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Abstract While much research in ecology has focused on spatially explicit modelling as
well as on measures of biodiversity, the concept of spatial (or local) biodiversity has been
discussed very little. This paper generalises existing measures of spatial biodiversity and
introduces a family of spatial biodiversity measures by flexibly defining the notion of the
individuals’ neighbourhood within the framework of graphs associated to a spatial point
pattern. We consider two non-independent aspects of spatial biodiversity, scattering, i.e. the
spatial arrangement of the individuals in the study area and exposure, the local diversity in
an individual’s neighbourhood.

A simulation study reveals that measures based on the most commonly used neigh-
bourhood defined by the geometric graph do not distinguish well between scattering and
exposure. This problem is much less pronounced when other graphs are used. In an analysis
of the spatial diversity in a rainforest, the results based on the geometric graph have been
shown to spuriously indicate a decrease in spatial biodiversity when no such trend was de-
tected by the other types of neighbourhoods. We also show that the choice neighbourhood
markedly impacts on the classification of species according to how strongly and in what way
different species spatially structure species diversity. Clearly, in an analysis of spatial or lo-
cal diversity an appropriate choice of local neighbourhood is crucial in particular in terms
of the biological interpretation of the results. Due to its general definition, the approach dis-
cussed here offers the necessary flexibility that allows suitable and varying neighbourhood
structures to be chosen.
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1 Introduction

In view of an increasing threat to natural ecosystems and biological diversity world-wide, a
fundamental question in ecology is whether depauperate systems function differently from
or less efficiently than ecosystems and communities with higher diversity and, in the long
run, whether loss of species with specific traits and functions will have an influence on
productivity (Cardinale et al, 2000; Loreau et al, 2001). Clearly, in order to gain an under-
standing of and to monitor changes in biodiversity, appropriate measures of biodiversity
have to be used (Magurran, 1988; Buckland et al, 2005). Hence, the construction of suitable
measures of biodiversity has been the focus of much research in ecology. A large number of
indices of diversity based on the relative abundance of a multitude of species have been dis-
cussed in the ecological literature, most notably the Shannon index and the Simpson index;
several authors construct entire families of diversity indices (Hill, 1973; Tóthmérész, 1995).
Most of these approaches either consider the total number of species, species richness, or
the relative abundance of the species, species evenness, or both. These indices often differ in
their relative emphasis on either of the two concepts. In addition, some indices focus more
on the diversity among the rarer species whereas others emphasise the dominant species
(Magurran, 2004).

To a different degree all these approaches concern the question as to how rich and how
well balanced in species numbers the ecosystem is as a whole. In doing so, classical mea-
sures of biodiversity do not take the individuals’ perception of (local) diversity into account
but take on a “mean field” perspective on biodiversity. This is despite much ecological re-
search in general having recently focused on an individual-based and hence spatially ex-
plicit understanding of population dynamics, in particular in the context of plant ecosys-
tems (Law and Dieckmann, 2000; Hubbell et al, 2001). However, even though the idea of
incorporating spatial information into the analysis of diversity is not new (Clark and Evans,
1954), only a few, scattered approaches exist in the literature. Within the ecological litera-
ture Wiegand et al (2007) introduce a spatial version of species richness, Podani and Czaran
(1997) consider a measure of local compositional species presence-absence, and Shimatani
(2001) defines a local version of the Simpson index. Reardon and O’Sullivan (2004) discuss
a spatial Shannon index in a sociological context. Motz et al (2010) compare some mea-
sures of spatial and non-spatial diversity. However, as yet no general framework for defining
spatial biodiversity exists. In this paper we introduce a flexible family of local biodiversity
measures based on graphs associated with the spatial pattern formed by the individuals that
generalises current approaches and provides this general framework.

More specifically, when analysing the diversity of a spatially mapped ecosystem, two
different aspects of biodiversity may be distinguished; firstly, the diversity of an ecosystem
as a whole in terms of the number of different species, the focus of classical (aspatial) bio-
diversity measures, and secondly the diversity of an ecosystem from the local perspective
of an individual in terms of the spatial configuration of the individuals within and between
species, i.e. “spatial biodiversity”. Measures of spatial biodiversity describe the diversity in
the immediate vicinity of each individual, i.e. in its local neighbourhood. Within the context
of spatial point process theory, an important framework for statistical analysis and mod-
elling of spatial point patterns, we use graphs as a flexible description of local proximity and
hence an individual’s ”neighbourhood”. We suggest measuring spatial biodiversity by flex-
ibly defining the individuals’ neighbourhood in a general way based on a variety of graphs
and study how a change in the definition of the neighbourhood affects the performance of
the resulting measures. By reflecting the neighbourhood structure in a graph we are able
to both provide a unified framework which includes existing measures of local biodiversity
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and to define a general family of measures by varying the definition of the neighbourhood
as expressed by the graph.

This paper is organised as follows: the mathematical framework of spatial point pro-
cesses and graphs is described in Section 2. Section 3 discusses different measures of spatial
diversity and Sections 4 and 5 summarise results from a detailed simulation study and an
application to an ecological dataset.

2 Spatial point patterns and characterisation of an individual’s local neighbourhood

2.1 Point processes as models for point patterns

In this section we briefly summarise some basic notation; for further details on spatial point
processes refer to Stoyan et al (1995), Møller and Waagepetersen (2003) and Illian et al (2008).
A spatial point process is a random collection of points X = {xi : i= 1, . . .} located randomly
in Rd . We assume that no duplicate points exist, and that the process is stationary, i.e. that
the distribution of the shifted process Xz = {xi − z : xi ∈ X} is the same for all z ∈ Rd . Let
X(B)= card{X∩B} be the number of points in some set B⊆Rd and B(x,r) a r-ball centered
at x. Intensity of a process X is the average number of points per unit area, λ = EX(B) with
|B|= 1. Attaching a discrete mark (reflecting e.g. types or species) t(xi) ∈ S = {1, ...,S} to
each point of the process results in a multitype point process. Let Xτ = {xi ∈ X : t(xi) = τ}
denote the sub-process of points of type τ .

Complete spatial randomness (CSR) is modelled by a homogeneous spatial Poisson pro-
cess with intensity parameter λ , where X(B), the number of points in B, is Poisson dis-
tributed with parameter λ |B| for any B, and the number of points X(B1) and X(B2) for any
two non-overlapping sets B1 and B2 are independent random variables. If all the components
of a multitype point process X are CSR processes, we call X multitype CSR.

In the following, we consider functions of the neighbourhood of a focal point x given
that the focal point x belongs to the process X , using Palm measures Px and expectations Ex;
under stationarity it suffices to condition on the origin o, in the following also referred to
as a typical point. We assume that the stochasticity of the process can be accounted for
by the Palm measures (Møller and Waagepetersen, 2003). We write Px,τ and Ex,τ when
we condition on {t(x) = τ}. An example of this approach is Ripley’s K-function (Ripley,
1977), a classical tool for analysing the scattering in stationary point patterns. It is defined
as λK(r) = Eo ∑xi∈X\{o} 1(xi ∈ B(o,r)), i.e. the expected number of points within distance
r from a typical point of the process. It can be used to detect clustering and regularity at
varying spatial scales by comparing the estimated function of an empirical pattern to the
function expected for CSR. In the following, we denote a restriction of the K-function to a
subpattern Xτ of type τ by Kττ(r).

2.2 Graph defined neighbourhoods

A graph G consists of a discrete set of vertices which are connected by edges (Marchette,
2004). We associate a graph G(X) with the point process X by defining some edge relation
which generates the edges. If an edge exists between xi and x j, we write xi ↔ x j and say
that xi and x j are neighbours. If the relation is not symmetric we emphasise this with the
notation · → ·. The notation is also used in the sense “xi ↔ x j” ⇐⇒ “x j → x j and x j → xi”.
Finally, the neighbourhood of a point xi ∈ X is the set ne(xi) = {x j ∈ X : xi → x j}.
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We consider the following specific graphs but any other graph may also be used to define
the neighbourhood of a point:

1. Geometric graph with radius R: For R > 0 and the Euclidian distance d(xi,x j)≥ 0, let

xi ↔ x j ⇐⇒ d(xi,x j)< R.

