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Abstract

Background: The observation that females mate multiply when males provide nothing but sperm - which sexual
selection theory suggests is unlikely to be limiting - continues to puzzle evolutionary biologists. Here we test the
hypothesis that multiple mating is prevalent under such circumstances because it enhances female fitness. We do
this by allowing female Trinidadian guppies to mate with either a single male or with multiple males, and then
tracking the consequences of these matings across two generations.

Results: Overall, multiply mated females produced 67% more F2 grand-offspring than singly mated females. These
offspring, however, did not grow or mature faster, nor were they larger at birth, than F2 grand-offspring of singly
mated females. Our results, however, show that multiple mating yields benefits to females in the form of an
increase in the production of F1. The higher fecundity among multiply mated mothers was driven by greater
production of sons but not daughters. However, contrary to expectation, individually, the offspring of multiply
mated females do not grow at different rates than offspring of singly mated females, nor do any indirect fitness
benefits or costs accrue to second-generation offspring.

Conclusions: The study provides strong evidence that multiple mating is advantageous to females, even when
males contribute only sperm. This benefit is achieved through an increase in fecundity in the first generation, rather
than through other fitness correlates such as size at birth, growth rate, time to sexual maturation and survival.
Considered alongside previous work that female guppies can choose to mate with multiple partners, our results
provide compelling evidence that direct fitness benefits underpin these mating decisions.
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Background
Female multiple mating is prevalent in nature, even
when males provide no material benefits such as food or
parental care to females [1-3]. Female multiple mating in
such circumstances is unexpected because mating car-
ries associated costs. Aside from the energy and time
required to engage in mating [4], multiply mated females
may significantly increase their risk of predation or dis-
ease transmission [5]. Understanding why female mul-
tiple mating is the rule rather than the exception in the
absence of material benefits remains a key challenge in
evolutionary ecology [6,7].
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The adaptive significance of multiple mating has been
extensively debated and the general idea is that, to be
adaptive, the costs of multiple mating must be offset by
benefits that enhance female fitness. Two types of bene-
fits are commonly used to explain the adaptive value
of multiple mating: non-genetic benefits (direct/first
generation) [1] and genetic benefits (indirect/second
generation) [8]. Direct benefits derive from the quality
of the sperm of certain males that may increase fe-
male fecundity, longevity, or mating rate [1]. Add-
itionally, if males transfer insufficient sperm, females
may mate multiply to ensure all eggs are fertilized,
hence obtaining fecundity benefits [9]. Indirect bene-
fits, on the other hand, are next generation benefits
that are associated with post copulatory sexual selec-
tion mechanisms that are promoted by mating with
multiple, genetically variable, males (i.e., sperm com-
petition and cryptic choice) [8,10,11]. Post copulatory
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sexual selection can select for compatible genes [12],
thus reducing inbreeding depression [13] and leading
to the production of offspring of higher quality [6].
Alternatively, post mating sexual selection may also
favour males with competitive ejaculates to sire more
competitive offspring [14].
Although, direct benefits play a crucial role in the

adaptiveness of female multiple mating [11], over the
last decade there has been an increasing amount of
theoretical and empirical evidence in support of the
adaptive value of multiple mating based on indirect
benefits [8]. Examples of indirect benefits include,
increased offspring attractiveness and viability [6,15,16],
genetic heterogeneity and phenotypic diversity [17,18].
Indirect benefits have been proposed to be sufficient to
maintain multiple mating even at the expense of direct
costs to females, such as reduced longevity [19], if the
immediate direct costs are outweighed by a sufficiently
large increase in indirect fitness benefits, (i.e., second-
generation benefits).
Despite evidence that females gain indirect benefits (i.e.,

second-generation benefits) from multiple mating, two
difficulties are often identified. First, it is difficult to disen-
tangle direct and indirect benefits. The mechanism by
which females obtain direct benefits, such as increased fe-
cundity, may also affect offspring viability, thereby obscur-
ing any evidence of indirect benefits [20,21]. Second,
indirect benefits assume that F1 offspring fitness is
elevated [22]. However, to date, most tests of indirect
benefits have focused on offspring traits in the first
generation (F1), rather than on the relationship be-
tween multiple mating and an increase in the numer-
ical representation in future generations (net fitness) (but
see, [6,23,24], for examples of studies using net fitness).
Such demonstration is vital to confirm the underlying
assumption that indirect benefits result in an increase
in F1 offspring fitness [22].
In order to circumvent these difficulties, a stronger

