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Abstract

The linear instability of the gradient zone of a solar pond containing a fluid-
porous interface is investigated. It is found that the gradient zone can retain
the same stability for lower values of the solute Rayleigh number with the
introduction of a porous material compared with a purely fluid layer, whilst
maintaining the same lower convective zone temperature.

Interestingly, it is also shown that for certain parameter values the pene-
tration of a porous medium into the gradient zone can cause the temperature
of the lower convective zone to rise. However, for certain parameter ranges,
when the fluid-porous interface is towards the top of the gradient zone, the
solar pond can become highly unstable.
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1. Introduction

Solar ponds are pools of saltwater which can collect and store solar ther-
mal energy through the stabilizing effect of a salt gradient. When a normal
pool of water is heated by the absorption of solar radiation, the warmer water
rises to the surface and loses its heat to the atmosphere. The net result is
that the pond water remains at nearly atmospheric temperature. In a solar
pond a salt gradient acts to prevent convective motions that would otherwise
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redistribute the absorbed solar energy, which can then be trapped and stored.
Avoiding the onset of convection is, therefore, crucial in the maintenance of
a solar pond.

These ponds occur naturally, e.g. Solar Lake, Israel [4], or can be artifi-
cially created to generate heat and electricity, e.g. El Paso solar pond, Texas
[19]. The temperature within a solar pond typically ranges from 20◦C at the
top to 90◦C at the bottom.

With regards to structure, a solar pond typically consists of three well-
defined zones, namely the upper and lower convective zones (UCZ and LCZ)
where the salinity and temperature can be considered to be uniform, and
the gradient zone (GZ) where there are salt and temperature gradients, see
Figure 1.
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Figure 1: Schematic representation of the structure of a solar pond, with a fluid-porous
interface within the gradient zone (GZ).

The main stability problem of the pond is, therefore, to maintain the
non-convectivity of the GZ region.

There has been extensive experimental and theoretical research into mod-
elling solar ponds (cf. [2, 8, 16, 21] and the references contained within).
More recent work has studied the introduction of porous media to improve
stability [17, 22] and with imposed downward convection [9, 15, 18]. By
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introducing a porous medium into the bottom of the pond, this paper inves-
tigates what influence a GZ fluid-porous interface (see Figure 1) has on solar
pond stability.

We note that, in a wider context, this is the first instance in which the
stability of a double diffusive convection problem with a fluid-porous interface
and the absorption of radiation has been studied in the current literature.

In this paper the modelling of the fluid-porous system is addressed using
a two-layer approach, where the governing equations in the separate fluid and
porous regions are coupled by appropriate interfacial boundary conditions,
see e.g. [3, 11, 12, 24, 25].

An alternative modelling stance is to assume a one-domain approach,
which couples the porous media flow with the viscous fluid flow in a single
form of equations with highly discontinuous coefficients [10, 13, 14]. However,
this approach is mainly used when modelling highly porous materials, where
the Darcy-Brinkman equation is more appropriate, cf. [20].

The stability results, which involve determining eigenvalues and eigen-
functions, are derived numerically using the Chebyshev tau-QZ method [5],
which is a spectral method coupled with the QZ algorithm. All numerical
results were checked by varying the number of polynomials to verify conver-
gence.

2. Formation of the problem

To explore the behaviour of a fluid-porous interface on the efficiency and
stability of a solar pond, let us consider a gradient zone (GZ) contained in the
region {(x, y) ∈ R

2} × {z ∈ (−dm, d)}, with concentrations CL in the lower
convective zone (LCZ) and CU < CL in the upper convective zone (UCZ).
The gradient zone (GZ) is assumed to contain a fluid/porous interface such
that the fluid occupies the region {(x, y) ∈ R

2}×{z ∈ (0, d)} which overlies
a homogeneous porous medium occupying the layer {(x, y) ∈ R

2} × {z ∈
(−dm, 0)}. The interface between the saturated porous medium and the fluid
layer is at z = 0. A schematic representation of this configuration is given in
Figure 1.

