from 6 mm to 20 mm, and 

consistent results were obtained from all the heights tested.  

2.3.2.1 Compression Relaxation  

Stress relaxation tests are performed to investigate the time dependent behaviour of 

dough. A stress relaxation test can be conducted in compression mode, where a 

specimen is compressed to a required strain and held fixed for a period of time while 

the stress decay is measured. Forces incurred during loading of dough will generate 

stress. Upon holding at the required strain, the stress in dough will decay over a long 

period of time. If the rest time is too short, a significant amount of stress inside the 

dough will be present, which in turn influences the stress-strain measurements. Stress 

relaxation can be described using phenomenological mechanical models consisting of 

springs and dashpots. In this work, the Prony series is used. The 1D equivalent of the 

Prony Series in tension consists of a series of Maxwell elements connected in parallel 

with a spring. This will be discussed later in Section 3.3 in the next chapter. 
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2.3.2.2 Compression Loading-Unloading and Recovery Tests 

Loading-unloading tests are performed by applying and subsequently removing a 

load at a constant strain rate. In this test, a PTFE film is placed between the surface of 

the sample and the top loading platen. This is to prevent the top platen to stick to the 

surface of the sample during the unloading stage. Loading-unloading tests are very 

relevant to dough processing, particularly for sheeting [Xiao 2005] and extrusion 

processes [Wanigasooriya 2006]. In both processes, dough is subjected to loading and 

unloading due to mechanical contact with the processing rigs.  

To determine the recovery strain on dough and gluten after loading-unloading tests, 

recovery tests on dough and gluten can be performed to determine the plastic strain 

and elastic recovery. Tanner et al. [2007] for example performed recovery tests on 

dough in tension mode by cutting the samples at the middle of the specimen under a 

specific strain and measured the recovery strain using a video camera. This is shown 

in Figure 2.15.  

 

Figure 2.15. Recovery test under tension mode performed by Tanner et al. [2007]: (a) 

during cutting; and (b) after cutting. 

(a) (b) 
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From the experimental results, Tanner et al. [2007] measured the recoverable strain, 

rε , which is defined as: 

length after cutting
ln

length before cuttingrε  
=  

 
 (2.7) 

Equation (2.7) was then compared with the Lodge rubberlike model fitted with a 

damage function [Tanner et al. 2007], which will be discussed later in the next 

chapter. It is worth mentioning that the recovery test shown in Figure 2.15 does not 

consider the effect of gravity, which may influence the recovery strain of dough on 

the top and bottom portions of the specimen cut during the measurement. 

2.3.2.3 Cyclic Compression and Cyclic Tension 

Cyclic compression or tension tests are often performed by loading and unloading a 

sample under tension or compression mode at the same strain rate. The reloading 

curve is activated once the stress in the unloading curve becomes zero. An interesting 

phenomenon in cyclic test stress-strain curve is the Mullins effect. The Mullins effect 

[Mullins 1947] is a phenomenon of stress softening, which is commonly observed in 

filled elastomers as a result of damage associated with strain. An idealized response 

of the Mullins effect is shown in Figure 2.16. 



35 

 

 

Figure 2.16. The Mullins effect for a tension test (reproduced from Ogden and 

Roxburgh [1999]). 

Figure 2.16 shows stress versus stretch ratio, λ  of the Mullins effect in simple 

tension. The loading paths are discussed as follows [Ogden and Roxburgh 1999]. 

Consider first the primary loading path ( )abb'  during the tension test. The material 

will follow the ( )b'Ba  path back to the original state. As the same material is 

unloaded again with higher strain, notice that the path now follows ( )aBb'cc' as 

indicated from the arrow sign from ( )a  to ( )c'  in Figure 2.16. If the loading is 

unloaded at ( )c' , then the new unloading path will be ( )c'Ca . Further loading will 

cause the same pattern of path.  

There exist several patterns of unloading and reloading curves of the Mullins effect, 

as shown in Figure 2.17. Figure 2.17(a) shows the Mullins effect where the reloading 

response coincides with the unloading response, whereas Figure 2.17(b) shows a 

different reloading and unloading response. A possible reason why the unloading-
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reloading curve differs is because of viscoelasticity, i.e. time dependent behaviour 

[Kaliske et al. 2001]. The time-dependent behaviour can be described using a 

combination of serial and parallel elastic and viscous elements, or springs and 

dampers respectively. Details on the viscoelastic model will be described in Chapter 

3. 

       

         

Figure 2.17. Four types of Mullins effect ((c) and (d) are reproduced from Diani et al. 

[2009]) for rubberlike materials. 

Figures 2.17(c) and 2.17(d) on the other hand have similar patterns to Figure 2.17(a) 

and 2.17(b) respectively but they are now exhibiting a permanent set, as discussed by 

Diani et al. [2009]. The permanent set refers to the residual extension remaining after 

a sample is stretched and released, which is referred as the residual stretch ratio, λ , in 
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Figures 2.17(c) and 2.17(d). The residual stretch ratio can be measured using 

recovery tests discussed in Section 2.3.2.2. Diani et al. [2009] suggested that the 

reason for the permanent set is due to microstructural damage in the material. 

However it should be noted that permanent set for a material exhibiting the Mullins 

effect is very complex, since microstructure damage in a material can occur in various 

forms. In a filled material for example, damage can occur as debonding between filler 

and matrix or cracks in the matrix or filler [Mishnaevsky Jr. 2007]. This highlights 

the need to study the Mullins effect using a micromechanics model, which will be 

discussed in the next chapter (Section 3.5). 

The Mullins effect has been investigated for filled rubbers [Bergström and Boyce 

1998; Dorfmann and Ogden 2004] and biological material which behave like rubber, 

such as soft biological tissues [Bergström and Boyce 2001].  

2.3.3 Shear Rheometry 

Shear properties can be determined from the response of materials during angular 

displacement using a rheometer. The rheometer has the capabilities to control the 

stress and strain in either continuous or sinusoidal rotation. Two types of 

commercially available rheometers are the strain controlled rheometer and the stress 

controlled rheometer, as shown in Figure 2.18. On a strain controlled rheometer, a 

shear strain or shear strain rate is applied to the sample and the resulting shear stress 

is measured. The sample geometry in the rheometer is controlled by a strain detector 

attached to a motor and a strain transducer at the base. Both detector and transducer 

are controlled by a computer. Unfortunately, the minimum strain resolution in some 

instruments may not be adequately accurate to be useful and the frequency range may 
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also be limited [Kavanagh and Ross-Murphy 1998]. On a stress controlled rheometer, 

a shear stress is applied to the sample and the shear strain or shear strain rate is 

measured. However, the fast electronic feedback for a modern stress-controlled 

rheometer allows the rheometer to be used in strain-controlled mode too. This is 

possible when the measurements of the position and rotation rate of the spindle are 

precisely measured using an optical encoder and radial position transducer. The 

encoder and transducer are connected to a sophisticated electrical control system and 

data logging facilities which provide real time electronic feedback system. The 

electronic feedback system then allows the controlled strain mode to be performed 

[Barnes 2003]. 

 

Figure 2.18. (a) Strain controlled rheometer; and (b) stress controlled rheometer 

(reproduced from Kavanagh and Ross-Murphy [1998]). 

The most common shear tests performed on dough are frequency sweep, strain sweep 

and constant shear strain rate (CSSR) tests [Phan-Thien et al. 1997; Tanner et al. 

Air in

Vertical 

adjustment

Computer

Rotary position 

transducer

Constant 

torque motor

Optical encoder 

(to measure 

angular velocity)

Air 

bearing

Removable

upper fixture
Cone-plate or 

parallel plate 

geometryRemovable

lower fixture

Vertical 

adjustment

Computer

Motor  controlled

(position velocity)

Strain 

detector

Cone-plate or 

parallel plate 

geometry

Removable

upper fixture

Removable

lower fixture

Strain 

transducer

(a) (b) 



39 

 

2008; Ng and McKinley 2008]. Frequency sweep and strain sweep tests are 

performed in oscillatory mode, whereas CSSR tests are conducted under a continuous 

increase in shear strain. Frequency sweep tests imply monitoring the frequency 

response over time at a constant strain, while strain sweep tests imply monitoring the 

strain response over time at a constant frequency. In CSSR tests, the transient changes 

in shear stress are monitored as the sample is deformed over time. The configuration 

of all the shear tests is illustrated in Figure 2.19. 

 (a) Strain Sweep (b) Frequency Sweep (c) Constant Shear Strain 

Rate 

 

  

Figure 2.19. Configurations for shear tests. 

Shear rheometry tests can be performed either by using cone-plate or parallel plate 

geometry, as shown in Figure 2.20. The difference between these two geometries will 

be discussed in Section 2.3.3.1. A main challenge in shear rheometry is the unwanted 

slippage at the edge of the sample during shear tests. Two types of forces are thought 

to be responsible for the slippage, the gravitational and the frictional forces. 

Gravitational forces cause slippage if the sample viscosity is too low [Laun 2006], 

whereas frictional forces cause sample slippage at high rotation speeds due to 

insufficient grip or friction during rotational motion. For soft solid materials, lack of 
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sufficient friction also causes slippage of the sample between the plates of rheometer 

especially when performed at high shear rates. To overcome this problem, Ng and 

McKinley [2008] and Tanner et al. [2008] used sandpapers attached on the plates of 

the rheometer. Another challenge is the dynamic vibration during high frequency 

tests. An example of this phenomenon is the effect of motor inertia during the 

frequency sweep tests performed at high frequency, when the inertia effect becomes 

dominant and influences the rheological properties of the sample tested. A study by 

Klemuk and Titze [2009] showed that the inertial response becomes more dominant 

than the material response at 62 Hz for a non-Newtonian material, i.e. 

Polyisobutylene solution. However, based on previous work, dough is usually tested 

by only up to a frequency of 30 Hz [Tanner et al. 2008], therefore the effect of motor 

inertia can be ignored.  

  

Figure 2.20. Geometries of: (a) cone-plate; and (b) parallel plate rheometer. 

2.3.3.1 Constant Shear Strain Rate  

Constant shear strain rate (CSSR) tests are performed to measure the stress response 

by continuously increasing the shear strain at a constant rate. The configuration of the 
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tests is depicted in Figure 2.20. For cone-plate geometry (Figure 2.20(a)), the shear 

rate, γɺ  can be calculated as: 

tan tan

r

r

ω ωγ
θ θ

= =
 

ɺ  (2.8) 

where ω  is the rotational speed, θ  is the cone angle and r  is the radius of the 

rotating plate. The shear strain in the cone-plate geometry is therefore uniform 

throughout the gap.  

In parallel plate geometry, the shear strain is a function of the radius, varying from 

zero at the centre of the sample, to a maximum at the edge of the rotating plate, R. 

The shear rate, γɺ , at the edge of a parallel plate geometry (Figure 2.20(b)) is defined 

as: 

R

H

ωγ =ɺ  (2.9) 

where H  is the constant gap between the upper and lower rheometer plates. Keentok 

and Tanner [1982] investigated shear stress using parallel plate and cone-plate 

geometries with different gap, H , values. They proposed a minimum gap size of 1 

mm and ( ) ∼H R 0.05, beyond which the shear stress and normal stress in the 

parallel plate geometry is unaffected by the gap, and a good agreement is seen 

between the shear stress data from cone-plate and parallel plate geometries. However, 

it should be noted that since measurements of shear stress in the parallel plate 

geometry is taken at the edge of the plate, R , edge fracture of the sample should be 
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avoided. Tanner et al. [2008] have shown that edge fracture occurs at shear strain of 

20 for a dough sample.  

A last note regarding the shear data is the correction needed for the apparent rim 

shear stress calculated by the rheometer at large shear deformations as outlined by 

Phan-Thien et al. [2000] and Ng et al. [2011]. The motivation for this correction is 

that at large strain, the material is non-linear and this might affect the accuracy of the 

rheometer calculations which assume a linear stress-strain relationship. The apparent 

shear stress for a parallel plate rheometer, Rτ  calculated at the edge of the plate, R , is 

described as: 

( ) ( )
3

2
R

t
t

R
τ

π
Γ

=  (2.10) 

where ( )tΓ  is the measured torque at time, t . The apparent rim shear stress is 

calculated by the rheometer software using the measured torque, ( )tΓ , with an 

assumption that stress is linearly proportional to strain and its time derivative [Steffe 

1996; Ng et al. 2011]. A corrected shear stress, Eτ  is proposed by Phan-Thien et al. 

[2000] described as: 

3 3

3 d

2 d 2E E

ER R
τ γ

π γ π
Γ Γ = +  

 
 (2.11) 

whereas Ng et al. [2011] proposed the following form:  
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3 1
.

4 4
E R

E R

R E

γ ττ τ
τ γ

 ∂= + ∂ 
 (2.12) 

Tanner et al. [2008; 2011a] and Macosko [1994] on the other hand proposed a simple 

correction, where the value of Eτ  is taken to be equal to Rτ  at a 3/4 radius in a parallel 

plate test: 

3

4E Rτ τ  =  
 

 
(2.13) 

which means that the second term in the bracket of Equation (2.12) is neglected. By 

substituting Equation (2.10) into Equation (2.13), Eτ  becomes: 

( ) ( )
3

3

2E

t
t

R
τ

π
Γ

=  (2.14) 

which is equal to the cone-plate shear stress equation [Steffe 1996]. To show the 

difference between the equations above (Equations 2.10 to 2.14), a constant shear 

strain rate (CSSR) test at 5/min was performed on a dough sample in this work. The 

experimental procedure of the CSSR tests is discussed in Section 4.3.3. The 

rheometer output shear stress-shear strain results are shown in Figure 2.21. Equations 

(2.10) to (2.14) are then calculated using the test data and the results are shown in 

Figure 2.21. It can be seen that the results using Equation (2.10) is the same as the 

rheometer output. Equations (2.11) and (2.12) on the other hand give a lower stress-

strain curve than the rheometer output curve. Finally, the lowest stress-strain curve is 

obtained using Equations (2.13) and (2.14).  
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Figure 2.21. Differences of shear stress for parallel plate rheometer obtained using 

Equations (2.10) to (2.14). 

The difference in the results obtained using Equations (2.10) to (2.14) in Figure 2.21 

causes difficulties in choosing an accurate equation to measure the shear stress for the 

parallel plate geometry. The assumptions made by Macosko [1994] and Tanner et al. 

[2008; 2011], where the cone-plate shear stress is equal to parallel plate stress 

(Equation (2.14)), is not suitable since the shear strain for a parallel plate geometry is 

a function of the radius of the plate. Ideally, Equation (2.14) is accurate if the cone-

plate geometry is used since the shear strain is constant throughout the gap (Equation 

(2.8)).  However, if sandpapers are needed on the plate surface to prevent slippage of 

the sample during the tests, the parallel plate geometry is more practical [Phan-Thien 

et al. 1997; Tanner et al. 2008; Ng and McKinley 2008]. On the other hand, Equation 

(2.10) is only valid for Newtonian materials, as shown by Steffe [1996]. It is therefore 

concluded that the correction by Phan-Thien et al. [2000] and Ng et al. [2011] 

(Equations (2.11) and (2.12)) will be used on all samples tested using the parallel 

plate geometry. 
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2.3.3.2 Shear Strain Sweep  

Strain sweep tests are conducted by increasing the strain in logarithmic scale at a 

constant frequency. Assuming a sample is located between the plates of a rotational 

rheometer, the strain in the material between the plates is a function of time [Steffe 

1996]: 

( )0 sinγ γ ω= t  (2.15) 

where 0γ  is the amplitude of the strain, which is equal to L H  when the motion of 

the upper plate is ( ) ωL sin t . L is the displacement of the upper plate, H is the gap 

between the plates and ω  is the frequency expressed in rad/s. The shear strain rate,  

γɺ , then becomes: 

( )( )0 sinγ ωγ γ= =ɺ
d td

dt dt
 (2.16) 

which can be evaluated as ( )0 cosγ γ ω ω=ɺ t . In the linear viscoelastic region, the 

shear stress produced by the shear strain input is:  

( )0 sin .σ σ ω δ= +t  (2.17) 

0σ  is the amplitude of the shear stress and � is the phase lag relative to the strain. 

Dividing both sides by 0γ  gives ( )0

0 0

sin
σσ ω δ

γ γ
 

= + 
 

t . Using trigonometry and 

simplifying the equation yields: 
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( )' '' .σ γ γω= + ɺGG  (2.18) 

'G  is the shear storage modulus and ''G  is shear loss modulus expressed as:  

( )' 0

0

cos
σ δ
γ

=G   ;  ( )'' 0

0

sin .
σ δ
γ

=G  (2.19) 

The linear viscoelastic region (LVR) can be defined from the graphs of 'G  and ''G

versus applied shear strain. Constant values of 'G  and ''G  over a range of shear strain 

indicate the LVR, i.e. as shown in Figure 2.22 for strains approximately 310−< . 

 

Figure 2.22. Linear viscoelastic region of dough obtained by Phan-Thien et al. 

[1997]. 

It should be noted that Equations (2.15) to (2.19) are not applicable beyond LVR. The 

study beyond LVR is known as Large Amplitude Oscillatory Shear (LAOS). Readers 

can refer to Ewoldt [2009] and Ng et al. [2011] for details of the LAOS tests and 

analysis. 
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2.3.3.3 Shear Frequency Sweep  

Before describing the shear frequency sweep test, it is worth mentioning the critical 

gel behaviour of materials, based on the study by Winter and Mours [1997]. Consider 

Figure 2.23 for a material microstructure consisting of monomers. The monomers are 

randomly distributed without any crosslink. The monomers would flow like a liquid if 

diluted in a solvent. However, when the monomers are subjected to polymerisation, in 

which the monomers crosslink and start to form polymer networks (Figure 2.23(b)), 

the material would not behave as a liquid anymore but not yet as a solid. The material 

at this stage is known as critical gel. The relaxation modes of the material at this stage 

can be represented through a power law mode as [Winter and Mours 1997]: 

(((( )))) nG t St −−−−==== , where (((( ))))G t  is the relaxation constant, S  is the gel stiffness, t  is time 

and n  is the power law constant. Further crosslinks caused the monomer networks to 

span across the entire material, where the material now would behave like a solid, as 

shown in Figure 2.23(c). Dough has been shown to behave like a critical gel material, 

based on the work by Gabriele et al. [2001], Ng et al. [2006], Lefebvre [2009], 

Tanner et al. [2008] and Migliori and Gabriele [2010]. The critical gel behaviour of 

dough is caused by gluten, as shown by Ng and McKinley [2008] and Ng et al. 

[2011]. A strain value within the plateau region in the strain sweep tests (linear 

viscoelastic region in Figure 2.22) can then be used to perform frequency sweep tests, 

where the power law representation by Winter and Mours [1997] can be used to 

define the rheology of the critical gel material. The frequency sweep test will be 

discussed in detail below. 
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Figure 2.23. Critical gel material illustration (reproduced from Winter and Mours 

[1997]). 

Frequency sweep tests are performed by setting a constant value of strain while 

frequency increases in a logarithmic scale and the stress response is measured. The 

strain used for the tests has to be in the linear viscoelastic region, as defined from the 

strain sweep tests discussed previous subsection. Frequency sweep tests for dough in 

the linear viscoelastic region can be described using the following function: 

( ) ( )' '(1) '' ''(1)n nG t G G t Gω ω= =,        (2.20) 

where ( )'G t  and ( )''G t  are the storage and loss moduli respectively, ( )' 1G  and 

( )'' 1G are the storage and loss moduli constants respectively, ω  is frequency and n  

is the power law constant. A power law can also be fitted to stress relaxation data in 

the form of ( ) (1) −= nG t G t . The stress relaxation constant (1)G  is related to '(1)G  

through [Tanner et al. 2008]: 
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( ) ( )' 2 !
(1) 1 sin

2

π
π

=
n n

G G
n

 (2.21) 

where (1)G  has the unit of ( )Pa sn⋅ . The relationship between phase angle δ , 'G , ''G  

and n  is as follows [Tanner et al. 2008]: 

( )
( )

''

tan tan .
' 2

ω πδ
ω

= =
G n

G
 (2.22) 

The stress relaxation constant (1)G  and power law constant n  can be used in the 

Lodge rubberlike model, which will be discussed later in the next chapter. An 

example of frequency sweep test results of dough performed at 0.1 % strain is shown 

in Figure 2.24. 

 

Figure 2.24. Frequency sweep test results obtained by Tanner et al. [2008], where 

( ) ( )' ''1 12.2 kPa , 1 5.5 kPaG G= =  and 0.27n =  are used to fit the tests. 
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2.4 Cryogenic Scanning Electron Microscopy (Cryo-SEM) of Wheat 

Flour Dough 

Cryogenic Scanning Electron Microscopy (Cryo-SEM) tests are usually performed to 

observe the microstructure of hydrated/soft samples. A “cold stage” is used to allow 

the sample to undergo rapid freezing in liquid nitrogen to avoid dehydration from the 

alternative chemical drying technique [James 2009]. Without dehydration, a similar 

structure to that observed in fresh samples can be examined [Freeman et al. 1991]. 

Images with higher magnifications than optical light microscopy can be observed 

using Cryo-SEM, which allow a closer inspection of the sample’s microstructure 

[Kontogiorgos and Goff 2006].  

However, a disadvantage of the Cryo-SEM technique is the formation of ice crystals 

on the sample surface during rapid freezing. The ice crystals may obscure the 

sample’s microstructure in the Cryo-SEM chamber. To remove the layer of ice 

crystals from the surface, a procedure called sublimation is performed, by transferring 

a sample from the colder temperature stage after the rapid freezing process, to a 

higher reference temperature in the Cryo-SEM chamber. The sublimation process is 

discussed in detail in the next section. 

2.4.1 Effect of Sublimation  

The sublimation process can be described using the pressure-temperature diagram of 

water shown in Figure 2.25 [Robards and Sleytr 1985]. The diagram shows the 

phases of water (solid, liquid or vapour phase) at different pressures and 

temperatures, with the triple point and the critical point of water also being shown. 

The lines in the diagram indicate the boundaries between the different phases. The 
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triple point of water is the point that separates water from the solid, liquid and vapour 

phases, where these three phases coexist in thermodynamic equilibrium. The critical 

point of water is the point at which no phase equilibrium exist between the liquid and 

vapour phases. It should be noted that the triple point of water is 274.16 0 C  at 0.0061 

bar, whereas the critical point of water is 374 0 C  at 218 bar. 

 

Figure 2.25. The temperature-pressure diagram for water (reproduced from Robards 

and Sleytr [1985]). The arrows show the possible ways of moving from the liquid 

phase to the vapour phase. Arrows indicate: Route 1 (air drying), Route 2 (freeze 

drying) and Route 3 (critical point drying) respectively. The triple point and the 

critical point of water are also shown.  

The diagram also shows three possible routes by which water in a specimen can be 

removed. Route 1 involves passing through the boundary between liquid and vapour 

phase; this is also known as air drying. Route 2, also known as freeze-drying, 

involves a procedure where the liquid in the specimen is first converted into solid by 
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freezing, i.e. exposure to liquid nitrogen (liquid nitrogen temperature is -196 0 C  at 

atmospheric pressure). The surrounding pressure on the freezed specimen is 

subsequently reduced to a value much lower than atmospheric pressure, i.e. high 

vacuum conditions [Dunlap and Adaskaveg 1997]. When the temperature of the 

surrounding freezed specimen is increased under high vacuum conditions, the frozen 

water on the specimen surface will change from the solid to the vapour phase 

[Robards and Sleytr 1985] (as shown by Route 2 crossing the solid-vapour line in 

Figure 2.24). This procedure is known as sublimation. Note that the vacuum 

conditions are defined using the following standard [National Physical Laboratory 

2011]: low vacuum ( 51 10  Pa×  (1 bar) to 33 10  Pa×  (0.03 bar)), medium vacuum (

33 10  Pa×  (0.03 bar) to 11 10  Pa−×  ( 61 10  bar−× )), and high vacuum ( 11 10  Pa−× (

61 10  bar−× ) to 41 10  Pa−× ( 91 10  bar−× )). 

Route 3 on the other hand involves replacing water in the sample with a liquid that 

has a lower critical point than water. When the temperature and pressure are increased 

above the critical point temperature, the liquid changes to vapour without overheating 

the specimen. This will cause a minimal effect to the surface tension of the specimen. 

An example of liquid used is Freon or liquid 2CO  ( 2CO  critical point is 31.04 0 C  at 

72.8 bar), which was used to examine biological specimens [Smith and Finke 1972]. 

Route 3 is also known as critical point drying.  