test of the adaptiveness of multiple mating would be
one that: 1) tracks the fate of offspring across two
generations [25,26], and 2) teases apart first-generation
and second-generation fitness benefits. The number of
grand-offspring reaching reproductive maturity is a
robust measure of fitness [27,28]. To partition the first
and second generation contributions by this predicted
benefit of multiple mating, we need to know the ex-
tent to which the production of grand-offspring is at-
tributable to an increase in the numbers of offspring
produced and the extent to which it results from
improved offspring fitness (i.e., an indirect effect).
Quantifying the benefits of multiple mating solely on

the basis of the number of offspring produced, however,
may produce biased estimates of fitness. Fitness is a
function of the number of viable descendants produced,
as well as the influence that other life history traits
have on the performance of offspring in particular
contexts, or at a given point in the life cycle [28,29].
If, for example, offspring from multiply mated females
are larger at birth or grow faster (two fitness corre-
lates) than offspring from singly mated mothers, then
multiply mated females could attain greater fitness
benefits for the same number of offspring produced.
Consequently, fitness should be complemented with
information on survival and how this is affected by
other life history traits known a priori to be corre-
lated with fitness [30].
Here, we test the hypothesis that multiple mating results

in increased F1 fitness, by examining the number of
‘grand-offspring’ produced. We develop and apply a
multi-generational test that allows us to disentangle the
contributions of first generation (direct) and second-
generation (indirect) effects of this outcome. Specifically,
using the Trinidadian guppy (Poecilia reticulata), we con-
duct a two-generation experiment to assess the net fitness
of sons and daughters produced by contrasting mating
(single vs. multiple) treatments. Guppies have a promis-
cuous non-resource-based mating system, in which female
multiple mating is extremely common [31,32], with the
highest total number of putative sires per brood
recorded for a vertebrate species [33]. While male
sexual harassment is important in the cost-benefit
trade-off of female mating decisions [2,34], numerous
studies have shown that, under some circumstances,
females promote multiple matings [35-37]. This sug-
gests that multiple mating cannot be exclusively
attributed to a “convenience strategy” where females ap-
proach males to minimize costs associated with sexual
harassment from other males [38]. Two other conditions
may justify the adaptive value of multiple mating in the
absence of material benefits: increasing female fecundity
(direct benefits) and/or increasing offspring reproductive
success (indirect benefits) [39]. Given the ubiquity of fe-
male multiple mating in guppies, and coupled with the
absence of any resource-based/material benefits from
males to females, we predict that under identical social and
environmental conditions, multiply mated females will pro-
duce more grand-offspring than singly mated ones.
We first tested the prediction that multiple mated

females obtain indirect benefits by producing more grand-
offspring (F2). We did this by comparing the number of
F2s generated via single and multiple mated F0 treat-
ments. We then examined how mating success and brood
size of F0 females and F1 offspring contributed to this ef-
fect. First, the number of F1s produced was compared be-
tween the two mating treatments. Second, we tested
whether the F1 offspring of multiply mated females were
more viable than those of singly-mated females, when all
F1s were paired with randomly selected mates under a
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common garden experimental design. This allowed us to
attribute any overall differences in the number of grand-
offspring produced to; having more F1 offspring, to having
F1 offspring that were more viable, or to a combination of
both. In addition, to assess the extent to which these fit-
ness measures may be biased by differences in offspring
characteristics, we measured size at birth and growth
rates, which have been previously described as important
fitness correlates. Differences between the offspring of sin-
gle and multiple mated females in these quantities could,
in nature, offset differences in the number of F1 or F2 off-
spring produced.

Results
F0 to F2
The estimated probability of breeding success for F0
females (i.e., of successfully producing a first brood) was
higher for multiple (0.67) than for single (0.55) matings,
but the difference was not statistically significant (likeli-
hood ratio test: R = 2.1, P = 0.15) (Table 1). However,
once the number of viable grand-offspring produced (i.e.,
number of F2 that survived until sexual maturation) was
taken into account, multiply mated F0 females produced,
on average, 67% more viable grand-offspring (F2) than
singly mated F0 females (Figure 1A; P < 0.05). Separate
analysis of grand-offspring produced via female and viable
male F1 individuals indicated that this was principally
due to the fact that multiple matings produced more than
twice as many grand-offspring as single matings, on aver-
age, via viable male F1 (Figure 1B), a highly significant
difference (P < 0.01). In contrast, the grand-offspring
Table 1 Effect of Mating Treatment on Components of Fitnes