We assume that the density of the fluid ρ has a linear temperature and
concentration dependence of the form

ρ(T,C) = ρ0(1 − αt(T − T0) + αc(C − C0)),
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where T is temperature, C is concentration, ρ0, T0 and C0 are reference den-
sity, external temperature and concentration values respectively, and αt and
αc are the coefficients of thermal and solutal expansion respectively. Field
studies [4, 6] show that such an assumption is justified over a certain range
of temperature and concentration values which vary with season and local
forcing. In this study, parameter values are chosen that reflect those given in
Cohen et al. for which a linear approximation is appropriate. The governing
equations in the fluid layer are given by the Boussinesq approximation of the
Navier-Stokes flow equation, the incompressibility condition and the balance
of energy and solute, namely

ρ0

(

∂v

∂t
+ (v · ∇)v

)

= −∇p + µ∇2v

−kgρ0(1 − αt(T − T0) + αc(C − C0)) (1)

∇ · v = 0, (2)

∂T

∂t
+ v · ∇T = κf∇2T +

q̇

(ρ0cp)f

, (3)

∂C

∂t
+ v · ∇C = κc∇2C. (4)

In these equations v = (u, v, w), p, t and µ are velocity, pressure, time and
dynamic viscosity respectively. k = (0, 0, 1), κf = κ′

f/(ρ0cp)f and κ′

f , κc,
g and cp are the thermal diffusivity, solutal diffusivity, acceleration due to
gravity and specific heat at a constant pressure respectively.

As the solar energy is transmitted into the solar pond it is partially ab-
sorbed along its trajectory. The source term q̇ in (3) represents the rate of
energy generation per unit volume in the fluid layer due to this absorption
of solar energy. Using Lambert’s law we have

q̇ = q(d)βfe
βf (z−d) for z ∈ [0, d], (5)

where q(d) is the heat flux due to solar radiation at the upper boundary of
the fluid layer (i.e. at z = d). The extinction coefficient βf takes into account
the transparency of the medium, for example see [7, 16].

The governing equations in the porous layer are given by Darcy’s equation
(see [20, 25]), the incompressibility condition and the balance of energy and

4



solute, namely

µ

K
vm = −∇pm − kgρ0 (1 − αt (Tm − T0)

+αc(C
m − C0)) , (6)

∇ · vm = 0, (7)

(ρ0cp)m

(ρ0cp)f

∂Tm

∂t
+ vm · ∇Tm = κm∇2Tm +

q̇m

(ρ0cp)f

, (8)

ε
∂Cm

∂t
+ vm · ∇Cm = εκc∇2Cm. (9)

In these equations the variables vm = (um, vm, wm), pm, Tm, Cm, K and ε are
the velocity, pressure, temperature, concentration, permeability and porosity
in the porous medium respectively. κm = κ′

m/(ρ0cp)f and the quantities κ′

m

and (ρ0cp)m are defined in terms of the fluid and solid components of the
porous medium, such that Qm = εQf + (1 − ε)Qs, where Qm = κ′

m or
(ρ0cp)m. Subscripts f and s denote the fluid and solid components of the
porous media respectively.

Using (5), the heat flux due to solar radiation at the upper boundary
of the porous layer (i.e. at the interface z = 0) is q(d)e−βf d. Thus, using
Lambert’s law, the rate of energy generation per unit volume in the porous
layer q̇m is given by

q̇m = q(d)βmeβmz−βf d for z ∈ [−dm, 0], (10)

where βm is the extinction coefficient of the porous medium.
At the interface z = 0, the continuity of normal velocity, temperature,

concentration, heat flux and solute flux respectively yield

w = wm, T = Tm, C = Cm,

κ′

f

∂T

∂z
= κ′

m

∂Tm

∂z
, κc

∂C

∂z
= εκc

∂Cm

∂z
. (11)

The remaining boundary conditions at z = 0 are the continuity of normal
stresses

−p + 2µ
∂w

∂z
= −pm (12)

and the experimentally suggested Beavers-Joseph condition [1]

∂u

∂z
=

α√
K

(u − um) ,
∂v

∂z
=

α√
K

(v − vm) , (13)

5



where α is a constant that depends on the porous media. Boundary condition
(12) does not state that the pressure is discontinuous at the respective inter-
faces. In the porous medium, we interpret the pressure as a pore-averaged
pressure and so condition (12) is consistent with continuous pressure in the
fluid on the microscopic level.