For a semi-liquid specimen, the disadvantage of Route 1 is that the specimen cannot 

be dried directly with the liquid phase present since this can cause a very high surface 

tension, which in turn causes shrinkage to the specimen. Route 3 on the other hand 

requires the water in the specimen to be removed first. If the specimen is directly 
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subjected to Route 3 without removal of water, the specimen will be damaged 

because it needs to be heated at a very high temperature and pressure [Robards and 

Sleytr 1985] (critical point of water is 374 0 C  at 218 atm). Route 2 therefore 

provides an advantage where there is no need to remove water from the specimen 

compared to Route 3. By solidifying the specimen at a very low temperature, Route 2 

provides a minimal effect of surface tension compared to Route 1. This makes it 

possible to observe the microstructure of a hydrated specimen, i.e. food and living 

cells. 

Various studies on Cryo-SEM of dough were performed using different sublimation 

conditions. For example, Freeman et al. [1991] performed the Cryo-SEM using 

sublimation setting at -70 0 C  for 9 minutes, Zounis et al. [2002] used -65 0 C for 6 

minutes, Kontogiorgos et al. [2008] used -80 0 C  for 30 minutes and Yi and Kerr 

[2009] used -70 0 C  for 10 minutes. The images from these mentioned studies are 

shown in Figure 2.26. 
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Figure 2.26. Images of dough observed by: (a) Freeman et al. [1991]; (b) Zounis et al. 

[2002]; (c) Kontogiorgos et al. [2008]; and (d) Yi and Kerr [2009]. 

It can be seen in Figure 2.26 that different sublimation settings give different results 

in terms of the appearance of the starch and gluten interface. In Figures 2.26(a) and 

2.26(c) for example, the starch appears to be embedded in the gluten network, 

whereas the starch and gluten interface are not as clearly observed in Figures 2.26(b) 

and 2.26(d). This indicates a need to determine the best sublimation settings on a 

reference image, before any effect of, for example deformation, can be studied on the 

microstructure of dough. To the author’s knowledge, no Cryo-SEM studies have been 

(a) (b) 

(c) (d) 
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reported focussing on the starch and gluten interface when dough samples are 

deformed, i.e. stretched or compressed. 

2.5 Conclusion 

The microstructure of wheat flour dough was discussed, which consists of starch and 

gluten as the main constituents. In order to obtain gluten which represents the dough 

in a real system, native gluten would be the best option, since the gluten network 

formed during the mixing of dough is still retained. This enables determination of the 

properties of gluten as it appears in the actual dough material. Wet starch obtained by 

washing of dough needs to be dried at room temperature before it can be mixed with 

water again to produce reconstituted wet starch. The water distribution between flour 

components, i.e. starch and gluten, needs to be known to ensure that the amount of 

water added to starch represents the constituent’s water content in dough. The 

relationship between microstructure and stress-strain of wheat flour dough is 

summarised based on previous reported studies by Amemiya and Menjivar [1992] 

and Dobraszczyk and Motgenstern [2003].  

Mechanical loading tests under uniaxial tension, uniaxial compression, and shear 

rheometry were also reviewed. The various possible tensile sample geometries were 

considered as well as the possible barelling effect under uniaxial compression, and 

the rheometer plate’s geometry under shear rheometry tests. This is followed by a 

discussion on the correction needed for the apparent rim shear stress calculated by the 

rheometer at large shear deformations. Finally, previous studies on Cryogenic 

Scanning Electron Microscopy (Cryo-SEM) on dough were discussed as well as the 

effect of sublimation on the dough samples. 
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Chapter 3. Material Models for Wheat Flour Dough 

3.1 Introduction   

Systematic mechanical characterisation studies on wheat flour dough were first 

performed by Schofield and Scott-Blair in a series of publications [Schofield and 

Scott-Blair 1932; 1933a; 1933b; 1937]. They used a simple Maxwell fluid model to 

characterise the dough by considering a situation in which the relaxation time is not 

constant but varies with stress. However, since these studies were performed in 

1930’s, mathematical software like MATLAB [MATLAB 2009] and commercial 

finite element software like Abaqus [Abaqus 2009] were not readily available at that 

time. This initially made it difficult to model the Maxwell model numerically. 

The idea of using the finite element method to simulate deformation of dough and 

processes in the dough manufacturing line is to replace a long series of large scale 

tests and usage of materials that would be costly and time consuming. Development 

of simple, quick and practical schemes to characterise the complex behaviour of 

dough are performed using some of the constitutive models available in commercially 

available finite element software packages. 

This chapter reviews a few material models suitable for soft solid materials. Firstly 

the Lodge-rubberlike model suggested by Tanner et al. [2008] and Ng and McKinley 

[2008] is presented. This is followed by the visco-hyperelastic model [Charalambides 

et al. 2006] and the viscoplastic model. Micromechanics models are discussed next 

and finally the Phan-Thien Tanner [Phan-Thien et al. 2000] and Pom-Pom polymer 

[McLeish and Larson 1998] models are reviewed. 
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3.2 Lodge Rubberlike Model 

The basic rheological model is the power law fluid, which describes stress, σ  and 

constant strain rate, γɺ , as: 

nkσ γ= ɺ  (3.1) 

where n  is the power law constant, and k  is the consistency index. This model is 

very simple and as a result it is widely used to model the behaviour of dough. 

However, the terms k  and n  in the model do not provide any physical meaning, and 

the model cannot be used to characterise complex viscoelastic behaviour. The terms 

only represent empirical values of the material tested.  

To overcome this, the linear viscoelastic model is introduced, which can be described 

using the following: 

( )' '
t

p G t t dtγσ
−∞

+ = = −∫σ I ɺ  (3.2) 

where σ  is stress tensor, p  is the pressure, I  is the unit tensor. For simplicity, the 

term p+σ I  normally used in the field of rheology is described as simply σ , which is 

the stress term normally used in solid mechanics. G  is the relaxation function 

described in the range of  reference time 't  and time t .  

Tanner et al. [2008] and Ng and McKinley [2008], in independent studies, included 

finite strain elasticity in the linear viscoelastic model, which is based on the approach 

by Winter and Mours [1997]. The Lodge rubberlike model is first considered in the 

linear viscoelastic region [Macosko 1994] using the following: 
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( ) ( )' ' '
'

ε

t d
G t t t dt

dt
σ

−∞

= −∫  (3.3) 

where σ  is the stress and ( )'ε t is the strain as a function of time 't . Finite strain is 

then included in the strain function, ( )'ε t , in Equation (3.3), which can be described 

as [Winter and Mours 1997]: 

( ) ( )' 1 ' '
'

,
t d

G t t t t dt
dt

σ −

−∞

= −∫ C     (3.4) 

where ( )1 ',C− t t  represents the inverse of the right Cauchy-Green tensor [Holzapfel 

2000], which is also known as the Finger tensor [Tanner et al. 2008]. The strain 

tensor is described as relative to the present time t  and reference time 't  [Tanner et 

al. 2008].  

The power law can be included into Equation (3.4) to yield: 

( ) ( )' 1 ' '
'

(1) ,
t

nd
G t t t t dt

dt
σ

− −

−∞

 
 

−


= ∫ C  (3.5) 

where ( ) (1) −= nG t G t  [Gabriele et al. 2001; Ng et al. 2006; Lefebvre 2006; Migliori 

and Gabriele 2010; Tanner et al. 2008; 2011a]. Equation (3.5) therefore becomes:  

( ) ( ) ( )1' 1 ' '(1) , .
t

n
nG t t t t dtσ

− + −

−∞

= −∫ C  (3.6) 

The relaxation modulus, (1)G  and power law exponent, n , can be determined from 

Small Amplitude Oscillatory Shear (SAOS) tests, i.e. in the linear viscoelastic region, 

as described in Sections 2.3.3.2 and 2.3.3.3.  
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It is worth noting that Macosko [1994] described the Lodge model in Equation (3.4) 

using the left Cauchy-Green tensor, B  instead of 1−C . The different forms of strain 

tensors used by previous authors [Macosko 1994; Ng and McKinley 2008; Tanner et 

al. 2008] cause some confusion about which type of tensor should be used to describe 

the Lodge rubberlike model.  

To clarify this, the deformation gradient tensor, F , which is used to obtain B  and 

1−C  is discussed first. Consider a block with point P embedded in the body and point 

Q , a neighbouring point separated by a small distance 'dx , as shown in Figure 3.1.  

 

Figure 3.1. Representation of deformation gradient using a block (reproduced from 

Macosko [1994]). 

The block is deformed to a new state. Point P and Q will move with the material, and 

the small displacement between them will stretch and rotate as indicated by the 

direction and magnitude of the new distance dx. The change in dx with respect to 'dx  

is called the deformation gradient, or simply F  [Macosko 1994]: 

Q

P

dxxxx’

dxxxx

P

Q

1

2

3

Undeformed state Deformed state

Motion
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'

d
.

d
= x

F
x

 (3.7) 

The deformation gradient is used to define the left Cauchy-Green tensor, B  , using 

the following equation [Holzapfel 2000]: 

T= ⋅B F F  (3.8) 

where TF is the transpose of the deformation gradient matrix F .  

Tanner et al. [2011a] on the other hand used the following deformation gradient: 

'd
.

d
= x

F
x

 (3.9) 

Notice the difference between the deformation gradients in Equations (3.7) and (3.9). 

Equation (3.9) can be used to obtain the right Cauchy-Green tensor, C , through the 

following: 

T= ⋅C F F  (3.10) 

The inverse of the strain tensor, 1C− , is then described as: 

[ ]1 1
adj− =C C

C
 (3.11) 

where C  and [ ]adj C  are the determinant and adjoint of matrix C  respectively. The 

inverse of the strain tensor, 1C−  is also known as the Finger tensor [Tanner et al. 

2008; Ng and Mckinley 2008]. To show that 1−=B C , the following cases under 

uniaxial tension and simple shear are considered in the next sections. 
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3.2.1 Uniaxial Tension and Uniaxial Compression 

The deformation gradient under uniaxial tension can be described by considering a 

block being stretched in direction 1 as shown in Figure 3.2. 

 

Figure 3.2. Deformation gradient under uniaxial tension for: (a) unstretched block; 

and (b) stretched block (reproduced from Macosko [1994]). 

Consider point P in Figure 3.2(a) in the unstretched block with coordinates 

( )' ' '
1 2 3, ,x x x . The same point P in Figure 3.2(b) in the stretched block has coordinates 

( )1 2 3, ,x x x . '
1x∆ , '

2x∆ , and '
3x∆  represent the dimensions of the unstretched block in 

Figure 3.2(a), whereas 1x∆ , 2x∆  and 3x∆  represent the dimensions of the stretched 

block in Figure 3.2(b). The coordinates of point P in the stretched block can be 

described as [Macosko 1994]: 

' '1
1 1 1 1'

1

α∆= =
∆

x
x x x

x
 (3.12) 

2

3

1

2

3

1

Uniaxial

extension

1x∆

2x∆

3x∆

'
1x∆

'
2x∆

'
3x∆

P

P

(a) (b)
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' '2
2 2 2 2'

2

α∆= =
∆

x
x x x

x
 

' '3
3 3 3 3'

3

.
x

x x x
x

α∆= =
∆

 

The deformation gradient, F  can then be obtained as: 

1

2

3

0 0

0 0 .

0 0

α
α

α

 
 =  
  

F  (3.13) 

Under uniaxial extension (Figure 3.2(b)), 2 3α α= . For an incompressible block, 

' =V V  ( 'V is the undeformed volume and V is the deformed volume), and the 

following relationship is obtained: 

' ' '
1 2 3 1 2 3∆ =∆ ∆ ∆ ∆∆x x x x x x      (3.14) 

or: 

1 2 3 1α α α =  (3.15) 

Under uniaxial tension: 

2
1 2 1α α =     and    2

1

1
.α

α
=  (3.16) 

The deformation gradient can then be described by just 1α  through: 

1

1
2

1

1
2

1

0 0

0 0

0 0

F

α

α

α

−

−

 
 

=  
 
  

 (3.17) 
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and substituting Equation (3.17) into Equation (3.8) yields:  

21 1
1

1 1T 12 2
1 1 1

11 1
2 2 1

1 1

0 0 0 0 0 0

0 0 0 0 0 0 .

0 00 0 0 0

α α α
α α α

αα α

Β F F
− −− −− −− − −−−−

−−−−− −− −− −− −

                 
                 = = ⋅ == = ⋅ == = ⋅ == = ⋅ =                 
                 

        

⋅⋅⋅⋅

            

 (3.18) 

If Equation (3.9) is used instead to describe F , then the following form is obtained:  

1
1

1
2

1
3

0 0

0 0 .

0 0

α
α

α

−

−

−

 
 =  
 
 

F  (3.19) 

Using the same assumption of incompressible block as discussed before, the 

deformation can then be described by just 1α  through: 

1
1

1
2

1

1
2

1

0 0

0 0

0 0

α

α

α

− 
 
 =
 
  

F  (3.20) 

and substituting Equation (3.20) into Equation (3.10) yields:  

1 1
21 1

1
1 1
2 2

1 1 1

1 1
2 2 1

1 1

0 0 0 0 0 0

0 0 0 0 0 0 .

0 00 0 0 0

α α α
α α α

αα α

− −
−

Τ

     
     
   = = ⋅ =  
     
        

⋅C F F  (3.21) 

 The inverse of the strain tensor, 1C− , is described using Equation (3.11), where the 

determinant, C ,  and the adjoint, [ ]adj C , for a 3 x 3   matrix is as follows. For a 
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matrix, 

a b c

d e f

g h i

 
 
 
  

A= , the determinant is ( ) ( )aei+bfg+cdh ceg+bdi+afh− . The 

adjoint matrix A  on the other hand is obtained using the following: 

[ ]

T

adj

e f d f d e
-

h i g i g h

b c a c a b
A - .

h i g i g h

b c a c a b
-

e f d f d e

 
 
 
 
 = =
 
 
 
 

−



 (3.22) 

Evaluating the inverse of the strain tensor, 1C− , for Equation (3.21) yields: 

2
1

1 1
12 1 1

1 1 1 1
1

2
1

2 1 1
1 1 1 2

11
11

12 1 1
1 1 1 1

11
1

2 1 1
1 1 1

0 0
1

0 0

0 0

0 0

0 0

     0 0 0 0 .

0 0

0 0

α
α

α α α
α

α
α α α

α
α α

α α α
α

α
α α α

− −
− −

−

− −

−
−

− −
−

−

− −

 
 =  
 
 

 
 
   
   = =   
   

  
 
  

C

 (3.23) 

It can be seen from Equations (3.23) and (3.18) that 1−=B C , which means that both 

tensors can be used to define the Lodge rubberlike model.  

Equation (3.23) can be described in terms of the stretch ratio, λ , since 1λ α= . Note 

that λ  defines the ratio of the deformed and undeformed sample length. Therefore 

Equation (3.23) becomes: 
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2

1 1

1

0 0

0 0 .

0 0

λ
λ

λ

− −

−

 
 =  
 
 

C  (3.24) 

Using the relationship, lnε λ= , where ε  is the true strain, Equation (3.24) becomes: 

( )
( )

( )

2

11

1

exp 0 0 exp2 0 0

0 exp 0 0 exp 0 .

0 0 exp0 0 exp

ε ε
ε ε

εε

−−

−

 
  
  = = −  
 −  

 

C  (3.25) 

Equation (3.25) is the strain tensor used by Tanner et al. [2008] and Ng and 

McKinley [2008] in the Lodge rubberlike model under uniaxial tension. 

Since uniaxial tension of dough is performed using cylindrical samples, the Lodge 

rubberlike model needs to be evaluated using a cylindrical geometry sample. To 

obtain this, consider Figure 3.3 showing uniaxial tensile loading of a cylindrical 

sample. 

 

Figure 3.3. Uniaxial tension of a cylindrical sample. 

zz

rrrr
Contraction

Contraction

Elongation

Elongation
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The arrows in Figure 3.3 show that the sample undergoes elongation in the axial 

direction (zz  direction) and contraction in radial direction (rr  direction). The strain 

tensor ( )1 ',C t t−  is described relative to the present time t  and reference time 't  as 

[Ng and McKinley 2008]: 

( )
( )

( )
( )

1 '

1 1 '

1 '

, 0 0

, ' 0 , 0

0 0 ,

C

−

− −

−

 
 
 =
 
 
 

zz

rr

rr

C t t

t t C t t

C t t

 (3.26) 

which can be defined under uniaxial tension as (following Equation (3.25)): 

( )
( )

( )
( )

'

1 ' '

'

exp 2 0 0

, 0 exp 0

0 0 exp

t t

t t t t

t t

ε

ε

ε

−

  −  
  = − −  
 

 − −   

C

ɺ

ɺ

ɺ

for '0 t t≤ ≤  (3.27) 

or: 

( )
( )

( )
( )

1 '

exp 2 0 0

, 0 exp 0

0 0 exp

C

t

t t t

t

ε

ε

ε

−

    
  = − 
 
  −  

ɺ

ɺ

ɺ

 for ' 0<t . (3.28) 

In Equation (3.26), ( )1 ',−
zzC t t  indicates stretching in the axial direction, whereas 

( )1 ',−
rrC t t  indicates contraction in the radial direction. By considering the difference 

of ( )1 ',C t t−  in the direction of stretching and the direction of contraction [Khan and 

Larson 1987], as shown in Figure 3.3, Tanner et al. [2008] used the following form of 

the Lodge model under uniaxial tension: 
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( ) ( ) ( )' 1 ' 1 ' '(1) ,
'

.,
t

n

zz rr

d
G t t C t t C t t dt

dt
σ

− − −

−∞

 = − − ∫  (3.29) 

The stress was then evaluated using Equations (3.27) and (3.28) to become: 

( ) ( ) ( )

( ) ( ) ( ) ( )( )' '

0
1' 2 '

1 2' '

0

(1)

( .1)

n

t
n t t t t

nG t t e e dt

nG t t e e dt

ε ε

ε ε

σ
− + −

−∞

− + − − −

= − −

+ − −

∫

∫
ɺ ɺ

 (3.30) 

By changing variables, ( )'z t tε= −ɺ , Equation (3.30) becomes: 

( ) ( ) ( )1 2 2

0

(1) (1) .nn z z n nn G z e e dz G e e
ε

ε εσ ε ε ε− + − − −= − + −∫ɺ ɺ  (3.31) 

Equation (3.31) can be re-written as:  

( ) ( ) ( )1 2 2

0

1

(1)
n z z n

n
h z e e dz e e

n G n

ε
ε εε

ε
σ − + − − −= = − + −∫
ɺ

 (3.32) 

where the function, h , in Equation (3.32) can be evaluated using the Gamma function 

or the asymptotic approximation. The function h  evaluated using the Gamma 

function and incomplete Gamma functions, ( )Γ a  and ( )Γ ,a s  respectively, is 

obtained as: 

( ) ( ) ( ) ( )

( )

— 1

2

1 1
Γ , 2 Γ Γ Γ ,

2 2

1
.

n

n

h n n n n

e e
n

ε ε

ε ε

ε

−

− −

    
   ≈ − − − − − − − − −       

    

+ −

 (3.33) 
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The derivation of Equation (3.33) is described in Appendix A. On the other hand, Ng 

and McKinley [2008] derived the following approximation form: 

( ) ( )1 21
exp 2 1 .

1
n n

h
n n

ε ε ε−  +
≈ + − − 

 (3.34) 

whereas Tanner et al. [2008] derived the following approximation for the h  function: 

20.35 1
1 ( ).

1 2
nh e e

n
ε εε

ε
− − ≈ + − + 

 (3.35) 

Tanner et al. [2011a] later used a simplified form for h :  

21
( ).nh e e

n
ε εε − −≈ −  (3.36) 

 Equations (3.33), (3.34), (3.35) and (3.36) are compared in Figure 3.4 by showing 

calculated stress using these equations. The parameters used in the comparison are:

0 27n .= , and (1)G = 3.02 kPa sn⋅  and the data were obtained from a uniaxial tension 

and uniaxial compression test from this work at a constant strain rate of 5/min. 

Equation (3.33) was evaluated using the online Wolfram calculator [Wolfram 2011]. 

It can be seen in Figure 3.4(a) that lower stresses are obtained using Equation (3.36) 

as compared to the other equations under uniaxial tension. 
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Figure 3.4. Comparison of different forms of Lodge rubberlike model equation under 

(a) uniaxial tension at 5/min and (b) uniaxial compression at -5/min. 

Note that Equations (3.33) to (3.36) can be used to calculate stresses under uniaxial 

compression by using a negative strain. The term nεɺ  in Equation (3.32) under 

uniaxial compression is described as ( )nε− ɺ  rather than ( )nε− ɺ  to make εɺ  becomes 

calculable. It can be seen in Figure 3.4(b) that lower stresses are obtained using 

Equation (3.36) as compared to the other equations. Note that the results for Equation 

(3.35) are not shown because the stress-strain calculated using Equation (3.35) 

fluctuates from negative to positive values. This is possibly due to Equation (3.35) 

being approximated only for uniaxial tension condition [Tanner et al. 2008]. 

Therefore Equation (3.34) is used in this thesis to evaluate the Lodge model under 

uniaxial tension and uniaxial compression. This is because Equation (3.34) can be 

evaluated easily using a spreadsheet compared to Equation (3.33) which requires each 

data point to be evaluated using the online Wolfram calculator [Wolfram 2011]. 
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3.2.2 Simple Shear  

The deformation gradient under simple shear can be described using the sketch and 

notation shown in Figure 3.5. 

 

Figure 3.5. Deformation gradient under simple shear for: (a) unstretched block; and 

(b) sheared block (reproduced from Macosko [1994]). 

Consider point P in Figure 3.5(a) in the unstretched block with coordinates 

( )' ' '
1 2 3, ,x x x . The point P is shown in Figure 3.5(b) for the stretched block with 

coordinates ( )1 2 3, ,x x x . Under simple shear, '
2γ = ∆s x , and the coordinates of point 

P in the sheared block are given by [Macosko 1994]: 

' ' ' '
1 1 2 1 2'

2

γ= + = +
∆

s
x x x x x

x
 

'
2 2=x x  

(3.37) 

2

3

1

Simple

Shear

2

1

3

1

s

1x∆

2x∆

3x∆

θ

'
1x∆

'
2x∆

'
3x∆

P P

(a) (b)
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'
3 3.x x=  

The deformation gradient obtained using Equation (3.7) is as follows: 

1 0

0 1 0 .

0 0 1

γ 
 =  
  

F  (3.38) 

Note that the deformation gradient in simple shear is not symmetric, which is in 

contrast to the deformation gradient in uniaxial tension (Equation (3.17)). The strain 

tensor, Τ= ⋅B F F  is described as: 

21 0 1 0 0

0 1 0 1 0 0 .

0 0 1 0 0 1 0 0 1

0 1

1

γ γ γ
γ γΤ

    
    = ⋅ = ⋅ =     
         

+
B F F  (3.39) 

On the other hand, the deformation gradient obtained using Equation (3.9) is as 

follows: 

1 0

0 1 0 .

0 0 1

γ− 
 =  
  

F  (3.40) 

The strain tensor TC F F= ⋅  then becomes: 

2

1 0 1 0 0

1 0 1 0 0 .

0 0 1 0 0 1

1

0 0 1

0

0 1

γ γ
γ γ γΤ

− −     
     = = − ⋅ = −     
         

+



⋅C F F  (3.41) 
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and 1C−  becomes: 

[ ]
2

1

0
1

adj 0 .

0 0 1

1

1−

 γ γ
 = = γ 
 
 

+
C C

C
 (3.42) 

It can be seen from Equations (3.39) and (3.42) that 1−=B C ,  which means that both 

definition for the strain tensors can be used in the Lodge rubberlike model under 

simple shear. 

In a constant shear strain rate experiment, the strain tensor, 1C− , and strain rate 

tensors take the following forms: 

( )
( ) ( )
( ) ( )

( )

1 ' 1 '
11 12

1 1 ' 1 '
12 22

1 '
33

, , 0

, ' , , 0

0 0 ,

C

− −

− − −

−

 
 
 =
 
 
 

C t t C t t

t t C t t C t t

C t t

 (3.43) 

which can be defined under simple shear using Equation (3.42) as: 

( )
( ) ( )

( )

22 ' '

1 ' '

1 0

, 1 0

0 0 1

t t t t

t t t t

γ γ

γ−

 − −
 
 = −
 



+

 
 

C

ɺ ɺ

ɺ  for '0 t t≤ ≤  (3.44) 

or: 

( )
2 2

1 '

0

, 1 0

0

1

0 1

t t

t t t

γ γ
γ−

 
 =  



+

 


C

ɺ ɺ

ɺ  for ' 0<t . (3.45) 

Shear stress can be described using Equation (3.5) as: 
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( ) ( )' 1 ' '
12'

1 .( ) ,
t

n
G t t C t t dt

t
τ

− −

−∞

∂= −
∂∫  (3.46) 

Shear stress then becomes: 

( ) ( ) ( ) ( )
0

1 1' ' ' '

0

(1) .(1)
t

n n
nG t t dt nG t t dtτ γ γ

− − − −

−∞

= − + −∫ ∫ɺ ɺ  
(3.47) 

By changing variables through ( )'z t tγ= −ɺ  and evaluating the integral yields [Tanner 

et al. 2008]: 

1

1
.

