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The stability of convection in a two-layer system in which a layer of fluid with a
temperature dependent viscosity overlies and saturates a highly porous material is
studied. Due to the difficulties associated with incorporating the nonlinear advec-
tion term in the Navier Stokes equations into a stability analysis, previous literature
on fluid/porous thermal convection has modelled the fluid using the linear Stokes
equations. This paper derives global stability for the full nonlinear system, by util-
ising a model proposed by Ladyzhenskaya. The nonlinear stability boundaries are
shown to be sharp when compared with the linear instability thresholds.
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1. Introduction

Thermal convection within a two-layer system constructed by a layer of fluid over-
lying a porous material saturated with the same fluid has numerous geophysical
and industrial applications, such as the manufacturing of composite materials used
in the aircraft and automobile industries, flow of water under the Earth’s surface,
flow of oil in underground reservoirs and growing of compound films in thermal
chemical vapor deposition reactors. A detailed review is given by Nield & Bejan
(2006), with current highly relevant literature including Chen & Chen (1988), Ew-
ing (1998), Blest et al. (1999), Straughan (2002, 2008), Carr (2004), Chang (2004,
2005, 2006), Hirata et al. (2007), Hoppe et al. (2007), Mu & Xu (2007) and Hill &
Straughan (2009).

Assessing the onset and type of convection is crucial in understanding and con-
trolling these geophysical and industrial processes. This is achieved by analyzing
both the linear instability and nonlinear stability thresholds of the governing model.
Comparing these thresholds allows the assessment of the suitability of linear the-
ory to predict the physics of the onset of convection. The derivation of sharp un-
conditional stability thresholds is particularly physically useful due to the lack of
restrictions on the initial data (Straughan 2004).

Nonlinear energy stability analyses of thermal fluid/porous systems are not
widespread in the current literature, with the only previous work being that of
Payne & Straughan (1998) and Hill & Straughan (2009). In both these papers, due
to the difficulties associated with incorporating the nonlinear v ·∇v advection term
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2 A. A. Hill and M. Carr

in the Navier-Stokes equations into a stability analysis, the fluid is modelled using
the linear Stokes equations.

This paper utilitses a model proposed by Ladyzhenskaya (Ladyzhenskaya 1967,
1968, 1969; Straughan 2002, 2004, 2008), which is used as an alternative to Navier-
Stokes. This allows for the development of an unconditional nonlinear energy sta-
bility analysis for thermal convection with temperature dependent viscosity in a
fluid/porous system, without the need to remove the nonlinear advection term
v · ∇v. It is important to note that the viscosity of a liquid is usually strongly
dependent on temperature (cf. Capone & Gentile 1994, 1995; Galiano 2000). Con-
vection problems for which the viscosity or conductivity is a function of temperature
has received much recent attention in the literature (see e.g. Payne & Straughan
2000; Shevtsova et al. 2001; Manga et al. 2001), making this work particularly
timely.

The stability calculations required to construct the neutral curves involve deter-
mining eigenvalues and eigenfunctions, where the associated eigenvalue problems
are not solvable analytically. The results are derived numerically using the Cheby-
shev tau - QZ method (Dongarra et al. 1996), which is a spectral method coupled
with the QZ algorithm. All numerical results were checked by varying the num-
ber of polynomials to verify convergence. Standard indicial notation is employed
throughout and k = (0, 0, 1).

2. Formation of the problem

Consider a fluid occupying the three-dimensional layer {(x, y) ∈ R
2} × {z ∈ (0, d)}

and saturating an underlying homogeneous porous medium {(x, y) ∈ R
2} × {z ∈

(−dm, 0)}. The interface between the saturated porous medium and the fluid is at
z = 0.