At the upper boundary of the gradient zone (z = d) we prescribe the
conditions

w = 0;
∂2w

∂z2
= 0; C = CU ; κ′

f

∂T

∂z
= −hd(T (d) − T0), (14)

where T0 is the external temperature and hd is the natural convection heat
transfer coefficient [7, 16]. The term involving heat flux reflects the fact
that the heat flux from the GZ must be equal to the heat transferred to the
surface by convection. T (d) is the temperature at the top of the GZ and T0 is
the temperature at the surface. At the lower boundary of the gradient zone
(z = −dm) we prescribe the conditions

wm = 0; Cm = CL; κ′

m

∂Tm

∂z
= −qLCZ , (15)

where qLCZ is the heat flux from the lower storage zone. Since the bottom
of the pond is assumed to be insulated we have qLCZ = qabs − qext, where qabs

and qext are the total heat absorbed and extracted in the LCZ per unit area,
respectively. For simplicity it is assumed (only for the derivation of qabs) that
the LCZ is of infinite depth, such that

qabs =

∫

−dm

−∞

q̇m(z) dz = q(d)e−βmdm−βf d.

Hence, representing the extracted heat flux as a fraction f of the absorbed
heat flux, qLCZ is given by

qLCZ = (1 − f)qabs = (1 − f)q(d)e−βmdm−βf d.

The governing equations (1)–(10) and boundary conditions (11)–(15) ad-
mit a non time-dependent steady state solution in which the velocity field is
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zero (corresponding to no fluid flow) and

T (z) = T0 + q(d)

(

1

hd

+
1

κ′

fβf

)

+
fq(d)

κ′

f

(

z −
κ′

f

hd

− d

)

e−βmdm−βf d

− q(d)

κ′

fβf

eβf (z−d),

C(z) = CU +
ε(CL − CU)

εd + dm

(d − z),

∇p = −kgρ0(1 − αt(T − T0) + αc(C − C0)),

on z ∈ [0, d] and

T
m

(z) = T0 + q(d)

(

1

hd

+
1

κ′

fβf

)

+
fq(d)

κ′

f

(

κ′

f

κ′

m

z −
κ′

f

hd

− d

)

e−βmdm−βf d

+q(d)e−βf d

(

1

κ′

mβm

− 1

κ′

fβf

− eβmz

κ′

mβm

)

,

C
m

(z) = CU +
CL − CU

εd + dm

(εd − z),

∇pm = −kgρ0(1 − αt(T
m − T0) + αc(C

m − C0)),

on z ∈ [−dm, 0], with the overbar denoting the steady state.
To illustrate the behaviour of the steady state to those profiles with-

out any porous material, Figure 2 gives some representative temperatures
at the lower boundary of the gradient zone (i.e. T

m
(−dm)) for a specific

physical system. The physical parameters are taken to be T0 = 20◦C,
κ′

f = 0.6 Wm−1◦C−1, κ′

m = 0.8 Wm−1◦C−1, hd = 100Wm−2◦C−1, q(d) =
50 Wm−2 and βf = 0.2 m−1, [7, 16]. The combined fluid/porous depth of
the layer is taken to be 1m, which corresponds to d + dm = 1. The non-
dimensional parameter

d̂ =
d

d + dm

,

is the fraction of the total layer depth taken up by the fluid. Thus, d̂ = 1
corresponds to a layer consisting solely of fluid material, with d̂ = 0 corre-
sponding to an entirely porous layer. The values for the extinction coefficient
of the porous material βm are taken from [9].
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Figure 2: Representation of steady state temperature T
m

(−dm) against the fraction of the

gradient zone taken by the fluid d̂. The extracted heat flux in the storage zone (taken as a
fraction f of the absorbed heat flux) is taken to be 0, 0.2, 0.5 and 0.8, with (a) βm = 0.7
and (b) βm = 5.
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From Figure 2 we can see that when more heat flux is extracted in the
storage zone (i.e. f is increased), T

m
(−dm) falls (for fixed d̂), as one would

intuitively expect.
A much more interesting effect manifests when porous material is intro-

duced into the gradient zone. For example, for f = 0.8 in Figure 2(b) the
maximum value of T

m
(−dm) actually occurs when the bottom 30% of the

gradient zone is porous material, namely T
m

(−dm) ≈ 71◦C at d̂ = 0.7. For
a solely fluid layer, d̂ = 1, we have T

m
(−dm) ≈ 41◦C. This means that the

introduction of the porous material has resulted in a 30◦C rise in tempera-
ture at this point of the layer. This is less pronounced in Figure 2(a) where
βm = 0.7 (as opposed to βm = 5 in Figure 2(b)) and, in general, for lower
values of f.