(1) n
nG

n

γτ γ −=
−
ɺ

 (3.48) 

Equation (3.48) is similar to those obtained by Ng and McKinley [2008]. 

3.2.3 Damage Function in Lodge Rubberlike Model 

Tanner et al. [2008] used the idea of a damage function to model dough at high 

deformations until the post fracture region. This is because the Lodge model did not 

fit the dough stress-strain data at high strain, as shown by Tanner et al. [2008]. The 

stress is reduced by a damage function, f , such that: 

D fσ σ=        or      D fτ τ=  (3.49) 

where Dσ  and Dτ  are the damaged normal and shear stresses respectively, and σ  

and τ  are the undamaged normal and shear stresses respectively for the material. The 

damage function, f  is described as: (1 )f D≡ − , where D  is a function of the strain 

which varies from zero at small strain, up to 1 at rupture [Tanner et al. 2008]. The 
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damage function was used by Tanner et al. [2008] for constant strain rate elongation 

and shear data. The parameter f  was plotted as a function of true strain, ε , for both 

extensional and shear data as shown in Figure 3.6. 

 

Figure 3.6. A damage function for Lodge rubberlike model [Tanner et al. 2008]). 

The procedure for deriving the damage functions in Figure 3.6 within the Lodge 

rubberlike model was as follows [Tanner et al. 2008]. First, a strain sweep test was 

conducted to determine the linear viscoelastic region (LVR), followed by a frequency 

sweep test to determine the constants (1)G  and n using Equations (2.20) and (2.21) 

respectively (refer Section 2.3.3.3): 

( ) ( )' '(1) '' ''(1)n nG t G G t Gω ω= =,         

( ) ( )' 2 !
(1) 1 sin .

2

n n
G G

n

π
π

=   

These constants were then used in the Lodge rubberlike model (Equation (3.35) under 

uniaxial tension, and Equation (3.48) under simple shear). Tanner et al. [2008] 

showed that the Lodge model did not fit the uniaxial tension and constant shear strain 
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rate tests without the damage function. They derived the damage function from the 

extensional and shear tests. The true strain for the shear tests in Figure 3.6 is 

calculated using [Treloar 1975]: ( )
2 4

ln ln
2 2

γγε λ
  + 

 = = +     

, (details on this 

equation are provided in Section 3.3.2). This was the method for calculating the 

damage functions shown in Figure 3.6. Finally, the modelling results were 

reconstructed with the inclusion of the determined damage function. An example of 

the reconstructed tensile test using the damage function in Figure 3.6 is shown in 

Figure 3.7.  

 

Figure 3.7. Reconstructed uniaxial tension model using damage function in Figure 3.6 

[Tanner et al. 2008]. 

It is worth noting that the damage function introduced by Tanner et al. [2008] is an 

empirical function, it does not provide any physical meaning. Therefore a 

microstructure based model is needed to describe the damage in wheat flour dough 

microstructure. This can be investigated using the micromechanics model, which will 

be discussed later in Section 3.4. 
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 3.3. Visco-Hyperelastic Model 

3.3.1 Viscoelasticity 

Viscoelastic materials can be viewed as having both viscous and elastic properties. 

The elastic, viscous and viscoelastic material responses under applied step strain are 

shown in Figure 3.8. Elastic materials stretch and return to their original state 

instantaneously upon application and removal of stress respectively. The ratio of 

stress to strain for an elastic material is defined as elastic modulus. Viscous materials 

on the other hand change strain in proportion to the time that the stress is applied 

[Janmey and Schiwa 2008]. The ratio of stress to rate of strain is defined as viscosity. 

Viscoleastic materials can exhibit strain and time dependent behaviour when both 

viscous and elastic properties are present. The theoretical and experimental 

behaviours of viscoelastic materials were first established in the nineteenth century by 

physicists Maxwell, Boltzmann and Kelvin. Considering the model of springs and 

dashpots, their main interest was to determine the properties of materials from creep 

and recovery experiments. 
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Figure 3.8. Difference between elastic, viscous and viscoelastic materials (reproduced 

from Vader and Wyss [2012]).  

Viscoelasticity assumes a homogeneous and isotropic material, as well as separable 

time and strain dependent material behaviour [Williams 1980; Goh et al. 2004; 

Charalambides et al. 2006]. The relaxation stress under a step strain loading history 

can be written as a product of a function of time, ( )g t , and a function of strain, 

( )0 εσ :  
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( ) ( ) ( )0, .t ε g tσ ε σ=  (3.50) 

The time function is represented by the Prony Series [Goh et al. 2004]: 

( )
1

exp
N

i
i i

t
g t g g

ξ∞
=

 
= + − 

 
∑  (3.51) 

where t  and iξ  are time and relaxation time constants respectively, and ig  are 

dimensionless constants. The 1D equivalent of the Prony series in tension consists of 

a series of Maxwell elements connected in parallel with a spring as shown in Figure 

3.9. 

 

Figure 3.9. The Prony series representation. 

Each ig  is defined as:  

,   i
i

O O

G G
g g

G G
∞

∞= =  (3.52) 

where iG  is the modulus of the thi  spring, ∞G  is the modulus of the infinite lone 

spring, and 0G  is the instantaneous modulus, given by 
1

∞
=

+ =∑
N

i O
i

G G G . Therefore ig  

g∞ 1g 2g ig

G∞ 1G
2G iG

1ξ 2ξ iξ
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is related to ∞g  through 
1

1∞
=

+ =∑
N

i
i

g g . The function ( )0 εσ  represents the 

instantaneous stress-strain relationship since ( )0 1=g  and ( ) ( )0,0 εσ ε σ=  from 

Equation (3.50). It can be seen that ( )0g εσ∞  is the long term or equilibrium stress-

strain relationship as ( )g g∞∞ =  and ( ) ( )0, g εσ ε σ∞∞ =  from Equation (3.50). 

Physically, this long term behaviour occurs as the dashpots relax the i springs in 

Figure 3.9, and only the ∞g  spring remains loaded. 

Using the Leaderman form of the convolution integral [Williams 1980], the total 

stress is given by the algebraic sum of the entire past loading history, with each stress 

component being independent of the loading history. In the limit of continuous strain 

history, the total stress at time t  is therefore given by [Williams 1980]: 

( ) ( ) ( )0

0

,
σ ε

σ ε = −∫
t d

t g t s ds
ds

 (3.53) 

where ( )0σ ε  is the instantaneous true stress at strain ε . The function ( )−g t s  is 

described as: 

( )
1

exp .
N

i
i i

t s
g t s g g

ξ∞
=

 −− = + − 
 

∑  (3.54) 

Therefore Equation (3.53) becomes: 

( ) ( )0

10

exp .
t N

i
i i

dt s
t g g ds

ds

σ ε
σ

ξ∞
=

  −= + −  
   

∑∫  (3.55) 
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The stress on the left-hand side is expressed in terms of t  only, provided that the 

strain history ( )ε t  is known [Goh et al. 2004]. Equation (3.55) can be rewritten as: 

( ) ( ) ( ) ( ) ( )0
0 0

1 10

exp
tN N

i i
i ii

d st s
t g t g ds g t h t

ds

σ
σ σ σ

ξ∞ ∞
= =

 −= + − = + 
 

∑ ∑∫  (3.56) 

with ( ) ( )0

0

exp
t

i i
i

d st s
h t g ds

ds

σ
ξ

 −= − 
 

∫ .  

The convolution integral in Equation (3.56) is computed using a numerical algorithm 

based on finite time increments [Kaliske and Rothert 1997]. For a time interval 

( )1, +n nt t  and time step 1+∆ = −n nt t t , the exponential term in the integrand is written 

as: 

1exp exp exp .n n

i i i

t t t

ξ ξ ξ
+     ∆− = − −     

     
 (3.57) 

The term ih  at 1+nt  can be separated into two components: the first component 

corresponds to deformation history during period 0≤ ≤ ns t  while the second 

component corresponds to the period, 1+≤ ≤n nt s t . Therefore: 

( ) ( )1

01
1

0

exp
nt

n
i n i

i

d st s
h t g ds

ds

σ
ξ

+

+
+

 −= − 
 

∫     (3.58) 

which becomes: 

( ) ( ) ( )1

0 01 1
1

0

exp exp .
n n

n

t t

n n
i n i i

i it

d s d st s t s
h t g ds g ds

ds ds

σ σ
ξ ξ

+

+ +
+

   − −= − + −   
   

∫ ∫     (3.59) 
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The first integral above is integrated from 0 to nt , which yields: 

( ) ( )0

0

exp exp
nt

n
i

i i

t s d st
g ds

ds

σ
ξ ξ

 − ∆− −  
   

∫     (3.60) 

The result is included in Equation (3.56): 

( ) ( )

( ) ( )1

1 0 1

01

1

exp exp .
n

n

n n

tN
n

i n i
i i it

t g t

d st st
h t g ds

ds

σ σ

σ
ξ ξ

+

+ ∞ +

+

=

=

    −∆+ − + −         
∑ ∫

 (3.61) 

( )0σd s

ds
  in Equation (3.61) can be expressed in terms of discrete time steps: 

( ) ( ) 1
0 0 0 0

0 0
lim lim .

σ σ σ σ+

∆ → ∆ →

∆ −= =
∆ ∆

n n

s t

d s s

ds s t
 (3.62) 

Substituting Equation (3.62) into Equation (3.61) and performing the last integral in 

Equation (3.61) leads to a function for updating the stress ( )1σ +nt  [Goh et al. 2004]: 

( ) ( )

( ) ( ) ( )

1 0 1

0 1 0
1

1 exp

exp .

n n

N
i

i n i n n
i i

i

t g t

t

t
h t g t t

t

σ σ

ξ
σ σ

ξ
ξ

+ ∞ +

+
=

=

  ∆− −  
 ∆    + − + −    ∆   

 

∑
 (3.63) 

Equation (3.63) can be evaluated with various hyperelastic potentials and strain 

histories. The true stress, ( )0 ntσ  used will be discussed in Section 3.3.2. The 

advantage of this analytical equation is that it can be readily fitted to experimental 

stress–strain data which are measured at known time intervals. The equation offers a 
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very practical method for determining material constants at any deformation history. 

A spreadsheet can be set up so that the calculations using the analytical equation are 

matched with the experimental data via a least squares error method. 

3.3.1.1 Viscoelastic Model in Abaqus Version 6.9 

In the newer version of the commercial finite element software, Abaqus version 6.9 

[Abaqus 2010], an updated version of finite viscoelastic model has been introduced to 

replace the former Abaqus version 6.8 [Abaqus 2009]. A modification is performed 

to Equation (3.55) as follows: 

( ) ( ) ( )0

10

exp .
t N

i
i i

dPt s
t t g g ds

ds

ε
σ λ

ξ∞
=

  −= + −  
   

∑∫  (3.64) 

Notice the difference where 0σ  in Equation (3.55) represents the true stress term, 

whereas 0P  in Equation (3.64) represents the nominal stress term. The stretch ratio, 

( )tλ  is introduced in Equation (3.64) to convert the nominal stress term in the 

integral into true stress term after integration. True stress and nominal stress are 

related through: 

( ) ( ) ( )0 0 .n n nt t tPσ λ= ⋅  (3.65) 

Evaluating Equation (3.64) using the same approach as before yields: 

( ) ( ) ( ) ( ) ( )0
0

1 0

exp
tN

i
i i

dP st s
t t g P t t g ds

ds
σ λ λ

ξ∞
=

 −= + − 
 

∑∫  (3.66) 

which then becomes: 



 

83 

 

( ) ( ) ( ) ( )0
0

1 0

exp .
tN

i
i i

dP st s
t g t t g ds

ds
σσ λ

ξ∞
=

 −= + − 
 

∑∫  (3.67) 

Equation (3.67) is then evaluated using the same finite time increment algorithm as in 

before, which finally yields: 

( ) ( )

( ) ( ) ( ) ( )

1 0 1

1 0 1 0
1

1 exp

exp .

n n

N
i

n i n i n n
i i

i

t g t

t

t
t P tPh t g t

t

σ σ

ξ
λ

ξ
ξ

+ ∞ +

+ +
=

=

  ∆− −  
 ∆    + − + −    ∆   

 

∑
 (3.68) 

The difference between Equations (3.68) and Equation (3.63) will be investigated in 

Section 3.3.3 where the stress calculated via these two equations will be plotted 

versus strain. 

3.3.2 Hyperelasticity 

A hyperelastic material is defined as an ideally elastic material, but may be subjected 

to large deformations and still show complete recovery [Ward 1971]. Hyperelasticity 

is closely related to rubber elasticity, which can be described from the concept of a 

strain energy function derived from thermodynamic considerations. Different types of 

strain energy function can be defined, depending on the experimental conditions. 

Strain energy functions can be described from either a phenomenological or a 

statistical treatment. For polymers, the strain energy function is represented as the 

Helmholtz free energy of a molecular network with a Gaussian chain distribution 

[Treloar 1975], and the mathematical representation of this model is an idealized 
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form of the concept of an ideal gas. The theory can be described from the First Law 

of Thermodynamics: 

= −dW dU dQ  (3.69) 

where dW is work performed on the system by the surroundings, dU and dQ are 

differential change in internal energy and heat respectively. Under adiabatic 

conditions, 0=dQ  and =dW dU . The strain energy function W  for an isotropic 

incompressible solid undergoing a pure homogeneous deformation is given by [Ward 

1971]: 

( )1 2 3, ,=W f I I I  (3.70) 

where f  is a function of 1 2,I I  and 3I  , which are the first, second and third strain 

invariants respectively expressed as: 2 2 2
1 1 2 3λ λ λ= + +I , 2 2 2 2 2 2

2 1 2 2 3 3 1λ λ λ λ λ λ= + +I  and 

3 1 2 3λ λ λ=I . The third strain invariant, 3I , is assumed to be unity due to the 

assumption of incompressibility of dough, as investigated experimentally by 

Charalambides et al. [2002a] and Wang et al. [2006]. 1λ , 2λ and 3λ  are the stretch 

ratios in the three principal axis, which are defined for uniaxial deformation and pure 

shear as: 

 1 2 3

1
,   λ λ λ λ

λ
= = =  (uniaxial deformation) 

(3.71) 

1 2 3

1
,   1,   λ λ λ λ

λ
= = =  (pure shear) 
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where λ  is the stretch ratio in the direction of the applied load. 1 2,I I  and 3I  in the 

case of uniaxial deformation and pure shear can be described as: 

2 1
1 2λ λ−= +I   ,   2

2 2λ λ−= +I   ,   3 1=I  (uniaxial deformation) 

(3.72) 

2 2
1 2 1 λ λ−= = + +I I  ,  3 1.I =  (pure shear) 

For uniaxial tension and uniaxial compression, the true stress used in Equations 

(3.63) or (3.68) is given as a function of λ :  

( )0

Wσ λ λ
λ

∂=
∂

 (3.73) 

whereas for simple shear, the shear stress is expressed using the chain rule as 

[Gamonpilas et al. 2010]: 

( ) ( )0 0

dW dW d

d d d

λσ λ τ λ
γ λ γ

= = =  (3.74) 

where λ  is related to the shear strain, γ  through [Treloar 1975]: 

2 4

2 2

γγλ +
= +  (3.75) 

and therefore the true strain, ε  is related to γ  through: 

( )
2 4

ln ln .
2 2

γγε λ
 +
 = = +
 
 

 (3.76) 

For small strain however, Equation (3.76) can be evaluated using the Taylor series 

and is approximated as: 
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.
2

γε =  (3.77) 

The difference between Equations (3.76) and (3.77) is shown in Figure 3.10. It can be 

seen that for shear strain up to 1.5, a similar true strain is obtained using both 

equations. 

 

Figure 3.10. True strain obtained using Equations (3.76) and (3.77). 

The hyperelastic model used in this thesis is the van der Waals model, which, as the 

name implies, represents the analogy in the thermodynamic interpretation of the 

equation of state for rubber and gas. The model analogy can be described by 

comparing the equation of state of ideal gas and a rubber network model, as discussed 

by Eisele et al. [1981] and Vilgis [1992]. 

The van der Waals strain energy function is given by [Kilian 1982; Abaqus 2009]: 

( )
3

2
2 1 1 1

2 2

I 3 I 3 I 32
3 ln 1

3 3 3 2m
m m

W aµ λ
λ λ

   − − −  = − − − + +     − −       

 (3.78) 
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where µ  is the instantaneous initial shear modulus, λm  is the locking stretch constant 

and a  is a global interaction parameter. The constants, λm  and a  are dimensionless. 

The locking stretch constant, λm  describes the stretch when chains unfold and lock, 

whereas the global interaction parameter, a  is the interaction between rubber chains 

[Enderle and Kilian 1987; Vilgis 1992].  

The true stress form for tension and compression, using Equation (3.73) can be 

described from the model as: 

( )
2 2 1

0 2 2 2 1

31 2 3

23 2 3

m

m

a
λ λ λσ λ µλ λ

λ λ λ λ

−

−

 − + −   = − − 
   − − + − 

 (3.79) 

where 1λ >  for tension and 1λ <  for compression. For simple shear, the shear stress, 

( )0τ λ  can be obtained using Equation (3.74):  

( ) ( )
23 1 2 2

0 0 2 2 2 2

3 2
.

1 23 2

m

m

a
λλ λ λ λσ λ τ λ µ

λ λ λ λ

− −

−

 − − + −
 = = − +  − − + −   

 

(3.80) 

Equations (3.79) and (3.80) are used with Equations (3.63) or (3.68) to describe the 

visco-hyperelastic model. The van der Waals model was selected for the 

implementation in finite element analysis because it is the most suitable model 

available in Abaqus for fitting data collected from more than one mode of 

deformation [Charalambides 2006; Wanigasooriya 2006]. 

A parametric study was performed to check the effect of the van der Waals model 

parameters to the stress-strain curve. The van der Waals model parameters were first 
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set to: µ = 5 kPa, λm  = 5 and a  = 0.5. Two of these were then kept constant while 

varying the third in a parametric study. Figure 3.11 shows the parametric study 

corresponding to a strain rate of 5/min. It can be seen that the stress-strain curve of 

the model increased by increasing µ  (Figure 3.11(a)), whereas the curve was 

‘lowered’ by increasing λm  and a , as shown in Figures 3.11(b) and 3.11(c) 

respectively. 

 

 

Figure 3.11. Parametric study of the van der Waals model by varying parameters: (a) 

the instantaneous initial shear modulus, µ ; (b) the locking stretch constant mλ ; and 

(c) the global interaction parameter, a . 
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3.3.3 Implementation of the Visco-Hyperelastic Model in Finite Element Analysis  

It is important that the analytical visco-hyperelastic model discussed in the previous 

section is checked for accuracy within the finite element (FE) simulation in Abaqus 

so that the model can be confidently used for numerical simulations. Therefore, the 

analytical model, Equations (3.63) and (3.68) were compared to the finite element 

simulations performed using Abaqus version 6.8 [Abaqus 2009] and Abaqus version 

6.9 [Abaqus 2010] respectively. A personal computer with Intel Core 2 processor and 

4 MB SDRAM was used to perform the numerical simulation. It took less than two 

minutes to perform each simulation. The simulation was performed under uniaxial 

compression, uniaxial tension and simple shear modes at a true strain rate of 5/min. A 

single axisymmetric element was selected for uniaxial tension and uniaxial 

compression and a plane stress element was selected for simple shear. Discussion on 

the different elements available for 2D FE model in Abaqus is provided in Appendix 

B. The boundary conditions used in the FE simulation are shown in Figure 3.12, 

where the roller allows the node to move in a defined direction and the arrow 

indicates an applied deformation. 

 

Figure 3.12. Boundary conditions used in the finite element simulation for: (a) 

uniaxial compression; (b) uniaxial tension; and (c) simple shear. 

(b) Uniaxial

tension
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The material model parameters shown in Table 3.1 were used, where the strain-

dependent constants represent the van der Waals model parameters, and the time-

dependent constants represent the Prony series.  

Table 3.1. Parameters used for the validation of the numerical implementation of the 

van der Waals model in Abaqus.  

Strain dependent 

constants 
Time dependent constants 

 

µ  

(kPa) 

mλ  a  

i 1 2 3 4 ∞  

 

iξ   

(s) 

0.1 10 100 1000  

3.29 4.64 0.25 ig  0.867 0.092 0.004 0.028 0.007 

 

The results are shown in Figure 3.13. It can be seen that the analytical models, 

Equations (3.63) and (3.68), agree with the FE results using Abaqus version 6.8 and 

Abaqus version 6.9 respectively under uniaxial tension and uniaxial compression 

(Figures 3.13(a) and 3.13(b)). However, it is shown in Figure 3.13(c) that the FE 

results under simple shear do not agree with the analytical model above a shear strain 

value of approximately 0.6. This can be due to the boundary conditions shown in 

Figure 3.12(c), which are defined in the FE simulation to represent the boundary 

conditions under shear rheometry tests. The difference between the analytical and 

finite element models was then shown in Figure 3.13(d), where the error is calculated 

as: ( ) ( )finite_element - analytical / analytical 100× . It is worth noting that simulation 

for simple shear in this thesis will be performed for shear strain up to 1. 
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Figure 3.13. Comparison between finite element and analytical models of the visco-

hyperelastic model under: (a) uniaxial compression at true strain rate of -5/min; (b) 

uniaxial tension at true strain rate of 5/min; (c) simple shear at shear strain rate of 

5/min; and (d) error versus shear strain representing the difference between analytical 

and finite element model in (c).  

To investigate the simple shear under large deformation, a simulation was performed 

using an example model available in Abaqus User Manual [Abaqus 2009] (Section 

1.3.29: simple shear, Abaqus Verification Manual). This is based on the study by 

Dienes [1979]. The material properties used in the model were: Young's modulus = 

1.0 (unit), Poisson's ratio = 0.0, and density = 41.346 10−×  (unit). A plane stress 
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element was used in the model. The results are shown in Figure 3.14. xyσ  , xxσ  and 

yyσ  indicate shear stress and normal stresses in x and y directions respectively in 

Figure 3.14. Notice that at small shear strain ( 0.3)γ = , the normal stresses, xxσ  and 

yyσ  are zero (Figure 3.14(b)). However, as the strain increases, the normal stresses 

increase before they start to oscillate at a shear strain of 3. This is due to a significant 

rigid body rotation as the shear strain increases, as discussed by Dienes [1979]. The 

results indicate a complex behaviour in simple shear under large deformation and this 

will not be investigated further in this thesis. The reader can also refer to an analytical 

study by Horgan and Murphy [2010] on large deformation simple shear loading. 

 

Figure 3.14. (a) and (b) Investigation of simple shear under large deformation using 

the example model in Abaqus User Manual [Abaqus 2009] (Section 1.3.29: simple 

shear, Abaqus Verification Manual). 

The difference between the finite viscoelastic model in Abaqus versions 6.8 and 6.9 

are highlighted in their respective Abaqus theory user manuals [Abaqus 2009; 2010]. 

This has also been discussed theoretically by Ciambella [2009] and Ciambella et al. 
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(Equation (3.59)) cannot describe accurrately the 3D FE viscoelastic model at large 

strain. The reason for this is that the model using Equation (3.59) does not provide a 

symmetric integral function when evaluated in 3D. 

3.4 Viscoplastic Model 

The viscoplastic material model available in Abaqus [2010] is described through a 

strain rate dependent yield behaviour. This is performed using a direct entry of stress 

and plastic strain test data at different strain rates into Abaqus CAE. The model is 

illustrated schematically in Figure 3.15. 

