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Abstract

This thesis exploits so called “Optical Eigenmodes” (OEi) in the focal plane of
an optical system. The concept of OFEi is introduced and the OEi operator ap-
proach is outlined, for which quadratic measures of the light field are expressed as
real eigenvalues of an Hermitian operator. As an example, the latter is employed
to locally minimise the width of a focal spot. The limitations of implementing
these spots with state of the art spatial beam shaping technique are explored and
a selected spot with a by 40 % decreased core width is used to confocally scan an
in focus pair of holes, delivering a two-point resolution enhanced by a factor of
1.3.

As a second application, OEi are utilised for fullfield imaging. Therefore they
are projected onto an object and for each mode a complex coupling coefficient
describing the light-sample interaction is determined. The superposition of the
OEi weighted with these coefficients delivers an image of the object. Compared
to a point-by-point scan of the sample with the same number of probes, i.e.
scanning points, the OEi image features higher spatial resolution and localisation
of object features, rendering OEi imaging a compressive imaging modality. With
respect to a raster scan a compression by a factor four is achieved. Compared
to ghost imaging as another fullfield imaging method, 2-3 orders of magnitude
less probes are required to obtain similar images. The application of OEi for
imaging in transmission as well as for fluorescence and (surface enhanced) Raman
spectroscopy is demonstrated.

Finally, the applicability of the OFEi concept for the coherent control of nanos-
tructures is shown. For this, OEi are generated with respect to elements on a
nanostructure, such as nanoantennas or nanopads. The OEi can be superim-
posed in order to generate an illumination of choice, for example to address one
or multiple nanoelements with a defined intensity. It is shown that, compared to
addressing such elements just with a focussed beam, the OEi concept reduces illu-
mination crosstalk in addressing individual nanoelements by up to 70 %. Further-
more, a fullfield aberration correction is inherent to experimentally determined
OEi, hence enabling addressing of nanoelements through turbid media.



An animal with an olfactory sense or with hearing, however well
developed, could never have created science. A smell is either good
or bad, and even hearing is never entirely neutral; music can convey
emotions with an immediateness of which the sober wisual arts
are incapable. No wonder that the very word “objective” has been
appropriated by optics.

Dennis Gabor,

about a remark of
Aldous Huxley
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Chapter 1

Introduction

Oscillations refer to events that are repeating themselves and are inherent in
almost all natural processes. Be it the recurring change between the seasons or
between day and night, the periodic ebbing of the tide, or just waves on the
ocean, moving water up and down over and over again. All these processes are
oscillations. As already implied by the latter example, in a physical manner the
periodicity of these events can be dealt with as wave behaviour. An illustrative
example for wave motion, besides water waves, is the swinging of a pendulum.
However, also less intuitive phenomena, like the movement of an electron in the
Coulomb potential of a hydrogen nucleus or the nature of light, may be described
as a wave.

Another well known instance of waves and oscillations is the field of acoustics.
A string, which is under tension fixed between two points, will start to vibrate if
it is excited, e.g. by moving it away from its equilibrium position and releasing it.
This vibration is transfered to the surrounding air and detected as a sound, when
striking our eardrum. Depending on the excitation, the string can either move
in a “chaotic” manner or in a stable standing wave pattern. In the second case
the string was hit at resonance. This means that the excitation was supporting
a “natural” state of motion of the string. These forms of oscillation are called
eigenmodes, normal modes, or simply modes of the string. They are characterised
by their “natural” wavelength and frequency.

In general, every oscillating system has characteristic modes that describe
states of oscillation and energy of the system. This can be an object of every-
day life, such as a car body, whose dynamic properties are tweaked using modal
analysis [I]. But also a rather big object like our earth has distinctive modes
of core and mantle that can be excited by seismic activity, as happened by the
Great Bolivia and Kuril Islands earthquakes in 1994 [2]. With respect to sound
and vibration, modal analysis is for example used to determine and tailor the
acoustical properties of a violin 3, 4]. Figure shows so called “Chladni figures”
of the top and bottom plate of a violin. They are generated by fixing the plates
above a powerful speaker and exciting it with sound of different frequencies [5].
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Figure 1.1: Chladni figures of the top and bottom plate of a violin, excited with
frequencies between 91 Hz and 392 Hz (pictures with permission of Joe Wolfe from
http://www.phys.unsw.edu.au/jw/patternsi.html, accessed 14" March 2012).
For better visibility the colours of the pictures are inverted, such that the powder
which accumulates in the nodal areas is white.

If the sound hits a resonant frequency of the plate, a powder put on top of the
plate accumulates in the nodal areas of the excited mode. Tonal adjustment of
the violin can then be done by changing the stiffness and mass distribution of the
plate. Another example for the application of modal analysis is in characterising
the dynamic properties of buildings [6]. Bridges are subject to vibrations, which
may be vehicle induced [7], occur under passage of a train [§], or originate from
natural phenomena such as wind [9] or earthquakes [I0]. Furthermore, also the
stability of tall as well as small houses is affected by seismic activated [11] and
traffic-induced vibrations [12]. Here, modal analysis helps adjusting the construc-
tion, e.g. by damping, in order to minimise resonances with these factors and
avoid incidences such as the collapse of the Tacoma Bridge in 1940 [13].

However, there is more in the concept of modes than “just” analysing resonances.
An important property of modes is that their oscillations are orthogonal with
respect to each other, each of the modes representing a degree of freedom of a
linear system. Hence, every possible state of the system can be expanded into a
linear superposition of modes. What makes this approach very powerful is that
most states of the system can be well described using the system’s most prominent
modes. This compressive feature finds applications for speeding up detection and
modeling processes. Face recognition for example is used in security systems and
criminal identification. Omne approach for improving this procedure is to first
determine a set of eigenfaces, which represent the most significant features from
a sample of test faces [14] [I5]. The eigenfaces can be thought of as “modes” of the
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Figure 1.2: Intensity distribution of the first 20 Hermite-Gaussian modes in a laser
cavity with rectangular symmetry calculated according to [22].

human face, which oscillate around the average face of the sample. A picture of a
face which one wants to identify is then projected onto this subset of eigenfaces,
delivering projection coefficients to approximate the given face. This enables
comparison of the obtained coefficients with the sets of coefficients in the database
to identify a face, which is much faster than comparing the face to every single
face in the database picture by picture. A further application of modal analysis is
in modelling the motion of objects. Therefore an object’s motion is decomposed
into deformation modes. Then the movement of the object is modelled as a linear
superposition of only the principle modes, thus greatly reducing computational
load [16]. This approach is used in engineering to model dynamic properties of
objects such as airfoils [I7]and in computer anmiations used for surgical training
[18, 19]. Moreover modal analysis is employed to animate characters [20] and
their clothes [2I] in e.g. video games or animated movies.

In the field of optics and photonics the concept of modes is traditionally im-
portant for lasers and their cavities, respectively, as well as for waveguides such
as optical fibers. Here one distinguishes between longitudinal modes, which cor-
respond to the spectral content of the light, and transverse modes, that are char-
acterised by their spatial intensity and phase distribution in a transverse cross
section through the waveguide or cavity. As an example, Figure depicts in-
tensity profiles of the first 20 transverse modes in a laser cavity with rectangular
symmetry. An analysis of these modes can be performed e.g. with complex op-
tical filters [23-27] or by a numerical “fit” of a chosen basis set to a measured
intensity pattern [28]. On the one hand this gives insight into effects like mode
competition [29] and mode coupling or loss mechanisms. Furthermore it supplies
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Figure 1.3: Schematics of some examples beams: (a) Gaussian beam, (b) Laguerre-
Gaussian beam, (c) bottle beam, (d) Airy beam, (e¢) Bessel beam, (f) Axially elon-
gated focus, (g) periodic interference pattern.

knowledge about the propagation properties, hence enabling prediction of the
beam size and quality at certain distances from the fiber or laser output [30H32].
On the other hand the mode concept is useful to tailor the output of lasers and
fibers. For example the bending loss of a large area multimode fiber, allowing
higher power throughput then smaller area single mode fibers, can be tweaked
in order to impair higher order modes [33-35]. This enables near single mode
operation for high power applications. To increase the output power of lasers
they can be forced into single higher order transverse mode operation e.g. by
positioning phase optical elements inside the cavity [36]. The higher order mode
exploits a bigger volume of the gain medium than the fundamental gaussian mode,
hence delivering more output power, while still featuring stable operation and low
divergence [37].

Recently, more and more photonic applications evolve that also use light fields
deviating from the fundamental Gaussian beam profile, which is shown in Fig-
ure [I.3p. Applications include, but are not limited to, optical micromanipulation,
imaging, and coherent control. The latter refers to the structured illumination of
plasmonic nanostructures to selectively activate elements of that structure. This
is useful for for sensing or micromanipulation as well. In the following some of
these applications are explained in more detail.

With respect to imaging, modified focal fields or point spread functions (PSF)
are mostly used to improve spatial and temporal resolution. Certain modifications
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to the pupil of the illuminating or detecting objective of a scanning confocal micro-
scope can improve axial [38] or lateral resolution [39]. In a widefield fluorescence
microscope, enhanced axial localisation capabilities can for example be obtained
by inducing a controlled two dimensional astigmatism on the detection side [40].
A very popular instance from imaging using for example a “doughnut” shaped
light beam to obtain enhanced resolution is REversible Saturable/Switchable
Optical Linear Fluorescence Transition (RESOLFT) microscopy. The concept
of RESOLF'T is to spatially restrict fluorescence by a bleaching spot with zero
intensity in its center, thus delivering an effective PSF reduced in size. Imple-
mentations include STimulated Emission Depletion (STED) and Ground State
Depletion (GSD) microscopy [41],42]. In STED microscopy, fluorescence is excited
by a normal Gaussian beam. Then a Laguarre-Gaussian (LG) beam, depicted
in Figure [I.3p, depletes the fluorescence again, except for the small central dark
region of the beam. This procedure limits the area from which fluorescence is
emitted and detected, hence enabling imaging below the diffraction limit. The or-
der of excitation and depletion is inverted in GSD, for which first the ground state
of the fluorophor is depleted with the LG beam, such that the Gaussian beam
only excites fluorescence in a small region. To improve also the axial resolution
with the RESOLFT method, light patterns are used that feature a dark central
core in three 3D [43], such as a so called “bottle beam”, shown in Figure [L.3f.
Another imaging example that uses spatially structured light fields is Structured
[lumination Microscopy (SIM). In SIM a resolution gain is achieved by projecting
a periodic fringe pattern onto the sample and numerically evaluating the moiré
fringes resulting for different orientations and positions of the fringes [44]. Also
using full field illumination of the sample opposed to scanning a focussed beam,
the number of probes to obtain an image can be reduced for sparse samples by
compressive imaging [45]. Here the sample is illuminated with various patterned
light fields, and for each of the fields the total intensity resulting from the light-
sample interaction is recorded. Furthermore, modifying the light incident on or
collected from the sample, it is even possible to image through turbid media [46].

In the field of micromanipulation, microscopic objects can be trapped in high
and low intensity areas of focussed beams [47, [48]. For example the optical force
acting on a particle can be used to trap a particle in the center of a Gaussian beam.
A simple translation of the beam in 3D evokes a translation of the particle. This
method allows to manipulate one particle with one focus. Using more complex
beams, micromanipulation can be performed with a higher throughput. Beams
such as hollow core Laguerre Gaussian beams, Bessel beams, and Airy beams
allow efficient transport of particles in two and three dimensions [49H51]. A so
called “Airy beam” for example is generated by a cubic phase gradient in the pupil
plane. Its beam path exhibits a curve, on which particles move along. This effect
is visualised in Figure and it can be used to move particles from one sample
chamber to another [5I]. In the “washboard” type potential of a Bessel beam,
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particles first gradually move in lateral direction towards the center of the beam
and finally in axial direction along the elongated focus [50]. Figure shows
a sketch of this process. Furthermore, elongated foci enable optical binding [52],
alignment of elongated objects like for example glass rods and chromosomes [53],
and stacking of particles [54, B5]. The latter situation is depicted in Figure .
To parallelise manipulation of matter, complex light shaping is used to generate
periodic potentials for the light-matter interaction. For example microscopic
particles can be periodically confined in arrays of traps [56] and close to surfaces
in evanscent interference patterns [57, 58], as illustrated in Figure [L.3g. Further
than just trapping and transporting them, particles can also be sorted in standing
wave patterns or “optical lattices” [59, 60]. Moreover, complex fields enable not
only the translation of particles, but also other movements such as rotation. For
example small objects can be rotated in spiral interference patterns [61] and by
light beams carrying orbital angular momentum [62H65], such as the LG beam in
Figure [1.3p, which features a rotational phase gradient around its center.

A third utilisation of structured light fields is so called “coherent control” [66l-
69]. Here metallic nano structures such as nanopads [70] or antennas [71] are co-
herently illuminated in order to form “photonic landscapes” in their vicinity [71].
The intensity maxima and minima of these can for example be used for optical
trapping [72-74] and sensing with fluorescence and SERS [75H77|. Furthermore,
the local heat generation due to the field enhancement enables convections on
the microscopic scale [78], which can again be utilised for trapping [79]. As the
structures are fabricated by etching or ion beam milling in materials like gold or
silver, they are static. But the light fields they form can still be modified to some
extend by shaping the illumination [66] [67, [69], for example using higher order
Hermite-Gaussian modes [68] as depicted in Figure . This promises the flexi-
ble use of static nanostructures for novel schemes in optical micromanipulation,
sensing, and maybe also imaging.

In conclusion there are many applications for light fields, which are different
from a conventional Gaussian beam. However, in most of the cases the light fields
for each application are based on an intuitive choice. This means that either ideas
for new applications evolve based on already known fields or for a new application
idea a field with sufficient properties is selected from a repertoire of already known
fields. For example the intuitive choice for spinning a particle would be a beam
with some angular momentum or for optical guiding one would chose an elongated
beam profile. But would it not be more efficient to freely tailor the field to fulfill
specified properties depending on the application one has in mind? — Exploring
that option is part of this work. The basic concept used here is to first decompose
the optical field in the focal plane of an optical system into orthogonal modes,
here called Optical Eigenmodes (OEi). Then the superposition of these modes is
tailored to exhibit certain properties. One method is to construct, based on the
OEi, operators, whose eigenvalues correspond to the magnitude of a quadratic
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measure of the field, such as optical intensity or momentum. The corresponding
eigenfunctions are the fields featuring that magnitude. This concept is related
to quantum mechanics, where the observables of a system are eigenvalues and
the states of the system are eigenfunctions of an operator [80]. Importantly, the
field corresponding to the minimum eigenvalue minimises the chosen quadratic
measure, while the field related to the maximum eigenvalue maximises it. Hence,
based on the eigenvalue spectrum, one can select the optical field that extremises
the chosen measure. In Chapter [3| this method is used to minimise the width of
a focal spot.

Another important feature of the OEi is their orthogonality and the fact that,
based on their eigenvalue spectrum, they can be ordered by their information
content. Hence, they form the optimum base to express a quadratic measure,
such as intensity. For an intensity image this means that they are the set of
functions to express the information in that image with the minimum possible
number of functions. In Chapter {4 this property is used for highly compressive
imaging. Therefore the OFEi are projected onto the object one wants to image
and for each mode a complex coupling coefficient with respect to the sample is
determined. The superposition of the modes with these coefficients then delivers
an image of the object.

In a similar fashion, optical eigenmodes can be projected onto a target function,
i.e. a light fields one wants to generate. The resulting superposition of the
modes then delivers the desired field. This concept is employed in Chapter |5 to
perform coherent control of gold nanostructures. Here the advantage of using
OFEi to approximate a target function opposed to for example a superposition of
Gaussian beams is, that due to their orthogonality and phase information, the
superposition of OEi can correctly deal with interference.

Additionally to the structure that has already been outlined by now, Chapter [f]
summarises the content of this thesis and provides conclusions and an outlook
onto future directions. The next Chapter [2] covers the theory of propagation and
focussing of light and introduces the concept of optical eigenmodes.



Chapter 2

Optical Eigenmodes

This chapter deals with the decomposition of coherent light into Optical Eigen-
modes (OEi). Section gives a brief introduction into light as a wave. The
outlined solutions of the wave equation are used in Section [2.2| for the numerical
description of propagation and in particular of focussing of light. This is needed
to simulate probe fields in the focal plane of an optical system, which are then
used to calculate OEi. The diffraction limit is a fundamental restriction for many
photonic applications. It prohibits perfect focussing of light and also plays a cen-
tral role throughout this thesis, for example for the coherent control of metallic
nanostructures, which is dealt with later on. Attention is paid to the diffraction
limit in Section 2.3] In Section optical degrees of freedom in a linear optical
system are discussed and related to the OEi. Section deals with the heart
of this thesis: Optical Eigenmodes. It is described how the focal plane of a lin-
ear optical system is decomposed into its degrees of freedom, i.e. into optical
eigenmodes. Furthermore, the concept of extremising quadratic measures of the
light field using operators is outlined. Finally, examples for OFi in a square and
a circular region are determined and illustrated. The content of this chapter is
summarised in Section 2.6

2.1 Light

According to the concept of wave-particle duality, light exhibits properties of
both waves and particles [8I]. Particle like behaviour can be observed during
interaction with matter in terms of emission and absorption processes, such as
the photo electrical effect [82]. For optical systems involving propagation through
free space, lenses, and other optical elements, it is more convenient to describe
light in a wavelike manner as an electromagnetic or wave field. In general light is
a three dimensional vector field U(r,t) depending on both the spatial coordinate
r and the time ¢. However, methods presented in this work rely on experimen-
tal measurements of the field. With conventional interference techniques this
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only delivers scalar amplitude and phase information. Thus the procedure is
here simplified to the scalar field U(r,t) only. Monochromatic fields in a linear,
homogeneous, and isotropic medium are solutions of the scalar wave equation [83]

{V2—C—12§—;}U(r,t) =0 (2.1)

with ¢ representing the phase velocity of light in a given medium. Substituting
the separation of variables U(r,t) = E(r)V(t) into Equation delivers two
individual equations, one for the space dependent part F(r) and one that governs
the time dependence V' (t). In the following the latter is neglected, as this work
deals with spatial light modes. The space dependent part of Equation [2.1] is
known as the Helmholtz Equation [34)

{V?+ K} E(r)=0. (2.2)
In Equation , k = 2mv/c denotes the magnitude of the wave vector

T

Y (2.3)

z

k =

I T

and v is the frequency of the light. Prominent solutions of Equation are plane
waves

E(r) = Eye™, (2.4)

propagating in the direction of k, and spherical waves

Ey .
E(r) = =2 e (2.5)
r
with their source located at the coordinate origin and r being the magnitude of
r.

2.2 Propagation and focussing of light

The theory of light’s propagation and focussing deals with the question of calcu-
lating the field in one plane of an optical system if it is known in another plane.
The basis for scalar propagation theory is Huygens’ integral, which is described
in Section 2.2.1] The Fresnel approzimation in Section simplifies Huygens’
integral in paraxial optical systems. Ray optics, depicted in Section [2.2.3], are a
convenient tool for modeling the propagation through paraxial optical elements
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Figure 2.1: Propagation of light from one plane to a parallel plane according to
Huygens’ principle.

such as lenses. In Section [2.2.4]it is described, how ray optics and Huygens’ inte-
gral are combined to simulate the focussing of light in radial symmetry. Modeling
the focus of high numerical aperture (NA) optics requires vectorial propagation
methods, of which one is specified in Section [2.2.5] However, the vectorial nature
of light is in this case only used for the propagation itself, the calculation of OEi
is then carried out with the scalar magnitude of the field.

2.2.1 Scalar theory of propagation: Huygens’ integral

The underlying idea for the propagation theory of light is Huygens’ principle [85].
Huygens suggested that each point of a primary wave front can be considered as
the source of a secondary spherical wave. The primary wave at another point in
space then results from the superposition of all the secondary waves at that point.
In mathematical terms this can be expressed as Huygens’ integral [22]:

F(ry) = %//E(rl) %eikr cos 0 do. (2.6)
S

In Equation the field £ at the point r; on the primary wave front is a source
of a spherical wave exp(ikr)/r, which is weighted with the factor cos§. The angle
@ is the inclination between the vector ro — r; and the normal n of the surface
element do;. Integration over the whole surface S delivers the field F' at the point
ro on another primary wave front. The quotient i/A in front of the integral is
a normalisation factor. Figure depicts the described situation for the simple
case of a wave field propagating in z-direction from one plane to another parallel
plane.

10
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2.2.2 Fresnel approximation

In a paraxial situation, implying that the angle 6 in Equation [2.6| is small, Huy-
gens’ integral can be simplified. This is useful to evaluate it via a Fast Fourier
Transform (FFT) approach, hence enabling a rapid numerical implementation
[86]. A further advantage, which will be used in this work, is that Huygens’
integral can be written using ray matrices. These have the potential to model
propagation through multicomponent paraxial optical systems in a convenient
way.

For the Fresnel approximation it is, without loss of generality, assumed, that
the major direction of propagation is along the z-axis. This corresponds to the
situation depicted in Figure [2.1. Furthermore, the points r; and ry are located
close to the z-axis, such that the angle 6 is small. Then the factor cosé in
Equation [2.6{ can be approximated as unity. Moreover, the distance r between r;
and ro, which in cartesian coordinates is

r= /(2 —21)? + (Y2 — 11)? + (22 — 21)?, (2.7)
can be approximated by the first terms of the power series
(22 — 21)* + (y2 — y1)*
2 (ZQ — Zl)
The distance r in the exponent of Equation [2.6]is approximated by the first two
terms of Equation [2.8] and for r in the denominator all but the first term are
dropped. If now, as in Figure [2.1] one is only interested in the propagation in z-

direction between two parallel planes, then z5 — z; equals the distance L between
these planes and Equation [2.6 finally becomes

: _ 2 _ 2
F(ry) ~ ﬁei“ / / E(ry) exp [ik:<w2 T Wm0 g (29)
S

r=2z2y— 2+ +- (2.8)

2L

Equation [2.9|is the Fresnel approximation of Huygens’ integral, valid in paraxial
optical systems.

2.2.3 Ray optics & ray matrices

A very convenient way to deal with the propagation of light through paraxial
optical systems is by means of ray optics using ray matrices. In a system that
is radial symmetric around the z-axis, each point of a ray can be described by
its distance p to the z-axis and the slope p’ = dp/dz of the ray in that point as
illustrated in Figure [2.2h. These two properties are bundled in a ray vector

Y — (5,) . (2.10)

11
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ray, .ray

Figure 2.2: According ray optics: (a) Distance p to the z-axis and slope p’ at a
point ' of a ray. (b) Propagation of a ray in free space. (c) A ray transmitted
through a thin lens of focal length f.

The effect of a paraxial optical element on a ray can then be represented by a
ray or ABCD matrix acting on the ray vector. If the ray before the optical
element was described by r;™, the ray vector ry¥ after passing the optics is the

transformation of r}¥ by a ray matrix:

ray __ P2 . A B P1 — ray ..ray
o= () (A D) (@) owmer ey

The elements A, B, C', and D of the ray matrix specify the interaction of the ray
with the optical element. Figures[2.2p and 2.2k depict free space propagation over
a distance L and passage through a thin lens of focal length f. The corresponding
ABCD matrices are

MY = ((1] f) and MY = (_11 I’ i’) . (2.12)
For an optical system consisting of a concatenation of elements, the propagation
through the whole system can be expressed as the multiplication of the incident
ray vector with the matrix, which results from a concatenation of the single
element matrices. In this work the considered situation for focussing is: Light
propagating from the backfocal plane of a lens through the lens and to the focal
plane. The matrix describing the total propagation is the concatenation of three
matrices, first free space propagation over distance f to the lens, then passage
of the lens, and finally again free space propagation over distance f to the focal
plane:
MY = MY M2 MY (2.13)

focus free lens free*

With the matrices given in Equation [2.12] this focussing matrix can be calculated
to be

lergz]us = (_f/f é) . (214)

12



2.2 Propagation and focussing of light

2.2.4 Huygens’ integral with ray matrices

Huygens’ integral in Equation [2.9] describes the propagation of light through free
space between two parallel planes. However, focussing light requires to include
a lens into the optical path. The transformation introduced by the lens can, for
one ray of light, be dealt with using matrix optics as shown in Section 2.2.3] In
order to model the propagation from one plane to a parallel plane with a lens in
between both planes, it is useful to combine Huygens’ integral with ray matrices.
In one transverse dimension, the Fresnel approximation of Huygens’ integral with
the elements of an ABC' D matrix can be written as [22]

/1 .
F(.Z'Q, 22) = 5 eilkL'

i k
: / E(x1,2) exp {—i 25 (Az} — 2a125 + Da3) | day. (2.15)

—0o0
Extending Equation [2.15] into two transverse dimensions is straightforward and
shown in Appendix [A]

In this work the paraxial case is only used for foci that are radial symmetric
around the z-axis. Hence computational load can be reduced by using not two
transverse dimensions but only the radial coordinate p in the z,y-plane. In Ap-
pendix [A]it is shown how Huygens’ integral with ABC'D matrix elements can be
derived in radial symmetry. Here only the final result

k.
F(p2, 22) :iE e .

r k k
'/E</01721) exp {—1ﬁ (Api +Dp§)} Jo (E pm) prdpy  (2.16)
0

shall be given with Jy denoting the Bessel function of first kind and zero order.
With the elements of the ray matrix in Equation for focussing and the length
of total propagation L = 2f, Equation takes the simple form

S

Equation [2.17] finally describes the paraxial propagation of a radial symmetric
field from the backfocal plane of a lens with focal length f to the focal plane.

ko [ k
F(pQ,ZQ) =1—¢€ 2kf/E<p1,Zl) JO (? ppo) P1 dpl (217)
0

2.2.5 Debye approximation for non paraxial systems

The focussing of light described in Section[2.2.4]can be applied for paraxial optical
systems. However, this work also deals with non-paraxial systems, such as high

13
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oF &S

Figure 2.3: Focussing of light in Debye approximation. The cone from the focal
point S to the edge of the aperture is indicated in red.