This relation leads to the conventional definition of spatial proximity based on a fixed
radius R. It may be generalised by considering a different Rτ for each type τ .

2. k-nearest neighbours graph: For k > 0, denote by dk(xi) the distance from xi to its kth
nearest neighbour. Then the graph is given by the relation

xi → x j ⇐⇒ d(xi,x j)≤ dk(xi).

Unlike the geometric graph, the k-nearest neighbour graph focuses on the topology of
the pattern rather than on linear proximity.

3. Gabriel graph: Let Bxi,x j be the open disc (d = 2) with xi and x j at the extremes of the
diameter. Then the graph is given by

xi ↔ x j ⇐⇒ X(Bxi,x j ) = 0.

In other words, xi and x j are neighbours if the circular area between them is empty. This
is a simple non-parametric description of proximity: two points are neighbours if they
share a common space between them.

4. Delaunay triangulation: Assume that all triplets xi,x j,xk ∈ X are non-collinear and let
B(c,r) be the open disc with the border as the circumcircle of the triangle ∆(xix jxk). i.e.
d(c,xi) = d(c,x j) = d(c,xk) = r. Then we set

xi ↔ x j, xi ↔ xk, x j ↔ xk ⇐⇒ X(B(c,r)) = 0.

This graph contains the same information as the well-known Voronoi diagram (Okabe et al,
2000). It is a triplet version of the Gabriel graph: points in a triplet are neighbours if they
share enough empty space between them.

Figure 1 shows a realisation from a Poisson process with the four associated graphs. The
neighbourhood of the focal point differs strongly depending on the definition. Unlike the
geometric graph, the Gabriel and Delaunay graphs can connect points that are rather far
apart as long as there is enough empty space between them. This might be of importance in
practice. In applications where the local environment of individuals is of interest, the degree
of ”crowdedness” in different directions from an individual may provide a more realistic
reflection of an ”individuals’s eye view” than, e.g., a neighbourhood based on a fixed radius.
To illustrate this point further, the space around the focal point resulting from the different
neighbourhood definitions is depicted in Figure 2. For the geometric graph the size of the
neighbourhood space is fixed a priori and is the same for every point. For the other three
graphs the space around the focal point depends on the local configuration of the pattern.

The geometric and the k-nearest neighbour graphs depend on the parameters R and k
respectively, and we shall refer to them as parameterized graphs. By contrast, we use the
term nonparameterized graphs for the Gabriel graph and the Delaunay triangulation as they
do not depend on any parameters. Certainly, these graphs may be further generalised, for
example by considering the second order Delaunay graph where the neighbours defined by
a (first order) Delaunay neighbours are also neighbours. In this paper we focus on the graphs
given above; for further information on spatial graphs see Marchette (2004).
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(a) (b) (c) (d)

Fig. 1 Simulated spatial pattern with four associated graphs, the geometric graph (a), the 4 nearest neighbour
graph (b), the Gabriel graph (c) and the Delaunay triangulation (d). Neighbour connections for different types
of graphs of the focal point in the middle are highlighted by thick lines, and neighbours by circles.

(a) (b) (c) (d)

Fig. 2 The neighbourhood space of the point in the middle. Pattern and graphs as in Figure 1.

2.3 Diversity: frequencies of types and spatial mixing of types

As mentioned above, we distinguish between aspatial and spatial diversity. Defining and
measuring aspatial diversity has been central to the biodiversity discussion in ecology (Buckland et al,
2005) and a large number of measures based on species counts have been considered (Magurran,
2004). Spatial aspects of diversity have been included into the studies by considering the in-
crease in the number of species with increasing sampling area, i.e. in terms of species-area-
relation curves (see e.g. Scheiner, 2003; McGill et al, 2007). This approach differs from
the approach taken here as it measures the number of species per area, irrespective of the
individuals’ location or their neighbourhood composition.

Two aspects of spatial diversity, termed scattering and exposure, may be distinguished.
Spatial scattering describes how a specific type τ is arranged within the observation window.
The points may be clustered, i.e. show an aggregated pattern, or exhibit regular scattering,
or be randomly and independently scattered (CSR). Since the theory and statistics of spatial
scattering have been studied extensively in the literature (Møller and Waagepetersen, 2007;
Illian et al, 2008), we focus on exposure here. Spatial exposure describes the neighbourhood
structure of a typical individual of one type in terms of the other types. An individual has
a high degree of exposure or mingling if its neighbourhood is highly diverse, i.e. if many
neighbours from other types are located in its vicinity. The opposite situation of a largely
conspecific neighbourhood is referred to as segregation. A pattern with high small scale
spatial diversity is strongly mingled. If, instead, the pattern shows high segregation, it can
be split into homogeneous patches with little or no overlap and low diversity within these
patches.

Figure 3 illustrates the two aspects, scattering and exposure, in a small example with
artificial data. Here, varying levels of scattering, ranging from clustering to regularity are
illustrated on the horizontal axis and varying degrees of exposure, ranging from segregation
to mingling on the vertical axis. Clearly, exposure and scattering are not independent. In
particular, the bottom plot of the middle column shows that a strong segregation effect can
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force the points into clustered patterns even though the individual patterns have not been
generated by clustering mechanisms.

Clustering

Segregation

Mingling

Regularity

Fig. 3 Illustration of the two aspects of spatial diversity, scattering and exposure. All nine plots have the
same aspatial diversity, but the spatial diversity varies. The horizontal axis shows varying levels of scattering,
ranging from clustering to regularity. The vertical axis shows varying degrees of exposure, ranging from
segregation to mingling. The central plot shows complete spatial randomness. Based on similar figures in e.g.
Pielou (1977) and Shimatani and Kubota (2004).

3 Measuring spatial exposure

We will now discuss how different approaches to determining the diversity in an individu-
als’ neighbourhood (Podani and Czaran, 1997; Aguirre et al, 2003; Shimatani and Kubota,
2004; Illian et al, 2008), may be used to assess spatial exposure, and present these within
the framework of spatial point processes coupled with graphs to yield a family of measures
of spatial biodiversity.
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3.1 Local abundance

For notational purposes consider any graph, e.g. one of those given in Section 2.2. For an
individual xi ∈ X and a type τ ∈ S = {1, . . . ,S}, we define

δ (xi) := ∑
x j∈X\{xi}

1(xi → x j),

δτ(xi) := ∑
x j∈X\{xi}

1(xi → x j, t(x j) = τ),

δ=(xi) := ∑
x j∈X\{xi}

1(xi → x j, t(x j) = t(xi)),

δ−τ(xi) := δ (xi)−δτ(xi),

δ 6=(xi) := δ (xi)−δ=(xi).

Apart from the first one, these local abundances are conditional: the abundance of neigh-
bours of type τ , of neighbours that have the same type xi-, of neighbours that are not of τ
and of neighbours that are not of the same type as xi. Under the stationarity assumption, we
can write for a typical point o ∈ X and types τ,γ ∈ S

δ = δS := Eoδ (o), δ ? := Eoδ?(o), δ γ,? := Eo,γ(δ?(o)),

where ? is one of the symbols {=, 6=,τ,−τ,S }. The mean local abundances describe the
expected neighbourhood composition in the pattern, either irrespective of types (δ ) or refer-
ring to specific types (δ ?). The conditional mean δ γ,? is useful when we are only interested
in the neighbourhood of individuals of type γ .

We also consider the proportional abundances

π? :=
δ ?