 

 

Figure 3.15. Description of viscoplastic material model under: (a) uniaxial extension 

test at different rates; (b) elastic and plastic strain in a cyclic test; and (c) stress 

relaxation test. 
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The viscoplastic model is divided into two regions, elastic region and strain-rate 

dependent yield region, as shown in Figure 3.15(a). In the former region, a value of 

modulus, E , and yield stress, yσ , are defined. In the latter region, the rate-dependent 

behaviour is described using elastic and plastic strains in Figure 3.15(b). The plastic 

strain is calculated using the following: 

n
n n n n
plastic total elastic total E

σε ε ε ε= − = −  (3.81) 

where n
plasticε  , n

totalε n
elasticε  and nσ  are the plastic true strain, total true strain, elastic 

true strain and true stress respectively at the nth experimental data point in the ‘yield 

regions’ of Figure 3.15(a). Note that the yield stress value is selected to fit the 

relaxation stress in Figure 3.15(c). The elastic modulus, on the other hand is obtained 

to fit the unloading-reloading slope in Figure 3.15(b). To conclude, the following 

parameters are needed for input in Abaqus: elastic modulus and Poisson’s ratio, and 

corresponding yield stress, plastic strain and plastic strain rate data. 

3.5 Micromechanics Models 

Micromechanics models are often used to investigate the effect of complex structures 

or multi-phase materials on the global mechanical behaviour. They have been 

developed and applied for composite materials through either analytical or finite 

element models. Analytical models are based on the ones such as the Mori-Tanaka or 

Eshelby models [Stapountzi et al. 2010], whereas the finite element models considers 

the microstructure of a material, either by using the embedded cell or unit cell 

geometries. The embedded cell geometry uses a representation of a cut-out image of 
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the real microstructure of a composite material, as shown in Figure 3.16(b). The 

composite material in Figure 3.16(a) can be defined as circular fillers surrounded by 

matrix material, where both fillers and matrix constituents are separated by interfaces 

[Mishnaevsky Jr. 2007] and have different material properties. However, to model the 

real microstructure of a material in such a way would require a large number of 

elements in a finite element software such as Abaqus (e.g. 3475 10×   elements needed 

in a simulation of particulate composites by Tarleton et al. 2012), which can take a lot 

of computational memory and time to simulate. 

      

Figure 3.16. (a) Real microstructure of a material; and (b) a cut-out image to represent 

the embedded cell geometry (reproduced from Bohm [2011]). 

The unit cell geometry on the other hand assumes a periodic phase arrangement, i.e. a 

repeating unit cell of the microstructure, as shown in Figure 3.17 [Mishnaevsky Jr. 

2007]. The boundary areas for possible models are shown in Figure 3.17, where 

different arrangements can be used to represent the unit cell geometry. This provides 

an advantage of being less expensive to model as compared to the embedded cell 

geometry in Figure 3.16(b). 

(a) (b) 
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Figure 3.17. Different arrangement of unit cell model (reproduced from Mishnaevsky 

Jr. [2007]). The boundary areas for a unit cell model and the boundary conditions 

under uniaxial tension are shown. 

Both embedded cell and unit cell geometries allow interactions between the filler and 

the matrix interface to be specified, as shown in Figure 3.18 for the unit cell 

geometry. This includes the debonding between filler and matrix (Figure 3.18(a)), a 

crack in the particle (Figure 3.18(b)) or a void in the matrix (Figure 3.18(c)). 
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Figure 3.18. Failure or damage between the filler and matrix in the unit cell model 

using (a) debonding; (b) crack in the particle; and (c) void in the matrix (reproduced 

from Mishnaevsky Jr. [2007]). 

3.5.1 Cohesive Interaction in Micromechanics Models 

A cohesive interaction is considered to model the debonding between filler and 

matrix shown in Figure 3.18(a). The filler is initially bonded to the matrix. To 

describe the cohesive interaction, consider Figure 3.19 for two plates in cohesion 

subjected to load in different directions. The applied load causes the cohesion 

between the two plates to fail. The three modes of failure are usually referred to as 

opening Mode I (normal tension mode), Mode II (shear mode) or Mode III (out of 

plane shear mode). 

 

Debonding Crack in the particle Void

(a) (b) (c) 



 

98 

 

 

Figure 3.19. Different damage opening modes: (a) mode I (normal mode); (b) mode II 

(shear mode); and (c) mode III (out of plane shear mode) (reproduced from Krueger 

[2006]). 

The traction versus separation law is used to model the cohesive element interaction, 

where the nominal traction stress vector, t , is described as: 

n nn ns nt n

s ns ss st

t tt s tn t t

s

t K K K

t K K K

t K K K

δ
δ
δ

     
    = = =    
         

t Kδ  (3.82) 

where K  is the coefficient tensor and δ  is the separation vector. The subscript in 

Equation (3.82) refers to the directions shown in Figure 3.19. For example, nnK , ssK  

and ttK  represent the normal, shear and tangential coefficients respectively. Equation 

(3.82) is described as a coupled traction-separation behaviour. For uncoupled 

traction-separation behaviour, Equation (3.82) is reduced to:  

0 0

0 0 .

0 0t tt

n nn n

s ss s

t

t K

t K

t K

δ
δ
δ

     
    = = =    
         

t Kδ  (3.83) 
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For a 2D traction separation behaviour, which considers only Mode I and Mode II 

damage only, Equation (3.83) reduces to: 

0
.

0
n nn n

s ss s

t K

t K

δ
δ

     
= = =    

     
t Kδ  (3.84) 

The traction versus separation law for each mode of failure can be separated into two 

regions [Camanho and Davila 2002; Abaqus 2009; Abaqus 2010], as shown in Figure 

3.20.  

 

Figure 3.20. Traction versus separation curve. 

In the first region, the traction-separation is linear elastic and is described using 

Equation (3.83). In the second region, which occurs at a critical normal stress, o
nt , 

damage initiates. Damage is activated, in terms of a maximum stress criterion 

expressed as: 

0 0 0
max , , 1s t

n s t

nt t t

t t t

 
= 

 
 (3.85) 
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where the symbol nt  represents the Macaulay bracket, defined as ( )1

2n n nt t t= + , 

implying that damage is not initiated in compression. Progressive damage in the 

interface occurs until complete failure. The damage evolution law describes the rate 

at which the cohesive stiffness is degraded after the damage initiation criterion is 

reached. For a 2D traction separation behaviour (Equation (3.84)), the energy that is 

dissipated as a result of the damage process, i.e. the energy release rate, cG , is equal 

to the area under the traction-separation curve in Figure 3.20, i.e. 
0

2

c

n n
nc

t δ
G =  and 

0

2

c

s s
sc

t δ
G =  for pure normal and shear loading conditions respectively. For mixed mode 

loading conditions which do arise at the interface of the circular particles, the FE 

software, Abaqus uses a linear mixed mode failure locus with the total energy release 

rate, G, being equal to: 

           and         n s
n s

nc sc

G G
G G G

G G
= + + = 1 (3.86) 

where nG  and sG  are the energy release rate for pure normal and shear loading 

conditions respectively. The application of the cohesive law for the micromechanics 

model will be provided in detail in the Chapter 5 (Section 5.3.3). 

3.6 Other Material Models for Wheat Flour Dough 

3.6.1 Phan-Thien-Tanner (PTT) Model 

The Phan-Thien-Tanner (PTT) model has been suggested for wheat flour dough by 

Phan-Thien et al. [1997]. In the PTT model, the stress tensor, σ , is described as a 

combination of a hyperelastic stress tensor, Eσ , and a viscoelastic stress tensor, vσ : 
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.E V= +σ σ σ  (3.87) 

The hyperelastic stress tensor, Eσ  is described as:  

( )( )1

1
σ B Bγ −= −

+
E

E

G
f a

a
 (3.88) 

where EG  is the elastic modulus, a  is a constant related to the second normal stress 

difference, ( )f γ   is a strain-softening function, and B  is the left Cauchy-Green 

tensor. The viscoelastic stress tensor, Vσ  on the other hand is described as: 

( ) ( )

1

σ σγ
=

= ∑
N

j
V

j

f
 

(3.89) 

where ( )j
σ  is [Phan-Thien et al. 2000]:  

( )
( )

( ) ( ) T 2 .
j

j j j
j j

d

dt
λ η
  + − − = 
  

σ
σ Lσ σ L D

 
(3.90) 

where the subscript and superscript ( )j  refers to discrete relaxation spectrum for 

1j ,...,N=  in Equation (3.89). The constants, λ j and η j  are the relaxation time 

constant and viscosity respectively. 
d

dt
 is the time derivative, L  is the velocity 

gradient tensor, and D  is the strain rate tensor. The constants, EG , λ j and η j  are 

determined from rheometric oscillatory tests through the following equations: 

( )*

1

ωη
ω

λ ω
= +

+∑ j
E

j j

i
G G

i  
(3.91) 
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( )*

1
jE

j j

G

i i

η
η ω

ω λ ω
= +

+∑  

where ( )*G ω  and ( )*η ω  are the complex modulus and shear viscosity respectively, 

and ω  is the rheometer test frequency in rad/s. The parameters, a  and ( )γf  are 

determined from constant shear strain rate experiments. Phan-Thien et al. [1997] used 

the following equation for ( )γf : 

( )
( )( )

4

1 2

1
exp

1
m

ps

f
γγ
γγ γ −

   = −   +    

 (3.92) 

where γ  is the shear strain, γ s  represents the strain at which shear thinning occurs 

with exponent m , and γ p  is the strain at which “rupture” occurs under shear.  

The PTT model has been investigated by Phan-Thien et al. [1997; 2000] for wheat 

flour dough under shear and oscillatory rheometry tests. The PTT model has been 

shown to fit reasonably well the Large Amplitude Oscillatory Shear (LAOS) tests 

Phan-Thien et al. [2000]. However, no numerical investigation is performed using the 

PTT model in a finite element method. 

3.6.2 Pom-Pom Model 

The Pom-Pom model describes the effect of branching on large deformation rheology 

[McLeish and Larson 1998], as illustrated in Figure 3.21. 
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Figure 3.21. The Pom-Pom model (reproduced from Ng [2007]). 

The branch point in Figure 3.21 acts as a constraint at the end of the polymer 

backbone to deform and flow. However, the constraint is not permanent and will 

release, allowing the branched point to retract into the tube if the backbone is 

stretched to a certain limit. The Pom-Pom model is described using the following 

equation: 

2
σ Sφ= G

 
(3.93) 

where G  is a modulus related to relaxation modulus, ( )G t ; the latter can be obtained 

from the linear viscoelastic region [Clemeur et al. 2003]. The parameter, S  is the 

orientation tensor and φ  is a measure of the backbone stretching. The orientation 

tensor, S , is described using: 

( ) .
Tr

= A
S

A  (3.94) 

A  is a tensor described by [Rubio and Wagner 2000]: 

Backbone

Branch point

Tube

Branched 

ends
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( )
'

1 ' '1
exp

3

t

b b

t t
t dt

λ λ
−

−∞

 −=  
 

∫A C
 (3.95) 

for reference time 't  and time t . The parameter, ( )1 't−C  is the Finger tensor and λb  

is a time-scale parameter.  

The backbone stretching parameter, φ , in Equation (3.93) is defined as:  

( ) ( )1
: 1S

φ φ φ
λ

= ∇ − −
s

D
v

Dt
 ; for    .qφ <   (3.96) 

where v∇  is the tube deformation rate vector. The symbol “:” represents the diagonal 

product of two tensors. The term 
D

Dt

φ
 is described as the backbone relaxation, which 

occurs at a fixed characteristic stretch relaxation time scale, λs , while the orientation 

can also relax separately at a time scale of λb , as shown in Equation (3.95). Equation 

(3.96) is valid for a backbone that is stretched to a stretch limit, q . A visual 

representation of the stretch limit is shown in Figure 3.22. When the backbone 

stretching parameter, φ , is equal/larger than 1 but less than q , the branches are 

located outside the backbone tube. However, when the tube is stretched to the value 

of q ,  the branches are withdrawn into the backbone tube. This is defined as the limit 

of the backbone stretching parameter.  
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Figure 3.22. The structure of a pom-pom polymer with a backbone that is stretched to 

a stretch limit q  (reproduced from McLeish and Larson [1998]).  

The Pom-Pom model has been suggested as a suitable constitutive law for dough in 

previous literature [Dobraszczyk 2004; Ng 2007; Tanner et al. 2007], but to the 

author’s knowledge, there is no published work on the use and validity of the Pom-

Pom model for dough. This is possibly due to difficulties in determining the 

backbone stretching parameter for different modes of deformation, as discussed by 

Ng [2007]. 

3.7 Conclusion 

This chapter discusses various material models that have been applied to dough. The 

Lodge rubberlike model was first described based on previous work on wheat flour 

dough [Ng and McKinley 2008; Tanner et al. 2008; 2011a]. Tanner et al. [2008] used 

the idea of a damage function in the Lodge rubberlike model to model dough under 

1φ =

qφ <

qφ =
Branches withdrawn 

into the backbone tube



 

106 

 

high deformations. The visco-hyperelastic model was described next based from 

previous work on wheat flour dough [Charalambides et al. 2006], as well as the 

viscoplastic model available in Abaqus [2009; 2010]. This is followed by 

micromechanics models, which are used to investigate complex microstructures in 

composite materials. The models can be simulated in finite element software using 

the embedded cell or unit cell geometries. The geometries allow damage between the 

filler and matrix interface to be specified using the cohesive interaction law available 

in Abaqus [2009; 2010]. The interaction is defined using the traction versus 

separation behaviour [Camanho and Davila 2002]. Finally, other rheological models 

that have been suggested for dough are described, namely the Phan-Thien-Tanner 

(PTT) and Pom-Pom models. 
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Chapter 4. Experimental Work 

4.1 Introduction 

Wheat flour dough can be viewed as a composite material consisting of two main 

constituents, namely starch and gluten [Amemiya and Menjivar 1992]. The 

microstructure of dough, starch and gluten has been discussed in detail in Chapter 2. 

However, experimental investigation is normally performed only on dough [Ng 2007; 

Charalambides et al. 2006; Tanner et al. 2008; Lefebvre 2009] by assuming it as a 

homogenous material. Therefore in this chapter, investigation on the mechanical 

behaviour of dough will include starch, gluten and dough in an attempt to treat dough 

as a composite material. This includes mechanical loading tests under different 

modes, namely uniaxial tension, uniaxial compression and shear rheometry. 

Microstructure investigation is also performed on wheat flour dough using Cryogenic 

Scanning Electron Microscopy (Cryo-SEM).  

This chapter is divided into four sections. In Section 4.2, sample preparation involved 

for the mechanical tests and microstructure studies on dough, starch and gluten are 

described. The dough mixing procedure is described first, followed by the dough 

washing procedure to separate the starch and gluten constituents. In Section 4.3, 

experimental details of the uniaxial tension, uniaxial compression, shear rheometry 

and Cryo-SEM tests are summarised. In Section 4.4, mechanical test results from 

gluten, starch and dough samples are shown, as well as the microstructure results 

obtained using the Cryo-SEM. Finally, in Section 4.5, the mechanical and 

microstructure test results are discussed followed by a proposal for a new 

microstructure theory for dough. 
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4.2 Sample Preparation 

4.2.1 Dough Mixing 

Wheat flour dough produced in industry normally consists of wheat flour, water, salt, 

yeast, emulsifiers and sweetener. A simple mixture of wheat flour, salt (sodium 

chloride) and water are considered here to provide a simpler mechanical/rheological 

study. The mixer used in this work is manufactured by National Manufacturing Co. 

with the capability of recording torque and speed during mixing to a computer, as 

shown in Figure 4.1. The mixer movement consists of four planetary pins on the head 

revolving around two stationary pins at the bottom of the mixing bowl. It is worth 

noting that this is the same mixer used by Xiao [2005] and Wanigasooriya [2006] in 

their wheat flour dough studies. Details and discussion on the mixer movement are 

provided in Appendix C. 

 

Figure 4.1. Dough mixer used in this work. 
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The flour used is a strong white bread flour purchased from the Wessex Mill in 

Oxford, United Kingdom. A mixture of 198.5 g of wheat flour, 120 g of distilled 

water and 1.5 g of sodium chloride is used to make the dough (62 %, 37.5 % and 0.5 

% weight percentage of wheat flour, water and salt respectively). The recipee is the 

same as those performed in previous work on dough at Imperial College [Xiao 2005; 

Wanigasooriya 2006]. At the speed of 118 rpm, the optimum mixing time is 100-130 

seconds, where this corresponds to the peak in mixing torque, as illustrated in Figure 

4.2 where torque versus mixing time is plotted. It was found that increasing the 

mixing time, i.e. >130 seconds reduces the torque value, as indicated in the 

overmixed region in Figure 4.2. The environment was controlled at 50 % relative 

humidity and a temperature of 22 0 C .  

The mixed dough was separated into two portions and wrapped using cling film. One 

portion was used for the mechanical and microstructure tests on dough, whereas the 

other portion was used for the dough washing procedure which is described in the 

next section. Paraffin oil was applied on the former dough portion to maintain the 

moisture of the sample constant. 
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Figure 4.2. Torque versus mixing time of a dough sample. 

4.2.2 Dough Washing 

As stated in the previous section, a portion of the mixed dough was used for the 

dough washing procedure. The latter followed guidelines by Abang-Zaidel et al. 

[2008], such that the starch in the dough was removed by washing the dough under 

running tap water. During washing, the sample was gently rubbed using fingers to 

ensure that as much as possible starch was removed from the gluten matrix. The 

starch was assumed to be absent when no cloudiness appeared after the gluten was 

squeezed into a container of clean water. The remaining free water in the gluten is 

allowed to drip out by resting the gluten sample for approximately 120 minutes on a 

water absorbent paper. The gluten matrix was then collected, weighed and wrapped in 

a cling film. To obtain dry gluten, the wet gluten was cut into small pieces and was 

allowed to dry at a temperature of 22 0C and 50 % relative humidity overnight. The 

dry gluten was then weighed. 
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A similar procedure to the one described above was performed to collect the starch 

granules in this work. Rather than draining the water containing starch during the 

washing, it was collected in a container. The container with water and starch was then 

allowed to rest for two hours so that the starch sediments filled the bottom of the 

container. The clear water on top of the container was then drained. The starch 

sediment was poured into a large steel tray, and was allowed to dry at a temperature 

of 22 0C  and 50 % relative humidity overnight. The dry starch was then collected 

and its mass was measured. 

4.2.2.1 Gluten Samples 

The wet gluten as obtained from the dough washing procedure described in the 

previous section was used for all the mechanical tests and microstructure analysis on 

gluten.  

4.2.2.2 Starch Samples 

The reconstituted wet starch was obtained by adding the dry starch prepared as 

described in Section 4.2.2 with a prescribed amount of water. The amount of water 

added to the dry starch needs to represent the water content of starch in mixed dough. 

Thus the water distribution between flour components, i.e. starch and gluten, needs to 

be known. A few methods are available to measure this, namely the simple liquid 

summation method and the water vapour absorption method [Roman-Gutierrez et al. 

2002a; 2002b]. These are discussed in Section 2.2.5. 

The simple liquid addition method was initially performed in this work by measuring 

the weight of starch and gluten obtained from the dough washing procedures. First, 
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the wet and dry gluten weights were measured experimentally, which are referred to 

as [2b] and [1b] in Table 4.1 ([2b] implies row [2], column [b]). The water content of 

gluten was calculated as: [3b]=[2b]-[1b]. This was then used to obtain the wet and dry 

starch weight, [2a] and [1a] respectively, from the known weight of dough [2c] and 

dry flour [1c]: i.e. [2a]=[2c]-[2b]. It should be noted that the value calculated in [1a] 

(dry starch) is somewhat larger than the experimentally measured value (~ 165 g). 

This may be due to some starch being lost during the starch preparation procedure. 

The water content of starch [3a] is then calculated as the difference between water of 

dough [3c] and water of gluten [3b]. The distribution of water, [4], was obtained by: 

i.e. [4a]=[3a]/[3c]. Finally the (water-content)/(dry-weight), [5], was obtained by 

dividing row [3] by row [1], e.g. [5a]=[3a]/[1a]. 

Table 4.1. Starch and gluten composition in dough using simple liquid summation 

method. 

 [a] Starch  + [b] Gluten  = [c] Flour/Dough  

[1] Dry weight(g) 171   27.5   198.5  

[2] Wet weight (g) 231.8   86.7   318.5  

[3] Water content (g) 60.8   59.2   120  

[4] Distribution of water (%) 52  48  100 

[5] Water-content/Dry-weight (w/w) 0.35 2.15 0.60 

The starch sample obtained using the formulation summarised in Table 4.1, [5a], is 

referred to as starch 1. It was found that starch 1 was very dry and powdery when 

moulded into a cylindrical shape for the compression tests. Under uniaxial 

compression, the starch crumbled rather than uniformly deformed, as shown in Figure 

4.3. 
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Figure 4.3. Uniaxial compression results of starch 1 at -5/min. True strain is evaluated 

through Equation (2.5). The uniaxial compression test method is discussed in Section 

4.3.2. 

The alternative was to use the water content data for dough and gluten reported by 

Roman-Gutierrez et al. [2002b]. They used the water vapour absorption method and 

measured the ability of the individual flour components to trap water molecules by 

measuring the mass of an initially dry sample, placed on an atmospheric 

microbalance in a continuous flow of air, at controlled relative humidity. The mass of 

water absorbed at different humidities was then used to determine the theoretical 

distribution of water in dough, through the Guggenheim-Anderson-de-Boer (GAB) 

model, which is discussed in Section 2.2.5. The theoretical water distribution among 

flour components for a strong wheat flour was approximately 88 % for starch and 12 

% for gluten/others at 60 % relative humidity and 25 0 C . It is worth noting that the 

flour used in this work is also a strong wheat flour, similar to the one used by Roman-

Gutierrez et al. [2002b]. Therefore, their suggested water distribution values were 

used to estimate the water content of starch, as shown in [4] in Table 4.2. The entries 

in Table 4.2 were calculated in the same way as those in Table 4.1. 
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Table 4.2. Starch and gluten composition in dough using water vapour absorption 

method. 

 [a] Starch  + [b] Gluten  = [c] Flour/Dough  

[1] Dry weight (g) 171   27.5   198.5  

[2] Wet weight (g) 276.6   41.9   318.5  

[3] Water content (g) 105.6   14.4   120  

[4] Distribution of water (%) 88  12  100 

[5] Water-content/Dry-weight (w/w) 0.62 0.52 0.60 

The starch sample obtained using the formulation in Table 4.2 is referred to as starch 

2. Note that, compared to starch 1, a larger amount of water was added for starch 2. 

As a result, it was found that starch 2 formed a paste-like substance which could 

easily be formed into compression test samples, and the starch was uniformly 

deformed during uniaxial compression tests, as shown in Figure 4.4. It was decided 

that the formulation in Table 4.2 would be used for the mechanical tests on starch in 

this work. It would be interesting to investigate the difference in microstructure of 

starch 1 and 2 using Cryo-SEM in the future. 

 

Figure 4.4. Uniaxial compression results of starch 2 at -5/min. 
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4.3 Experimental Methods 

4.3.1 Uniaxial Tension  

The geometry for uniaxial tension tests were discussed in Section 2.3.1. A cylindrical 

“I” shaped mould made from Perspex is used to prepare specimens for the uniaxial 

tension tests, as shown in Figure 4.5. The “I” shaped geometry is chosen as sample 

preparation is relatively easy compared to dumbbell shaped and cylindrical flared end 

(CFE) moulds. No heating is needed at the sample ends if the “I” shaped geometry is 

used. The sample ends were air dried quickly so that the end sections could be glued 

to the test platens and therefore will not flow during the test. This has been described 

already in detail in Section 2.3.1. 

 

Figure 4.5. Geometry of “I” shaped mould used [Wanigasooriya 2006]. All units 

shown are in milimeter (mm). 

The mould was cut into two halves along its length. A rod of dough approximately 6 

mm in diameter is placed into one half of the mould and the other half is then used to 

“close” the mould. To eliminate sticking of the sample onto the surface of the mould, 

paraffin oil was used as a lubricating agent. The two halves of the mould were 
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pressed together, and the excess dough was cut off from the two ends using a pair of 

scissors. The ends of the specimen surfaces were flattened by placing the mould 

between two PTFE platens. A small weight was placed on top of one of the plates for 

10-15 minutes. The two plates were removed by a sliding motion and any excess 

material was scraped off using the edge of a Perspex plate.  

The sample was then left to relax for 45 minutes before testing, as shown in Figure 

4.6(a). The exposed end sections of the sample were left to air dry during this time 

period. After that, one half of the mould was then taken out (Figure 4.6(b)), before 

lines was marked on the sample surface, as shown in Figure 4.6(c). The marking was 

performed using food colour (Supercook black), which was spray painted through a 

stencil with horizontal lines opening. The sample was then glued on the loading 

platens using Cyanoacrylate adhesive. The adhesive was left to cure for 

approximately three minutes. The mould was then carefully removed from the 

sample, and the paraffin oil applied earlier assisted the removal process. Figure 4.6(d) 

shows the sample just before the test starts. 
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Figure 4.6. (a) The dough sample in the mould, where the end sections were exposed 

to air; (b) sample after a half of the mould was taken out; (c) sample after being 

marked; and (d) sample after glued to the loading platens and the mould was 

removed. 