NA microscope objectives. In that case the Fresnel approximation is not valid
any more. A common way to deal with the focussing of high NA optics is in
the framework of the Debye approximation. According to that, the field in the
focal region can be calculated as a superposition of the plane waves, whose wave
vectors k fall inside the cone defined by the focal point and the aperture of the
lens or objective [83]. This situation is illustrated in Figure 2.3} In mathematical
terms the superposition is expressed as an integral over all the plane waves [87]:

F(r) = —%4/ E(k) " d (2.18)

with 2 denoting the solid angle defined by the cone from the focal point to the
aperture edge. For a fast numerical implementation, the integral in Equation [2.18
can be evaluated using a Fast Fourier Transform (FFT) [88]:
F(r) ¥ ppr (ot g (0, ¢) ! (2.19)
r) < —— e — :
2 N cos0 )
where the coordinate transformed field E;(6, ¢) has to be calculated from E(k).
This and further details regarding the method can be found in Reference [88l

2.3 The diffraction limit

The “diffraction limit” imposes a lower limit for the minimum size to which light
can be focussed and for the maximum resolution that can be obtained in bright-
field light microscopy. A rule of thumb for the diffraction limit is A/2, half the

14
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(a) Airy disk (b) Rayleigh resolution
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Figure 2.4: (a) FWHM of the Airy disk corresponding to Equation with Ipay =
1. (b) Sum of the PSFs of two points, that are just resolved by the Rayleigh criterion.

wavelength A of the light [89-01]. Two more precise definitions that are often
used are the Abbe and the Rayleigh resolution limit.

The Abbe limit defines the minimum possible width of the Airy disk, which
results from (i) focussing a plane wave or (ii) imaging a point with a conventional
lens /microscope objective. Figure shows a plot of the Airy disk’s intensity
I, which is calculated by [84]

1(pay) = Ty (%) (2.20)

where J;(ps,) denotes the Bessel function of the first kind of order one, and p,,
is the radial coordinate in the x, y-plane. For a lens with numerical aperture NA,
the minimum possible Full Width Half—MaximumH (FWHM) dappe of the Airy
disk according to Abbe is

davne — 0.5 (2.21)

Abbe = U-0 T :

In Equation|2.21] A denotes the wavelength of the light and the numerical aperture
NA is the product of the refractive index n and the sine of half the opening angle
a of the lens:

NA = nsina. (2.22)

However, the Abbe limit just takes into account the image of one point.

The Rayleigh criterion considers the image of two point objects. It states that
for incoherent illumination two points in the sample can be resolved, when the

IFurther measures for the beam width will be discussed in Section
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maximum of the first point’s PSF coincides with the first minimum of the second
point’s PSF. This situation is depicted in Figure 2.4b. The distance drayicign Of
the two points in the sample is then [97], 92]:

A
dRayleigh = 061 m (223)
In that case the contrast C' between a maximum and the central minimum in the
diffraction of both points equals 26.5 %.

Based on the 26.5% contrast rule, the lateral two point resolution can be
generalised for imaging modes other than incoherent widefield imaging as

A
dpoints == K ﬁ (224)

The constant K for common imaging modes is [93, [04]:

K =0.61 for widefield incoherent,
K =0.82 for widefield coherent,

_ (2.25)
K =0.46 for confocal incoherent,

K =0.56 for confocal coherent.

The confocal resolutions in Equation are better than the widefield ones,
as the confocal pinhole reduces out-of-focus contributions. And the incoherent
resolutions are better compared to the coherent ones, as the intensity PSF is
narrower than the amplitude PSF.

2.4 Optical degrees of freedom

The amount of information that can be transmitted through an optical system is
an important question for both imaging and light shaping. An object imaged by
for example a microscope has an infinite number of degrees of freedom (DOF),
while the number of DOF that is present in the image of the object is finite [95].
The question is [96]: How many independent variables are required to express
the information about the object that is contained in its image? With respect to
beam shaping one can consider an optical system with an input and an output
plane as illustrated in Figure 2.5 In this context a relevant question is how many
input functions E(r;) in the input plane one needs to generate a desired light
field F'(rz) in a region of interest (ROI) in the system’s output plane. In both
cases this number of DOF depends on the diffraction limit arising from the finite
NA of the optical system.

16
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Figure 2.5: Propagation of the input field E(r;) through a linear optical system
forming the output field F'(ry).

Hence, in early work the number of independent optical variables was estimated
based on the sampling theorem and related to the quotient of the object area and
the area of a diffraction limited beam [05, [97]. This diffraction limited beam
area can for a circular pupil be estimated by a Gaussian spot [96]. However, two
Gaussian beams always overlap regardless of their seperation, hence they do not
represent independent variables [98]. In a mathematically more rigorous approach
the spatially finite input and output planes of an optical system are decomposed
into spherical waves [98-100]. These are used to generate a Hermitian operator,
whose eigenvectors are orthogonal and whose eigenvalues are real and hence can
be ordered by magnitude. The superposition of the spherical waves with the
elements of the eigenvectors results in orthogonal eigenfunctions. The magnitude
of the associated eigenvalues is a measure for the coupling efficiency between the
functions in the input and output plane. A large eigenvalue indicates a high
intensity of the corresponding output eigenfunction and vice versa. The number
of eigenvalues that is above the noise level of the optical system is equivalent to
the number of usable DOF [100].

In Reference [101] the above concept is generalised to generate orthogonal eigen-
functions not only from spherical waves, but from any decomposition of the input
and output plane. This has great advantage for experimental applications, as will
be shown in the course of this work. These eigenfunctions are termed “Optical
Eigenmodes” and it is demonstrated in Reference [101, how their superposition
can be tailored to extremise certain measures of the electromagnetic field such as
energy, intensity, spot size, or momentum. The fact that, according to their eigen-
values, these modes can be ordered by their relevance enables to only take into
account the most important ones, which greatly simplifies optimisation tasks and
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delivers the most efficient solution. Furthermore, with respect to imaging, the
OEi can be projected onto an object in order to get an image with the maximum
possible information content using the minimum necessary number of probes. In
the next Section it is outlined how the fields in an optical system can be
decomposed into these OEi.

2.5 Optical Eigenmodes

In the next Section it is described how the field in an optical system can be
decomposed into optical eigenmodes. Furthermore it is outlined, how operators
can be defined to extremise quadratic measures of the light field. Some examples
for optical eigenmodes are then shown in Section [2.5.2]

2.5.1 Decomposition into Optical Eigenmodes

Here the decomposition of the light field in an optical system into optical eigen-
modes is outlined. The full vectorial treatment for the electromagnetic field can
be found in Reference [I01. However, as mentioned in Section [2.1], in this work the
procedure is simplified to the scalar electric field only. A sketch of the considered
situation is depicted in Figure [2.5] The field E(ry) in an input plane propagates
through a linear optical system, forming the field F'(ry) in an output plane. In an
experimental realisation the input plane would feature a device for complex light
shaping, such as a spatial light modulator, and the linear optical system could e.g.
be a lens or a microscope objective. Now the question is in which way the input
field has to be modulated in order to generate orthogonal modes in the output
plane. In a first step, the problem is restricted by defining a region of interest
(ROI) in the output plane, indicated by the red dashed box in Figure . The
next step is to probe the system to determine which modes are supported within
this ROI. Therefore the input field £ is decomposed into a set of “test” fields Ej,

N
B=Y ki, (2:20)
i=1
resulting in a set of fields F; in the output plane,

N
i=1

with complex coefficients a;. It should be emphasized that the resulting modes
not only depend on the symmetry of the ROI, but also critically on the choice
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of test fields. For optimum results the probing should cover the largest possible
amount of the system’s degrees of freedom with respect to the ROL.

Similar to the calculation of the prolate spheroidal wave functions [102], the
modes in the ROI are determined as solutions of an intensity maximization prob-
lem [103] . With an operator M(®) whose elements mg-)) are the cross interferences
of the test fields F; in the ROI,

0 0
MY - My
MO =] : - with MY = / F,Fidoy,  (2.28)
M ](\(,)1) e M ](\?])V ROI
the total intensity I in the ROI can be written as

I =aM®©a. (2.29)

In Equation [2.28 the * indicates the complex conjugate, do = dxadys represents
the integration over the area of the ROI, and the T in Equation denotes
the conjugate transpose of the column vector a, which contains the complex
coefficients a;:

aq
a=| : and al = (a;---ay). (2.30)

an

The operator M) is Hermitian, thus featuring two important properties.

Firstly, its eigenvectors v|0) are orthogonal. This means that fields composed

according to Equation from the output fields F; using the elements U]ES) of
the eigenvectors as coefficients are orthogonal within the ROI. Due to the lin-
earity of the optical system, the coefficients for the input fields F; to generate
orthogonal output fields are the same. Secondly, the eigenvalues )\,(CO) of M are
real, hence sortable by magnitude. In fact the magnitude of )\,20) corresponds to
the intensity in the ROI of the field F' composed from the elements of v,io). Hence,
M© is termed Intensity Operator. With respect to the ROI orthonormal fields
Fr can be obtained by input fields E; normalized with the square root of the
eigenvalue A,E;O):

N
1
By = > o B (2.31)
/\](€O) i=1
1 N
F, = S ol F (2.32)
)\(0) i—1
k

2 Actually it is shown in Reference 98| that for a rectangular system geometry and a decomposi-
tion of input and output plane into spherical waves, the orthogonal eigenfunctions correspond
to the prolate spheroidal wave functions.
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These fields Fy are called the Optical Eigenmodes of the system in the chosen
ROL

As mentioned in Section [2.4] the most efficient OEi feature the largest eigenval-
ues such that the OFEi can be ordered according to their relevance. In some sense
this renders the OFEi method similar to a principle component analysis (PCA)
[104] on the initial fields F;: The initial fields F; are reexpressed in a new basis
set, the OEi Fy, which is orthogonal and in which the dimensions are sorted by
their information content about the system in the ROI. Prior to their usage for
focal field optimisation or imaging, it makes sense to select the most important
OEi. This can be done by setting a relative threshold 7' € [0,1] to select the
M OEi whose eigenvalues /\I(CO) are larger then TAﬁO). The correct choice of the
value for T depends on the noise level of the optical system. If T" is to small, the
intensity of some OFEi will be below the noise level. The number of OEi, whose
eigenvalues are above the noise level, can be associated with the number of de-
grees of freedom of the system, given that they were covered by the initial choice
of test fields Fj.

After selection of the appropriate modes, their superposition can be tailored
to extremise quadratic measures of the field. Therefore other operators corre-
sponding to quadratic measures of the light field can be constructed in a way
similar to Equation [2.28 using the eigenmodes Fy instead of the fields F;. As
one example, a Spot Size Operator is defined in Chapter [3]to locally minimise the
width of a focal spot. Further options include for example an Energy Operator
or a Momentum Operator, as outlined in Reference [101l. A form of the latter
operator has been applied in Reference [105 to simulate the field that acts with
the maximum force on a plasmonic particle. This operator concept is general for
all quadratic measures in linear optical systems. Before applying it in Chapter [3]
some examples of optical eigenmodes are shown in the next Section [2.5.2]

2.5.2 Examples of Optical Eigenmodes

This section shows some examples for optical eigenmodes in the focal plane of
optical systems for two different system geometries. As a first example, OEi are
simulated in the focal plane of a lens with 1m focal length. This corresponds to
the setup used in the next Chapter [3] with the input plane being the backfocal
plane of the lens and the output plane being the focal plane. More quantitative
detail on the exact arrangement can be found in Chapter [3, in the following the
description is limited to the information necessary for this example. The laser
beam is simulated with a wavelength of 633 nm and a uniform intensity distribu-
tion over its cross section. Furthermore, in both the backfocal and the focal plane
circular masks of 8.64 mm and 360 pm diameter respectively are applied. Hence
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Figure 2.6: First 5 optical eigenmodes in a circular region of interest. Their ef-
ficiency is denoted by the associated eigenvalues )\,(CO). Top row: Fields E; in the
reciprocal, i.e. the SLM plane. Bottom row: Focal fields Fy resulting from the re-
ciprocal fields in the top row. The coordinate origin is located at the center of each
picture.

both input and output plane feature radial symmetry. The input plane is then
decomposed into nonoverlapping annular rings of different diameter. These rep-
resent the input fields E;. The resulting focal fields F;, in this case Bessel beams,
are calculated using the radial symmetric representation of Huygens’ integral in
Equation 2.17] These are then used to determine optical eigenmodes as outlined
in Section 2.5.1] The first five OEi are depicted in Figure with the backfocal
fields E;, in the top row and the focal fields Fy, in the bottom row. With increasing
mode number £ higher spatial frequencies are more pronounced in the fields E,.
This results in a smaller central spot for higher order modes [, for the price of
reduced efficiency. The intensity in each picture is actually normalised, but the
eigenvalues )\,(CO) indicate the rapid decay in efficiency with increasing k.

As a second example OEi are simulated again for circular system symmetry
of the input plane, but this time in a square ROI in the output plane. More
precisely, the 3.5 mm diameter backfocal plane of a 1.3 NA oil emersion objective
is decomposed into fields E; with different spatial phase gradients ¢ = k,x1 +kyy1
and unity intensity over the pupil. The values for k£, and k, are chosen such
that the foci Fj, calculated according to Equation [2.19] are deflected within a
square ROI of 10pum x 10 pm size. The step width in the focal plane between
two deflections was chosen to be 100 nm, corresponding to a slight oversampling
compared to the diffraction limited FWHM of about 300nm at the simulated
785nm wavelength. This choice of parameters results in 10201 test fields Fj,
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Eigenvalue spectrum of OEi in square ROI
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Figure 2.7: Eigenvalues )\,(CO) of the intensity operator M(® according to Equa-
tion @ when probing a square with 10201 foci F;.

which are used to generate the intensity operator M), from which OEi are then
determined according to Section . The resulting eigenvalues /\](fo) are plotted
in Figure [2.7] showing their rapid decay with increasing k. The input fields E;
and the resulting output fields [Fj, are depicted in Figures and respectively.
Also here it can be observed that with increasing mode number k, i.e. decreasing
eigenvalue )\,(CO), the input OFEi feature higher spatial frequencies so that the output
OEi consequently exhibit finer spatial details. A further aspect worth noticing
is that due to the square symmetry degenerate modes exist. This means that
two different modes have the same eigenvalue, as it is the case e.g. for k = 2
and k = 3. The spatial field distribution of both modes is the same except for
a rotation by 90° with respect to the coordinate origin. In Chapter |4] these OFi
in a square ROI are utilised to perform imaging. Furthermore, in the context
of coherent control presented in Chapter [, they provide the set of test fields
to guarantee an efficient probing for the experimental determination of OEi on
metallic nanostructures.

2.6 Summary

This chapter introduced the concept of Optical Eigenmodes. After a brief intro-
duction to the wave nature of light, the numerical description of its propagation
and focussing was outlined. Then the diffraction limit and its effect for focussing
and different imaging modalities was described. The question for the degrees of
freedom in an optical system, related to the diffraction limit, was discussed. Af-
ter that, the optical eigenmode concept was outlined. With respect to that the
following aspects have been addressed and pointed out:
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Figure 2.8: Reciprocal fields Ej of the first 25 optical eigenmodes with respect to a
square region of interest in the focal plane. The mode number increases from left to
right and from top to bottom. First row: Modes 1 to 5, second row: Modes 6 to 10
etc. The coordinate origin is located at the center of each image.
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Figure 2.9: Focal fields of the first 25 optical eigenmodes in a square region of
interest, resulting from the reciprocal fields in Figure[2.8 The coordinate system has
its origin in the center of each picture. The mode number increases from left to right
and from top to bottom. First row: Modes 1 to 5, second row: Modes 6 to 10 etc.
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2.6 Summary

e The procedure of determining optical eigenmodes in the focal plane of a
linear optical system as solutions to an intensity maximisation problem was
outlined.

e Given that the initial test fields were sufficiently covering the system’s de-
grees of freedom, the number of OEi with an intensity above the noise level
corresponds to the number of available degrees of freedom.

e Using the OEi, operators can be constructed to determine the fields, that
extremise quadratic measures, such as intensity, spot size, energy, or mo-
mentum, of the light field.

e The concept of OEi and operators to extremise certain properties of the
light field is general for linear optical systems and can be applied to all
quadratic measures of the field.

In order to give some examples, optical eigenmodes were furthermore calculated
within a circular ROI in the focal plane of a lens and in a square ROI in the focal
plane of a microscope objective. The former will be used in the next Chapter [3]
to locally minimise the width of a focal spot and the latter will be employed in
Chapters [ and [f| to perform compressive hyperspectral imaging and coherent
control of gold nanostructures.
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Chapter 3

Minimising the width of a focal spot

In this chapter it is shown, how the optical eigenmode concept can be used extrem-
ise a measure of the light field. In particular, the width of a focal spot is locally
minimised. The introduction in Section reviews prior work on that topic and
outlines possible applications of such spots. In Section the principle of min-
imising the beam width using optical eigenmodes is explained. The experimental
configuration to implement the spots is detailed in Section In Section [3.4] min-
imsed focal spots are simulated and compared to their experimental realisations.
As a simple application example, a selected spot is used to confocally scan pairs
of holes in Section [3.5] Results and conclusions of this chapter are summarised
in Section [3.6

3.1 Minimised focal spots via pupil filters

Many photonic applications, such as optical lithography, optical data storage,
optical trapping, or laser scanning imaging, are affected by the far field diffraction
limit, imposing a restriction on the minimum possible size light can be focussed
to (for more information one might also refer to Section . With respect to
imaging, this limitation can be overcome in some cases by working in the near
field [106, 107], using properties of fluorescent dyes [41], 90, 108], or applying
numerical reconstruction methods [44]. Furthermore, negative refractive index
materials, so called “superlenses”, enable focussing of light below the diffraction
limit for lithography and imaging [T09-I11]. But they have to be positioned
directly on the sample, hence also operating in the near field.

However, if none of the above methods can be employed, by applying amplitude
and phase modulations to the system’s pupil it is still possible to obtain a focal
spot that locally exhibits a size below what is commonly called the diffraction
limit. Since the lectures of Luneburg [I112], a considerable amount of theoretical
work has been carried out to calculate pupil filter designs delivering a spot or
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3.1 Minimised focal spots via pupil filters

PSF of reduced size compared to the Airy-disk [I13-119]. The most well known
amongst these are probably the zone filters of Toraldo di Francia [I16] and the
continuous pupil functions of Frieden [I17]. The basic finding in References 113
119/ is that, using phase and intensity filters in the pupil of an optical system,
its 2D focal spot, or point spread function (PSF) respectively, can be arbitrarily
squeezed for the tradeoff of reduced intensity of the central peak and increased
intensity of the sidelobes. Recently, this effect has also been termed “superoscil-
lations” [120-H125]. Investigations in 3D furthermore revealed that the spot can
also be squeezed axially, but that there is a certain limit in three dimensions [126].
Usually a squeezing of the focal spot in the lateral direction results in an axial
elongation and vice versa [120], [127]. Nevertheless, depending on the application
a compromise can be made between size and intensity of the spot as well as the
intensity and distance of the sidelobes. Like that pupil filters enable enhanced
resolution or contrast in optical data storage [128, [129] and confocal imaging
[38, 139, 130-H140].

As mentioned above, using pupil filters it is in principle possible to abritrarily
squeeze the focal spot or PSF at the expense of an increased sidelobe intensity
and a decreased spot intensity. The high intensity sidelobes can also be moved
away from the central peak, again reducing the intensity of the latter. With
an arbitrarily powerful light source and a device for arbitrarily accurate beam
shaping, it would still be possible to locally generate useful focal spots with
subdiffractive extent. Unfortunately both are not available in reality. However,
only few pupil modifications have been tested experimentally so far [38] 130} 131,
136, [T4T] and a systematic study about what type of spots can be experimentally
realised is still lacking. This is partly due to the implementation of pupil filters
as fabricated diffractive elements [38, 130, 131] and the cumbersome ways of
calculating them. Based on the fact, that the goal is a narrowing of the focal width
compared to the unobstructed pupil, it is possible to make clever approximations
on suitable pupil functions [127, 135, 142]. However, this does not result in
optimized designs. Available optimization methods use an initial decomposition
of the pupil into a set of functions and determine their superposition such that the
resulting focal spot fulfills given constraints. These constraints can be a number
of chosen zeros in the focal plane [116) 119], a target function to approximate
[117, [118], a desired focal width reduction [136], or a combination of multiple
constraints such as focal width, Strehl ratio, and sidelobe distance and intensity
[141) [T43]. Given that the pupil is initially decomposed in a suitable manner, the
pupil design required for the focal distribution to match a set of chosen zeros or
a special target function can usually be calculated directly. But in that case the
initial constraints already strongly influence the solution, as the focal function is
forced into a very particular shape. Solving the problem with constraints on the
focal width and/or other parameters requires iterative algorithms [136, 141, 143].
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3.2 Minimizing the beam width using optical eigenmodes

A drawback is that such approaches are time consuming and do not necessarily
deliver the best possible solution.

Here, the recently developed Optical Eigenmode (OEi) method is used for the
calculation part. This enables the high-performance determination of pupil func-
tions delivering the smallest possible focal spot, which at the same time has the
maximum possible intensity for that spot size [I0I]. The method only requires
a single iteration, works for any pupil decomposition and system geometry, and
the only constraint is a region of interest (ROI), within which the spot is min-
imized, thus placing very weak conditions on the particular shape of the focal
spot. Experimentally, the OEi optimised pupil modifications are encoded on a
spatial light modulator (SLM) as in References[136], 141l This renders the optical
system highly flexible with the opportunity of carrying out an extensive study
on the limitations of state-of-the-art beam shaping technique to implement pupil
filters that generate minimised focal spots.

3.2 Minimizing the beam width using optical
eigenmodes

To minimise the beam width it has to be measured in a defined way, of which
the most common ones are discussed in Section B.2.1l In Section [3.2.2]it is then
shown how the beam width can be minimised using a superposition of optical
eigenmodes resulting from a spot size operator.

3.2.1 Measuring the beam width

In order to minimise the beam width, one first needs to define a way to quantify
it. A common method to measure the transversal width of an in z-direction
propagating light beam is to chose an intensity gap and define the beam width
as the diameter of the area, in which the beam intensity exceeds this gap. For
the Full Width Half-Maximum (FWHM) measure this gap is chosen to be half of
the maximum intensity I,.c. This is illustrated at the example of the Airy-disk
in Figure 2.4h. For Gaussian beams a frequently used method is to define the
beam radius as the distance from the beam axis, where the intensity drops to 1/e?
of I ax. This measure corresponds to the standard deviation o of the Gaussian
beam’s amplitude and doubling this value delivers the beam width.

A disadvantage of intensity gap based measures is that they can only be applied
to beam shapes which feature a well defined single maximum. Thus another
method that shall be mentioned here is the one of ISO Standard 11146, which is
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3.2 Minimizing the beam width using optical eigenmodes

based on the second order moment of the intensity distribution I(z,y). Here the
beam width w is defined as [144]

fROI ](I, y) P2 do
Jror (2,y) do

with fROI indicating the integration in a region of interest (ROI) and do = dxdy.
This method is also often referred to as the D4o method, because in the case
of a Gaussian beam w equals 4 times the standard deviation ¢ of the intensity
distribution I(x,y) of the beam. The advantages of this measure compared to the
FWHM or the 1/e* method are that it can also be applied to more complicated
beam shapes and that it takes into account, how quickly the intensity decays
in the outer areas of the beam, which are below the chosen gap (e.g. the side
maxima of the Airy disk in Figure .