δ
, πγ,? :=

δ γ,?

δ γ,S
and p? :=

λ?

λ

setting 0 := 0
0 when necessary. Here πτ denotes the mean proportion of τ neighbours amongst

all neighbours of o. The summary πγ,? is conditional on {t(o) = γ}. If πτ is interpreted as a
local quantity, then pτ is its global counterpart. Note that aspatial diversity indices only use
the information contained in pτ .

3.2 Exposure summaries

With the above notation, an index of spatial exposure with a neighbourhood based on a pa-
rameterized graph may be written as a function of the parameter. This provides us with a
powerful and flexible tool as we can consider the value of the index, and hence the biodi-
versity, at different spatial scales rather than as a single value summarising spatial diversity
at several spatial scales (Illian et al, 2008). If, however, an index is preferred (for reasons
of cost, convenience, computation time or simplicity), the notation allows the use of nonpa-
rameterized neighbourhoods in a straightforward way.

Pielou (1961), Dixon (1994) and Ceyhan (2009) consider asymptotic tests of segrega-
tion based on contingency tables and on δ τ ,6= for the special case of S = 2 and the 1-nearest
neighbour graph. At the cost of theoretical convenience, we assume no such restrictions and
now consider different measures of local diversity. The (aspatial) Simpson index of biodiver-
sity is defined as α0 = 1−∑S

τ=1 p2
τ . It measures the deviation from uniformity of abundance
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indicating, for example that some species with relatively high abundance dominate the pop-
ulation, with a high value of α (Magurran, 2004). Shimatani (2001) defines a local index
based on Ripley’s K-function, and defines the spatial Simpson index for r > 0 as

α(r) = 1−
S

∑
τ=1

λ 2
τ Kττ(r)
λ 2K(r)

.

Since, by definition δ = λK(r) when a neighbourhood defined by the geometric graph is
used, we can replace r by θ and hence generalise the index as

α(θ) := 1−
S

∑
τ=1

pτ
δ τ,τ

δ
.

This can then be calculated for different neighbourhoods, with the parameter θ controlling
the underlying graph the neighbourhood is based on. Note that the spatial Simpson index,
like the aspatial index, operates on the population level, as a summary across all species. The
interpretation is analogous; if we randomly pick one point of the pattern as a focal point, and
another point from the focal point’s neighbourhood, the index describes the probability that
the two are from different species.

Wiegand et al (2007) introduce a spatial version of species richness, the individual species
area relationship (ISAR). We again generalise this based on different types of neighbour-
hoods and define

βτ(θ) :=
S

∑
γ=1

Po,τ( δγ(o)> 0). (1)

This measures the number of species in the average neighbourhood of an individual of
species τ . We can consider β̄ (θ) = Eτ βτ(θ) to yield an index for the whole population sim-
ilar to the spatial Simpson index. An average population level measure has been discussed
by Shimatani and Kubota (2004), but we focus on the species level version in equation (1)
as it provides more detailed information.

The mingling index also operates at the species level. It is defined as the fraction of
neighbours of a different species among the neighbours of a point of species τ , i.e.

Mτ(θ) :=
δ τ,6=

δ τ,6=+δ τ,=
= πτ,6=.

For practical reasons this index was restricted to the 4-nearest neighbours graph in its origi-
nal formulation (Lewandowski and Pommerening, 1997) and not generalised to other values
of k. The general definition for θ = k > 4, however, might be more interesting in the context
of data sets with larger numbers of species. Wiegand et al (2007) consider 1−Mτ(θ) and
call it the local dominance of species τ . Note that if species abundances are equal for all
species in a data set, the mean mingling index across species equals the spatial Simpson
index.

The entropy based Shannon index may also be generalised to a spatial Shannon index
(Reardon and O’Sullivan, 2004), but the very low abundances of rare species within the indi-
viduals’ neighbourhoods lead to numerical problems in the estimation (Magurran, 2004), es-
pecially when global species richness is high and neighbourhoods are small. Podani and Czaran
(1997) discuss an alternative way of using Shannon information by comparing the observed
and expected CSR abundance vectors by the log-likelihood-ratio for a binomial model.
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Bossdorf et al (2000) note that the interpretation is rather complex. Since we aim to illus-
trate and assess the effect of varying the definition of the neighbourhood of an individual,
we focus on measures with simple interpretations when S >> 2: the spatial Simpson index,
the mingling index and ISAR.

3.3 Estimation and edge correction methods

The indices can be estimated by replacing the component expectations with the appropriate
sample means. It is important to acknowledge the bias introduced by edge effects, which
affect the estimation of quantities for points near the edge of the observation window. If
the structure of the pattern outside the window is unknown, bias is introduced (Baddeley,
1998). For instance, in the context of the geometric graph with parameter r, the number of
neighbours for a point less than a distance r away from the edge is likely to be too low.

Several approaches to correcting this bias have been discussed in the literature (see e.g.
reviews in Illian et al (2008) and Møller and Waagepetersen (2003)). These correction meth-
ods have been derived for stochastic geometry based on the geometric graph, and hence it
is not clear that they are also appropriate when different types of graphs are been used. The
translation correction is suitable under stationarity and when a measure is based on counts
of pairs of points. It may be used to estimate δ ,δ ? and δ γ,? in the Simpson and the mingling
index, yielding ratio-unbiased estimators. However, the summaries are of ratio form where
the border effect affects both the numerator and the denominator in a similar way, and hence
the bias is likely to cancel out, as discussed in Illian et al (2008), p. 193. We have verified
this to be true with a simulation experiment (results not shown).

The ISAR index is related to nearest neighbour summary characteristics where a com-
mon methods for edge effect reduction is to use some form of minus sampling. Most elab-
orate approaches use a correction that varies for each point, such as the Hanisch estimator
where a point is excluded if its nearest neighbour distance is greater than the distance to
the border. These minus sampling strategies are based on results derived for the geometric
neighbourhood relation. We use the simplest form of minus sampling here where the con-
tributions to a summary from all points that are inside a fixed buffer zone from the border
are disregarded. This method reduces the bias well but has the disadvantage of leading to a
loss of data. For the estimation of the sample means we consider only the contribution of
those points for which the whole neighbourhood is inside the observation window. With the
geometric graph and r ∈ [0,rmax], minus sampling discards points less than a distance rmax
from the edge. For k-nearest neighbours the minus range is estimated using the CSR approx-
imation kmax < (λπr2

max). We use this estimated minus range also for the nonparameterized
neighbourhoods.

4 Simulation study

In order to assess the performance of the different indices as well as the effect of the choice
of neighbourhood on the performance we run a simulation study based on synthetic data.
Informed by this simulation study, we then assess the performance of the measures in prac-
tice and apply the indices to data from a tropical rainforest to analyse the change of local
diversity over time and to analyse the magnitude of exposure of different species. [...]
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4.1 Simulated patterns of varying species richness and evenness

Since spatial scattering and exposure are not independent we vary both aspects of spatial
diversity in this simulation study. We consider nine main classes of point patterns simulated
in a window W = [0,1]2. The classes comprise three categories reflecting three levels of
intra-species scattering: clustered, no scattering effect and regular. In addition, three levels
of inter-species exposure are considered: mingled, no exposure effect and segregated. Within
each of the nine classes the strength of the exposure and scattering effect are equal for all
types. We simulate each class 100 times using the algorithm described in Appendix B; the
patterns in Figure 3 were also generated with this algorithm. For each simulation, the three
diversity summaries α(θ),βτ(θ) and Mτ(θ) are calculated using neighbourhoods based on
the Gabriel, Delaunay, geometric and k-nearest neighbours graphs. We then compute the
mean mingling index and the mean ISAR over species so that we can compare them to the
spatial Simpson index.