All tests were performed in a controlled environment laboratory of 22 0 C and 50 % 

relative humidity. An Instron 5543 testing machine with a 100 N load cell, capable of 

performing true strain rate tests, was used for the extension measurements. The tests 

were performed at constant true strain rates (CTSR) as opposed to constant crosshead 

speeds (CCS). To keep the strain rate constant, the crosshead speed was set to 

decrease exponentially with time. Kouassi-Koffi et al. [2010] investigated the 

difference between CTSR and CCS tests on dough, and they found that CTSR and 

CCS tests produce quit similar results for true strain up to 0 25.∼ . However at large 

strain, CCS tests give higher consistency index and power law constant, k  and n  

respectively than CTSR tests when plotted using power law equation, i.e. Equation 

(d) (c) 

(a) (b) 
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(3.1). This is because the true strain rate for CCS tests is not constant compared to 

CTSR tests. 

4.3.2 Uniaxial Compression  

Compression tests were performed following the procedures outlined by 

Charalambides et al. [2005; 2006]. The materials and apparatus needed are shown in 

Figure 4.7.  

 

Figure 4.7. Materials and apparatus for uniaxial compression tests: 1) dough, 2) 

grease-proof paper, 3) paraffin oil, 4) paint brush, 5) PTFE roller, 6) Perspex plate, 7) 

PTFE plate, and 8) ring mould. 

Ring moulds of 40 mm diameter and height of 20 mm were used. A ring mould and a 

square PTFE plate were coated with paraffin oil. Greaseproof paper was used around 

the internal surface of the mould to assist removal of the sample from the mould. A 
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portion of dough was pressed into the ring mould (see Figure 4.8(a)), and any excess 

dough was removed using a Perspex plate, as shown in Figure 4.8(b). No excess of 

dough can be seen in Figure 4.8(c) by placing the Perspex plate on top of the sample. 

A PTFE plate was then placed on top of the mould filled with dough. 

 

Figure 4.8. (a) Sample in the mould; (b) excess dough being removed; and (c) no 

excess dough on top as observed using Perspex plate. 

After approximately 10 minutes, the top PTFE plate and mould were removed 

through a sliding motion, as shown in Figure 4.9(a). The sample was then allowed to 

relax for at least 45 minutes, as shown in Figure 4.9(b). During the relaxation period, 

paraffin oil was applied on the top surface of the exposed sample. The greaseproof 

paper used earlier helps to support the sample edge during the relaxation period 

(Figure 4.9(b)). The sample was transferred from the PTFE sheet to the bottom of the 

loading platen through a sliding motion. The greaseproof paper was then peeled off 

from the sample, as shown in Figure 4.9(c), just before the tests.  

 

 

(a) (b) (c) 
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Figure 4.9. (a) PTFE plate removed by sliding motion; (b) sample was allowed to 

relax for 45 minutes with greaseproof paper; and (c) sample after being transferred to 

the loading platen. 

The tests were conducted under lubricated conditions using a 500 centistokes silicone 

lubricant (Polysiloxanes) applied at the sample and platen interface [Charalambides et 

al. 2005]. Any residual paraffin oil was removed using absorbent paper at this stage 

before applying the silicone lubricant. An Instron 5543 testing machine with a 1 kN 

load cell, capable of performing true strain rate tests, is used for the measurements. 

The tests were performed at constant strain rates until true strain values reached -1. A 

strain value larger than -1 is not proposed in this study due to the lubricant’s inability 

to provide frictionless conditions at such high strains [Charalambides et al. 2005; 

2006]. 

Cyclic-compression tests were also performed. The sample is compressed and 

subsequently unloaded to zero stress at the same strain rate; subsequent reloading-

unloading cycles followed at the same strain rate. An additional PTFE film of 25 µm

thickness was positioned between the top, reversing platen and the sample as an extra 

precaution to ensure that zero tension is applied on the sample during the unloading 

phase of the test. An example of the applied true strain versus time plot for cyclic 

tests on gluten is shown in Figure 4.10.  

(a) (b) (c) 
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Figure 4.10. True strain versus time for cyclic-compression of gluten at -5/min. 

4.3.3 Shear Rheometry 

The sample was mounted on a AR2000ex (TA Instruments) rheometer. All the tests 

were performed using the parallel plate configuration (Figure 4.11a). Sand paper of 

100 grit size grade was attached on the plate surface to prevent the slippage of the 

sample during the tests [Tanner et al. 2008], as shown in Figures 4.11(a) to 4.11(c). 

Waterproof sand paper (Mirka Wet and Dry) was used to prevent swelling of the 

sandpaper when in contact with wet samples [Harito 2010]. The tests are best 

performed using cone and plate geometry, as shear strain in the geometry is uniform 

throughout the gap. However, if sandpaper is used to prevent slippage, then the 

parallel plate geometry is more practical. It is easier to apply adhesive backed sand-

paper onto the parallel plate than on the cone and plate geometry. Most of the 

reported shear tests on dough are previously performed using the parallel plate 

geometry [Phan-Thien et al. 1997; Ng and McKinley 2008; Lefebvre 2009]. This has 

been described already in detail in Section 2.3.3. A 40 mm diameter parallel plate is 

used for the tests.  
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Figure 4.11. Sample preparation for shear rheometry test: (a) sand paper attached to 

the surface of a parallel plate; (b) sand paper attached on the base plate; (c) the 

parallel plate attached to the rheometer; (d) a dough sample is placed on the base 

plate; (e) the excess dough at the side of the plates was removed; and (f) the sample 

was allowed to rest for 45 minutes. 

The sample was placed on the peltier plate (base plate) of the rheometer (Figure 

4.11(d)), and the top plate was lowered to make contact with the sample. A 3 mm gap 

was set between the plate and the base. The excess dough at the side of the plates was 

(a) (b) 

(c) (d) 

(e) (f) 

Sand paper 

Parallel plate 
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removed using a sharp blade, as shown in Figure 4.11(e). The sample was allowed to 

rest in this configuration for 45 minutes until the normal stress reduced significantly 

(Figure 4.11(f)). This step of reducing the normal stress is crucial in the sample 

preparation since the residual stress from the mixing and specimen mounting 

influences the measurement of shear stress of the dough [Phan-Thien et al. 1997]. A 

thin layer of silicon oil was applied at the sides during the rest time to prevent drying 

at the edges of the sample. The temperature of 022 C  at the rheometer base (peltier 

plate) is controlled by a water circulating temperature control unit (Julabo AWC 100). 

4.3.4 Cryo-SEM 

The Cryo-SEM test equipment (model ALTO 2100) manufactured by Gatan was used 

to observe the microstructure of dough. A schematic of the equipment consisting of a 

Cryostage, Prep-chamber, and Slush station is shown in Figure 4.12.  
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Figure 4.12. Cryo-SEM test configuration for a dough sample. 

The Cryostage is placed inside the SEM chamber (Figure 4.13(a)), which is 

connected to the prep-chamber through an opening (backing valve) at the side of the 

SEM unit (Figure 4.13(b)). The Cryostage and the Prep-chamber are connected to a 

controller and liquid nitrogen circulation system to control the temperature (Figure 

4.12). 
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Figure 4.13. (a) The Cryo-stage is installed in the SEM chamber; (b) prep-chamber; 

and (c) evaporated liquid nitrogen during the cooling down process. 

At the beginning of the Cryo-SEM test preparation, the Prep-chamber and Cryostage 

inside the SEM need to be cooled down with liquid nitrogen at a temperature of 

approximately -185 0 C  (Figure 4.13(c)). Once the light indicator next to the backing 

valve (the valve between SEM and Prep-chamber in Figure 4.12) turned green, the 

Cryo-SEM test equipment is ready for the experiment. A small piece of dough 

(approximately 5 mm size) was glued on a sample holder, which is connected to a 

transfer rod. The sample was then placed in a vacuum slush pot containing liquid 

nitrogen at the Slush station, as shown in Figure 4.14. Once exposed to liquid 

nitrogen (Figure 4.14(b)), the sample was covered using a PTFE cover at the Slush 

station (Figure 4.14(c)) and moved to the Prep-chamber under vacuum (Figure 

4.14(d)). The sample needs to be under vacuum at the Slush station to maintain the 

same vacuum condition when transferred to the Prep-chamber. In addition, the PTFE 

cover prevents water from the ambient surrounding atmosphere to accumulate on the 

sample’s surface once exposed to liquid nitrogen. 

 

(a) (b) (c) 
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Figure 4.14. Exposure of dough sample into liquid nitrogen at the Slush station. 

Inside the Prep-chamber, the sample was transferred to the Cold block where it was 

fractured using a sharp blade to reveal its internal surface (see Figure 4.12). To 

eliminate ice that has formed on the surface of the sample, a process called 

sublimation was performed. Sublimation was conducted by transferring the sample 

from the colder temperature stage inside the Prep-chamber to a higher reference 

temperature inside the SEM. The sample was left there for a period of time to remove 
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ice on the sample’s surface. During this process, it is important to record the 

temperature and time setting for reasons which will be discussed in Section 4.4.4. The 

sample was then transferred back to the Cold block in the Prep-chamber and gold 

sputtered for 90 seconds. The imaging was finally performed at the Cryostage after 

the gold sputter process (Figure 4.12). 

4.4 Experimental Results 

4.4.1 Uniaxial Tension 

The tensile behaviour of gluten at two different strain rates (5/min and 0.5/min) is 

shown in Figures 4.15(a). Gluten shows strain hardening at large strain as well as 

strain rate dependent behaviour. The sample is deformed uniformly, as shown in 

Figure 4.15(b). The results for different samples at the same rate, i.e. 5/min are shown 

as filled and unfilled points in Figure 4.15(a) to indicate repeatability. Note that the 

experimental results in this section are obtained from at least four replicate samples 

using the same batch of flour.  
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True strain 0.1  True strain 0.5 True strain 1.0 

Figure 4.15. (a) Uniaxial tension test results on gluten; and (b) sample deformation at 

different true strain values during tensile tests at 5/min. 

The results from tensile tests of dough at different strain rates are shown in Figure 

4.16(a). A strain rate dependent behaviour is observed at the strain rate tests of 5/min 

and 0.5/min, which is similar to the gluten test results in Figure 4.15. Images of a 

dough sample under tensile test at different strain values are shown in Figure 4.16(b). 

Notice that the deformation of dough in Figure 4.16(b) is less uniform compared to 

the images of gluten in Figure 4.15(b). This is possibly due to dough being softer than 
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gluten, as shown by the difference between the stress-strain results in in Figure 

4.16(a) and 4.15(a) respectively. 

 

   

True strain 0.1 True strain 0.5 True strain 1.0 

Figure 4.16. (a) Uniaxial tension test results on dough; and (b) sample deformation at 

different true strain values during tensile tests at 5/min. 

It should be noted that uniaxial tension tests on starch were not performed because it 

was found that starch could not be formed into the “I” shaped specimens, or any other 

tensile specimen geometry. This is because the starch samples did not form a 

cohesive enough paste.  
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4.4.2 Uniaxial Compression 

The compression test results from gluten samples are shown in Figure 4.17(a). Gluten 

shows strain rate dependent behaviour. Lower stresses are observed for gluten under 

compression mode as compared to tensile mode in Figure 4.15(a) at the same strain, 

which indicates that the stress-strain result of gluten in tension is not just a ‘reverse’ 

to compression. The sample condition is shown in Figure 4.17(b) at different strain 

values.  

 

   

True strain -0.1 True strain -0.5 True strain -1.0 

Figure 4.17. (a) Uniaxial compression test results on gluten; and (b) sample 

deformation at different true strain values during compression tests at -5/min. 
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The results from the compression tests of starch are shown in Figure 4.18(a). The 

starch is prepared using the methods described in Section 4.2.2.2. The starch also 

shows strain rate dependent behaviour. The sample deformation is shown in Figure 

4.18(b) at different strain values.  

 

  

True strain -0.1 True strain -0.5 True strain -1.0 

Figure 4.18. (a) Uniaxial compression test results on starch; and (b) sample 

deformation at different true strain values during compression tests at -5/min. 

The results from compression tests on dough are shown in Figure 4.19(a). The dough 

shows strain rate dependent behaviour, which is similar to the gluten and starch 

results shown in Figures 4.17 and 4.18 respectively. Images of the dough sample at 

different strain values are shown in Figure 4.19(b). The stress-strain results obtained 
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for dough shows similar rate-dependent behaviour to the findings by Charalambides 

et al. [2006]. A rate dependent behaviour for dough under uniaxial compression is 

also reported by Swilinski et al. [2004] and Launay and Michon [2008].  

 

   

True strain -0.1 True strain -0.5 True strain -1.0 

Figure 4.19. (a) Uniaxial compression test results on dough; and (b) sample 

deformation at different true strain values during compression tests at -5/min. 
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Compression relaxation tests of gluten, starch and dough are shown in Figure 4.20. 

The samples were compressed to the required strain values at a constant strain rate of 

5/min and held fixed for a period of time (i.e. 1000 seconds) while the stress decay is 

recorded. At lower strain (true strains -0.2 and -0.05), the stress in gluten relaxes to 
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almost instantaneous reduction as soon as the relaxation experiments begin. However, 

the stress in starch is still significant after 1000 seconds for all the applied strains. It is 

worth noting that the stress for dough reduced more than starch and gluten after 1000 

seconds. Finally, it is suggested that the instantaneous reduction of stress in dough 

(Figure 4.20(c)) is caused by starch, whereas the long time stress relaxation is caused 

by gluten. 

       

 

Figure 4.20. Compression relaxation test results on: (a) gluten; (b) starch; and (c) 

dough. All the tests are performed at -5/min. 
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4.4.2.2 Compression Loading-Unloading 

The results from the compression loading-unloading tests of gluten, starch and dough 

are shown in Figure 4.21. The samples were compressed to the required strain values 

at a constant strain rate of -5/min before being unloaded at the same rate until the load 

is removed. Different samples are used for each strain shown in Figure 4.21. During 

the unloading period, it can be seen that the strain does not recover completely to its 

initial state for all the samples tested (Figure 4.21). In particular, gluten shows non-

linear unloading curves even though the loading curves are approximately linear 

(Figure 4.21(a)). This is in contrast to the starch and dough, which show non-linear 

loading and unloading curves (Figure 4.21(b) and 4.21(c)). It can also be seen that the 

unloading-reloading curves of starch is almost vertical compared to gluten and dough. 

Repeatability is observed from the initial loading parts of the stress-strain curve 

corresponding to different strains which approximately overlap each other. 
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Figure 4.21. Compression loading-unloading test results on: (a) gluten; (b) starch; and 

(c) dough. All the tests are performed at -5/min. 

4.4.2.3 Cyclic Compression 

Cyclic compression test results for starch, gluten and dough are shown in Figure 4.22. 

During unloading, a larger strain recovery is observed for gluten (Figure 4.22(a)) as 

compared to starch (Figure 4.22(b)) and dough (Figure 4.22(c)). This is similar to the 

findings in the previous section for the loading-unloading tests. These findings 

suggest that gluten and starch behave like rubberlike and viscoplastic materials 

respectively. This will be investigated further in Chapter 5. 
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Figure 4.22. Cyclic compression test results on: (a) gluten; (b) starch; and (c) dough. 

All the tests are performed at -5/min. 

4.4.3 Shear Rheometry Tests 

4.4.3.1 Shear Strain Sweep and Shear Frequency Sweep  

The results from Small Amplitude Oscillatory Shear (SAOS) tests on dough and 
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gluten is higher than dough, which is consistent to the findings by Uthayakumaran et 

al. [2002]. Frequency sweep tests were subsequently performed on dough and gluten 

in the LVR strain range (0.1 % strain) at a frequency range of 0.1-30 Hz. The results 

show higher 'G  and ''G  values for dough than gluten (Figure 4.23(b)), which is 

consistent to the shear strain sweep results in the LVR limit (Figure 4.23(a)). Note 

that almost linear curves of the 'G  and ''G  in Figure 4.32(b) can be represented using 

a simple power law equation (Equation 2.20 in Chapter 2): i.e. ( )' '(1) nG t G ω=  . This 

will be discussed later in Section 5.2 in Chapter 5. 

 

Figure 4.23. Small Amplitude Oscillatory Shear (SAOS) test results on dough and 

gluten: (a) shear strain sweep; and (b) shear frequency sweep at 0.1 % strain. 

4.4.3.2 Constant Shear Strain Rate 

Figures 4.24(a) and 4.24(b) show the results from the constant shear strain rate 

(CSSR) tests performed on gluten. The gluten shows strain rate dependent behaviour. 

The deformation of the samples at different shear strains is shown in Figure 4.24(b). 

At the shear strain range of 10 to 20, it was visually noticed that the sample slipped at 

the edge of the plate (Figure 4.24(b)). The rotational motion of the rheometer plate at 

0.1

1

10

100

0.0001 0.001 0.01 0.1 1 10 100

G
' 
a

n
d

 G
''
 (

k
P

a
)

Shear strain (%)

G' gluten G'' gluten

G' dough G'' doughLVR of Dough

LVR of Gluten

0.01

0.1

1

10

100

0.01 0.1 1 10 100 1000

G
' 

a
n

d
 G

'' 
(k

P
a

)

Freq. (rad/s)

G' dough G'' dough

G' gluten G'' gluten

(a) (b) 



138 

 

large strain caused the sample to roll up and get ejected from the geometry gap, as 

shown in Figure 4.23(b) for shear strain 20. This has caused the drop of the shear 

stress shown in Figure 4.23(a). A similar slippage was also observed for shear strain 

rates of 50/min and 0.5/min. This indicates that the maximum shear strain seems to be 

independent of the strain rate. Note that a similar gluten sample slippage was also 

reported by Ng and McKinley [2008]. 

 

   

Shear strain 0.1 Shear strain 3 Shear strain 20 

 

Figure 4.24. (a) Constant shear strain rate test results on gluten; and (b) sample 

deformation during shear tests at 5/min. 
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Figure 4.25(a) shows stress-strain curves from CSSR tests on dough samples. A rate 

dependent behaviour is again observed which is more pronounced than in gluten. 

Images of the sample deformation during the shear tests are shown in Figure 4.25(b). 

Similar to gluten, the sample slipped at the edge of the plate at a shear strain of 

approximately 20. This is in agreement with published data by Phan-Thien et al. 

[1997] and Tanner et al. [2008]. 
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Figure 4.25. (a) Constant shear strain rate test results on dough; and (b) sample 

deformation shear tests at 5/min. 
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To demonstrate the effect of the correction factor discussed in Chapter 2, Equation 

(2.12) is used to correct the shear stress of dough and gluten through: 

3 1
.

4 4
E R

E R

R E

γ ττ τ
τ γ

 ∂= + ∂ 
  

The results are shown in Figure 4.26 as a comparison between the rheometer output 

and results calculated using Equation (2.12). It can be seen that the difference is 

larger for dough than gluten. A small correction factor for gluten was also reported by 

Ng et al. [2011].    

 

Figure 4.26. Rheometer output versus corrected shear stress using Equation (2.12). 
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4.4.4 Cryo-SEM  

4.4.4.1 Effect of Sublimation  

An investigation was performed to study the effect of sublimation on the observed 

dough microstructure. The Cryo-SEM test procedure is as described in Section 4.3.4. 

A sublimation setting of -90 0C  and 2 minutes was used on a dough sample and was 

compared with a non-sublimated sample. The results are shown in Figure 4.27 at two 

different magnifications, i.e. Figures 4.27(a) and 4.27(c) at 1000 and 3000 times 

magnifications respectively.  

Non-sublimated sample Sublimated sample 

  

  

Figure 4.27. Cryo-SEM images of dough for: non-sublimated sample ((a) and (c)); 

and sublimated sample ((b) and (d)) at a sublimation setting of -90 0 C  for 2 minutes. 

(a) (b) 

(c) (d) 
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A significant difference is observed between the non-sublimated sample (Figures 

4.27(a) and 4.27(c)) and the sublimated sample (Figures 4.27(b) and 4.27(d)), where 

the starch granules and gluten structure are clearly visible in the latter. 

To investigate the effect of sublimation settings, a different sublimation setting, i.e. 

070 C−  and 10 minutes was used, and the resulting image was compared to the image 

corresponding to the sublimation setting of 090 C−  and 2 minutes as shown in 

Figures 4.27(b) and 4.27(d). The former sublimation settings were obtained from 

Jinhee et al. [2009] for dough. The comparison results are shown in Figure 4.28.  

Sublimation setting  
(-70 0 C  and 10 minutes) 

Sublimation setting  
(-90 0 C  and 2 minutes) 

  

  

Figure 4.28. (a) and (c) Sublimation setting comparison of -70 0 C  and 10 minutes; 

(b) and (d) Sublimation setting of -90 0 C  and 2 minutes. 

(a) (b) 

(c) (d) 
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It is apparent that the starch and gluten microstructure are clearly visible with no 

cracks observed on the surface, when the sublimation setting of -90 0C  and 2 

minutes was used (see Figures 4.28(b) and 4.28(d)). In contrast, cracks are observed 

in the image taken at the sublimation setting of -70 0C  and 10 minutes (Figures 

4.28(a) and 4.28(c)). Therefore the sublimation setting of -90 0C  and 2 minutes was 

used for the remaining Cryo-SEM tests performed in this thesis. 

4.4.4.2 Microstructure of Gluten, Starch and Dough 

Figure 4.29(a) shows the microstructure of the gluten samples prepared using the 

Cryo-SEM method. No starch granule is physically observed on the gluten surface. 

The small holes in the gluten microstructure in Figure 4.29(a) are artefacts due to 

evaporation of ice during the sublimation process. A similar microstructural image of 

gluten is also observed by Kontogiorgos and Goff [2006], as shown in Figure 4.29(b).  

   

Figure 4.29. (a) Microstructure of native gluten obtained from dough washing 

procedure; and (b) microstructure of gluten obtained by Kontogiorgos and Goff 

[2006]. 

(a) (b) 
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Figure 4.30 shows SEM images of dry starch obtained after dough washing 

procedures described in Section 4.2.2. The starch consists of larger ellipsoidal type A 

and smaller circular type B varieties [Tanner et al. 2011b], as shown in Figure 4.30(a) 

and 4.30(b). No damaged starch is observed which is encouraging as it is proof that 

the washing and drying procedure followed in this work did not alter the starch 

granules. This is consistent with the discussion on starch in Section 2.2.4, where the 

hydration process of starch is reversible at room temperature, i.e. 22 0C . 

    

Figure 4.30. SEM images of dry starch, which consists of larger ellipsoidal type A 

and smaller circular type B varieties. 

Figure 4.31 shows the microstructure of an undeformed dough obtained using the 

Cryo-SEM tests. The larger ellipsoidal type A and smaller circular type B starch are 

surrounded by gluten, as shown in Figures 4.31(a) and 4.31(b). The starch granules 

are bonded to the gluten, and the boundary between the starch and gluten is clearly 

visible, as shown in Figure 4.31(b) at larger magnification.  

(a) (b) 
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Figure 4.31. Cryo-SEM images of undeformed dough. 

In order to investigate the degree of swelling in starch, the dimension of the starch 

particles in Figures 4.30 and 4.31 were compared. Measurements of the starch 

particles were performed along two orthogonal axes of symmetry (  and α β ) to reveal 

the aspect ratio, as shown in Figure 4.32. The results are shown in Figure 4.32 for the 

larger ellipsoidal type A starch (Figure 4.32(a)) and the smaller circular type B starch 

(Figure 4.32(b)). It appears that swelling is not apparent for starch in dough when 

compared to the dry starch for type A and B starches. This agrees to the results 

obtained by Tester and Morrison [1990] (Figure 2.5), which shows that starch 

swelling is not apparent at room temperature. 

 

(a) (b) 
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Figure 4.32. Starch granule dimensions difference between starch in dough and dry 

starch for (a): type A starch; and (b) type B starch. 

4.4.4.3 Effect of Deformation on Microstructure of Dough  

The microstructure of dough after being deformed is investigated using Cryo-SEM. 