Fitness Variable Mating treatment N

F0 F1

Brood Size Single 40 121

Multiple 39 154

Breeding Success Single 73(.55) 121(.70)

Multiple 58(.69) 154(.75)

Growth Rate Single 121

Multiple 148

Size at Birth Single 121

Multiple 147

Sexual Maturation Single 58

Multiple 91

Mortality Single 3 8

Multiple 2 10

Sample size (N), Mean and Standard Error of the Mean for single and multiple mati
size for F2 was calculated using only viable F1s (i.e., individuals surviving to 12 wee
based on a negative binomial distribution for F0 and a binomial probability distribu
calculated using these two probability distributions. For all other variables arithmet
growth (cm) over 12 weeks. Maturation is the number of days from birth until sexu
treatment before producing a first brood.
produced via female F1 did not differ significantly with
mating treatment (Figure 1C; P = 0.16). Note that the
mean number of F2s descended via a singly or multiply
mated grandmother through a son or daughter F1 was
calculated using only viable F1s.

F0 to F1
Multiply mated females produced 60% more viable F1 off-
spring, on average, than singly mated females (Figure 2A;
P < 0.01). The greater fecundity observed was driven by
the production of 83% more viable males (Figure 2B:
P < 0.001), whereas viable female offspring did not differ
significantly between treatments (Figure 2C; P = 0.14).
Sex ratio (SR-male/female) of F1s was not signifi-
cantly different from a 1:1 in the single mating treat-
ment (SR = 0.92; P = 0.71, Additional file 1:
Supporting Information 1), but was male-biased in
the multiple mating treatment (SR = 1.44; P = 0.03,
Additional file 1: Supporting Information 1).

F1 to F2
In the next generation, there were no significant differ-
ences in the reproductive success of individual F1 that
had been produced from multiple versus single matings
(Figure 3A; P = 0.78), regardless of whether the F1s
were male (Figure 3B; P = 0.84) or female (Figure 3C,
P = 0.67). In terms of sex ratios in the grand-offspring
(F2), both treatments had even sex ratios that did not dif-
fer significantly from 1:1 (F2Fo singly; SR = 0.94, P = 0.61;
F2F0 multiply; SR = 0.93, P = 0.40, Additional file 1:
Supporting Information 1).
s

Mean SEM

F2 F0 F1 F2 F0 F1 F2

335 3.02 2.83 0.28 0.20

436 4.00 3.00 0.36 0.16

32.7 82.2 0.55 0.46

18.0 116 0.43 0.40

144 0.12 0.12 .003 .002

160 0.11 0.13 .002 .003

144 0.85 0.86 0.06 0.07

148 0.86 0.86 0.06 .004

158 45.6 40 1.65 0.77

187 47.8 42 1.43 0.76

15

14

ng treatments at F0, F1 and F2, for each component of fitness. Mean brood
ks). Breeding success in brackets is the fitted probability of producing a brood,
tion for F1. The means and standard error of means for breeding success were
ic means are presented. Growth rate was calculated as the rate of weekly
al maturation. Mortality is the number of individuals that died per mating



Figure 1 Indirect Fitness (F0 to F2). Mean number of viable grand-offspring (F2) produced by a singly or multiply mated F0 females via (A) all
F1, (B) male F1, and (C) female F1. Values in (B) and (C) do not sum to the values in (A), because not all F0s produced mixed sex broods. Whiskers
indicate 95% bootstrap percentile confidence intervals. Sample sizes used to calculate the means are shown in Supporting Information 1.
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Effect of multiple mating on size at birth, growth rate,
time to sexual maturation and survival
Model selection revealed that for all traits, the estimated
best model included a random effect due to tank of
Figure 2 Direct Fitness (F0 to F1). Mean number of viable offspring (F1)
(B) male F1, and (C) female F1. Means were calculated using only those F1
confidence intervals. Sample sizes used to calculate the means are shown
origin (i.e., random variation among F0 females), but no
consistent difference between females in different treat-
ments. There was also some support for a mixed effect
model, which included treatment and tank (Table 2,
produced by singly or multiply mated F0 females, counting (A) all F1,
s that reached sexual maturity. Whiskers indicate 95% bootstrap
in Supporting Information 1.