Furthermore, we repeat the above procedure for two types of abundance vectors, each
with varying species richness, first for a vector with S = 4 and n = 40, from now on re-
ferred to as ’low richness’, and for a vector with S = 30 and n ≈ 300, referred to as ’medium
richness’. For both types of abundance vectors three different levels of evenness are consid-
ered, ranging from complete evenness, via medium evenness, to dominance. This yields 6
different abundance vectors (Table C.1).

In summary, we conduct a series of simulation experiments to assess the ability of the
summary characteristics to distinguish among patterns exhibiting different degrees of expo-
sure. In each of the different experiments we vary the richness of the pattern, the evenness of
abundances, the degree of clustering of species and the definition of the neighbourhood. In
the following, the different richness-evenness-clustering-neighbourhood combinations are
referred to as ’RECN combinations’.

4.2 Nonparameterized neighbourhoods

4.2.1 Low species richness

We first consider the Gabriel and the Delaunay graph. For each RECN combination, we sim-
ulate the pattern 100 times. From the simulations we compute each summary index to obtain
three empirical distributions corresponding to the three exposure levels. We then compare
these distributions using Mann-Whitney’s signed rank test. As higher exposure levels should
be reflected in higher index values, we use a one-sided test to test if the summary values for
segregated patterns are lower than in the no exposure effect case, and if the values for min-
gled patterns are higher than in both the segregated and no exposure effect case. The results
from the significance tests for the low richness vectors are shown in Table C.2.

We initially focus on the effect of the different degrees of scattering on the performance
of the summary characteristics. For clustered patterns all indices distinguish well between
the different levels of segregation, with both neighbourhoods. Only in the case of the very
uneven vector, the spatial Simpson index with the Gabriel neighbourhood fails to separate
segregated patterns from those with no exposure effect. In the same situation, the mingling
index performs well. Recalling that the mean mingling index equals the spatial Simpson
index for complete evenness this indicates that in uneven patterns the power of the spatial
Simpson index is reduced when the number of neighbours is low.
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For patterns with no scattering effect the mean mingling index and the spatial Simpson
index both perform well. However, the ISAR with the Gabriel neighbourhood fails to distin-
guish between the different exposure levels and only one of three tests is significant in each
evenness class. The results with the Delaunay graph are better, indicating that ISAR requires
larger numbers of neighbours to perform well since it is a purely cumulative summary. The
ratio based mingling and Simpson work well even with the smaller number of neighbouring
points in the Gabriel graph.

Regular patterns are problematic for all summaries statistics. This is because these pat-
terns consist of S superimposed regular patterns, and hence irrespective of the exposure
level, the probability that non-conspecifics are found between two conspecific points is high
everywhere. This demonstrates once again that scattering and exposure are not independent.

A comparison of the performance across the different levels of evenness reveals that
understanding the effect of evenness is not straightforward. The summary characteristics
perform best for patterns with medium unevenness, and worst for patterns with strong un-
evenness. Some of this effect may be due to the minus-sampling scheme. In a small sim-
ulation study (results not shown) with a smaller minus-sampling radius indicated that the
power improves for medium and dominated vectors, especially for the ISAR, even though
the reduced radius clearly introduces bias. This might have been caused by the many rare
species in the data as some of these might be only present in the border buffer zone, and
hence not contributing to the exposure estimation leading to an increased variance of the
mean summary characteristic. The mingling index is apparently more robust to this effect.

4.2.2 Medium species richness

Table C.3 summarises the results for medium richness. The mean mingling and spatial Simp-
son indices now perform well due to the larger sample size, and even for regular patterns all
tests are significant. However, ISAR still does not distinguish the different levels of exposure
as the number of points in the neighbourhoods is apparently still too small for the cumula-
tive summary characteristic to perform well. ISAR in combination with the Delaunay graph
performs well for medium and high evenness. However, as before, due the small abundances
for some rare species in the patterns with low evenness, edge correction removes some of
these species and thus directly affects the mean ISAR.

The results in table C.3 also again emphasise that the effects of scattering and exposure
are not independent as all indices perform worse for regular than for clustered patterns. In
addition, simulated patterns with a strong exposure effect result in clustered patterns even in
the absence of an explicit spatial clustering mechanism (recall the bottom plot in the middle
column in Figure 3 for an example).

In conclusion, measures of spatial exposure based on both nonparameterized neighbour-
hoods perform well to a certain extend. Measures based on the Delaunay neighbourhood per-
form better (with 134 out of 162 significant tests indicating that patterns can distinguished
correctly) than the Gabriel neighbourhood (with 122 out of 162 significance tests), a differ-
ence which can be explained by the smaller average neighbourhood size of 4 for the Gabriel
compared to 6 for the Delaunay graph (as calculated for the case of CSR). The Delaunay
neighbourhood should clearly be preferred in applications, especially in the context of non-
clustered patterns. For the mean ISAR to perform well more individuals have to be included
in the neighbourhood of a individual than for the mean mingling or the spatial Simpson
index. The latter two perform quite well with both neighbourhoods when exposure effects
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in non-regular patterns are assessed, and performance improves with increasing sample size
and richness.

4.3 Parameterized neighbourhoods

We now compare measures of exposure based on the geometric and the k-nearest neigh-
bours graphs. The parameters used in the calculation were {r = 0.01,0.02, ...,0.3} for the
geometric graph, and {k = 1,2, ...,15} for small and {k = 1,2,4, ...,80} for medium even-
ness in the k-nearest neighbour graph, adjusting for the increased intensity. For each RECN
combination, 100 segregated and mingled cases were simulated, each producing a summary
function trajectory over each parameter range. These trajectories were then checked as to
whether or not they remain completely inside a 95%-trajectory-envelope obtained from 100
simulations with no segregation effect. This testing procedure is known as an envelope test
(Illian et al, 2008, p. 455). Here the segregated and mingled patterns are considered as indi-
vidual data. We modified the test to be only one-sided, so that a segregated trajectory should
be completely below, and a mingled trajectory above, the 95%-envelope.

4.3.1 Low species richness

Table C.4 gives the fraction of significant envelope tests for each of the low richness vectors.
The most striking result is that for clustered and segregated patterns, all summary character-
istics show a very low power when the k-nearest neighbour graph is used. The performance
is slightly better with the geometric graph, where the power is decreasing with increasing
unevenness. Why do all summary characteristics in combination with the k-nearest neigh-
bour graph perform so poorly? In the absence of inter-species interaction the locations of
conspecific clusters are not constrained. Hence individuals from one species appear in the
neighbourhood of other species with a probability that is proportional to cluster diameter and
window area. In our simulation the mean cluster diameter is small compared to the window
area, such that clusters rarely overlap and hence patterns typically appear segregated. This
then leads to wide summary envelopes. Also, in some cases, two smaller conspecific clusters
form two rather than one big cluster, which increases the probability that one of the k-nearest
neighbours is in a non-conspecific cluster. This is because the number of neighbours deter-
ministically increases by one with each increase in the parameter with the nearest neighbour
graph, whereas with the geometric graph the number of neighbours increases stochastically
with increasing parameter.

With both types of neighbourhood the characteristics distinguish mingled and clustered
patterns from non-mingled patterns with 100% power. However, the performance of the
mean mingling index and the spatial Simpson deteriorates for patterns with no scattering
effect and regular patterns whereas ISAR performs well. This might be due to the cumulative
and hence more stable nature of ISAR, resulting in narrower envelopes. The power of the
mingling and the spatial Simpson index improves with increasing unevenness.

4.3.2 Medium species richness

For patterns based on the medium richness vectors (Table C.5) almost all tests are significant,
i.e. a larger sample size definitely improves the power of the summary characteristics to
distinguish pattern with different levels of exposure when several spatial scales are analysed
simultaneously.
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Overall, the characteristics based on parametrized graphs work similarly well. In some
cases those based on the geometric graph perform better in other cases those based on the
nearest neighbour. The only exception to this occurs for segregated and clustered patterns.
Here the characteristics using the geometric graph versions have problems, whereas nearest
neighbour versions fail completely. All this is related to a small sample size, and if we have
a larger sample, all summaries with both neighbourhoods are suitable for studying exposure
effects.