Dough samples were stretched or compressed manually, and were compared to an 

undeformed sample. Both samples were exposed to liquid nitrogen under vacuum 

conditions before being transferred to the Cryo-SEM chamber. The same sublimation 

setting of -90 0C  for 2 minutes was used for both samples.  
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The images are shown in Figure 4.33. The images of undeformed dough and gluten 

are shown in Figures 4.33(a) and 4.33(b) as reference. Evidence of debonding at the 

starch-gluten interface is observed for the stretched sample (Figure 4.33(d)), such 

debonding was not present in the undeformed sample (Figure 4.33(a)). This suggests 

that the dough may be undergoing damage [Tanner et al. 2008] due to the starch-

gluten interaction weakening at large deformations. In contrast, debonding is not as 

apparent when the dough was subjected to a compressive load (Figure 4.33(c)). 

Finally, it is worth noting that the procedure to deform dough before exposure to 

liquid nitrogen was performed as quickly as possible to prevent the effect of stress 

relaxation and recovery on dough. However, it is impossible to avoid relaxation at 

very short time, i.e. the stress relaxation of dough for time less than 10 seconds 

shown in Figure 4.20(c). 
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Figure 4.33. Microstructure of: (a) undeformed dough; (b) undeformed gluten washed 

under running tap water; (c) compressed dough; and (d) stretched dough. 

4.5 Discussion  

The experimental results of this chapter are reviewed and summarised in this section. 

The results from Small Amplitude Oscillatory Shear (SAOS) tests show that the 

gluten has lower storage and loss moduli values than dough. The results from uniaxial 

compression, uniaxial tension and shear performed at 5/min for dough, starch and 

gluten are compared in Figure 4.34. Under uniaxial compression, the starch has the 

highest stress-strain curve followed by dough and gluten, as shown in Figure 4.34(a). 

However, a different stress-strain pattern is observed under uniaxial tension and 

simple shear, as shown in Figures 4.34(b) and 4.34(c) respectively. The dough stress-

(a) (b) 

(c) (d) 
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strain curves under tension and shear are seen to cross over the curves for gluten and 

therefore leading to lower stress values than in gluten. 

    

 

Figure 4.34. Comparison of dough, gluten and starch from large deformation tests: (a) 

uniaxial compression; (b) uniaxial tension; and (c) constant shear strain rate. All the 

tests are performed at 5/min. 

The microstructure test results show evidence of debonding at the starch-gluten 

interface for the stretched sample (Figure 4.33(d)), while debonding is not apparent 

when the dough was subjected to a compressive load (Figure 4.33(c)). 

It is therefore suggested that the mechanical behaviour of dough can be described 

using starch as a filler contained in a gluten matrix. The filler-matrix interaction can 
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be represented by the starch-gluten interaction in dough. The interaction can be 

classified as being in the: well bounded composite region, partially debonded region 

and fully debonded region, as shown in Figures 4.35(a), 4.35(b) and 4.35(c) 

respectively [Meddad and Fisa 1997]. At a small strain, the filler-matrix interface is 

well bonded, indicating no filler-matrix interface damage, as shown in Figure 4.35(a). 

Partial debonding occurs as the strain increases, as indicated in Figure 4.35(b), before 

finally the filler-matrix interface is fully debonded in Figure 4.35(c). This hypothesis 

will be investigated further in the next chapter. 

 

 

Figure 4.35. Filler-matrix debonding concept for polymeric materials by Meddad and 

Fisa [1997] for: (a) well bonded composite region; (b) partially debonded region; and 

(c) fully debonded region. 

4.6 Conclusion 

An experimental investigation on the mechanical behaviour of dough, starch and 

gluten is performed in this chapter. The flour used is strong white bread flour, 

Load

Load

(a) (b) (c) 
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purchased from the Wessex Mill in Oxford, United Kingdom. The sample preparation 

involved mixing flour, water and salt to produce dough. The mixed dough was then 

washed using water to separate the starch and gluten constituents. Dough, wet gluten 

and reconstituted wet starch were used for uniaxial tension, uniaxial compression, 

shear rheometry and Cryo-SEM tests. Experimental results for gluten, starch and 

dough were then shown and discussed. Rate-dependent behaviour is observed from 

all the samples tested in uniaxial compression, uniaxial tension and shear tests. Cryo-

SEM images show starch embedded in gluten matrix, where starch consists of large 

ellipsoidal-shaped and small circular-shaped fillers. No trace of starch was observed 

on the gluten matrix based on the Cryo-SEM images of washed gluten. A comparison 

performed between the mechanical test results showed that dough is stiffer than 

gluten at Small Amplitude Oscillatory Shear (SAOS) tests, namely shear strain sweep 

and shear frequency sweep tests. However, in large deformation tests, namely 

uniaxial tension and simple shear, the dough stress-strain curves cross over the gluten 

curve at larger deformations. On the other hand, uniaxial compression test results 

showed that the stress-strain curve of dough is always higher than gluten, indicating 

that possibly no considerable damage occurs under compression. This is supported by 

the Cryo-SEM observation of dough when compressed manually, where damage in 

terms of debonding is less apparent. Finally, a filler-matrix debonding concept by 

Meddad and Fisa [1997] for polymeric materials was proposed to represent the 

mechanical behaviour of wheat flour dough. 
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Chapter 5. Rheological and Micromechanical Modelling of 

Wheat Flour Dough 

5.1 Introduction   

Baking performance and quality of bread are strongly dependent on the mechanical 

behaviour of dough. Even though wheat flour dough is a simple mixture of wheat 

flour, salt and water, its mechanical behaviour is complex, as shown in Chapter 4. 

Two major components of wheat flour dough that are believed to influence the 

viscoelastic properties of dough are starch and gluten [Amemiya and Menjivar 1992].  

The interaction between starch and gluten can be modelled as a composite material, 

where starch is modelled as a harder filler and gluten as a softer matrix. However the 

experimental study on the stress-strain behaviour of dough and gluten showed that 

gluten is stronger than dough at large strain, as discussed in Chapter 4. This is in 

contrast with the composite material theory, where in the case of a stiffer filler, the 

composite material is expected to be stiffer than its matrix. It is believed that the 

reason for this is due to damage or debonding of the starch-gluten interface [Meddad 

and Fisa 1997].  

This chapter investigates the mechanical behaviour of dough, gluten and starch. The 

possibility of damage at the interface between the starch and gluten is investigated. 

This is performed by using a two phase (starch and gluten) composite material model 

and comparing the model predictions to experimental stress-strain data for dough 

tested under various loading conditions. 
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5.2 Lodge Rubberlike Model  

Dough has been shown to behave like a critical gel by various researchers [Gabriele 

et al. 2001; Ng et al. 2006; Lefebvre 2006; Migliori and Gabriele 2010; Tanner et al. 

2008; 2011a]. A critical gel material can be modelled using the Lodge rubberlike 

model [Lodge 1964], based on the study by Winter and Chambon [1986] and Winter 

and Mours [1997]. Discussion on the critical gel materials is provided in Section 

2.3.3.3 in Chapter 2. Under uniaxial tension, the Lodge rubberlike model is 

approximated as (Equations (3.32) and (3.34) in Chapter 3) [Ng and McKinley 

(2008)]: 

( ) ( )1 2
(1) exp 2 1

1
n n

zz rr

n
G

n
σ σ σ ε ε ε ε−  +

− ≈ ≈ + − − 
ɺ   

where εɺ  is strain rate and ε  is log or Hencky strain. zzσ  and rrσ  are referred to as 

the axial and radial stresses in a cylindrical specimen respectively. The above 

equation is also used for uniaxial compression loading too, where a negative strain is 

used to indicate compressive strain.  

The shear stress, τ , under simple shear loading is (Equation (3.48) in Chapter 3) 

[Tanner et al. 2008; Ng and McKinley 2008]: 

1(1)
.

1

n
nG

n

γτ γ −=
−
ɺ

  

The stress relaxation constant, (1)G  and power law constant, n , are determined from 

small amplitude oscillatory shear (SAOS) tests (i.e. strain sweep and frequency sweep 

tests), following the procedures in Tanner et al. [2008] and Ng and McKinley [2008]. 
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The strain sweep tests were performed at 1 Hz and the results are shown in Figure 

5.1(a). This is similar to the results shown in Figure 4.23(a). It is observed that a 

strain amplitude of 0.1 % is within the linear viscoelastic region of dough. The 

frequency sweep tests were therefore performed at 0.1-30 Hz and 0.1 % strain. The 

data are shown in Figure 5.1(b), which is similar to the results shown in Figure 

4.23(b). The storage and loss moduli plots are each approximated with a power law 

such that (Equation (2.20) in Chapter 2): 

( ) ( )' '(1) '' ''(1)n nG t G G t Gω ω= =,         

 

Figure 5.1. SAOS test results of dough: (a) strain sweep tests in the shear strain range 

of up to 100 % at 1 Hz; and (b) frequency sweep at 0.1 % shear strain at 0.1-30 Hz. 

Therefore the power law constant,n , was obtained from the average of the two 

exponents shown in Figure 5.1(b), where 0.27n ≈ . This value was used to calculate 

( )1G using the following relationship (Equation 2.21 in Chapter 2) [Tanner et al. 

2008]: 
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( ) ( )' 2 !
(1) 1 sin

2

n n
G G

n

π
π

=   

where !n  is the factorial function of the power law constant, which is equal to 0.902 

for 0.27n = , and ( )' 1G  is equal to 3.45 kPa/(rad/s)0.27, as shown in Figure 5.1(b). 

Thus ( )1G  is calculated as 3.02 0.27kPa s . 

Figure 5.2 shows the fit of the Lodge model to the dough test data under large 

deformation. The model leads to considerably higher stress values than the tension 

and shear test data, therefore suggesting the use of a damping function [Ng et al. 

2006] or a damage function [Tanner et al. 2008; 2011a]. In contrast, the model is 

closer to the compression test data, indicating that possibly less damage occurs under 

compression. In order to quantify the ‘damage factor’, the ratio of the experimental 

stress value to the Lodge model calculation is plotted against log strain, as shown in 

Figure 5.2(d). Absolute/positive true stress and log strain are used for uniaxial 

compression, whereas the true strain for the shear tests is calculated using (Equation 

(3.76) in Chapter 3) [Treloar 1975]:  

( )
2 4

ln ln
2 2

γγε λ
 +
 = = +
 
 

  

A lower value of the experimental over Lodge model ratio indicates that a larger 

damage factor is needed in order to replicate the test results. It can be seen that the 

ratio for shear is the lowest followed by tension and compression. This suggests that 

debonding at the starch-gluten interface is possibly an important damage mechanism 

in dough. This can readily occur under shear and tension. During compression, 

debonding only arises from shear generated off-axis at 45° from the direction of the 
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applied load, therefore the damage factor has lower values than in tension or shear 

loading. 

 

Figure 5.2. Dough test data at 5/min and Lodge rubberlike model fit results under: (a) 

compression; (b) tension; (c) shear; and (d) Experimental over Lodge model ratio 

under different modes of deformation. 

5.3 Micromechanics Model 

5.3.1 Material Model for Gluten 

The results from the mechanical tests on gluten are shown in Figure 5.3.  
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Figure 5.3. Gluten test results and calibration of visco-hyperelastic (van der Waals) 

material model under: (a) compression; (b) tension; (c) shear; (d) cyclic-compression; 

and (e) compression-relaxation. The model is described by the visco-hyperelastic 

model in Section 3.3 in Chapter 3. 
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Gluten shows rate dependent behaviour under compression, tension and shear modes, 

and energy dissipation under a cyclic-compression mode. Details of the experimental 

results of gluten are provided in Chapter 4. 

Material parameters of gluten under large deformation were determined using a 

visco-hyperelastic material model, where the van der Waals strain energy function 

and the Prony series time-dependent function were used. For the the van der Waals 

strain energy function, the true stress form for uniaxial tension and uniaxial 

compression can be described using ( )0

W
σ λ λ

λ

∂=
∂

, where W is the hyperelastic 

potential and λ  is the stretch ratio. The stress for uniaxial tension and uniaxial 

compression, ( )0σ ε , can then be derived as (Equation (3.79) in Chapter 3): 

( )
2 2 1

0 2 2 2 1

31 2 3

23 2 3

m

m

a
λ λ λσ λ µλ λ

λ λ λ λ

−

−

 − + − 
 = − − 

   − − + − 

  

where µ  is the instantaneous initial shear modulus, mλ  is the locking stretch constant 

and a  is the global interaction parameter [Abaqus 2009; 2010].  

For simple shear loading, shear stress, ( )τ λ , is (Equation (3.80) in Chapter 3):  

( )
23 1 2 2

0 2 2 2 2

3 2
.

1 23 2

m

m

a
λλ λ λ λσ τ λ µ

λ λ λ λ

− −

−

 − − + −
 = = − +  − − + −   

  

For the Prony series time-dependent function, the following form is used (Equation 

(3.63) in Chapter 3): 
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( ) ( )

( ) ( ) ( )

1 0 1

0 1 0
1

1 exp

exp

n n

N
i

i n i n n
i i

i

σ t g σ t

t

t
h t g σ t σ t .

t

∞

ξ

ξ
ξ

+ +

+
=

=

  ∆− −  
 ∆    + − + −    ∆   

 

∑
  

A detailed derivation is given in Chapter 3 (Section 3.3). The function can be 

evaluated for various strain histories.  

The visco-hyperelastic model described above was calibrated using the gluten test 

data in Figure 5.3. The calibration was performed simultaneously using a least 

squares method [Goh et al. 2004; Charalambides et al. 2006]. A constraint was 

defined during the calibration procedure where the time dependent constants, ig , are 

set to be non-negative values. The parameters for the model are shown in Table 5.1.  

Table 5.1. Visco-hyperelastic model parameters for gluten. 

Material 

Strain dependent 

constants 
Time dependent constants 

 

µ  

(kPa) 

mλ  a  

i 1 2 4 5 ∞  

 

iξ  

(s) 

0.1 10 100 1000  

Gluten 3.29 4.64 0.25 ig  0.867 0.092 0.004 0.028 0.007 

The model agrees reasonably well with the gluten test data (Root Mean Square 

Percentage Error (RMSPE) = 24 %), as shown in Figure 5.3, justifying the 

assumption of the rubberlike, rate dependent behaviour of gluten. The RMSPE is 

calculated using the following equation [Hagan 2009]:  



 

160 

 

2

1

1
RMSPE .

n
d m

i d

x x

n x=

 −=  
 

∑  

It is worth noting here that methods have been suggested by Ng and McKinley [2008] 

and Tanner et al. [2011a] to derive the discrete Prony series terms from the power 

law fit to relaxation or storage modulus data. For this, storage oscillatory tests in the 

linear viscoelastic region for gluten were shown in Figure 5.4. This is similar to the 

results in Figure 4.23(b).  

 

Figure 5.4. Storage modulus of gluten obtained using at 0.1 % shear strain at 0.1-30 

Hz. 

The Prony series constants were then obtained using the following equation 

[Macosko 1994; Tanner 2000]: 
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where n  is the power law constant and r  is the ratio of two successive relaxation 

time constants (for this work, 10r =  for 0.1,  1,  10,  100,  and 1000iξ = ). The constant, 

( )iH ξ  in Equation (5.1) is given by: 

( ) ( )
( )

1

1 !

n
i

i

G
H

n

ξ
ξ

−

=
−

 (5.2) 

The Prony series terms obtained using Equation (5.2) are shown in Table 5.2. 

Table 5.2. Visco-hyperelastic model parameters for gluten, where the time dependent 

constants were obtained using Equation (5.2). 

Material 

Strain dependent 

constants 
Time dependent constants 

 

µ  

(kPa) 

mλ  a  

i 1 2 3 4 5 ∞  

 

iξ  

(s) 

0.1 1 10 100 1000  

Gluten 1.14 4.64 0.25 ig  0.499 0.258 0.133 0.068 0.035 0.007 

The visco-hyperelastic model calibration using the parameters in Table 5.2 is shown 

in Figure 5.5. It is apparent that the values in Table 5.1 lead to a better agreement 

with the experimental results of gluten (Figure 5.3). It was found that the resulting 

Prony Series terms did not lead to a good fit to the experimental data of Figure 5.5 

and therefore this method was not investigated further.  
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Figure 5.5. Gluten test results and calibration of visco-hyperelastic (van der Waals) 

material model under: (a) compression; (b) tension; (c) shear; (d) cyclic compression; 

and (e) compression relaxation. The material parameters are shown in Table 5.2. 
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5.3.2 Material Model for Starch 

Figure 5.6 shows the results from the compression and compression-relaxation 

experiments on starch. Only compression test results are shown for starch. This is due 

to difficulties in preparing samples for tensile tests as discussed in Section 4.4.1 in 

Chapter 4. In addition it was found that the starch samples showed edge fractures 

during shear at small strains which led to irreproducible results (Section 4.4.3.2). 

 

Figure 5.6. Starch tests results and calibration of visco-hyperelastic material model 

with starch tests data under: (a) compression; (b) compression-relaxation at strain of  

-1; and (c) cyclic-compression. 
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The starch test results in Figure 5.6(a) show a rate dependent behaviour, which is 

similar to the results from gluten shown in Figure 5.3. However, the almost vertical 

unloading-reloading parts of the cyclic results for starch (Figure 5.6(c)) as well as the 

less dramatic relaxation (Figure 5.6(b)), when compared to gluten results in Figure 

5.3, indicate a viscoplastic behaviour. Therefore, a viscoplastic material model was 

considered to represent the mechanical behaviour of starch. In the Finite Element 

Analysis software Abaqus [2009], which will be used for the micromechanics model 

in the following section, viscoplasticity can be implemented through a strain rate 

dependent yield behaviour which follows an initial elastic region. The software 

allows a direct tabular entry of corresponding equivalent stress and equivalent plastic 

strain test data at different plastic strain rates. The plastic strain is calculated through 

(Equation (3.81) in Chapter 3): 

n
n n n n
plastic total elastic total E

σε ε ε ε= − = −   

where n
plasticε  , n

totalε n
elasticε  and nσ  are the plastic true strain, total true strain, elastic 

true strain and true stress respectively at the nth experimental data point in the ‘yield 

regions’ of Figure 5.6(a). Plastic strain rates are calculated in a similar fashion. The 

initial yield stress, 0.8 kPayσ =  is selected to fit the stress relaxation data after 100 

seconds (Figure 5.6(b)). The elastic modulus, 90 kPaE = , on the other hand is 

estimated through the slope of the unloading-reloading data in Figure 5.6(c). Lastly, 

the Poisson’s ratio, v , is taken to be 0.49 assuming an incompressible material 

[Charalambides et al. 2002; Wang et al. 2006]. The viscoplastic model is in 

reasonable agreement with the starch test data shown in Figure 5.6. 
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5.3.3 Micromechanics Model for Dough 

A simple composite model was developed using Abaqus [Abaqus 2009], using a 

single-particle model, which consisted of a single 2D circular filler representing 

starch surrounded by matrix representing the gluten phase, as shown in Figure 5.7(c). 

Gluten and starch were modelled through the visco-hyperelastic and the viscoplastic 

models shown in Figures 5.3 and 5.6 respectively.  The diameter of the filler is set to 

20 mµ , which is of the same order as the size of type A starch in dough as seen in 

Figure 4.33. An average starch volume fraction value of 45 % was calculated from 

Cryo-SEM images of dough. This is performed by converting the Cryo-SEM image 

of dough to binary form using the image analysis toolbox in MATLAB [MATLAB 

2009], with an example shown in Figures 5.7(a) and 5.7(b). 

The black pixels in Figures 5.7(b) represent the gluten matrix and the white pixels 

represent the starch granules. The starch volume fraction was determined from the 

ratio of the black and white pixels, i.e. the assumption that the 2D areal and 3D 

volume fractions are equal was made [Underwood 1970]. The starch volume fraction 

obtained from images taken from the Cryo-SEM experiments is 45 % 3 %± . The 

value is close to the 46 % starch volume fraction obtained in Tanner et al. [2011b]. 

An example particle size distribution from Figure 5.7(b) is shown in Figure 5.7(d), 

where the Feret diameter shown is the mean length of the distance between two 

tangents on opposite sides of the particle outline parallel to randomly fixed position 

[Stapountzi 2008]. It is worth noting that the starch particle distribution for type A 

and type B in Figure 5.7(b) is 35.4 % and 19.5 % respectively, which gives a total of 

44.9 % volume fraction. 
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Figure 5.7. Volume fraction measurement of dough: (a) Cryo-SEM image of dough; 

(b) binary image of dough; (c) a single-particle model of dough; and (d) particle size 

distribution obtained from Figure 5.7(b). 

The single-particle model was loaded uniaxially as well as in simple shear mode. The 

analysis was performed using Abaqus/Explicit [Abaqus 2009] with first order, plane 

stress elements. In an attempt to simulate as close to 3D as possible, generalised plane 

strain elements were also considered. These however led to results very close to plane 

stress (see Figure 5.8(a) under uniaxial tension) so plane stress elements were used 

throughout. The mesh density was chosen following a mesh sensitivity study where 

the mesh was refined sequentially until the numerical results converged to within 

1 %±  (see Figure 5.8(b)). 
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Figure 5.8. Single-particle model (without damage/debonding) under uniaxial tension 

mode at 5/min for: (a) plane stress versus generalized plane strain element; (b) mesh 

sensitivity study; and (c) periodic boundary conditions effect. Note that the 

simulation results in (a) was performed using Abaqus/Standard since generalized 

plane strain element is not available in Abaqus/Explicit. 
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where δ  the applied displacement is 0δ >  in tension and 0δ <  in compression,u

and v  are displacements in the x and y direction respectively, b is the height of the 

single-particle model, and ( )0, 0  is the origin coordinate at the lower left corner of 

the single particle model, as shown in Figure 5.7(c). Under simple shear, the 

following boundary conditions are used: 

( ) ( ), 0 ,0 0u x v x= =  

( ),u x b δ= ; ( ), 0.v x b =  
(5.4) 

Periodic boundary conditions were added for the model to undergo similar 

displacements on the vertical sides of the geometry in Figure 5.7(c). The following 

equations are used to define the periodic boundary conditions:  

1 0

1 0

i i

i i

u u u

v v v

+

+

     
= +     

     
 (5.5) 

where 1iu + , 1iv + , 0u  , 0v , iu  and iv  are the displacements shown in Figure 5.9. 

 

Figure 5.9. Periodic boundary conditions used for the single-particle model of dough. 
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However it was found that a very similar stress-strain curve was obtained when a 

comparison was performed between the results obtained with and without periodic 

boundary conditions (typical difference between results ∼ 0.5 %, results in Figure 

5.8(c)). This indicates that the boundary conditions in Equations (5.3) and (5.4) are 

sufficient for the single particle model. Finally, the output strain and strain rate ranges 

in all the simulations were checked to ensure that they lied within the strain and strain 

rate calibration ranges shown in Figures 5.3 and 5.6. 

The numerical results when no debonding/damage is allowed at the starch/gluten 

interface are first shown in Figure 5.10 for the rate of 5/min. It is observed that the 

numerical predictions are close to the experimental stress-strain curves of dough for 

strains up to approximately 0.2 in compression and tension and 0.4 in shear loading. 

This gives further confidence that the constituents of dough, i.e. starch and gluten 

have been modelled correctly. For higher strains, the experimental data are lower for 

all loading conditions. Even though shear and normal displacements coexist during 

shear and tensile loading of the micromechanics model, the comparison is still useful 

as it helps to form an approximate estimate of the critical stresses for the initiation of 

debonding damage; approximately 0.3 kPa in shear and 1.0 kPa in tension, as shown 

in Figure 5.10. 
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Figure 5.10. Dough tests data at 5/min and calibration of the single-particle model 

under: (a) compression; (b) tension; and (c) shear. 
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Figure 5.11. Cohesive element parameters used in the micromechanics model under 

normal and shear loading. 

Details on the cohesive element interaction are provided in Section 3.5.1 in Chapter 
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distortion of the cohesive elements during the large strain simulations. This is because 

the values of Knn and Kss must be high enough to prevent interpenetration of the 

element faces and to prevent artificial compliance from being introduced into the 

model by the cohesive elements [Song et al. 2008]. The damage energy, 

2 100 mJ/mnc scG G= =  is next obtained from peel tests of dough from a steel substrate 

performed by Dobraszczyk [1997]. These cohesive zone parameters were used to 

predict the dough response under all loading conditions and the results are compared 

to experimental data in Figure 5.10. 

For tension and shear loading, when the interaction of starch and gluten is strong, as 

indicated for the dough with no damage, the stress-strain curve is above the gluten 

stress-strain curve under tension and shear. When damage is activated, the interface 

softens and debonds, causing the dough stress-strain curves under tension and shear 

to cross over the curves for gluten, leading to lower stress values than in gluten. This 

observation explains the trends in data published by other researchers 

[Uthayakumaran et al. 2002; Ng 2007]. In contrast, damage is less apparent under 

compression and the stress-strain curve for dough is always higher than gluten.  