Figure 3 Partitioning Fitness (F1 to F2). Mean number of viable offspring (F2) produced by (A) all F1, (B) only male F1, and (C) only female F1.
Whiskers indicate 95% bootstrap confidence intervals. Sample sizes used to calculate the means are shown in Supporting Information 1.
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Additional file 2: Supporting Information 2). Finally, in
terms of survival, 96.7% of F1s from singly mated and
98% of F1s from multiply mated females survived up to
12 weeks. For F2s, 98% and 97.6% of grand-offspring, of
singly and multiply mated origins respectively, survived
until 12 weeks (Table 1, Additional file 1: Supporting
Information 1). There was therefore no significant ef-
fect of multiple mating on F1 and F2 survival.
Discussion
Despite growing evidence that females obtain reproduct-
ive benefits from mating multiply, the extent to which
these benefits are partitioned between first- and second-
generations remains controversial [6,7,13,39]. This parti-
tioning is critical to validate the assumption that multiple
mating confers genetic benefits that increase offspring
net fitness (i.e., number of descendants produced). By
comparing fitness gains, using multiple components of
fitness, between singly and multiply mated females over
two generations, we have addressed this question.
Our results strongly support the hypothesis that mul-

tiple mating is adaptive, as manifested in an increase in
female fecundity. We found that multiply mated females
produce substantially more grand-offspring than singly
mated females. However, because the reproductive out-
put (F2) of progeny from multiply and singly mated
females was not significantly different, we also showed
that this fitness advantage is driven by the production of
more offspring in the first generation (F1), rather than
by elevating the fitness of offspring (second-generation
effects).
Our results do not preclude the possibility that selec-

tion for indirect benefits exists, because direct and indir-
ect benefits may operate simultaneously [40]. Previous
work has found the offspring of multiply mated female
to be larger at birth, phenotypically more diverse, and
have enhanced schooling and predator avoidance skills
[17,41,42]. Such traits are likely to be important in the
natural environment in enabling progeny to survive until
they are able to reproduce. For example, there is evi-
dence that environmental factors such as disease play a
role in female indirect selection for males with pathogen
resistance alleles [43]. A similar process could operate in
naturally occurring guppy populations. Thus, while in-
direct benefits may operate under different environmen-
tal circumstances that were not investigated here, our
study provides clear evidence that multiple mating bene-
fits females, and that the direct effect of an increase in
fecundity plays a key role in delivering this benefit. Im-
portantly, mating treatment had no effect in terms of
terms of size at birth, growth rate or viability, underscor-
ing the importance of the scale of fecundity fitness bene-
fits from multiple mating.
Fitness can be defined as a measure of the proportion

of individuals that are propagated into the following gen-
erations [26]. A limitation of our study was that net fit-
ness (i.e., number of descendants produced) was only
recorded for the first brood. Nevertheless, we do not be-
lieve that this materially undermines our conclusions.



Table 2 Results for Mixed Effect models on Fitness
components

Size at birth

F1 Estimate Std. error DF P

Fixed effect

Intercept −0.160 0.008 191 <0.001

Random effects Std. Dev.

Tank (Intercept) 0.068

Residual 0.044

F2 Estimate Std. error DF P

Fixed effect

Intercept 0.859 0.006 262 <0.001

Random effects Std. Dev.

Tank (Intercept) 0.020

Residual 0.057

Growth rate

F1 Estimate Std. error DF P

Fixed effect

Intercept −2.192 0.024 190 <0.001

Random effects Std. Dev.

Tank (Intercept) 0.184

Residual 0.162

F2 Estimate Std. error DF P

Fixed effect

Intercept −2.120 0.041 274 <0.001

Random effects Std. Dev.

Tank (Intercept) 0.204

Residual 0.190

Time to sexual maturation

F1

Fixed effect Estimate Std. error DF P

Intercept 3.825 0.034 84 <0.001

Random effects Std. Dev.

Tank (Intercept) 0.253

Residual 0.130

F2

Fixed effect Estimate Std. error DF P

Intercept 3.720 0.027 242 <0.001

Random effects Std. Dev.