We assume that the dynamic viscosity µ has a linear temperature dependence
of the form

µ(T ) = µ0(1 − γ(T − TL)),

for a constant γ > 0, where T, µ0 and TL are temperature and reference viscosity
and temperature values, respectively. Although we only consider liquids which have
a viscosity which decreases with increasing temperature, the analysis can be easily
generalized to a more general viscosity-temperature relationship. The governing
model for the fluid layer we select is

ρ0

(

∂vi

∂t
+ vj

∂vi

∂xj

)

= −
∂p

∂xi

+ 2
∂

∂xj

[(µ(T ) + µ1|D|) Dij ]

−gρ0ki(1 − α(T − TL)),

∂vi

∂xi

= 0, (2.1)

∂T

∂t
+ vj

∂T

∂xj

=
κf

(ρ0cp)f

∇2T,

(Straughan 2002, 2004; Antontsev et al. 2001) where vi, p, t and ρ0 are velocity,
pressure, time and reference density; and κf , g, cp and α are the thermal conductiv-
ity, acceleration due to gravity, specific heat at a constant pressure and coefficient
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Fluid/porous thermal convection 3

of thermal expansion. A variation of this model was suggested by Ladyzhensakaya
(1967, 1968, 1969) as an alternative to the Navier-Stokes equations, and is a gen-
eralisation of a well known model in viscoelasticity (Antontsev et al. 2001). The
parameter µ1 > 0 is a constant, Dij = (vi, j + vj, i)/2 and |D| =

√

DijDij . The
subscripts (or superscripts) f and m denote the fluid and porous layers respectively.

In the porous medium we assume a high porosity φ > 0.75, such that the
governing equations are given by

ρ0

φ

(

∂vm
i

∂t
+

1

φ
vm

j

∂vm
i

∂xj

)

= −
∂pm

∂xi

+
2

φ

∂

∂xj

[

(µ(Tm) + µ1|D
m|) Dm

ij

]

−
µ(Tm)

K
vm

i − gρ0ki (1 − α (Tm − TL)) ,

∂vm
i

∂xi

= 0, (2.2)

(ρ0cp)
∗

(ρ0cp)f

∂Tm

∂t
+ vm

j

∂Tm

∂xj

=
κ∗

(ρ0cp)f

∇2Tm,

where the variables vm
i , pm, Tm and K are the velocity, pressure, temperature

and permeability, respectively. The starred quantities are defined in terms of the
fluid and porous variables such that S∗ = φSf + (1 − φ)Sm, where S∗ = κ∗ or
(ρ0cp)

∗. A comprehensive discussion of the variances and various physical attributes
of modelling transport through porous media is given in Alazmi & Vafai (2000).

The temperatures at the upper and lower boundaries are held fixed at TU and
TL, respectively, with continuity of temperature, velocity and heat flux at the in-
terface z = 0. The remaining boundary conditions at z = 0 are the continuity of
normal stresses

−p + 2(µ(T ) + µ1|D|)D33 = −pm +
2

φ
(µ(Tm) + µ1|D

m|)Dm
33, (2.3)

and tangential stresses

(µ(T ) + µ1|D|)Dβ3 =
1

φ
(µ(Tm) + µ1|D

m|)Dm
β3, (2.4)

for β = 1, 2. The derivation of appropriate boundary conditions at the fluid/porous
interface is non-trivial, cf. Vafai & Thiyagaraja (1987), Alazmi & Vafai (2001),
Vafai (2005).

Under these boundary conditions, the governing equations (2.1) − (2.2) admit
a steady state solution in which the velocity field is zero and

T = TL −
ǫT (TL − TU )

d̂ + ǫT

−
(TL − TU )

dm(d̂ + ǫT )
z, z ∈ (0, d),

T
m

= TL −
ǫT (TL − TU )

d̂ + ǫT

−
ǫT (TL − TU )

dm(d̂ + ǫT )
z, z ∈ (−dm, 0),

where ǫT = τf/τm, τf = κf/(ρ0cp)f , τm = κ∗/(ρ0cp)f and d̂ = d/dm, with the
overbar denoting the steady state. To study the stability of the steady state we
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4 A. A. Hill and M. Carr

introduce the perturbations (ui, θ, π, um
i , θm, πm), where dij = (ui, j + uj, i)/2, and

non-dimensionalisize with the scalings

ui =
µ0

ρ0d
u∗

i , π =
µ2

0

ρ0d2
π∗, θ = θ∗

√

µ3
0(TL − TU )