(3.1)

w=4

3.2.2 The spot size operator

Apart of the already mentioned benefits, the definition of the beam width in
Equation [3.1] has the advantage that it explicitly contains the electric field F' in
terms of the intensity I = F' F™*. Using a decomposition

M
F = Zbk Fy (3.2)
=1

of the field in the output plane of the system considered in Section [2.5.1|into the
optical eigenmodes Fj, from Equation 2.32] the beam width can be written as

bfM®@b
bIMOb’
In Equation the M x M elements of M(® are calculated with the optical

eigenmodes FFj in analogy to Equation [2.28, The elements of the M x M operator
M® are defined as

(3.3)

w =

MY = [ i dos (3.4
ROI

and b contains the coefficients by from Equation [3.2l The integration in Equa-
tion is over a ROI in the output plane with doy = dxedy, and p, is the radial
coordinate in that plane.

According to its definition also M(® is Hermitian, thus featuring orthogonal
eigenvectors and real eigenvalues. If b in Equation [3.3]is one of the normalized
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3.3 Setup & calibration

eigenvectors vi2) of M®)| then the denominator in Equation is unity as the
optical eigenmodes [ are normalized. In that case the beam width w in Equa-
tion 3.3 equals four times the squareroot of the corresponding eigenvalue A of
M@ which means that w is a monotone increasing function of A2 Hence the
output field F,;, with the smallest second order moment in the ROI is the one
composed according to Equation with the elements of the eigenvector Vgi)n of

the smallest eigenvalue )\gi)n. It can be obtained by using the same coefficients
for the optical eigenmodes E; in the input plane:

M

Emin - Z /UI(ji)n’k; Eka (35>
k=1
M

Frin = _ v Fr. (3.6)
k=1

3.3 Setup & calibration

The setup used for the experiments contains an SLM system to implement in-
tensity and phase modulation for the generation of beams with minimised focal
width. An SLM is a liquid crystal display. To each of the display’s pixels a voltage
can be applied to change the orientation of the liquid crystals. This allows for
the refractive index of the pixels to be controlled, hence enabling spatial phase
modulation of the incident light. As there are little gaps between the pixels, not
all the light undergoes modulation. This is why an SLM is usually operated in
so called first order configuration. Therefore a blazed grating is encoded on the
SLM, deflecting the modulated light into the first diffraction order, while the un-
modulated light remains in the zeroth order. In the focal plane of a telescope the
first order can be filtered out by an iris, which is blocking the other diffraction
orders (higher orders exist as well due to the pixelation of the display). However,
there is always at least a little interaction of the zeroth diffraction order with
the first order [145]. This is tolerable for applications in which the first order is
strong compared to the zeroth order. But it becomes problematic, when strong
spatial intensity modulation is required, which is usually performed by deflecting
unwanted light from the first into the zeroth order. As the experiments in this
chapter depend on extensive intensity modulation, a configuration is chosen that
employs two SLM displays, one for intensity and another for phase modulation.

For phase modulation an SLM display with a thick layer of parallel aligned
liquid crystals is used. This enables phase modulation with almost no rotation
of polarisation [146] and the thickness of the liquid crystal layer is sufficient to
achieve phase modulation over a full wave cycle at visible wavelengths. The
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Figure 3.1: Experimental setup to create and analyse optimised focal spots and
to perform confocal scanning imaging using these spots. BE: beam expander; P,,:
polarisers; ISLM: intensity SLM; PSLM: phase SLM; M: mirror; BS,;: 50/50 beam
splitters; I: iris; CCD: CCD camera. The lenses L,, have the following focal lengths
fn: fi= fo=400mm, f3 = f5 = 1m, fg = 500mm, f; = 100 mm.

display used for intensity modulation features vertically aligned liquid crystals,
which mainly cause a rotation of polarisation. Hence, it can be used in combina-
tion with two crossed polarisers to achieve a spatial modulation of intensity. The
layer of liquid crystals of this display is significantly thinner, such that only little
phase modulation occurs parallel to the polarisation change. This is accounted
for during calibration of the system. Decoupling the modulation of intensity and
phase avoids an intensity increase in the zeroth order, which would interfer with
the first order. This configuration is described in detail in Section and the
calibration of the SLM system is outlined in Section [3.3.2]

3.3.1 Setup

The experimental setup to generate OEi optimized focal spots and to use them for
confocal scanning imaging is depicted in Figure 3.1} It can be roughly subdivided
into an illumination part and a detection part.

The illumination part features an 8-bit Holoeye HEO 1080 P dual display
liquid crystal spatial light modulator system. The first SLM display ISLM in
conjunction with two crossed polarisers P; and P, performs intensity modulation
of the beam and the second display PSLM modulates the phase. For this, the
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3.3 Setup & calibration

beam of a linearily polarized HeNe laser (emission wavelength A = 633nm) is
expanded such that it visually fills the active area of the ISLM with homogeneous
intensity. The polariser P; makes sure the polarisation is correct. Depending on
the encoded 8-bit value the ISLM turns the polarisation of the light such that the
intensity can be spatially modulated via the polariser P5. Using a 1 : 1 telescope
consisting of lenses L; and Ly, the ISLM is imaged onto the PSLM and the A/2
wave plate turns the polarisation as it is required for phase modulation by the
PSLM. The by both displays complex modulated light is then focussed by lens L3
in the sample plane. The distances in the setup are chosen such that with respect
to the sample plane, which is considered to be in space domain, the SLM displays
are situated in the reciprocal domain, indicated by dotted lines in Figure (3.1}
There should be made some further remarks about the SLM system:

e Of the display’s 1920 pixel x 1080 pixel array the central circular area of
1080 pixel in diameter is used. The pixel pitch is 8 pym, hence the used
diameter is 8.64 mm.

e The desired intensity and phase modulations are encoded in 32-bit RGB
images, of which the blue channel is displayed on the ISLM and the green
channel on the PSLM, hence featuring 8-bit per display.

e A calibration was carried out for both displays such that their 8-bit range
corresponds to a linear real amplitude range from 0 to 1 and a linear phase
range from 0 to 27 respectively (see Section for calibration curves).

e Aberrations due to unevenness of the display surfaces were corrected by a
wavefront correction method similiar to the one described in Reference [147.

e The ISLM not only rotates the polarization of the incident light but at the
same time induces a phase shift. This phase shift dependency was measured
with respect to the displayed 8-bit value and is subtracted from the phase
displayed on the PSLM (see also Section [3.3.2).

e The PSLM was used in standard first order configuration [I148] while the
ISLM was used in zeroth order.

e Ideally the lenses L,; and Ly should image a pixel coordinate on the ISLM to
the same pixel coordinate on the PSLM. By displaying an alignment cross
on both displays we ensure a pixel matching of £2 pixel. This corresponds
to a relative error of < 0.2% and can be neglected if the displayed mask
does not exhibit such fine features.

The beam path of the detection part is divided by a beam splitter BS; into
two arms, Arm 1 and Arm 2, of which only one is used at a time. In Arm
1, whose beam path is dotted in Figure [3.I| the sample plane is imaged via
lens L, with 10x magnification onto a CCD camera (Basler pilot piA640-210gm,
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3.3 Setup & calibration

648 pixel x 488 pixel resolution, 7.4 pm pixel pitch). This enables analysation of
the focal spot with a resolution of 0.74 pm per camera pixel. Arm 2 is utilized
for the scanning imaging. The light transmitted through the sample is collected
by lens Ly, which has identical NA as Lz. An iris I that is positioned in the back
focal plane of Ly truncates the beam to a diameter identical to the one incident
on the PSLM. This ensures that Ls and Ls also have the same effective NA. The
lenses Lg and L; and their positions are selected such that the sample plane is
imaged with 3x magnification onto the camera. An image is then acquired in
a confocal raster scanning fashion by deflecting the beam over the sample with
the PSLM and averaging the transmitted intensity on the CCD in a small region
that moves according to the beam deflection. This procedure is described in more

detail in Section 3.5.1.2]

3.3.2 Calibration of the SLM system

The manufacturer of the SLM system provides software to modify y-curves stored
on the controller. These y-curves translate 8-bit values sent to the controller into
a voltage that is applied to the liquid crystal pixel, thus translating a gray scale
value into a phase shift and a rotation of polarization. Here it is described how
the v-curves are changed such that for the linear gray scale range from 0 to 255
the devices deliver a linear amplitude modulation and phase shift respectively.

To calibrate the amplitude modulation the light after passing the second po-
lariser P is focussed onto a photo diode (PD). Then the 8-bit values encoded on
the ISLM are varied in steps of 1 from 0 to 255 and the intensity transmitted
through P, is collected with the PD. The red curve in Figure [3.2h shows the
monitored behaviour of the normalised amplitude, which is the squareroot of the
normalized intensity. From this data a new ~-curve was calculated and trans-
ferred to the SLM controller. Repeating the measurement now delivers a linear
amplitude modulation as depicted by the blue curve in Figure [3.2h.

Unfortunately, the amplitude modulation also involves a phase shift that needs
to be compensated for. This phase shift can be measured, with the polariser Py
not in place, by putting a double slit in front of the SLM display and changing
the gray scale value on one of the slits while keeping it constant on the other one.
The induced phase shift is then derived from the shift of the interference fringes of
the double slit diffraction pattern. Each column of the picture in Figure cor-
responds to a profile in z—direction through the double slit interference pattern,
which was captured with a CCD camera. Due to the orientation of the picture
the shift of the fringes occurs from top to bottom. From a sine fit to each of the
columns the phase shift is obtained and plotted as the red curve in Figure .
The coefficients from a 3™ order polynomial fit to this data are then used to
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Figure 3.2: (a) Amplitude modulation depending on the gray scale value on the
ISLM before and after calibration. (b) Profiles in x—direction through the double
slit interference fringes depending on the gray scale value encoded on one of the slits
(each column of the picture represents one profile). (c) Phase shift induced by the
ISLM. (d) Phase shift of the PSLM before and after calibration.

calculate the phase shift depending on the gray scale value encoded on the ISLM
and substract this shift from the phase which gets encoded on the PSLM.

The phase dependency of the PSLM is also calibrated with a double slit config-
uration. In fact, the double slit can be encoded on the ISLM and then the gray
scale value encoded on the PSLM is varied for one of the slits. The procedure to
obtain the phase shift from the fringe pattern is completely identical as described
for the phase shift of the ISLM. Figure shows the phase shift measured before
and after calibration. Obviously the phase was behaving pretty linear beforehand.
However, after calibration the 0 to 27 range is fully used which did not seem to
be completely the case before.
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3.4 Minimized focal spots

3.4 Minimized focal spots

As mentioned earlier, shaping the reciprocal field with arbitrary precision in an
unaberrated system would enable arbitrarily small focal spots with the sidelobes
arbitrarily far away from the spot. The decreased intensity of the central spot
could to a certain extend be compensated by a powerful light source. However, in
reality every optical system and especially the light shaping SLMs themselves are
aberrated and the light shaping is not perfect. The SLM systems can be calibrated
with a finite precision as described in Section[3.3.2] Furthermore, using wave front
correction methods, aberrations can be sensed with certain accuracy and they can
be compensated taking them into account in the phase shaping part. It has been
analysed in theory that smaller and dimmer central spots require more precise
light shaping [149]. So it is expected that in a real system the focal spot size can
be reduced until the size and intensity of the spot reaches a lower limit, at which
the precision of the system is insufficient to produce that spot. To determine this
limit for the setup decribed in Section the following road is taken in this
work:

1. Focal spots and the reciprocal fields to generate them are determined in
theory for various spot sizes and intensities.

2. The reciprocal fields are encoded on the SLM system of the setup and the
resulting focal spots are acquired.

3. The sizes, intensities, and some other parameters of interest of the simulated
and experimentally acquired spots are measured and theory and experiment
are compared.

In the following Section [3.4.]it is described how the reciprocal and focal fields are
obtained in simulations. The methods to quantify the relevant spot parameters
are explained in Section and the results are presented in Section [3.4.3]

3.4.1 Determining OEi optimized reciprocal and focal fields

In order to generate minimized focal spots, the OEi optimization method is ap-
plied in simulations and then the obtained reciprocal fields are encoded on the
SLM system. Some simulated OEi for this system have already been presented in
Section [2.5.2] Here these simulations are explained in more detail and including
the spot minimisation procedure. In the first step, the input field E(r;) in the
reciprocal domain is decomposed into N fields F;. As the optimised focal spots
should have a radial symmetry, the utilised SLM area of 1080 pixel diameter is
decomposed into N = 540 non overlapping rings E;(p;) of 1 pixel width, where
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3.4 Minimized focal spots

p1 denotes the radial coordinate. Like this all of the system’s radial degrees of
freedom are employed. Using 8-bit dynamic range for intensity and phase, as per-
mitted by the SLM system, each of the fields E;(p;) is numerically focussed using
the scalar radial symmetric representation of Huygen’s integral in Section [2.2.4]
The focal plane was simulated with 244 pixel and a pixel pitch of 0.74 pm, which
corresponds to the field one would obtain on the CCD camera through Arm 1 of
the setup.

Then the resulting 540 focal fields F;(p2) were used to calculate optical eigen-
modes Fy and E; in the focal plane and the reciprocal domain as described in
Section m This was done for the ROI radius Ry varied in steps of 0.03 wairy
between 0.09 wairy, and 2.30 wasy. The width waiy of the Airy disk can be cal-
culated as FWHM from the Abbe limit. For the described setup with a beam
diameter of 8.64 mm and a lens of 1 m focal length the effective NA is 4.32- 1073
resulting in wajy = 73.3 pm.

To minimise the spot size while keeping the spot intensity maximum, the M
most efficient OEi were selected with the in Section 2.5.1] discussed threshold
chosen to be T = 1077 with p = 1,2,...,6. Using the M selected OEi, the
focal width was minimised as described in Section [3.2] This delivers optimised
focal fields Fi,i, and reciprocal fields E,;,. The fields F,,;, are then azimuthally
interpolated to 1080 pixel x 1080 pixel for encoding on the SLM system and the
fields Fy,n are interpolated to 488 pixel x 488 pixel, corresponding to the CCD’s
central area. Figures 3.3h to [3.3] show some examples for reciprocal fields and
some simulated example spots are depicted in Figures [3.3k to [3.3p.

By varying the radius Ry of the ROI the constraints for minimising the second
order moment of the beam are varied, thus delivering focal spots of various sizes.
Furthermore, the variation of the intensity threshold 7" causes that OEi of different
efficiency are taken into account for the optimisation, which results in spots of
diverse intensities. The ways to characterise the varying features of the optimised
focal spots is discussed in the next Section [3.4.2]

3.4.2 Spot parameters

As mentioned earlier, decreasing the width of a focal spot results in an increased
sidelobe intensity and a decreased spot intensity. As an example for such a spot
with more pronounced sidelobes one might have a look at e.g. Figures and
B.3k. Furthermore, the spot intensity decreases whith increasing distance between
sidelobes and central spot. Thus the interesting parameters of minimized focal
spots are the spot size, the spot intensity, the distance to the sidelobes, and
the sidelobe intensity. For the latter it is actually more relevant, how intense
the sidelobes are compared to the central spot, i.e. how strong they disturb the
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central spot when using it in photonic applications. These four properties of the
spots are quantified in the following manner in the intensity distributions |Fy,|?
of the optimised fields F;,:

Spot size The width wgye of the central spot is measured as the FWHM ob-
tained from a 2D Gaussian fit.

Spot intensity The spot intensity is quantified as the Strehl ratio .S, which is
defined as the quotient of the peak intensities of the spot and the Airy disk [150].

Distance to the sidelobes The distance dg, to the sidelobes is measured be-
tween the central spot’s peak and the peak of the nearest sidelobe of at least 10 %
of the spot’s peak intensity.

Spot intensity relative to the sidelobe intensity The relative spot intensity
I, is quantified as the ratio between the peak intensities of the central spot and
the nearest sidelobe of at least 10 % of the spot’s peak intensity.

The spot parameters obtained for the simulated and experimentally acquired
spots are presented in the next Section [3.4.3]

3.4.3 Results

In Section [3.4.1] it was described how OEi optimized focal fields and their corre-
sponding reciprocal fields are obtained in simulations. To determine the exper-
imental pendants to the theory, the reciprocal fields are encoded on the SLM
system in the setup described in Section [3.3.1] Then for each of the fields the
resulting intensity distribution is captured on the CCD camera via Arm 1 of
the setup. Some examples for experimentally captured spots are shown in Fig-
ures to[3.3f. For each simulated and experimentally acquired focal spot the
parameters Wspor, S, dsp, and Iy are determined as described in Section [3.4.2]
The parameters of the example spots in Figure are listed in Table (the
parameters R,,s and R, are introduced in Section .

The measured spot parameters for all spots are plotted in Figures to
for the simulated (Figures , , and ) and experimentally captured spots
(Figures [3.4b, .4, and [3.4f). In each of the plots the horizontal axis depicts the
spot size Wspot relative to the FWHM wajy = 73.3 nm of the Airy disk. On the
vertical axis the distance dg;, to the sidelobes is also scaled to wajy. It should
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B O\ ) )

Figure 3.3: (a-e) Real amplitude and (f-j) phase of fields E(p;) in the SLM plane,
that correspond to (a,f) the Airy disk, (b,g) a Bessel beam, and (c-e, h-j) three
example spots: (c,h) Spot 1, (d,i) Spot 2, and (e,j) Spot 3. (k-o) Simulated and (p-t)
experimentally resulting normalised itensity distributions |F(p2)|? in the focal plane:
(k,p) Airy disk, (1,q) Bessel beam, (m,r) Spot 1, (n,s) Spot 2, and (o,t) Spot 3.

be noted that, compared to the plots of the simulations, the experimental graphs
have a smaller range of the horizontal axes, but the same scaling relationship.
The colour codings in Figures to indicate the number M of OEi used in
the optimization (Figures and b), the Strehl ratio S (Figures and
), and the spot intensity I, relative to the sidelobe intensity (Figures

and [3.4f).

In Figures and it is observed that with an increasing number M of
modes the sidelobes can be pushed further away from a central spot of identical
size. At the same time the Strehl ratio S in Figures and decreases. The
same applies for the relative spot intensity I, in Figures and [3.4f. This is
due to the lower efficiency of the higher order OEi (see Sections and .
Furthermore, S and I, decrease with decreasing spotsize wgpot. All these findings
agree with the qualitative rules stated at the beginning of Section [3.4.2]
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Figure 3.4: (a,c,e) Simulated and (b,d,f) experimentally obtained spot parameters
quantified according to Section In the individual plots the colour represents
(a,b) the number M of modes, (c,d) the Strehl ratio S, and (e,f) the relative spot
intensity Ie in dependence on the spot size wspor and the distance dsy, between spot
and sidelobes. For better orientation, the dashed lines in the experimental plots
indicate the trend of the simulations.
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3.4 Minimized focal spots

Parameter Airy disk Bessel beam Spot 1 Spot 2 Spot 3

M - - 2 3 4

Wepor /W Sim 1 0.71 0.61 0.71 0.60
spot/ WA Eixp 1 0.72 0.61 0.74 -

dst.Jwa; Sim — 1.28 1.21 1.84 1.62
SL/ WAy By - 1.21 1.25 1.85 -

g Sim 1 0.0096 0.022  0.0038 1.7-107°

Exp 1 0.0064 0.021  0.0037 -

I Sim — 6.4 1.2 0.88 0.0083
rel Exp - 4.7 1.3 0.91 -

Raps [pm] Sim 83 70 65 68 61

Ry Sim 1 1.19 1.28 1.22 1.36

Table 3.1: Simulated (Sim) and experimentally (Exp) measured spot parameters
for the Airy disk, a Bessel beam, and three example spots, which are illustrated in

Figures to (simulation) and Figures to (experiment).

Comparing the simulated results in Figures [3.4h, 3.4k, and and the ex-
perimental ones in Figures [3.4p, [3.4d, and [3.4f, good agreement is observed for
Strehl ratios S > 0.003 and relative spot intensities I,.; > 0.9. The more the spot
intensity drops below these values, the larger the mismatch between simulation
and experiment. Consequently the spots in Figures and with S = 0.021
and S = 0.0037 also visually agree with their simulated counter parts in Fig-
ures and 3.3n. On the contrary in Figure [3.3f, which should show a spot
with simulated Strehl ratio S = 1.7-107°, no well defined central peak exists.

As the simulations have been carried out with the actual SLM’s bit depth and
resolution, the lack of agreement between simulations and experiment for low
spot intensities is not due to the pixelation and limited dynamic range of the SLM
system. Hence it must be due to residual noise and aberrations in the system. The
beam shaping process itself might not be accurate enough e.g. due to pixel noise
or the calibrations not leading to the required precision. Furthermore, there might
be residual aberrations which can not be entirely cancelled out by the wavefront
correction. Thus in future results could be improved using more accurate beam
shaping devices as well as more advanced calibration and aberration correction
methods. For the system and methods that were applied here, Strehl ratios
S =~ 0.004 and relative spot intensities I, = 0.9 seem to be the lower limit for
reliably delivering minimised focal spots.
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3.5 Confocal imaging with minimized focal spots

3.5 Confocal imaging with minimized focal spots

To show a possible application of the OEi minimised focal spots, one of them is
utilised to improve the Rayleigh resolution in confocal raster scanning imaging.
In Section the basics of confocal imaging are discussed. Furthermore, it is
described how confocal imaging can be performed in the used setup and how this
process is simulated. In Section confocal resolution limits with conventional
focal spots are discussed and determined for the OEi optimised spots. The results
from confocal scans with a selected minimised spot are presented in Section [3.5.3]
and compared to scans with the Airy disk and a Bessel beam.

3.5.1 The imaging process and its simulation

In conventional confocal laser scanning microscopy either a focused beam is
scanned over the sample using a scanning mirror or the sample is scanned through
the beam on a translation stage [93]. The beam-sample interaction is imaged onto
a pinhole in front of a detector to cancel out scattering light from outside the focal
volume. An image is then composed from the intensities acquired at each scan-
ning coordinate. If the beam is scanned over the sample, it needs to be descanned
for detection by sending it back over the same scanning mirror. Otherwise the
pinhole needs to be moved according to the displacement of the beam.

3.5.1.1 Confocal imaging with the utilised setup

To perform confocal imaging with the setup in Figure 3.1, the beam is raster
scanned over the sample using the SLM system. The light transmitted through
the sample is then detected with the CCD camera via Arm 2 of the setup for
each point of the scan.

More precisely, adding a linear phase gradient ¢ = k,z1 + k,y; to the phase
which is encoded on the PSLM causes a displacement of the beam in the sample
plane. Like that the PSLM can effectively be used to substitute a scanning mirror.
The displacement of the beam depending on the deflection k., k, is calibrated
beforehand without the sample in place. Therefore an image of the beam is
captured on the CCD for each k., k, and the beam position is determined as
the center of a 2D Gaussian fit. For confocal scans the transmitted intensity is
then averaged in a 3 pixel x 3 pixel square on the CCD centered at the current
beam position. This square is small compared to the diffraction limited focal
spot featuring a FWHM of about 30 pixel. An image is then composed from the
intensities acquired for each deflection.
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3.5 Confocal imaging with minimized focal spots

3.5.1.2 Simulation of the imaging process

To simulate the scanning process described in Section [3.5.1.1] the transmissive
sample is simulated as a binary distribution B(zs,ys) that is 1 in the sample’s
transparent areas and 0 in the opaque ones. The spatial intensity distribution
I.(x¢,y.) on the CCD is then simulated as follows for each scanning position:

1. The complex field A(xg, o) in the sample plane is the illuminating field
F(z9,y,) modulated with the transmission B(xq,19) of the sample:

A(xg,y2) = F(xa,y2) B(z2,y2). (3.7)

2. The detection part of the setup is coherent. Thus the intensity I.(z., y.) on
the CCD is given by the square of the complex convolution of Equation
with the amplitude point spread function APSF of the detection part [84]:

I(Te,ye) = | [F (2, y2) S(a, 4)] ¥ APSF|”. (3.8)

As APSF the complex field of the Airy disk is used.

3.5.2 Confocal resolution limits

To determine whether or not a focal spot is suitable for imaging and improves
the resolution over a conventional focus is not trivial, also with knowledge of the
spot parameters determined in Section [3.4.3] A small central spot is unusable
if its intensity is too low compared to the surrounding sidelobes and/or these
sidelobes are too close to the central spot. Thus it is necessary to investigate
a spot’s imaging performance by the imaging process itself. Usually resolution
capabilities of an imaging system are quantified by considering the imaging of
simple objects. For an incoherent imaging system it is sufficient to measure the
width of the image of a single point, hence the width of the PSF of the system.
However, in the experiments carried out in this work the detection process is
coherent. Thus it is necessary to investigate at least two sample points next to
each other in order to correctly deal with interference [93]. The resolution limit
is then defined as the minimum distance between the two points, that can just
be resolved. According to the Rayleigh criterion this is the case if the contrast
between the two imaged points amounts at least 26.5 % [84].