Tank (Intercept) 0.174

Residual 0.201

Effect of mating treatment on size at birth, growth rate and time to sexual
maturation in F1s and F2s using linear mixed-effects models. Tank of origin
was used as a random effect nested within mating treatment. Parameters are
only shown for best-fitted model. Selection of best-fitted model and Akaike
weights are shown in Additional file 2: Supporting Information 2.
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Specifically, in contrast to individuals exposed to natural
variation (in which fitness fluctuates according to the
different environments experienced), all the individuals
of F0, F1, and F2 generations in our experiment were
allocated to identical conditions of light, temperature,
food provisioning, and sexual harassment. Under such
stable and identical conditions, temporal variation in fit-
ness is likely to be small [30]. Also, by recording fitness
on a large number of tanks per mating treatment across
two generations, we reduced the risk of getting a biased
estimate of fitness [27,28].
It is possible that singly mated F0 females produced

fewer F1s as result of brood retention, but we think this
possibility is unlikely. One advantage of multiple mating
over single mating is that it enables mechanisms of post-
copulatory sexual selection to operate to maximize fit-
ness [3]. If F0 females in the singly mated treatment
retained brood production, then this can be seen as an
advantage of multiple mating over single mating. It is,
however, important to point out that there were no dif-
ferences in the probability of producing a first brood or
in the time of gestation between singly and multiply
mated F0 females (see results). These two variables are
good indicators of female stress. Additionally, guppies
lack superfetation, meaning that all embryos are at the
same developmental stage [44]. It is therefore unlikely
that brood retention could explain our results.
When the environment is controlled, as it was in this

experiment, it is the increased quantity of F1 offspring,
rather than the quality of those offspring, that is the key
determinant of fitness. Previous work found the off-
spring of multiply mated female to be larger at birth,
and phenotypically more diverse, and to have enhanced
schooling, and predator avoidance skills [17,41,42]. Size
at birth and growth rate are strongly maternally influ-
enced [45], and have been shown to be important fitness
correlates in guppies [46-48]. Although phenotypic di-
versity and offspring behavior were not measured, we
found no effect of multiple mating on size at birth,
growth rate, time to sexual maturity, or survival. In this,
our results are consistent with a recent meta-analysis,
which showed that female multiple mating does not have
a significant impact on such offspring demographic traits
[39]. The identical conditions across mating treatments
and generations could have minimized selection for the
traits analyzed in our study.
Similar increases in fecundity associated with mul-

tiple mating have been reported across different taxa
[1,19,49,50]. Theoretical models predict that if direct ben-
efits outweigh the costs associated with multiple mating,
there will be enough selective pressure to maintain mul-
tiple mating based on direct reproductive benefits without
the need for second generation fitness benefits [11,51]. In
species with internal copulation, a major survival cost
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associated with multiple mating is the physical injury and
disease transmission caused by the male’s sexual organ.
Since the frequency of multiple mating is similar in la-
boratory and wild conditions [52], the above costs are
therefore predicted to be comparable (although the preva-
lence of disease is expected to be greater in the wild).
Multiple mating had no effect on survival or on the prob-
ability of producing a first brood in F0 females. Mating
treatment also did not affect the number of F1s that reach
sexual maturity, hence it is unlikely to have caused any
difference in fitness. Although we cannot rule out the ef-
fect of “ideal laboratory conditions” in alleviating the costs
associated with multiple mating, the fact that we did not
find any effect of multiple mating in costs that are meas-
urable under laboratory conditions and in any of the life
history traits studied indicates the costs were negligible in
the multiple mating treatment.
The greater fecundity in the multiple mating treatment

was driven by the over-production of viable sons (> 87%).
Likewise, multiply mated females of house wren produce
a surplus of male offspring [53]. While theoretical models
predict that female multiple mating can affect the dy-
namics of sex ratio [54], empirical studies documenting
such effects are rare [55]. Here, we empirically show for
the first time, that female multiple mating influences the
offspring sex-ratio in the Trinidadian guppy. Sex ratios
are usually female biased in laboratory guppy strains
[56], which is in stark contrast to our results. Variation in
environmental/social conditions affects sex ratios [46,57].
As water temperature, feeding and level of sexual harass-
ment were identical between mating treatments, so a sex
ratio adjustment in response to differences in environ-
mental conditions seems unlikely. Evolutionary theory
predicts that when conditions are good, females should
invest more in the sex with greater reproductive variabil-
ity [58], which in our case is expected to be the male sex.
Multiple mating and female harassment by males is the
norm among guppy populations, whereas single mating
is the unnatural condition. Is it possible that this created
stress that led singly mated females to produce fewer
sons? Future studies should investigate the causes of this
over production of sons from multiply mated females
and ask whether this is adaptive in the long run.
One possible mechanism for the over-production of