ρ3
0gαd3τf

, xi = dx∗

i ,

t =
ρ0d

2

µ0
t∗, R =

√

gαρ0d3(TL − TU )

µ0τf

,

where Ra = R2 is the fluid Rayleigh number. By replacing d and τf by dm and τm,
respectively, the porous layer scalings follow analogously, where Rm

a = (Rm)2 is the
porous Rayleigh number. This yields the non-dimensional perturbation equations

∂ui

∂t
+ uj

∂ui

∂xj

= −
∂π

∂xi

+ kiRθ −
2ΓPr

R

∂

∂xj

(θdij) + 2ω
∂

∂xj

(|d|dij)

+2
∂

∂xj

(f1dij),

∂ui

∂xi

= 0, (2.5)

Pr

(

∂θ

∂t
+ uj

∂θ

∂xj

)

= RM1u3 + ∇2θ,

in R
2 × (0, 1) × (0, ∞) with f1 = 1 + Γ(M2 + M1z), dij = (ui, j + uj, i)/2 and

1

φ

∂um
i

∂t
+

1

φ2
um

j

∂um
i

∂xj

= −
∂πm

∂xi

+ kiR
mθm −

f2

δ
um

i +
2d̂2ω

φ

∂

∂xj

(|dm|dm
ij )

+
2

φ

∂

∂xj

(f2d
m
ij ) +

ΓPrǫT

Rm

(

1

δ
um

i θm −
2

φ

∂

∂xj

(θmdm
ij )

)

,

∂um
i

∂xi

= 0, (2.6)

PrǫT

(

Gm

∂θm

∂t
+ um

j

∂θm

∂xj

)

= RmM2u
m
3 + ∇2θm,

in R
2 × (−1, 0) × (0, ∞), with f2 = 1 + ΓM2(1 + z), dm

ij = (um
i, j + um

j, i)/2. The
remaning parameters are the Prandtl number Pr = µ0/(κfρ0), Darcy number δ =

K/d2
m, ω = µ1/(ρ0d

2), Γ = γ(TL − TU ), Gm = (ρ0cp)
∗/(ρ0cp)f , M1 = d̂/(d̂ + ǫT )

and M2 = ǫT /(d̂ + ǫT ).

3. Linear Instability Analysis

To proceed with a linear analysis, the nonlinear terms from (2.5) and (2.6) are
discarded. We assume normal modes of the form

ui = ui(z)eσt+i(a1x+a2y), π = π(z)eσt+i(a1x+a2y), θ = θ(z)eσt+i(a1x+a2y),

with analogous definitions in the porous medium. Taking the double curls of (2.5)1
and (2.6)1 to remove the pressure terms, where the third component is chosen, leads
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to the linearised equations

f1(D
2 − a2)2w + 2ΓM1(D

2 − a2)Dw − a2Rθ = σ(D2 − a2)w

(D2 − a2)θ + RM1w = Prσθ

f2

φ
(D2 − a2

m −
φ

δ
)(D2 − a2

m)wm +
2ΓM2

φ
(D2 − a2

m −
φ

2δ
)Dwm

−a2
mRmθm =

σm

φ
(D2 − a2

m)wm

(D2 − a2
m)θm + RmM2w

m = PrσmǫT Gmθm

where D = d/dz, a2 = a2
1 + a2

2 and a2
m = (am

1 )2 + (am
2 )2. The boundary conditions

for the twelfth order system at z = 1 are

w = Dw = θ = 0,

and

wm = Dwm = θm = 0

at z = −1. On the interface z = 0, we have

w = d̂w, Dw = d̂2Dwm,

φ(D2 + a2)w = d̂3(D2 + a2
m)wm, θ =

√

ǫT d̂3θm,

Dθ =

√

d̂5

ǫT

Dθm,

and

f1(D
2 − 3a2)Dw + ΓM1(D

2 + a2)w − σDw =
d̂4f2

φ
(D2 − 3a2

m)wm +

d̂4 ΓM2

φ
(D2 + a2

m)wm −
f2d̂

4

δ
Dwm −

d̂4σm

φ
Dwm.