To quantify the two-point resolution with the OEi minimised spots, the scan
along a 220 nm long line through two transmissive holes was simulated as de-
scribed in Section [3.5.1.2l The step width between the scanning positions was
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Figure 3.5: Simulated relative resolution in dependence on the spot size wgpor and
the distance dgr, between spot and sidelobes. The white background roughly indi-
cates the area of the spots, which can reliably be produced experimentally (compare
experimental data in Figure .

chosen to be 1pm and the separation between the holes was varied in steps
of 1pm as well. The absolute two point resolution limit R,,s was then quan-
tified as the minimum, according to the Rayleigh criterion resolvable, distance
between the hole centres. This was then scaled as a “resolution gain” in the way
Ryel = Rabs airy/ Rabsspot to the absolute resolution limit Raps airy When scanning
with the Airy disk. Thus a value of R, = 2 would correspond to twofold in-
creased resolution over the conventional confocal resolution Rapsairy. The two
point Rayleigh resolution limit of the system for coherent confocal imaging with
the Airy disk is defined by Raps airy = 0.56 A\/NA [94], which results in a resolution
of 82.1 pm with the already in Section calculated effective NA of 4.32-1073.

The colour coding in Figure [3.5] depicts the obtained two point resolutions
R, in dependence on the spot size ws,or and the distance dg;, to the sidelobes.
Furthermore, the absolute and relative resolutions R.,s and R, for the spots
illustrated in Figure [3.3] are listed in Table 3.1} The simulated relative resolution
R,q in Figure |3.5| generally decreases with decreasing spot size and increasing
distance to the sidelobes. But at some point this effect stops due to a parameter
combination in which the sidelobes are too close to the spot and/or the relative
spot intensity I, is too low to resolve the two simulated holes with sufficient
contrast (these are the black circles in the plot, which correspond to no resolution
gain).

The interesting question is which resolution gain is obtainedable with the spots
that can be generated experimentally. These spots are located in the white area
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3.5 Confocal imaging with minimized focal spots

in Figure [3.5] while the spots in the grayed region did not match with their
simulations. So the resolution gain that can be expected is somewhere between
1.25 and 1.3. In the next Section an OFEi minimised spot it used for confocal
imaging of a test target to confirm these numbers.

3.5.3 Results

Here the suitability of OEi optimised focal spots for confocal imaging is analysed
experimentally in raster scans of a thin in-focus object. The results are compared
to simulations. More precisely, a photo mask (fabricated by Circuit Graphics,
Essex, UK) featuring pairs of 10 jum diameter transmissive holes on black film
with hole separations dy, varying in steps of 1pm was scanned as described
in Section m (many thanks to Rob Marchington at this point for designing
and ordering the mask). Scans were carried out with the Airy disk, a Bessel
beam, and an optimised focal spot. For the latter, Spot 1 was used, whose
intensity distribution is depicted in Figure and whose parameters are listed in
Table[3.1} This spot should give a significant resolution gain in the Rayleigh sense
and its experimentally measured parameters did not show noticable disagreement
with the simulations. The scanning was performed over a 220 pm x 110 pm sized
area at 64 x 32 uniformly spaced points for hole separations of dp, = 83 pm,
dpor = 70m, and dy,, = 65 pm. These separations correspond to the simulated
two point resolution limits of the Airy disk, the Bessel beam, and Spot 1, as noted
in Table 3.1

The top row of pictures in Figure [3.6] shows the pairs of transmissive holes
imaged with a widefield microscope (Nikon ECLIPSE Ti-S, Objective: Nikon
Plan Fluor, 40x/0.75). Furthermore, Figure illustrates for each of the hole
pairs the simulated and experimentally obtained intensity distributions resulting
from scans with the Airy disk, the Bessel beam, and Spot 1. Figures to
depict profiles along a horizontal line through the simulated (Figures ,
[3.7c, and [3.7¢) and experimentally acquired intensity images (Figures [3.7b, .74,
and ) For each of the utlized scanning spots the key in Figures to
features the contrast C' measured between the smaller of the two main maxima
and the central minimum.

The simulated and experimentally acquired intensity distributions and profiles
look similar and the contrast values of simulation and experiment are in reason-
able agreement. The results in Figures [3.7b, B.7d, and B.7f show that within
a few percent of uncertainty the Rayleigh resolution criterion is experimentally
fulfilled for dyo,; = 83 pm by the Airy disk, dy, = 70 pm for the Bessel beam, and
dpor = 65 pm when scanning with Spot 1. This is in agreement with the simulated
values in Table[3.1} According to these values, for confocal imaging with coherent
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dpol = 83 pm 70 pm 65 pm
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Airy disk -
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Figure 3.6: The first row of pictures shows images of the pairs of 10 pm sized holes
with separations of dy = 83 pm, djo) = 70 pm, and dyo) = 65 pm. The remaining pic-
tures depict simulated and experimentally acquired intensity distributions resulting
from scanning the hole pairs with the Airy disk, a Bessel beam, and an OEi optimized
spot (Spot 1). See also Figure for profiles in x—direction through the diffraction
patterns and resulting contrast values.
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Figure 3.7: Profiles in z—direction through the centres of the (a,c,e) simulated and
(b,d,f) experimentally obtained intensity distributions presented in Figure Hole
separations are (a,b) dno = 83 pm, (c,d) dpel = 70pm, and (e,f) dpo) = 65 pm. The
contrast C' between the two peaks is indicated in each plot for scans with the Airy
disk, a Bessel beam, and an OFEi optimized spot.
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Figure 3.8: Simulated relative resolution for incoherent detection in dependence
on the spot size wgpor and the distance dgsp, between spot and sidelobes. The white
background roughly indicates the area of the spots, which can reliably be produced
experimentally (compare experimental data in Figure .

detection a Bessel beam delivers 1.19-fold enhanced resolution compared to the
Airy disk, while using the OFEi optimised spot improves resolution by a factor of
1.28. In comparison to the Bessel beam the OEi optimised spot still enables a
1.08-fold increased two point resolution capability. However, this is accompanied
by increased artifacts around the holes, as can be seen in Figure [3.6] A little out-
look for confocal scans with an incoherent detection process, such as fluorescence,
is given in the summary in Section [3.6

3.6 Summary

Summarising, the work presented in this chapter demonstrated the potential of
the OEi method to tailor the focal field of an optical system. In analogy to
prior work [I16HI19|, the OEi approach was applied to the well known prob-
lem of determining pupil functions, which lead to a locally reduced focal width.
The relationship of the spot size, the Strehl ratio, the sidelobe intensity and the
distance between central peak and sidelobes was qualitatively following the be-
haviour described earlier [II6HIT9]. The speedy calculation of optimised pupil
designs by the OEi method in combination with the flexible implementation of
the filters by means of an SLM system enabled an extensive experimental study
to be carried out in order to determine the limitations of state-of-the-art beam
shaping technique for the purpose of generating subdiffractive focal spots. With
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the used setup and calibration methods, it was possible to experimentally repro-
duce spots with Strehl ratios down to 0.004 and a spot intensity of 0.7 relative to
the intensity of the nearest sidelobe. The width of the spots could be squeezed to
about 60 % of the Airy-disk’s FWHM. Deviations from the simulations for Strehl
ratios below 0.004 are due to residual aberrations in the system and inaccuracy
in the pupil function implementation on the SLM, which could not be tackled
by the calibration procedures. In a simple confocal imaging experiment with a
coherent detection process, an OEi engineered focal spot helped to improve the
resolution in the Rayleigh sense by a factor of 1.28 in comparison to scans with
the Airy-disk. But as this resolution gain was accompanied by some artifacts,
it will have to be investigated, how imaging of an extended object works. As a
little outlook, Figure depicts the simulated relative two point resolution R,.q
for confocal imaging with an incoherent detection process, such as fluorescence.
In that case using the same spot as for the experimental scans in Section
promises a resolution gain of about 1.45.

Based on these results, using pupil filters only offers a small resolution gain in
comparison to microscopy techniques such as STED or PALM/STORM, which
can increase the resolution up to an order of magnitude [89] 151]. Though pupil
filters have the advantage of not relying on fluorescence techniques or special
fluorophores, with structured illumination microscopy (SIM) there is already a
technique available that offers a twofold resolution gain also for non-fluorescent
samples [152]. It should be mentioned, that in Reference [I53 at a wavelength of
A = 640nm a resolution of better than A\/6 has been reported using diffractive
optical elements generating “superoscillations”. But that is just due to a mismea-
surement of the resolution. The resolution was determined by imaging a pair of
112nm wide slits seperated by a gap of 137nm. In particular it seems that the
resolution was quantified as the FWHM of the central dip in the image of both
slits. However, correctly measured it is the center to center distance of the two
slits, i.e. the sum of slit width and slit gap. With the sample used in Refer-
ence [153 this corresponds to a Rayleigh resolution of about 250 nm, which can
be achieved with conventional microscopes. Hence, the concept of pupil filters
or “superoscillations” does not offer a great benefit in the field of imaging, as has
also recently been pointed out in Reference [154. More practicable applications
are areas which physically require a small focal spot, such as optical lithogra-
phy and data storage [128] [129], optical transfection [I55], and optical trapping.
With respect to the latter it would be interesting to experimentally use the OEi
method for maximising the force acting on a particle, as has been investigated
theoretically in Reference [I05. In the field of imaging, the OEi operator concept
might be used not to minimise a focal spot, but to minimise the dark area of the
depletion spot for RESOLFT microscopy.
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Chapter 4
Optical Eigenmode imaging

At the example of minimising a focal spot, it was demonstrated in the previous
Chapter 3] how the OEi approach an its operator concept can be used to extremise
quadratic measures of the light field. In this chapter it is investigated, if the
orthogonality of the eigenmodes themselves without any further operator based
optimisation can contribute to minimise an important aspect in imaging: The
number of probes required to obtain the image of an object. While in brightfield
imaging the whole object is flooded with white light, spectroscopic imaging for
example requires powerful coherent illumination of the sample, which is usually
realised by a focussed laser beam scanning over the object. As the number of pixel
in a raster scanned image equals the number of scanning positions, obtaining a
high resolution image requires probing at many positions. This is particularly
critical, if the acquisition time per pixel is long due to low efficiency of the light-
sample interaction, as it is the case for Raman imaging. In the Raman regime,
acquisition times of tens of seconds per image point may be required. Hence,
obtaining an image with some thousands of pixels can take up to several days
[156, 157].

A possible way to obtain high pixel resolution images with lower acquisition
time are compressive indirect imaging methods, with “ghost imaging” probably
representing the most popular variant. In brief, for these imaging modalities the
whole sample is illuminated with different spatial light patterns and for each of
the patterns a coefficient describing the interaction of the sample with the light
is acquired. Superimposing the light patterns weighted with the measured coeffi-
cients gives rise to an image. The coefficients usually refer to a transmission or
scattering by the sample. Detecting them wavelength dependent in principle also
allows spectral imaging. Fluorescent ghost imaging has recently been proposed
[158] and implemented with fluorophores of three colours in a compressive manner
[45]. However, all these imaging methods still require a large number of probes
and even the compressive modalities suffer from the fact, that their illumination
patterns are not orthogonal on the sample, hence prohibiting the most efficient
probing possible.
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4.1 Compressive indirect imaging

Here it is investigated, if the OEi as fundamental orthogonal basis set can
be used to implement an indirect compressive imaging theme. In fact, using
the OEi as illumination patterns should enable the most compressive imaging
theme possible. In particular the goal is to apply “OEi imaging” in the field of
spectroscopic imaging methods, which are powerful tools in biomedical research to
characterise biological materials, such as cells and tissues [159]. Especially Raman
spectroscopy has been proven to be very useful for the investigation of biologically
relevant parameters. With particular emphasis on the discrimination between
healthy and cancerous tissue, Raman spectroscopy promises reliable automated
clinical tissue diagnosis, a task that to date is usually carried out by highly
experienced pathologists [I60HI62]. The major drawback of Raman imaging, its
long acquisition time, might be significantly diminished using optical eigenmode
imaging. In this chapter, OEi as orthogonal illumination patterns are exploited
for indirect imaging, first in transmission, then in fluorescence, and finally in the
Raman regime. In the next Section indirect imaging is introduced in more
detail and the remainder of this chapter is outlined.

4.1 Compressive indirect imaging

“Ghost” [163], “interaction-free” [164], or “coincidence” [165] imaging are indirect
imaging methods. The term “indirect” refers in this case to the fact, that an image
is formed not directly by the light interacting with the object, but by a correlation
between spatial light patterns and coefficients measured from the interaction of
the object with these patterns. The first ghost imaging experiment by Pittman et
al. in 1995 [166] utilised entangled photons generated by spontaneous parameteric
down conversion [167]. The employed setup features two arms seperated by a
beam splitter, a “test” arm and a reference arm. In the test arm one of the
correlated photons impinges on the object under investigation and a single pixel
detector positioned behind the object measures, whether or not the photon is
transmitted. The reference arm features another single pixel detector, which can
be spatially scanned to determine the position of the other part of the photon
pair. An image can then be obtained from the coincidence measurements in
conjunction with the position of the reference detector. Due to the fact that the
image can not solely be formed from the individual detector signals, but only
from their correlation, this modality was termed “ghost” imaging.

The demonstration of ghost imaging with a classical source by Bennink et al.
in 2002 [165] triggered a lively debate on the necessity of entangled photons [168-
170]. After numerous work on classical ghost imaging and its comparison to the
original quantum mode [I7IHI76] it seems to be commonly accepted, that all
aspects of quantum ghost imaging can be achieved with classical light sources
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4.1 Compressive indirect imaging

as well, rendering it useable to a wider range of applications. Without the need
for single photon counting, the whole object can at once be illuminated with
spatially structured light patterns. These are usually generated by a rotating
diffuser, covering the object with time dependent random speckle patterns. The
spatial intensity distribution of the speckle is measured in the reference arm either
by scanning a single pixel detector or, more conveniently, by a pixel array, such as
a CCD sensor. For each of the speckle patterns the corresponding transmission
or, also, reflection [I77] coefficients are determined in the test arm. Correlating
them with the measured speckle distributions gives then rise to an indirect image
of the sample.

Recently, a form of ghost imaging was proposed [I78| and implemented [179],
that does not require a reference arm. In this so called “computational ghost
imaging” the light is not shaped by a diffuser, but by an SLM. Encoding random
phase masks on the SLM gives rise to random speckle patterns being projected
onto the object. Knowing the encoded phase distributions enables numerical
calculation of the resulting speckle patterns by means of diffraction theory. This
makes an experimental measurement of the speckle distribution obsolete and
allows to image the object just by correlating these numerical intensity maps
with the corresponding measured transmission /reflection coefficients. Compared
to the previous methods, this offers a very convenient and flexible implementation
of indirect imaging.

An advantage of indirect imaging with full object illumination is that, as a
“oglobal random” acquisition scheme, it features a higher sampling efficiency com-
pared to raster scanning methods [I80]. This means that an image of the object
can be obtained, whose pixel resolution exceeds the number of light patterns used
for the acquisition. However, obtaining an indirect image with decent visibility
of the sample is still a long process. This is why recently techniques for a more
efficient object reconstruction have been explored [45] [181}, [182]. In a combination
of computational ghost imaging and compressive sensing, the aim is to represent
the object in a sparse representation of the illuminating speckle patterns [I8]1].
This is possible, if the object is compressible. In that case the coefficients of
many of the speckle patterns are close to zero, as the speckle to not probe any
features of the sample. Neglecting them improves the signal-to-noise (S/N) ratio,
because then they do not contribute to the background of the image. Effectively
this allows to reduce the number of acquisitions while still obtaining an image
with good S/N level. A well known field utilising the approach of representing
an image in a sparse basis set are image compression algorithms, as for example
used with the JPEG file format [I83]. Another method to improve the S/N ratio
is differential ghost imaging, which only measures the fluctuations around the
average transmission of the sample with respect to the set of speckle patterns.
However, these methods do not work on the illumination itself, but just on the
way the acquired data is treated. In contrast to that, another approach recently
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realised is to project Hadamard patterns instead of speckle patterns onto the ob-
ject [45]. Hadamard matrices are a set of orthogonal binary distributions. Hence
they should enable a very efficient probing of the sample. However, the discon-
tinuous transitions in the binary Hadamard patterns blur out due to diffraction,
hence loosing their orthogonality. The work presented here goes a step further:
The illumination of the object is shaped into its most sparse representation —
Optical Eigenmodes. This is along the lines proposed in Reference 184! and simi-
lar to the realisation of compressive fluorescent imaging using Hadamard patterns
in Reference 45 But in contrast to the experiments in Reference 45/ the Optical
Eigenmodes are truly orthogonal in the focal plane. It is this orthogonality com-
bined with the fact, that the OFEi are ordered according to their relevance, which
potentially makes OEi imaging highly compressive.

To investigate this, the organisation of this chapter is as follows: In Section
the principle of OFEi imaging is briefly outlined and its performance is compared
to computational ghost imaging and raster scanning in simulations. With respect
to the experimental realisation, the employed setups are described in Section [4.4]
Furthermore, the practical reproducibility and orthogonality of simulated OFEi is
investigated and the experimental procedure to acquire an OEi image is detailed.
Section [4.5] presents a macroscopic implementation of transmissive OEi imaging as
well as the transition to spectral imaging in terms of flourescent OEi imaging. In
Section OFEi imaging is implemented in the framework of Raman microscopy
and used to image polystyrene and PMMA beads and to localise SERS hotspots.
The chapter finishes with a summary and conlusions in Section [4.7]

4.2 Simulations: OEi imaging compared to ghost
imaging and raster scanning

In this section the Optical Eigenmode Imaging, proposed and implemented in
Reference [185] is compared in simulations to another indirect imaging method
and to raster scanning imaging. The basic principle of OEi imaging is briefly
introduced in Section Section compares the compressive nature of
OEi imaging to an emerging indirect imaging modality, also using an SLM to
generate illumination patterns: Computational Ghost Imaging. However, ghost
imaging or variations of it have only recently been applied to spectral imaging
[45, 186], for which to utilise OEi imaging is the goal of this work. Usually
raster scanning is the preferred choice for fluorescence and Raman imaging. A
relevant question in this context is the raster grid density required to achieve
a certain spatial resolution and localisation accuracy of fluorophores or other
relevant sample features, such as e. g. cell organelles. Hence, the resolution
and localisation capabilities of OEi imaging are theoretically compared to raster
scanning in Section [£.2.3]
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4.2 Simulations: OFi imaging compared to ghost imaging and raster scanning

4.2.1 Principle of OEi imaging

This section briefly outlines the basic principle of OEi imaging [I85]. As a first
step one has to determine M modes F in the sample plane. In theory[!] this is
done as described in Section and theoretical examples for a square sample
area are depicted in Figure 2.9] In an indirect imaging fashion, these OEi are
then projected onto the target T'(xs,y,). For each mode Fy a complex coupling
coefficient ¢ to the target is determined as

= //Fdeaz (4.1)

ROI

with doy = dxy dy, and ROI being the area in which the OEi are defined. The
superposition of the modes [}, with the corresponding coefficients ¢, then delivers
an image T™¢ of the target T

M

T =" o, Fy. (4.2)

k=1

4.2.2 OEi imaging and computational ghost imaging:
Object reconstruction

The usual comparator for compressive indirect imaging methods is ghost imaging,
probing the sample with random speckle patterns [173], 180} [181]. Hence the same
is done in this section for the Optical Eigenmode Imaging. In particular, OFi
imaging is compared in simulations to computational ghost imaging realised in
Reference [179. Therefore a sample consisting of three transmissive holes, similar
to the real sample used in Section is represented as a binary distribution
T(z3,y2), depicted in Figure . The sample size is 201 pixel x 201 pixel and
the holes have a diameter of 30 pixel, which equals three times the diffraction
limit of about 10 pixel for this simulation.

For the computational ghost imaging, M random phase distributions are gen-
erated in a plane reciprocal to the object plane. Upon numerical propagation
according to Section [2.2.5] in the object plane these result in M random speckle
patterns with two-dimensional intensity distributions I (x2, y2), featuring speckles
of diffraction limited FWHM. To obtain a ghost image, the transmission coeffi-
cient ty, is obtained for each speckle intensity distribution Iy (xs, y2) by integration

over the sample region ROI:
tk = //IdeUQ (43)

ROI
! An experimental approach is illustrated in Sections and
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Figure 4.1: Comparison of computational ghost imaging and optical eigenmode
imaging in simulations. (a) Simulated test target featuring three transmissive holes.
(b) Simulated ghost images for increasing number M of projected speckle patterns.
With increasing M the image of the three holes emerges from the noise. (c¢) Simu-
lated optical eigenmode images for increasing number M of projected modes. With
increasing M the sizes and positions of the imaged holes converge towards the actual
positions and sizes.

Intensity [a.u.]

with doy = dxsdys. The image T'™# of the object is then composed by the
superposition of the speckle patterns weighted with the transmission coefficients
[181],

M
Tims — Z te — () I, (4.4)
k::

where () = % 224:1 denotes the ensemble average. Figure depicts ghost
images for different numbers M of speckle pattern projections. For M = 2 one
gets an idea of the speckle patterns themselves. At M = 200 the sample starts
to emerge from the noise. For M = 2500 the object is clearly above the noise
level, which is further decreased with increasing M. In Figure the object
reconstruction, quantified as deviation o,,; according to

p1x

Z |1, — T, (4.5)

Oobj =
plX

is plotted depending on the number M of probes. For M < 5000 the deviation
0obj decreases rapidly and is then decaying more slowly at M > 5000.

Figure shows indirect images of the same object, simulated according to
Section by the projection of OFEi instead of speckle patterns. For the super-
position of M = 2 modes, intensity is spread over the whole area, but already
for M = 8, three intensity spots give a rough idea of the object structure. With
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Figure 4.2: (a) Deviation o,p,; from object for computational ghost imaging de-
pending on number M of projected speckle patterns. (b) Deviation o,p; for optical
eigenmode imaging depending on number M of projected modes (please note the dif-
ferent M scale on the horizontal axis). With eigenmode imaging the image converges
quickly towards the actual object. The convergence in computational ghost imaging
is much slower.
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4.2 Simulations: OFi imaging compared to ghost imaging and raster scanning

increasing M the sizes as well as the positions of these blobs get stronger confined
to the actual arrangement of holes. The corresponding deviation oop; from the
object, plotted in Figure [4.2b, decays much faster than for the traditional ghost
imaging case. Actually, a constant level is already achieved for M > 60.

Comparing the reconstruction of the object with ghost imaging and OEi imag-
ing on the basis of Figures and reveals some shuttle differences. For the
OEFEi imaging the deviation o,p; converges to a small remaining low level of discrep-
ance between object and image. This can be attributed to diffraction, preventing
replicating the discontinuities at the hole boundaries. The opaque areas of the
sample also appear as such in the reconstruction. In contrast to that, for the
ghost imaging the deviation is due to the same reason, but additionally also due
to residual noise in the opaque areas of the sample, which is well visible in Fig-
ure even for M = 25000 projections. A further difference is that in the ghost
imaging case the holes “emerge” from the noise at their actual positions and with
their actual size. Using OEi imaging, the reconstructed intensity distribution
splits into three intensity blobs corresponding to the three holes. Then, using
more higher order modes with finer features, these blobs converge towards the
position and size of the holes.

Quantitatively, a deviation of o.,; < 0.2 is obtained for ghost imaging after
about 2500 speckle pattern projections. OFEi imaging requires just 10, i.e. 250
times less, projections. In order to push the reconstruction difference below 0.1
one needs roughly 17500 speckle patterns, while the same effect can be achieved
with 20 OEi, corresponding to a factor of 875. Hence, using OEi imaging, one can
lower the number of probes required to obtain the same object /image deviation by
2 — 3 orders of magnitude. This is 1-2 orders of magnitude less than reported for
other compressive indirect imaging modalities [I81]. The most striking difference
between OFEi imaging and compressive computational ghost imaging is the low
background of the OFEi images. This is attributed to the phase information of the
OEi: Destructive interference can cancel the background very efficiently.

4.2.3 OEi imaging and raster scanning: Localisation
capabilities and PSF

In Section it was observed, that in an OEi image the major change with
increasing mode number is not the noise level, but the localisation accuracy and
the size of object features, i.e. the resolution. Accurate reproduction of the
object in terms of these quantities is an important ascpect of every imaging
technique. A widely used imaging scheme for Raman imaging, which is the target
application for OEi imaging in this work, is raster scanning. Here the localisation
accuracy and resolution for a sampling above the Nyquist limit depends on the
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Figure 4.3: Raster scans and OEi images of a single point in the FOV for M = 4,
16, 121, and 441 probes.