4.4 Conclusions from the simulation study

Based on the simulation study we may conclude that the choice of the nonparameterized
neighbourhood has an effect on the performance of the measures of exposure, albeit a small
one, and that it depends on the choice of summary characteristics. Both the mingling and
the spatial Simpson index work similarly well when they are based on the Gabriel and the
Delaunay graph, but these non-parameterized neighbourhoods are too small for ISAR to
perform well even with larger patterns.

Of the parameterized neighbourhoods, the k-nearest neighbours graph does not work
as well as the geometric neighbourhood in a small sample of clustered patterns. Otherwise
the different neighbourhoods perform similarly well. The choice of summary characteristic
seem much more important here, as ISAR clearly outperforms the mean mingling and the
spatial Simpson index.

In conclusion, the summary characteristics based on all the graphs but the Gabriel graph
distinguish well between the exposure levels of the simulated patterns. With the exception of
clustered patterns in small samples, the k-nearest neighbours version is a suitable alternative
to geometric neighbourhood when parameterized neighbourhoods are of interest.

5 Applications

5.1 Rainforest trees in the Barro Colorado Island plot

In order to assess the performance of the measures in the context of real data, we esti-
mate the different spatial diversity indices in an ecological data set and study how (spa-
tial) diversity changes over time. The data have been derived from a long term rainforest
study plot on Barro Colorado Island (BCI) in Panama (Condit, 1998; Hubbell et al, 1999,
2005). In a plot of size 500m×1000m every tree with stem diameter at breast hight larger
than 1cm was recorded, along with the spatial coordinates, species and diameter at breast
height. Data collection has been repeated six times in the years 1981, 1985, 1990, 1995,
2000 and 2005, amounting to roughly 2 ·105 data points and 300 species each year. The data
have been analysed before with approaches that use methods based on the geometric graph,
e.g. in Condit et al (2000); McGill et al (2007); Wiegand et al (2007); Morlon et al (2008);
Waagepetersen and Guan (2009). We focus here on a simplified analysis of the data rather
than on a detailed analysis of the entire data set, and point out the impact of varying the
neighbourhood definition on the results.
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5.2 Development of local diversity during the years 1981-2005

We calculate the exposure indices for each year using neighbourhoods based on the Gabriel,
the Delaunay, the k-nearest neighbours and geometric graph, and fix the parameters k = 7
and R = 1.95 meters to be close to the expected nonparameterized neighbourhood sizes. The
indices are estimated using all alive trees with dbh>10cm as focal points, and we consider
only those species which have at least 30 individuals with dbh≥10cm in each census. Thus
we estimate the local diversity of 92 species, roughly 10% of the measured plants. However,
all measured and alive plants contribute to the indices, as individuals of any size and species
are considered as neighbours of focal points. In other words, we focus on the local diversity
of well established plants in the forest.

We compare different years with Mann-Whitney tests to check if spatial diversity is
increasing or decreasing. Tests are paired by species. For comparison, we also calculate the
aspatial Simpson index for each year, which results in a u-shaped rather than a monotone
trend over time, with a minimum value for year 1985 (see Appendix C Table C.6).

Table C.7 summarises the change of values of mingling index and ISAR using the four
neighbourhoods. The mingling index values increase from 1985 to 1990 with all neigh-
bourhoods; those with the geometric have a stronger significance than others. A significant
change in the values could not be detected for the other years, which is probably due to the
small neighbourhood size of about 6 neighbours relative to the total number of species. The
values of the ISAR change more markedly. With the geometric neighbourhood, the values
increase consecutively between 1981, 1985 and 1990, then decrease from 1990 to 1995 and
further to 2000 and 2005. The values based on Delaunay and k-nearest neighbour neigh-
bourhoods indicate only a decrease between 1981 and 1985, with an additional decrease
between 1995 and 2000 with k-nearest neighbours graph.

For the 6 most abundant species (Table C.8, see also Figure C.1) the values for the
mingling index increase between 1985 and 1990 with all neighbourhoods, indicating a small
decrease in the local dominance of these species. The increase in local richness between
1985 and 1990 is also found with ISAR combined with the geometric neighbourhood, but
the sequential decrease between 1990 and 2005 is less clear.

If only the results based on the geometric graph were considered - as is commonly done
- one would conclude that the diversity in local neighbourhoods of individual plants in the
BCI plot have first increased and then decreased over the years. However, the geometric
graph also captures scattering effects, resulting in biased exposure measurements. One way
of avoiding this is by scaling the neighbourhood relative to the local intensity as the adap-
tive neighbourhoods of k-nearest neighbour, Gabriel and Delaunay graph do (see also the
weighting scheme in Morlon et al, 2008). Then not only is the hypothesis for the consecu-
tive change of local species diversity rejected, but we also observe opposite results to those
obtained with the geometric neighbourhood. Effects such as overall thinning should be cap-
tured in the analysis of point scattering in relation to the area, not in the analysis of individual
species’ neighbourhood in relation to other species. Therefore, when analysing the pattern
formed by a biological community one should also consider sophisticated neighbourhoods
rather than only the geometric graph provides, to account for the changes in scattering ef-
fects that may lead to spurious changes in measures of exposure.
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5.3 Change in spatial Simpson index values

In this example we consider the spatial Simpson index for BCI in each census year using
the two parameterised neighbourhoods and plot it as a function of the relevant parameter.
This is done in order to see how the overall spatial diversity across species is affected by the
neighbourhood definition. As in the previous example we focus on the neighbourhoods of
plants with dbh>10cm of species with abundance over 30, while smaller and/or rarer plants
still contribute to the neighbourhoods.

Figure 4 shows the differences in the spatial Simpson index for each year y compared
to the year 1981 calculated as αy(θ)−α1981(θ). If the value is higher than 0 at a neigh-
bourhood size θ spatial diversity in the corresponding year is higher than in 1981 at that
particular scale. The results for the geometric graph have been plotted in area units πr2 so
that the similarity to the measure based on the nearest neighbour graph becomes clearer.

The local diversity, measured in the neighbourhood of established plants and reflecting
an overall lack of dominance, has declined slightly over the years. The strongest declines
happened between 1990 and 1995 with diversity dropping by approx. 0.2%. The decline
over the entire period between 1981 and 2005 amounts to approx. 0.8%. Expressed as an
odds ratio this means that if an average tree is chosen at random from the neighbourhood
of a focal species the change is 1.3 times higher in 2005, than in 1981 that it is of the same
species. Variances of the estimates have not been addressed in here.
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Fig. 4 Spatial Simpson index of BCI years 1981-2005. Computed from trees with diameter over 10cm and
species abundance atleast 30.

In this example, different neighbourhoods lead to almost identical results. Averaging
over different species apparently smoothens out the local scale variations of clustering each
species internally exhibits, possibly as a function of the inhomogeneous environment. How-
ever, if a similar analysis is done which does not average across species, but classify the
species according to different measures of spatial exposure these effects become visible as
is clear in the following example.
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5.4 Classifying species based on their local richness

In this section we aim to characterise an ecological community by identifying different
classes of species with different types of spatial exposures. A similar classification of tree
species has been done for the 1995 BCI census in Wiegand et al (2007). We re-analyse the
same data but base the analysis on several types of neighbourhoods rather than on the ge-
ometric neighbourhood alone. Following the approach therein, each species is classified as
either a diversity repeller, as neutral or as an accumulator at all relevant spatial scales, i.e.
for all neighbourhood sizes. The classification is based on an envelope test against an in-
homogeneous Poisson model, repeated separately for each species. Inhomogeneity in the
null-model is assumed to account for all environmental factors such as slope and soil com-
position, which vary continuously in space with covariation ranges larger than 50m. Again
following Wiegand et al (2007) the analysis concentrates on all species with at least 70 in-
dividuals of dbh≥10cm, yielding a total of 63 focal species. All trees with dbh≥10cm were
used as potential neighbours of the focal species.