The numerical results are presented in §5.

4. Nonlinear Stability Analysis

Let us define Ωf and Ωm to represent the period cells in the fluid and porous layers
respectively, and introduce the notation of norm and inner product on the spaces
L2(Ωf ) and L2(Ωm), where

‖f ||2α =

∫

Ωα

fifi dΩα, (f, g)α =

∫

Ωα

figi dΩα, α = f, m.

To obtain global nonlinear stability bounds in the stability measure L2(Ωf ) we
multiply equations (2.5)1 and (2.5)3 by ui and θ respectively, and integrate over
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6 A. A. Hill and M. Carr

the period cell. An analogous process is applied to (2.6)1 and (2.6)3. We may now
define the functional E(t) by

2E(t) = ‖u‖2
f + λ1Pr‖θ‖2

f +
λ2

φ
‖um‖2

m + λ3ǫT GmPr‖θm‖2
m,

for coupling parameters λ1, λ2, λ3 > 0, such that

dE

dt
= (ui, [−ujui, j − π, i + kiRθ −

2ΓPr

R
(θdij), j + 2ω(|d|dij), j + 2(f1dij), j ])f

+λ1(θ, [−Pruiθ, i + RM1w + ∇2θ])f + λ2(u
m
i , [−

1

φ2
um

j um
i, j − πm

, i (4.1)

+kiR
mθm −

f2

δ
um

i −
2ΓPrǫT

φRm
(θmdm

ij ), j +
ΓPrǫT

δRm
θmum

i +
2d̂2ω

φ
(|dm|dm

ij ), j

+
2

φ
(f2d

m
ij ), j ])m + λ3(θ

m, [−ǫT Prum
i θm

, i + RmM2w
m + ∇2θm])m.

Utilising a similar approach to Hill & Straughan (2009), the first and third terms
on the right hand side of (4.1) are integrated by parts, and the nondimensionalised
versions of boundary condtions (2.3) and (2.4) are employed to yield

(ui, [−ujui, j − π, i −
2ΓPr

R
(θdij), j + 2ω(|d|dij), j + 2(f1dij), j ])f

+λ2(u
m
i , [−

1

φ2
um

j um
i, j − πm

, i −
2ΓPrǫT

φRm
(θmdm

ij ), j +
2d̂2ω

φ
(|dm|dm

ij ), j +
2

φ
(dm

ij ), j ])m

=
1

2

∫

Λ

(

|u|2w −
d̂3

φ2
|um|2wm

)

dS − 2ω

∫

Ωf

|d|3 dΩf − 2

∫

Ωf

f1|d|
2 dΩf

+
2ΓPr

R

∫

Ωf

θ|d|2 dΩf −
2d̂5ω

φ

∫

Ωm

|dm|3 dΩm −
2d̂3

φ

∫

Ωm

f2|d|
2 dΩm

+
2ΓPrǫT d̂3

φRm

∫

Ωm

θm|dm|2 dΩm,

where λ2 = d̂3, and Λ represents the fluid/porous interface at z = 0. Similarly, by
integrating by parts and utilising the non-dimensionalised boundary conditions

λ1(θ, [−Pruiθ, i + ∇2θ])f + λ3(θ
m, [−PrǫT um

i θm
, i + ∇2θm])m

= −λ(‖∇θ‖2
f + d̂4‖∇θm‖2

m)

where λ1 = λ and λ3 = λd̂4.
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Combining these definitions it follows that

dE

dt
=

1

2

∫

Λ

(

|u|2w −
d̂3

φ2
|um|2wm

)

dS + R < θ, w > −2ω

∫

Ωf

|d|3 dΩf

−2

∫

Ωf

f1|d|
2 dΩf +

2ΓPr

R

∫

Ωf

θ|d|2 dΩf − λ‖∇θ‖2 + λRM1 < w, θ >

+d̂3Rm < θm, um
i > −

d̂3

δ

∫

Ωm

f2|u
m|2 dΩm +

ΓPrǫT d̂3

δRm

∫

Ωm

θm|um|2 dΩm

−
2d̂5ω

φ

∫

Ωm

|dm|3 dΩm −
2d̂3

φ

∫

Ωm

f2|d
m|2 dΩm (4.2)