The only variable which changes the structure of the steady state tem-
perature profiles significantly is the porous media extinction coefficient βm,
as shown in Figure 3. The remaining parameters are taken as in Figure 2
with f = 0.5 and d̂ = 0.5. As βm is increased the gradient of the temperature
profile becomes sharper. At βm = 25 the temperature profile is essentially
constant throughout the bulk of the porous layer, whereas for βm = 0.7 and
5 there is still a gradient. Physically, this does raise the question of whether
the salt gradient would extend to the bottom of the GZ or not (when, in the
model, the temperature gradient is essentially constant for a significant pro-
portion of the GZ), suggesting possible physcial limits on the value of d̂, i.e.
how far the porous medium can penetrate into the GZ. Further experimental
work would be beneficial to explore this issue. The behaviour of the model
with this temperature profile type is discussed further in Section 4.

To assess the stability of the steady solution we introduce perturbations
to the steady state solution, such that

v = v + u, T = T + θ, C = C + φ, p = p + p̂,

vm = vm +um, Tm = T
m

+ θm, Cm = C
m

+ φm, pm = pm + p̂m.

The governing equations (1)–(4) of the fluid layer are non-dimensionalised
with the scalings

u =
κf

(d + dm)
u∗, p̂ =

µκf

(d + dm)2
p̂∗, θ = T0θ

∗, φ = (CL − CU)φ∗,

x = (d + dm)x∗, t =
(d + dm)2

κf

t∗.
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Figure 3: Steady state temperature profiles with depth z against temperature in ◦C. The
profiles correspond to βm = 0.7, 5 and 25.

The porous layer scalings follow analogously from those of the fluid layer by
replacing κf with κm, with p̂m = (p̂m)∗µκm/K.

Defining the non-dimensional variables

d̂ =
d

d + dm

, Q =
q(d)(d + dm)

κ′

fT0

, µf = βf (d + dm), µm = βm(d + dm),

ǫT =
κ′

f

κ′

m

, Gm =
(ρ0cp)m

(ρ0cp)f

, δ =
K

(d + dm)2
,

and substituting the perturbations and non-dimensionalised variables into
(1)–(10) (and dropping the stars), we derive the systems

Pr−1

(

∂u

∂t
+ (u · ∇)u

)

= −∇p̂ + ∇2u + kR2
T θ − kR2

Sφ, (16)

∇ · u = 0, (17)

∂θ

∂t
+ u · ∇θ = QF1(z)w + ∇2θ, (18)

Le

(

∂φ

∂t
+ u · ∇φ

)

= εMw + ∇2φ, (19)
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in R
2 × (0, d̂) × (0, ∞), where F1(z) = e−µf d̂

(

eµf z − fe−µm(1−d̂)
)

and

um = −∇p̂m + kδǫT R2
T θm − kδǫT R2

Sφm, (20)

∇ · um = 0, (21)

Gm

∂θm

∂t
+ um · ∇θm = QǫT F2(z)wm + ∇2θm, (22)

Le

(

ε
∂φm

∂t
+ um · ∇φm

)

= Mwm + ǫT ε∇2φm, (23)

in R
2 × (d̂ − 1, 0) × (0, ∞), where F2(z) = e−µf d̂

(

eµmz − fe−µm(1−d̂)
)

and

M = Le/(εd̂ + 1− d̂). The remaining non-dimensional variables are given by

R2
T =

gαtT0(d + dm)3ρ0

µκf

, R2
S =

gαc(CL − CU)(d + dm)3ρ0

µκf

, P r =
µ

ρ0κf

, Le =
κf

κc

,

where R2
T and R2

S are the fluid thermal and solute Rayleigh numbers, respec-
tively, Pr is the Prandtl number and Le is the Lewis number.

3. Linear Instability Analysis

To proceed with a linear instability analysis the nonlinear terms in equa-
tions (16) to (19) are discarded. Since the resulting system is linear and
autonomous we may seek solutions of the form

u = u(z)eσt+i(a1x+a2y), p̂ = p̂(z)eσt+i(a1x+a2y),

θ = θ(z)eσt+i(a1x+a2y), φ = φ(z)eσt+i(a1x+a2y),

where a1, a2 ∈ R are the horizontal wavenumbers and σ ∈ C. Analogous
definitions apply to the porous layer equations (20)–(23), with superscript
m. The growth rate σ (noting σm = ǫT σ) can now be used to assess whether
the non time-dependent steady state is unstable. If Re(σ) > 0, then the per-
turbation will grow exponentially in time, clearly leading to linear instability.