Intensity [a.u.]

raster density of the scan. For a sampling at the Nyquist rate, the resolution is
ultimately bound by the diffraction limited width of the scanning spot. As the
number of image points and hence also the acquisition time scales quadratically
with the grid density, one wants to keep it as low as possible. The compressive
nature of OEi imaging demonstrated in Section promises that, using OEi
compared to raster scanning, a lower number of probes might be required to
obtain the same localisation accuracy and resolution. Investigating this proposal
is the topic of this section.

Therefore binary objects of 201 x 201 pixels featuring one transmissive pixel are
simulated. Then the imaging of these objects is simulated with raster scanning
for varying number of raster points. In more detail, for each scanning point k
the total transmission t; of the target T is calculated upon illumination with the
two-dimensional intensity distribution [, of the diffraction limited Airy-disk:

t = / / I, T do (4.6)

ROI

with doy = dxs dy, and ROI indicating the rastered object area. An image is then
composed from these transmissions. This imaging mode corresponds to raster
scanning without confocal pinhole, hence the resolution limit is the conventional
Abbe limit dapbe according to Equation [2.21] [94].

The top row in Figure illustrates the PSF for raster scanning of a randomly
chosen point for different numbers M of scanning coordinates. With increasing
M the width of the PSF decreases, leading to a higher resolution and allowing a
more accurate estimation of the position of the scanned point. For comparison,
the bottom row of Figure depicts OEi images of a randomly chosen point
using the same numbers M of OFEi (please note that the position of the points for
both methods is not identical, but randomly chosen). At a first glance the OFEi
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Figure 4.4: (a) Localisation accuracy oo and (b) width wpgr of the PSF, nor-
malised to the Abbe limit dappe, for raster scanning and OEi imaging depending on
the number M of probes.
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4.2 Simulations: OFi imaging compared to ghost imaging and raster scanning

images appear more detailed, as each mode features the full pixel resolution of
the simulated object. However, this does not yet say anything about the accuracy
with which the point can be localised.

To quantify the localisation accuracy, the centroid of each image’s intensity
distribution is determined. The difference between the centroid and the actual
coordinate of the transmissive pixel is a measure for the localisation precision and
here referred to as oj,c. In Figure [l.4h this difference oy, is plotted in dependence
on the number M of probes, where probes are either scanning points or OFi.
Each datapoint of the graph corresponds to the average over 10 randomly chosen
pixel and oy, is normalised to the Abbe limit dappe, which is about 10 pixel in
these simulations. For the case of OEi imaging the localisation accuracy drops
more rapidly then for raster scanning. With o, = 0.75, a localisation error
well below the diffraction limit is already obtained for 12 OEi, which requires
raster scanning at 121 points. This is a factor 10 more illuminations. For larger
numbers of illuminations, o 1, changes more slowly. A level of o, = 0.25 results
from the projection of about 125 OFEi and a point-by-point scan at 441 coordinates,
corresponding to a factor of 3.5 in favour for OFi imaging.

Figure [4.4p depicts the width wpsp of the PSF in dependence on the number
M of probes. A raster scan at the Nyquist rate would require to scan with a
grid spacing of half the diffraction limit. In the presented case this would mean
40 scanning points in each dimension, resulting in 1600 samples at all. Actually,
in Figure [£.4b the width wpgp for a raster scan already converges slowly within
M = 800 samplings against the diffraction limit of wpsp = 1. However, using
OEi imaging, this a already the case for M = 200, corresponding to a factor four
fewer probes.

In conclusion, OEi imaging is most beneficial in terms of localising object points
for low numbers of acquisitions. Here the step width of the grid used for the
raster scans is well above the diffraction limit and the OEi imaging benefits from
its compressive properties in combination with the high pixel resolution of the
modes. In that case an order of magnitude improvement is achieved compared
to raster scanning the sample. With increasing number of scanning points the
step width of the raster grid converges to the diffraction limit of about 10 pixel.
Then the advantage of OEi imaging compared to raster scanning tails off and OEi
imaging only save a factor 3.5 acquisitions compared to a point-by-point scan. A
diffraction limited PSF is achieved with OEi imaging using a factor four less
probes compared to raster scanning. However, for an objective comparison with
a practical application in mind, it must be mentioned that OEi imaging also relies
on phase information of the illumination, while a raster scan only uses intensity
features. To experimentally reconstruct intensity and phase of the light field,
at least three acquisitions are necessary [I87|, hence decreasing the advantage
of OEi imaging for pure intensity objects. However, as has been discussed in
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Figure 4.5: (a) Fluorescence excitation with energy hvex and emission with energy
hVem illustrated as Jablonski diagram. (b) Stokes shift between fluorescence excita-
tion at wavelength Aex and emission at Aep. (¢) Schematic of Raman scattering with
frequency vs after excitation with vey. (d) Jablonski diagram for Raman scattering
with virtual state.

Section these phase information also enable a very low background and in
principle also phase only objects could be imaged using OEi, as was shown in
Reference [185.

4.3 Fluorescence, Raman scattering, and SERS

This section gives a brief introduction into the effects of fluorescence, Raman
scattering, and surface enhanced Raman scattering (SERS). All three modalities
are utilised for imaging in the remainder of this chapter.

Fluorescence belongs to the family of luminescence processes [188]|. In these,
light of an excitation frequency v, is absorbed by the molecules of a substance,
leaving them in an electronically excited state S,. After the life time of that state,
the molecule returns to its ground state S; under emission of light of frequency vey,.
This process is visualized in Figure as a so called Jablonski diagram. Within
luminescence, one distinguishes between fluorescence and phosphorescence. The
difference between both processes is in their life time. Fluorescence usually fea-
tures life times in the nanosecond range, while the life time of phosphorescence
can be on the scale of milliseconds to minutes. Most of the time a part of the
excitation energy hve is thermally lost, so that the reemitted light is shifted to
longer wavelength by the Stokes shift [189], illustrated in Figure . Usually
the emission wavelength of fluorescence does not depend on the excitation wave-
length. Fluorescent molecules often feature aromatic rings and are an important
tool in biology. In combination with antibodies, they can be used to selectively
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4.4 Experimental OFEi imaging

stain e.g. a cell’s nucleus, membrane, or cytoskeleton for studies in fluorescence
microscopy [190].

Another way light can interact with matter different from absorption/emission
is scattering. For elastic scattering, the photon incident on a molecule just changes
its direction, but not the momentum, i.e. wavelength/frequency. This is referred
to as Rayleigh scattering [191]. In contrast, the Raman effect [192] is an inelastic
scattering process, as illustrated schematically in Figure 4.5c and as Jablonski
diagram in Figure [£.5d. A photon of energy hue, excites vibrational states in a
molecule [193]. The wavelength As of the scattered photon with energy hug is
stokes shifted with respect to the excitation wavelength Ax. The Raman shift,
calculated by

11
)\GX )\S ’

is related to the energy of the excited state. Measuring it enables material specific
information without any need for labeling, which is a major advantage over fluo-
rescent techniques. A disadvantage of Raman spectroscopy is its low scattering
cross section, which is usually about 15 orders of magnitude lower then the cross
section of fluorescence [193].

Raman shift =

(4.7)

An option to increase that cross section is surface enhanced Raman scattering
(SERS) [194]. The term “SERS” relates to the enhanced Raman signal observed
for molecules close to or on the surface of metallic structures. This is attributed
to two effects. On the one hand, upon illumination with laser light nanometric
metallic structures give rise to a plasmonic enhancement of the electromagnetic
field close to the structure. Popular structures are nanoantennas |77, 195] or
simply nanoparticles [196]. On the other hand it has also been observed that
binding of certain molecules to rough metallic surfaces leads to an increased
Raman signal. This might be explained by an alterration of the electronic states
of the molecules due to the binding [197|. In the best case, SERS offers cross
sections similar to the ones of fluorescence [194], which enables detection of single
molecules [19§].

4.4 Experimental OEi imaging

Following the simulations in Section [£.2] this section deals with the experimen-
tal implementation of OEi imaging. The experimental setups for OEi imaging
on the macroscopic and the microscopic scale are described in Section [.4.1] In
Section the experimental reproducibility of theoretically calculated OEi, in
particular their orthogonality, is investigated. Finally, the experimental OEi imag-
ing process is outlined in Section [4.4.3]
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4.4.1 Setups

This section describes the experimental systems for macroscopic OEi imaging
in transmission and with fluorescence in Section [£.4.1.1] and for OEi Raman mi-

croscopy in Section [4.4.1.2]

4.4.1.1 Setup for bulk OEi imaging

The optical arrangement for macroscopic OEi imaging is depicted in Figure [4.6]
The beam of a 1 W Ti:Sapphire laser (3900S, Spectra-Physics, wavelength A =
785nm) pumped with a frequency doubled 6 W Nd:YAG laser (Verdi V-6, Co-
herent Inc.) is collimated and reflected of the display of an SLM (LCOS-SLM
X10468-02, Hamamatsu Photonics). The first order modulated light is filtered out
by an iris (I) positioned in the focal plane of a telecope and then focused onto the
sample. A small fraction of the focused light is reflected by a dichroic beam split-
ter (DBS) onto a CCD camera (Basler pilot piA640-210gm, 648 pixel x 488 pixel
resolution, 7.4 pnm pixel pitch). This enables the visualisation of the light pattern
which illuminates the object. The laser light transmitted by the sample is focused
by a telecope onto a single pixel photo detector (PD). Stokes shifted flourescent
light emitted by the sample is reflected from a 45° notch filter (NF) and, after
passing a second NF, focused onto the entrance slit of a spectrograph (Shamrock
SR-303i-B, Andor). The spectra are acquired with a 400 lines/mm grating blazed
for 850 nm on a cooled CCD detector (Newton CCD, Andor).

4.4.1.2 Setup for OEi Raman microscopy

The experimental setup for OEi Raman microscopy is depicted in Figure [4.7]
Up to the iris (I) it is identical to the one described in Section , except
for that the laser source, which in this case is a linearily polarized diode laser
(TEC-420-0780-1000, Laser 2000) with 785nm emission wavelength. The first
order modulated light from the SLM passing the iris is coupled into a microscope
objective MO (100x /1.30 Oil UPlanFL N, Olympus) and focused onto the sam-
ple (S). Raman scattered light from the sample is collected in epi-configuration,
transmitted through a 45° notch filter (NF) as well as a plane NF, and focused
onto the entrance slit of the spectrograph. The latter is identical to the one
in Section (Shamrock SR-303i-B, Andor) and acquires spectra with a 400
lines/mm grating blazed for 850 nm on a cooled CCD detector (Newton CCD, An-
dor). Laser light reflected from the sample is reflected by the 45° NF and another
dichroic beam splitter DBS onto the same CCD camera as in Section [4.4.1.1] For
a transmissive sample, whitelight illumination can be provided by a light emitting
diode (LED).
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Figure 4.6: Experimental setup for optical eigenmode imaging. LLF: Laser line
filter at 785 nm; L: Lens; SLM: Spatial light modulator; M: Mirror; I: Iris to filter out
first diffraction order from SLM; DBS: Dichroic beam splitter reflecting visible light
and transmitting infrared light; CCD: CCD camera; S: Sample; NF: Notch filters to
transmit light with wavelengths longer then 785 nm into the spectrograph; PD: Photo
diode.
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Figure 4.7: Experimental setup for optical eigenmode Raman microscopy. LLF:
Laser line filter at 785 nm; L: Lens; SLM: Spatial light modulator; M: Mirror; I: Iris
to filter out first diffraction order from SLM; DBS: Dichroic beam splitter reflecting
visible light and transmitting infrared light; CCD: CCD camera; NF: Notch filters
to transmit light with wavelengths longer then 785 nm into the spectrograph; MO:
Microscope objective; S: Sample.

In order to get a comparator for the OEi Raman images, a Raman raster scan
can be performed with this setup by deflecting the focus over the sample using
the SLM as scanning mirror. More detail on this can be found in Section (3.5.1.1
An image is then composed from the spectra acquired at each beam position. For
this to work, the input slit of the spectrograph has to be opened wide enough to
let the light at each scanning coordinate pass. Like that the imaging process loses
its confocality, which, compared to an infinitesimal slit, will degrade the lateral
resolution by a factor of 1.4 [94], if the step width of the scans is similar to the
width of the scanning beam. On the other hand, the same opening width has to
be used for OEi imaging, as the whole illuminated ROI has to pass through the
slit. For the experiments carried out, the slit width was 300 pm.
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4.4.2 Experimental OEi

Figure 2.9 in Section depicts simulated OFEi in the focal plane of the micro-
scope objective used in the setup of Section [£.4.1.2] In this section it is investi-
gated if these modes can be replicated experimentally and if they are orthogonal
in the focal plane. Therefore a microscope slide was coated with a 100 nm layer
of silver, acting as mirror in the focal plane onto which the laser light is focused
through that slide. This generates conditions similar to a real sample on a micro-
scope slide and enables easy cleaning of the immersion oil after usage. To visually
inspect the OEi in the focal plane, the reciprocal fields depicted in Figure 2.8}, Sec-
tion[2.5.2] are encoded on the SLM of the setup described in Section[f.4.1.2] Then
the resulting focal fields are captured on the CCD camera with the coated micro-
scope slide positioned in the focal plane of the objective. The resulting intensity
distributions are depicted in Figure 4.8/ and show good agreement with their sim-
ulated counterparts in Figure 2.9 However, this does not prove orthogonality of
the modes, for which the accurate reproduction of phase properties is essential.

Orthogonality of two spatial fields Fy and F; means, that the integral of the
cross product [Fy, IF} vanishs in the region ROI of orthogonality if £ # [, and is
unity for the field multiplied with itself:

/ Fk IF; dO’Q = 5l<:l (48)

ROI

with doy = dxgdys. The image denoted as “Theory” in Figure [4.9] depicts this
relationship for the simulated OEi. The row and column numbers of the displayed
matrix correspond to the indices k£ and [ respectively. With the diagonal elements
being unity and the offdiagonal elements equaling zero, in theory the OEi are
perfectly orthogonal. Experimentally, the product [F;, F} can be obtained via the
“polarisation identity” [199]

3

I, }sz = i Z el2? ‘Fk + L I

p=0

‘ 2

(4.9)

The absolute square in Equation [4.9]is captured on the CCD with the field E, +
e 2P E; encoded on the SLM. The image denoted “Experiment” in Figure
depicts the experimentally resulting orthogonality relationship for the first
9 OEi. Visually, theory and experiment are in good agreement. Quantitatively
the orthogonality can be characterised by the quotient o4, of the average off-
diagonal entries and the average diagonal entries of the orthogonality matrix O:

ortn, = ‘)?Lg(@. (4.10)
diag(O)
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Figure 4.8: Experimentally captured spatial intensity distributions of the first 25
optical eigenmodes, corresponding to the simulations in Figure The images were
obtained with the CCD camera in the setup in Figure [£.7 with a mirror in the focal
plane of the 100x microscope objective and the fields in Figure [2.8| encoded on the
SLM.
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Figure 4.9: Theoretical and experimental orthogonality matrix for the first 9 optical
eigenmodes. The latter was obtained with a mirror positioned in the focal plane of
the 100x microscope objective in the setup in Figure
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The normalisation can be measured as the standard deviation ogj,e of the diagonal
elements. For the experimental data shown in Figure 4.9/ the corresponding values
are ooen = 0.09 and oging = 0.08. Hence, with less than 10% error it can
be concluded that orthogonality of the OEi in the focal plane is fulfilled to a
good approximation. Deviations between the experimental and the theoretical
orthogonality matrix will be due to a combination of measurement uncertainty
and nonperfect encoding of the amplitude and phase of the fields E; on the SLM.

4.4.3 Experimental procedure of OEi imaging

Following the description of the basic OEi imaging principle in Section [4.2.1] this
part deals with its practical implementation. In the course of this, the major
challenge is to determine the complex coefficients ¢; in Equation which char-
acterise the coupling of each mode ) to the sample. With a single acquisition,
the detectors used in the setups described in Section [4.4.1] only provide inten-
sity information. For access to the complex coupling coefficients, phase retrievial
methods are required. In principle not more then three intensity acquisitions are
necessary for phase reconstruction [I87]. However, depending on the noise level,
more measurements might improve the phase reconstruction accuracy. Hence the
polarisation identity described in Section is employed here. In particular,
each mode I}, is interfered with a reference wave E,. for P different phase shifts
of the latter. This enables the reconstruction of the complex coefficient ¢, for
each OEi with respect to the complex coupling ¢, of the reference wave:

P-1

12 .

ket = 5 pZO o'5P // [Fy + e 757 By dory (4.11)
- ROI

with doy = dxy dys. The integration over the imaged area ROI is effectively car-
ried out by the single pixel detector, onto which the illuminated object is imaged.

67



4.5 Macroscopic OEi imaging
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Figure 4.10: Optical eigenmode imaging in transmission. (a) Transmission image of
the sample taken with a conventional microscope. (b) Slmulated optical eigenmode
images of the sample for different numbers M of projected modes. (c¢) Experimentally
obtained optical eigenmode images corresponding to the simulations in (b).
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The fact that the complex coupling is only determined with respect to the cou-
pling coefficient of the reference wave is not problematic as long as each coefficient
cx 1s measured with the same reference. Equation already enables the full
complex reconstruction of the ¢;. However, it was observed that the reconstructed
amplitude |cx| can be retrieved with less noise as the squareroot of a single ac-
quisition with only the mode F, illuminating the sample. Hence, amplitude and
phase of the the complex coefficient ¢, are determined seperately, where the phase
is obtained by taking the complex angle of Equation [£.11] With knowledge of
the ¢, an image of the object is then obtained according to Equation with
the modes F, which are known from simulations and have in Section been
demonstrated to be accurately reproduced experimentally.

4.5 Macroscopic OEi imaging

As a first step towards OEi Raman microscopy, this section provides proof of
principle experiments of OEi imaging both in transmission and with fluorescence.
In Section [4.5.1] a test target consisting of three holes in an aluminium plate,
which was already simulated in Section [4.2.2] is imaged using the OEi concept.
For a simple spectral imaging experiment, in Section [4.5.2] one of the holes is
covered with a thin film of Blu-Tack, which is essentially a polymer and exhibits
some fluorescence.

4.5.1 OEi imaging in transmission

For the first OFEi imaging experiment an aluminium plate featuring three holes
of 150 pm diameter is positioned in the sample plane of the setup described in
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Figure 4.11: Difference o,,; between object and eigenmode image according to
Equation [f.5]depending on the number M of projected modes. Red curve: Simulation;
Blue curve: Experiment.

Section [£.4.1.1] A transmission image of the sample captured with a conventional
microscope (Nikon ECLIPSE Ti-S) is depicted in Figure . An OEi image of
the object is obtained as described in Section [£.4.3] using the photo detector of
the setup in Section [£.4.1.1to determine the coupling coefficients ¢j. Figure[f.10c
shows the reconstruction of the three holes for different numbers M of OEi. For
M = 2, the features of the sample are not revealed. Using M = 10 modes, two of
the three holes start to be reconstructed. With M = 20 probes, the third hole is
becoming visible in the reconstruction. When imaging with M = 40 and M = 70
OEi, the positions and sizes of the holes are narrower confined to the actual
arrangement. For comparison, Figure depicts the corresponding simulated
results from Section In the experiment slightly more OFEi are required to
reconstruct the sample in good approximation and the final simulated result also
shows better agreement with the object compared to the experiment. But overall
simulation and experiment are in reasonable agreement.

Quantitatively, this observations are illustrated in Figure 4.1} which depicts
a plot of the difference o,,; between object and reconstruction in dependence on
the number M of modes used for the imaging process. The deviation o,,; was
quantified according to Equation The simulated curve in red and the blue
experimental curve exhibit very similar behaviour in the decay of o4p; with increas-
ing number M of modes. For small M < 20, o,; drops quickly and is decreasing
less rapid from about M > 20. In almost the full range of 2 < M < 70, the
theoretical deviation ranges below the experimental data. This is to be expected:
The simulated image is in better agreement with the object as the experimental
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Figure 4.12: Experimental eigenmode imaging using fluorescence: (a) Macro photo-
graph of the three hole test target with one hole being covered by pink Blu-Tack. The
sample is illuminated from the other side by the reference wave. (b) Eigenmode image
for M = 70 modes reconstructed based on the photodiode signal without Blu-Tack.
(c) Eigenmode image on the basis of the photodiode signal, but one hole covered
with Blu-Tack. Only the two free holes are reconstructed. (d) Eigenmode image
reconstructed using the fluorescence signal captured with the spectrograph. Now the
hole which is covered by Blu-Tack is reconstructed.

image. In conclusion, the results in this section show that the experimental per-
formance of OEi imaging agrees to what has been proposed in the simulations,
meaning that also experimentally a simple object can be reconstructed in good
approximation from about 20 modes. After this first working example, OEi imag-
ing is taken to the range of fluorescence in the next Section [£.5.2] for which the
signal is weaker than for imaging in transmission.

4.5.2 OEi fluorescence imaging

On the route to OEi Raman microscopy, this section deals with the intermediate
step of fluorescence imaging. Therefore one of the holes in the test sample from
the previous Section [4.5.1] is covered with a thin layer of pink Blu-Tack. This
scenario is visualised in Figure .12 by means of a photograph of the sample.
The Blu-Tack blocks most of the laser light, but instead exhibits fluorescence
at wavelengths larger then the 785 nm excitation wavelength. This fluorescence
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Figure 4.13: Fluorescence spectrum of Blu-Tack: Normalised counts in dependence
on the wavelength.

can be detected via the spectrograph in the setup of Section [4.4.1.1, The two
notch filters in front of the entrance slit should make sure that almost no laser
light, but only frequency shifted fluorescence and Raman scattered light enters
the spectrometer. However, to gain certainty that the signal detected with the
spectrograph is not part of the tail of the laser light, it was compared with and
without Blu-Tack in front of the holes. With Blu-Tack the signal detected with the
spectrograph is much stronger and less noisy, hence confirming that it is indeed
broad fluorescence of the Blu-Tack. Figure depicts the broad fluorescence
spectrum captured with the spectrograph.

The imaging experiment is then performed identically to Section [£.5.1 The
only difference is that the coupling coefficients ¢, are determined for both de-
tectors, the photo diode and the spectrograph. Then an image is reconstructed
based on the coefficients for each detector. For comparison to these, the image of
all three holes from Section [£.5.1] is shown in Figure 1.12p. Figure depicts
the image resulting from the photo diode signal with one hole blocked by Blu-
Tack. The two not covered holes are reconstructed based on the transmitted laser
light, while the blocked hole remains dark. The opposite is the case when recon-
structing based on the fluorescence detected with the spectrograph, as shown in
Figure [4.12d. Here the covered hole is reconstructed while the two transmissive
holes are at most visible as dark shadows. The latter will be due to some residual
laser light which is not filtered out by the notch filters.

In conclusion, the results presented in this section show the capability of OEi
imaging to reconstruct fluorescent samples. This is an important step towards
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OEi Raman microscopy, in which the signal will be much weaker then fluores-
cence.

4.6 OEi Raman microscopy

In this section the concept of OEi imaging is extended to the regime of Raman
spectroscopy. As the Raman scattering effect in general has a very low cross sec-
tion, the first imaging experiment in Section uses polystyrene and PMMA
beads, which feature a relatively strong and distinct raman spectrum. In Sec-
tion advantage is taken of the SERS effect and OEi imaging is utilised to
localise SERS hotspots.

4.6.1 Raman imaging of polystyrene and PMMA beads

The first OEi Raman imaging experiment uses polystyrene beads of 3 pm diameter
(Microbead NIST Traceable, Polysciences Europe GmbH). For sample prepera-
tion, a sticker of about 100 pm thickness featuring a 1.25cm aperture is glued
onto a 25mm x 25 mm quartz glass slide (CFQ-2557, UQG Optics) of 0.17 mm
thickness. Then 30 pLi of the solution containing the beads is distributed in the
aperture and left to dry. That causes the beads to stick to the quartz slide, so
that they do not drift around during the acquisition process. Then the sample
volume is carefully refilled with 30 uL of water such that the beads do not detach
from the surface. After closing the sample chamber by putting a coverglass on
top, it is sealed with clear nail polish to prevent evaporation of the water.