+
2ΓPrǫT d̂3

φRm

∫

Ωm

θm|dm|2 dΩm + Rmd̂4M2λ < wm, θm > −λd̂4‖∇θm‖2.

To address the cubic nonlinearities in (4.2) we introduce the L3 norm ‖ · ‖3.
Multiplying (2.5)3 and (2.6)3 by θ2 and (θm)2, respectively, integrating over the
period cell, and using Poincaré’s inequality we find

λ4Pr

3

d

dt
‖θ‖3

3 +
λ5PrǫT Gm

3

d

dt
‖θm‖3

3 ≤ λ4RM1

∫

Ωf

wθ2(sgn θ) dΩf

+λ4ǫ
1

2

T d̂
11

2 RM2

∫

Ωm

wm(θm)2(sgn θm) dΩm

−
8π2λ4

9

∫

Ωf

|θ3| dΩf −
8π2λ4ǫ

1

2

T d̂
11

2

9

∫

Ωm

|θm|3 dΩm, (4.3)

where λ5 = λ4ǫ
1

2

T d̂
11

2 to ensure the removal of the boundary integrals (Hill &
Straughan 2009). We now use Young’s inequality on the cubic integral terms in
both (4.2) and (4.3), such that

∫

Ω

Q1Q
2
2 dΩ ≤

c2

3
‖Q1‖

3
3 +

1

3c
‖Q2‖

3
3

for c > 0, where Q1 6= Q2.
Letting

E1 =
1

2
E +

λ4Pr

3
‖θ‖3

3 +
λ5PrǫT Gm

3
‖θm‖3

3
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8 A. A. Hill and M. Carr

and combining (4.2) and (4.3) we now have

dE1

dt
≤ R(1 + λM1) < θ, w >f −2

∫

Ωf

f1|d|
2 dΩf − λ‖∇θ‖2

f −
d̂3

δ

∫

Ωm

f2|u
m|2 dΩm

−
2d̂3

φ

∫

Ωm

f2|d
m|2 dΩm − λd̂4‖∇θm‖2

m + Rmd̂3(1 + λM2d̂) < θm, wm >m

+
1

2

∫

Λ

(

|u|2w −
d̂3

φ2
|um|2wm

)

dS +
RM1β

2
1λ4

3

∫

Ωf

|u3| dΩf

+

(

RmM2β
2
2ǫ

1

2

T d̂
11

2 λ4

3
+

2ΓPrǫT d̂3

3δRmα2
3

)

∫

Ωm

|um|3 dΩm (4.4)

−

(

8π2λ4

9
−

2RM1λ4

3β1
−

2ΓPrα1

3R

)
∫

Ωf

|θ|3 dΩf

−

(

2ω −
4ΓPr

3α2
1R

)
∫

Ωf

|d|3 dΩf −

(

2ωd̂5

φ
−

4ΓPrǫT d̂3

3α2
2R

mφ

)

∫

Ωm

|dm|3 dΩm

−

(

8π2λ4ǫ
1

2

T d̂
11

2

9
−

2RmM2λ4ǫ
1

2

T d̂
11

2

3β2
−

ΓPrǫT d̂3

3Rm

(

2α2

φ
+

α3

δ

)

)

∫

Ωm

|θm|3 dΩm,

where αi, βj are positive constants for i = 1, 2, 3; j = 1, 2 introduced by using
Young’s inequality on the cubic terms. Before we choose the coefficients to bind the
cubic d, θ, d

m and θm integrals, we must address the boundary integrals and cubic
u and u

m terms in (4.4).
To achieve this we utilise the following Poincaré like inequalities:

∫

Ωf

|u|3 dΩf ≤ c1

∫

Ωf

|d|3 dΩf (4.5)

and

∫

Λ

|u|3 dS + c2

∫

Ωf

|u|3 dΩf ≤ c3

∫

Ωf

|d|3 dΩf , (4.6)

where c1, c2, c3 > 0. Similar inequalities follow in the porous case, for constants
cm
1 , cm

2 , cm
3 . A proof of these inequalities and the definitions of the constants are
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given in Appendix A. Applying (4.5) and (4.6) to (4.4) yields

dE1

dt
≤ R(1 + λM1) < θ, w >f −2

∫

Ωf

f1|d|
2 dΩf − λ‖∇θ‖2

f −
d̂3

δ

∫

Ωm

f2|u
m|2 dΩm

−
2d̂3

φ

∫

Ωm

f2|d
m|2 dΩm − λd̂4‖∇θm‖2

m + Rmd̂3(1 + λM2d̂) < θm, wm >m

−

(

8π2λ4

9
−

2RM1λ4

3β1
−

2ΓPrα1

3R

)
∫

Ωf

|θ|3 dΩf

−

(

2ω −
4ΓPr

3α2
1R

−
RM1β

2
1λ4c1

3
−

c3 − c1c2

2

)
∫

Ωf

|d|3 dΩf (4.7)

−

(

2ωd̂5

φ
−

2ΓPrǫT d̂3

3Rm

(

2

φα2
2

+
cm
1

δα2
3

)

−
RmM2β

2
2ǫ

1

2

T d̂
11

2 λ4c
m
1

3

−
d̂3(cm

3 − cm
1 cm

2 )

2φ2

)

∫

Ωm

|dm|3 dΩm

−

(

8π2λ4ǫ
1

2

T d̂
11

2

9
−

2RmM2λ4ǫ
1

2

T d̂
11

2

3β2
−

ΓPrǫT d̂3

3Rm

(

2α2

φ
+

α3

δ

)

)

∫

Ωm

|θm|3 dΩm.

Now put λ4 = λ′
4 + kε, and let

8π2λ′
4

9
−

2RM1λ
′
4

3β1
−

2ΓPrα1

3R
= 0,

8π2λ′
4ǫ

1

2

T d̂
11

2

9
−

2RmM2λ
′
4ǫ

1

2

T d̂
11

2

3β2
−

ΓPrǫT d̂3

3Rm

(

2α2

φ
+

α3

δ

)

= 0,

which is satisfied for

β2 = β1

(

ǫ3T
d̂5

)

1

2

,
2α2

φ
+

α3

δ
= 2α1d̂, λ′

4 =
3ΓPrα1β1

4π2Rβ1 − 3R2M1
.

We now minimize

4ΓPr

3α2
1R

+
ΓPrα1M1β

2
1c1

4π2β1 − 3RM1

with respect to α1 and β1 to yield

α1 =
8π24

1

3

9RM1c
1

3

1

, β1 =
9RM1

8π2
,

and choose α3 to minimize

2ΓPrǫT d̂3

3Rm

(

2

φα2
2

+
cm
1

δα2
3

)

.
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From (4.7), choosing k = 27/(8π2) we can now deduce

dE1

dt
≤ R(1 + λM1) < θ, w >f −2

∫

Ωf

f1|d|
2 dΩf − λ‖∇θ‖2

f −
d̂3

δ

∫

Ωm

f2|u
m|2 dΩm

−
2d̂3

φ

∫

Ωm

f2|d
m|2 dΩm − λd̂4‖∇θm‖2

m + Rmd̂3(1 + λM2d̂) < θm, wm >m

−ε

∫

Ωf

|θ|3 dΩf − ω̂

∫

Ωf

|d|3 dΩf − ω̂m

∫

Ωm

|dm|3 dΩm − εǫ
1

2

T d̂
11

2

∫

Ωm

|θm|3 dΩm,

where we require

ω̂ = 2ω −
81ΓPr4

1

3 RM2
1 c

2

3

1

64π4
−

c3 − c1c2

2
− ε

729R3M3
1 c1

512π6
> 0

ω̂m =
2ωd̂5

φ
−

2ΓPrǫT d̂3

3Rm

(

2

φα2
2

+
cm
1

δα2
3

)