At each spatial scale of the neighbourhood, a species is classified as a diversity accu-
mulator if its ISAR value is higher than the 97th highest value of the 100 values simulated
from the null-model. So, an accumulator is defined as a species surrounded by more species
than would be expected if it was randomly scattered. Similarly, a species is classified as a
diversity repeller if its ISAR value is lower than the 3rd lowest simulation value, so it has
fewer than the expected number of species in its vicinity. Species whose ISAR values remain
inside the envelopes are termed diversity neutral.

Figure 5 summarises the results, again in area units to facilitate comparison. With the
geometric neighbourhood more than 50% of the 63 species are classified as repellers at
ranges <10m, or areas <300m2. Only a small proportion of the species, less than 10%, are
accumulators, and they are mainly detected at ranges 10-30m (300-2800m2).

The k-nearest neighbours graph results are markedly different. Less than 20% of the
species are classified as repellers when the neighbhourhoods consist of less than 50 nearest
trees. At the same scale, more than 10% of the species are classified as diversity accumula-
tors. Furthermore, many of the species identified as repellers with the geometric neighbour-
hood are classified as neutral or even as accumulators at the corresponding neighbour count.
For example for r = 10m and CSR expected neighbour count in such size disc, k = 17, 6
species are classified as repellers with both neighbourhoods. However, 17 species classified
as repellers with the geometric graph appear neutral using the k-nearest neighbour graph,
and one species is classified as a repeller with the geometric graph and as an accumulator
with the nearest neighbour version.

We repeat the classification of species into repellers and accumulators for each BCI cen-
sus year using four fixed neighbourhoods. The issues caused by minus sampling are not as
pronounced here as they are in Example 4.3 due to the large number of data points. Fig-
ure C.2 shows that the measures based on the Gabriel and Delaunay graphs yield results
very unlike the parameterised graphs, classifying half of the species as accumulators, and
nearly none as repellers. With these small neighbourhoods that are expanding always in the
direction of empty space and do necessarily remain not inside clusters, a randomly shifted
individual has a higher probability to have different species around it than in its original loca-
tion, which tends to be within a cluster formed by individuals from the same species. Many
of the species that are classified as repellers with the geometric graph are in fact found to
be accumulators with the non-parameterized neighbourhoods. There is one common feature
in these partly contradictory results. The neighbourhood scale at which both repellers and
accumulators can no longer be distinguished is similar for both parameterized neighbour-
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Fig. 5 Diversity accumulators and repellers in BCI 1995 census. Percentage of the 63 focal species.

hoods, roughly 35m (4000m2) which with the average intensity of 0.045 trees/m2 amounts
to about 170 neighbours.

These results indicate that the choice of neighbourhood has a strong influence on the
outcome of the classification of the species clearly and critically impacting on the biological
interpretation of the results.

6 Discussion

More and more fully mapped data sets of biodiverse ecological communities have become
available and hence there has been an increasing interest in individual-based modelling as
well as in the spatially explicit analysis, based on spatial point process theory, of these
ecosystems. In particular, the biodiversity and complexity of rainforests has been studied
intensively in order to understand the mechanisms that sustain them. In this paper we have
focused on the notion of spatial (or local) biodiversity taking on the plant’s eye view with
regard to biodiversity (Mahdi and Law, 1987; Law et al, 2009).

Classically, the analysis of spatial point pattern data considers functions of distance
measures which imply the notion of a neighbourhood, i.e. the local vicinity of the individual
points. Here we generalise the definition of the neighbourhood based on graphs to provide,
for the first time, a general framework for the definition of measures of spatial biodiversity
and study the effect of varying the neighbourhood on the performance of the measures of
spatial biodiversity. We focus on measures of spatial exposure, an aspect of diversity related
to the local mixing of different types of individuals in space.

The study reveals that the most commonly used neighbourhood, the geometric neigh-
bourhood, is sensitive to the spatial arrangement of the points in relation to the study area,
not just in relation to the points themselves, i.e. measures based on it do not distinguish
well between scattering and exposure. This problem is much less pronounced when other
neighbourhoods, defined by the (nonparameterized) Gabriel or Delaunay graphs or the (pa-
rameterized) k-nearest neighbours neighbourhood, are used. The latter three neighbourhoods
separate the mixing of the different types without being affected by scattering effects, i.e. the
spatial behaviour of the individual types. In an analysis of the spatial diversity in a rainforest,



18 Tuomas Rajala, Janine Illian

the results based on the geometric graph are shown to disagree with those based on the other
neighbourhoods, indicating a decreasing biodiversity while no clear trend was detected by
the other types of neighbourhoods.

One might think of the neighbourhood defined by the k-nearest neighbour graph as the
neighbourhood resulting from a locally weighted geometric graph where higher local abun-
dance is weighted such that the radius become smaller. The discrepancy of the results is
therefore connected to the variation of neighbourhood counts: A randomly dislocated indi-
vidual of a geometrically repelling species is likely to have a different amount of neighbours
than it has on its original location. This directly affects the detected species richness: on av-
erage, more neighbours amount to more species. This means that the scattering effect, which
is due to environmental variation and intraspecific dispersal mechanisms, and the exposure
effect, what the ISAR is ultimately trying to estimate, are very difficult to disentangle when
the pattern is inhomogeneous.

In conclusion, the neighbourhood type is an important factor in the analysis of spatially
explicit data and it affects our understanding of the spatial behaviour in a dataset. It is crucial
to decide which neighbourhood relation best describes the spatial structures in the dataset, in
relation to those aspects of spatial diversity (or other spatial behaviour) that are of interest in
a specific study. Our results show that in the context of spatial diversity as reflected in scatter-
ing and exposure the (classical) geometric neighbourhood is not the only option for testing
and answering the globally important ecological questions and that it might yield misleading
results. This has important consequences on the biological interpretation of the results, e.g.
with regard to theories of biodiversity as done in Wiegand et al (2007). Analyses based on
neighbourhoods other than those defined by the geometric graph will identify fewer species
as spatially structuring species diversity than the results in Wiegand et al (2007) and are also
likely to contradict that analysis as to the nature of the spatial structuring. It is the flexibility
of the approach taken here that allows suitable and varying neighbourhood structures to be
chosen. It offers the possibility to carefully define further measures of spatial biodiversity
that may be adapted to a specific situation as well as the relevant research question.

Clearly, the approach here may be generalised in many ways. Currently, it treats all
points (i.e. all trees in the example) equally, irrespective of their properties (i.e. sizes). A re-
fined approach could additionally consider marked points patterns and hence weight edges
in the graph by tree size or a similar suitable quantity (Vuorinen et al, 2004) so that infor-
mation on biomass is incorporated as well (Law et al, 2009). The approach may also be
improved further by taking account of spatial heterogeneity resulting from environmental
variation. This might involve simply using point level information to generate a continu-
ous map of the diversity values over the region (a method called regionalisation, Illian et al
2008) and analysing the map using geostatistical tools.

7 Software

An R-package spatialsegregation for calculating exposure measures with different neigh-
bourhoods is available at the Comprehensive R Archive Network CRAN.
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A Values under complete spatial randomness (CSR)

Under CSR we have for all the discussed graphs

δ τ = Eo ∑
xi∈X\o

1(o → xi, t(xi) = τ) = Eo ∑
xi∈Xτ \o

1(o → xi) = pτ ·δ ,

and

δ= = Eτ
[
Eoδτ | t(o) = τ

]
=

S

∑
τ=1

P(t(o) = τ) · pτ ·δ = δ
S

∑
τ=1

p2
τ .