For the imaging process the sample is placed in the focal plane of the setup de-
scribed in Section [£.4.1.2] Then the acquisition process is performed according to
Section [4.4.3] illuminating a sample area of about 6 pm x 6 pm with optical eigen-
modes. For each mode F; a complex coupling coefficient ¢, has to be obtained.
In the case of Raman imaging presented here, this coefficient is determined with
respect to a certain range within the Raman spectrum, featuring the characteris-
tics of the spectrum for the sample’s material. The Raman signal of polystyrene
exhibits a strong peak at a Raman shift of about 1001 cm™" [200]. In Figure
it is indicated in red in the Spectrum resulting from illumination of a polystyrene
bead with a focused beam. In more detail the determination of each coupling
coefficient ¢, works as follows: To determine the amplitude of ¢, the sample is
illuminated with the mode Fy. Figure illustrates this in terms of a picture
captured with the CCD camera of the setup. It shows the laser light, backre-
flected from two polystyrene beads attached with each other. The intensity is
concentrated at the center of the beads, as they act as little lenses. The intensity
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Figure 4.14: (a) Raman spectrum resulting from focusing a Gaussian beam of about
300nm FWHM onto a 3pm polystyrene bead (0.1s exposure time). (b) The same
as (a) but for a 3pm PMMA bead. (c¢) Spectrum for one polystyrene bead and one
PMMA bead illuminated with the 4*" eigenmode and 3s acquisition time. The area
of the significant peak for PMMA is indicated in blue and the one of polystyrene in
red.
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Figure 4.15: Illustration of the probing process. (a) Two beads illuminated with
Mode 3, both beads are illuminated. (b)-(e) Interference of Mode 3 with the reference
wave and varying phase shift ¢ causes the illumination to shift from one bead to the
other. The light of the modes is concentrated in the center of the transparent beads
due to microlensing induced by them.

pattern of mode [F3 features two vertical lobes (see e.g. Figure 7 such that
both beads are illuminated. The amplitude of ¢3 is then obtained as the sum over
the red part of the spectrum in Figure [{.14h. To determine the phase of ¢, the
mode 3 is interfered with the reference wave F,.. Upon interference with four
phase shifts ¢ =0, ..., 2?” between 3 and Flf, corresponding to P = 4 in Equa-
tion [4.11] intensity shifts from one bead to the other due to the phase difference
of ™ between both lobes of the intensity pattern of F3. This selective illumination
of the beads is illustrated in Figures to[d.I5k. For each of the illuminations
depicted in Figure |4.15| a spectrum similar to the one in Figure 4.14k is acquired
with the spectrograph and the spectral intensity is summed within the red area of
interest. This sum corresponds to the integral in Equation and the phase of
c3 is determined as complex angle of Equation .11 This procedure is repeated
for each OEi to get their corresponding coefficients c;. Then a Raman image of
the sample is composed by superposition of the modes F, weighted with the ¢
according to Equation [£.2]

With 3m beads in a 6 pm X 6 pm sample area, the samples only exhibit very
few details, such that the first four eigenmodes are sufficient for imaging. Actually,
as shown later, using higher order modes is degrading the quality of sample recon-
struction. Figure depicts some OEi Raman images resulting from different
sample configurations. The top row of pictures in Figure [4.16| shows brightfield
images of beads captured with whitelight illumination of the sample from above.
From left to right the sample consists of one polystyrene bead in the lower left cor-
ner of the ROI, one bead in the top right corner, two beads diagonally arranged,
and one polystyrene bead in the top left corner together with one silica bead in
the lower right corner. The latter can be distinguished from the polystyrene beads
in the whitelight pictures due to its different refractive index. This last sample
arrangement is chosen to demonstrate that the images discussed below are really
based on the Raman peaks and not on some broad fluorescent background, as it
was the case for the hole covered with Blu-Tack in Section[4.5.2] To get an idea of
what to expect from a Raman image of these samples, the second row of pictures
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Figure 4.16: OEi Raman microscopy of polystyrene beads. From top to bottom the
rows show whitelight images, Raman raster scans at 26 x 26 points, and OEi images
acquired with 4 modes. From left to right the columns correspond to one polystyrene
bead in the lower left corner of the FOV, one bead in the top right corner, two
polystyrene beads in the FOV, and one polystyrene and one glass bead in the FOV.
The latter is not visible in the Raman images. In the whitelight image it can be
distinguished from the polystyrene bead due to its higher refractive index.

depicts Raman raster scans of the same FOV using a 26 x 26 scanning grid. The
polystyrene beads are well reconstructed while the silica bead remains invisible.
The last row of images in Figure depicts OEi images captured with only four
modes. The single beads are reconstructed well and also in the picture of two
polystyrene beads two clearly distinct particles are reconstructed. The noise level
in the OEi images is visually lower compared to the raster scans. But this will
be discussed in detail later on.

Figure shows OEi Raman images that result from M = 4, ... 20 modes.
The top row of pictures corresponds to a bead in the lower left corner of the FOV,
the middle row to a particle in the top right corner, and the bottom row shows
images of two beads. Usually a more accurate object reconstruction with finer
features and particle localisation should be enabled using higher order eigenmodes.
However, in the results presented in Figure 4.17] image quality clearly degrades
with increasing number M of modes. This contradicts the prior statement, but
can be attributed to aberrations induced by the sample itself. OEi imaging can
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Figure 4.17: OEi Raman images resulting from probing the first three sample
configurations in Figure with different numbers M of modes. The first row
corresponds to one polystyrene bead in the lower left corner of the FOV, the second
row to a bead in the top right corner, and the third row shows two beads in the FOV.
With increasing M the images get more noisy. This is due aberrations induced by
the beads, which mainly affect the higher order modes (see text for more detailed
discussion).
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work well, if the modes are accurately generated in the focal plane. This will be
the case for thin samples with low aberrations. But the sample for the above
experiments does not fulfill this condition. With a bead diameter of 3 pm, the
chosen FOV of 6 ym size is only twice this value, hence rendering the sample
more a 3D than a 2D object. The resulting aberrations are illustrated very well
by the microlensing effect of the beads, visible in Figure 4.15, For the focused
beam used in the raster scans this does not have such a large impact, as the
phase is constant over the focal plane. In contrast to that the generation of
OEi relies on phase changes of m between the intensity lobes of the modes (see
Figure 2.9). For low order modes with a size of the lobes comparable to the bead
size, the OEi are still reproduced in good approximation. But higher order modes
seem to be significantly distorted due to the spatial phase changes induced by
the transparent beads. On the other hand, the low order modes provide enough
detail to reconstruct the above samples.

In the last column of pictures in Figure it has already been shown that
a silica bead, which at most exhibits broad fluorescence, is not reconstructed
in the Raman images. However, a more interesting question is, if two objects
with a different Raman signature can be reconstructed independently using OEi
microscopy. Therefore a sample is prepared, which features both, polystyrene
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Figure 4.18: OEi Raman imaging of a polystyrene and a PMMA bead. (a) White-
light image of the sample, the polystyrene bead is in the top right corner and the
PMMA bead in the lower left corner. (b), (¢) Raman images resulting from 26 x 26
points raster scans. (e), (f) OEi Raman images corresponding to (b) and (c). (d)
Graphical superposition of the intensity distributions in (b) and (c), indicating the
occurence of polystyrene in red and the one of PMMA in blue. (g) The same as (d),
but for the OEi images.

and polymethacrylate (PMMA) beads (86935-5ML-F, Sigma-Aldrich) of the same
3pm diameter. The sample preperation was carried out almost identical as de-
scribed for the polystyrene beads prior in this section. The difference is that
first the polystyrene beads were distributed on the quartz slide. The solution of
PMMA beads was added, after the liquid of the polystyrene solution evaporated.
This was necessary as the beads were building big agglomerates when adding
both bead solutions together. After evaporation of the liquid in the PMMA bead
solution, water was added and the sample was sealed as outlined above. The
main peak in the Raman spectrum of PMMA at about 830 cm™!, highlighted by
blue colour in Figure [£.14p, is well seperated from the main peak of polystyrene,
highlighted red in Figure [f.14dh. However, there is a small overlap of the PMMA
peak with a less intense broad feature of polystyrene and the PMMA signal is
significantly weaker than the one of polystyrene, which is aparent by the higher
noise level in Figure [1.14p compared to [£.14h. This is why in the spectrum in
Figure [{.14k, which results from illumination of both beads with the fourth eigen-
mode, the PMMA peak appears as a side peak of the broad polystyrene peak
at 800cm™!. The imaging process of this mixed material sample is then per-
formed as described above using the first four OEi in an area which accomodates
a polystyrene bead and a PMMA bead next to each other. This configuration is
shown in Figure [£.18h. Using the red highlighted region of the spectra around
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1001 cm~* results in reconstruction of the polystyrene bead, shown in Figure
for a raster scan and in Figure as OFi image. Reconstructing with respect
to the blue region around 830 cm™! reveals the PMMA bead as raster scan in Fig-
ure and as OEi image in Figure [L.18f. Due to the small spectral overlap of
polystyrene and PMMA,| the PMMA bead is partly reconstructed in the images
of the polystyrene bead and vice versa. This effect is stronger visible in the raster
scans than in the OEi images, which in general feature a very low background. In
addition to the reconstructions of the single beads, these information are merged
in Figures and for the raster scan and the OEi imaging, delivering
multispectral images that provide material information.

Above it was visually observed that the OEi Raman images feature a lower
background than the raster scans. However, comparing the noise level of both
methods in terms of the presented results is not trivial. The question is, OEi
images with which number of modes should be compared to the raster scans? On
the one hand, the images resulting from only 4 modes definitely have the lowest
background level, but on the other hand the raster scans with their 676 points
will definitely provide a more accurate localisation of the beads. On the other
hand, using more modes for the OEi imaging, which should in principle enhance
the localisation capabilities, turned out to degrade the image quality instead of
improving it due to the sample’s thickness. Based on these considerations, a
quantitative comparison of the noise levels of both methods is postponed to the
next Section [£.6.2] There a SERS sample with 200 nm gold spheres is utilised,
which is closer to being a 2D sample than the 3 pm beads and hence allows OEi
imaging with a larger number of modes.

In conclusion, the results in this section showed, that OEi imaging also works on
the basis of a sample’s Raman signal. First, polystyrene beads were imaged using
only the first four eigenmodes. Then a mixed sample consisting of a polystyrene
and a PMMA bead, featuring different Raman signatures, was imaged. Here, both
beads could be reconstructed independently based on their main peak, hence
demonstrating hyperspectral OEi microscopy. A disadvantage of OEi imaging
found in the course of the experiments was its sensitivity to aberrations induced
by the sample. Higher order OEi were disturbed by the phase change induced
by the transparent beads, such that using them was decreasing the image quality
instead of increasing it. Raster scans with a focused beam were less sensitive to
this sort of distortion. Visually, OEi images provide a lower noise level compared
to raster scans. However, this has to be confirmed in the next Section due
to the aberration problems with OFEi imaging of thick samples.

4.6.2 Localising SERS hotspots with OEi imaging

The results in the previous Section [£.6.1] have shown that OEi imaging with
higher order modes suffers from strongly aberrating samples, such as the 3 um
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Figure 4.19: (a) Schematic of the SERS sample: 200nm gold particle on gold
surface, which was coated with the analyte, in this case dithiol. The hotspot between
gold layer and sphere gives rise to SERS. (b) SEM image of a sample area similar to
the imaged one (thanks to Kapil for taking that image). (c) Backreflectec laser light
from the 9pm x 9pm ROI chosen for imaging. Two agglomerates of gold particles
are visible as dark spots. (d) Raman raster scan of the scenery. (e) OEi imaging
reconstruction of the scene for increasing number M of modes.
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Figure 4.20: SERS spectrum of dithiol: Normalised counts in dependence on the
Raman shift. The peaks used for the imaging process are highlighted in green.
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Figure 4.21: (a) Distance between SERS hotspots and (b) FWHM of the top left
hotspot in dependence on the number M of probes.

beads that were used. The logical step would be to employ thinner samples, such
as smaller beads of e.g. 1pm diameter. However, a thinner sample also means
less sample volume and in essence a weaker Raman signal. Hence, spreading
the OEi illumination over the same FOV as in the previous experiments, the
Raman signal with 1pm polystyrene beads was found to be not sufficient to
perform OFi imaging experiments. An efficient method to obtain a strong signal
from a small sample volume is SERS, described in Section [4.3] Hence, in this
section a SERS sample provided by Dr Sumeet Mahajan (Department of Physics,
Cavendish Laboratory, University of Cambridge) is employed. Its structure is
arranged in the following way [201]: A monolayer of the analyte, in the present
case dithiol [202], is deposited on a flat layer of gold. Then gold spheres of about
200 nm diameter are deposited on the dithiol. A schematic of this arrangement
is depicted in Figure [{.1% and an SEM image of the sample is provided in
Figure [£.19b. The dithiol binds to both, the flat gold layer and the gold spheres,
generating a 1.3nm gap between them. Upon illumination with laser light, this
small gap gives rise to a strong field enhancement and hence to a strong SERS
signal, which is shown in Figure [£.20]

To image this sort of sample, the oil emersion objective used before is unsuit-
able, as the object itself would be covered with oil. Hence the objective was
change for an air objective (Nikon 60 x /0.8 00/0.17 WD 0.3). For the imaging a
sample region of about 9 pm x 9 pm was selected that features two agglomerates
of particles. Figure [£.19k shows a picture of this sample area captured with the
CCD camera upon illumination with the reference wave. In the following this
is referred to as reference image. The two bunches of particles are visible as
dark spots, as they reflect less light than the flat gold surface. For imaging, the
spectral region with the two largest peaks at a Raman shift of around 1600 cm™!,
highlighted green in Figure [4.20] was selected. The resulting Raman raster scan
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Figure 4.22: Profiles along the dashed lines in Figures , 14.19d, and [4.19.

The FWHM of the curves are: 2.57 pm for the fit onto the raster scan, 1.58 pm for
reference wave illumination, and 1.30 pm for OEi imaging.

at 22 x 22 = 484 points is depicted in Figure [4.19d, revealing the areas of high
SERS activity around the two particle agglomerates. Figure depicts OEi
Raman images reconstructed from illumination with M =4, ... 60 modes. With
increasing mode number the intensity distribution in the images is visually con-
verging against the SERS hotspots in the sample. In Figures and [£.2T),
which depict the distance d)o; between the two hotspots and the width wy of
the top left spot, this can also be observed quantitatively. With increasing M
both graphs converge towards a steady state. Hence, for M = 60 it can be as-
sumed that an image is reconstructed, whose quality would not be significantly
improved further using higher order OEi.

Comparing the raster scan in Figure and the OEi image for M = 60 in
Figure 4.19¢ with the reference image in Figure [4.19c, the size of the features
seems to be more accurately reconstructed in the OEi image. This impression is
confirmed quantitatively in Figure [£.22] which shows horizontal profiles through
the bigger of both particle agglomerates. The blue plot for the OEi image agrees
quite well with the reference plot in green. Due to the low pixel resolution of
the raster scan (gray plot), a Gaussian fit is done for this data, coloured red.
With 2.57 pm, the FWHM of this fit is twice the width of 1.30 pm resulting from
the OEi imaging process. This discrepance is probably attributed to two effects:
First, with 22 scanning points to cover a distance of 9 um, the step width between
two pixels corresponds to about 400 nm on the sample. This is relatively large
compared to the widths of 1.3 pm and 1.58 pm, measured in the OEi scan and the
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reference image respectively and thus will influence the measured feature width
significantly. Actually, this step width is also clearly above the Nyquist limit of
half the diffraction limit, which in this case would require a scan with 250 nm
steps. Furthermore, the features of the sample will additionally be broadened by
the visually higher background in the image produced by the raster scan, which
is investigated in more detail below.

As already observed in Section [£.6.1] the OEi images visually exhibit a lower
background and hence a higher signal-to-noise (S/N) level compared to the raster
scans. Here this observation is confirmed quantitatively using the raster scan
image in Figure and the OEi image with M = 60 modes in Figure [4.19%.
For an objective comparison, the exposure times for the acquisitions of these
images were chosen such, that about the same amount of light, i.e. intensity, was
used to generate both images. The noise level in each of the pictures is quantified
as average in the dotted square relative to the signal, which is the largest value
of the main SERS feature. For the raster scan, a S/N of 17.7 is measured, which
is almost an order of magnitude less compared to the S/N of 145.6 measured in
the OEi image. Consequently, also the fluctuations of the background are less in
the OEi image. They are quantified as standard deviation from the mean in the
dotted square. For the raster scan these background fluctuations are measured to
be 3.4 %, which is 7x higher then the value of 0.5 % obtained for the OEi image.
The reason for this is the phase information of the OEi, as already discussed
in Section Superposition of the modes with the correct phase relationship
enables a very efficient cancellation of the background.

Overall, the results in this section show, that OEi imaging is well suitable for
SERS microscopy. Sufficient signal is provided due to the SERS effect, such that
also thin samples can be employed. In contrast to Section this allows the
usage of higher order OEi, as they do no longer suffer from aberrations induced by
the sample. Using 60 modes only, the width of a SERS feature was demonstrated
to be confined to only half the width that was enabled by a raster scan with 484
points, which corresponds to almost an order of magnitude compression.

4.7 Summary & conclusion

This section is briefly summarising the main results and conclusions that can be
drawn from this chapter. After a review of the field of indirect or “ghost” imaging,
the basic principle of OEi imaging was outlined. Then OEi imaging was compared
in simulations to computational ghost imaging (CGI) as the most similar indirect
imaging method. It was found that optical eigenmode imaging requires 2-3 orders
of magnitude less samplings than conventional CGI. Compared to the application
of compressive sensing methods in CGI, OEi imaging would still save 1-2 orders of
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magnitude acquisitions. However, the standard imaging modality with respect to
the target applications of OEi imaging, namely fluorescence and Raman imaging,
is laser scanning. Hence OFi imaging has also been compared to raster scanning
imaging in simulations, investigating the resolution and the localisation of object
features. The major advantage of OEi imaging was found for a low number of
probes, i.e. eigenmodes or scanning points respectively. To achieve subdiffractive
localisation of sample points, OEi imaging was requiering an order of magnitude
less probes than a raster scan. In terms of resolution, four times less OEi than
scanning points were needed to approach a diffraction limited resolution. But for
a practical implementation one has to keep in mind that, due to the phase mea-
surement involved in the OEi acquisition process, at least three exposures must
be performed to gain the necessary information for one eigenmode. This dimin-
ishes the advantage of OEi imaging especially with reference to resolution. But
with respect to localisation capabilities still a factor three improvement remains.

After the simulations, attention was paid to the experimental implementation
of OEi imaging. First the effects of fluorescence and (surface enhanced) Raman
scattering as target regimes for OEi imaging were reviewed. Before any imaging
experiments were carried out, the experimental generation of optical eigenmodes
was checked. Positioning a mirror in the focal plane, the intensity distributions
of the experimental OEi were found to visually agree well with the simulated
ones. Furthermore, experimentally obtaining the inner products of the OEi, their
orthonormality was also found to be satisfied in good approximation. Having the
correct implementation confirmed, a first macroscopic transmission OEi imaging
experiment was carried out using a test target consisting of three holes in an alu-
minium plate. The reconstructed images of that sample were in good agreement
with prior simulations. As a first step towards spectroscopic imaging, one of the
holes was covered with a thin layer of Blu-Tack which was exhibiting some flu-
orescence. Based on that signal, the corresponding hole could be reconstructed,
hence proving the applicability of OEi imaging in the fluorescent regime.

As a first microscopic Raman imaging experiment, 3pm sized beads of
polystyrene and PMMA were employed, as they feature relatively strong Ra-
man activity. Based on their Raman signature, OEi images of the beads could
be reconstructed using only the first four modes. The chemical selectivity was
demonstrated with both a polystyrene and a PMMA bead in the field of view.
Selecting the corresponding spectral region in the acquired signals enabled seper-
ate reconstruction of the beads according to their material, hence showing the
ability of OEi for hyperspectral imaging. For all experiments, the correctness of
the OEi images was confirmed by raster scans. One limitation of OEi imaging
found in the course of imaging the beads is the sensitivity of OEi to sample aber-
rations. Instead of increasing the image quality, using higher order modes was
decreasing the quality. This was attributed to the fact, that the experimental
generation of OEi requires to obey a precise phase relationship over the field of
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4.7 Summary & conclusion

view. Strongly aberrating samples such as the arrangement of beads, which was
already more a 3D than a 2D sample, affect this relationship. In contrast to that,
a Gaussian beam has the same phase over its whole cross section, rendering it
quite insensitive to spatial aberrations over the sample.

A further drawback of OEi imaging with respect to weakly scattering samples
is, that the intensity of the OEi is spread over the whole field of view. Hence,
only a small spatial fraction of the pupil, i.e. the SLM, is utilised for each mode,
leaving a lot of light unused upon illumination of the SLM with a Gaussian
beam. These two effects add up in a negative way, leaving relatively low focal
intensities for sample illumination. This is why the strongly aberrating 3 pm
beads were used in the first experiments, 1pm sized beads for example simply
did not deliver a sufficient signal. To explore OFEi imaging for non-aberrating
samples, advantage was taken of the SERS effect in terms of imaging a sample
featuring SERS hotspots. In this context, OEi imaging with up to 60 modes
was performing very well. Compared to a raster scan at about 500 points, OEi
imaging delivered a twofold improved lateral resolution and a S/N ratio which
was increased by an order of magnitude.

In conclusion, OEi imaging was investigated in simulations and experiments
for imaging in transmission as well as in the regimes of fluorescence and (sur-
face enhanced) Raman scattering, also demonstrating the option of hyperspectral
imaging. Major advantages in comparison to CGI and raster scanning imaging is
the compressive aspect and the improved S/N ratio shown in the Raman regime.
Drawbacks are the sensitivity to sample aberrations and low focal intensities,
especially affecting the usage in Raman imaging. Relatively little can be done
about sample aberrations, but e.g. biological samples such as cells and tissues
certainly aberrate much less than the investigated beads, which probably repre-
sent something close to the worst case scenario. An obvious way to deal with
the intensity issue is to use stronger light sources and shorter wavelengths. The
latter increases the Raman cross section, but also leads to more fluorescence. An
alternative way to increase the OEi intensity in the focal plane is a change of the
experimental setup such, that the SLM modulates the light in a confocal plane
instead of a reciprocal plane of the focal plane. As can be seen in Figure 2.8 in
the reciprocal plane the OEi only occupy a small fraction of the available area,
as they correspond to different spatial frequencies. Hence a lot of light is lost
when illuminating the SLM with a plane Gaussian beam. If the SLM would be
positioned in a confocal plane, the OEi in Figure would be encoded, which
always fill the whole available area. This would enable usage of the full SLM area
for each mode, which should dramatically increase the OEi’s intensity in the focal
plane.
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Chapter 5

Coherent control of gold
nanostructures

The concentration of light in the vicinity of metallic nanostructures has applica-
tions in optical trapping [73] and sensing schemes based on fluorescence [76] or
surface enhanced Raman spectroscopy [77]. In combination with spatial infor-
mation, molecular sensing enables for example analysis of subcellular signaling
[76]. One way to achieve spatially selective field enhancement is to pattern the
nanostructure itself [73]. However, this method is inflexible as, once fabricated,
the pattern is fixed. A more convenient way is to fabricate periodic arrays of
nanostructures and then spatially selective excite array elements by shaping the
incident light field. In Reference |66/ pulse shaping has been combined with an
iterative optimisation procedure to tailor the near field response of a silver nanos-
tructure. An approach based on continous light flow relies on the illumination
with higher order transverse modes, for example Hermite-Gaussian (HG) modes
[68], generated by static phase optical elements. Upon illumination with a plane
Gaussian beam, a nanoantenna consisting of two arms gives rise to an intensity
hotspot located in the gap between both arms. Illuminating the same configu-
ration with the HG19 mode, which features two intensity lobes which are phase
shifted by 7 with respect to each other, enables to drive both antenna arms out of
phase. This results in two intensity hotspots, one at the center of each arm. Two
confirm that this is a phase effect, a Laguarre-Gauss (LG) mode, in particular
LGyg, was used, which also features zero intensity in the center, but the same
phase on both arms of the antenna. In that case the resulting near field excita-
tion is similar to illumination with a Gaussian beam, hence confirming that the
phase on the nanostructure plays a key role for its control. Recently, an SLM
divided into superpixel that are imaged onto a nanostructure has been used to im-
plement flexible phase and amplitude shaping for the coherent control of surface
plasmons [69]. In Reference 203] the approach of using higher order modes is gen-
eralised in simulations by decomposing the light field on an array of nanoantennas
into optical eigenmodes. In contrast to the concept in Reference 69, the optical
eigenmodes are not a static set of modes, which spans over the continous space.
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5.1 Principle of OFi based coherent control

Instead they are defined with respect to isolated points corresponding to features
of the nanostructure. They can be flexibly defined on freely chosen points on
nanostructure, addressing each of them with an individual phase and intensity.
Once the OEi are determined on a structure, their superposition can be tailored
in order to match an intensity and phase distribution of choice with respect to
the selected nanoelements. In this chapter the idea proposed in Reference 203 is
verified experimentally with the following organisation: Section [5.1] outlines the
basic principle of OEi based coherent control. The experimental setup for the
experiments is presented in Section [5.2] Section deals with coherent control
experiments using nanoantennas and nanopads. As a further feature, focusing
onto nanoelements through turbid media using OFi is investigated in Section [5.4]
In Section [5.5] the work is summarised.