The model predictions for the full range of loading conditions are shown in Figure 

5.12. The correct trends are predicted. For compression at -5/min and -50/min the 

errors are RMSPE = 25.5 % and RMSPE = 17.7 % respectively. Note that the 

simulations for compression aborted before the strain of one was reached due to large 

mesh distortion. The cyclic compressive loading shows good agreement to the test 

data. For tension at 5/min and 0.5/min, the errors are RMSPE = 18.8 % and RMSPE 

= 8.8 % respectively. The error for 5/min shear loading is RMSPE = 20.3 %. The 
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errors are very large for shear at 0.5/min (RMSPE = 71.2 %). A probable reason is 

that the cohesive zone parameters could be rate dependent [Geiβler  and Kaliske 

2010].  

 

Figure 5.12. Dough tests data and calibration of the single-particle model under: (a) 

compression; (b) tension; (c) shear; and (d) cyclic-compression. 
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numerical curve is very close to the experimental data as shown in Figure 5.13. 

However, implementing cohesive zone parameters as a function of rate requires 

thorough, direct, experimental measurement and justification. Suitable experiments 

could involve a single starch granule being pressed on a gluten surface and 

subsequently retracted, possibly through an Atomic Force Microscope as is 

performed in synthetic polymer characterisation [Haupt et al. 1999]. Such a task for 

the case of starch/gluten interface would be quite complex though, taking into 

account the nature of these soft, difficult to handle materials.  

 

Figure 5.13. Dough shear tests data at 0.5/min and calibration of the single-particle 

model using lower shear stress initiation value of 0.1 kPa. The other parameters for 

the single-particle model with damage are the same as in Figure 5.10. 

As already mentioned, the value of nc scG G=  = 100 mJ/m2 used in Figure 5.11, was 

obtained from peel tests of dough performed by Dobraszczyk [1997]. Those peel tests 

were performed to measure the ‘stickiness’ of dough on a steel plate, whereas in 

dough, the surface energy should be that of the starch and the gluten interface. 
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Blancher et al. [2005] on the other hand obtained the free surface energy of dry flour 

using the contact angle measurement as 50 2mJ m . 

Following the above remarks, as well as for investigating the ‘uniqueness’ of the set 

of cohesive parameters that were selected above (see Figure 5.11),  it was decided to 

perform another simulation with a set of parameters such that nc scG G=  were set to 50

2mJ m . The values of the other two parameters which led to a  good agreement with 

the tensile data at 5/min were 0
nt  = 2 kPa and 0st  = 0.2 kPa. The results from this set of 

parameters are shown in Figure 5.14 together with the experimental data as well as 

the numerical result corresponding to the earlier set of cohesive parameters (Figure 

5.11). Even though the parameters are different, the global results are very close. 

Therefore, the usual problem in inverse parameter identification is demonstrated, that 

of non-uniqueness. In order to solve this problem, direct experimental identification 

of the cohesive parameters is required as already suggested above. 

 

Figure 5.14. The effect of two different sets of values for the cohesive parameters on 

global results under uniaxial tension. 
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In all simulations above, it was indicated that the critical shear stress for damage 

initiation is significantly lower than the critical normal stress. This implies that the 

condition for damage initiation will be largely determined by the shear critical stress 

for mixed mode loading. Therefore, it seems that the shear critical stress is a very 

important parameter for dough and its mechanical behaviour.  

In order to investigate whether the single-particle model in Figure 5.7(c) actually 

represents the microstructure of dough in Figure 5.7(b), a comparison between the 

single-particle model and a multi-particle model was performed. The multi-particle 

model was developed by converting the binary image in Figure 5.7(b) into a set of 

convex polygons representing the particles. This was achieved by using the convex 

hull algorithm in the MATLAB image analysis toolbox [MATLAB 2009]. The 

coordinates of the polygon vertices were then exported into Abaqus using a Python 

script to generate a mesh, as shown in Figure 5.15(a). Details on the microstructure 

model procedure are provided in Tarleton et al. [2012]. Cohesive elements were 

assigned along the interface of every particle and the same cohesive law and material 

models as used in the single particle model were applied. Simulation of the multi-

particle model was conducted in Abaqus/Explicit using plane stress elements, which 

is similar to the elements used for the single particle model. The results under 

uniaxial compression, tension and shear obtained using the single particle model and 

the multi-particle model consisting of 141 particles are compared in Figure 5.15. Note 

that the results in Figure 5.15 were obtained without periodic boundary conditions 

since it is difficult to define periodic boundary conditions for the multi-particle 

model. 
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Figure 5.15. (a) Multi-particle model produced using the image in Figure 5.7(b); and 

comparison results between the single-particle model and the multi-particle model 

under: (b) uniaxial compression; (c) uniaxial tension; and (d) simple shear. The 

cohesive parameters used are as shown in Figure 5.11. 
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Good agreement is seen between the models, especially for uniaxial tension results, 

indicating that the single-particle model can be used to represent the microstructure of 

dough. Note that simulation under uniaxial compression for the multi-particle model 

can be performed only up to true strain 0.1 due to interface failure/softening causing 

element distortion in the matrix. 

A comparison was also performed between the 2D single-particle model and 3D 

single-particle models using spherical and cylindrical geometries. The same volume 

fraction, material models and cohesive law as used in the 2D single particle model 

were applied. The simulation results at 5/min under uniaxial tension are shown in 

Figure 5.16. Reasonable agreement is observed between all the models, a further 

proof that the simple, 2D, single-particle model is sufficiently accurate for use in 

predictive models for the mechanical behaviour of dough. 

 

Figure 5.16. Comparison results between the 2D single-particle and 3D single-

particle models under uniaxial tension mode. 

 



 

179 

 

5.4 Conclusion 

Mechanical loading tests were performed on starch, gluten and dough, which revealed 

a rate dependent behaviour for both the starch and gluten constituents of dough. A 

starch volume fraction of 45 % was measured experimentally from Cryo-SEM 

images. Starch and gluten were modelled as visco-hyperelastic and viscoplastic 

materials respectively. A single-particle model was developed, which consists of a 

single 2D round filler representing starch surrounded by gluten matrix. The 

interaction between the starch and gluten was defined using cohesive elements. The 

simple composite model leads to similar trends as those shown by the experimental 

data, indicating possible debonding of starch and gluten in dough under tension and 

shear. This argument was supported further by Cryo-SEM images of stretched dough 

as well as the apparent need for damage functions when the Lodge constitutive model 

was used to represent the mechanical test data of dough. Good agreement is seen 

between single-particle and multi-particle models, as well as with 3D single-particle 

models with spherical and cylindrical geometries, indicating that the 2D single-

particle model can be used to accurately represent the microstructure of dough. 

Finally, a direct experimental identification of the cohesive zone parameters is needed 

in order to identify the values for the critical damage initiation stress as well for the 

critical energy release rate in both normal and sliding deformations as a function of 

test rate. Only then can numerical models such as the ones presented here can be fully 

validated against experimental data. However, the small size of starch particles and 

soft nature of the interface renders such tests quite a considerable challenge. 
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Chapter 6. Numerical Study of Ram Extrusion of Wheat 

Flour Dough 

6.1 Introduction 

Extrusion is one of the common manufacturing processes in wheat flour dough 

production lines, as shown in Figure 1.2 in Chapter 1. The process involves shaping 

dough to a smaller size after mixing, which then goes through to the next processes, 

namely sheeting and cutting. The shape of the dough after extrusion, also known as 

extrudate, depends on the shape of the extruder’s die mouth, as well as the 

mechanical properties of dough. Studies on ram extrusion have been performed by 

various researchers and in particular for paste-like materials, such as cellulose paste 

[Rough et al. 2000; Mascia et al. 2006], talc-based paste [Martin et al. 2004], and 

Plasticine clay [Aydin et al. 2000].  

In order to investigate the behaviour of dough during extrusion, a laboratory ram 

extrusion rig was designed and manufactured by previous researchers at Imperial 

College [Wanigasooriya 2006; Lim 2007]. The ram extruder uses the same design as 

a piston driven capillary rheometer, where a material is forced through a shaped die 

with the aid of a piston that travels along a barrel. Experimental extrusion pressures 

were then compared to numerical model predictions performed using Abaqus 

[Wanigasooriya 2006; Lim 2007; Tow 2009]. It has been shown in Chapter 5 that 

dough can be modelled using a micromechanics model consisting of starch and 

gluten. However, to model dough using the micromechanics model would be difficult 

because of the complexity of the model, as already discussed in Chapter 5. An 
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alternative to this is a continuum material model which is readily available in 

commercial finite element software, i.e. Abaqus [2010].  

Therefore this chapter will investigate the numerical model of dough extrusion using 

a continuum material model, which will be compared to the experimental results of 

dough extrusion performed by Wanigasooriya [2006] and Lim [2007]. In particular, 

this work aim is to improve numerical modelling issues highlighted by the 

researchers mentioned before, namely the severe mesh distortion in the extrusion 

model and the contact behaviour between dough surface and extrusion die wall.  

6.2 Experimental Work 

The extrusion rig used is shown in Figure 6.1. The rig consists of a 25 mm diameter 

Poly (Methyl Methacrylate) (PMMA) barrel in which the internal bore was polished. 

The barrel was split in two halves to facilitate filling and to avoid air bubbles. Each 

half was filled with dough and then the two halves were clamped together. A steel 

piston with a PTFE plug was used with an Instron 5543 testing machine to give 

extrusion speeds of 50 mm/min and 500 mm/min. The loads were measured using 5 

kN and 100 N load cells.  The dies were mounted on the base of the barrel and then 

placed on a frame to allow the extrudate to flow out freely.  
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Figure 6.1. Extrusion rig set up [Wanigasooriya 2006]. 

Dies with different angles were used for the experiments, as shown in Figure 6.2. The 

entry radius is set to be the same for all the dies tested. The dies are arranged in rows 

from the smallest entry angle, 026  to the largest, 0180 . The exit radius is varied from 

the widest, 18 mm to the smallest, 3 mm. The dies are named using entry angle and 

exit radius. For example, in the first row, the dies with the same entry angle, 026  but 

with different exit radii, 18 mm, 14 mm and 11 mm are named as die 

0 0 026 a, 26 b and 26 c  respectively.  
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Figure 6.2. Dies used for wheat flour dough extrusion in previous work by 

Wanigasooriya [2006] and Lim [2007]. All units shown are in milimeter (mm). 
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A similar rule also applies to dies in rows three and four, except for dies 0120 c and 

0180 c which have a similar exit radius to dies 0120 b and 0180 b respectively but a 

different die land length, as shown in Figure 6.2. The dies in the second row on the 

other hand are arranged with similar exit radius, 11 mm, but different entry angles, 

namely 0 0 044 , 72  and 108. Finally, note that die 0 0 0 0 0 026 a, 26 b, 26 c, 44 ,  72 ,  108 ,   

0 0120 b, and 180 b have a zero die land length. 

The experiments were performed at 022 C  and 50 % relative humidity. Since the 

extrusion rig was set up vertically, steady state extrusion pressures were achieved by 

extruding the dough into Glycerol (density of 1.25 g/ml) to counteract the effect of 

gravity on the experimental results, as demonstrated by Wanigasooriya [2006].   

An interesting phenomenon in the extrusion process is the formation of static zones. 

Static zones at the walls of the die are defined as stationary material which does not 

move into the die mouth. This has been observed by Benbow and Bridgwater [1993] 

who investigated the presence of static zones during extrusion using square entry die 

angles (i.e. 0180 ) and large diameter reductions typically seen in the extrusion of 

pastes in industry. An illustration of the static zones is shown in Figure 6.3. 
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Figure 6.3. Illustration of static zones [Wanigasooriya 2006]. 

Experimental results using dies with a 026  angle and different exit radii are shown in 

Figure 6.4. Rate dependent behaviour is observed for both speeds tested (500 

mm/min and 50 mm/min). The extrusion pressures reached steady state condition 

after approximately 40 mm ram displacement for all the 026  dies. It is worth noting 

that the initial rise in extrusion pressure is due to the dough being compressed by the 

ram until it is consolidated into the barrel and die, with a steady state reached 

thereafter [Wanigasooriya 2006]. It can be seen that decreasing the output radius of 

the dies resulted in higher extrusion pressures. 
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Figure 6.4. Experimental results performed by Wanigasooriya [2006] for dies with

026  entry angle and different exit radii, namely 18 mm, 14 mm and 11 mm for die 

0 0 026 a, 26 b and 26 c respectively.  

Wanigasooriya [2006] investigated the formation of the static zones through 

deformation visualisation experiments using coloured (Supercook food colouring) 

layers of dough. These colours were obtained by brushing different food paints onto 

the barrel wall before dough was moulded into the barrel, as shown in Figure 6.5. No 

static zones were observed at the die wall for the dies with 026  angle. This can be 

seen from an example shown in Figure 6.5 for die 026 c, where the various colours 
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along the barrel wall move into the die mouth. The static zones for other dies will be 

shown later in this section. 

 

Figure 6.5. No static zones build up were observed for die 026 c [Wanigasooriya 

2006]. 

Experimental results for dies with entry angle of 044 , 072  and 0108  with the same 

entrance and exit radii are shown in Figure 6.6. These experiments were performed 

by Lim [2007]. 
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Figure 6.6. Experimental results performed by Lim [2007] for die 044 , 072  and 0108  

with the same entrance and exit radii, 25 mm and 11 mm respectively. 

No static zones were observed for die 044  [Lim 2007]. However, static zones 

occurred for die 072   at 200 mm/min and 50 mm/min. An example of the static zones 

is shown in Figure 6.7 for the test at 200 mm/min. This can be seen from the various 

colours along the barrel wall that do not move into the die mouth, which indicates the 

occurrence of static zones. Similar static zones were also reported for die 0108  [Lim 

2007] at 200 mm/min and 50 mm/min. 
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Figure 6.7. Image sequence of extrusion at 200 mm/min using die 072  entry angle 

demonstrating the formation of a static zone [Lim 2007]. 

Experimental results using dies with a 0120  angle and different exit radii are shown 

in Figure 6.8. The experiments were performed by using a step speed rate increasing 

from 50 mm/min to 500 mm/min after a 40-50 mm ram displacement. It can be seen 

that except for die 0120 a, steady state extrusion pressures were obtained. However, 

the pressure for die 0120 a shown in Figure 6.8(a) is much lower than dies 0120 b and 

0120 c,  therefore pressure fluctuation for dies 0120 b and 0120 c are not as obvious as 

die 0120 a. 
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Figure 6.8. Experimental results performed by Wanigasooriya [2006] for dies with 

0120  entry angle and different exit radii, namely 18 mm and 3 mm for 0120 a and 

0120 b respectively. Die 0120 c has a similar exit radius as die 0120 bbut with 

different exit length, 12 mm as shown in Figure 6.2. 

It should be noted that for die 0120 a, the tests are invalidated as dough was found to 

touch the rig, as shown in Figure 6.9 at test times of 35 seconds and above. 
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Figure 6.9. Image sequence of extrusion for die 0120 a, the dough was found to touch 

the rig at 45 seconds test time as highlighted. 

Static zones were observed for all the dies with a 0120  entry angle. An example is 

shown in Figure 6.10 for die 0120 c, where the various colours along the barrel wall 

do not move into the die mouth after 20 seconds [Wanigasooriya 2006]. 

 

Figure 6.10. Formation of static zones on die 0120 c, with deformation visualisation 

using different colours within the barrel [Wanigasooriya 2006]. 

Finally, extrusion test results using dies with a 0180  angle are shown in Figure 6.11. 

The experiments were also performed by using a step speed rate. It can be seen that 

except for die 0180 a, steady state extrusion pressures were obtained. The static zones 

were observed for all the dies with a 0180  entry angle. The sudden pressure drop 
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observed for die 0180 a at 500 mm/min is similar to the pressure drop seen in Figure 

6.8(a) (die 0120 a). 

 

 

Figure 6.11. Experimental results performed by Wanigasooriya [2006] for dies with 

0180  angle and different exit radii, namely 16 mm and 3 mm for 0180 a and 0180 b 

respectively. Die 0180 c has a similar exit radius as die 0180 bbut with a different die 

land length of 18 mm as shown in Figure 6.2. 
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6.3 Numerical Model 

Numerical simulation of the dough extrusion was performed using the finite element 

(FE) software, Abaqus [Abaqus 2009]. A personal computer with Intel Core 2 

processor and 4 MB SDRAM was used to perform the numerical simulation. It took 

approximately one hour or less to perform each extrusion simulation. For simplicity, 

a continuum material model is assumed for dough. In the previous numerical studies 

on dough extrusion by Wanigasooriya [2006] and Tow [2009], the visco-hyperelastic 

material model was used. The model has been shown to give a good approximation to 

the gluten behaviour in Section 5.3.3, which can then be used for micromechanical 

modelling. 

The van der Waals strain energy function and the Prony series time-dependent 

function described in Section 3.3 were used. The model was calibrated using the 

dough test data under different loading conditions, namely uniaxial compression, 

uniaxial tension, simple shear and cyclic-compression, as shown in Figure 6.12. 
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Figure 6.12. Dough test results and calibration of visco-hyperelastic (van der Waals) 

material model under: (a) uniaxial compression; (b) uniaxial tension; (c) simple shear; 

and (d) cyclic-compression. The model is described by Equations (3.63), (3.79), and 

(3.80) and calibrated using the least squares method (Table 6.1) [Goh et al. 2004]. 

The calibration was performed simultaneously using a least squares method [Goh et 

al. 2004; Charalambides et al. 2006]. A constraint was defined during the calibration 

procedure where the time dependent constants, ig  are set to be non-negative values. 

The calibrated parameters are shown in Table 6.1. Note that the values in Table 6.1 

are unique, since it was fitted to different modes of deformation, namely uniaxial 

compression, uniaxial tension, simple shear and cyclic compression. 
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Table 6.1. Visco-hyperelastic model parameters for dough for the extrusion 

simulation. 

Material 

Strain dependent 

constants 
Time dependent constants 

 

µ  

(kPa) 

mλ  a  

i 1 2 3 4 5 ∞  

 

iξ  

(s) 

0.1 1 10 100 1000  

Dough 5 6 0.1 ig  0.85 0.05 0.04 0.03 0.02 0.01 

 

The calibration results are shown in Figure 6.12. The model agrees reasonably well 

with the compression test data at different rates. However, the model fit to the 

uniaxial tension and simple shear overestimate the response at strains larger than 0.6 

and 0.5 respectively. The model prediction does not capture the unloading-reloading 

response of the cyclic-compression loading. This is probably due to the viscoplastic 

behaviour of starch, which contributes to the behaviour of dough, as discussed in 

Section 5.3.3. However, the viscoplastic material model cannot be combined with the 

visco-hyperelastic model in Abaqus [Abaqus 2009; 2010]. Alternatively, a 

viscoplastic model can be used to model dough. Unfortunately, the viscoplastic model 

alone cannot capture the strain hardening behaviour under tension, which is caused by 

the rubberlike behaviour of gluten. Therefore the visco-hyperelastic model was used 

instead.  

Before simulations of dough extrusion are performed, the dough experimental stress-

strain data from this work (Figure 6.12) are compared to the experimental results 



 

196 

 

obtained by Wanigasooriya [2006] and Lim [2007]. This is conducted to ensure that 

the wheat flour used by Wanigasooriya [2006] and Lim [2007] in their extrusion tests 

has approximately the same mechanical behaviour as the wheat flour used in this 

work. The comparison to the experimental results by Wanigasooriya [2006] is shown 

in Figure 6.13. Approximately similar stress-strain curves are observed from uniaxial 

tension and uniaxial compression results, except for the tension test at 5/min. Note 

that shear rheometry and cyclic-compression tests were not performed by 

Wanigasooriya [2006] and Lim [2007]. 

 

Figure 6.13. Comparison between dough stress-strain data performed in this work and 

by Wanigasooriya [2006] for: (a) uniaxial compression; and (b) uniaxial tension. 

Lim [2007] on the other hand performed only uniaxial compression tests at different 

strain rates (see Figure 6.14). Therefore, a direct comparison between the test results 

by Lim [2007] and those from this work cannot be made. However, the test data by 

Lim [2007] can be compared to the output of the calibrated material model using the 

parameters in Table 6.1. This is shown in Figure 6.14, where the rate dependent 

stress-strain curve in the model shows a correct pattern to the experimental data at 

different rates. Therefore, it was deemed appropriate to use the material parameters in 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.2 0.4 0.6 0.8 1

Tr
u

e
 s

tr
e

ss
 [

n
e

g
a

ti
ve

] 
(k

P
a

)

True strain [negative]

-50/min (this work)

-5/min (this work)

-50/min (Wanigasooriya [2006])

-5/min (Wanigasooriya [2006])

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.2 0.4 0.6 0.8 1

Tr
u

e
 s

tr
e

ss
 (

kP
a

)

True strain

5/min (this work)

0.5/min (this work)

5/min (Wanigasooriya [2006])

0.5/min (Wanigasooriya [2006])

(a) (b) 



 

197 

 

Table 6.1 to model extrusion and then compare numerical prediction to the extrusion 

experimental results by Wanigasooriya [2006] and Lim [2007]. This would avoid the 

need to perform new extrusion tests which would not be possible within the time 

scale of this work. 

 

Figure 6.14. Comparison between output of calibrated visco-hyperelastic model and 

test results by Lim [2007] under uniaxial compression (material model parameters as 

in Table 6.1). 

A finite element simulation of extrusion was performed in Abaqus/Explicit using 

axisymmetric elements. A schematic of the model is shown in Figure 6.15. The billet 

represents dough being forced through the barrel with dies at different angles and exit 

radii shown in Figure 6.2. The material model is assigned to the billet and the 

boundary conditions used in the model are as shown in Figure 6.15. 
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Figure 6.15. (a) Schematic of dough extrusion simulation and the type of mesh used: 

(b) structured mesh [Wanigasooriya 2006]; and (c) modified mesh used in this work. 

It is worth noting that Wanigasooriya [2006] and Tow [2009] highlighted the issue of 

severe mesh distortion when the mesh in Figure 6.15(b) was used. This can be seen in 

the simulation results performed by Wanigasooriya [2007] and Tow [2009] in Figure 

6.16, where the elements penetrate the corner near the entry to the die land, and the 

mesh boundary is no longer closely following the profile of the die. This unrealistic 

severe mesh distortion worsens as the analysis proceeds until a point is reached where 

the analysis prematurely terminates.   

(a) (b) (c) 
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Figure 6.16. Severe mesh distortion of the deformed mesh by (a) Wanigasooriya 

[2006]; and (b) Tow [2009]. 

Therefore, an improved extrusion model is proposed in this work, which consists of 

two parts. In the first part, a modified mesh is introduced, as shown in Figure 6.15(c). 

The mesh is refined at the die wall and the sharp end of the billet next to the die wall 

is smoothed to reduce the mesh distortion problem shown in Figure 6.16. The second 

part involves using the adaptive meshing option available in Abaqus [2009; 2010]. 

The adaptive meshing enables a high-quality mesh throughout the analysis, even 

when large deformations occur, by allowing the mesh to move independently with the 

material. This is possible due to the fact that the adaptive meshing combines the 

features of pure Lagrangian analysis (in which the mesh follows the material) and 

Eulerian analysis (in which the mesh is fixed spatially and the material flows through 

the mesh) [Abaqus 2009; 2010].  This type of adaptive meshing is often referred to as 

Arbitrary Lagrangian-Eulerian (ALE).  

Undeformed mesh Deformed meshUndeformed mesh Deformed mesh

die

die

(a) (b) 
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To investigate the effect of ALE on the extrusion model, a simulation was performed 

using a die with a 044  entry angle (see Figure 6.2). The material model in Table 6.1 

and a frictionless contact between the billet and die wall were defined for the 

simulation. The following parameters are required to use the ALE option in Abaqus: 

frequency and remeshing sweep per increment. A default value of frequency = 10 and 

remeshing sweep per increment = 1 suggested for Abaqus/Explicit [Abaqus 2009; 

2010] is used in this work. The results are shown in Figure 6.17. It can be seen that 

mesh distortion occurs at a 4.93 simulation time when the ALE meshing is not 

activated (Figure 6.17(a)). This then causes the simulation to terminate prematurely 

(Figure 6.17(c)). In contrast, smooth meshes are observed for the simulation with the 

ALE meshing (Figure 6.17(b)). The comparison results obtained with ALE and 

without ALE are shown in Figure 6.17(c). 
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Figure 6.17. Comparison of simulation of die 044  (speed 500 mm/min) at 4.93 

seconds for: (a) without ALE activated; and (b) with ALE activated. Note that the 

simulation terminated at 4.93 seconds for the model without ALE. (c) Comparison of 

results obtained with ALE and without ALE. 