−
27ΓPr4

1

3 RmM2
2 cm

1 ǫ
5

2

T d̂
3

2

32π4c
1

3

1

(4.8)

−
d̂3(cm

3 − cm
1 cm

2 )

2φ2
− ε

729(Rm)3M3
2 cm

1 ǫ
1

2

T d̂
11

2

512π6
> 0.

Defining

I = R(1 + λM1) < θ, w >f +Rmd̂3(1 + λM2d̂) < θm, wm >m,

D = 2

∫

Ωf

f1|d|
2 dΩf + λ‖∇θ‖2

f +
d̂3

δ

∫

Ωm

f2|u
m|2 dΩm

+
2d̂3

φ

∫

Ωm

f2|d
m|2 dΩm + λd̂4‖∇θm‖2

m,

it follows that

dE1

dt
≤ −D

(

RE − 1

RE

)

− ε

∫

Ωf

|θ|3 dΩf − εǫ
1

2

T d̂
11

2

∫

Ωm

|θm|3 dΩm,

where
1

RE

= max
H

(

I

D

)

< 1. (4.9)

Utilising Poincaré like inequalities (cf. Payne & Straughan 1998) allows us to deduce
that

dE1

dt
≤ −mE1

where m > 0. Integrating, we have E1(t) ≤ E1(0)e−mt → 0 as t → ∞, where
convergence is at least exponential, so we have established unconditional nonlinear
stability provided (4.8) and (4.9) hold.

The corresponding Euler Lagrange equations which arise at the sharpest thresh-
old RE = 1 are

2f1∇
2ui + 2f ′

1w, i + 2f ′
1ui, 3 + kiR(M1λ + 1)θ = L, i

2λ∇2θ + R(M1λ + 1)w = 0
(4.10)
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in the fluid layer, and

2δd̂3(f2∇
2um

i + f ′
2w

m
, i + φf ′

2u
m
i, 3) − 2φd̂3f2u

m
i + kiφδRmd̂3(M2λd̂ + 1)θm = φδLm

, i

2λd̂∇2θm + Rm(M2λd̂ + 1)wm = 0
(4.11)

in the porous layer, where L and Lm are Lagrange multipliers.
By taking the double curl of equations (4.10)1 and (4.11)1 and adopting normal

mode representations, the twelfth-order eigenvalue problem (4.10) – (4.11) can be
utilised to locate the critical nonlinear Rayleigh number RaE , which is given by

RaE = max
λ

min
a2

R2(a2, λ).

Numerical results for the nonlinear energy approach are presented in §5.

5. Results and conclusions

The first key result that can be derived is for the case Γ = 0, which corresponds
to the viscosity of the fluid being constant with respect to temperature. Under this
condition the equations for linear instability and nonlinear stability are identical to
those of Hill & Straughan (2009), for which excellent agreement was shown between
the two. It is important to note, though, that in this paper the nonlinear advection
term v · ∇v is included in the analysis, whereas the analysis of Hill & Straughan
(2009) is limited to the nonlinear Stokes problem.

For Γ 6= 0 we now solve the eigenvalue problem (4.10) − (4.11) by means of
a D2 Chebyshev tau method. The details are similar to those given by Dongarra
et al. (1996). The parameters, unless stated otherwise, are fixed at δ = 5 × 10−6,
Gm = 10, P r = 6 and ǫT = 0.7. The porous material is assumed to be that
of a Foametal (which is used extensively in industrial applications such as heat
exchangers, chemical reactors and fluid filters), with physical values of permeability
and porosity of 8.19 × 10−8m2 and 0.79, respectively (cf. Straughan 2002, Goyeau
et al. 2003).