Moreover δ−τ = δ −δ τ and δ 6= = δ −δ=. Further implication of the independence is δ τ,γ = δ γ , so δ τ,6= =

δ τ,S −δ τ,τ = δ −δ τ . When there is no spatial structure the local proportions reduce to

πτ = πτ,τ = pτ ,

π= =
S

∑
τ=1

p2
τ ,

furthermore πτ = 1−π−τ and π 6= = 1−π=.

A.1 Measures under CSR

Spatial Simpson index:

α(θ) := 1−
S

∑
τ=1

pτ
δ τ,τ

δ
= 1−

S

∑
τ=1

pτ πτ = 1−
S

∑
τ=1

p2
τ .

Mingling index:

Mτ (θ) =
δ −δ τ

δ
=

δ (1− λτ
λ )

δ
= 1− λτ

λ
.

ISAR: By the independence between points and independence between types

Po,τ (δγ (o) = 0) = e−δ pγ

for any τ , so

βτ (θ) =
S

∑
γ=1

(1− e−δ pγ ).

ISAR depends on the graph structure and hence potentially on the parameters θ of the graphs if param-
eterized graphs are considered.

B Simulation algorithm for Example 1

The simulation algorithm for multitype patterns with varying scattering and exposure effects was based on
a Gibbs model combining the Area-Interaction model of Baddeley and van Lieshout (1995) and the recon-
struction method of Tscheschel and Stoyan (2006). The model is

f (X) ∝ exp
[
−a

S

∑
τ=1

Aτ (X)−b
3

∑
i=1

Fi(X)
]
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with Aτ (X) = |
⋃

xi∈Xτ B(xi,R)| being the intra-type Area-interaction point process component for the scatter-
ing effect, and the exposure effect being given by the minimum contrast components

F1(X) = (α(θ ;X)−α0)2

F2(X) =
S

∑
τ=1

(βτ (θ ;X)−β 0
τ )

2

F3(X) =
S

∑
τ=1

(Mτ (θ ;X)−M0
τ )

2

with estimated value for each pattern X denoted by writing it as a parameter, and the target values denoted by
superscript 0.

We think that the circular use of the exposure measures in simulation of the pattern of which the measures
themselves are to be calculated from is a minor problem as the focus of the example is on the effect of
neighbourhood definition and how the change of it affects the measure values. Furthermore, the main interest
is how the typically used geometric neighbourhood works in comparison to the others. That is why we chose a
fixed geometric neighbourhood for the calculation of the contrast functions, the value R = 1.1√

λ
as the constant

range scaling with the number of points.
The parameters were chosen by trial runs and visual inspection to produce patterns like in the Figure 3.

Clustering levels were comfirmed with pair correlation function checks. Area-interaction radius was scaled
with richness, R = 1√

6S
. scattering factors varied depending on sample size and exposure. In order (clus-

tering, no effect, regular): For small samples and mingled category a = (50,0,−200), no exposure effect
a = (300,0,−100), and segregated a = (100,0,−100). For medium samples mingled a = (50,0,−8 · 106),
no exposure effect a = (300,0,−1200), and segregated a = (100,0− 1200). The large number in regular-
mingled was necessary to keep the pattern from clustering due to mingling effect. The exposure factors where
in order (mingling, no effect, segregation) for both sample sizes: clustered b = (2,0,5), no effect b = (5,0,5),
regular b = (5,0,6).

C Tables and additional figures

Table C.1 Abundance vectors used in the simulation trials of Section 4.

”Small richness”, S = 4 ”Medium richness”, S = 30
Completely even 10, 10, 10, 10 {10}×30

Medium evenness 5, 8, 11, 16 6, 6, 7, 7, ..., 18, 18
Dominated 5, 5, 5, 25 {5}×16, {8}×8, 10, 10, 15, 15, 20, 90.
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Table C.2 Results for the significance tests for low richness, with S = 4,n = 40. The separation of differ-
ent exposure categories is based on empirical summary distributions. Each distribution is derived from 100
simulations of each of the 9 point classes using the Delaunay and the Gabriel neighbourhood. The sample
distributions of each of the three summary charactistics are compared, one for each of the three exposure
levels and for each different type of neighbourhood, level of evenness and scattering. The results are coded
as O Segregated vs. no effect; M no effect vs. mingled; ♦ segregated vs. mingled. A filled symbol indicates
significance at the 5%-level (Mann-Whitney signed rank test).

Mean mingling index

Evenness: Completely even Medium evenness Dominated
Scattering: Clust.|No effect|Regular Clust.|No effect|Regular Clust.|No effect|Regular

Delaunay HN�|HN�|H M � HN�|HN�|H M � HN�|HN�|O M ♦
Gabriel HN�|HN�|H M � HN�|HN�|HN� HN�|HN�|O M ♦

Spatial Simpson index

Evenness: Completely even Medium evenness Dominated
Scattering: Clust.|No effect|Regular Clust.|No effect|Regular Clust.|No effect|Regular

Delaunay HN�|HN�|H M � HN�|HN�|HN� HN�|HN�|O M ♦
Gabriel HN�|HN�|H M � HN�|HN�|HN� ON�|HN�|ON♦

Mean ISAR

Evenness: Completely even Medium evenness Dominated
Scattering: Clust.|No effect|Regular Clust.|No effect|Regular Clust.|No effect|Regular

Delaunay HN�|HN�|O M ♦ HN�|HN�|O M ♦ HN�|ON�|O M ♦
Gabriel HN�|H M ♦|O M ♦ HN�|ON♦|O M ♦ HN�|ON♦|O M ♦
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Fig. C.1 Boxplots of mingling index (left) and ISAR (right) values for the top 6 abundant species in BCI
samples. The four different neighbourhoods are: 7-nearest neighbours (knn7), geometric with R = 2m (geo2),
Gabriel (gab) and Delaunay (del).
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Table C.3 Results for the significance tests for low richness, with S = 30,n = 40. The separation of differ-
ent exposure categories is based on empirical summary distributions. Each distribution is derived from 100
simulations of each of the 9 point classes using the Delaunay and the Gabriel neighbourhood. The sample
distributions of each of the three summary charactistics are compared, one for each of the three exposure
levels and for each different type of neighbourhood, level of evenness and scattering. The results are coded
as O Segregated vs. no effect; M no effect vs. mingled; ♦ segregated vs. mingled. A filled symbol indicates
significance at the 5%-level (Mann-Whitney signed rank test).

Mean mingling index

Evenness: Completely even Medium evenness Dominated
Scattering: Clust.|No effect|Regular Clust.|No effect|Regular Clust.|No effect|Regular

Delaunay HN�|HN�|HN� HN�|HN�|HN� HN�|HN�|HN�
Gabriel HN�|HN�|HN� HN�|HN�|HN� HN�|HN�|HN�

Spatial Simpson index

Evenness: Completely even Medium evenness Dominated
Scattering: Clust.|No effect|Regular Clust.|No effect|Regular Clust.|No effect|Regular

Delaunay HN�|HN�|HN� HN�|HN�|HN� HN�|HN�|HN�
Gabriel HN�|HN�|HN� HN�|HN�|HN� HN�|HN�|HN�

Mean ISAR

Evenness: Completely even Medium evenness Dominated
Scattering: Clust.|No effect|Regular Clust.|No effect|Regular Clust.|No effect|Regular

Delaunay HN�|HN�|HN� HN�|HN�|HN� HN�|O M ♦|H M ♦
Gabriel ON�|O M ♦|O M ♦ ON�|O M ♦|O M ♦ ON�|O M ♦|O M ♦

Table C.4 Small richness, S = 4,n = 40. Envelope test rejection rates for different summaries and neigh-
bourhoods on different levels of evenness/scattering. Each number is the fraction of rejected envelope tests
against the hypothesis ’no exposure effect’. Hsegregation vs. no exposure effect, Nmingling vs. no exposure
effect. Higher values are darker.