sons is the existence of segregation distortion genes or
sex ratio meiotic drive. During spermatogenesis, the sex
ratio distortion gene links to one of the sex chromo-
somes and prevents the production of functional gametes
bearing the other sex chromosomes [59]. Sex ratio segre-
gation distortion genes have been reported for many fish
species, including guppies [60]. However, these genes act
during spermatogenesis, which occurred before the start
of the experiment, as it typically takes 36 days in guppies
[61]. Hence it is unclear how segregation distortion genes
could have differentially affected the two treatments un-
less they influence the outcome of sperm competition. In
fact, in fruit flies, sperm bearing sex ratio distorting genes
have reduced competitive ability, giving them a reduced
share of paternity under contexts of sperm competition,
such as those created by multiple mating [55,62].

Conclusions
For most of the twentieth century, studies of sexual se-
lection assumed that female fitness can be maximized by
mating with a single male [63]. As a result, multiple
mating by females was mostly seen as a consequence of
sexual conflict and sexual coercion by males [38]. More
recently there has been a shift in this perspective, with
the female’s role in multiple mating increasingly recog-
nized [64-66]. Our study reinforces this idea and adds to
the growing evidence that the benefits gained by females
from multiple mating in most cases outweigh the costs.
As our study shows, under benign conditions, multiple
mating brings a ~1.5 fold increase in female fecundity.
This increase in fecundity, which occurs at an apparently
negligible physical cost for both the mother and off-
spring, is a strong indicator of the adaptiveness of female
multiple mating. Sexual conflict arises when the repro-
ductive agendas of each sex are different [67]. However
if multiple mating is advantageous for females, as is in-
creasingly recognized across many taxa, then it is time
to examine mating decisions from the perspective that
both female and male fitness can be maximized by mat-
ing multiply. This does not mean that sexual conflict is
irrelevant, but it shows that the effects of female mul-
tiple mating on fitness must also always be considered.

Methods
Experimental design
We used descendants of wild caught guppies from the
Lower Tacarigua River, Trinidad, to generate virgin
females and males that were later used to generate singly
and multiply mating broods. Sixty pregnant females were
haphazardly selected and transferred to single 10 L tanks
and allowed to give birth. Of the 60 females, 51 pro-
duced broods that provided the first generation of fish
(F0) used in our experiment. After birth each offspring
was allocated to a single 10 L tank for 12 weeks at which
point sex could be unambiguously determined. All indi-
viduals were kept in identical laboratory conditions.
Tanks were filled with de-chlorinated tap water, con-
tained clean natural gravel and maintained at approxi-
mately 20–24°C under a 12-hour light/dark regime.
Each tank had its own filter. All individuals were fed
ad libitum daily with live artemia.
At three months old, F0 females and F0 males were hap-

hazardly allocated to either a single or a multiple mating
treatment. In both mating treatments, each female had
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access to only one male at any given time. After the first
day, all males were removed and allocated to individual
tanks for 24 hours. On the second day, in the single mat-
ing treatment the same male was introduced to the same
female as in day 1, whereas in the multiple mating treat-
ment a novel male was introduced to the female. This
process was repeated for the next two days, with the same
male introduced to the singly mated female and a new
male introduced to the multiply mated female. F0 males
allocated to the multiple mating treatment were not
rotated among different replicates (i.e., each group of four
males was only used in one replicate). In both mating
treatments, F0 females were allowed to settle for 24 hours
before mating trials began. F0 males were introduced the
following day at 0700 and removed at 1700. We adopted a
similar experimental design to that used by Tregenza
and Wedell (1998) [68], in which the mating frequency
remained constant between mating treatments whereas
the number of mates varied. This mimics the chance
encounters with males that occur under natural condi-
tions, while controlling for potential confounding effects
linked to sexual harassment, which are known to strongly
influence mating in this species [69]. At the end of the
fourth day, all F0 males were removed, and F0 females
were kept individually in their home tanks until either a
first brood was produced or 90 days had elapsed.
All tanks were inspected for newborns twice a day