5.1 Principle of OEi based coherent control

In the following two sections the principle of OEi based coherent control is de-
cribed. The whole process can be divided into two steps. First the light field
on a nanostructure is decomposed into OEi. This is described in Section [5.1.1]
In the second step, outlined in Section [5.1.2] the superposition of these OEi is
determined in order to match user defined target functions such as addressing

one or multiple elements of the nanostructure.

5.1.1 Decomposing the light on a nanostructure into OEi

The first step of OEi based Coherent Control is to decompose the light field on
the nanostructure into orthogonal modes. In contrast to the methods treated
prior in this work, the modes that are determined here are not orthogonal over a
region of continous space, but with respect to descrete points, which are chosen to
be at the positions of features of the structure. After selecting a desired number
M of points P,, defined by a pair (z3,ys), the sample is illuminated with N test
fields Fj, that are generated by encoding fields E; on an SLM. Amplitude and
phase of each field F; at the point P,, with respect to a reference wave Fo are
determined by an interference technique, slightly different to what was described

in Sections 4.4.2] and [4.4.3k

1 2

3
Fi(Pp) Fip(Pr) = 7 Y €37 |Fi(Py) + €727 Free(Pr) |

ref

(5.1)

The absolute square in Equation is acquired on a CCD with the corresponding
field E; + e 2P E,; encoded on the SLM. In analogy to Section [4.4.3, the phase
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5.1 Principle of OFi based coherent control

of F;(P,,) is obtained as complex angle of Equation , while the amplitude
is defined as the square root of an acquisition with only the reciprocal field F;
encoded on the SLM. Knowing the fields F; at all points P,,, optical eigenmodes
with respect to these points are calculated according to Section from the
eigenvectors and eigenvalues of the intensity operator M(?). In the case presented
here the integration in Equation for the calculation of the elements of M(®
corresponds to a sum

MY =37 F(Py) Ff(Py) (5.2)

over the points P,,. The modes Fy, which are determined according to Equa-
tion [2.32] are orthogonal with respect to the nanoelements represented by the
points P,,,. They are generated by encoding the fields E;, composed as in Equa-
tion [2.31] on the SLM. The orthogonality of the Fjy is experimentally demon-
strated in Section If the test fields F; were sufficiently probing the degrees
of freedom of the system, there are exactly M eigenmodes that have nonzero
eigenvalues )\,({:0), meaning nonzero intensity on the M points P,,. In the next Sec-
tion [5.1.2| it is shown how the superposition of these M OEi Fy can be tailored
in order to generate flexible optical landscapes on a static nanopattern.

5.1.2 Shaping illumination by approximating target
functions

After obtaining the OFEi [, their superposition can be tailored in order to match
user defined target functions. A target function defines a target field T,, = T'(P,,)
at each of the points P,,. The complex weighting coefficient ¢, for each mode
F, and Ej respectively is defined in discrete analogy to Equation by the
projection of each OEi onto the target:

M
cr=> TnFi(Py). (5.3)
m=1
Encoding the superposition
M
k=1

on the SLM delivers the desired target field

M
T=> cF (5.5)
k=1
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5.2 Setup
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Figure 5.1: Experimental setup for optical eigenmode based coherent control. LLF:
Laser line filter at 785 nm; L: Lens; SLM: Spatial light modulator; M: Mirror; I: Iris
to filter out first diffraction order of the SLM; DBS: Dichroic beam splitter reflecting
visible light and transmitting infrared light; CCD: CCD camera; NF: Notch filter
reflecting the laser wavelength of 785 nm; MO: Microscope objective; S: Sample.

Like that, the light field on a nanostructure can be “coherently” controlled. An
experimental realisation of OEi based coherent control is shown in Section [5.3]
with gold nanoantennas and nanopads. But the next Section [5.2] first briefly
describes the utilised setup.

5.2 Setup

The experiments on Coherent Control employ a subset of the setup already de-
scribed in Section [£.4.1.2] For the reader’s convenience this subset is again de-
picted in Figure The light source is a 1 W Ti:Sapphire laser (3900S, Spectra-
Physics) pumped with a 6 W Nd:YAG laser (Verdi V-6, Coherent Inc.). Its beam
is collimated and reflects upon the display of a phase only SLM (LCOS-SLM
X10468-02, Hamamatsu Photonics), which is wavefront corrected based on the
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5.3 Coherent control of nanoantennas and nanopads
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Figure 5.2: Overview over arrays of 800nm spaced (a) nanoantennas and (b)
nanopads. (c), (d) Subsets of (a). (e) Subset of an array of 2500 nm spaced gold-
pads. (f) Single goldpad. Thanks to Andrea for taking these pictures.

method in Reference [147. The modulated 1st order light is coupled into a micro-
scope objective (100 x /1.30 Oil UPlanFL N, Olympus) and illuminates a sample
consisting of gold nanostructures. The backscattered light is imaged onto a CCD
camera (Basler pilot piA640-210gm, 648 pixel x 488 pixel resolution, 7.4 pm pixel
pitch). To obtain brightfield images of the sample, it can be illuminated from
above by a light emitting diode.

5.3 Coherent control of nanoantennas and
nanopads

After outlining the principle of OEi based coherent control in Section this
part deals with its experimental implementation. As test objects for this purpose,
periodic patterns of gold nano elements, fabricated by electron beam lithography,
are used (many thanks to Andrea Di Falco for fabricating these nanostructures).
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5.3 Coherent control of nanoantennas and nanopads

Gold is a material which is often used in sensing applications, as it enables strong
plasmonic field enhancement and does not exhibit strong corrosion. In particular,
the utilised structures were arrays of nanoantennas and nanopads. Individual
elements were about 300 nm in size and the spacing between them varied from
2500 nm to 400nm. The latter equals about half the wavelength A\ = 785 nm of
the laser light used for the experiments, hence allowing to challenge the limits of
far field coherent control of the structures. Figure [5.2] exemplarily depicts some
scanning electron microscope (SEM) images of the patterns. In Section [5.3.1]
it is illustrated how the light field on these nanostructures is decomposed into
OEi. The orthonormality of the OEi is checked in Section [5.3.2 Section [5.3.3]
deals with the generation of tailored optical landscapes on the samples. The
accuracy of generating these target fields is investigated in Section [5.3.4] Finally,
in Section [5.3.9| it is demonstrated that, using the OEi method, it is possible to
reduce the illumination crosstalk of neighbouring nanoelements.

5.3.1 Decomposition into OEi

Here it is experimentally illustrated how the light field on a nanostructure is de-
composed into orthogonal modes. Figure [5.3p depicts a whitelight image of an
array of 2500 nm spaced goldantennas. From these a subset of 3 x 3 elements is
selected, as shown in Figure [5.3p. In Figure this subset is almost homoge-
nously illuminated with an expanded laser beam, which serves as reference wave
F.¢ for the probing with the test fields F;. In a first step, M = 9 points P,,
are selected, one on top of each antenna. To reduce the sensitivity to noise in
the following measurements, the intensity for a point is averaged in a square of
11 pixel x 11 pixel centered at that point. This square is exemplarily indicated in
yellow on top of one of the antennas in Figure [5.3.

The next step is to experimentally measure amplitude and phase of the test
fields F;. In principle every set of fields that is sufficiently covering the degrees
of freedom on the nanostructure would be suitable for probing. However, to
keep the probing time as short as possible, the theoretically derived OEi used
in Section [4] are chosen to serve as test fields here. These are orthogonal in the
area that accomodates the 9 antennas, hence they should also very efficiently
probe the 9 degrees of freedom given by the points P,,. Exemplarily, Figure [5.3d
depicts the backreflection of Mode 20 from the glass surface next to an array of
800 nm spaced gold pads and a triangular marker. The probing is then carried
out as described in Section [5.1.1] using the eigenmodes shown in Figure [2.9| as
test fields F;. The process is illustrated in detail by means of Figures to[5.4k.
Figure shows the complex map of one of the test fields. In Figure the
antennas are illuminated with that field, highlighting all of them. Interfering the
probe with the reference wave at various phase shifts switches individual antennas
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10 pm

Intensity [a.u.]

Figure 5.3: (a) Whitelight image of nanoantennas. (b) Zoom of 3 x 3 antennas in
(a). (c) Antennas in (b) illuminated with the reference wave. The spacing of the
antennas is 2.5 pm. The yellow square indicates the area over which the intensity is
integrated for the reconstruction of the field on that antenna. (d) Backreflection of
Mode 20 from the glass slide in vicinity of an array of 800 nm spaced nanopads and
a triangular marker. The structures are slightly out of focus due to the wavelength
difference between the whitelight illumination and the 785 nm laser light.

“on” and “off”, as depicted in Figures [5.4c to [5.4f. This allows for the complex
field on the antennas, shown in Figure 5.4k, to be reconstructed.

After reconstruction of all (in this case N = 164) test fields F;, OEi Fj in
the focal plane and E; on the SLM are determined as described in Section [5.1.1
As there are 9 points/antennas, only 9 out of the 164 modes Fy, feature nonzero
intensity on these points. These 9 modes are illustrated in Figure [5.4h. The
intensity distributions captured with the CCD, when the corresponding fields E;
are encoded on the SLM, are depicted in Figure [5.4f and show good agreement
with the semi-theoretical OFEi in Figure \ . Furthermore, the eigenvalues )\,(CO)
are depicted as red bars in Figure [5.5] clearly highlighting the cutoff for £k = 9.
The blue bars indicate the eigenvalues when probing a set of 49 nanopads that
are spaced 800 nm from each other. With a point P,, defined on each of the pads,
the cutoff is at k£ = 49 in this case.

An advantageous feature of the OFEi over e.g. two displaced foci is, that they
are orthogonal with respect to the selected nanoelements. This is at least true
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Figure 5.4: Probing with mode 11 (a). (b) Just mode. (c)-(f) Interference with ref-
erence wave and phase shifts of (c) 0, (d) 7/2, (e) m, and (f) 37/2. (g) Reconstructed
field. (h) Theoretical and (i) experimental OEi.

in theory. In the next Section this orthogonality is also investigated experi-
mentally.

5.3.2 Orthogonality of the OEi

As the OEi Fy are composed from the orthogonal eigenvectors of the intensity
operator, the fields themselves are orthogonal with respect to the points P,,,
hence fulfilling

M

Z Fk<Pm) F?(Pm) = Opi- (5'6)

m=1

The image denoted as “Theory” in Figure depicts this relationship for OEi
that were calculated on a 3 x 3 subset of 800 nm spaced nanopads with the row
and column numbers indicating the indices k& and [ respectively. The displayed
matrix is purely diagonal, so the OEi are orthogonal in theory.
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Figure 5.5: Eigenvalues of the intensity operator when probing 9 nanoantennas (red
boxes) and 49 nanopads (blue boxes) with 164 test fields.
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Figure 5.6: Theoretical and experimental orthogonality matrix for the optical eigen-
modes on a 3 x 3 array of 800 nm spaced nanopads.

Experimentally, orthogonality is determined as already described in Sec-
tion using the polarisation identity. The image denoted “Experiment” in
Figure depicts the experimentally resulting orthogonality relationship
for the 9 nanopads. The observed agreement between theory and experiment is
visually similar to the one already observed in Figure[4.9] Section[4.4.2] and allows
the conclusion of orthogonality with respect to the selected nanoelements in good
approximation. The, according to Section measured errors of o, = 0.14
and ogins = 0.14 to quantify orthonormality are slightly larger compared to the
10 % error in Section [£.4.2] This might be due to the additional challenge of mea-
surement on the small nanoelements, due to which small vibrations and drifts can
have a significant effect. Deviations between experiment and theory will again be
due to measurement uncertainty and nonperfect encoding on the SLM.
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Figure 5.7: (a) Addressing single antennas. (b) Sides of dyes. (c) Addressing all
antennas uniformly and with spiraling intensity gradient.
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5.3 Coherent control of nanoantennas and nanopads

5.3.3 Approximation of target functions

Once the OEi Fj are determined for a set of selected points P,, on the sample,
their superposition can be tailored to match user defined target functions. The
principle of this procedure has been outlined in Section [5.1.2] This part provides
some experimental examples of it, starting with the subset of 3 x 3 nanoantennas
which was already used in Section and is illustrated in Figures and [5.4]
The term “target function” means that a value of intensity and phase is assigned
to each point P,,. This is shown in the left column of Figure [5.7h: Each element
of the 3 x 3 matrix contains the intensity and phase information for one point
P,.. From top to bottom of the figure the target intensity is moved around from
one point to another. Projecting the OEi F; onto the target values, as defined in
Equation [5.3], delivers the superposition coefficient ¢ for each mode. The semi-
theoretical superposition T of the OEi according to Equation is depicted in
the middle column of Figure [5.7h. As demanded by the target values in the left
column, the intensity in the middle column moves over the “theoretical” positions
of the antennas. To show that the light is really directed to the correct locations
on the structure, the superposition S following Equation [5.4] is encoded on the
SLM. The resulting intensity distributions on the antennas are captured with the
CCD and displayed in the right column of Figure [5.7h. The agreement between
the images in the middle and right column shows that the light is indeed directed
exactly onto the antennas, hence demonstrating the basic functionality of OEi
based coherent control.

Further then this basic functionality it is possible to generate more complex
light fields on the nanostructure. In Figure [5.7b not only one, but two to six
antennas are excited simultaniously in patterns arranged like the points on a die.
It is also no requirement to assign the same intensity to the addressed antennas.
Figure depicts target functions in which all 9 antennas are addressed uni-
formly and with a spiraling intensity gradient. The uniform highlighting of all 9
antennas is additionally illustrated with simultanious white light illumination in
Figure 5.8 This again visually demonstrates the accurate directivity of the light
field on the anntenna array.

One would expect that generating the appropriate light field gets increasingly
more difficult with a rising number of degrees of freedom, i.e. addressed nanoelele-
ments/points, on the sample. This is investigated with an array of 7 x 7 nanopads
that are arranged with a period of 800 nm. This distance corresponds about to
the wavelength A\ = 785nm of the laser light. Figure shows encoding the
letters and numbers for a “St Andrews 600 Years” banner as well as some other
target functions on this nanopattern. There is still good agreement between the
semi-theoretical superposition of the OEi, depicted in the upper rows, and the
experimentally resulting intensity distributions in the lower rows. However, it is
clearly visible that in the experimental pictures not all points are addressed with
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5.3 Coherent control of nanoantennas and nanopads

Figure 5.8: Highlighting a subset of 3 x 3 elements in an array of nanoantennas. The
antennas are addressed from below with the OEi shaped laser beam and illuminated
from above with whitelight. With respect to the reflected near infrared laser light
the antennas are in focus. In the visible whitelight they are slightly out of focus due
to the difference in wavelength.

identical intensity, though they are supposed to be. Investigating this behaviour
in more detail is subject of the next Section

5.3.4 Accuracy of target function approximation

In the previous Section [5.3.3] it was observed that with an increasing number
of addressed nanoelements the experimentally generated intensity distributions
visibly differ from the defined target functions. Here this effect is quantitatively
analysed on the 800 nm spaced 7 x 7 nanopads. Therefore different numbers Np
of nanopads are addressed and the resulting intensity pattern is captured with
the CCD camera. Then the deviation o of this pattern from the target intensity
distribution is calculated according to

Sl Lim Lo\
Ut:It MZ(%— [—’c) (57)

In Equation the sum is over the total number M = 49 of nanopads/points
on the sample and I ,, and I.,, are the target and captured intensities on the
nanopad indexed with m. The latter are normalised to the mean intensities I; and
I. on all points of the target function and the captured intensity image. To get
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Figure 5.9: Generation of target functions on a subset of 7 x 7 nanopads spaced by
800nm. The top row of each block in turquoise colour depicts the theoretical target
functions, while the experimentally captured intensity distributions are illustrated as
grayscale images.

some statistics, for each number Np of addressed elements the deviation oy from
the target function was measured 10 times for random selection of the elements.
Figure[5.10h exemplarily shows some random target functions for various numbers
Np of addressed nanopads. The corresponding experimentally captured images
are depicted in Figure [5.10b, clearly showing that with increasing number Np of
addressed points they are not uniformly illuminated anymore.

Figure[5.11]illustrates this inhomogeneity quantitatively in the form of oy, deter-
mined according to Equation 5.7, depending on Np. The errorbars correspond to
the standard deviation from the mean of the 10 randomised measurements. With
increasing number Np of addressed pads the deviation oy is increasing. This de-
viation between theory and experiment is due to a combination of measurement
errors adding up and, probably mostly, due to nonperfect beam shaping by the
SLM. That is why usually iterative algorithms with feedback are used to imple-
ment specified target functions, in particular multispot patterns [148] 204-H209].
Thus, to generate challenging multispot patterns, a possible approach could be
to use the OFEi generated function as a good initial condition and then perform
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Figure 5.10: Addressing of different numbers Np of nanopads at randomly chosen
positions. (a) Theoretical target functions and (b) experimentally acquired intensity
distributions.

finetuning with an iterative algorithm. However, for small numbers of spots the
resulting intensity patterns agree quite well with the targets. Hence, in the next
Section the light field on a subset of 9 nanopads is decomposed into OEi

with the aim of minimising illumination crosstalk.

5.3.5 Cross talk

One challenge for the control of the light field on a nanostructure is crosstalk
between neighbouring elements. The term “crosstalk” in this context means the
following: One attempts to optically address one element of the structure, but as
a byproduct another element next to the target element is excited as well. This
crosstalk can be due to two scenarios (or of course a mix of them). The first
one is that one element of the structure is excited, e.g. by a tighly focussed laser
beam, which is only illuminating that target element. However, the evanescent
field of the illuminated element can couple to another element very close to the
first one and excite that one as well. This process is called “evanescent coupling’
and for it to happen two elements usually have to feature a gap of only few tens
of nanometers, like two arms of a nanoantenna. The second scenario is that one
attempts to focus a laser beam onto one element, but the focussing is not tight
enough so that part of the beam illuminates neighbouring elements. This effect
is here referred to as “illumination crosstalk”.

)
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Figure 5.11: Deviation oy from target function depending on number Np of ad-
dressed nanopads, calculated according to Equation

As a near field effect, evanescent coupling is not necessarily visible in the far
field. However, the experimental configuration used here detects in the far field.
Thus this work deals with illumination crosstalk as a first and, with the available
equipment, more sensible choice. To avoid evanescent coupling to happen, the
structures that are used here are seperated by few hundred nanometers. The gap
between the arms of the nanoantennas utlised earlier on would in principle allow
evanescent coupling effects. But one antenna pair, with a size of about 300 nm,
can only be addressed as a single point-like element with conventional far field
optics, as the diffraction limit of the employed setup is about that value. So every
observed crosstalk in the experiments should be due to inaccurate illumination
and not due to plasmonic coupling.

The goal in this section is to investigate, whether or not the decomposition
of the light field into orthogonal modes enables the tailoring of a more precise
illumination that reduces crosstalk compared to illumination with a simple fo-
cused beam. Therefore the elements of an arrangement of nanoscatterers are
illuminated individually using three different approaches:

1. Ilumination with a focussed Gaussian beam:;
2. Illumination using the first OEi with respect to the illuminated pad;

3. Illumination utilising a superposition of OEi that are orthogonal with re-
spect to all 9 pads.

These three methods are outlined more detailed in the following.

Method 1: Focussed Gaussian beam This can be considered to be the most
basic concept for the coherent control of individual nanoelements. In a first step
the displacement of the beam on the sample is, in analogy to Section [3.5.1.1]
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Figure 5.12: Addressing of single elements in a 3 x 3 array of 800nm spaced
nanopads using (a) Method 1, (b) Method 2, and (c¢) Method 3. Columns (a), (b),
and (c) depict intensity distributions on a 5 x 5 subset. Columns (d), (e), and (f)
show only the central 9 pads, which were subject to the eigenmode decomposition.
Their location with respect to (a), (b), and (c) is indicated in the second picture of
column (c).
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Figure 5.13: Crosstalk matrices for coherent control of 300 nm sized and 800 nm
spaced goldpads using Methods 1, 2, and 3 for illumination.

calibrated depending on the deflections k,, k, on the SLM. Then the beam can
be deflected to the position x5, 35 of the nanopad one wants to address by applying
the proper k,,k,. As the SLM is wavefront corrected, the focus on the sample
should be of about diffraction limited size.

Method 2: First OEi with respect to illuminated pad For this method the
sample is probed with the test fields F; and they are superimposed in order to form
the first OFi F; with respect to the nanopad that shall be addressed. Generated
from the eigenvector with the largest eigenvalue of the intensity operator, the
mode F; maximises the intensity on the addressed pad. Hence this illumination
method is almost identical to the focussed beam. It should in principle just
additionally compensate for small residual aberrations in the system, e.g. induced
by the glass slide the nanostructure is fabricated on.
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Method 3: Superposition of OEi The third method shares with the second
one that the sample is probed with the test fields Fj. Different is then that
OEi are calculated with respect to all nine nanopads and not only for one of
them. To address an individual pad, the nine modes are superimposed in order
to match a target function that directs the light to the selected pad. This process
of approximating target functions was described in Section [5.1.2] As the OEi
are orthogonal with respect to the nine nanoelements, they should constructively
interfere only on the one element that one wants to excite and cancel out on all
other elements.

In the following the above approaches are applied to a 3 x 3 subset of 800 nm
spaced nanopads. In order to observe illumination crosstalk at this distance with
a focussed beam, the effective NA for the illumination is decreased to about 0.4
by a suitable circular mask on the SLM. With this, the FWHM of the diffraction
limited beam at the wavelength of 785 nm is about 1 um, rendering Gaussian beam
illumination of one pad without partly illuminating its neighbours impossible. To
investigate this and a possible advantage of OEi illumination, the nanopads are
addressed with the three Methods 1, 2, and 3. For Methods 2 and 3, the probing
was performed using the first 60 “test modes”. The results of the three methods are
shown in Figure 5.12] Figures [5.12h, [5.12b, and depict an area containing
5 x 5 nanopads. Out of these the central 3 x 3 pads are selected for optical
addressing. Their positions are schematically indicated by yellow disks in the
second picture of Figure [5.12c. From top to bottom, each picture of a subfigure
corresponds to addressing another of the 9 nanopads. In Figure the pads
are illuminated with Method 1. The pad of choice is always clearly highlighted,
but significant intensity is also deposited on the neighbouring pads. For Method 2,
illustrated in Figure [5.12b, the result is almost identical, which is to be expected.
The illumination with Method 3 is depicted in Figure |5.12c. Here the addressed
pad is excited with no visible crosstalk on the other 8 pads, which are part of
the arrangement the OEi are composed on. However, one will have noticed that
instead intensity is dumped on pads that are not part of this square 3 x 3 pad
arrangement, which will be discussed later on. For a closer view on the difference
between the three methods, Figures to show the area of the inner 3 x 3
pads only, indicated by the dotted box in the second image of Figure [5.12c. In
Figures .12 and [5.12f, corresponding to Methods 1 and 2, the pads next to the
addressed one are obviously partly illuminated as well. In contrast to that, using
Method 3 in Figure [5.12f, the intensity is clearly confined to the target pad only.
Actually, in some of the pictures the shape of the confinement reflects the shape
of the box, over which the intensity is average (see Figure ).

Quantitavely, the crosstalk for the three methods is illustrated in Figure [5.13
in the form of crosstalk matrices. The row and column indices of the matrices
correspond to the indices m of the goldpads. In each column of a matrix another
nanopad is addressed and the elements of a column depict the intensity on the
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individual pads, normalised to the intensity on the target pad. The off-diagonal
entries correspond to the crosstalk, i.e. the intensity on all other then the ad-
dressed pad. So in an ideal situation one would get the identity matrix with zero
crosstalk. The average crosstalk X for a method is calculated as mean value of
all off-diagonal matrix elements. For Methods 2 and 3, semi-theoretical crosstalk
data is available via numerical superposition of the OEi. It is displayed in the
top row of Figure and suggests from X = 6.7% to X = 1.4% by 80 % re-
duced crosstalk using Method 3 compared to Method 2. This difference is also
clearly visible in the matrices, where all off-diagonal elements are close to zero for
Method 3, while significant off-diagonal contributions are present for Method 2.
On the directly neighbouring elements the maximum crosstalk of about 25 % for
Method 2 is reduced by more than 60 % to less than 10 % using Method 3. The
experimental data in the bottom row of Figure[5.13|is in good agreement with the
semi-theoretical prediction. Compared to Method 2, Method 3 offers from 7.5 %
to 2.3 % by 70 % reduced crosstalk and in comparison to Method 1 the crosstalk is
reduced from 5.6 % by 60 % using Method 3. On neighbouring antennas the max-
imum crosstalk is up to 35 % for Methods 1 and 2, while only 10 % are measured
with Method 3. The latter corresponds to a decrease of about 70 %.