Mean mingling index

Evenness: Completely even Medium evenness Dominated
Scattering: Clustered|No effect|Regular Clustered|No effect|Regular Clustered|No effect|Regular
Geometric H0.37N1.00|H0.99N0.02|H0.95N0.02 H0.00N1.00|H1.00N0.00|H0.97N0.02 H0.00N1.00|H1.00N0.01|H0.94N0.20

k-nn H0.00N1.00|H0.98N0.62|H0.97N0.09 H0.06N0.99|H1.00N0.62|H0.90N0.04 H0.00N1.00|H0.93N0.27|H0.83N0.48

Spatial Simpson index

Evenness: Completely even Medium evenness Dominated
Scattering: Clustered|No effect|Regular Clustered|No effect|Regular Clustered|No effect|Regular
Geometric H0.64N1.00|H0.99N0.04|H0.95N0.01 H0.31N1.00|H1.00N0.06|H0.94N0.04 H0.11N1.00|H1.00N0.74|H0.95N0.31

k-nn H0.00N1.00|H0.98N0.62|H0.97N0.09 H0.00N1.00|H0.99N0.55|H0.81N0.06 H0.00N1.00|H0.99N0.82|H0.59N0.48

Mean ISAR

Evenness: Completely even Medium evenness Dominated
Scattering: Clustered|No effect|Regular Clustered|No effect|Regular Clustered|No effect|Regular
Geometric H0.72N1.00|H1.00N1.00|H1.00N1.00 H0.58N1.00|H1.00N1.00|H1.00N1.00 H0.47N1.00|H1.00N1.00|H1.00N1.00

k-nn H0.00N1.00|H0.98N0.84|H0.91N0.96 H0.06N1.00|H0.96N0.90|H0.57N0.79 H0.00N1.00|H0.71N1.00|H0.28N0.98
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Table C.5 Medium richness, S = 30,n ≈ 300. Envelope test rejection rates for different summaries and
neighbourhoods on different levels of evenness/scattering. Each number is the fraction of rejected envelope
tests against the hypothesis ’no exposure effect’. Hsegregation vs. no exposure effect, Nmingling vs. no
exposure effect. Higher values are darker.

Mean mingling index

Evenness: Completely even Medium evenness Dominated
Scattering: Clustered|No effect|Regular Clustered|No effect|Regular Clustered|No effect|Regular
Geometric H1.00N1.00|H1.00N1.00|H1.00N1.00 H1.00N1.00|H1.00N0.99|H1.00N1.00 H1.00N1.00|H1.00N0.93|H1.00N1.00

k-nn H1.00N1.00|H1.00N1.00|H1.00N1.00 H1.00N1.00|H1.00N1.00|H1.00N1.00 H0.99N1.00|H1.00N1.00|H1.00N1.00

Spatial Simpson index

Evenness: Completely even Medium evenness Dominated
Scattering: Clustered|No effect|Regular Clustered|No effect|Regular Clustered|No effect|Regular
Geometric H1.00N1.00|H1.00N1.00|H1.00N1.00 H1.00N1.00|H1.00N0.99|H1.00N1.00 H1.00N1.00|H1.00N0.89|H1.00N1.00

k-nn H1.00N1.00|H1.00N1.00|H1.00N1.00 H1.00N1.00|H1.00N1.00|H1.00N1.00 H0.98N1.00|H1.00N1.00|H1.00N1.00

Mean ISAR

Evenness: Completely even Medium evenness Dominated
Scattering: Clustered|No effect|Regular Clustered|No effect|Regular Clustered|No effect|Regular
Geometric H1.00N1.00|H1.00N1.00|H1.00N1.00 H1.00N1.00|H1.00N1.00|H1.00N1.00 H1.00N1.00|H1.00N1.00|H1.00N1.00

k-nn H1.00N1.00|H1.00N1.00|H1.00N1.00 H1.00N1.00|H1.00N1.00|H1.00N1.00 H0.97N1.00|H1.00N1.00|H1.00N1.00

Table C.6 Barro Colorado Island rainforest plot, years 1981-2005: Number of plants with dbh≥1cm, number
of species and aspatial Simpson index values for each year.

BCI year 1981 1985 1990 1995 2000 2005
Sample size 235304 247947 254186 243534 227210 222602
Species 307 306 306 305 304 301
Aspatial Simpson 0.9494 0.9485 0.9489 0.9493 0.9501 0.9519

Table C.7 Mean and standard deviation (in parenthesis) of differences of species-wise mingling index and
ISAR values between consecutive years. Values are computed for the 92 focal species in BCI samples with
abundance of dbh>10cm trees atleast 30. The four different neighbourhoods are: 7-nearest neighbours (knn7),
geometric with R = 2m (geo2), Gabriel (gab) and Delaunay (del).

Mingling index
1981–1985 1985–1990 1990–1995 1995–2000 2000–2005

knn7 -0.0004 (0.0043) -0.0011 (0.0048) 6e-04 (0.0040) -4e-04 (0.0047) 0.0003 (0.0042)
geo2 -2.8e-05 (0.0053) -0.0015 (0.0061) 5e-04 (0.0036) -0.0004 (0.0045) 0.0009 (0.0050)

gab 0.0002 (0.0048) -0.0012 (0.0051) 9.4e-05 (0.0045) -0.0002 (0.0066) 0.0006 (0.0047)
del 0.0001 (0.0047) -0.0009 (0.0049) 0.0005 (0.0043) -5e-04 (0.0052) 0.0004 (0.0040)

ISAR
1981–1985 1985–1990 1990–1995 1995–2000 2000–2005

knn7 -0.011 (0.10) 0.051 (0.12) -0.016 (0.10) 0.014 (0.084) -0.01 (0.11)
geo2 -0.031 (0.15) -0.990 (0.20) 0.230 (0.15) 0.200 (0.17) 0.130 (0.18)

gab 0.0013 (0.087) 0.026 (0.11) -0.011 (0.10) 0.0088 (0.097) 0.01 (0.11)
del -0.027 (0.11) 0.062 (0.16) -0.015 (0.13) 0.00076 (0.12) -0.017 (0.15)
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Table C.8 Mean and standard deviation (in parenthesis) of differences of mingling index and ISAR values
between consecutive years. Values include the top 6 abundant species. The four different neighbourhoods are:
7-nearest neighbours (knn7), geometric with R = 2m (geo2), Gabriel (gab) and Delaunay (del).

Mingling index
81–85 85–90 90–95 95–00 00–05

knn7 0.000 (0.006) -0.006 (0.004) 0.001 (0.003) 0.001 (0.005) 0.002 (0.002)
geo2 -0.002 (0.007) -0.008 (0.011) 0.003 (0.006) 0.001 (0.005) 0.003 (0.007)

gab 0.000 (0.005) -0.007 (0.004) 0.002 (0.002) 0.000 (0.008) 0.002 (0.005)
del 0.001 (0.004) -0.007 (0.005) 0.001 (0.003) 0.001 (0.006) 0.001 (0.003)

ISAR
81–85 85–90 90–95 95–00 00–05

knn7 -0.019 (0.045) 0.018 (0.031) -0.017 (0.044) 0.001 (0.022) 0.009 (0.021)
geo2 -0.027 (0.062) -0.865 (0.326) 0.181 (0.076) 0.182 (0.044) 0.159 (0.051)

gab 0.015 (0.031) 0.025 (0.040) -0.026 (0.051) 0.002 (0.043) 0.001 (0.026)
del -0.011 (0.036) 0.010 (0.050) -0.015 (0.036) -0.005 (0.034) -0.021 (0.039)
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Fig. C.2 Fixed neighbourhood and diversity classification over time.