(morning and afternoon). After the birth of the first
brood the F0 female was allocated to a stock tank and
not used again. F0 females that failed to successfully pro-
duce a brood were removed and replaced by a new fe-
male. Therefore, to obtain a total of 40 broods for each
treatment, 73 and 78 F0 females were mated for the sin-
gle and multiple mating treatment, respectively (Table 1,
Additional file 1: Supporting information 1). These num-
bers of unsuccessful attempts were used to test for dif-
ferences in the probability of mating success (see below).
Immediately after birth the standard length of every in-
dividual F1 offspring was measured (Table 1). All 121
and 154 offspring of singly and multiply mated females
(respectively) were transferred to individual and sepa-
rated 10 L tanks and kept there for 12 weeks. Growth
rate was calculated by recording the standard length of
each individual F1 every week for 12 weeks (Table 1).
Time to sexual maturation was also recorded for male F1s
(Table 1). A male was considered sexual mature when the
gonopodium extended beyond the tip of the anal fin.
After 12 weeks, each F1 offspring was presented with

either a virgin female or male (these individuals were
reared in individual tanks and used only as pairs for F1s),
according to its sex, of similar size, and allowed to mate
freely until a first F2 brood was produced. In contrast
with the F0s, F1s were allowed to mate indeterminately
until either a first brood of F2s was produced, or one of
the F1 fish died. After the birth of the first F2 brood, a
random sample of F2s had their size at birth, growth rate
and time to sexual maturation recorded (Table 1). Size at
birth, growth rate, and time to sexual maturation was
only recorded for a sub set of F2s because of space lim-
itations in the laboratory that prevented us from allocat-
ing all F2s to individual tanks. Finally, survival rate was
recorded for F1s and F2s by recording whether a given
individual survived until the end of the study (12 weeks)
(Table 1).
All behavioural observations were carried out at the

School of Biology at the University of St Andrews. The
premises where the observations were carried out com-
ply with the ASAB Guidelines for the treatment of ani-
mal in behavioural Research and Teaching, set by UK
Home Office (PCD 60/2609).

Statistical design
We first tested whether multiply mated females had a sig-
nificantly higher probability of producing a first brood than
singly mated ones (i.e., breeding success). Because the re-
sponse variable for calculating breeding success is dichot-
omous (i.e., a females either produces a brood, or not), and
matings were conducted until 40 replicates per mating
treatment were obtained, the appropriate probability distri-
bution is the negative binomial (i.e., the probability distribu-
tion for the number of “trials” required to obtain a
pre-determined number of “successes” [70]). Conse-
quently, the appropriate log-likelihood is:

log Lð Þ ¼ log
Ns � 1ð Þ!

ks � 1ð Þ! Ns � ksð Þ!
� �

� ks log psð Þ

þ Ns � ksð Þ log 1� psð Þ

þ log
Nm � 1ð Þ!

km � 1ð Þ! Nm � kmð Þ!
� �

� km log pmð Þ þ Nm � kmð Þ log 1� pmð Þ
ð1Þ

where the subscripts s and m refer to the singly and
multiply mated treatments, respectively, Ni is the
number of “trials” (i.e., number of F0 females for
whom mating was attempted) in treatment i (i = s or m),
ki is the pre-specified number of “successes” (F0 females
that produced a brood: 40 for each treatment, in our
case) in that treatment, and pi is the probability that
a randomly chosen F0 female will successfully pro-
duce a brood in that treatment. Ni and ki are the
data, and the pi are the parameters that must be esti-
mated. To test for differences in breeding success between
mating treatments, we fitted two versions of the likelihood
in eq. (1): one in which breeding success differed be-
tween mating treatments (i.e., ps and pm were esti-
mated as distinct parameters (ps 6¼ pm), and a second
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in which the multiply and singly mated females had
the same probability of success (ps = pm = p). We
wished to test the null hypothesis of equal mating
success. We therefore fitted the mating success data
to the negative binomial distribution under our null
hypothesis (p s = pm = p), and our alternative hypothesis
(ps 6¼ pm), and we determined whether the null hypothesis
of equal mating success could be rejected with 95% confi-
dence by comparing the two models with a likelihood
ratio test.
Second, we tested whether the average number of vi-