On a smaller scale of about half the wavelength, the above study was carried
out with a sample of 200 nm pads spaced with a period of 400 nm. In this case the
NA for illumination was restricted to about 0.8 on the SLM in order to observe
crosstalk with a Gaussian focus. Figures to depict the addressing
of the 9 nanopads with the Methods 1 to 3. Compared to Figures and
[6.14p, the illumination in Figure[5.14f visually looks tighter confined to the target
pad, thus indicating a reduced crosstalk with Method 3 over Methods 1 and 2.
This visual impression is confirmed quantitatively by the crosstalk matrices in
Figure . Experimentally, Method 3 delivers an average crosstalk X reduced
by about 40 % compared to Method 1. In comparison to Method 2, the crosstalk
is decreased by 55%. As for the 800 nm spaced pads, the experimental results
are in reasonable agreement with the semi-theoretical predictions.

Interestingly, the price which has to be paid for the reduced crosstalk with
Method 3 is that intensity is deposited on nanopads which are not included in the
OEi decomposition. This is apparent in Figure [5.12¢c, in which nanopads outside
the dashed yellow box are illuminated, while inside the box all light is confined
to the target pad. The explanation for this effect is related to the squeezing of
light in Chapter [3] As investigated there and elsewhere before [I16HI19)], light
cannot be focussed below the diffraction limit, at least not without intensity
being pushed into the sidelobes of the spot. However, this is exactly what is
required in order to minimise crosstalk on the nanopad array: The NA used to
illuminate the nanopads is to low to focus the light tight enough for addressing
an isolated element. That is why there is crosstalk using Methods 1 and 2 for
illumination. With these approaches the light is simply directed to one pad of
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Figure 5.14: Illumination of 400 nm spaced and 200 nm sized goldpads with (
Method 1, (b) Method 2, and (c¢) Method 3. (d) Crosstalk for the three methods.
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Figure 5.15: Graphical superposition of a whitelight image of the nanopad array and
the intensity distributions of (a) the Gaussian focus and (b) the optical eigenmode
beam to address the central of the 3 x 3 nanopads. The normal focus is visibly larger
compared to the central bit of the OEi beam. To enable the reduced spot size of the
latter, intensity has to be redistributed onto surrounding pads, which are not part of
the optical eigenmode decomposition.

choice, without taking into account the other 8 pads. Using Method 3, the light
field is first decomposed into orthogonal modes on all 9 pads of interest. Then
the superposition of the modes is tailored to match a target function with high
intensity on the addressed pad and zero intensity on the other ones. The difference
to Methods 1 and 2 is that Method 3 directs the light onto the pad of choice,
but with the additional constraint of minimising the intensity on the other 8
elements. This latter constraint requires to locally squeeze the illumination below
the diffraction limit. And for this to happen intensity has to be dumped outside
the region within which orthogonality is enforced by the eigenmode decomposition.
For illustration of this effect, Figures[5.15h and [5.15b show the focussed Gaussian
beam and the OEi beam used for illumination of the central of the 9 nanopads.
The intensity distributions of both beams were captured on a big marker of the
sample, effectively acting as a mirror. In both images the laser light, indicated
by red colour, is superimposed onto a whitelight image of the nanopad array by
graphical postprocessing. This enables a rough comparison of the spot sizes with
respect to the nanostructure. The Gaussian beam has a measured FWHM of
about 1000nm and is partly extending onto neighbouring pads. On the other
hand, the OEi beam visually seems to be tighter confined to the central goldpad.
This impression is confirmed by a FWHM measure of about 800 nm. Hence, in
the OEi beam generated by Method 3 the light is squeezed about 20 % below the
diffraction limit, which is represented by the width of the Gaussian beam. As
an unavoidable byproduct light is dumped outside the 3 x 3 antenna region as
illustrated in Figure [5.15b. The question is: What are the limitations of this
approach, i.e. how far could the NA be reduced while still maintaining the ability
to individually address the nanoelements? Or, equivalently, how closely packed
can the nanoelements be arranged while still controlling them individually? The
answer is identical to the question of how far a focal spot can be squeezed: It
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Figure 5.16: Eigenvalue spectrum for the 800 nm spaced nanopads and the NA
reduced to 0.4.

depends on the noise level and the number of degrees of freedom/OEi above
the noise as well as the size of the area within which the nanopads shall be
addressed. As long as, for the example of the 9 nanopads, there are 9 OEi with
significant eigenvalues, the OEi can be superimposed in order to address the
nanopads seperately. For the NA of 0.4, the lowest eigenvalues are already close
to zero, as can be seen in the plot of the eigenvalue spectrum in Figure [5.16] For
comparison: In Figure [5.5] all eigenvalues are clearly above zero, until a sharp
drop when k gets larger than the number of nanoelements. In Figure there
is no such sharp gap, instead the )\g)) converge towards zero. If the NA is further
reduced below 0.4 or, at constant NA, the pads are moved closer together, it will
at some point no longer be possible to find 9 orthogonal modes above the noise
level. And this is the point where the individual addressing will fail.

5.4 Correction through diffusive media

Another advantage of experimentally decomposing the focal field into optical
eigenmodes besides their orthogonality is, that they also incorporate optical aber-
rations for the chosen field of view or, in the case presented here, with respect
to the chosen nanoelements. From that point of view OEi are similar to trans-
mission eigenchannels of a diffuse medium [210, 21T]. With the ability of flexible
light shaping by SLMs for aberration correction, scattering media have shown to
not necessarily be a disturbing factor. Their presence can also be taken as an
advantage, e.g. to focus light into a smaller spot [212] 213]. Common wavefront
correction methods correct for aberrations with respect to one point. This point
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Figure 5.17: (a) Whiltelight image of the 7 x 7 subset of 300 nm nanopads with
800 nm spacing. (b) Illumination of this subset with the reference beam. (c) The
same as (b), but with the diffuser distorting the wavefront. (d) Attempt to address
nanopads on the diagonal of the array. (e) Same as (d) but with the wavefront
corrected due to the superposition of optical eigenmodes. (f)-(i) Focusing onto two
to five randomly chosen nanopads.
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can be just an area of choice on a CCD camera [214, 215] or a so called “guide
star”, such as an isolated fluorescing or scattering particle [147, 213]. Then the
SLM is divided into segments and the phase of each of the segments is cycled
iteratively, such that it is in phase with all other segments at the reference point.
In order to correct with respect to several points, they have to be chosen in ad-
vance and their intensity sum is used as a feedback to distribute intensity equally
amongst them [215].

Using the OEi method, it is possible to determine modes with respect to the
chosen field of view or to chosen points, automatically taking aberrations by a
diffusive medium into account. Once the OEi are known, their superposition
can be tailored to match a target function. Encoding the corresponding com-
plex field on the SLM then generates this target function through the scattering
medium. This is demonstrated here. Therefore a holographic diffuser (1° diffus-
ing angle, Edmund Optics) is positioned about 1cm after the iris in the setup
shown in Figure 5.1} The diffused laser light is used to illuminate the subset of
7 x 7 nanopads, already used for the experiments in Section [5.3| For orientation,
Figure depicts a whitelight image of this arrangement. Upon illumination
with the reference beam and without the diffuser in place, the nanopads are rel-
atively homogenously illuminated, as shown in Figure p.17b. With the diffuser
in place, the illmination is heavily distorted, illustrated in Figure [5.17c. Conse-
quently, a controlled addressing of individual antennas is impossible. Exemplarily,
Figure [5.17d shows the attempt of illuminating every second element on the di-
agonal from the top right to the lower left corner of the nanopad array. To
compensate for the aberrations, OEi are determined with respect to the array
elements in the same way as in Section [5.3] Literally, the only difference to the
prior experiments in Section [5.3|is the diffuser in the optical path. Now that the
optical eigenmodes are known, the diagonal nanopads can be addressed properly,
as depicted in Figure [5.I7e. This already demonstrates the flexibility given by
the OEi method: No new probing is necessary to deflect the beam onto nanoele-
ments at different locations, as aberration correction for the whole field of view
is inherent to the OEi. But further than this, also more than one element can be
addressed simultaniously by defining appropriate target functions, onto which the
OEi are then projected. Figures[5.I7f to[5.17] illustrate the simultanious focusing
onto two to five nanopads at randomly chosen positions, further underlining the
full field wavefront correction.

In conclusion the results in this section demonstrate, that a full field aberration
correction is inherent to experimentally determined OEi. This is a very useful
feature when working in turbid media such as biological tissues and cells.
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5.5 Summary

This section provides a summary of the main results and conclusions obtained
throughout this chapter and finishs with an outlook onto possible future work.
After describing the basic principle of optical eigenmode based coherent control,
the experimental implementation was described. As a first experiment it was
shown, how the field on a 3 x 3 nanoantenna array is decomposed into OEi. Here
the method delivered exactly 9 eigenmodes with nonzero eigenvalues, i.e. nonzeros
intensity on the antennas. Good agreement was observed between the numerically
calculated intensity distribution of these modes and the experimentally captured
distributions. As a next step the orthonormality of the experimental modes was
checked on 3 x 3 nanopads. The OEi were found to be orthonormal in good
approximation.

Knowing the OEi, they could be superimposed to match user defined target
functions. The basic functionality of this concept was demonstrated on the 3 x
3 nanoantenna array, addressing one or more antennas with identical intensity
or with an intensity gradient. Here the experimental realisation of the target
functions was agreeing well with the defined target. A 7 x 7 nanopad array could
be addressed with more challenging light patterns, such as letters and numbers. In
that case a deviation between the defined target and the experimentally generated
intensity distribution was observed, which was increasing with increasing number
of addressed nanoelements. It was concluded that this discrepance is mainly due
to the encoding on the SLM, which is why usually iterative algorithms are used
to generate e.g. multispot patterns. As a possible improvement it was proposed
to use an eigenmode generated function as a good initial condition and finetune
the light pattern using iterative algorithms.

However, for small numbers of elements, such as 9 nanopads, the error in target
function reproduction was below 10%. Hence, using a subset of 3 x 3 pads, it
was investigated if individual elements could be addressed with reduced illmina-
tion crosstalk compared to addressing with a focused Gaussian beam. With an
illumination NA of 0.4, the diffraction limited beam was featuring a FWHM of
about 1 pm. On the 300 nm sized pads with 800 nm spacing this was leading to
a maximum illmination crosstalk of up to 35% and an average crosstalk of 6 %
on the whole subarray. Using optical eigenmodes, both the maximum and the
average crosstalk could be reduced by 60-70 % to about 10 % and 2 % respectively.
On a smaller scale of half the wavelength, optical eigenmodes helped to reduce
the crosstalk by about 50 % on 400 nm spaced nanopads of 200 nm diameter.

Finally, it was shown that full field aberration correction is inherent to exper-
imentally determined OFi. Therefore eigenmodes were determined on the 7 x 7
subset of nanopads with a diffuser in the illumination part of the optical path.
With these it was possible to address one or multiple nanopads through the dif-
fuser, hence demonstrating the applicability of optical eigenmode based coherent
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control in turbid environments. This can be of great advantage for biomedical
sensing or imaging applications involving scattering cells and tissue for example.

In conclusion the results presented in this chapter demonstrated the advantage
using optical eigenmodes for the coherent control of nanoelements. Compared
to conventional addressing them with a Gaussian beam, optical eigenmodes can
reduce the illumination crosstalk with neighbouring elements, hence having the
potential of a higher spatial resolution for sensing or also imaging applications.
Furthermore they incorporate a full-field wavefront correction, which might be
useful for applications in biological samples. It has also been illustrated and
discussed that the effect that minimises the crosstalk is a local squeezing of the
beam, as in Chapter [3] To achieve that, light has to be redistributed elsewhere.
In the case presented here it is on other nanopads, which were not part of the
OEi decomposition. This redistribution is unavoidable in far field optics. Hence,
for the future it would be interesting to investigate, if also the near field can
be controlled with the OEi concept. The studies in this chapter were dealing
with illumination crosstalk, but maybe also plasmonic crosstalk can be reduced
by tailored illumination. Thereby the idea would be to minimse the effect of
plasmonic coupling of a metallic nanoelelement with its neighbours by shaping
amplitude and phase of the illumination of both the element that one wants
to address and the one that exhibits plasmonic crosstalk. The principle would
be similar to active noise control [216 217], as used e.g. in noise cancelling
headphones. A practical implementation would require to record feedback in the
near field of the nanostructures. This could be done for example by SNOM, two
photon luminescence, or simply fluorescence.
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Chapter 6

Summary, Conclusions & Outlook

This thesis dealt with the application of optical eigenmodes do minimise focal
spots, perform compressive imaging, and coherently control the illumination of
gold nanostructures. The introduction in Chapter [l started with oscillations and
made the transition to light as a wave. The general concept of modes was illus-
trated at the example of vibrations. In this context modal analysis is important
for manufacturing music instruments or analysing resonances of for example car
bodies and buildings such as bridges and skyscrapers. The benefit of decompos-
ing oscillations into modes is, that an analysis can be carried out only taking into
account the most important modes. As other applications of this compressive
feature eigenfaces for face recognition and modal analysis to model motion in
animations were highlighted. With respect to optics and photonics, the modal
concept is well established in laser physics to characterise cavities and beams. In
this thesis modal analysis has been applied to the focal plane of optical systems,
decomposing it into optical eigenmodes.

The theory Chapter [2| dealt with light as a wave and numerical methods for its
propagation and focussing. The diffraction limit resulting from the wave nature
of light was briefly reviewed and degrees of freedom in an optical system were
discussed. Then it was detailed, how the light field in the focal plane of an optical
system is decomposed into its degrees of freedoms, i.e. into optical eigenmodes.
Examples for modes with respect to a circular region in the focal plane of a lens
and in a square in the focal plane of a microscope objective have been simulated.

The former were used in Chapter |3/ to demonstrate, how the optical eigenmode
concept can be employed to extremise certain measures of the light field. In the
presented case the width of a focussed laser beam was minimised in simulations.
The relationship between the spot size, its Strehl ratio, and the intensity and
distance of the sidelobes compared to the central spot were in qualitative agree-
ment with prior studies on that topic. While the theoretical possibility of locally
squeezing a focal spot below the diffraction limit is known for several decades,
only little is known about practical limits regarding their implementation. Using
an SLM system to generate the focal spots enabled a comprehensive experimental
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study to be carried out answering that question. It was found that with state-of-
the-art beam shaping technology focal spots with up to 60 % reduced core size
and Strehl ratios down to 0.004 could be generated. As a possible application
example, pairs of holes were confocally scanned with a selected minimised beam
and a resolution gain of 1.28 was observed according to the Rayleigh criterion.
Applying the same spot in fluorescence imaging, a gain of about 1.45 was pro-
posed based on simulations. However, as there are already imaging techniques
such as STED, PALM/STORM, SIM, that deliver resolution gains of 2 or even
up to an order of magnitude, it was concluded that the application of minimised
focal spots is more beneficial for applications that physically require a small spot,
such as lithography, data storage, or photoporation.

In Chapter [4 optical eigenmodes were used to perform indirect imaging. There-
fore the modes are projected onto the sample and for each of them a complex
coupling coefficient to the sample is determined. The superposition of the OFEi
with the corresponding coefficients then delivers an indirect image of the sample.
After a review of other indirect imaging methods, in particular (computational)
ghost imaging using speckle pattern projections, the principle of optical eigen-
mode imaging was detailed. Then OEi imaging was compared in simulations to
computational ghost imaging. It was found that, using OEi, 2-3 orders of magni-
tude fewer probes are necessary to obtain an image of similar quality compared to
conventional ghost imaging. In compressive computational ghost imaging schemes
the acquired speckle patterns are represented in their most sparse basis set, which
saves about an order of magnitude acquisitions. In that case OFEi imaging is 1-2
orders of magnitude more efficient, as the optical eigenmodes represent the most
sparse possible set of illumination patterns.

However, the imaging modality which is mostly used for spectral imaging is raster
scanning. In that context relevant features are the resolution and the capability
of localising sample features, both in dependence on the number of probes, i.e.
scanning points. The simulations carried out showed that in theory, compared to
raster scanning imaging, OEi imaging requires an order of magnitude less probes
to obtain subdiffractive localisation of points on the object. Furthermore, four
times less samplings are required to approach a diffraction limited resolution. But
one has to keep in mind, that at least three intensity acquisitions are required to
determine one complex OEi coupling coefficient, hence reducing the advantage of
OEi imaging.

Before doing optical eigenmode imaging in praxis, the correct experimental im-
plementation of the OEi was checked. The intensity distributions of the OFi,
captured with a mirror in the focal plane, were in good agreement with the sim-
ulated ones. Furthermore, orthogonality of the eigenmodes was verfied to be
fulfilled in good proximity. Both of these indicated a good practical implementa-
tion of the optical eigemodes. In a first transmission imaging experiment a test
target featuring three holes was imaged. The resulting picture was agreeing with
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simulations, hence confirming the practical functionality of OEi imaging. As first
step to spectral imaging, one of the holes was covered with a thin layer of Blu-
Tack, which was exhibiting some fluorescence. Based on that signal, the covered
hole could be reconstructed, while an image of the other two holes was obtained
based on the transmission signal.

To investigate the suitablity of OEi imaging with respect to Raman scattering,
3pm diameter polystyrene and PMMA beads were chosen, as they provide a
relatively strong Raman signal. Using only four modes, it was possible to re-
construct images of one and two polystyrene beads in a field of view of about
6 pm x 6 pm. With a polystyrene and a PMMA bead in the image area, each of
them could be reconstructed seperately chosing the corresponding spectral range,
hence demonstrating the suitablity of OFEi for compressive hyperspectral imaging.
As a drawback it was observed, that the projection of higher order modes did
decrease the image quality. This was attributed to the beads as strongly aberrat-
ing sample. Their thickness of 3 nm equalled half of the field of view, hence they
were acting like a 3D object. This induced severe changes in the phase of the OFEi,
affecting their correct reproduction in the focal plane. A focal spot used for raster
scanning was not disturbed in such a strong way, as its intensity distribution does
not rely with that sensitivity on a correct phase. A further challenge observed
for OEi imaging are low focal intensities. As the OEi are filling the whole field
of view, their energy density on the sample is low compared to a focussed beam.
And as a further result of their fullfield illumination and their organisation by
spatial frequencies is, that they only utilise a small fraction of the SLM in the
reciprocal plane, which additionally lowers the intensity. As a result the Raman
signal by smaller 1 pm sized beads was not sufficient for optical eigenmode imag-
ing in the used configuration.

To get a strong Raman signal from a sample with few aberrations, advantage
was taken of the SERS effect. In particular a sample consisting of dithiol sand-
wiched between a gold surface and 200 nm gold particles was used, which exhibited
strong SERS hotspots at the positions of the latter. With this additional signal
strength, OEi Raman imaging was performing very well and the use of higher
order modes enabled to reveal fine sample features. The usage of 60 optical eigen-
modes delivered a picture with a twofold increased lateral resolution and an order
of magnitude higher S/N ratio compared to a rasterscan with 484 points.
Overall it was demonstrated that the principle of OEi imaging works in transmis-
sion, with fluorescence, and in the regime of Raman scattering. The fact that the
sample illumination is decomposed into its degrees of freedom, ordered by their
relevance, enables the most efficient probing of the sample possible. Due to that,
images with a higher resolution can be obtained for the same number of probes
compared to raster scanning. This advantage is greatest for a few number of
probes; when the number of probes/scanning points is approaching the Nyquist
limit, the advantage of OEi imaging tails off. Another strong feature of optical
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eigenmode imaging is that, due to the phase information, the background sig-
nal is cancelled very efficiently. The challenges that were observed regarding OFEi
imaging are its sensitivity to aberrations induced by the sample and its low power
density in the focal plane. The latter is especially problematic in low efficiency
applications such as Raman imaging. As the most promising way to increase the
OEi intensity on the sample it has been discussed to change the experimental
setup such, that the SLM modulates the light in a confocal plane instead of a
reciprocal plane. Like that the full SLM area would be used for each OEi. In
future this might enable optical eigenmode imaging of samples with lower Raman
cross sections, maybe even biological cells and tissues.

In the last Chapter [5| the coherent control of gold nanostructures with optical
eigenmodes was investigated. First it was shown how the field on nanoelements
could be decomposed into OEi. Good agreement was observed for the theoretical
and experimental intensity distribution of modes on 9 nanoantennas and orthonor-
mality was confirmed on 9 nanopads with the same method as in Chapter[dl Then
it was demonstrated how OEi can be superimposed to generate target illumina-
tion patterns, e.g. to simultaniously illuminate several antennas with identical
intensity or an intensity gradient. This worked well for about 10 nanoelements,
but in general the discrepance between the target and the generated illumination
was increasing with increasing complexity, i.e. number of elements. As a possible
way to improve this it was discussed to use the OEi generated pattern as a good
initial guess for finetuning by iterative algorithms, which are usually used to tay-
lor feature-rich light fields.

On a 3 x 3 subset of nanopads spaced by a distance smaller than the diffraction
limit, it was furthermore demonstrated, that the orthogonality of the OEi helps
to prevent illumination crosstalk when adressing a single element. Compared to
illumination with a focussed Gaussian beam, the crosstalk was reduced by up to
70 % using OFEi shaped illumination.

Finally, by adressing nanopads through a diffuser, it has been shown that exper-
imentally determined OFEi incorporate a full-field aberration correction. This is
a very useful feature when working in turbulent media such as biological tissues
and cells.

With respect to the reduced crosstalk it was illustrated and discussed, that this
reduction was also a local effect, similar to the squeezing of a focal spot in Chap-
ter [Bl To achieve the crosstalk reduction, it was also necessary to redistribute
intensity elsewhere. In other words, this effect is ultimately also restricted by the
far field diffraction limit. Hence, in future it would be interesting to investigate,
if the concept of optical eigenmodes could be used to generate a far field illumi-
nation that optimises the near field. With respect to that it has been discussed
to employ OFEi in order to minimise not illumination, but plasmonic crosstalk.

Overall, this thesis has shown the application of optical eigenmodes to extremise
properties of the light field, in this particular case minimising the width of a focal
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spot. Furthermore, they were used to perform highly compressive hyperspectral
imaging and for the coherent control of gold nanostructures. Advantages and
challenges were highlighted and discussed and possible directions for the future
have been pointed out. The most interesting of these seems to be the tailoring of
plasmonic near field effects, which might be of great advantage for high resolution
and sensitivity biomedical sensing applications.
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Appendix A

Radial symmetric representation of
Huygen’s integral in ABCD system

Here it shown how the radial symmetric representation of Huygen’s integral in
Equation with the ABC'D matrix optics formalism is derived. In one di-
mension the field F'(x5) resulting from propagation of the field E(x;) through an
optical system represented by an ABC' D matrix is calculated by [22]

F(zs) = /ﬁ kL / E(xq) exp [_iﬁ (Az] — 2aq25 + ng)} dri. (A1)

In Equation the wavelength is denoted by \, k = 2w/), L is the overall
distance of propagation, and A, B, and D are the elements of an ABC'D matrix.
Extending Equation to two dimension results in

1

[ k
F(z9,1) = meflch // E(z1,y2) exp [—1 35 (Az] — 22125 + Dx%)} X

_k
X exp [—1 5B (Ayf — 2Y1y2 + Dyg)] dx1dy;.

(A.2)
In polar coordinates x = r cos ¢ and y = rsin ¢, Equation becomes
) oo 2w k
F(ry, p2) = ﬁe_ikL//E(ﬁ;%) exp [_iﬁ (AT% + DT%)} X
00
k
X exp {1 B 179 COS (1 — 902)1 ridridey.
<
(A.3)
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Appendix A Radial symmetric representation of Huygen'’s integral in ABCD
System

With the relationship [218§]

21

k , k
/exp {i {E T179 €08 (Y1 — ©2) — ygol} } depy = 2mi"e %2 ], ( 7“1;7’2> (A.4)
0

and the field E being purely radial dependent, the factor indicated by ( in Equa-
tion [A.3] becomes 27 times the Bessel function Jy of first kind and order 0. This
finally delivers the radial symmetric representation of Huygen’s integral using the
ABCD matrix formalism as

kg [ k k
F(ry) = IE e kL / E(ry) exp {—1 25 (Ar% + Dr%)} Jo (E 7‘17“2) rydry. (A.5)
0
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