A mesh sensitivity study was performed by varying the number of elements in the 

extrusion model. The results are shown in Figure 6.18 for die 

0 0 0 0 026 a, 26 b, 26 c, 44 , 72     and 0108  at an extrusion speed of 500 mm/min. Note 

that the simulations for dies with higher entry angles ( 0120  and 0180 ) are not shown 

because the program aborted due to non-convergence problem before steady state 

results were reached.  
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Figure 6.18. Mesh sensitivity simulation results using frictionless contact for different 

dies. 

A frictionless contact between the billet and die wall was defined for the results in 
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extrusion simulation for dies 0 0 026 a,  26 b,  and 26 c , whereas at least 2000-3000 

elements are needed for dies 0 0 044 ,  72 ,  and 108 , as shown in Figure 6.18. It is worth 

noting that as the die angle increases, it is more difficult to obtain steady state results. 

This can be seen from the results for die 0108  in Figure 6.18(f), where the simulation 

was aborted before steady state was reached. 

Images from the FE simulation using frictionless contact for dies 0 0 026 a,  26 b,  26 c,  

0 0 0 44 ,  72 ,  and 108  are shown in Figures 6.19 to 6.22.  

 

Figure 6.19. The von Mises contour plots for die 026 a at 500 mm/min using 

frictionless contact. The scale shown is in Pascal (Pa). 
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Figure 6.20. The von Mises contour plots for: (a) die 026 b; and (b) die 026 c at 500 

mm/min using frictionless contact. The scale shown is in Pascal (Pa). 

(a) 

(b) 
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Figure 6.21. The von Mises contour plots for: (a) die 044 ; and (b) die 072  at 200 

mm/min using frictionless contact. The scale shown is in Pascal (Pa). 

(a) 

(b) 
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Figure 6.22. The von Mises contour plots for die 0108  at 200 mm/min using 

frictionless contact. The scale shown is in Pascal (Pa). 

The results in Figures 6.19 to 6.22 are shown as the von Mises stress contour plots. 

The von Mises stress is described as [Charalambides and Dean 1997]: 

( ) ( ) ( )2 2 2

1 2 2 3 3 1

1

2Misesσ σ σ σ σ σ σ = − + − + −
 

 (6.1) 

where 1 2 3  and , ,σ σ σ  are the principal stresses. Notice that except for die 044 , the 

von Mises contour plots show an increase in extrusion pressure when the entry angle 

is increased. The reason why the von Mises stress for die 044  is smaller than die 

026 c is because the test were performed at different speed (die 026 c at 500 mm/min 

and die 044  at 200 mm/min). 
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The model fit to the extrusion test data at different rates using the frictionless 

condition is shown in Figure 6.23. It is observed that the model fit underestimates the 

extrusion test data for die 0 0 0 026 a,  44 ,  72 ,  and 108. 

  

   

   

Figure 6.23. Comparison between experimental data and extrusion model using 

frictionless conditions at different rates. 
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The model fit can be improved by including a non-zero coefficient of friction 

between the die wall and the billet surface. This is performed using a Coulomb 

friction law available in Abaqus [2009; 2010]. An independent measurement of the 

friction during extrusion was obtained by Wanigasooriya [2006] by placing a known 

mass of dough on to one half of the lubricated (paraffin oil) extrusion unit. The 

extrusion unit was then attached onto a combination reversing protractor (see Figure 

6.24(a)). The kinetic coefficient of friction was determined by allowing the dough 

sample to slide and subsequently altering the angle until no sliding occurred. The 

value of µ  was calculated from tanµ θ= , where θ  is the angle at which the dough 

sample stopped sliding, as shown in Figure 6.24(b). Several dough samples of mass 

varying from 3 to 30 grams were used for the experiment, giving an average resting 

angle of ~5º and a coefficient of friction of 0.09µ = .  

 

Figure 6.24. Experimental measurements of the kinetic coefficient of friction 

[Wanigasooriya 2006]: (a) experimental rig; and (b) free body diagram of friction on 

an inclined plane. 

The comparison between the model and the extrusion test data at different rates 

corresponding to a coefficient of friction of 0.09µ =  is shown in Figure 6.25.  

(a) (b) 

dough 
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Figure 6.25. Extrusion model using coefficient of friction, 0.09µ = . 

It is observed that except for die 026 a, the model fit extremely overestimates the 

response for all other dies. This is believed to be caused by slippage between the die 

wall and the billet surface during the experiments. Hicks and See [2010] studied 
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capillary extrusion of dough and highlighted the phemonenon of wall shear slip when 

dough is extruded. Since the working concept of capillary extrusion is similar to ram 

extrusion, the slippage between the die wall and billet is believed to occur in ram 

extrusion of dough. 

To model the shear slip between the die wall and the billet surface, an improved 

contact interaction is proposed, which consists of a critical shear stress limit 

combined with the coefficient of friction obtained before. This function is available in 

Abaqus [Abaqus 2009; 2010], as shown in Figure 6.26. A critical shear stress limit, 

maxτ , is defined which allows a shear slip behaviour to be modelled at a specified 

value of coefficient of friction. 

 

Figure 6.26. Slip regions for the friction model with a limit on the critical shear stress 

(reproduced from Abaqus [2010]). The critical shear stress, critτ  is shown as the 

dotted line. 

The critical shear stress limit in Figure 6.26 is described as follows. The Coulomb 

friction model relates the maximum allowable shear (frictional) stress across an 

Critical shear stress in model with  

limit maxτ

Equivalent 

Shear stress

Contact pressure

(Constant coefficient of friction)µ

maxτ
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interface to the contact pressure between the contacting bodies. The contacting 

surfaces can carry shear stresses up to a certain magnitude across their interface 

before relative tangential motion can begin, which is also known as sliding. The 

Coulomb friction model defines this critical shear stress, critτ , at which sliding of the 

surfaces starts as functions of the contact pressure, p  and coefficient of friction, µ : 

crit pτ µ=  (6.2) 

The critical shear stress, critτ  is shown as the dotted line in Figure 6.26. The critical 

shear stress limit, maxτ  is then introduced to limit the critical shear stress if the 

magnitude of the equivalent shear stress reaches maxτ , as shown in Figure 6.26. 

The model fit to the extrusion test data using the coefficient of friction of 0.09µ =  

with different critical shear stress limit values are shown in Figure 6.27 at 500 

mm/min and 200 mm/min. A similar comparison of the model to the test data at 50 

mm/min is shown in Figure 6.28. The results for higher rate tests (500 mm/min and 

200 mm/min) show that a higher die angle requires a higher  maxτ  value. Dies with the 

same exit radius, i.e. dies with a 026  entry angle require a maxτ  value of 0.1-0.3 kPa, 

whereas die 044  requires 1 kPa, and dies 072  and 0108  would require 3 kPa. On the 

other hand, the results for lower rate tests (50 mm/min) show that dies 

0 0 0 026 a,  26 b,  26 c,  and 44 require a maxτ  value of 0.1-0.3 kPa, whereas dies 

0 072  and 108 would require 1 kPa. 
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Figure 6.27. Extrusion model using coefficient of friction, 0.09µ =  with different 

critical shear stress limit values at 500 mm/min and 200 mm/min. 
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Figure 6.28. Extrusion model using coefficient of friction, 0.09µ =  with different 

critical shear stress limit values at 50 mm/min. 
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(contour plots) at different simulation times (Figure 6.29(a)) are examined in Figure 

6.29 for the die with 0 72  entry angle and a maxτ  of 3 kPa (Figure 6.29(b)). 

 

  

Figure 6.29. (a) The von Mises contour plots; and (b) extrusion pressure versus ram 

displacement. Both results are for die0 72  with maxτ  of 3 kPa. The scale shown is in 

Pascal (Pa). 
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It can be seen that the pressure peak starts at point 3 in Figure 6.29(b). When this is 

compared to point 3 in Figure 6.29(a), notice that a significant volume of material is 

forced through the die opening in a short time period of 5 seconds (from point 3 to 4). 

However, the experimental results in Figure 6.28(e) show no significant pressure 

peaks. The difference between experiment and model is confined to the initial 

transient response and does not affect the steady state results. 

Finally, the maximum shear stress limit, maxτ , that fits the extrusion tests for different 

dies shown in Figures 6.27 and 6.28 was plotted against maximum principal strain 

rate. The maximum principal strain rate was obtained from the finite element 

simulation results for different dies. An example is shown in Figure 6.30 for die 

0 26 b extruded at 500 mm/min.  

 

Figure 6.30. Contour plot of maximum principal strain rate for die 0 26 b for 

simulation at 500 mm/min. The scale shown is in 1/s. The highlighted region is used 

to approximate the maximum principal strain rate. 
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The maximum principal strain rate in the highlighted region in Figure 6.30 was 

approximated from the percentage of colour in the contour plot corresponding to 

different strain rate, i.e. a value of 0.704/s is obtained from the sum of ~40 % of 

0.504/s (blue in Figure 6.30), ~40 % of 0.7536/s (light blue) and ~20 % of 1.003/s 

(light green). A similar procedure was used for the other dies at different extrusion 

speed. The values are summarised in Table 6.2. 

Table 6.2. The maximum shear stress limit, maxτ , and maximum principal strain rate 

for different dies. 

Die Extrusion rate 

(mm/min) 

Maximum 

principal strain 

rate (1/s) 

Analytical average 

strain rate 

(Equation 6.3) (1/s) 

maxτ  (kPa) 

026 a 50 0.063 0.048 0.3 

026 b 50 0.071 0.065 0.3 

026 c 50 0.136 0.083 0.1 

044  50 0.198 0.145 0.3 

072  50 0.237 0.261 1 

0108  50 0.664 0.494 1 

044  200 0.741 0.580 1 

072  200 0.804 1.043 3 

0108  200 1.920 1.974 3 

026 a 500 0.505 0.484 0.3 

026 b 500 0.704 0.649 0.1 

026 c 500 0.794 0.828 0.3 
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Wanigasooriya [2006] on the other hand suggested an average strain rate, εɺ , for the 

extrusion tests using the following analytical equation: 

( ) ( )2

3 3

6 tan lnb

b a

SD R

D D

α
ε =

−
ɺ  (6.3) 

where S  is the extrusion speed (mm/min), bD  and aD  are the entry and exit diameter 

of the die respectively and α  is half of the entry angle. The remaining parameter, R  

is an extrusion ratio described through the following: b aR A A=  , where bA  is the 

cross-sectional area of the billet and aA  is the area of the extrudate at die exit. Details 

on the derivation of Equation (6.3) are provided in Wanigasooriya [2006]. The 

average strain rate calculated using Equation (6.3) for dies at different extrusion 

speed is shown in Table 6.2. The results show agreement with the maximum principal 

strain rate obtained from finite element results. 

Finally, the results for maxτ  versus maximum principal strain rate are plotted in Figure 

6.31(a). There is a large scatter in the data and no definite relationship can be 

concluded as a result. It is apparent that maxτ  increases with increasing maximum 

principal strain rate. maxτ  was also plotted against dies with different entry angles. 

The dies in Figure 6.31(b) are referred to as die  0 0 0 0 026 a, 26 b, 26 c, 44 , 72     and 

0108  for die 1 to 6 respectively. It can be seen that maxτ  increases with increasing die 

entry angle. It is apparent that more experiments would be needed to confirm these 

observations. 
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Figure 6.31. (a) Critical shear stress limit versus maximum principal strain rate; and 

(b) critical shear stress limit versus die. 

This section can be concluded as follows. The extrusion model proposed in this work 

has been shown to solve the mesh distortion problem highlighted by Wanigasooriya 

[2006] and Lim [2007]. This allows extrusion model of dough to be performed for 

dies 0 0 0 0 0 026 a,  26 b,  26 c,  44 ,  72  and 108, as compared to only dies 0 026 a,  26 b  

and 026 c by these researchers. However, the material model for dough needs to be 

improved in the future, i.e. by combining the visco-hyperelastic and viscoplastic 

material model. The model can then be used to simulate dough extrusion, where an 

accurate investigation can be performed on complex contact behaviour between the 

die wall and dough surface. A new experimental study for the dies shown in Figure 

6.2 is also needed, since the experimental work by Wanigasooriya [2006] and Lim 

[2007] was performed using different flour than the one used in this thesis, as shown 

in Figures 6.13 and 6.14. 
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6.4 Conclusion 

The experimental investigations on dough extrusion performed by Wanigasooriya 

[2006] and Lim [2007] were reviewed and discussed. Experiments with dies of 

different entry angles and exit radii were conducted. Numerical simulations of the 

extrusion were performed using Abaqus [2009]. Simulations were performed using 

dies with entry angles of 026 , 044 , 072  and 0108 . Previous simulations performed 

by Wanigasooriya [2006], Lim [2007] and Tow [2009] showed that large mesh 

distortion occurred when die entry angle was increased. Therefore, an improved 

extrusion model is proposed, which consists of a modified mesh and adaptive 

meshing option available in Abaqus [2009; 2010].  

Simulations performed using a frictionless contact between the billet and die wall 

showed that the model underestimates the response at high entry angles. Therefore a 

frictional contact between the die wall and the billet surface was defined, where the 

kinetic coefficient of friction, µ  of 0.09 was obtained from the experimental study by 

Wanigasooriya [2007]. When this value ofµ  was used in the model, the response was 

overestimated, i.e. the extrusion pressure was much higher than the experimentally 

measured values. To improve this, a critical shear stress limit, maxτ  was used in the 

model. The results show that higher die angles require higher maxτ  values. In addition, 

the results also show that maxτ  increases with increasing maximum principal strain 

rate, which suggest strain rate sensitivity of maxτ . This indicates complex contact 

behaviour between die wall and dough, which need to be investigated further in the 

future. 
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Chapter 7. Conclusion and Future Work 

7.1 Introduction 

This chapter provides a summary and suggested future work for the experimental and 

numerical work on wheat flour dough performed in this thesis. First, the experimental 

work in Chapter 4 is summarised and future experimental work is proposed. This is 

followed by the constitutive modelling of dough, where some possible future work on 

the model is discussed. Finally, the processing study is summarised and future work 

on the extrusion of dough is proposed.  

7.2 Experimental Work 

Experimental investigation was performed on dough, starch and gluten. The sample 

preparation involved mixing flour, water and salt to produce dough. The mixed dough 

was washed using water to separate the starch and gluten constituents. Dough, wet 

gluten and reconstituted wet starch were used for uniaxial tension, uniaxial 

compression, shear rheometry and Cryo-SEM tests. The experimental results showed 

that rate-dependent behaviour is observed from all the samples tested in uniaxial 

compression, uniaxial tension and shear tests. Cryo-SEM images show that starch is 

embedded in gluten matrix. The starch consists of large ellipsoidal-shaped and small 

circular-shaped fillers. No trace of starch was observed on the gluten matrix based on 

the Cryo-SEM images of washed gluten. A comparison of the test results showed that 

dough is stiffer than gluten in the Small Amplitude Oscillatory Shear (SAOS) tests. 

However, at large deformation tests, namely uniaxial tension and simple shear, the 

dough stress-strain curves cross over gluten curve at larger deformations. On the 

other hand, uniaxial compression test results showed that the stress-strain curve of 
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dough is always higher than gluten, indicating that possibly damage is not as 

significant under compression. This is supported by the Cryo-SEM observation of 

dough when compressed manually, where damage in terms of debonding is not 

apparent.  

Future experimental work includes investigation on the cohesive behaviour of starch 

and gluten interface. This can be performed using Atomic Force Microscopy (AFM) 

or cohesive peel tests [Dobraszczyk 1997]. The cohesive properties obtained from the 

experiments, i.e. fracture energy values, can then be used for the micromechanical 

modelling of dough. Another very useful piece of experimental observation could be 

obtained through mechanical loading tests performed in-situ inside Environmental 

Scanning Electron Microscopy (E-SEM) [Donald 2003] to investigate the effect of 

microstructure of dough subjected to deformation under compression, tension and 

shear. This will provide information on the critical damage initiation stresses of the 

starch-gluten interface under different modes of deformation stated before. 

7.3 Constitutive Modelling of Wheat Flour Dough 

A micromechanics model for dough is proposed in Chapter 5. A starch volume 

fraction of 45 % was measured experimentally from Cryo-SEM images. A single-

particle model was developed consisting of a single 2D cylindrical filler representing 

starch surrounded by gluten matrix. The interaction between the starch and gluten 

was defined using cohesive elements. The simple composite model agrees with the 

trends shown by the experimental data, indicating possible debonding of starch and 

gluten in dough under tension and shear. This argument was supported further by 

Cryo-SEM images of stretched dough as well as the apparent need for damage 
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functions when the Lodge constitutive model was used to represent the mechanical 

test data of dough. Good agreement is seen between single-particle and multi-particle 

models, as well as with 3D single-particle models with spherical and cylindrical 

geometries, indicating that the 2D single-particle model can be used to accurately 

represent the microstructure of dough. 

Future constitutive modelling work on dough includes improvement of the 

micromechanics modelling by using a rate-dependent cohesive law for the gluten-

starch interface. This has been performed numerically by Geiβler  and Kaliske [2010] 

for polymeric materials. On the other hand, finite element modelling can be 

performed in 3D geometries using large ellipsolidal type A starch and smaller circular 

type B starch. Air bubbles in dough can then be included in the 3D model, since Chin 

and Campbell [2005] believe that air bubbles influence the mechanical behaviour of 

dough.  

7.4 Processing Study of Wheat Flour Dough 

The experimental work on dough extrusion performed by Wanigasooriya [2006] and 

Lim [2007] was summarised. Dies with different angles were used for the extrusion 

experiments. The entry radius is set to be the same for all the dies tested. The dies are 

arranged in rows from the smallest entry angle, 026  to the largest, 0180 . The exit 

radius is varied from the widest, 18 mm to the smallest, 3 mm. Rate dependent 

extrusion behaviour is observed. A numerical simulation of dough extrusion was 

performed using finite element (FE) software, Abaqus [Abaqus 2009]. An improved 

extrusion model is proposed, which consists of a modified mesh and an adaptive 

meshing option available in Abaqus [2009; 2010]. Simulations performed using a 
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frictionless contact between the billet and die wall showed that the model 

underestimates the tests result at high entry angle. The coefficient of friction, 

0.09µ =  between the billet and die wall was later used in the model to improve the 

prediction. However, the model was shown to overestimate the test data. To improve 

this, a critical shear stress limit combined with the coefficient of friction was used in 

the model. The results show that higher die angles require a higher critical shear 

stress limit values. 

To improve the extrusion model of dough, a continuum material model which 

combines the viscoelastic and viscoplastic functions [Andriyana et al. 2010] is 

proposed. The model aim is to resemble the complex micromechanics model shown 

in Chapter 5. This model can then be used to investigate the complex contact 

behaviour of dough between the die wall and billet.  

7.5 Final Words 

It is hoped that this thesis will highlight the importance of studying food texture using 

solid mechanics approach. The complex mechanical behaviour of food materials, in 

particular dough shown in this thesis indicates that food cannot be treated as a simple 

material. Investigation on the food texture may assist food technologists and 

engineers to improve the quality of the food production line and reduce food wastage 

during processing.  
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Appendix A: Derivation of Equation (3.33) 

From Equation (3.32): 
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The integral in Equation (A1) can be separated into two parts: 
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Using the variable substitution of 2z t= − , and 2dz dt= − , the first integral in 

Equation (A2) can be rearranged as: 
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Notice that the limit of the integral has changed to 0 to 2ε− . Reversing the limit in 

the integral in Equation (A3) and rearranging yields: 
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Equation (A4) is re-written as: 
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where the limits of the integrals on the right of Equation (A5) can be represented in 

Figure A1: 

  

Figure A1. Limit of integral for Equation (A5). 

Now, definition for the Gamma function, ( )Γ a , is: 
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Γ
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whereas the incomplete Gamma function, ( )Γ ,a s , is defined as: 
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Therefore the integrals in Equation (A5) can be written as:  
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which is equivalent to the first part of the integral in Equation (A2): 
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Similarly, the second integral in Equation (A2) can be represented as follows: 
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where the limits of the integral in Equation (A10) are illustrated in Figure A2: 

 

Figure A2: Limit of integral for Equation (A10). 

Using the definition of ( )Γ a
 
and ( )Γ ,a s  in Equations (A6) and (A7) respectively, 

Equation (A8) can be written as: 
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Equations (A9) and (A11) are substituted in Equation (A2) to give: 
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Equation (A12) is finally included in Equation (A1) to yield: 
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This is identical to Equation (3.33). 
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Appendix B: Plane Stress, Plane strain, Generalised Plane 

Strain and Axisymmetric Elements in Abaqus 

For 2D modelling in Abaqus, the following elements are available, namely plane 

stress, plane strain, generalised plane strain and axisymmetric elements. Illustration of 

the elements is shown in Figure B1.  

 

 

Figure B1. (a) Plane stress element; (b) plane strain element; (c) generalised plane 

strain element [Abaqus 2010]; and (d) axisymmetric element. 
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The plane stress element assumes a very small thickness, such that the thickness of 

the element, z  in Figure B1(a) is much smaller than the height, y  and length, x . 

This would then lead to the stress in the thickness direction being zero. 

In contrast, the plane strain element assumes a very thick element, such that the 

thickness of the element, z  in Figure B1(b) is much larger than the height, y  and 

length, x . Therefore this implies that the strain in the thickness direction is zero. 

The generalised plane strain element assumes the element lies between two bounding 

planes, which may move as rigid bodies with respect to each other [Abaqus 2009]. 

The relative motion of the two planes causes a direct strain in the thickness direction 

only, as shown by the dotted lines connecting the two planes in Figure B1(c). 

Finally, the axisymmetric element is generated by revolving a plane cross-section 

about an axis (symmetry axis in Figure B1(d)). This corresponds to a body whose 

geometry is axisymmetric and subjected to axially symmetric loading conditions. 



244 

 

Appendix C: Dough Mixer Movement 

The mixer used in this work is manufactured by National Manufacturing Co. It was 

used in previous studies on dough by Xiao [2005] and Wanigasooriya [2006]. The 

mixer movement consists of four planetary pins on the head revolving around two 

stationary pins at the bottom of the mixing bowl. The mixer has the capability of 

recording torque and speed during mixing to a computer. 

The pin configuration and movement is shown in Figure C1. The pin movement was 

recorded by marking the tip of the pins at an angle of rotation. The mark on the pins 

was then copied to a piece of paper. This procedure is repeated at different angle of 

rotation until a complete rotation cycle is obtained, as shown in Figure C1.  

 

Figure C1. Top view of the pin movement inside the mixing bowl of the mixer. 

Stationary pin
Rotating pin



245 

 

The pin movement in Figure C1 is illustrated from a top view, where the filled circles 

are top pins attached to the revolving head, while the unfilled circles are bottom 

stationary pins at the bottom of the mixing bowl. It can be seen that the pin 

configuration is not symmetric. The reason for this is to provide a uniform 

distribution of flour and water when mixed inside the bowl. This has been shown by 

Connelly and Valenti-Jordan [2008], who investigated the distribution of Newtonian 

corn syrup fluid inside a planetary pin mixer using Computational Fluid Dynamic 

(CFD) analysis. The pin configuration is shown in Figure C2. 

 

Figure C2. Configuration of the pins in the CFD study of mixer by Connelly and 

Valenti-Jordan [2008], where the dark circles are top pins attached to revolving head, 

while the grey circles are bottom stationary pins at the bottom of the bowl. 

The CFD analysis showed that the stretch distribution of the mixed material inside the 

bowl is approximately uniform, except at the wall of the bowl, as shown in Figure 

C3. They suggested that the best pin configuration is the one that provides the highest 

increase in the amount of stretch to the material when mixed.  
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Figure C3. Stretch distribution results obtained using CFD by Connelly and Valenti-

Jordan [2008]. Note that the scale is shown in mm. 

However, further work is needed to investigate the mixing behaviour in the vertical 

direction, for example the mixing distribution close to the floor of the bowl, as well as 

the performance of individual pins inside the mixing bowl. This is because different 

mixer manufacturers have different pin configuration, for example the pin 

configuration in this work (Figure C1), is different than the one used by Connelly and 

Valenti-Jordan [2008] (Figure C2). CFD studies also need to be performed on dough 

samples, since dough is a soft solid material, which is different than the Newtonian 

fluid investigated by Connelly and Valenti-Jordan [2008].  

 