Figure 1 shows the neutral curves for a variation of Γ values, where the linear
instability and nonlinear stability thresholds are represented by solid and dashed
lines respectively.

It is clear that an increase in Γ causes the system to become more stable.
Assuming that the temperature at the boundaries remains fixed, this corresponds
to the strength of the linear dependence of viscosity on temperature increasing. As
the viscosity decreases with an increase in temperature, this physcially makes sense.
An interesting result is that the bimodal nature of the neutral curve is unaffected
by the change in Γ.

Since the linear instability and nonlinear stability results clearly show excel-
lent agreement, we can conclude that the linear theory accurately encapsulates the
physics of the onset of convection.

Appendix A. A proof of inequalities (4.5) and (4.6)

Let Ωf represent the fluid period cell, and ui ∈ C1 be a solenoiodal function satis-
fying the boundary condition ui = 0 on Λ0, where the boundary of Ωf is given by

Article submitted to Royal Society
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Figure 1. Visual representation of linear instability (solid lines) and nonlinear stabil-
ity (dashed lines) thresholds, with critical thermal Rayleigh number R plotted against
wavenumber a, for Γ = 0, 0.1 and 1. The remaining parameters are d̂ = 0.116, Pr = 6,
and φ = 0.79.

∂Ωf = Λ + Λ0. In the same vein as §4, Λ represents the fluid/porous interface at z
= 0. For a C1 function fi to be chosen at our discretion, we observe that

∫

Λ

fini|u|
3 dS =

∫

Ωf

fi, i|u|
3 dΩf + 3

∫

Ωf

fi|u|ujuj, i dΩf

and

3

∫

Λ

finj |u|ujui dS = 3

∫

Ωf

fi|u|, jujui dΩf

+3

∫

Ωf

fi|u|ujui, j dΩf + 3

∫

Ωf

fi, j |u|ujui dΩf .

By letting
f = (−p1x, −p1y, −p1z − p2),

where p1 and p2 are constants to be chosen at our discretion, it follows that

p2

∫

Λ

|u|3 dS − 3

∫

Λ

fiui|u|w dS + 6p1

∫

Ωf

|u|3 dΩf

= 3

∫

Ωf

fi|u|uj(ui, j + uj, i) dΩf + 3

∫

Ωf

fi|u|, jujui dΩf .
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The arithmetic-geometric mean inequality leads us to

∫

Λ

xβuβw|u| dS ≤
d1

2

(

1

α

∫

Λ

w2|u| dS + α

∫

Λ

u2
β |u| dS

)

where α > 0 is a constant, and d1 = maxi=1,2 (1, |xi|). Employing this inequality
yields

(

4p2 −
3p1d1

2α

)
∫

Λ

w2|u| dS +

(

p2 −
3p1d1α

2

)
∫

Λ

u2
β |u| dS + 6p1

∫

Ωf

|u|3 dΩf

≤ 3

∫

Ωf

fi|u|uj(ui, j + uj, i) dΩf + 3

∫

Ωf

fi|u|, jujui dΩf . (A 1)

Letting α = 1/2 and p2 = 3p1d1/4 to remove the boundary integrals, we now have

6p1

∫

Ωf

|u|3 dΩf ≤
63p1d1

4

∫

Ωf

|u|2|d| dΩf .

By using the Cauchy-Schwartz inequality on the right hand side, we find

∫

Ωf

|u|3 dΩf ≤

(

21d1

8

)3 ∫

Ωf

|d|3 dΩf ,

which is inequality (4.5).
To derive inequality (4.6) we return to (A 1). By letting

p2 =
p1d1

2α
(1 − α2),

and using (4.5) it follows that

∫

Λ

|u|3 dΛ +
12α

d1(1 − 4α2)

∫

Ωf

|u|3 dΩf ≤
9(21d1)

2(2α − α2 + 1)

64(1 − 4α2)

∫

Ωf

|d|3 dΩf

as required, where α is a constant to be chosen at our discretion.
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