Letting D = d/dz, and taking the double curl of (16) and (20) to remove
the pressure terms, systems (16)–(19) and (20)–(23) become

(D2 − a2)2w − a2R2
T θ + a2R2

Sφ =
σ

Pr
(D2 − a2)w,

(D2 − a2)θ + QF1w = σθ, (24)

(D2 − a2)φ + εMw = σLeφ,
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and, noting am
1 = a1, am

2 = a2,

(D2 − a2)wm + a2δǫT R2
T θm − a2δǫT R2

Sφm = 0,

(D2 − a2)θm + QǫT F2w
m = GmǫT σθm, (25)

ε(D2 − a2)φm +
M

ǫT

wm = σLeεφm,

where a2 = a2
1 + a2

2. The boundary conditions for system (24)–(25) at z = d̂
are

w = D2w = φ = 0, Dθ = −Hdθ,

whereas at z = d̂ − 1 they are

wm = Dθm = φm = 0,

where Hd = hd(d + dm)/κ′

f . On the interface z = 0, we have

ǫT w = wm, θ = θm, ǫT Dθ = Dθm, φ = φm, Dφ = εDφm.

The remaining boundary conditions on the interface come from (13) (where
(13)1 and (13)2 are differentiated with respect to x and y, combined using
(2) and (7), and then non-dimensionalised) to give

√
δD2w = α(Dw − ǫ−1

T Dwm)

and (12) (where (12) is differentiated with respect to x and y separately,
combined using (1), (2), (6) and (7), and then non-dimensionalised) to give

σ

Pr
Dw − (D2 − a2)Dw + 2a2Dw =

1

ǫT δ
Dwm.

System (24)–(25) constitues a generalised eigenvalue problem for σ, which was
solved using the Chebyshev tau-QZ method [5]. The critical thermal Rayleigh
number is located by varying R2

T to find Re(σ) = 0 whilst minimising over
the wavenumber a2. The numerical results are presented in §4.

4. Numerical results

We now solve the eigenvalue problem (24)–(25) by means of a D2 Cheby-
shev tau method. The details are similar to those given by Dongarra et al.
[5]. Equation (24)1 is written as two second-order equations and we solve
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equations (24)–(25), not as a fourteenth-order system, but as seven second-
order equations. The numerical results have been checked by varying the
number of polynomials to verify convergence.

Taking physically realistic values [7, 9, 16], the parameters, unless stated
otherwise, are fixed at d̂ = 0.7, Hd = 150, Q = 4, µf = 0.2, µm = 5, ǫT = 0.7,
f = 0.5 and R2

S = 10000.
Figure 4 shows the effect of Q on the stability of the solar pond by giving

(a) the neutral curves at representative parameter values and (b) the corre-
sponding temperature in the LCZ, TLCZ , (i.e. the steady state temperature
at the bottom of the GZ). To aid in interpretation, the external temperature
T0 is assumed to be 20◦C, so that, in dimensional form, TLCZ = T (−dm) is
given in ◦C.
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Figure 4: Graph (a) gives a visual representation of the linear instability thresholds for
Q = 1, 4 and 5.5, with critical thermal Rayleigh number R2

T
plotted against the fraction

of the gradient zone taken by the fluid d̂. Graph (b) gives the corresponding steady state

temperature TLCZ in ◦C against d̂.

As one would intuitively expect, if the GZ layer depth is fixed, an increase
in Q (corresponding to an increase in the heat flux at the top of the solar
pond) causes the pond to become more unstable. Interestingly, though, as the
porous medium enters the GZ (i.e. as d̂ decreases from 1) we can see that the
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system becomes more unstable before re-stabilizing. The corresponding LCZ
temperature TLCZ follows an analogous reciprocal pattern, increasing as d̂ is
reduced from 1 before decreasing. As d̂ → 0, under the stated parameters,
the pond becomes highly stable, although value of TLCZ is greatly reduced.

For Q = 4 and 5.5, TLCZ takes a maximum value at approximately d̂ =
0.77, namely 74◦C and 94◦C. Without the presence of the porous media (i.e.
d̂ = 1) the corresponding temperatures are 60◦C and 75◦C.