able grand-offspring produced (i.e., those surviving to
adulthood; ~12 weeks) was greater for multiply mated
females than for singly mated ones. No standard para-
metric distribution provided a satisfactory characterization
of the number of grand-offspring per successful brood.
Therefore, we used non-parametric bootstrapping, which
makes no distributional assumptions about the data [71],
to characterize the uncertainty around the number of
grand-offspring per successful F0 brood. To test whether
the average number of viable grand-offspring (i.e., those
surviving to adulthood [~12 weeks]) produced was greater
for multiply mated females than for singly mated ones,
we used a combination of parametric (for breeding
success) and nonparametric (for number of grand-
offspring per successful F0 brood) bootstrapping.
First, for ps and pm, we randomly drew a probability of
breeding success from the uncertainty distribution around
our negative binomial maximum likelihood estimate
(MLE) of this quantity (which we obtained from the in-
verse of the second partial derivative of the likelihood
function, according to standard likelihood theory). Second,
we used non-parametric bootstrapping to produce an un-
certainty distribution for the mean number of viable
grand-offspring produced per F0 female (i.e., number of
F1 that survive 12 weeks). By randomly drawing a value
of p, and a value for the mean number of viable grand-
offspring from their respective uncertainty distributions,
and then multiplying them together, we obtained a
bootstrap replicate of the mean number of offspring
produced per mating. By following the same bootstrap
procedure for the singly mated female, and then subtract-
ing the latter from the former, we obtained a bootstrap
replicate of the difference in average number of off-
spring produced per mating treatment. We repeated
this process 1000 times, and judged multiple mating
as significantly more successful if >95% of the boot-
strapped differences were greater than zero.
In addition, to gain more insight into the proximate

mechanisms by which any differences in reproductive suc-
cess arose, we conducted two further sets of analyses. We
used a bootstrap analysis similar to that described above
(except that viable sons and daughters were counted, ra-
ther than grand-offspring) to estimate the difference in
average number of viable F1 offspring produced from
multiple versus single matings. We also estimated the
difference in the average number of F2 produced be-
tween F1 offspring of multiply mated mothers and F1
offspring of singly mated mothers. In F1s, however, a
fixed number of individuals were mated (rather than
mating occurring until a fixed number of successes oc-
curred), so the appropriate likelihood for estimating the
probability of breeding success for F1 individuals was
the binomial distribution, rather than the negative bino-
mial distribution.

log Lð Þ ¼ log
Ns!

ks! Ns � ksð Þ!
� �

� ks log psð Þ

þ Ns � ksð Þ log 1� psð Þ

þ log
Nm!

km! Nm � kmð Þ!
� �

� km log pmð Þ

þ Nm � kmð Þ log 1� pmð Þ

ð2Þ

Additionally, we also compared sizes at birth, growth
rates and time to male sexual maturation between
mating treatments, to determine whether any differences
in brood size were being traded off against any other
fitness related traits. Both of these response variables
followed an approximately Gaussian distribution after
log-transformation, allowing application of a more con-
ventional statistical analysis. In the analysis of brood
size, there is only one response variable value per parent
(number of progeny). For birth, growth, and time to
sexual maturation, however, we have replication
within parents (i.e., each offspring contributes a
value). Because parental effects on these traits are
likely, we treated each parent as a random effect
nested within mating treatment, and fitted the data
with linear mixed-effects models (function glmmPQL
in R) [72]. For model selection, we used Akaike’s In-
formation Criterion [73]. Specifically, we calculated
AIC, the difference between the AIC of each model,
and that of the estimated best model (the model with
the lowest AIC). We also calculated Akaike weights,
which are estimates of the probability that each
model is actually the best in the model set. Thus, if
multiple models have similar Akaike weights, then
there is some uncertainty about which model is best.
For all analyses involving brood size, reported P-values

were obtained from percentiles of the bootstrap distribu-
tions generated by the bootstrap analyses described above.
For the analyses of size, growth and time to maturation,
P-values were obtained from the fitted generalized linear
mixed effects models. For the analysis of brood success,
P-values were obtained from the likelihood ratio test (i.e.,
the chi-squared distribution with one degree of freedom).
All analyses were performed using R 2.14.0 [74].
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Additional files

Additional file 1: Supporting Information 1. Total number of
individuals and the descendants produced, which were used to calculate
the means and confidence intervals for Figures 1, 2 and 3. Viable
individuals are those that reach sexual maturation and breeding success
is the number of those that successfully produce a first brood.

Additional file 2: Supporting Information 2. Model selection using
values of ΔAIC (Akaike weights). k: Number of parameters of the model.
The estimated best fitting model is shaded in grey.
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