Figure 5 shows the neutral curves for a variation of depth ratio d̂ values,
with critical thermal Rayleigh number R2

T plotted against solute Rayleigh
number R2

S.
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Figure 5: Visual representation of the linear instability thresholds for d̂ = 0.3, 0.408, 0.7
and 1, with critical thermal Rayleigh number R2

T
plotted against solute Rayleigh number

R2

S
.

From Figure 5 we can see, as would be physically expected, that an
increase in R2

S causes the pond to become more stable. Since TLCZ is in-

dependent of R2
S, the TLCZ value corresponding to each d̂ can be seen from

Figure 3b (for Q = 4).
The highly interesting case is to compare a solely fluid layer with a fluid-

porous system which has the same TLCZ i.e. the LCZ is at the same temper-
taure with/without the porous medium. In Figure 5 this is given at d̂ = 1
and d̂ = 0.408 for the solely fluid and fluid-porous system, respectively. We
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can see that for lower values of the solute Rayleigh number the neutral curve
for d̂ = 0.408 is less unstable than for d̂ = 1. Although, there is a critical
value of R2

S (≈ 17360) for which the solely fluid layer becomes more stable.
This result demonstrates that, in the presence of a fluid-porous interface,

a solar pond can retain the same stability for lower values of the solute
Rayleigh number than a purely fluid layer, whilst maintaining the same lower
convective zone temperature.

In Figure 4a it was observed that as d̂ → 0, the pond becomes highly
stable. This result was for the porous medium extinction coefficient µm = 5
and is repeated for all data collected for µm ≤ 15. Figure 6 demonstrates
the behaviour of the neutral curves at representative values of µm under and
over 15.
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Figure 6: Visual representation of the linear instability thresholds for µm = 0.7, 5, 15.4 and
25, with critical thermal Rayleigh number R2

T
plotted against the fraction of the gradient

zone taken by the fluid d̂.

For all values of µm the neutral curves behave similarly for d̂ ≥ 0.4.
However, for µm = 15.4 there is a distinct region of instability (where the
onset of convection propagates primarily in the porous region) that becomes
present for d̂ ≤ 0.05 i.e. where the layer is ≥95% porous material. As µm is
increased to 25, this region expands considerably, with the GZ being entirely
unstable for lower values of d̂.
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However, as discussed in Section 2, the validity of the model for such
high values of µm, where the steady state temperature profiles are essentially
constant for the bulk of the porous material, is unclear. Coupled with the
highly unstable nature demonstrated in Figure 6 this strongly indicates that
the model validity is more substantial for higher values of d̂, i.e. where the
porous material only penetrates into the lower sections of the GZ.

5. Conclusions

Solar ponds capture and store solar radiation through the stabilizing effect
of a salt gradient. They typically have a three layer structure, with the upper
and lower layers containing roughly constant temperature and salt profiles,
with a gradient zone (GZ) between them. This makes the GZ essentially a
double-diffusive layer of salt and temperature. Maintaining the stability of
the GZ is, therefore, crucial in its functionality. There has been extensive
theroretical and experimental research conducted on solar pond modelling,
with a recent development [17, 22, 9, 15, 18] being the introduction of porous
material.

In the present article we have analyzed the instability of the GZ of a
solar pond, where there is a fluid layer overlying a porous material, with the
fluid-porous interface falling within the GZ.

The results indicate that a fluid-porous pond may retain the same sta-
bility for lower solute Rayleigh numbers as compared to a purely fluid pond,
whilst retaining the same lower convective zone temperature.

It is also shown that the lower convective zone temperature may also be
increased by the introduction of porous material, although this does, as one
would intuitively expect, result in more instability.

Although the GZ is shown to be highly unstable for high values of the
porous extinction coefficient (where the bulk of the medium is porous mate-
rial) it is suggested, by studying the steady state temperature profiles, that
the model may not be suitable for such regions due to the essentially constant
behavior of the steady state temperature in the assigned GZ.

One major issue in the design and installation of man made solar ponds
is what material to use for the liner [23]. The work presented here shows
that the presence of a porous material will affect the stability of a solar
pond. Due to the modelling deficiencies identified above, however, a detailed
investigation of the characteristics of the porous material are beyond the
scope of the paper and as such are left for future study.
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